Assessment of Corrective Measures OGS Ash Pond Addendum No. 2 and OGS Zero Liquid Discharge Pond

Ottumwa Generating Station Ottumwa, Iowa

Prepared for:

SCS ENGINEERS

25220083.00 | August 5, 2022

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830

Table of Contents

Sec.	tion			Page		
Exec			ıry			
1.0			and Purpose			
	1.1		sment of Corrective Measures Requirements			
	1.2		formation and Map			
2.0	Back	_				
	2.1	_	nal Geologic Information			
	2.2	Site G	eologic Information	3		
	2.3		rule Monitoring System			
3.0	Natu	ire and	Extent of Groundwater Impacts	5		
	3.1		tial Sources			
	3.2	Groun	dwater Assessment	7		
		3.2.1	Groundwater Depth and Flow Direction			
		3.2.2	Groundwater Protection Standard Exceedances Identified	7		
		3.2.3	Expanding the Groundwater Monitoring Network	9		
		3.2.4	Monitored Natural Attenuation Data Collection and Evaluation	9		
	3.3	Conce	ptual Site Model	12		
		3.3.1	Nature of Constituents Above Groundwater Protection Standards	12		
		3.3.2	Potential Receptors and Pathways	12		
4.0	Pote	ntial Co	rrective Measures	14		
	4.1	Identif	fication of Corrective Measures	15		
		4.1.1	Source Control	15		
		4.1.2	Containment	16		
		4.1.3	Restoration	18		
5.0	Corre	ective M	Neasure Alternatives	19		
	5.1	Alterna	ative 1 – No Action	19		
	5.2	2 Alternative 2 - Close and Cap in Place with Monitored Natural Attenuation				
	5.3	Alterna	ative 3 - Consolidate On-Site and Cap with Monitored Natural Attenuation.	20		
	5.4	5.4 Alternative 4 – Excavate and Dispose On-Site with Monitored Natural Attenuation		20		
	5.5	.5 Alternative 5 - Excavate and Dispose Off-Site with Monitored Natural Attenuation		21		
	5.6		ative 6 – Consolidate and Cap with Chemical Amendment and groundwater			
			tion			
	5.7		ative 7 - Consolidate and Cap with Groundwater Collection			
	5.8		ative 8 – Consolidate and Cap with Barrier Wall and groundwater collection			
6.0	Eval	Evaluation of Corrective Measure Alternatives				
	6.1					
	6.2	Alterna	ative 2 - Close and Cap in Place with Monitored Natural Attenuation	23		
	6.3		ative 3 – Consolidate On-Site and Cap with Monitored Natural Attenuation .			
	6.4	Alterna	ative 4 – Excavate and Dispose On-Site with Monitored Natural Attenuation	25		
	6.5	Alterna	ative 5 - Excavate and Dispose Off Site with Monitored Natural Attenuation	27		

6		rnative 6 – Consolidate and Cap with Chemical Amendment and groundwater ection
7.0 S	i.7 Alte i.8 Alte ummary	rnative 7 – Consolidate and Cap with Groundwater Collection
		Tables
Table 1 Table 2 Table 2 Table 3 Table 4 Table 5 Table 6	2A. 2B. 3. 4.	Groundwater Elevations – CCR Rule Monitoring Well Networks CCR Rule Ash Pond Groundwater Samples Summary CCR Rule ZLDP Groundwater Samples Summary Groundwater Analytical Results Summary – CCR Program – Assessment Monitoring Groundwater Analytical April 2022 Results Summary Groundwater Field Parameters – CCR Program – Assessment Monitoring Preliminary Evaluation of Corrective Measure Alternatives
		Figures
Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 8 Figure 2 Figure 2 Figure 2	2. 3. 4. 5. 6. 7. 8. 9.	Site Location Map Site Plan and Monitoring Well Locations Geologic Cross Section A-A' Geologic Cross Section B-B' Shallow Potentiometric Surface April 12-16, 2021 Deep Potentiometric Surface April 12-16, 2021 Shallow Potentiometric Surface October 6-8, 2021 Deep Potentiometric Surface October 6-8, 2021 Shallow Potentiometric Surface April 11-14, 2022 Deep Potentiometric Surface April 11-14, 2022 Water Table Map July 05, 2022
Apper	ndices	
Append Append Append	lix B lix C	Regional Geologic and Hydrogeologic Information Boring Logs Hydrogeochemical Conceptual Model and Preliminary Summary of Groundwater Contaminant Attenuation SPLP Sediment Analytical Laboratory Report

Assessment of Corrective Measures
OGS Ash Pond Addendum No. 2 and OGS ZLD Pond ii

 $I:\25220083.00\Deliverables\ACM\ Addendum\ No\ 2\220805_OGS_ACM\ Add\ 2_Final.docx$

EXECUTIVE SUMMARY

Interstate Power and Light Company (IPL), an Alliant Energy company, operated two ash ponds at the Ottumwa Generating Station (OGS), including the Main Ash Pond (OGS Ash Pond) and the Zero Liquid Discharge Pond (OGS ZLD Pond). The ponds were used to manage coal combustion residuals (CCR) and wastewater from the power plant, which burns coal to generate electricity. The OGS ZLD Pond was removed by excavation and replaced with the lined Low Volume Wastewater Treatment Pond (LVWTP) in 2021. The Ash Pond is currently being drained in preparation for closure by consolidation and capping.

This report has been prepared to include the OGS ZLD Pond within the Assessment of Corrective Measures (ACM) process to satisfy requirements of the U.S. Environmental Protection Agency (U.S. EPA) standards for the Disposal of CCR from Electric Utilities, or the "CCR Rule" (Rule). This report includes updates since the November 25, 2020, ACM Addendum No. 1. These updates are consistent with the most recent semi-annual update from March 2022, as well as on-going work that will be captured in subsequent semi-annual progress reports. This Addendum No. 2 supersedes Addendum No. 1.

IPL samples and tests the groundwater in the area of the ponds to comply with the CCR Rule. Groundwater samples from two of the wells installed to monitor the OGS Ash Pond and one of the wells installed to monitor the OGS ZLD Pond contain cobalt at levels higher than the Groundwater Protection Standards (GPS) defined in the Rule. Cobalt occurs naturally and can be present in coal and CCR.

IPL prepared an ACM Report in September 2019 in response to the groundwater sampling results at the OGS facility. The ACM process is one step in a series of steps defined in the Rule and shown below.

To prepare the ACM, IPL worked to understand the following:

- Types of soil and rock deposits in the area of the OGS facility.
- Depth of groundwater.
- Direction that groundwater is moving.
- Potential sources of cobalt in groundwater.
- The area where cobalt levels are higher than the U.S. EPA standards.
- The people, plants, and animals that may be affected by levels of cobalt in groundwater that are above the GPS.

IPL has continued work since identification of the initial GPS exceedance to improve the understanding of the items listed above for both the OGS Ash Pond and OGS ZLD Pond. Using information obtained between September 2019 and September 2020, IPL selected a remedy and

issued a Selection of Remedy Report on September 11, 2020. New information was received following issuance of the Selection of Remedy report, resulting in the November 25, 2020, Addendum No. 1 to the ACM. Addendum No. 1 included an update of available site data obtained since the initial ACM was completed and additional Corrective Measures. IPL held a public meeting on June 4, 2020, to discuss the contents of the September 2019 ACM. IPL held an additional public meeting with interested and affected parties to discuss the amended ACM on February 18, 2021.

This report, Addendum No. 2 to the ACM, was prepared to expand the ACM to include the OGS ZLD Pond. Cobalt has been detected at statistically significant levels (SSLs) in monitoring wells located downgradient from both Ponds and expanding the ACM to address both will support a holistic approach to addressing the cobalt concentrations in groundwater. IPL will hold an additional public meeting with interested and affected parties to discuss Addendum No. 2 and will issue a revised Selection of Remedy Report.

IPL has identified appropriate options, or Corrective Measures, to bring the levels of cobalt in groundwater below U.S. EPA standards. In addition to stopping the discharge of CCR and OGS wastewater to the OGS Ash Pond, these corrective measures include:

- Cap CCR in Place with Monitored Natural Attenuation (MNA).
- Consolidate CCR and Cap with MNA.
- Excavate and Dispose CCR on-site with MNA.
- Excavate and Dispose CCR in off-site Landfill with MNA.
- Consolidate and Cap with Chemical Amendment.
- Consolidate and Cap with Groundwater Collection.
- Consolidate and Cap with Barrier Wall.

IPL has also included a "No Action" alternative for comparison purposes only. This alternative will not be selected as a remedy.

Addendum No. 2 includes an updated evaluation that includes all eight options using factors identified in the Rule.

IPL provided a semiannual update in March 2020 on its progress in evaluating Corrective Measures to address the groundwater impacts at OGS. The initial Selection of Remedy report issued in September 2020 also describes progress in evaluating the Corrective Measures. Subsequent semiannual updates were provided in March 2021, September 2021, and March 2022.

For more information on Alliant Energy, view our Corporate Responsibility Report at https://poweringwhatsnext.alliantenergy.com/crr/.

1.0 INTRODUCTION AND PURPOSE

An Assessment of Corrective Measures (ACM) at the Interstate Power and Light Company (IPL) Ottumwa Generating Station (OGS) was prepared to comply with U.S. Environmental Protection Agency (U.S. EPA) regulations regarding the Disposal of Coal Combustion Residuals (CCR) from Electric Utilities [40 CFR 257.50-107], or the "CCR Rule" (Rule). Specifically, the ACM was initiated and this report was prepared to fulfill the requirements of 40 CFR 257.96, including:

- Prevention of further releases.
- Remediation of release.
- Restoration of affected areas.

An ACM Report was issued in September 2019 to summarize the remedial alternatives for addressing the Groundwater Protection Standard (GPS) exceedances observed in the October 2018 sampling event for the OGS Ash Pond, and identified in the Notification of GPS Exceedance dated January 14, 2019. The September 2019 ACM identified additional information needed to inform the selection of a corrective measure (remedy) for OGS according to 40 CFR 257.97. Using information obtained between September 2019 and September 2020, IPL selected a remedy and issued a Selection of Remedy Report on September 11, 2020. New information was received following issuance of the Selection of Remedy report, resulting in an addendum to the ACM (Addendum No. 1). Addendum No. 1 included an update of available site data obtained since the initial ACM was completed and additional Corrective Measures. IPL held a public meeting on June 4, 2020, to discuss the contents of the September 2019 ACM. This Addendum No. 2 supersedes Addendum No. 1. IPL held another public meeting with interested and affected parties to discuss the amended ACM No. 1 on February 18, 2021.

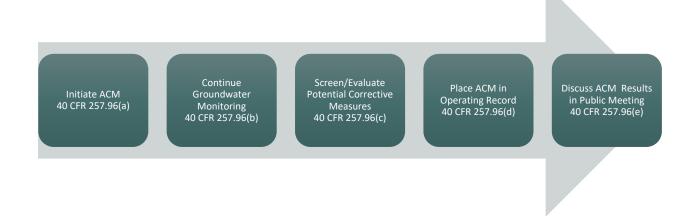
Additional information was received following the issuance of Addendum No. 1 to the ACM resulting in this second addendum to the ACM (Addendum No. 2).

Based on the proximity of MW-305 and MW-307, the arrangement of the ponds, and the available flow path data, IPL believes the elevated cobalt concentrations are most likely attributable to the same source. Further, IPL anticipates that corrective measures to address this source are likely to address the concentrations in these wells that monitor the two ponds. Developing an updated ACM to compile all available information related to the elevated cobalt in these wells is the most comprehensive and appropriate approach for ensuring that the source(s) are effectively remediated.

In addition to other potential sources of cobalt, buried organic material discovered during closure of the Zero Liquid Discharge Pond (OGS ZLD Pond) could have created reducing conditions that would have enhanced the mobility of cobalt released from either the OGS Ash Pond or the OGS ZLD Pond.

Addendum No. 2 includes an update of available OGS Ash Pond data since Addendum No. 1 was completed and an assessment of corrective measures at the OGS ZLD Pond. IPL will hold an additional public meeting with interested and affected parties to discuss Addendum No. 2 and will issue a revised Selection of Remedy Report.

1.1 ASSESSMENT OF CORRECTIVE MEASURES REQUIREMENTS


As discussed above, Addendum No. 2 was prepared to incorporate the OGS ZLD Pond to update the ACM Report, and ACM Addendum No. 1 was developed in response to GPS exceedances observed in groundwater samples collected at the OGS facility. The ACM process is one step in a series of steps

defined in the CCR Rule and depicted in the graphic below. To date, IPL has implemented a detection monitoring program per 40 CFR 257.94 and completed assessment monitoring at OGS per 40 CFR 257.95. The September 2019 ACM was required based on the groundwater monitoring results obtained through October 2018. With the ACM completed and now updated with new information, IPL is required to revisit the remedy selection process in 40 CFR 257.97. The remedy selection process must be completed as soon as feasible, and, once selected, IPL is required to start the corrective action process within 90 days.

The process for developing the ACM is defined in 40 CFR 257.96 and is shown in the graphic below. IPL held a public meeting on June 4, 2020, to discuss the September 2019 ACM with interested and affected parties. Additional corrective measure alternatives are identified in Addendum No. 1 that were not discussed at the June 4 meeting. Since IPL is required to discuss the ACM results in a public meeting at least 30 days before selecting a remedy, a second public meeting was held on in February 2021 to discuss the new alternatives. Further information and revisions to the corrective measures alternatives are presented in Addendum No. 2. Therefore, a third public meeting will be held to discuss the new information and updates to the ACM.

To facilitate the selection of a remedy for the GPS exceedances at OGS, IPL continues to investigate and assess the nature and extent of the groundwater impacts. Information about the site, the groundwater monitoring completed, the groundwater impacts as they are currently understood, and the ongoing assessment activities are discussed in the sections that follow.

1.2 SITE INFORMATION AND MAP

OGS is located southwest of the Des Moines River, approximately 8 miles northwest of the City of Ottumwa in Wapello County, Iowa (**Figure 1**). The address of the plant is 20775 Power Plant Road, Ottumwa, Iowa. In addition to the coal-fired generating station, the property also contains the OGS Ash Pond, the OGS ZLD Pond, a coal stockpile, and a hydrated fly ash stockpile.

The current groundwater monitoring networks are being evaluated and additional monitoring wells will be installed if needed. Both the OGS Ash Pond and the OGS ZLD Pond are the subjects of this ACM Report. A map showing the CCR units and all background (or upgradient) and downgradient monitoring wells with identification numbers for the CCR groundwater monitoring program is provided as **Figure 2**.

IPL issued a Notification of Intent to Close for the OGS ZLD Pond in November 2020. The OGS ZLD Pond was dewatered and all CCR material was removed and relocated to the OGS Ash Pond (completed in October 2021). A new low-volume wastewater treatment pond was constructed in the former OGS ZLD Pond footprint, with a new geosynthetic pond liner. The new low-volume wastewater treatment pond is not a CCR unit. Excavation activities for the OGS ZLD Pond were completed in December 2021 and are documented in the April 14, 2022 Construction Documentation Report – ZLDP Closure and Low Volume Wastewater Treatment Pond (LVWTP) Construction (SCS Engineers, 2022).

The OGS Ash Pond is currently scheduled to close in 2022. The pending closure of the OGS Ash Pond was discussed in the IPL Notification of Intent to Close CCR Surface Impoundment, dated April 3, 2019. The closure notification for the OGS Ash Pond was updated on June 1, 2022. The OGS Ash Pond will be closed with CCR remaining within the footprint of the existing impoundment under a final cover system that meets the requirements of 40 CFR 257.102(d)(3).

2.0 BACKGROUND

2.1 REGIONAL GEOLOGIC INFORMATION

The uppermost geologic formation beneath OGS that meets the definition of the "uppermost aquifer," as defined under 40 CFR 257.53, is the Mississippian bedrock aquifer and hydraulically connected overlying unconsolidated sediments. The thickness and water-producing capacity of the unconsolidated material in the area is variable. A summary of the regional hydrogeologic stratigraphy is included in **Attachment A**.

2.2 SITE GEOLOGIC INFORMATION

Monitoring wells MW-301 through MW-314 and MW-305A, MW-310A, and MW-311A were installed to intersect the uppermost aquifer at the site. Due to variations in the unconsolidated material thickness and the bedrock surface, some wells are screened in unconsolidated material and some are in bedrock. The unconsolidated material at these well locations generally consists of a clay layer overlying clay and sand. Site-specific geologic information consistently shows the uppermost aquifer below unconsolidated clay and silt deposits. In addition to the site-specific data referenced in the support documents, additional site-specific soil borings show similar conditions along the downgradient boundary of the ZLDP. The total monitoring well boring depths are between 14 and 79 feet. The depth to bedrock at the site is variable, and the bedrock surface is highly weathered in some areas. Bedrock was encountered as shallow as 7 feet and as deep as 44 feet below ground

surface (bgs) in the monitoring well borings. The boring logs for all of the site monitoring wells are included in **Appendix B**.

To evaluate the water table elevation in the clay unit surrounding the OGS Ash Pond, water table monitoring wells were installed adjacent to monitoring wells screened in the uppermost aquifer. The water table wells installed in May 2022 include MW-302WT, MW-304WT, MW-306WT, and MW-314WT. Piezometer MW-314 was also installed as a nested well with MW-314WT. These wells are used for water level monitoring only and are not sampled for water quality.

Shallow and deep groundwater at the site generally flows toward the Des Moines River. The groundwater flow patterns in April 2021, October 2021, and April 2022 are shown on **Figures 5** through **10**. A water table map for April 2022 is shown on **Figure 11**. The groundwater elevation data for the CCR monitoring wells are provided in **Table 1**. Based on a comparison of groundwater elevations to Des Moines River elevations, groundwater elevations in wells MW310 and MW311 have the strongest correlation to changes in the river levels. The correlation between groundwater and river level elevations decreases with the well's distance from the river.

Geologic cross section A-A' was prepared for the OGS Ash Pond. The cross section line runs through upgradient wells MW-301 and MW-314/MW-314WT, and downgradient monitoring wells MW-305/MW-305A, MW-312, MW-313, and MW-310/MW-310A, and crosses the OGS Ash Pond.

Geologic cross section B-B' was prepared for the OGS ZLD Pond. The cross section line runs through upgradient wells MW-301 and MW-314/MW-314WT, and downgradient monitoring wells MW-306/MW-306WT, MW-307, MW-312, MW-313, and MW-310/MW-310A, and crosses the OGS ZLD Pond. Cross section B-B' shows the design grade of the air heater wash basin (AHWB) and the LVWTP as well as the additional excavation to the base of, or below the design grades to create a stable subbase for the AHWB and the LVWTP.

Both cross sections show little to no contact between the remaining ash and the July 5, 2022 water table, or potentiometric surface of the uppermost aquifer.

The cross section locations are provided on **Figure 2**, and the geologic cross sections are provided on **Figures 3** and **4**. Geologic materials and estimated water table levels from July 5, 2022, are identified on the cross section.

2.3 CCR RULE MONITORING SYSTEM

The original OGS Ash Pond groundwater monitoring system established in accordance with the CCR Rule consists of one upgradient (background) monitoring well and five downgradient monitoring wells. The upgradient well is MW-301 and the downgradient wells, MW-302 through MW-306, were installed in November and December 2015. Two additional downgradient assessment wells, MW-310 and MW-311, were installed along the Des Moines River in August 2019 to evaluate the downgradient extent of groundwater impacts and groundwater flow direction. Three deeper piezometers, MW-305A, MW-310A, and MW-311A, were installed in February and March 2020 to evaluate the vertical components of groundwater impacts and flow. Additional downgradient piezometers, MW-312 and MW-313, were installed in December 2021 to evaluate the downgradient nature and extent of groundwater impacts.

The original OGS ZLD Pond groundwater monitoring system established in accordance with the CCR Rule consists of one upgradient (background) monitoring well and three downgradient monitoring

wells. The upgradient well MW-301 was installed in November 2015 and the downgradient wells, MW-307 through MW-309, were installed in October 2016.

The CCR Rule wells are installed in the uppermost aquifer at the site. Well depths range from approximately 14 to 79 feet bgs.

Four additional water table wells and one additional piezometer were installed around the OGS Ash Pond in May 2022 to evaluate groundwater elevations during the closure of the OGS Ash Pond. These additional wells are used only to monitor groundwater elevations and they are not sampled as part of the OGS Ash Pond groundwater monitoring system.

The addition of a compliance monitoring well between wells MW-308 and MW-309 is being evaluated and will be installed if needed. The purpose of the well would be to provide additional groundwater quality information downgradient of the ZLDP. Additional delineation well installations near the Des Moines River, north of monitoring well nest MW-310/310A, are also being evaluated. The purpose for these additional wells would be to further identify the nature and extent of groundwater impacts downgradient of the CCR Units.

3.0 NATURE AND EXTENT OF GROUNDWATER IMPACTS

3.1 POTENTIAL SOURCES

The potential sources of groundwater impacts detected in the OGS Ash Pond and OGS ZLD Pond monitoring systems are currently under evaluation. The Closure Plan for CCR Surface Impoundments at OGS issued in September 2016 and amended in November 2020 details the steps to be undertaken to close the OGS ZLD Pond by removing CCR and the OGS Ash Pond by leaving the CCR in place. Based on documents posted on Alliant's CCR Rule Compliance Data and Information website, potential sources of groundwater impacts from the CCR units during their operation include the following:

CCR Unit	Potential Sources	Description	Quantity
OGS Ash Pond	CCR	Bottom ash, economizer ash, precipitator fly ash, hydrated fly ash, and pyrites. See the paragraph following this table for new information regarding cobalt in OGS Ash Pond sediment samples collected in the open water area near MW-305.	322,000 CY (Amended 11/2020). Discharge of CCR to the Ash Pond ceased in September 2020, with the exception of material consolidated during closure of the ZLD Pond.
	Storm water	Annual precipitation, runoff from surrounding areas prior to closure.	83 AC-FT. Watershed of 72 acres with 18 acres of open water and 40 acres of contributing area (See Note 1).
	Low-volume plant wastewater	Discharge from the oil water separator, SCU blowdown, plant drains, cooling tower blowdown, and contact water/leachate from OML.	1.62 million gallons per day (MGD). These discharges have ceased since Addendum No. 1 was issued.
OGS ZLD Pond	CCR	Fly ash from storage area runoff, potential CCR in discharges from OGS Ash Pond to OGS ZLD Pond (See Note 2).	97,300 CY (Amended 11/2020). The ZLD Pond has not received CCR since prior to 2015.
	Storm water	Annual precipitation, runoff from surrounding areas prior to closure.	68 AC-FT. Watershed of 36 acres with 18 acres of open water and 18 acres of contributing area (See Note 1).

Notes: (1) Storm water volume is calculated based on the watershed area for the OGS Ash Pond and former OGS ZLD Pond from the May 5, 2021, Inflow Design Flood Control Plan prepared by Hard Hat Services and the annual average precipitation for Ottumwa, Iowa, of 37 inches per year. For example, the volume of annual runoff from the surrounding areas that are not open water (40 acres), which are part of the OGS Ash Pond watershed, is estimated using Figure 1. Average Annual Runoff, 1951-1980 from USGS publication Average Annual Runoff in the United States, 1951-80 (Gebert 1987). Figure 1 shows approximately 8.0 inches of runoff from the 40 acres for an estimated 27 acre-feet of storm water annually. The quantity provided for plant wastewater was the average discharge from the ash pond (Outfall 001).

(2) The discharge of water from the Ash Pond to the ZLD Pond was physically possible until the connection between the two ponds was abandoned. Actual discharges from the OGS Ash Pond to the OGS ZLD Pond and the timing of the abandonment are undocumented.

During April 2022 six sediment samples were obtained from the OGS Ash Pond. A synthetic precipitation leaching procedure (SPLP) test was run on each of the sediment samples. The cobalt results ranged from non-detect to an estimated concentration of 1.8 μ g/L. All of the results were below the cobalt GPS. The laboratory report for the SPLP test is located in **Appendix D**.

The OGS ZLD Pond was historically monitored separately from the OGS Ash Pond and was not considered a potential source for the groundwater impacts detected in the Ash Pond and OGS ZLD Pond monitoring systems. The historical use of the OGS ZLD Pond was to collect storm water runoff from hydrated fly ash stored on the west side of the OGS ZLD Pond, north of the plant, as well as storm water from the surrounding embankments. Based on the location of the former fly ash storage along the northern portion of the OGS ZLD Pond, impacts from the fly ash storage or runoff would be expected to be similar in the three downgradient OGS ZLD Pond wells (MW-307, MW-308, and MW-309) rather than the southern well (MW-307), if wastes historically discharged to the pond was determined to be the cobalt source.

As described in **Section 1.2**, the OGS ZLD Pond was dewatered and CCR material was removed and relocated to the OGS Ash Pond (completed in October 2021). A new low-volume wastewater treatment pond was constructed in the former OGS ZLD Pond footprint, with a new geosynthetic pond liner (completed December 2021).

During excavation of CCR as part of the closure of the OGS ZLD Pond in 2021, organic material such as buried tree trunks, tree branches, and other vegetation was observed below the excavated pond sediment in the vicinity of MW-307. This material could have created reducing conditions that would have enhanced the mobility of cobalt released from either the OGS Ash Pond or the OGS ZLD Pond. Although the OGS Ash Pond still appears to be the most likely source of cobalt in groundwater at both MW-305 and MW-307, IPL has elected to evaluate potential sources of cobalt from both CCR Units and address groundwater impacts holistically for the site.

3.2 GROUNDWATER ASSESSMENT

3.2.1 Groundwater Depth and Flow Direction

Depth to groundwater as measured in the site CCR monitoring wells varies from approximately 1 to 40 feet bgs due to topographic variations across the facility and seasonal variations in water levels. Groundwater flow at the site is generally to the east-northeast, and the groundwater flow direction and water levels fluctuate seasonally due to the proximity to the river. The groundwater elevations in wells MW-310 and MW-311 show a close correlation to the river elevation. Groundwater elevations and flow directions in the uppermost aquifer are shown on the April and October 2021, and April 2022 potentiometric surface maps (**Figures 5** through **10**).

3.2.2 Groundwater Protection Standard Exceedances Identified

The ACM process was triggered by the detection of cobalt at SSLs exceeding the GPS in samples from MW-305 and MW-307. For comparison of assessment monitoring data to fixed GPS values, the U.S. EPA's Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at Resource Conservation and Recovery Act (RCRA) Facilities (EPA 530-R-09-007, March 2009) recommends the use of confidence intervals. Specifically, the suggested approach for comparing assessment groundwater monitoring data to GPS values based on long-term chronic health risks, such as drinking water Maximum Contaminant Levels (MCLs), is to compare to a lower confidence limit around the arithmetic mean with the fixed GPS.

The calculated lower confidence limit for the means were compared to the cobalt GPS for wells with individual results exceeding the GPS, which included MW-305, MW-306, and MW-307. Based on these comparisons, a statistically significant exceedance has not occurred for cobalt at MW-306. Monitoring well MW-306 had individual results exceeding the GPS for cobalt, but the exceedances were not determined to be at SSLs.

For MW-305, cobalt was initially determined to be at an SSL above the GPS based on the first four sampling events for the Appendix IV assessment monitoring parameters, including complete sampling events in April, August, and October 2018, and a resampling event for cobalt at selected wells in January 2019. The list of samples collected are included in **Tables 2A** and **2B**, and complete results for these sampling events are summarized in **Tables 3**, **4**, and **5**.

For MW-307, cobalt was initially determined to be at an SSL above the GPS at MW-307 in the initial evaluation of assessment monitoring results for the OGS ZLD Pond, dated July 13, 2020. Cobalt concentrations exceeding the GPS were observed in all subsequent samples collected, with SSLs above the GPS in February, April, July, and October of 2021. ASD reports were submitted on October 12, 2020, for the initial assessment monitoring results and on August 30, 2021, to discuss monitoring results for February, April, and July 2021. The ASD reports concluded the most likely source of the GPS exceedance for cobalt at MW-307 was the adjacent OGS Ash Pond, and not the OGS ZLD Pond, based on the history of waste disposal in these units and the absence of cobalt exceedances in monitoring wells MW-308 and MW-309. As discussed above in Section 3.1, although the OGS Ash Pond still appears to be the most likely source of cobalt in groundwater at MW-307, additional information was discovered during excavation of the OGS ZLDP in 2021 resulted in a decision not to prepare an ASD for the October 2021 monitoring results. IPL initiated this ACM for the OGS ZLD Pond was initiated, which also represents an update to the OGS Ash Pond ACM to evaluate potential sources of cobalt from both CCR Units and address groundwater impacts holistically for the site.

Lithium was detected above the GPS at new delineation monitoring wells MW-310, MW-310A, and MW-311A. Fluoride was also detected in the deep piezometer MW-311A at a concentration above the GPS in two of the four sampling events. There were no lithium or fluoride GPS exceedances in any of the compliance wells located at the waste boundary.

Based on the results of assessment monitoring conducted through the April 2022 sampling event, SSLs exceeding the GPSs have been identified for the following wells and parameters:

Assessment Monitoring Appendix IV Parameter	Location of GPS Exceedance(s)	Historic Range of Detections at Wells with SSL Above GPS	Groundwater Protection Standard (GPS)
Cobalt (µg/L)	MW-305	14.4-21.0	6
Cobalt (µg/L)	MW-307	1.3 - 64	6

µg/L = micrograms per liter

Note: Historic range includes results from assessment monitoring from April 2018 through April 2022.

3.2.3 Expanding the Groundwater Monitoring Network

Monitoring wells MW-310 and MW-311 were installed during August 2019 in the area between the current downgradient wells and the Des Moines River to fulfill the requirements of 40 CFR 257.95(g)(1), which requires additional characterization to support a complete and accurate assessment of corrective measures. The installation of these wells was originally scheduled for spring 2019, but due to state and federal permitting requirements and persistent flooding along the Des Moines River, the installation was delayed. Three deeper piezometers, MW-305A, MW-310A, and MW-311A were installed in February and March 2020 to evaluate the vertical components of groundwater impacts and flow.

Monitoring wells MW-312 and MW-313 were installed in December 2021 as additional delineation wells to assess groundwater conditions between the compliance well network and delineation well MW-310. MW-312 is screened in weathered Mississippian Dolomite, and MW-313 is screened in alluvial sand. The total boring depths were 27.5 feet at MW-312 and 22.5 feet at MW-313.

Four water table wells and one piezometer were installed around the Ash Pond in May 2022 to evaluate groundwater elevations during the closure of the Ash Pond. The wells are intended for water level measurement only, and will not be sampled for water quality.

3.2.4 Monitored Natural Attenuation Data Collection and Evaluation

An evaluation of the potential for OGS to utilize monitored natural attenuation (MNA) as a corrective action alternative began with the initiation of an ACM at OGS. The tiered analysis approach in the U.S. EPA guidance, "Monitored Natural Attenuation of Inorganic Contaminants in Groundwater, Volume 1 – Technical Basis for Assessment" (U.S. EPA, 2007), is being used as a guide for evaluating MNA as a potential corrective action alternative at OGS.

There are four tiers of analysis to be addressed in evaluating the site for MNA:

- 1. Demonstrate active contaminant removal from groundwater.
- 2. Determine mechanism and rate of attenuation.
- 3. Determine system capacity and stability of attenuation.
- 4. Design a performance monitoring program and identify an alternative remedy.

Data collection activities during the assessment monitoring and ACM process that begins to address the objectives of tiers 1 and 2 include:

- Installation of downgradient assessment wells MW-310, MW-311, MW-312, and MW-313 and deeper downgradient piezometers MW-305A, MW-310A, and MW311A to evaluate groundwater flow direction and horizontal and vertical hydraulic gradients.
- Additional groundwater sampling events and analysis of data from all site wells to evaluate contaminant distribution in groundwater and stability of groundwater concentrations over time.
- Analysis of general groundwater chemistry and field parameters in addition to the App III and IV constituents to provide further characterization of groundwater chemistry.
- Analysis of both total and dissolved constituents for selected parameters.

A hydrogeochemical conceptual model and summary of preliminary evaluation of cobalt attenuation in the aquifer at OGS is included in **Appendix C**. Preliminary findings include:

- Cobalt has likely been released from the OGS Ash Pond to the alluvial aquifer beneath the site.
- Immobilization within the saturated sand is the mechanism that drives natural attenuation of cobalt.
- If cobalt were not attenuated, the 40-year groundwater travel time from the OGS Ash Pond to well MW-310 suggests that cobalt would have already arrived in the approximate 40-year time frame since the OGS Ash Pond was commissioned if it was not attenuated.
- The cobalt concentration from MW-305 located at the downgradient edge of the primary pond to MW-310, located near the Des Moines River, appears to decrease by a factor of about 60.
- Cobalt precipitation, coprecipitation, or adsorption likely account for the decrease in cobalt concentrations beyond the MW-305 location along with a component of dilution by mixing with upward flowing deep groundwater at MW-310.
- The groundwater becomes more toxic from the OGS Ash Pond perimeter to MW-310 at the Des Moines River. As the ORP increases, iron precipitates from the water and provides adsorption sites on iron oxyhydroxides for cobalt, which is then also removed from the groundwater.
- The iron oxyhydroxides on the aquifer matrix provide potential adsorption sites for the sequestration of cobalt.
- The mass of cobalt in the groundwater where the GPS may be exceeded between MW-305 and MW-310 is estimated at 0.60 kilograms.

Based on the investigations completed prior to ACM Addendum No. 1, evidence of cobalt attenuation by precipitation, coprecipitation, and adsorption was observed making MNA a viable alternative for site remediation. Additional investigation was warranted to increase the understanding of contributing factors to attenuation and to provide the basis for a long-term corrective action monitoring program. The following additional investigation was performed since the submittal of ACM Addendum No.1:

- Installed two additional monitoring wells in December 2021 between MW-305 and MW-310 (at approximately 400-foot spacing) to better define aqueous geochemical trends from the OGS Ash Pond to the Des Moines River. The new wells are MW-312 and MW-313. The data from the new wells were used to refine the estimate of cobalt mass in the groundwater downgradient of the OGS Ash Pond.
- Performed additional rounds of groundwater monitoring at the new and existing monitoring wells. In addition to the existing parameters, the following were added or continued:

- In-field measurement of pH, Oxidation Reduction Potential (ORP), Dissolved Oxygen (DO), temperature, specific electrical conductance, turbidity, ferrous iron, and sulfide; and laboratory analyses of dissolved (0.45 μm filtered) Ca, Mg, Na, K, Fe, Mn, alkalinity (as CaCO₃), Cl, SO₄, and Total Dissolved Solids (TDS) to better define the groundwater chemistry and evolution with flow.
- Laboratory analyses of dissolved (0.45 μm filtered) cobalt to better define the aqueous or "mobile" plume.
- $-\,$ Laboratory analyses of 0.20 μm filtered cobalt and iron to assess potential adsorption of cobalt to "colloidal" iron.
- Filtration of turbid groundwater produced by the monitoring wells and analysis of the solid filtrate for aluminum, iron, and cobalt to determine the degree to which the cobalt is associated with suspended solids.
- Continued monitoring of cobalt concentrations over time to evaluate if cobalt migration is attenuated.
- Laboratory analyses of the degree of iron precipitation and cobalt coprecipitation and adsorption from MW-305 groundwater with aeration (i.e. redox increase) to better understand the degree to which cobalt adsorption and coprecipitation are contributing to attenuation.
- Desorption trials were completed to assess the degree to which the absorbed cobalt is permanently bound to the site sediment. Two samples selected for desorption included MW-305 at the 10 to 1 liquid to solids ratio and MW-313 at the 10 to 1 liquid to solids ratio. The filtered solids were combined with upgradient groundwater from MW-301 at 5 to 1 and 10 to 1 liquid to solids ratios, and reacted for 10 days. After reaction, the water was filtered at 0.45 μm, preserved, and shipped to an analytical laboratory for analysis. The cobalt desorption results are summarized in Table 9 in Appendix C of this report. The soil samples absorbed from 0.905 to 0.950 μg of cobalt per g of soil. Most of the cobalt was retained on the soil during the desorption trials. The desorption trials at the 5 to 1 liquid to solids ratio released only 2.5 to 5.4 percent of the adsorbed cobalt. Increasing the liquid to solids ratio to 10 did not change the fraction of cobalt released from the MW-313 sample. The cobalt release increased to 14 percent at MW-305.
- Collected samples of the saturated sand from the two new well locations, MW-312 and MW-313, and from the area adjacent to MW-305 and MW-310. Analyses of sand included:
 - Iron and manganese concentrations to assess potential for adsorption.
 - Cobalt concentrations to assess the degree to which cobalt has adsorbed or coprecipitated onto the sand matrix (i.e. defining the "immobile plume").
 - Cobalt adsorption isotherms to assess capacity of the sand to absorb cobalt and determine maximum adsorption capacity.

The results of the additional investigation described above indicated that cobalt precipitation was occurring in the groundwater downgradient of wells MW-305 and MW-307. Also, desorption trials indicated that approximately 96 percent of the cobalt remained adsorbed to the aquifer media, supporting MNA as a viable remedial alternative for cobalt.

3.3 CONCEPTUAL SITE MODEL

The following conceptual site model describes the compound and nature of the constituent above the GPS, discusses potential exposure pathways affecting human health and the environment, and presents a cursory review of their potential impacts. The conceptual site model for OGS has been prepared in general conformance with the Standard Guide for Developing Conceptual Site Models for Contaminated Sites (ASTM E1689-95). This conceptual site model is the basis for assessing the efficacy of likely corrective measures to address the source, release mechanisms, and exposure routes.

3.3.1 Nature of Constituents Above Groundwater Protection Standards

The constituent in groundwater at OGS that is present at a statistically significant concentration greater than the GPS (Cobalt) is described in the September 2019 ACM.

Lithium was detected above the GPS in the new wells MW-310, MW-310A, and MW-311A. Fluoride was detected above the GPS in MW-311A. These constituents have not been observed at the waste boundary of the CCR units and are believed to be unrelated to historic disposal activities.

3.3.2 Potential Receptors and Pathways

As described in **Section 3.3**, ASTM E1689-95 provides a framework for identifying potential receptors (people or other organisms potentially affected by the groundwater impacts at OGS) and pathways (the ways groundwater impacts might reach receptors). In accordance with ASTM E1689-95, we have considered potential human and ecological exposures to groundwater impacted by the constituents identified in **Section 3.2.2**:

Human Health

In general, human health exposure routes to contaminants in the environment include ingestion, inhalation, and dermal contact with the following environmental media:

- Groundwater
- Surface Water and Sediments
- Air
- Soil
- Biota/Food

If people might be exposed to the impacts described in **Section 3.0** via one of the environmental medias listed above, a potential exposure route exists and is evaluated further. For the groundwater impacts at OGS, the following potential exposure pathways have been identified with respect to human health:

• <u>Groundwater – Ingestion and Dermal Contact:</u> The potential for ingestion of, or dermal contact with, impacted groundwater from OGS exists if water supply wells are present in

the area of impacted groundwater and are used as a potable water supply. Based on a review of the Iowa Department of Natural Resources (IDNR) GeoSam well database, and information provided by OGS:

- No off-site water supply wells have been identified as downgradient or sidegradient in the vicinity of the CCR units.
- Potable water is not supplied from on-site wells. Potable water at OGS is provided by the Wapello Rural Water Association.
- <u>Surface Water and Sediments Ingestion and Dermal Contact:</u> The potential for
 ingestion of or dermal contact with impacted surface water and sediments exists if
 impacted groundwater from the OGS facility has interacted with adjacent surface water
 and sediments, to the extent that cobalt is present in these media at concentrations that
 represent a risk to human health.
 - No more surface water is present within the CCR units are OGS.
 - Cobalt is not present at concentrations above the GPS at wells closest to the Des Moines River (MW-310 and MW-311).
 - Cobalt is not present at concentrations above the GPS at wells between the OGS Ash Pond and Middle Avery Creek.
- <u>Biota/Food Ingestion:</u> The potential for ingestion of impacted food exists if impacted groundwater from the OGS facility has interacted with elements of the human food chain. Elements of the food chain may also be exposed indirectly through groundwater-to-surface water interactions.
 - Based on groundwater monitoring conducted to date, cobalt-impacted groundwater does not appear to reach nearby surface waters.
 - Based on available soil boring logs for wells immediately adjacent to farm fields and the latest shallow piezometric surface map, cobalt-impacted groundwater in the uppermost aquifer is separated by approximately 10, or more, feet of clayey soil. Clay soil appears to provide a separation from impacted groundwater for even deep-rooted crops such as corn.

Based on the lack of groundwater exposure, only the surface water, sediment, and biota/food exposure pathways were retained for further consideration in the September 2019 ACM. Groundwater samples collected from the piezometer nests installed downgradient of the OGS Ash Pond and adjacent to the Des Moines River do not contain cobalt at a concentration above the GPS. None of the additional information obtained since the September 2019 ACM suggests that cobalt is reaching the well nests. Therefore, cobalt does not appear to be migrating to a location where it can impact human health or the environment. In other words, there is no pathway for exposure to cobalt. Implementation of potential corrective measures may introduce secondary exposure pathways that are discussed in **Section 6.0** and will be evaluated further as a corrective measure is selected for OGS.

Ecological Health

In addition to human exposures to impacted groundwater, potential ecological exposures are also considered. If ecological receptors might be exposed to impacted groundwater, the potential exposure routes are evaluated further. Ecological receptors include living organisms, other than humans, the habitat supporting those organisms, or natural resources potentially adversely affected by CCR impacts. This includes:

- Transfer from an environmental media to animal and plant life. This can occur by bioaccumulation, bioconcentration, and biomagnification.
 - Bioaccumulation is the general term describing a process by which chemicals are taken up by a plant or animal either directly from exposure to impacted media (soil, sediment, water) or by eating food containing the chemical.
 - Bioconcentration is a process in which chemicals are absorbed by an animal or plant to levels higher than the surrounding environment.
 - Biomagnification is a process in which chemical levels in plants or animals increase from transfer through the food web (e.g., predators have greater concentrations of a particular chemical than their prey).
- Benthic invertebrates within adjacent waters.

Based on the information available and presented in the September 2019 ACM, both of these ecological exposure routes required additional evaluation at the time.

Both potential ecological exposure pathways require groundwater-to-surface water interactions for the exposure pathway to be complete. As discussed above, none of the additional information obtained since the September 2019 ACM suggests that cobalt is reaching the new wells, and samples indicate that elevated concentrations of cobalt are only present near the pond. Therefore, cobalt does not appear to be migrating to a location where it can impact ecological health.

The surface water/sediment, biota/food, and ecological exposure assessment is incomplete as the extent of groundwater impacts are still being evaluated. If groundwater impacts extend to the river, then these exposure pathways will be evaluated further.

4.0 POTENTIAL CORRECTIVE MEASURES

In this section, we identify potential corrective measures to meet the ACM goals identified in 40 CFR 257.96(a), which are to:

- Prevent further releases
- Remediate releases
- Restore affected areas to original conditions

The development of corrective measure alternatives is described further in the following sections. Corrective measure alternatives developed to address the groundwater impacts at OGS are described in **Section 5.0**. The alternatives selected are qualitatively evaluated in **Section 6.0**.

4.1 IDENTIFICATION OF CORRECTIVE MEASURES

As described in the U.S. EPA Solid Waste Disposal Facility Criteria Technical Manual (U.S. EPA 1998), corrective measures generally include up to three components:

- Source Control
- Containment
- Restoration

Within each component, there are alternative measures that may be used to accomplish the component objectives. The measures from one or more components are then combined to form corrective measure alternatives (discussed in **Section 5.0**) intended to address the observed groundwater impacts. Potential corrective measures were identified based on site information available during development of the ACM for the purpose of meeting the goals described in **Section 4.0**.

Each component and associated corrective measures are further identified in subsequent paragraphs. The corrective measures are evaluated for feasibility and combined to create the corrective action alternatives identified in this section, and further evaluated in **Section 5.0**. We continue to evaluate site conditions and may identify additional corrective measures based on new information regarding the nature and extent of the impacts.

4.1.1 Source Control

The source control component of a corrective measure is intended to identify and locate the source of impacts and provide a mechanism to prevent further releases from the source. For the OGS site, the sources to be controlled are the CCR materials in the OGS Ash Pond, OGS ZLD Pond, and the associated process water. Each of the source control measures described in this section requires closure of the impoundments, and for wastewater to be re-directed from the CCR unit to eliminate the flows that may mobilize constituents from the CCR and transport them to groundwater. IPL has ended all CCR waste placement and non-CCR wastewater discharges to the OGS Ash Pond and OGS ZLD Pond. Furthermore, CCR has been removed from the OGS ZLD Pond for closure pursuant to 40 CFR 257.102(c). The dates for these key events are provided below:

- September 2020 End of bottom ash discharges to the OGS Ash Pond.
- October 2021 Completion of CCR removal from the OGS ZLD Pond.
- May 2022 End of non-CCR wastewater discharges to the OGS Ash Pond.

The date when CCR discharges to the OGS ZLD Pond ended coincides with the abandonment of the piped connection between the OGS Ash Pond and the OGS ZLD Pond. The exact date of this event is uncertain, but it precedes the 2015 effective date of the CCR Rule by many years. The sealing of these pipes is described in the September 2016 History of Construction Report issued by Hard Hat Services (HHS 2016).

Based on the activities completed by IPL to advance the closure of the CCR units at OGS and develop the new low-volume wastewater treatment pond and air heater wash basin, we have updated the potential source control measures:

Close and cap in place. Close the OGS Ash Pond and OGS ZLD Pond and cap the CCR in
place to significantly reduce the infiltration of rain water into the impoundment, prevent
transport of CCR constituents from unsaturated CCR materials into the groundwater, and

minimize the potential for CCR to interface with groundwater. Since CCR has been removed from the OGS ZLD Pond and IPL has constructed a new lined low-volume wastewater pond (not a CCR unit) in the same location, this source control approach is not feasible and will no longer be considered.

- Consolidate and cap. Consolidate CCR from the OGS Ash Pond and OGS ZLD Pond into
 one or two areas to reduce the cap area exposed to infiltration, reduce the potential
 source footprint, prevent transport of CCR constituents from unsaturated CCR materials
 into the groundwater, and reduce the potential for CCR to interface with groundwater.
- Consolidate and cap with chemical stabilization. Consolidate CCR into one or two areas to reduce the cap area exposed to infiltration, reduce the potential source footprint, prevent transport of CCR constituents from unsaturated CCR materials into the groundwater, and minimize the potential for CCR to interface with groundwater. Mix a chemical amendment into CCR in-situ prior to placing additional CCR for consolidation and mix the amendment into CCR as it is excavated and placed for consolidation to reduce the mobility of select CCR constituents in the environment. Chemical stabilization may include the use of one or multiple admixtures that serve to physically and/or chemically stabilize the constituents of concern within the CCR. Physically, this may include solidification with cementitious or polymeric materials. Chemically, this may include precipitation or alteration to render cobalt less mobile in the environment. Evaluation of an appropriate high organic carbon commodity amendment, that may include activated carbon, biochar, locally available aged mulch, and/or proprietary chemicals such as PlumeStop, will occur during the remedy selection process.
- Excavate and create on-site disposal area. Excavate and place CCR in a newly lined landfill area on site to prevent further releases from the OGS Ash Pond and OGS ZLD Pond, and isolate the CCR from potential groundwater interactions. Cap the new landfill with final cover to prevent the transport of CCR constituents from unsaturated CCR.
- Excavate and dispose at a licensed off-site disposal area. Remove all CCR from the OGS Ash Pond and OGS ZLD Pond, and haul it to a licensed landfill.

Water movement through the CCR materials is the mechanism for CCR impacts to groundwater, including surface water that moves vertically through the CCR materials via infiltration of precipitation and surface water runoff. Based on the available information for this site, all the source control measures have potential to prevent further releases caused by infiltration, and thus are retained for incorporation into alternatives for further evaluation.

In conjunction with the ongoing evaluation of MNA mechanisms and site attenuation capacity, chemical stabilization has been added as a source control alternative. Additional source control may be needed to address CCR that could be in contact with groundwater after closure is in place, or if further investigation indicates that MNA mechanisms are not sufficient for reaching the groundwater quality objectives at OGS or the site does not have the attenuation capacity to reduce groundwater concentrations of cobalt below the GPS.

4.1.2 Containment

The objective of containment is to limit the spread of the impacts beyond the source. The need for containment depends on the nature and extent of impacts, exposure pathways, and risks to

receptors. Containment may also be implemented in combination with restoration as described in **Section 4.1.3**.

Containment may be a recommended element of a corrective measure if needed to:

- Prevent off-site migration of groundwater impacts.
- Cease completion of an exposure pathway (e.g., water supply well).

Containment may also be used in lieu of active restoration if an active approach is needed but treatment is not warranted by the aquifer characteristics including:

- Water in the affected aquifer is naturally unsuited for human consumption.
- Contaminants present in low concentration with low mobility.
- Low potential for exposure to contaminants and low risk associated with exposure.
- Low transmissivity and low future user demand.

The aquifer characteristics above are identified as favorable to plume containment in the U.S. EPA Solid Waste Disposal Facility Criteria Technical Manual (U.S. EPA, 1998).

The following measures have potential to limit the spread of continued or remaining groundwater impacts:

- Gradient Control with Pumping. Gradient control includes a measure to alter the
 groundwater velocity and direction to slow or isolate impacts. This can be accomplished
 with pumping wells and/or a trench/sump collection system. If groundwater pumping is
 considered for capturing an impacted groundwater plume, the impacted groundwater
 must be managed in conformance with all applicable Federal and State requirements.
- Gradient Control with Phytotechnology. Gradient control with phytotechnology relies on the ability of vegetation to evapotranspire sources of surface water and groundwater. Water interception capacity by the aboveground canopy and subsequent evapotranspiration through the root system can limit vertical migration of water from the surface downward. The horizontal migration of groundwater can be controlled or contained using deep-rooted species, such as prairie plants and trees, to intercept, take up, and transpire the water. Trees classified as phreatophytes are deep-rooted, high-transpiring, water-loving organisms that send their roots into regions of high moisture and can survive in conditions of temporary saturation.
- Chemical Stabilization. Stabilization refers to processes that involve chemical reactions that reduce the leachability of cobalt. Stabilization chemically immobilizes impacts or reduces their solubility through a chemical reaction. The desired results of stabilization methods include converting metals into a less soluble, mobile, or toxic form.
- Containment Walls. Containment walls can be applied in two ways. First, a wall that
 creates a physical barrier to the flow of groundwater to limit the movement of
 constituents of concern in groundwater. Second, a passive barrier is installed to intercept
 the flow of groundwater and constructed with a reactive media designed to adsorb,
 precipitate, or degrade groundwater constituents to limit their movement in the
 environment (FRTR 2020).

Based on the currently available information for this site, active MNA mechanisms including precipitation, coprecipitation, and adsorption of cobalt are observed. The assessment of the site's capacity to attenuate the cobalt impacts to groundwater is ongoing. Active containment may be needed if CCR is in contact with groundwater after closure is in place, or if further investigation indicates that MNA mechanisms are not sufficient for reaching the groundwater quality objectives at OGS or the site does not have the attenuation capacity to reduce groundwater concentrations of cobalt below the GPS.

4.1.3 Restoration

Restoration is the process through which groundwater quality is restored to meet GPSs. This can be accomplished by way of MNA or intensively addressed by groundwater treatment with or without extraction.

MNA can be a viable remedy or component of a remedial alternative for groundwater impacted with metals. MNA requires ongoing involvement and potentially intense characterization of the geochemical environment to understand the attenuation processes involved, and to justify reliance on them and regular, long-term monitoring to ensure the attenuation processes are meeting remedial goals.

MNA is not a "do-nothing" alternative; rather it is an effective knowledge-based remedy where a thorough engineering analysis provides the basis for understanding, monitoring, predicting, and documenting natural processes. To properly employ this remedy, there needs to be a strong scientific basis supported by appropriate research and site-specific monitoring implemented in accordance with quality controls. The compelling evidence needed to support proper evaluation of the remedy requires that the processes that lower metal concentrations in groundwater be well understood. MNA is considered viable with a demonstration of permanence such that sorption and/or precipitation of the constituents can be safely held in place on aguifer materials.

If active treatment is implemented, water may be treated in-situ, on-site, or off-site. The need for active treatment depends on the nature and extent of impacts, potential exposure pathways, and current and anticipated future risks to receptors. If there are no receptors or if the risks are acceptably low, then MNA is an appropriate option. If existing or future risks require a more rapid restoration of groundwater quality, then active restoration may be needed.

Treated groundwater may be re-injected, sent to a local publicly owned treatment works (POTW), or discharged to a local body of surface water, depending on local, state, and federal requirements. Typical on-site treatment practices for metals include coagulation and precipitation, ion exchange, or reverse osmosis. Off-site wastewater treatment may include sending the impacted groundwater that is extracted to a local POTW or to a facility designed to treat the contaminants of concern.

The removal rate of groundwater constituents such as cobalt will depend on the rate of groundwater extraction, the cation exchange capacity of the soil, and partition coefficients of the constituents adsorbed to the soil. As the concentration of metals in groundwater is reduced, the rate at which constituents become partitioned from the soil to the aqueous phase may also be reduced. The amount of flushing of the aquifer material required to remove the metals and reduce their concentration in groundwater below the GPS will generally determine the time frame required for restoration. This time frame is site-specific.

In-situ methods may be appropriate, particularly where pump and treat technologies may present adverse effects. In-situ methods may include the introduction of a chemical amendment to adsorb,

precipitate, or degrade a contaminant or biological restoration requiring pH control, addition of specific micro-organisms, and/or addition of nutrients and substrate to augment and encourage degradation by indigenous microbial populations. Bioremediation requires laboratory treatability studies and pilot field studies to determine the feasibility and the reliability of full-scale treatment.

Based on current available information, active MNA mechanisms at OGS have been identified, but are still being refined along with the capacity of the site to attenuate the cobalt impacts to groundwater. Other restoration measures have been included in this addendum to increase the breadth of alternatives evaluated and available for consideration during the remedy selection process. These additional alternatives are discussed in **Section 5.0**.

5.0 CORRECTIVE MEASURE ALTERNATIVES

We have preliminarily identified the following corrective measure alternatives for the groundwater impacts at OGS:

- Alternative 1 No Action
- Alternative 2 Close and Cap in Place and MNA
- Alternative 3 Consolidate On-Site and Cap with MNA
- Alternative 4 Excavate and Dispose On-Site with MNA
- Alternative 5 Excavate and Dispose Off-Site with MNA
- Alternative 6 Consolidate and Cap with Chemical Amendment and Groundwater Collection
- Alternative 7 Consolidate and Cap with Groundwater Collection
- Alternative 8 Consolidate and Cap with Barrier Wall and Groundwater Collection

These alternatives were developed by selecting components from the reasonable and appropriate corrective measures components discussed above. With the exception of the No Action alternative, each of the corrective measure alternatives meet the requirements in 40 CFR 257.97(b)(1) through (5) based on the information available at the current time. We may identify additional alternatives or otherwise modify the alternatives based on the continued evaluation of site conditions.

5.1 ALTERNATIVE 1 – NO ACTION

IPL is committed to implementing corrective measures as required under the Rule, and the No-Action alternative is included as a baseline condition and a point of comparison for the other alternatives. The consideration of this alternative assumes the monitoring of groundwater continues under this action.

5.2 ALTERNATIVE 2 – CLOSE AND CAP IN PLACE WITH MONITORED NATURAL ATTENUATION

Alternative 2 includes closing the OGS Ash Pond (no further discharge) and OGS ZLD Pond, covering the CCR materials with a cap, and establishing vegetation in accordance with the requirements for closure in place in 40 CFR 257.102(d). Based on work that has already been completed, including excavation of the OGS ZLD Pond to make room for the new low-volume wastewater pond, and excavation within the OGS Ash Pond to make room for the new air heater wash basin, this alternative is no longer viable and will not be considered further.

5.3 ALTERNATIVE 3 – CONSOLIDATE ON-SITE AND CAP WITH MONITORED NATURAL ATTENUATION

Alternative 3 includes closing the OGS Ash Pond and OGS ZLD Pond, relocating and consolidating CCR currently located within the OGS Ash Pond into a smaller footprint within the OGS Ash Pond, covering the CCR materials with a cap, establishing vegetation, and meeting all requirements for closure in place in 40 CFR 257.102(d). This measure is consistent with landfill cover systems to prevent infiltration of surface water into the CCR as described in **Section 4.1.1**. The consolidated and capped areas will be subject to enhanced groundwater monitoring via MNA.

This alternative relies on the elimination of CCR sluicing/plant process water discharges, which have already occurred, and consolidation of the CCR footprint and the installation of a cap will reduce infiltration through the CCR. This is expected to address a significant contributor to groundwater impacts from surface impoundments, which is exposure of CCR material to precipitation/surface water infiltration. Consolidation of CCR into a smaller footprint during closure also reduces or eliminates the volume of potential source materials that may be in contact with groundwater after closure. Further leaching of metals and migration within groundwater will be reduced and may be eliminated. MNA is included with this alternative to monitor changes in groundwater impacts and the effectiveness of degradation mechanisms on groundwater concentrations over time.

5.4 ALTERNATIVE 4 – EXCAVATE AND DISPOSE ON-SITE WITH MONITORED NATURAL ATTENUATION

Alternative 4 includes closing the OGS Ash Pond, excavation of CCR from the OGS Ash Pond, including the CCR consolidated from the OGS ZLD Pond, and creation of a new on-site disposal area with a liner and cap system. This alternative will serve to entomb the CCR from the OGS Ash Pond and OGS ZLD Pond and allow for the collection and management of liquids generated from the disposal area which would be considered a new CCR landfill. Further releases from the CCR at OGS will be prevented by the use of engineering controls constructed/installed to meet the design criteria for new CCR landfills required under 40 CFR 257.70. The new CCR landfill would be required to meet the Location Restrictions described in 40 CFR 257.60-64.

This alternative relies on the elimination of CCR sluicing/plant process water discharges and, with the consolidation of the CCR footprint and the installation of a new on-site disposal area liner and cap, will reduce infiltration through the CCR. This is expected to address a significant contributor to groundwater impacts from surface impoundments, which is exposure of CCR material to precipitation/surface water infiltration. MNA is included with this alternative to monitor changes in groundwater impacts and the effectiveness of degradation mechanisms on groundwater concentrations over time.

5.5 ALTERNATIVE 5 – EXCAVATE AND DISPOSE OFF-SITE WITH MONITORED NATURAL ATTENUATION

Alternative 5 includes closing the OGS Ash Pond, excavation of all CCR from the OGS Ash Pond, including the CCR consolidated from the OGS ZLD Pond, and transport to an approved off-site landfill. Further on-site releases from the CCR at OGS will be prevented by removing the source material from the site, which eliminates the potential for ongoing leaching of constituents into groundwater at OGS.

This alternative relies on the elimination of CCR sluicing/plant process water discharges and, with the removal of CCR from the site, will eliminate infiltration through the CCR. This is expected to address a potential major contributor to groundwater impacts from surface impoundments, which is exposure of CCR material to precipitation/surface water infiltration. MNA is included with this alternative to monitor changes in groundwater impacts and the effectiveness of degradation mechanisms on groundwater concentrations over time.

5.6 ALTERNATIVE 6 – CONSOLIDATE AND CAP WITH CHEMICAL AMENDMENT AND GROUNDWATER COLLECTION

Alternative 6 includes closing the OGS Ash Pond, adding a chemical amendment to in-place CCR, and relocated CCR, to reduce the mobilization of cobalt prior to relocating and consolidating CCR into a smaller footprint within the CCR surface impoundments, covering the CCR materials with a cap, establishing vegetation, and meeting all requirements for closure in place in 40 CFR 257.102(d). This measure is consistent with landfill cover systems to prevent infiltration of surface water into the CCR and the reduced contaminant mobilization achieved by chemical amendment as described in **Section 4.1.1**. Impacted groundwater will be collected using pumps and treated prior to discharge according to state and federal requirements as described in **Section 4.1.2**.

This alternative relies on the elimination of CCR sluicing/plant process water discharges and, with the consolidation of the CCR footprint and the installation of a cap, will reduce infiltration through the CCR. This is expected to address a significant contributor to groundwater impacts from surface impoundments, which is exposure of CCR material to precipitation/surface water infiltration. Consolidation of CCR into a smaller footprint during closure also reduces or eliminates the volume of potential source materials that could come into contact with groundwater after closure. Further leaching of metals and migration within groundwater will be reduced by fixation using a chemical amendment. Cobalt-impacted groundwater will be collected to restore cobalt concentrations in groundwater to levels below the GPS.

5.7 ALTERNATIVE 7 – CONSOLIDATE AND CAP WITH GROUNDWATER COLLECTION

Alternative 7 includes consolidating and covering the CCR materials currently located within the OGS Ash Pond with a cap, establishing vegetation, and meeting all requirements for closure in place in 40 CFR 257.102(d). This measure is consistent with landfill cover systems to prevent infiltration of surface water into the CCR as described in **Section 4.1.1**. Impacted groundwater will be collected using pumps and treated prior to discharge according to state and federal requirements as described in **Section 4.1.2**.

This alternative relies on the elimination of CCR sluicing/plant process water discharges and, with the consolidation of the CCR footprint and the installation of a cap, will reduce infiltration through the

CCR. This is expected to address a significant contributor to groundwater impacts from surface impoundments, which is exposure of CCR material to precipitation/surface water infiltration. Consolidation of CCR into a smaller footprint during closure also reduces or eliminates the volume of potential source materials that may be in contact with groundwater after closure. Further leaching of metals and migration within groundwater will be reduced and may be eliminated over time as impacted groundwater is collected to contain and restore cobalt concentrations in groundwater to levels below the GPS.

5.8 ALTERNATIVE 8 – CONSOLIDATE AND CAP WITH BARRIER WALL AND GROUNDWATER COLLECTION

Alternative 8 includes consolidating and covering the CCR materials with a cap, establishing vegetation, and meeting all requirements for closure in place in 40 CFR 257.102(d). This measure is consistent with landfill cover systems to prevent infiltration of surface water into the CCR as described in **Section 4.1.1**. Impacted groundwater will be intercepted with a barrier wall to minimize the migration of cobalt as described in **Section 4.1.2**. Impacted groundwater beyond the barrier wall will be collected using pumps and treated prior to discharge according to state and federal requirements as described in **Section 4.1.2**.

This alternative relies on the elimination of CCR sluicing/plant process water discharges and, with the consolidation of the CCR footprint and the installation of a cap, will reduce infiltration through the CCR. This is expected to address a significant contributor to groundwater impacts from surface impoundments, which is exposure of CCR material to precipitation/surface water infiltration. Consolidation of CCR into a smaller footprint during closure also reduces or eliminates the volume of potential source materials that may be in contact with groundwater after closure. Further leaching of metals and migration within groundwater will be reduced and may be eliminated as impacted groundwater is intercepted with a barrier wall to minimize the spread of cobalt in groundwater and/or groundwater is prevented from interacting with the disposal area. Cobalt-impacted groundwater will be collected to restore cobalt concentrations in groundwater to levels below the GPS.

6.0 EVALUATION OF CORRECTIVE MEASURE ALTERNATIVES

As required by 40 CFR 257.96(c), the following sections provide an evaluation of the effectiveness of corrective measure alternatives in meeting the requirements and objectives outlined in 40 CFR 257.97. The evaluation addresses the requirements and objectives identified in 40 CFR 257.96(c)(1) through (3), which include:

- The performance, reliability, ease of implementation, and potential impacts of appropriate potential remedies, including safety impacts, cross-media impacts, and control of exposure to residual contamination;
- The time required to begin and complete the remedy; and
- The institutional requirements, such as state or local permit requirements or other environmental or public health requirements that may substantially affect implementation of the remedy.

In addition to the discussion of the items listed above, **Table 6** provides a summary of the initial evaluation of the alternatives including each of the criteria listed in 40 CFR 257.97. This evaluation

will be updated as part of the remedy selection process as additional site information is obtained and further evaluation of remedial alternatives such as MNA is completed.

6.1 ALTERNATIVE 1 – NO ACTION

As described in **Section 5.1**, the No Action alternative is only included as a baseline condition and a point of comparison for the other alternatives. This alternative does not satisfy all five criteria in 40 CFR 257.97(b)(1) through (5), so it is not an acceptable corrective measure under the CCR Rule. For comparison only, Alternative 1 is evaluated with regard to the criteria in 40 CFR 257.96(c) below:

- Performance, Reliability, Implementation, and Impacts.
 - Performance The ability to attain the GPS for cobalt without any additional action is unlikely.
 - Reliability Alternative 1 does not provide any reduction in existing risk.
 - Implementation Nothing is required to implement Alternative 1.
 - Impacts No additional safety or cross-media impacts are expected with Alternative 1. This alternative does not control current suspected routes of exposure to residual contamination.
- **Timing.** No time is required to begin. However, the time required to attain the GPS for cobalt under Alternative 1 is unknown.
- **Institutional Requirements**. No institutional requirements beyond maintaining current regulatory approvals exist for Alternative 1.

6.2 ALTERNATIVE 2 – CLOSE AND CAP IN PLACE WITH MONITORED NATURAL ATTENUATION

As described in **Section 5.2**, Alternative 2 is no longer viable as the OGS ZLD Pond has been fully excavated and portions of the OGS Ash Pond have been excavated to make room for additional infrastructure to meet the future needs of OGS. It will not be considered further.

6.3 ALTERNATIVE 3 – CONSOLIDATE ON-SITE AND CAP WITH MONITORED NATURAL ATTENUATION

As described in **Section 5.3**, Alternative 3 includes relocating and consolidating CCR into a smaller footprint within the OGS Ash Pond, covering the CCR materials with a cap, and establishing vegetation in accordance with the requirements for closure in place in 40 CFR 257.102(d).

- Performance, Reliability, Implementation, and Impacts.
 - Performance Ceasing wastewater discharges and closing the impoundments by capping is expected to address infiltration, which is believed to be a key contributor to groundwater impacts. The consolidation of CCR into a smaller footprint will reduce or eliminate CCR contact with groundwater and reduce the area exposed to limited post-construction infiltration through the cap. The smaller closure footprint also reduces or eliminates the potential for ongoing CCR contact with groundwater. MNA

monitoring will identify, if active, the natural attenuation processes that reduce mass, toxicity, mobility, volume, or concentrations of the constituents of concern in groundwater. As discussed in **Section 3.2.4**, based on the investigations completed prior to ACM Addendum No. 1, evidence of cobalt attenuation by precipitation, coprecipitation, and adsorption was observed making MNA a viable alternative for site remediation. Alternative 3 is capable of and expected to attain the GPS for cobalt.

- Reliability The expected reliability of capping is good. The final cover system will meet the performance standards in 40 CFR 257.102(d)(3), and those standards are intended to minimize or eliminate post-closure infiltration. Capping is a common practice and standard remedial method for closure in place in remediation and solid waste management. There is significant industry experience with the design and construction of this method. A consolidated cap footprint may enhance reliability by reducing the scale of post-closure maintenance. In addition, as discussed in Section 3.2.4, desorption trials indicated that approximately 96 percent of the cobalt remained adsorbed to the aquifer media, supporting MNA as a viable remedial alternative for cobalt.
- Implementation The complexity of constructing the cap is low. The logistics of moving CCR around the site to consolidate the closure footprint increases the complexity of the alternative. CCR dewatering will be required to excavate and relocate CCR within the CCR impoundments and provide a suitable subgrade for cap construction. Some conditioning (e.g., drying) of relocated CCR is expected during on-site re-disposal. Alternative 3 can likely be achieved through standard dewatering and conditioning methods. Although the cap footprint will be minimized, cap construction may put a high demand on the local supply of suitable cap materials. The local availability of cap materials will be evaluated further during remedy selection. The equipment and personnel required to implement Alternative 3 are not specialized and are generally readily available.
- Impacts Safety impacts associated with the implementation of Alternative 3 are not significantly different than other heavy civil construction projects. The level of disturbance required to consolidate CCR before capping may represent some increase in safety risk due to site conditions and on-site construction traffic. Cross-media impacts are expected to be limited due to the small volume of CCR expected to be relocated on-site, the short duration of cap construction, the effectiveness of standard engineering controls during construction (e.g., dust control), and the lack of off-site transportation of CCR. Although the risk to surface water receptors is already low and ending wastewater discharges and capping the impoundment minimizes infiltration (a potentially significant source of water and CCR interaction), the consolidation of CCR prior to capping under Alternative 3 reduces or eliminates the potential for CCR and groundwater interaction after closure. The ease of implementation and low-impact nature of MNA as a groundwater restoration method must be evaluated against the effectiveness of passive groundwater restoration, which is the subject of ongoing evaluations. An insufficient MNA mechanism, insufficient site attenuation capacity, or changes in groundwater conditions may require additional action to restore groundwater or prevent cross-media impacts between groundwater and surface water. The potential for exposure to residual contamination is low since CCR will be capped and the footprint of the cap minimized.

- Timing. Installation of a cap over the CCR located within can be completed within 1 to 2 years of remedy selection. At OGS, the consolidation and installation of a cap is currently expected to be complete by the end of 2022. The time required to attain the GPS for cobalt will be evaluated further during the remedy selection process, but is expected to take between 2 and 10 years after closure construction is complete. The level of source disturbance during construction may increase the time required to reach GPS. The consolidation of CCR into a smaller cap area may decrease the time to reach GPS. Alternative 3 can provide full protection within the 30-year post-closure monitoring period.
- **Institutional Requirements**. The following permits and approvals are expected to be required to implement Alternative 3:
 - IDNR Closure Permit.
 - State and local erosion control/construction storm water management permits.

6.4 ALTERNATIVE 4 – EXCAVATE AND DISPOSE ON-SITE WITH MONITORED NATURAL ATTENUATION

As described in **Section 5.4**, Alternative 4 includes, excavation of CCR from the source area, creation of a new on-site disposal area that meets the design criteria for new CCR landfills required under 40 CFR 257.70, and subsequent closure of the new disposal area.

- Performance, Reliability, Implementation, and Impacts.
 - Performance Ceasing wastewater discharges and closing the OGS Ash Pond and OGS ZLD Pond by removing and re-disposing CCR in a new lined/capped disposal area is expected to address infiltration, which is believed to be a key contributor to groundwater impacts. The consolidation of CCR into a smaller footprint will reduce or eliminate CCR contact with groundwater and reduce the area exposed to limited post-construction infiltration through the cap. The separation from groundwater and other location criteria for the new on-site disposal facility may enhance the performance of this alternative if location criteria can be met on site. MNA monitoring to date has identified evidence of cobalt attenuation by precipitation, coprecipitation, and adsorption making MNA a viable alternative. Alternative 4 is capable of and expected to attain the GPS for cobalt.
 - Reliability The expected reliability of on-site re-disposal with a composite liner and cap is good. Disposal facilities that meet the requirements in 40 CFR 257.70 or other similar requirements have been used for solid waste disposal including municipal and industrial waste for numerous years. There is significant industry experience with the design and construction of similar disposal facilities. The composite liner and cover, combined with a consolidated disposal footprint, may enhance reliability by reducing infiltration and the scale of post-closure maintenance. At the same time, post-closure maintenance is likely more complex due to maintenance of a leachate collection system and geosynthetic repairs requiring specialized personnel, material, and equipment. In addition, desorption trials have shown that MNA can be a reliable alternative for cobalt remediation.
 - Implementation The complexity of constructing the new liner and cap is moderate due to the composite design. The limited area available at the facility for developing an on-site disposal facility makes this alternative logistically complex. Significant

volumes of CCR will be excavated and stored on site while the disposal facility is constructed. Significant dewatering will be required to excavate and relocate CCR to a temporary storage area. Conditioning (e.g., drying) of relocated CCR is expected to facilitate temporary storage and on-site re-disposal. Alternative 4 can likely be achieved through standard dewatering and conditioning methods, but may be impacted by the space available for these activities. Although the post-closure CCR footprint will be minimized, composite liner and cap construction may put a high demand on the local supply of suitable cap materials. The local availability of liner and cap materials will be evaluated further during remedy selection. The equipment and personnel required to implement Alternative 4 are not specialized and are generally readily available, with the exception of the resources needed to install the geosynthetic portions of the composite liner and cover, which are not locally available.

- Impacts Safety impacts associated with the implementation of Alternative 4 are not significantly different than other heavy civil construction projects. However, the level of disturbance required to excavate, store, and re-dispose CCR on site and the traffic required to import composite liner and cap material are not typical and likely represent an increase in safety risk due to site conditions, on-site construction traffic, and incoming/outgoing off-site construction traffic. A risk of cross-media impacts is possible due to the large volume of CCR to be excavated, stored, and relocated on site. Although the risk to surface water receptors is already low, Alternative 4 reduces the potential interaction between CCR and water after closure. The ease of implementation and low-impact nature of MNA as a groundwater restoration method must be evaluated against the effectiveness of passive groundwater restoration, which is the subject of ongoing evaluations. An insufficient MNA mechanism, insufficient site attenuation capacity, or changes in groundwater conditions may require additional action to restore groundwater or prevent cross-media impacts between groundwater and surface water. The potential for exposure to residual contamination is low since CCR will be capped and the footprint of the cap minimized.
- Timing. Installation of a cap over the CCR located within the OGS Ash Pond can be completed within 1 to 2 years of remedy selection. At OGS, the consolidation and installation of a cap is currently expected to be complete by the end of 2022. However, the time required to permit and develop the on-site disposal facility may extend this schedule. The time required to attain the GPS for cobalt will be evaluated further during the remedy selection process, but is expected to take between 2 and 10 years after closure construction is complete. The level of source disturbance during construction may increase the time required to reach GPS. The consolidation of CCR into a new on-site disposal facility with a composite liner and cap may decrease the time to reach GPS. Alternative 4 can provide full protection within the 30-year post-closure monitoring period.
- **Institutional Requirements**. The following permits and approvals are expected to be required to implement Alternative 4:
 - IDNR Closure Permit.
 - IDNR Disposal Facility (Landfill) Permit.
 - State and local erosion control/construction storm water management permits.

6.5 ALTERNATIVE 5 – EXCAVATE AND DISPOSE OFF SITE WITH MONITORED NATURAL ATTENUATION

As described in **Section 5.5**, Alternative 5 includes excavation of CCR from the source area and transporting the CCR off-site for disposal.

- Performance, Reliability, Implementation, and Impacts.
 - Performance Ceasing wastewater discharges and closing the OGS Ash Pond and OGS ZLD Pond by removing and re-disposing CCR off-site will eliminate a potential source material that is exposed to infiltration, which is believed to be a key contributor to groundwater impacts. The off-site disposal of CCR prevents further releases at OGS, but introduces the possibility of releases at the receiving facility. MNA monitoring to date has identified evidence of cobalt attenuation by precipitation, coprecipitation, and adsorption was observed making MNA a viable alternative. Alternative 5 is capable of and expected to attain the GPS for cobalt.
 - Reliability The expected reliability of excavation and off-site disposal is good.
 Off-site disposal facilities are required to meet the requirements in 40 CFR 257.70 or other similar requirements, which have been used for solid waste disposal including municipal and industrial waste for numerous years. There is significant industry experience with the design and construction of these disposal facilities. In addition, desorption trials have shown that MNA can be a reliable alternative for cobalt remediation.
 - Implementation The complexity of excavating CCR for off-site disposal is low. The scale of CCR excavation (expected to exceed 450,000 cy), off-site transportation, and the permitting/development of off-site disposal facility airspace makes this alternative logistically complex. Significant dewatering will be required to excavate CCR. Conditioning (e.g., drying) of excavated CCR is expected to facilitate off-site transportation and re-disposal. Alternative 5 can likely be achieved through standard dewatering and conditioning methods, but may be impacted by the space available for these activities. Although the source area at OGS is eliminated, the development of off-site disposal airspace will put a high demand on the receiving disposal facility, which may not have the current physical or logistical capacity to receive large volumes of CCR in a short period of time. The equipment and personnel required to implement on-site and off-site aspects of Alternative 5 are not specialized and are generally readily available, with the exception of the resources needed to install the geosynthetic portions of the off-site composite liner and cover, which are not locally available.
 - Impacts Safety impacts associated with the implementation of Alternative 5 are not significantly different than other heavy civil construction projects. However, the level of disturbance required to excavate, transport, and re-dispose CCR and the traffic required to import composite liner and cap material at the receiving disposal facility are not typical and likely represent an increase in safety risk due to large volumes of incoming/outgoing off-site construction traffic at both sites. A risk of cross-media impacts is possible due to the large volume of CCR to be excavated and transported from the site. Although the risk to surface water receptors is already low, Alternative 5 nearly eliminates the potential interaction between CCR and water after closure at OGS. The ease of implementation and low-impact nature of MNA as a groundwater restoration method must be evaluated against the effectiveness of passive

groundwater restoration, which is the subject of ongoing evaluations. An insufficient MNA mechanism, insufficient site attenuation capacity, or changes in groundwater conditions may require additional action to restore groundwater or prevent cross-media impacts between groundwater and surface water. The potential for exposure to residual contamination on-site is very low since CCR will be removed; however, the off-site potential for exposure to CCR is increased due to the relocation of the source material.

- Timing. Installation of a cap over the CCR located within the OGS Ash Pond can be completed within 1 to 2 years of remedy selection. At OGS, the consolidation and installation of a cap is currently expected to be complete by the end of 2022. However, the time required to secure the off-site disposal airspace required to complete this alternative, including potential procurement, permitting, and construction, may extend this schedule significantly. The time required to attain the GPS for cobalt will be evaluated further during the remedy selection process, but is expected to take between 2 and 10 years after closure construction is complete. The level of source disturbance during construction may increase the time required to reach GPS. The removal of CCR from OGS may decrease the time to reach GPS. Alternative 5 can provide full protection within the 30-year post-closure monitoring period.
- Institutional Requirements. The following permits and approvals are expected to be required to implement Alternative 5:
 - IDNR Closure Permit.
 - Depending on the off-site disposal facility, approval of off-site disposal facility owner or landfill permit for new off-site facility.
 - State and local erosion control/construction storm water management permits.
 - Transportation agreements and permits (local roads and railroads).

Depending on the off-site disposal facility, state solid waste comprehensive planning approvals may also be required.

6.6 ALTERNATIVE 6 – CONSOLIDATE AND CAP WITH CHEMICAL AMENDMENT AND GROUNDWATER COLLECTION

As described in **Section 5.6**, Alternative 6 includes, relocating and consolidating CCR into a smaller footprint within the OGS Ash Pond, adding a chemical amendment to the CCR to reduce the mobilization of cobalt prior to relocating, covering the CCR materials with a cap, establishing vegetation, meeting all requirements for closure in place in 40 CFR 257.102(d), and installing a groundwater pump and treat system to prevent the migration of and/or recover groundwater with cobalt concentrations greater than the GPS.

- Performance, Reliability, Implementation, and Impacts.
 - Performance Ceasing wastewater discharges and closing the impoundment by capping is expected to address infiltration, which is believed to be a key contributor to groundwater impacts. The consolidation of CCR into a smaller footprint will reduce or eliminate CCR contact with groundwater and reduce the area exposed to limited post-construction infiltration through the cap. The application of a chemical amendment to the CCR that will remain on-site may further reduce the potential for ongoing groundwater impacts after closure. Although the risk to surface water

receptors is already low, the potential for CCR to interact with groundwater will remain after closure. Alternative 6 further reduces the potential for ongoing groundwater impacts from that interaction between CCR and water. If needed to address changes in groundwater conditions or prevent cross-media impacts between groundwater and surface water, the initial application of a chemical amendment during closure can be supplemented with additional applications in the future outside of capped area. The groundwater pump and treat system may further reduce the potential for down-gradient migration of groundwater impacts after closure. Alternative 6 further reduces the risk of potential ongoing groundwater impacts from that interaction between CCR and water. The groundwater pump and treat system offers additional flexibility to address changes in groundwater conditions or prevent cross-media impacts between groundwater and surface water. Alternative 6 is capable of and expected to attain the GPS for cobalt.

- Reliability The expected reliability of capping is good. The final cover system will meet the performance standards in 40 CFR 257.102(d)(3), and those standards are intended to minimize or eliminate post-closure infiltration. Capping is a common practice and standard remedial method for closure in place in remediation and solid waste management. There is significant industry experience with the design and construction of this method. A consolidated cap footprint may enhance reliability by reducing the scale of post-closure maintenance. Based on a review of information in the Federal Remediation Technologies Roundtable (FRTR) Technology Screening Matrix, amending source material using site-specific chemistries can be an effective means of sequestering metals to limit the future release to groundwater from residual source material. The technology can be applied to source material and groundwater plumes. The approach has been used at full scale to remediate inorganics (FRTR 2020). Similar to capping, groundwater pump and treat is a common method used to limit the migration of impacted groundwater or remove impacted groundwater to restore groundwater concentrations to levels below the GPS. If shown to be effective at OGS, groundwater pump and treat may be a reliable solution. However, the reliability of a groundwater pump and treat system requires proper maintenance, if groundwater pumping and treatment is required for long periods of time, maintenance must be considered in the alternative selection.
- Implementation The complexity of constructing the cap is low. The logistics of moving CCR around the site to consolidate the closure footprint increases the complexity of the alternative compared to closure without consolidation. CCR dewatering will be required to excavate and relocate CCR within the CCR impoundments and provide a suitable subgrade for cap construction. Some conditioning (e.g., drying) of relocated CCR is expected during on-site re-disposal. So long as an appropriate amendment chemistry can be identified for OGS, the technology and equipment used for the in-situ application or mixing as part of excavation/consolidation activities are commercially available. The complexity of the groundwater pump and treat system is also low. Alternative 6 can likely be achieved through standard dewatering and conditioning methods. Although the cap footprint will be minimized, cap construction may put a high demand on the local supply of suitable cap materials. The local availability of cap materials will be evaluated further during remedy selection. The equipment and personnel required to implement the consolidation and capping portion of Alternative 6 are not specialized and are generally readily available. However, the equipment for the in-situ chemical amendment application is more specialized and may be in high demand.

- Impacts Safety impacts associated with the implementation of Alternative 6 are not significantly different than other heavy civil construction projects. The level of disturbance required to consolidate CCR before capping may represent some increase in safety risk due to site conditions and on-site construction traffic. Some elevated risk may exist due to the use of and application of amendment chemistry, but can likely be addressed with additional worker protective measures. Some elevated risk may exist due to the additional construction involved with the groundwater pump and treat system and the higher complexity of the long-term maintenance required. Cross-media impacts are expected to be limited due to the small volume of CCR expected to be relocated on-site, the short duration of cap construction, the effectiveness of standard engineering controls during construction (e.g., dust control), and the lack of offsite transportation of CCR. Although the risk to surface water receptors is already low based on available data, the additional source control and active groundwater collection provided by Alternative 6 may offer further reduction of risks if groundwater conditions change. The potential for exposure to residual contamination is low since the CCR will be chemically stabilized, capped, and the footprint of the cap minimized.
- Timing. Installation of a cap over the CCR located within the OGS Ash Pond can be completed within 1 to 2 years of remedy selection. At OGS, the consolidation and installation of a cap is currently expected to be complete by the end of 2022. The time required to attain the GPS for cobalt will be evaluated further during the remedy selection process, but is expected to take between 2 and 10 years after closure construction is complete. The level of source disturbance during construction may increase the time required to reach GPS. The consolidation of CCR into a smaller cap area may decrease the time to reach GPS. Alternative 6 can provide full protection within the 30-year post-closure monitoring period.
- **Institutional Requirements**. The following permits and approvals are expected to be required to implement Alternative 6:
 - IDNR Closure Permit.
 - Federal, state, and local floodplain permits.
 - Injection permits.
 - NPDES permitting for post-treatment groundwater discharges.
 - State and local erosion control/construction stormwater management permits.
 - Federal and state wetland permitting may also be required.

6.7 ALTERNATIVE 7 – CONSOLIDATE AND CAP WITH GROUNDWATER COLLECTION

As described in **Section 5.7**, Alternative 7 includes relocating and consolidating CCR into a smaller footprint within the OGS Ash Pond, covering the CCR materials with a cap, establishing vegetation, meeting all requirements for closure in place in 40 CFR 257.102(d), and installing a groundwater pump and treat system to prevent the migration of and/or recover groundwater with cobalt concentrations greater than the GPS.

- Performance, Reliability, Implementation, and Impacts.
 - Performance Ceasing wastewater discharges and closing the impoundment by capping is expected to address infiltration, which is believed to be a key contributor to groundwater impacts. The consolidation of CCR into a smaller footprint will reduce

or eliminate CCR contact with groundwater and reduce the area exposed to limited post-construction infiltration through the cap. The groundwater pump and treat system may further reduce the potential for down-gradient migration of groundwater impacts after closure. The groundwater pump and treat system offers additional flexibility to address changes in groundwater conditions or prevent cross-media impacts between groundwater and surface water. Alternative 7 is capable of and expected to attain the GPS for cobalt.

- Reliability The expected reliability of capping is good. The final cover system will meet the performance standards in 40 CFR 257.102(d)(3), and those standards are intended to minimize or eliminate post-closure infiltration. Capping is a common practice and standard remedial method for closure in place in remediation and solid waste management. There is significant industry experience with the design and construction of this method. A consolidated cap footprint may enhance reliability by reducing the scale of post-closure maintenance. Similar to capping, groundwater pump and treat is a common method used to limit the migration of impacted groundwater or remove impacted groundwater to restore groundwater concentrations to levels below the GPS. If shown to be effective at OGS, groundwater pump and treat may be a reliable solution. However, the reliability of a groundwater pump and treat system requires proper maintenance, if groundwater pumping and treatment is required for long periods of time, maintenance must be considered in the alternative selection.
- Implementation The complexity of constructing the cap is low. The logistics of moving CCR around the site to consolidate the closure footprint increases the complexity of the alternative. CCR dewatering will be required to excavate and relocate CCR within the CCR impoundments and provide a suitable subgrade for cap construction. Some conditioning (e.g., drying) of relocated CCR is expected during on-site re-disposal. The complexity of the groundwater pump and treat system is also low. Alternative 7 can likely be achieved through standard dewatering and conditioning methods. Although the cap footprint will be minimized, cap construction may put a high demand on the local supply of suitable cap materials. The local availability of cap materials will be evaluated further during remedy selection. The equipment and personnel required to implement Alternative 7 are not specialized and are generally readily available. The permitting, development, operation, maintenance, and monitoring of adequate treatment for large volumes of groundwater with relatively low concentrations of cobalt likely increases the complexity of implementing this alternative.
- Impacts Safety impacts associated with the implementation of Alternative 7 are not significantly different than other heavy civil construction projects. The level of disturbance required to consolidate CCR before capping may represent some increase in safety risk due to site conditions and on-site construction traffic. Some elevated risk may exist due to the additional construction involved with the groundwater pump and treat system and the higher complexity of the long-term maintenance required. Cross-media impacts are expected to be limited due to the small volume of CCR expected to be relocated on-site, the short duration of cap construction, the effectiveness of standard engineering controls during construction (e.g., dust control), and the lack of offsite transportation of CCR. Although the risk to surface water receptors is already low based on available data, the active nature of the groundwater plume containment provided by Alternative 7 may offer further

reduction of risks if groundwater conditions change. The potential for exposure to residual contaminated source material is low since CCR will be capped and the footprint of the cap minimized.

- Timing. Installation of a cap over the CCR located within the OGS Ash Pond can be completed within 1 to 2 years of remedy selection. At OGS, the consolidation and installation of a cap is currently expected to be complete by the end of 2022. The time required to attain the GPS for cobalt will be evaluated further during the remedy selection process, but is expected to take between 2 and 10 years after closure construction is complete. The level of source disturbance during construction may increase the time required to reach GPS. The additional time required to design and install the groundwater pump and treat system is unlikely to have a significant impact on the implementation timing but may reduce the time required to attain the GPS. The consolidation of CCR into a smaller cap area may decrease the time to reach GPS. Alternative 7 can provide full protection within the 30-year post-closure monitoring period.
- **Institutional Requirements**. The following permits and approvals are expected to be required to implement Alternative 7:
 - IDNR Closure Permit.
 - Federal, state, and local floodplain permits.
 - State and local well installation permits.
 - NPDES permitting for post-treatment groundwater discharges.
 - State and local erosion control/construction stormwater management permits.
 - Federal and state wetland permitting may also be required.

6.8 ALTERNATIVE 8 – CONSOLIDATE AND CAP WITH BARRIER WALL WITH GROUNDWATER COLLECTION

As described in **Section 5.8**, Alternative 8 includes relocating and consolidating CCR into a smaller footprint within the CCR surface impoundments, covering the CCR materials with a cap, establishing vegetation, meeting all requirements for closure in place in 40 CFR 257.102(d), installing a barrier wall to prevent the migration of groundwater with cobalt concentrations greater than the GPS, and installing a groundwater pump and treat system to prevent the migration of and/or recover groundwater with cobalt concentrations greater than the GPS.

- Performance, Reliability, Implementation, and Impacts.
 - Performance Ceasing wastewater discharges and closing the impoundment by capping is expected to address infiltration, which is believed to be a key contributor to groundwater impacts. The consolidation of CCR into a smaller footprint will reduce or eliminate CCR contact with groundwater and reduce the area exposed to limited post-construction infiltration through the cap. The barrier wall may further reduce the potential for groundwater impacts after closure. Although it acts passively, the barrier wall reduces the risk from a more passive groundwater restoration approach such as MNA if MNA mechanisms are not active, the site has insufficient site attenuation capacity, or groundwater conditions change in a way that increases the potential for cross-media impacts between groundwater and surface water. The groundwater pump and treat system may further reduce the potential for down-gradient migration of groundwater impacts after closure. Alternative 6 further reduces the risk of potential ongoing groundwater impacts from that interaction between CCR and water. The groundwater pump and treat system offers additional flexibility to address

- changes in groundwater conditions or prevent cross-media impacts between groundwater and surface water. Alternative 8 is capable of and expected to attain the GPS for cobalt.
- Reliability The expected reliability of capping is good. The final cover system will meet the performance standards in 40 CFR 257.102(d)(3), and those standards are intended to minimize or eliminate post-closure infiltration. Capping is a common practice and standard remedial method for closure in place in remediation and solid waste management. There is significant industry experience with the design and construction of this method. A consolidated cap footprint may enhance reliability by reducing the scale of post-closure maintenance. A barrier wall at OGS will likely have to consist of a permeable reactive barrier (PRB) due to the lack of an impermeable layer to key a low permeability barrier wall into. In general, the reliability of PRBs for containment of inorganics is favorable based on information available in the FRTR Technology Screening Matrix (FRTR 2020). The reliability of a PRB requires the identification of a suitable reactive media for the conditions at OGS and the ability to effectively locate the barrier, which are both likely but require additional evaluations. PRB performance can diminish over time as consumptive media is exhausted or hydraulic conditions change due to chemical precipitation or biofouling. Long-term monitoring and maintenance is required to ensure continued performance. Similar to capping, groundwater pump and treat is a common method used to limit the migration of impacted groundwater or remove impacted groundwater to restore groundwater concentrations to levels below the GPS. If shown to be effective at OGS, groundwater pump and treat may be a reliable solution. However, the reliability of a groundwater pump and treat system requires proper maintenance, if groundwater pumping and treatment is required for long periods of time, maintenance must be considered in the alternative selection.
- Implementation The complexity of constructing the cap is low. The logistics of moving CCR around the site to consolidate the closure footprint increases the complexity of the alternative. CCR dewatering will be required to excavate and relocate CCR within the CCR impoundments and provide a suitable subgrade for cap construction. Some conditioning (e.g., drying) of relocated CCR is expected during on-site re-disposal. The complexity of the PRB wall significantly increases the level of complexity for implementing this alternative. PRB installation contractors and equipment have lengthy procurement timelines. The complexity of the groundwater pump and treat system is also low. Alternative 8 can likely be achieved through standard dewatering and conditioning methods. Although the cap footprint will be minimized, cap construction may put a high demand on the local supply of suitable cap materials. The equipment and personnel required to implement the consolidation and capping portion of Alternative 8 are not specialized and are generally readily available. However, the equipment for the barrier wall is more specialized and may be in high demand.
- Impacts Safety impacts associated with the implementation of Alternative 8 are not significantly different than other heavy civil construction projects. The level of disturbance required to consolidate CCR before capping may represent some increase in safety risk due to site conditions and on-site construction traffic. Some elevated risk may exist due to the additional construction involved with the barrier wall construction and the higher complexity of the long-term barrier wall performance monitoring. Some elevated risk may exist due to the additional construction involved

with the groundwater pump and treat system and the higher complexity of the long-term maintenance required. Cross-media impacts are expected to be limited due to the small volume of CCR expected to be relocated on-site, the short duration of cap construction, the effectiveness of standard engineering controls during construction (e.g., dust control), and the lack of offsite transportation of CCR. Although the risk to surface water receptors is already low based on available data, the enhanced nature of the passive groundwater plume containment and active groundwater collection provided by Alternative 8 may offer further reduction of risks if groundwater conditions change. The potential for exposure to residual contaminated source material is low since CCR will be capped and the footprint of the cap minimized.

- Timing. Installation of a cap over the CCR located within the OGS Ash Pond can be completed within 1 to 2 years of remedy selection. At OGS, the consolidation and installation of a cap is currently expected to be complete by the end of 2022. The time required to attain the GPS for cobalt will be evaluated further during the remedy selection process, but is expected to take between 2 and 10 years after closure construction is complete. The level of source disturbance during construction may increase the time required to reach GPS. The additional time required to design and install the barrier wall is unlikely to have a significant impact on the implementation timing but may reduce the time required to attain the GPS. The consolidation of CCR into a smaller cap area may decrease the time to reach GPS. Alternative 8 can provide full protection within the 30-year post-closure monitoring period.
- **Institutional Requirements**. The following permits and approvals are expected to be required to implement Alternative 8:
 - IDNR Closure Permit.
 - Federal, state, and local floodplain permits.
 - State and local well installation permits.
 - NPDES permitting for post-treatment groundwater discharges.
 - State and local erosion control/construction stormwater management permits.
 - Federal and state wetland permitting may also be required.

7.0 SUMMARY OF ASSESSMENT

An initial qualitative assessment of the advantages and disadvantages of each Corrective Measure Alternative presented in **Section 4.0** is provided in **Table 6**. Each of the identified Corrective Measure Alternatives exhibits both favorable and unfavorable outcomes with respect to the assessment criteria. In accordance with 40 CFR 257.97(c), the facility must consider all of the evaluation factors and select a remedy that meets the standards of 257.97(b) as soon as feasible.

We continue to advance additional data collection efforts to identify the appropriate corrective action measure for the Site. We will continue to update **Table 6** and develop a quantitative scoring matrix to identify a preferred corrective action.

8.0 REFERENCES

- Alliant Energy, Interstate Power and Light Company Ottumwa Generating Station, (2016) CCR Surface Impoundment History of Construction, September 29, 2016.
- Alliant Energy, Interstate Power and Light Company Ottumwa Generating Station, (2021) CCR Surface Impoundment Inflow Design Flood Control Plan, Revision 1, May 5, 2021.
- Burns & McDonnell Engineering Company, Inc., (2020) Closure Plan for CCR Surface Impoundments Amendment No. 1, Ottumwa, Iowa, November 16, 2020.
- Federal Remediation Technologies Roundtable (FRTR), (2020), Technology Screening Matrix https://frtr.gov/matrix/default.cfm, Accessed November 17-19, 2020.
- SCS Engineers, (2022), Construction Documentation Report Zero Liquids Discharge Pond (ZLDP)
 Closure and Low Volume Wastewater Treatment Pond (LVWTP) Construction, April 14, 2020.
- United States Environmental Protection Agency (U.S. EPA), (1998) "Solid Waste Disposal Facility Criteria Technical Manual (EPA530-R-93-017), Revised April 13, 1998." Solid Waste and Emergency Response.
- U.S. EPA (2007). "Monitored Natural Attenuation of Inorganic Contaminants in Groundwater, Volume 1 Technical Basis for Assessment, (EPA600-R-07-139). Office of Research and Development, National Risk Management Laboratory, Ada, Oklahoma.
- U.S. EPA (2018). Federal Register Volume 83, Number 146, p. 36443-36445, Hazardous and Solid Waste Management System: Disposal of Coal Combustion Residuals from Electric Utilities; Amendments to the National Minimum Criteria (Phase One, Part One). July 30, 2018.
- W.A. Gebert, David J. Graczyk, and William R. Krug (1987), Average Annual Runoff in the United States, 1951-80, USGS Hydrologic Atlas 710.

Tables

- 1 Groundwater Elevations CCR Rule Monitoring Well Networks
- 2A CCR Rule Ash Pond Groundwater Samples Summary
- 2B CCR Rule ZLDP Groundwater Samples Summary
- Groundwater Analytical Results Summary CCR Program Assessment Monitoring
- 4 Groundwater Analytical April 2022 Results Summary
- 5 Groundwater Field Parameters CCR Program Assessment Monitoring
- 6 Preliminary Evaluation of Corrective Measure Alternatives

Table 1. Groundwater Elevations - CCR Rule Monitoring Well Networks IPL - Ottumwa Generating Station / SCS Engineers Project #25222072.00

							Depth to	Water in feet	below top	of well casing	/reference	elevation										
Raw Data	MW-301	MW-302	MW-302WT	MW-303	MW-304	MW-304WT				MW-306WT			MW-309	MW-310	MW-310A	MW-311	MW-311A	MW-312	MW-313	MW-314	MW-314WT	River at Intake
Measurement Date	71111 551	71111 002	7444 002441	11111 000	11111 00-1	74111 00-1111	11111 000	11111 00071		71111 000111	11111 007		10.00	0.0	71111 01071	10000		70.00		7444 014	10000	Miver ar illiance
April 26, 2016	3.83	18.27	NI	8.65	27.47	NI	22.24	NI	12.61	NI				NI	NI	NI	NI	NI	NI	NI	NI	NI
June 23, 2016	4.05	18.25	NI	8.18	26.31	NI	21.55	NI	12.83	NI				NI	NI	NI	NI NI	NI	NI	NI	NI	NI
August 9, 2016	4.36	18.38	NI	9.31	29.05	NI	23.13	NI	13.12	NI				NI	NI	NI	NI	NI	NI	NI	NI	NI
October 26-27, 2016	4.59	18.23	NI	8.90	27.81	NI	22.54	NI	13.26	NI				NI	NI	NI	NI	NI	NI	NI	NI	NI
January 18-19, 2017	4.96	18.44	NI	9.33	28.34	NI	23.04	NI	13.58	NI	8.75	7.97	8.28	NI	NI	NI	NI	NI	NI	NI	NI	NI
April 19-20, 2017	4.48	17.55	NI	6.50	25.36	NI	20.64	NI	12.78	NI	3.94	4.30	4.78	NI	NI	NI	NI NI	NI	NI	NI	NI	NI
June 20-21, 2017	4.72	18.25	NI	8.65	28.09	NI	22.65	NI	13.53	NI	7.71	7.13	7.34	NI	NI	NI	NI	NI	NI	NI	NI	NI
August 21-23, 2017	5.35	18.77	NI	10.49	30.45	NI	24.91	NI	14.70	NI	11.78	12.27	13.12	NI	NI	NI	NI NI	NI	NI	NI	NI	NI
November 8, 2017	5.09	18.50	NI	9.73	29.81	NI	24.15	NI	14.43	NI	10.19	10.40	10.74	NI	NI	NI	NI	NI	NI	NI	NI	NI
April 18, 2018	5.10	18.19	NI	8.60	27.29	NI	22.92	NI	14.55	NI	7.90	7.48	7.29	NI	NI	NI	NI	NI	NI	NI	NI	NI
May 30, 2018	NM	NM	NI	NM	NM	NI	NM	NI	NM	NI	5.11	4.34	3.96	NI	NI	NI	NI	NI	NI	NI	NI	NI
June 28, 2018	NM	NM	NI	NM	NM	NI	NM	NI	NM	NI	4.69	3.96	3.47	NI	NI	NI	NI	NI	NI	NI	NI	NI
July 18, 2018	NM	NM	NI	NM	NM	NI	NM	NI	NM	NI	5.29	4.72	4.25	NI	NI	NI	NI	NI	NI	NI	NI	NI
August 14-15, 2018	5.72	17.85	NI	8.50	26.49	NI	22.35	NI	14.81	NI	NM	NM	NM	NI	NI	NI	NI	NI	NI	NI	NI	NI
August 29, 2018	5.54	18.01	NI	6.00	25.02	NI	NM	NI	NM	NI	NM	NM	NM	NI	NI	NI	NI	NI	NI	NI	NI	NI
October 16, 2018	4.13	16.99	NI	4.90	24.64	NI	20.54	NI	13.23	NI	3.43	NM	3.33	NI	NI	NI	NI	NI	NI	NI	NI	NI
January 8, 2019	4.41	17.87	NI	6.42	26.56	NI	21.78	NI	13.63	NI	NM	NM	NM	NI	NI	NI	NI	NI	NI	NI	NI	NI 141
April 8, 2019	3.94	16.67	NI	5.52	23.51	NI	19.90	NI IVI	12.51	NI	2.66	1.69	1.39	NI	NI	NI	NI 141	NI	NI	NI	NI	NI
August 28, 2019	NM	NM	NI	NM	25.51 NM	NI	NM	NI	NM	NI	NM	NM	NM	17.65	NI	12.08	NI	NI	NI	NI	NI	NI
October 23-24, 2019	3.56	13.76	NI	7.21	25.13	NI	20.70	NI	12.19	NI	5.67	4.08	3.66	9.32	NI	6.38	NI	NI	NI	NI	NI	NI
December 11, 2019	NM	13.76 NM	NI	NM	23.13 NM	NI	20.70 NM	NI	NM	NI	7.97	8.00	7.70	7.32 NM	NI	0.30 NM	NI	NI	NI	NI	NI	NI
February 5, 2020	3.33	NM	NI	NM	NM	NI	NM	NI	NM	NI	7.68	5.27	6.60	13.92	NI	9.18	NI	NI	NI	NI	NI	NI
March 12-13, 2020	3.81	NM	NI	NM	NM	NI	22.50	32.39	NM	NI	7.66 NM	NM	NM	13.72	40.09	10.00	29.43	NI	NI	NI	NI	NI
April 1, 2020	3.36	16.9	NI	5.18	24.27	NI	23.32	28.98	12.34	NI	3.8	3.51	3.71	7.54	8.77	4.83	5.27	NI	NI	NI	NI	6.6
April 13-14, 2020	3.38	17.45	NI	6.99	26.42	NI	21.47	30.34	12.76	NI	6.90	5.30	5.75	12.72	10.43	7.39	5.12	NI	NI	NI	NI	10.6
May 4, 2020	3.36 NM	17.43 NM	NI	0.77 NM	26.42 NM	NI	21.47 NM	30.34 NM	12.76 NM	NI	0.90 NM	3.30 NM	3.73 NM	12.72 NM	NM	7.37 NM	NM	NI	NI	NI	NI	NM
June 30, 2020	NM	NM	NI	NM	NM	NI	NM	NM	NM	NI	NM	NM	NM		NM	NM	5.81	NI	NI	NI	NI	NM
	4.29	18.10	NI	10.70	29.89	NI			13.29		11.38	12.54	13.44	NM 20.17	17.73	15.45	12.45		NI	NI	NI	18.15
October 5-12, 2020	4.29 NM	18.10 NM	NI NI	10.70 NM	29.89 NM	NI	24.10 NM	36.02 NM	13.29	NI NI	10.76	12.54 NM	13.44 NM	19.86	17.73 NM	15.45 NM		NI NI	NI	NI		18.15 NM
February 23, 2021																	12.38				NI	
April 12 - 16, 2021	3.69	17.85	NI	7.25	28.50	NI	22.76	32.87	13.20	NI	8.03	7.73	8.48	15.93	13.05	11.16	9.38	NI	NI	NI	NI	15.40
July 6, 2021	NM 4.68	NM 19.04	NI	NM 11.27	NM 33.31	NI	NM 29.08	NM 38.46	21.60	NI	10.53	NM 13.58	NM 14.02	19.31	NM 10.27	NM	11.16	NI	NI	NI	NI	NM
October 6-8, 2021			NI			NI			21.20	NI			14.23	20.44	18.36	Dry	12.96	NI	NI 14.00	NI	NI	NM
January 11-12, 2022	5.05	NM 10.04	NI	NM	NM	NI	27.36	NM	NM 10.00	NI	11.32	NM 11.05	NM 10.50	NM 10.04	NM 17.00	NM 14.71	NM 11.75	13.19	14.62	NI	NI	NM 10.05
January 31, 2022	5.07	19.34	NI	11.00	32.33	NI	27.24	37.02	19.33	NI	11.51	11.95	12.52	18.94	17.30	14.71	11.75	13.69	15.45	NI	NI	13.35
February 14-15, 2022	5.20	19.48	NI	11.04	32.42	NI	27.56	37.19	19.81	NI	11.74	12.14	12.62	18.99	17.25	below pun	12.04	13.50	15.26	NI	NI	14.30
April 11-14, 2022	4.55	19.13	NI	8.12	30.70	NI	26.29	34.79	18.86	NI	9.16	9.64	10.62	17.84	17.10	12.74	10.31	10.74	13.78	NI	NI	13.10
May 3, 2022	4.36	19.39	DRY	8.93	29.33	36.82	26.21	33.99	19.87	DRY	8.42	7.98	7.87	13.80	12.69	11.20	9.60	8.02	10.01	17.30	17.03	9.15
May 5, 2022	4.56	19.12	18.50	8.59	28.38	36.40	25.84	33.56	19.70	DRY	7.70	7.23	6.48	10.52	11.42	10.16	9.41	6.59	7.60	17.14	17.11	NM
May 10, 2022	NM	19.20	18.82	NM	28.75	35.35	NM	NM	19.76	DRY	NM	NM	NM 7.40	NM	NM	NM	NM	NM 7.70	NM 0.77	17.70	17.56	NM
May 17, 2022	4.88	19.34	18.84	8.60	29.24	34.04	26.13	33.26	20.02	DRY	7.86	7.33	7.49	13.96	7.86	9.96	8.41	7.79	9.76	17.64	17.42	NM
May 20, 2022	NM	19.27	18.87	NM	29.34	33.52	NM	NM	19.98	DRY	NM	NM	NM	NM	NM	NM	NM	NM	NM	17.27	17.15	NM
May 23, 2022	NM	NM	NM	NM	30.18	33.80	NM	NM	NM	DRY	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
June 2, 2022	4.94	19.68	18.85	9.54	30.47	31.82	27.73	34.50	22.05	DRY	9.23	8.71	8.56	14.02	12.70	10.82	8.61	8.93	10.36	18.56	18.40	NM
June 9, 2022	4.83	19.66	18.83	9.63	28.66	31.31	27.57	34.23	22.22	DRY	8.66	8.34	7.62	10.40	11.73	10.04	8.93	7.58	7.19	18.89	18.70	NM
June 10, 2022	NM	NM	NM	NM	29.87	31.23	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
June 21, 2022	5.03	19.61	18.84	9.72	29.95	30.72	27.66	33.51	22.60	DRY	8.02	6.92	6.60	12.34	10.30	9.30	7.94	7.49	8.67	19.10	18.93	NM
June 27, 2022	5.03	19.84	18.85	9.93	30.68	30.65	27.76	34.33	22.06	DRY	8.95	8.26	8.60	14.76	13.08	10.54	8.17	8.94	11.04	19.55	19.34	NM
July 5, 2022	5.16	19.98	18.85	10.37	31.81	30.47	28.58	35.52	22.61	DRY	10.22	9.98	10.80	17.05	15.02	10.02	9.24	10.86	13.40	19.57	19.37	NM
			1																			

Table 1. Groundwater Elevations - CCR Rule Monitoring Well Networks IPL - Ottumwa Generating Station / SCS Engineers Project #25222072.00

The first Number 1965 1967							Gro	und Water	or Surface V	Vater Elevat	ion in feet abo	ove mean se	ea level (an	nsl)									
Top 4 Med Colong Berouter)	Well Number	MW-301	MW-302	MW-302WT	MW-303	MW-304									MW-310	MW-310A	MW-311	MW-311A	MW-312	MW-313	MW-314	MW-314WT	River at Intake
Subsect New No. Conf. Co							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		55571										•				
Color Colo		686.63	673.90	674.53	661.07	682.84	682.20	683.91	684.03	683.47	684.05	657.56	655.39	654.94	658.63	657.93	654.18	653.54	655.36	655.84	684.71	684.61	656.31
Second Larger (197) 1910 2.5 1910 3.5 1910																							1
		10.0	5.0	10.0	5.0	5.0	10.0	5.0	5.0	5.0	10.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	10.0	NA
The part in first enter the broken of CF CF CF CF CF CF CF C	• ()																			23.82		24.81	
Messament Dots	1 1	679.63	653.10	665.3	648.57	635.54	654.5	637.41	607.12		670.0		635.39	632.44	637.76	_	641.24	610.86	NS	NS	656.47	669.8	NA
Line 75, 7511, ACC																							
August 2217 (2012)		682.80	655.63	NI	652.42	655.37	NI	661.67	NI	670.86	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
Corporate 24-07-3016 4852/4 65.025 N	June 23, 2016	682.58	655.65	NI	652.89	656.53	NI	662.36	NI	670.64	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
April 2017 2017 2018 2019	August 9, 2016	682.27	655.52	NI	651.76	653.79	NI	660.78	NI	670.35	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
Age	October 26-27, 2016	682.04	655.67	NI	652.17	655.03	NI	661.37	NI	670.21	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
Amer 2971,7017	January 18-19, 2017	681.67	655.46	NI	651.74	654.50	NI	660.87	NI	669.89	NI	648.81	647.42	646.66	NI	NI	NI	NI	NI	NI	NI	NI	NI
August 21 X, 2017 681 296 555.33 MI 650.59 637.75 N 650.75 MI 662.07 NI 662.07 NI 663.07 MI MI MI MI MI MI MI M	April 19-20, 2017	682.15	656.35	NI	654.57	657.48	NI	663.27	NI	670.69	NI	653.62	651.09	650.16	NI	NI	NI	NI	NI	NI	NI	NI	NI
New Part 1977 687-54 655-60 NI		681.91	655.65	NI	652.42	654.75	NI	661.26	NI	669.94	NI	649.85	648.26	647.60	NI	NI	NI	NI	NI	NI	NI	NI	NI
Act 18 (20)5 65 38 593/1 N 593/4 N 593/2 N 593/2 N 593/2 N 593/2 N 593/2 N 593/2 N N N N N N N N N N N N N N N N N N N	August 21-23, 2017	681.28	655.13	NI	650.58		NI	659.00	NI		NI	645.78	643.12	641.82	NI	NI	NI	NI	NI	NI	NI	NI	NI
Mary 59, 2019	November 8, 2017	681.54	655.40	NI	651.34	653.03	NI	659.76	NI	669.04	NI	647.37	644.99	644.20	NI	NI	NI	NI	NI	NI	NI	NI	NI
Inter-98,7078			_																				
May 18 (2018 MAX																			NI				
August 1415, 2018																			NI			NI	
Adjust 27, 2018 (65.97) (65.97) (65.97) (67.85) (7.																							
October 16, 2018 665,20 666,71 NI 666,61 665,72 NI 665,67 NI 665,67 NI 667,67 NI NI NI NI NI NI NI N	Ü																						
Indicates 2019 662-22 650.05 Ni 654.65 656.28 Ni 650.15 Ni 650.96 Ni Ni Ni Ni Ni Ni Ni N																							
April 8, 2019 693,09 657,27 NN 6558 699,38 NI 665,00 NN 670,00 NN N																							
August 28, 2019 NM NM NM NN NM NN NM NN NM NN NM NN NM NM	, ,																						
October 25-24,0019				_																			
December 11,2017 NN	Ŭ i																						
February 5, 2020																							
Morice 12 3,2020 693,28																							
April 1,2020 683,27 657,00 NI 655,89 688,67 NI 60,059 655,05 677,13 NI 653,76 651,88 651,23 651,07 649,16 649,35 648,27 NI NI NI NI NI NI 645,71 April 124,000 NIM																							
April 13-14 2000																							
Moy 4, 2020																							
June 30, 2020																							
Ciclober 5-12, 2020 682,34 655,80 Ni 650,37 652,95 Ni 659,81 648,01 670,16 Ni 646,18 642,85 641,50 638,46 640,20 659,73 Ni	,																						
February 23, 2021 NM																							
April 12 - 16, 2021 682,94 656,05 NI 653,82 654,34 NI 661,15 651,16 670,27 NII 649,53 647,66 646,46 642,70 644,16 NII NI NI NII NII NII NII NII 640,91 July 6, 2021 NIM NM NIM NIM NIM NIM NIM 641,87 NII 647,03 NIM NIM 642,84 NIM NIM 642,84 NIM NIM 642,85 NIM 642,80 NIM 642,80 NIM 642,80 NIM NIM 642,81 NIM NIM 642,81 NIM NIM 642,81 NIM NIM NIM 642,81 NIM NIM NIM 643,81 NIM NIM NIM 643,81 NIM NIM NIM NIM 643,81 NIM NIM NIM NIM NIM 643,81 NIM NIM NIM NIM NIM 643,81 NIM	, , , , ,																						
Lily 6, 2021 NM	,				1																		
October 6-8, 2021 681,95 654,86 NI 649,80 (49,53 NI) 654,83 (45,57 662,27 NI) 644,49 (41,81 640,71 638,19 639,57 Dry 640,58 NI																_							
January 11-12, 2022 681,58 NM NI NM NM NM NM NM NM																							
January 31, 2022 681.56 654.56 NI 650.07 650.51 NI 656.67 647.01 664.14 NI 646.05 643.44 642.42 639.69 640.63 639.47 641.79 NS NS NI NI 642.95																_							
February 14-15, 2022 681.68 654.42 NI 650.03 650.42 NI 656.35 646.84 663.66 NI 645.82 643.25 642.32 639.64 640.68 Delow Jump 641.50 NS NS NI NI NI 642.01 April 11-14, 2022 682.08 654.77 NI 652.95 652.14 NI 657.62 649.24 664.61 NI 648.40 645.75 644.32 640.79 640.83 641.44 643.23 644.62 642.06 NI NI 643.21 May 3, 2022 682.27 654.51 <655.3 652.14 653.51 645.38 657.70 650.04 663.60 <660 649.14 647.41 647.07 644.83 645.24 642.98 643.94 647.34 645.83 667.47 648.24 664.81 May 10, 2022 NIM 654.70 655.71 NIM 654.09 646.85 NIM NIM 663.71 <660 649.86 648.16 648.46 648.81 646.51 644.02 644.13 647.02 644.13 645.02 644.02 644.13 645.02 644.02 64																							
February 14-15, 2022 681,43 654,42 NI 650,03 650,42 NI 650,53 646,84 663,66 NI 648,82 643,25 642,32 649,68 pump 641,50 NS NS NI NI 642,01	, ,																			-			
April 11-14, 2022 682.08 654.77 NI 652.95 652.14 NI 657.62 649.24 664.61 NI 648.40 645.75 644.32 640.79 640.83 641.44 643.23 644.62 642.06 NI NI 643.21 May 3, 2022 682.07 654.78 656.03 652.48 654.64 645.80 658.07 650.47 663.77 < 660. 649.14 647.41 647.07 644.83 645.24 642.96 643.94 647.34 645.83 667.41 667.58 647.16 May 5, 2022 NIM 654.07 655.51 NIM 654.09 646.85 NIM NIM 654.07 644.83 645.44 645.80 658.07 NIM NIM 654.09 646.85 NIM NIM 654.09 646.85 NIM	February 14-15, 2022	681.43	654.42	NI	650.03	650.42	NI	656.35	646.84	663.66	NI	645.82	643.25	642.32	639.64	640.68		641.50	NS	NS	NI	NI	642.01
May 3, 2022 682.27 654.51 <655.3 652.14 655.3 652.14 655.51 645.38 657.0 650.47 663.67 650.47 663.67 649.14 647.41 647.07 644.83 645.24 642.98 643.94 647.34 645.83 667.41 667.58 647.16 May 5, 2022 681.60 654.29 655.69 651.35 652.87 650.87 650.87 650.87 650.47 663.77 <660 649.86 648.16 648.46 648.11 646.51 644.02 644.13 648.77 648.24 667.57 667.50 NM	April 11-14, 2022	682.08	654.77	NI	652.95	652.14	NI	657.62	649.24	664.61	NI	648.40	645.75	644.32	640.79	640.83		643.23	644.62	642.06	NI	NI	643.21
May 10, 2022 682.07 654.78 656.03 652.48 654.46 645.80 658.07 650.47 663.77 < 660 649.86 648.16 648.46 648.11 646.51 644.02 644.13 648.77 648.24 667.57 667.50 NM May 10, 2022 NM 654.09 646.85 NM NM 654.09 646.85 NM NM 654.09 646.85 NM				<655.3			645.38				<660					645.24					667.41	667.58	
May 10, 2022 NM 654.70 655.71 NM 654.09 646.85 NM NM 660 NM 653.60 648.16 657.78 650.77 663.45 <id>660 647.45 644.67 650.07 645.13 647.07 646.08 667.07 647.19 NM May 20, 2022 NM NM</id>					_									_	_								
May 20, 2022 NM	,		654.70	655.71		654.09			NM	663.71	<660	NM				NM	NM	NM					NM
May 23, 2022 NM NM NM NM 652.66 648.40 NM NM <td>May 17, 2022</td> <td>681.75</td> <td>654.56</td> <td>655.69</td> <td>652.47</td> <td>653.60</td> <td>648.16</td> <td>657.78</td> <td>650.77</td> <td>663.45</td> <td><660</td> <td>649.70</td> <td>648.06</td> <td>647.45</td> <td>644.67</td> <td>650.07</td> <td>644.22</td> <td>645.13</td> <td>647.57</td> <td>646.08</td> <td>667.07</td> <td>667.19</td> <td>NM</td>	May 17, 2022	681.75	654.56	655.69	652.47	653.60	648.16	657.78	650.77	663.45	<660	649.70	648.06	647.45	644.67	650.07	644.22	645.13	647.57	646.08	667.07	667.19	NM
June 2, 2022 681.69 654.22 655.68 651.53 652.37 650.38 656.18 649.53 661.42 <660 648.33 646.68 646.38 644.61 645.23 643.36 644.93 646.43 645.48 666.15 666.21 NM June 9, 2022 681.80 654.24 655.70 651.44 654.18 650.89 656.34 649.80 661.25 <660	May 20, 2022	NM	654.63	655.66	NM	653.50	648.68	NM	NM	663.49	<660	NM	NM	NM	NM	NM	NM	NM	NM	NM	667.44	667.46	NM
June 9, 2022 681.80 654.24 655.70 651.44 654.18 650.89 656.34 649.80 661.25 <660 648.90 647.05 647.32 648.23 646.20 644.14 644.61 647.78 648.65 665.82 665.91 NM June 10, 2022 NM N	May 23, 2022		NM		NM	652.66	648.40		NM	NM	<660	NM		NM	NM		NM	NM		NM	NM		NM
June 10, 2022 NM			654.22		_												643.36						NM
June 21, 2022 681.60 654.29 655.69 651.35 652.89 651.48 656.25 650.52 660.87 <660 649.54 648.34 646.29 647.63 644.88 645.60 647.87 647.17 665.61 665.68 NM June 27, 2022 681.60 654.06 655.68 651.14 652.16 651.55 656.15 649.70 661.41 <660		681.80	654.24	655.70	651.44			656.34	649.80	661.25	<660	648.90	647.05	647.32	648.23	646.20	644.14	644.61	647.78	648.65	665.82	665.91	NM
June 27, 2022 681.60 654.06 655.68 651.14 652.16 651.55 656.15 649.70 661.41 <660 648.61 647.13 646.34 643.87 644.85 643.64 645.37 646.42 644.80 665.16 665.27 NM July 5, 2022 681.47 653.92 655.68 650.70 651.03 651.73 655.33 648.51 660.86 <60																							NM
July 5, 2022 681.47 653.92 655.68 650.70 651.03 651.73 655.33 648.51 660.86 <660 647.34 645.41 641.14 641.58 642.91 644.16 644.30 642.44 665.14 665.24 NM			654.29	_			651.48			660.87	<660	649.54		648.34	646.29		644.88	645.60	647.87	647.17	665.61		NM
															_								
Bottom of Well Elevation (ft) 669.63 648.10 655.3 643.57 630.54 644.5 632.41 602.12 646.87 660.0 629.56 630.39 627.44 632.76 602.38 636.24 605.86 NS NS 651.5 659.8	July 5, 2022	681.47	653.92	655.68	650.70	651.03	651.73	655.33	648.51	660.86	<660	647.34	645.41	644.14	641.58	642.91	644.16	644.30	644.50	642.44	665.14	665.24	NM
Bottom of Well Elevation (ft) 669.63 648.10 655.3 643.57 630.54 644.5 632.41 602.12 646.87 660.0 629.56 630.39 627.44 632.76 602.38 636.24 605.86 NS NS 651.5 659.8																							
	Bottom of Well Elevation (ft)	669.63	648.10	655.3	643.57	630.54	644.5	632.41	602.12	646.87	660.0	629.56	630.39	627.44	632.76	602.38	636.24	605.86	NS	NS	651.5	659.8	

 Notes:
 Created by: NDK
 Date: 1/15/20218

 NM = not measured
 Last rev. by: LMH
 Date: 7/5/2022

 NI = not installed
 Checked by: REO
 Date: 7/5/2022

 ND = Not surveyed
 Proj Mgr QA/QC: TK
 Date: 7/15/2022

Table 2A. CCR Rule Ash Pond Groundwater Samples Summary Ottumwa Generating Station / SCS Engineers Project #25220083.00

Sample Dates						Downgrad	ient Wells						Background Well
	MW-302	MW-303	MW-304	MW-305	MW-305A	MW-306	MW-310	MW-310A	MW-311	MW-311A	MW-312	MW-313	MW-301
4/26/2016	В	В	В	В	NI	В	NI	NI	NI	NI	NI	NI	В
6/23/2016	В	В	В	В	NI	В	NI	NI	NI	NI	NI	NI	В
8/10-11/2016	В	В	В	В	NI	В	NI	NI	NI	NI	NI	NI	В
10/26-27/2016	В	В	В	В	NI	В	NI	NI	NI	NI	NI	NI	В
1/18/2017	В	В	В	В	NI	В	NI	NI	NI	NI	NI	NI	В
4/19/2017	В	В	В	В	NI	В	NI	NI	NI	NI	NI	NI	В
6/20-21/2017	В	В	В	В	NI	В	NI	NI	NI	NI	NI	NI	В
8/22-23/2017	В	В	В	В	NI	В	NI	NI	NI	NI	NI	NI	В
11/8/2017	D	D	D	D	NI	D	NI	NI	NI	NI	NI	NI	D
4/18/2018	Α	Α	Α	Α	NI	Α	NI	NI	NI	NI	NI	NI	Α
8/14-15/2018	Α	Α	Α	Α	NI	Α	NI	NI	NI	NI	NI	NI	Α
8/29/2018	A-R	A-R	A-R		NI		NI	NI	NI	NI	NI	NI	A-R
10/16/2018	Α	Α	Α	Α	NI	Α	NI	NI	NI	NI	NI	NI	Α
1/8/2019	A-R	A-R	A-R	A-R	NI	A-R	NI	NI	NI	NI	NI	NI	A-R
4/8/2019	Α	Α	Α	Α	NI	Α	NI	NI	NI	NI	Z	NI	Α
10/24/2019	Α	Α	Α	Α	NI	Α	Α	NI	Α	NI	Z	NI	Α
2/5/2020					NI	-	Α	NI	Α	NI	Z	NI	Α
3/13/2020				A-R	Α		A-R	Α	A-R	Α	Z	NI	Α
4/14/2020	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Z	NI	Α
6/30/2020						-				A-R	Z	NI	
10/8/2020	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Z	NI	Α
2/23/2021						Add.	Add.			Add.	NI	NI	
4/13-16/2021	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	NI	NI	Α
7/6-7/2021						Add.	Add.			Add.	NI	NI	
10/6-8/2021	Α	Α	Α	Α	Α	Α	Α	Α		Α	NI	NI	Α
1/12/2022											Add.	Add.	
2/14/2022				Add.		Add.					Add.	Add.	
4/11-12/2022	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
Total Samples	21	21	21	22	6	23	10	6	7	9	3	3	23

Abbreviations:

B = Background Sample Event D = Detection Monitoring Sampling Event A = Assessment Monitoring Sampling Event A-R = Assessment Monitoring Resampling Event

-- = Not Applicable NI - Not Installed

Created by: NDK Date: 1/8/2018 Last revision by: NDK Date: 7/14/2022 Checked by: JR Date: 7/14/2022

 $\label{thm:linear_lin$

Add. = Additional sampling event for selected parameters

Table 2B. CCR Rule ZLDP Groundwater Samples Summary
Ottumwa Generating Station / SCS Engineers Project #25220083.00

Sample Dates	Dov	wngradient W	/ells	Background Well
	MW-307	MW-308	MW-309	MW-301
4/26/2016	NI	NI	NI	В
6/23/2016	NI	NI	NI	В
8/9/2016	NI	NI	NI	В
10/26/2016	NI	NI	NI	В
1/18-19/2017	В	В	В	В
4/19-20/2017	В	В	В	В
6/20-21/2017	В	В	В	В
8/21-23/2017	В	В	В	В
11/8/2017	В	В	В	D
4/16-18/2018	В	В	В	Α
5/30/2018	B-R	B-R	B-R	
6/28/2018	В	В	В	
7/18/2018	B-R	B-R	B-R	
10/16/2018	В	В	В	Α
4/8/2019	D	D	D	D
10/23-24/2019	D	D	D	D
12/11/2019	Α	Α	Α	Α
2/5/2020	Α	Α	Α	Α
4/13-14/2020	Α	Α	Α	Α
10/7-8/2020	Α	Α	Α	Α
2/23/2021	A-R			
4/14/2021	Α	Α	Α	Α
7/6/2021	A-R			
10/7/2021	Α	Α	Α	Α
2/14/2022	Add.			
4/11-14/2022	Α	Α	Α	Α
Total Samples	22	19	19	24

Abbreviations:

D = Detection Monitoring Sampling Event A= Assessment Monitoring Event

-- = Not Applicable

B = Background Sampling Event B-R = Background Resampling event

NI - Not Installed

Add. = Additional Assessment monitoring sampling event

A-R = Assessment Monitoring Resampling Event

Created by: JAO Date: 7/8/2022

 Last revision
 Date: 7/14/2022

 Checked by: JR
 Date: 7/14/2022

I:\25220083.00\Deliverables\ACM Addendum No 2\Tables\[2B_GW_Samples_Summary_Table_OGS_ZLDP.xlsx]GW Summary

									Backgr	ound Well										Complic	nce Well				
									MV	V-301										MW	-302				
Parameter Name	UPL Method	UPL	GPS	11/8/2017	4/18/2018	8/14/2018, 8/29/2018	10/16/2018, 1/8/2019	4/8/2019	10/24/2019	2/5/2020	3/12/2020	4/14/2020	10/8/2020	4/14/2021	10/7/2021	11/8/2017	4/18/2018	8/14/2018, 8/29/2018	10/16/2018, 1/8/2019 ^^	4/8/2019	10/24/2019	4/14/2020	10/8/2020	4/13/2021	10/7/2021
Appendix III										•	•	•					•				•				
Boron, ug/L	Р	820		488	480	735	410	380	680	540		700	650 F	1 690	800	1,320	1,200	1,240	1,100	1,340	1,200	1,200	1,300	1,300	1,200
Calcium, mg/L	Р	78.7		65.2	63.0	72.5	47.2	43	78	68		84	94	96	100	183	177	185	146	199	180	180	180	180	170
Chloride, mg/L	Р	86.8		59.8	63.4	63.1	33.9	50	110	120		140	170	150	180	254	246	259	214	240	220	220	230	190	200
Fluoride, mg/L	Р	0.484		0.27	0.22	0.27	0.3	0.44 J	<0.23			<0.23	<0.23	<0.28	<0.28	0.20 J	0.26	0.26	0.24	<0.23	<0.23	<0.23	<0.23 ^	0.33 J	<0.28
Field pH, Std. Units	Р	6.87		6.41	6.41	6.26	6.27	6.61	6.33	6.39	6.48	6.58	6.22	6.26	6.26	6.55	6.47	6.76	6.37	6.61	6.55	6.7	7.00	6.44	6.49
Sulfate, mg/L	Р	199		178	186	181	164	81	130	130		140	140	140	180	786	899	847	785	840	810	790	840	360	850
Total Dissolved Solids,	′ P	628		448	514	532	392	340	510	570		550	660	620	670	1,620	1,690	1,840	1,400	1,600	1,600	1,500	1,700	1,500	1,300
mg/L			CDC													,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,			,	,	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Appendix IV	D*	UPL	GPS		10.007	0.00	10.070	10.50	10.50		1	10.50	-0.51	1 .1 1	-1.1		10.007	-0.15	0.07	10.50	10.50	-0.50	10.51	-1.1	1 .1 1
Antimony, ug/L	P*	0.22	6 10		<0.026	0.20 J 0.29 J	<0.078 0.16 J	<0.53 <0.75	<0.53 <0.75	<0.88		<0.58 <0.88	<0.51	<1.1	<1.1 <0.75		<0.026 0.16 J	<0.15 0.30 J	0.26 J,B	<0.53	<0.53 <0.75	<0.58	<0.51	<1.1 <0.75	<1.1
Arsenic, ug/L Barium, ug/L	P**	68.8	2,000		31.6	44.5	28.1	25	<0.75 56	<0.88 43		<0.88 54	<0.88 58	<0.75 52	<0.75 61		17.7	18.3	28.9	<0.75 19	<0.75 21	<0.88 23	<0.88 18	22	<0.75 18
Beryllium, ug/L	DQ	DQ	4		<0.012	0.14 J	<0.089	<0.27	<0.27	43		<0.27		<0.27	<0.27		<0.012	<0.12	0.22 J	<0.27	<0.27	<0.27		<0.27	<0.27
Cadmium, ua/L	NP*	0.12	5		0.012 0.023 J	0.14 J	<0.033	<0.27	0.040	<0.039		<0.27	0.0075 J	<0.27	0.057 J		0.22 J	0.12 0.21 J	0.22	0.21 J	0.20	0.23	0.20	0.26	0.23
Chromium, ug/L	P	1.07	100		<0.054	0.16 J	0.11 J.B	<0.98	<0.98	<1.1		<1.1	<1.1	<1.1	<1.1		0.46 J	0.48 J	1.6	<0.98	<0.98	1.4 J	<1.1	3.0 J	1.3 J
Cobalt, ug/L	NP	4.1	6		0.46 J	1.4	0.36 J.B	0.44 J	0.60	1.1	0.43 J	0.52	0.41 J	0.29 J	0.48 J		0.90 J	1.50	4.0	1.2	2.7	5.3	1.5	5.5	2.2
Fluoride, ma/L	P	0.48	4	-	0.22	0.27	0.3	0.44 J	<0.23			<0.23	<0.23	<0.28	<0.28		0.26	0.26	0.24	<0.23	< 0.23	<0.23	<0.23 ^	0.33 J	<0.28
Lead, ug/L	NP*	0.10	15		0.041 J	0.18 J	<0.13	<0.27	<0.27	<0.27		<0.27	<0.11	<0.21	<0.21		0.098 J	0.12 J	3.9	<0.27	0.29 J	1.0	<0.11	0.59	0.22 J
Lithium, ug/L	Р	34.2	40		19.1	26.5	19.4	15	24	17	21	24	23	23	26		7.5 J	6.9 J	8.6 J	10	10	11	9.6 J	10	11
Mercury, ug/L	DQ	DQ	2		<0.090	< 0.083	<0.090	<0.10	<0.10			<0.10	1	<0.15	<0.15		0.096 J	<0.083	<0.090	<0.10	<0.10	<0.10		<0.15	<0.15
Molybdenum, ug/L	Р	1.74	100		0.67 J	1.3	0.72 J	<1.1	1.1			1.2 J	<1.1	<1.3	<1.3		0.59 J	0.54 J	<0.57	<1.1	<1.1	<1.1	<1.1	<1.3	1.7 J
Selenium, ug/L	Р	8.55	50		4.3	6.3	3.4	3.1 J	6.2			6.8	7.7	6.5	7.5		<0.086	<0.16	0.84 J,B	<1.0	<1.0	<1.0	<1.0	<0.96	1.2 J
Thallium, ug/L	NP*	0.14	2	1	< 0.036	0.16 J	<0.099	<0.27	<0.27			<0.26	<0.26	<0.26	<0.26		< 0.036	<0.14	0.16 J	<0.27	<0.27	<0.26	<0.26	<0.26	0.56 J
Radium 226/228	Р	2.15	5		0.513	1.19	1.7	0.0956	0.956	0.228		0.315	0.407	0.598	1.04		0.746	1.12	1.7	0.116	0.79	1.26	0.447	0.901	1.45
Combined, pCI/L Additonal Parameters	s - Selectio	on of Rem	edv			<u> </u>				<u> </u>	l	1									<u> </u>				
Aluminum, ug/L	T GEIGE	on or nem	-u,																						
Cobalt - dissolved,																									
ug/L											0.32 J	0.44 J							-			0.81			
Lithium - dissolved,											22														
ug/L Iron, dissolved, ug/L											<50	<50	<50	<36	<36							<50	<50	<36	<36
Iron, ug/L											<50	50 J	<50	49 J	<36							500	100	350	65 J
Magnesium				-	1					_		33,000	38.000	34,000	36,000			_				50,000	57,000	50,000	46,000
	_											33,000	30,000	34,000	36,000		-					30,000	37,000	30,000	46,000
Manganese, dissolved, ug/L	UPL or G	PS not ap	plicable								17	16	13	10	15				-			110	130	110	110
Manganese, ug/L				1							16	19	14	14	18							200	140	200	120
Potassium, ug/L						-						1,500	1,500	1,200	1,300	-			-			1,500	1,900	1,500	1,400
Sodium, ug/L												77,000	87,000	78,000	88,000							250,000	280,000	240,000	220,000
Total Alkalinity, mg/L												150	160	170	210							61	72	72	120
Cabonate Alkalinity,												<1.9	<3.8	<4.6	<4.6							<1.9	<1.9	<3.2	<4.6
mg/L Bicarbonate																									
Alkalinity, mg/L												150	160	170	210				-		-	61	72	72	120

Blue highlighted cell indicates the compliance well result exceeds the UPL (background) and the LOQ. Yellow highlighted cell indicates the compliance well result exceeds the GPS.

													Compliano	ce Wells									
								MW-	303									MW	-304				-
Parameter Name	UPL Method	UPL	GPS	11/8/2017	4/18/2018	8/14/2018, 8/29/2018 ^	10/16/2018, 1/8/2019 ^^	4/8/2019	10/24/2019	4/14/2020	10/8/2020	4/13/2021	10/7/2021	11/8/2017	4/18/2018	8/14/2018, 8/29/2018 ^	10/16/2018, 1/8/2019 ^^	4/8/2019	10/23/2019	4/13/2020	10/8/2020	4/14/2021	10/8/2021
Appendix III																					-		
Boron, ug/L	Р	820		1,070	987	1,010	549	290	440	420	1,100	420	860	1,040	991	1,000	930	1,110	970	1,000	1,000	990	990
Calcium, mg/L	Р	78.7		234	212	213	195	172	170	170	210	160	190	136	131	138	123	130	120	130	120	120	120
Chloride, mg/L	Р	86.8		185	198	64.8	57	22	35	47	210	29	140	417	400	375	410	320	280	250	250	240	260
Fluoride, mg/L	Р	0.484		0.19 J	0.22	0.31	0.24	<0.23	<0.23	<0.23	0.26 J^	<0.28	<0.28	0.96	0.92	1.00	1.0	1.3	0.74	1.1	1.1	1.1	<0.28
Field pH, Std. Units	P	6.87		6.60	6.63	6.83	6.66	7.00	6.83	6.98	8.28	6.67	6.7	7.00	6.9	7.34	6.86	7.17	7.05	7.12	7.88	6.94	6.97
Sulfate, mg/L	Р	199		348	328	164	389	260	180	180	190	140	170	194	198	185	184	180	190	220	230	200	230
Total Dissolved Solids, mg/L	Р	628		1,290	1,300	832	1,150	890	810	810	1,100	720	720	1,270	1,300	3,680	1,180	1,100	1,100	1,000	1,200	1,000	760
Appendix IV		UPL	GPS																				
Antimony, ug/L	P*	0.22	6		0.098 J	0.16 J	0.2 J,B	<0.53	<0.53	<0.58	<0.51	<1.1	<1.1		<0.026	0.19 J	<0.078	<0.53	<0.53	<0.58	<0.51	<1.1	<1.1
Arsenic, ug/L	P*	0.53	10		0.43 J	0.60 J	0.55 J	<0.75	<0.75	<0.88	<0.88	<0.75	<0.75		0.68 J	1.3	0.96 J	<0.75	0.83 J	0.96 J	<0.88	<0.75	0.88 J
Barium, ug/L	P	68.8	2,000		69.5	77.3	95.2	54	77	64	94	63	80		88.5	87.4	91	80	80	80	74	80	79
Beryllium, ug/L	DQ NB*	DQ	4		0.017 J	<0.12	<0.089	<0.27	<0.27	<0.27		<0.27	<0.27	-	0.026 J	0.21 J	<0.089	<0.27	<0.27	<0.27		<0.27	<0.27
Cadmium, ug/L	NP*	0.12	5		0.44 J	0.36 J	0.24 J	0.092 J	0.21	0.18	0.46	0.12	0.28		<0.018	0.17 J	0.07 J	<0.077	<0.039	<0.039	<0.049	<0.051	<0.051
Chromium, ug/L Cobalt, ua/L	NP	1.07 4.1	100		0.12 J 2.1	0.19 J 2.2	0.15 J,B	<0.098 0.42 J	<0.98	<1.1 0.87	<1.1	<1.1 0.43 J	<1.1 4.0		2.0 0.39 J	5.9 0.92 J	1.4 0.45 J.B	1.6 J 0.40 J	2 J 0.5	3.5 J 0.57	<1.1 0.41 J	<1.1 0.43 J	<1.1 0.42 J
Fluoride, ma/L	P NP	0.48	4		0.22	0.31	0.24	<0.42 J	1.2	<0.23	0.26 J^	<0.28	<0.28		0.39	1.00	0.45 J,B	1.3	0.74	1.1	1.1	0.43 J	<0.28
Lead, ug/L	NP*	0.40	15		0.22 0.069 J	0.13 J	<0.13	<0.27	<0.27	<0.27	<0.11	<0.21	<0.20		0.72 0.37 J	0.81 J	0.66 J	<0.27	0.27 J	0.5	<0.11	<0.21	<0.20
Lithium, ua/L	P P	34.2	40		<4.6	6.9 J	<4.6	<2.7	<2.7	4.7 J	5.6 J	4.1 J	5.8 J		<4.6	<4.6	<4.6	3.3 J	2.8 J	4.8 J	3.1 J	3.3 J	4.0 J
Mercury, ug/L	DQ	DQ	2		<0.090	<0.083	<0.090	<0.10	<0.10	<0.10		<0.15	<0.15		<0.090	<0.083	<0.090	<0.10	<0.10	<0.10		<0.15	<0.15
Molybdenum, ug/L	Р	1.74	100		0.61 J	0.98 J	5.5	7.5	5.2	3.6	<1.1	2.9	1.4 J		2.0	2.4	1.9	1.5 J	2.3	2.0	1.5 J	1.7 J	2.0
Selenium, ug/L	Р	8.55	50		0.23 J	0.35 J	0.37 J,B	2.1 J	<1.0	5.0	<1.0	5.1	<0.96		<0.086	0.50 J	0.26 J,B	<1.0	<1.0	<1.0	<1.0	<0.96	<0.96
Thallium, ug/L	NP*	0.14	2		<0.036	<0.14	<0.099	<0.27	<0.27	<0.26	<0.26	<0.26	<0.26		<0.036	0.15 J	<0.099	<0.27	<0.27	<0.26	<0.26	<0.26	<0.26
Radium 226/228 Combined, pCI/L	Р	2.15	5		0.529	1.82	1.68	0.391	0.336	0.229	0.654	0.510	0.916		2.08	3.74	1.25	2.42	3.03	2.46	2.41	2.49	3.49
Additonal Parameters	s - Selectio	n of Reme	edy		I.	l .						I.	ı		I								J
Aluminum, ug/L						_																	
Cobalt - dissolved, ug/L										0.37 J						-				0.37 J			
Lithium - dissolved,																							
lron, dissolved, ug/L										<50	<50	<36	100							4,600	4,200	4.500	3,900
Iron, ug/L										280	310	44 J	120							5,200	4,200	4,500	3,700
Magnesium										23.000	31,000	22,000	26,000							43,000	40,000	40,000	36,000
Manganese,	UPL or G	PS not app	olicable							220	1,600	340	1,800 ^2							3,700	3,800	3,800	3,400 ^2
dissolved, ug/L										260	1,600	330	1.900							3,700	3,800	3,600	3.000
Manganese, ug/L Potassium, ug/L										960	1,100	800	800							7,700	7,800	8,200	6,800
Sodium, ug/L										100,000	150,000	89,000	94,000							210.000	210,000	210,000	190,000
Total Alkalinity, mg/L										440	470	440	490							370	380	360	470
Cabonate Alkalinity,										<1.9	<3.8	<4.6	<4.6			_				<1.9	<3.8	<4.6	<4.6
mg/L Bicarbonate										440	470	440	490			_		-		370	380	360	470
Alkalinity, mg/L											., 0									0.0		- 555	

Blue highlighted cell indicates the compliance well result exceeds the UPL (background) and the LOQ.
Yellow highlighted cell indicates the compliance well result exceeds the GPS.
Yellow highlighted cell with bold text indicates the compliance well result exceeds the GPS and the result was determined to be statistically significant⁽¹⁾.
Grayscale indicates Additional Parameters sampled for selection of remedy and evaluation of MNA.

									Complic	ınce Well								Deline	ation Well		
									MW	-305								MW	-305A		
Parameter Name	UPL Method	UPL	GPS	11/8/2017	4/18/2018	8/15/2018	10/16/2018, 1/8/2019 ^^	4/8/2019	10/23/2019	3/13/2020	4/13/2020	10/8/2020	4/16/2021	10/6/2021	2/14/2022	3/13/2020	4/14/2020	10/8/2020	4/15/2021	10/8/2021	4/12/2022
Appendix III																					
Boron, ug/L	Р	820		925	886	911	835	1,000	880		920	900	860	880		250	280	180	190	200	210
Calcium, mg/L	Р	78.7		99.5	97.6	102.0	96.2	110	100		100	110	110	110	-	100	130	150	150	150	180
Chloride, mg/L	Р	86.8		282	289	265	281	250	280		270	290	240	230		40	89	120	140	130	160
Fluoride, mg/L	Р	0.484		0.40	0.40	0.44	0.40	0.75	<0.23		0.35 J	0.38 J^	0.37 J	<0.28		0.77	0.73	0.73	0.56	<0.28	<0.22
Field pH, Std. Units	Р	6.87		7.01	6.9	7.21	6.86	7.06	6.91	7.02	7.0	7.44	6.92	6.94	7.2	8.09	7.63	7.46	7.05	6.90	7.19
Sulfate, mg/L	Р	199		138	147	139	129	110	76		63	93	120	150		40	93	130	150	140	160
Total Dissolved Solids, mg/L	Р	628		1,040	1,070	1,060	1,070	1,000	1,000		960	1,100	900	680	-	400	570	660	780	730	700
Appendix IV		UPL	GPS																		
Antimony, ug/L	P*	0.22	6		0.089 J	<0.15	0.096 J,B	< 0.53	< 0.53		<0.58	<0.51	<1.1	<1.1	1	1.3	0.88 J	<0.51	<1.1	<1.1	<0.69
Arsenic, ug/L	P*	0.53	10	-	0.51 J	0.72 J	0.66 J	<0.75	<0.75		<0.88	<0.88	<0.75	0.75 J	ł	<0.88	<0.88	<0.88	<0.75	<0.75	<0.75
Barium, ug/L	Р	68.8	2,000		116	118	125	120	110		110	120	130	120		70	80	75	80	84	91
Beryllium, ug/L	DQ	DQ	4		<0.012	<0.12	<0.089	<0.27	<0.27		<0.27		<0.27	<0.27	-	<0.27	<0.27		<0.27	<0.27	<0.27
Cadmium, ug/L	NP*	0.12	5		0.054 J	0.086 J	0.044 J	<0.077	0.087 J		0.14	0.097 J	0.12	<0.051		<0.039	<0.039	<0.049	<0.051	<0.051	<0.055
Chromium, ug/L	Р	1.07	100		0.26 J	0.41 J	0.30 J,B	<0.98	<0.98		<1.1	<1.1	<1.1	<1.1		<1.1	<1.1	<1.1	<1.1	<1.1	<1.1
Cobalt, ug/L	NP	4.1	6		14.5	15.6	17.2	17	17	18	16	17	18	18	20	2.4	2.7	1.5	0.50	0.94	1.7
Fluoride, mg/L	P	0.48	4		0.40	0.44	0.40	0.75	<0.23		0.35 J	0.38 J^	0.37 J	<0.28		0.77	0.73	0.73	0.56	<0.28	<0.22
Lead, ug/L	NP*	0.10	15		0.12 J	0.31 J	<0.13	<0.27	<0.27	-	0.27 J	<0.11	<0.21	0.29 J	-	0.68	<0.27	<0.11	<0.21	<0.21	<0.24
Lithium, ug/L	P	34.2	40		<4.6	<4.6	<4.6	<2.7	<2.7	2.3 J	3.2 J	<2.5	2.6 J	3.1 J		14	16	13	17	17	17
Mercury, ug/L Molvbdenum, ua/L	DQ P	DQ 1.74	100		<0.090 7.1	<0.090	<0.090 7.3	<0.10 7.2	<0.10		<0.10	7.9	<0.15 8.2	<0.15 8.1		<0.10 9.0	<0.10	6.4	<0.15 5.5	<0.15 4.2	<0.11 4.5
Selenium, ug/L	P	8.55	50		0.12 J	0.36 J	0.33 J.B	<1.0	<1.0		<1.0	<1.0	<0.96	<0.96		2.3 J	1.7 J	<1.0	<0.96	<0.96	<0.96
Thallium, ua/L	NP*	0.14	2		0.12 J	0.38 J	0.33 J	0.33 J	0.38 J		0.35 J	0.35 J	0.36 J	0.37 J		<0.26	<0.26	<0.26	<0.76	<0.76	<0.76
Radium 226/228	P	2.15	5		0.676	1.33	1.32	0.685	0.46		0.909	0.483	0.327	1.66		1.97	1.26	2.05	2.67	2.96	3.44
Combined, pCI/L Additonal Parameters	- Selectio		edv																		
Aluminum, ug/L	- Colocollo	or Remi																			
Cobalt - dissolved,										16	16		20	17		2.1	2.8				
ug/L Lithium - dissolved,											10	17	20	.,			2.0				
ug/L										<2.3						15					
Iron, dissolved, ug/L										51 J	66 J	63 J	85 J	150	-	<50	<50	<50	<36	<36	<36
Iron, ug/L										390	330	200	170	75 J		720	64 J	64 J	<36	<36	<36
Magnesium Manganese,											47,000	48,000	47,000	44,000			28,000	31,000	29,000	26,000	32,000
dissolved, ug/L	UPL or G	PS not ap	plicable							3,100	3,400	3,600	3,800	3,300 ^2		150	240	160	87	120	120
Manganese, ug/L										3,200	3,300	3,600	3,500	3,200		180	260	150	78 3,600	100 3,400	140 4,200
Potassium, ug/L Sodium, ug/L											7,600 210,000	8,300 210,000	7,900 200,000	7,000 180,000			3,800 46,000	4,200 64.000	68,000	52,000	60,000
Total Alkalinity, mg/L											460	300	470	500			270	340	300	300	320
Cabonate Alkalinity,																					
mg/L											<1.9	<3.8	<4.6	<4.6			<1.9	<3.8	<4.2	<4.6	<4.6
Bicarbonate Alkalinity, mg/L											460	300	470	500			270	340	300	300	320

Blue highlighted cell indicates the compliance well result exceeds the UPL (background) and the LOQ. Yellow highlighted cell indicates the compliance well result exceeds the GPS.

															Complian	ce Wells											
										MW-306												MW-307					
Parameter Name	UPL Method	UPL	GPS	11/8/2017	4/18/2018	8/15/2018	10/16/2018, 1/8/2019 ^^	4/8/2019	10/23/2019	4/14/2020	10/8/2020	2/23/2021	4/13/2021	7/6/2021	10/8/2021	2/14/2022	4/8/2019	10/23/2019	12/11/2019	2/5/2020	4/14/2020	10/7/2020	2/23/2021	4/14/2021	7/6/2021	10/7/2021	2/14/2022
Appendix III									•			•							•	•							
Boron, ug/L	Р	820		881	919	915	862	1,100	980	1,000	1,100		1,000		730		240	200	190 J	200	240	260		200		230	
Calcium, mg/L	Р	78.7		73.1	74.1	78.9	80.0	95	77	73	80		74		130		240	230	230	210	240	240		250		240	
Chloride, mg/L	P	86.8		50.4	54.4	58.2	83.3	98	47	41	43		35		180		220	220	200	220	230	230		210		240	
Fluoride, mg/L Field pH, Std. Units	P P	0.484 6.87		0.11 J 6.49	0.11 J 6.42	0.13 J 6.74	<0.19	0.27 J 6.66	<0.23 6.74	<0.23 6.68	<0.23 ^ 6.54	6.34	<0.28 6.42	7.44	<0.28	7.07	0.28 J 6.76	<0.23	<0.23	6.67	<0.23 6.76	<0.23	6.50	<0.28 6.59	7.05	<0.28 6.71	7.03
Sulfate, ma/L	P	199		274	289	275	285	270	280	310	360	0.34	370	7. 44	460	7.07	100	95	92	100	99	100	6.30	92 F1	7.03	110	7.03
Total Dissolved Solids,																											
mg/L	P P	628		773	805	840	884	930	870	820	900		880		1,100		1,000	1,000	1,000	970	980	1,000 H		1,000		1,000	
Appendix IV		UPL	GPS																								
Antimony, ug/L	P*	0.22	6		0.094 J	<0.15	0.10 J,B	<0.53	<0.53	<0.58	<0.51		<1.1		<1.1				<0.53		<0.58			<1.1		<1.1	
Arsenic, ug/L	P*	0.53	10	-1	0.38 J	0.65 J	0.60 J	<0.75	0.78 J	<0.88	<0.88		<0.75		<0.75				<0.75	<0.88	<0.88	<0.88		<0.75	-	<0.75	
Barium, ug/L	P	68.8	2,000		48.2	51.6	56.0	58	51	48	49		49		71				140	130	140	140		160		140	
Beryllium, ug/L	DQ NP*	DQ 0.12	5		<0.012	<0.12	<0.089	<0.27	<0.27 0.89	<0.27 0.83	0.92		<0.27 0.95		<0.27				<0.27 <0.039	<0.039	<0.27 <0.039			<0.27 <0.051		<0.27 <0.051	
Cadmium, ug/L Chromium, ug/L	P P	1.07	100		0.88 0.37 J	0.76 0.70 J	0.46 J,B	<0.98	1.0 J	<1.1	<1.1		<1.1		<1.1				<0.039	<1.1	<1.1	<1.1		<1.1		<1.1	
Cobalt, ug/L	NP	4.1	6		4.8	5.5	6.4	6.9	6.2	5.5	5.9	5.6	5.6	5.8	11	8.8			11	13	20	18	64	46	60	48	24
Fluoride, mg/L	P	0.48	4		0.11 J	0.13 J	<0.19	0.27 J	<0.23	<0.23	<0.23 ^		<0.28		<0.28			<0.23	<0.23		<0.23	<0.23		<0.28		<0.28	
Lead, ug/L	NP*	0.10	15		0.040 J	0.20 J	<0.13	<0.27	0.34 J	0.37 J	<0.11		<0.21		<0.21				0.71	<0.27	0.31 J	<0.11		<0.21		<0.21	
Lithium, ug/L	Р	34.2	40		<4.6	<4.6	<4.6	<2.7	<2.7	<2.3	<2.5		<2.5		<2.5				12	9.1 J	13	11		14		14	
Mercury, ug/L	DQ	DQ	2	-	<0.090	<0.083	<0.090	<0.10	<0.10	<0.10			<0.15		<0.15				<0.10		<0.10			<0.15		<0.15	
Molybdenum, ug/L	Р	1.74	100		5.7	4.7	5.1	4.3	4.9	4.4	5.6		5.1		6.1				<1.1		<1.1	<1.1		<1.3		<1.3	
Selenium, ug/L	Р	8.55	50		<0.086	0.21 J	0.22 J,B	<1.0	<1.0	<1.0	<1.0		<0.96		<0.96				<1.0		<1.0	<1.0		<0.96		<0.96	
Thallium, ug/L	NP*	0.14	2		0.083 J	<0.14	0.12 J	<0.27	<0.27	<0.26	<0.26		<0.26		<0.26				<0.27		<0.26			<0.26		<0.26	
Radium 226/228 Combined, pCI/L	Р	2.15	5		0.305	0.985	1.34	0.155	0.624	0.0738	0.889		0.334		0.794				2.46	2.23	2.06	2.36		3.08		3.90	
Additonal Parameters	s - Selectio	n of Reme	dy								•	•		•													
Aluminum, ug/L																											
Cobalt - dissolved,										- ·	<i>5</i> 1				0.0						10	10		40		50	
ug/L				-				-		5.4	5.1		6.1		9.9						19	19		49	-	59	
Lithium - dissolved, ua/L																											
Iron, dissolved, ug/L										140	100		110		100						3.100	3,600		3.400		3.400	
Iron, ug/L										590	340		220		<360						3,800	3,500		3,700		3,900	
Magnesium										26,000	23,000		25,000		43,000						28.000	27,000		30,000		28.000	
Manganese,	LIDI as C	DC 10 0 1 0 10 10	م ا مام دا							.,	.,				-,						-,			,		-,	
dissolved, ug/L	UPL or G	PS not app	olicable					-		16,000	15,000		15,000		31,000						290	350		360		410	
Manganese, ug/L										16,000	16,000		15,000		30,000						310	290 F1		330		440	
Potassium, ug/L	-									3,700 160,000	3,800 170,000		3,500 170,000		3,700 J 170,000						1,900 97.000	1,900		2,000 98.000		2,000	
Sodium, ug/L				-	-										, , , , , , , , , , , , , , , , , , , ,						,					, , , , , , , , , , , , , , , , , , , ,	
Total Alkalinity, mg/L										280	160		270		270						520	480		490		550	
Cabonate Alkalinity, mg/L										<1.9	<3.8		<4.6		<4.6						<1.9	<3.8		<4.6		<4.6	
Bicarbonate										280	160		270		270						520	480		490		550	
Alkalinity, mg/L																											

30.8 17

Blue highlighted cell indicates the compliance well result exceeds the UPL (background) and the LOQ. Yellow highlighted cell indicates the compliance well result exceeds the GPS.

											Complic	ince wells											De	lineation We	ells			
							W	N-308							M۱	N-309								MW-310				
Parameter Name	UPL Method	UPL	GPS	4/8/2019	10/23/20219	12/11/20	2/5/2020	4/14/2020	10/7/2020	4/14/2021	10/21/2021	4/8/2019	10/23/20219	12/11/2019	2/5/2020	4/14/2020	10/7/2020	4/14/2021	10/21/2021	10/24/2019	2/5/2020	3/13/2020	4/13/2020	10/8/2020	2/23/2021	4/13/2021	7/6/2021	10/6/2021
Appendix III																		-										
Boron, ug/L	Р	820		190 J	220	160	J 220	210	270	220	200	1,500	1,300	1,100	1,300	1,400	1,200	1,400	1,300	720	620		550	800		360		520
Calcium, mg/L	Р	78.7		240	240	220	210	240	220	230	230	160	150	150	130	150	120	130	120	230	160		200	180		210		130
Chloride, mg/L	P	86.8		160	160	150	160	170	160	150	170	72	74	66	68	69	68	57	67	150	120		130	150		250		120
Fluoride, mg/L	P	0.484		<0.23	<0.23	<0.23		<0.23	<0.23	<0.28	<0.28	0.27	J <0.23	<0.23	7.00	0.36 J	<0.23	<0.28	<0.28	0.31 J	0.85		1.1	1.0		1.3		<0.28
Field pH, Std. Units Sulfate, ma/L	P P	6.87 199		6.90 300	6.78 300	6.55 280	6.78	6.90 290	7.24 290	6.70 270	6.83 290	7.18 410	6.98 400	6.67 370	7.09 370	7.21 390	7.57 380	7.00 360	7.18	7.15 610	7.08 530	6.89	7.0 590	7.07 570	7.11	7.07 720	8.23	7.20 470
Total Dissolved Solids,																												
mg/L	Р	628		1,200	1,100	1,100	1,100	1,000	1,000 H	1,100	1,000	1,100	1,100	980	990	1,000	930 H	940	950	260	1,200		1,300	1,200		1,600		930
Appendix IV	1	UPL	GPS		1	1		1	ı				1	1			ı	1	1		Ţ	ı			,			
Antimony, ug/L	P*	0.22	6			<0.53		<0.58		<1.1	<1.1			<0.53		<0.58		<1.1	<1.1	<0.53	<0.58		<0.58	0.61 J		<1.1	-	<1.1
Arsenic, ug/L Barium, ug/L	P*	0.53 68.8	2,000			<0.75	<0.88	<0.88	<0.88	<0.75	<0.75			1.1 J 54	<0.88 46	0.88 J 50	<0.88 42	<0.75 52	<0.75 47	0.78 J	<0.88 53		<0.88 62	0.94 J 55		0.97 J 92		1.1 J 53
Beryllium, ug/L	DQ	DQ	4			<0.27		<0.27		<0.27	<0.27			<0.27	40	<0.27		<0.27	<0.27	<0.27	<0.27		<0.27			<0.27		<0.27
Cadmium, ua/L	NP*	0.12	5			<0.27	<0.039	<0.27		<0.27	<0.27			0.09 J	<0.039	<0.039		<0.27	<0.051	0.22	0.12		0.16	0.29		0.51		0.27
Chromium, ug/L	P	1.07	100			5.9	<1.1	<1.1	<1.1	<1.1	<1.1			1.7 J	<1.1	1.3 J	<1.1	<1.1	1.3 J	<0.98	<1.1		<1.1	<1.1		<1.1		<1.1
Cobalt, ug/L	NP	4.1	6			0.26	J 0.14 J	0.14 J	0.14 J	0.16 J	0.22 J			3.7	2.3	3.2	2.0	2.3	2.0	0.57	0.32 J	0.32 J	0.24 J	0.38 J		0.75		0.72
Fluoride, mg/L	Р	0.48	4		<0.23	< 0.23		<0.23	<0.23	<0.28	<0.28		<0.23	<0.23		0.36 J	<0.23	<0.28	<0.28	0.31 J	0.85		1.1	1.0	-	1.3		<0.28
Lead, ug/L	NP*	0.10	15			0.52	<0.27	<0.27	<0.11	<0.21	<0.21			2.8	0.63	1.6	<0.11	<0.21	<0.21	<0.27	<0.27		<0.27	<0.11		<0.21		<0.21
Lithium, ug/L	Р	34.2	40			16	12	17	14	16	16			8.2 J	6.3 J	9.6 J	6.9 J	8.9 J	7.5 J	35	42	46	48	42	37	58	52	52
Mercury, ug/L	DQ	DQ	2			<0.10		<0.10		<0.15	<0.15			<0.10		<0.10		<0.15	<0.15	<0.10	<0.10		<0.10			<0.15		<0.15
Molybdenum, ug/L	P	1.74	100			<1.1		<1.1	<1.1	<1.3	<1.3			<1.1		<1.1	<1.1	<1.3	<1.3	26	29		31	39		83		70
Selenium, ug/L	P ND*	8.55	50			<1.0		<1.0	<1.0	<0.96	<0.96			<1.0		<1.0	<1.0	<0.96	<0.96	5.0	3.3 J		4.5 J	2.4 J		2.4 J		2.3 J
Thallium, ug/L Radium 226/228	NP*	0.14	2			<0.27		<0.26		<0.26	<0.26			<0.27		<0.26		<0.26	<0.26	<0.27	<0.26		<0.26	<0.26		<0.26		<0.26
Combined, pCI/L	Р	2.15	5			2.73	2.13	1.69	2.67	2.87	3.22			1.77	1.02	0.957	1.77	1.05	1.60	0.411	0.0344		0.271	0.429		0.00		0.539
Additonal Parameters	s - Selectio	on of Reme	edy																									
Aluminum, ug/L			,					I	l					l								<u> </u>						
Cobalt - dissolved, ug/L								0.11 J			-				-	2.2						0.31 J	0.23 J					
Lithium - dissolved, ug/L											-											45		44	-	63		45
Iron, dissolved, ug/L			•					4,400	4,000	3,900	300					590	690	660	680			<50	<50	<50		<36		<36
Iron, ug/L			•					5,100	3,800	3,900	4,700					1,900	890	900	950			<50	<50	<50		<36		<36
Magnesium			•					25,000	23,000	26,000	24,000					19,000	18,000	19,000	18,000				86,000	76,000		100,000		55,000
Manganese, dissolved, ug/L	UPL or G	PS not ap	plicable					770	1,400	1,300	950					660	660	640	600			250	280	350		330		830 ^2
Manganese, ug/L			•					800	1,200	1,300	1,100					740	620	630	650			260	280	390		290		350
Potassium, ug/L								3,900	4,000	4,400	4,300					670	670	750	740				12,000	12,000		17,000		9,900
Sodium, ug/L								110,000	100,000	100,000	110,000					170,000	180,000	180,000	180,000				100,000	100,000		150,000		110,000
Total Alkalinity, mg/L								380	390	370	410					290	290	280	300				190	410		130		250
Cabonate Alkalinity, mg/L								<1.9	<3.8	<4.6	<4.6					<1.9	<1.9	<4.6	<4.6				<1.9	<3.8		<4.6		<4.6
Bicarbonate Alkalinity, ma/L					-			380	390	370	410					290	290	280	300				190	410		130		250
AKUIIIIIY, IIIQ/L																												

30.8 17

Blue highlighted cell indicates the compliance well result exceeds the UPL (background) and the LOQ. Yellow highlighted cell indicates the compliance well result exceeds the GPS.

			ĺ												Delineatio	n Wells											
						MW-310	4					MW-311				MW-311A								MV	V-312	MW	V-313
Parameter Name	UPL Method	UPL	GPS	3/13/2020	4/14/2020	10/8/2020	4/15/2021	10/8/2021	10/24/2019	2/5/2020	3/13/2020	4/13/2020	10/8/2020	4/14/2021	10/8/2021**	3/13/2020	4/13/2020	6/30/2020	10/8/2020	2/23/2021	4/16/2021	7/7/2021	10/8/2021	1/12/2022	2/15/2022	1/12/2022	2/15/2022
Appendix III													l .														
Boron, ua/L	Р	820		1,500	1,600	1.700	1.500	1,500	<110	<100		<100	<80	64 J		1,400	1,500		1,600		1,500		1,400	380	420	530	510
Calcium, mg/L	Р	78.7		82	87	94	82	80	170	130		170	160	160		44	48		51		42		40	180	180	190	200
Chloride, mg/L	Р	86.8		140	130	130	120	130	13	14		13	14	11		130	140		150		130		140	150	150	180	170
Fluoride, mg/L	P	0.484		1.7	1.8	2.0	1.9	0.28 J	<0.23	<0.23		<0.23	<0.23 ^	<0.28		3.4	4.1	3.7	4.4	3.9	4.0	3.8	2.0	<0.28	0.37 J	<0.28	<0.22
Field pH, Std. Units	P	6.87		7.73	7.85	7.48	7.47	7.65	6.95	6.72	7.11	6.86	6.93	6.66		7.85	8.4	7.64	8.33	7.55	7.76	8.19	8.12	7.18	7.24	7.00	7.01
Sulfate, mg/L Total Dissolved Solids,	Р	199		1,200	1,100	1,100	1,100	1,200	47	54		54	70	75		1200	1,200		1200		1,100		1,100	620	570	620	570
ma/L	′ P	628		2,300	2,300	2,200	2,300	1,800	530	520		570	640	590		2,300	2,400		2,400		2,200		2,000	1,200	930	1,300	1,100
Appendix IV	•	UPL	GPS			•						•			•					•					•		
Antimony, ug/L	P*	0.22	6	<0.58	<0.58	<0.51	<1.1	<1.1	< 0.53	<0.58		<0.58	<0.51	<1.1		<0.58	<0.58		<0.51		<1.1		<1.1	<1.1	<0.69	<1.1	<0.69
Arsenic, ug/L	P*	0.53	10	<0.88	<0.88	<0.88	<0.75	<0.75	<0.75	<0.88		<0.88	1.7 J	<0.75		<0.88	<0.88		<0.88		<0.75		<0.75	3.4	4.1	1.2 J	1.0 J
Barium, ug/L	Р	68.8	2,000	16	16	16	14	12	200	160		180	220	180		20	20		15		12		8.7	87	63	48	44
Beryllium, ug/L	DQ	DQ	4	<0.27	<0.27		<0.27	<0.27	<0.27	<0.27		<0.27		<0.27		<0.27	<0.27	-		-	<0.27		<0.27	<0.27	<0.27	<0.27	<0.27
Cadmium, ug/L	NP*	0.12	5	<0.039	<0.039	<0.049	<0.051	<0.051	0.04 J	<0.039		<0.039	0.12	<0.051		<0.039	<0.039		<0.049	-	<0.051		<0.051	0.053 J	<0.055	<0.051	<0.055
Chromium, ug/L Cobalt, ug/L	NP	1.07	100	0.63	<1.1 0.39 J	<1.1 0.43 J	<1.1 0.48 J	<1.1 0.45 J	<0.98 0.78	<1.1 0.11 J	<0.091	<1.1	<1.1 2.2	<0.091		<1.1 0.19 J	<1.1 0.13 J		<1.1 0.12 J		<1.1 0.13 J		<1.1	<1.1 4.9	<1.1	<1.1 5.9	<1.1 5.7
Fluoride, mg/L	P	0.48	4	1.7	1.8	2.0	1.9	0.43 J	<0.23	<0.23		<0.091	<0.23 ^	<0.091		3.4	4.1	3.7	4.4		4.0	3.8	2.0	<0.28	0.37 J	<0.28	<0.22
Lead, ug/L	NP*	0.10	15	<0.27	<0.27	<0.11	<0.21	<0.21	<0.27	<0.27		<0.27	1.8	<0.21		<0.27	<0.27		<0.11		<0.21		<0.21	<0.21	<0.24	<0.21	<0.24
Lithium, ug/L	Р	34.2	40	250	290	240	270	280	4.7 J	2.9 J	4.7 J	6.2 J	4.6 J	5.9 J		260	310		240		290		290	41	31	33	26
Mercury, ug/L	DQ	DQ	2	<0.10	<0.10		<0.15	<0.15	<0.10 F1	<0.10		<0.10		<0.15		<0.10	<0.10				<0.15		<0.15	<0.15	<0.11	<0.15	<0.11
Molybdenum, ug/L	Р	1.74	100	2.6	2.7	3.0	5.0	1.9 J	<1.1	<1.1		<1.1	<1.1	<1.3		1.2 J	2.8		3.1		<1.3		<1.3	2.7	1.6 J	6.1	5.3
Selenium, ug/L	Р	8.55	50	<1.0	<1.0	<1.0	<0.96	<0.96	<1.0	1.2 J		<1.0	<1.0	2.1 J		<1.0	<1.0		<1.0		<0.96		<0.96	<0.96	<0.96	<0.96	<0.96
Thallium, ug/L	NP*	0.14	2	<0.26	<0.26	<0.26	<0.26	<0.26	<0.27	<0.26		<0.26	<0.26	<0.26		<0.26	<0.26		<0.26		<0.26		<0.26	<0.26	<0.26	<0.26	<0.26
Radium 226/228 Combined, pCI/L	Р	2.15	5	3.43	3.90	4.46	4.44	5.41	0.411	0.108		0.17	0.738	0.194		1.47	2.31		3.1		3.85		4.44	1.25	0.888	1.29	1.25
Additonal Parameter	s - Selectio	n of Reme	edy																				ı				
Aluminum, ug/L	_				ı	T				T .	T	1			I		T	ı	1	1				<17		<17	
Cobalt - dissolved, ug/L				0.67	0.40 J						0.11 J	<0.091				0.36 J	0.12 J							3.4	5.6	5.9	5.2
Lithium - dissolved, ug/L				250		230	300	240			8.0 J					250			230		330		250		31		26
Iron, dissolved, ug/L				<50	220	<50	<36	38 J			<50	<50	<50	<36		<50	<50		<50		<36		<36		380		290
Iron, ug/L				99 J	230	280	<36	<140			<50	<50	630	<36		<50	<50		<50		<36		<140	180	440	240	380
Magnesium					41,000	45,000	37,000	36,000				40,000	40,000	36000			23,000		25,000 J		21,000		20,000	52,000	54,000	58,000	58,000
Manganese, dissolved, ua/L	UPL or G	PS not app	olicable	53	39	29	39	30			21	39	75	<4.4		20	22		5.8 J		6.2 J		5.5 J		1,100		3,200
Manganese, ug/L				51	38	31	34	26 J			20	41	180	<4.4		20	13		8.3		6.1 J		<18	1,300	1,300	3,600	3,700
Potassium, ug/L				-	9,900	11,000	9,200	8,900	-		-	620	810	650			9,000		10,000		8,300		7,700	4,300	4,300	5,700	5,900
Sodium, ug/L					630,000	620,000	600,000	570,000				5,000	5,100	5,200			710,000		700,000		720,000		670,000	120,000	130,000	110,000	120,000
Total Alkalinity, mg/L				-	320	260	340	370				460	290	450			360		400		370		380	220	230	230	250
Cabonate Alkalinity,					<1.9	<3.8	<4.6	<4.6				<1.9	<3.8	<4.6	_		<1.9		<3.8		<4.6	-	<4.6	<4.6	<4.6	<4.6	<4.6
Bicarbonate Alkalinity, mg/L					320	260	340	370		-		460	290	450			360		400		370	-	380	220	230	230	250
AIRUIIIIIY, IIIG/L																											

Blue highlighted cell indicates the compliance well result exceeds the UPL (background) and the LOQ. Yellow highlighted cell indicates the compliance well result exceeds the GPS.

Abbreviations:

--= Not Analyzed mg/L = milligrams per liter ug/L = micrograms per liter

J = Estimated concentration at or above the LOD and below the LOQ.

B = Analyte was detected in the associated Method Blank.

F1 = MS and/or MSD Recovery is outside acceptance limits.

H=Sample was prepared or analyzed beyond the specific holding time

LOD = Limit of Detection P = Parametric UPL with 1-of-2 retesting

LOQ = Limit of Quantitation DQ = Double Quantification Rule (not detected in background)

GPS = Groundwater Protection Standard NP = Nonparametric UPL (highest background value)

UPL = Upper Prediction Limit

^ = ICV, CCV, ICB, ISA, ISB, CRI, CRA, DLCK, OR MRL standard: Instrument related QC is outside acceptance limits

 2 = Calibration Blank (ICB and/or CCB) is outside acceptance limits.

* = UPL is below the LOQ for background sampling. For compliance wells, only results confirmed above the LOQ are evaluated as potential SSIs above background.

**= Sufficient water for sample collection was not present in MW-311 during the October 2021 sampling event.

Notes:

- 1. An individual result above the UPL or GPS does not constitute a statistically significant increase (SSI) above background or statistically significant level above the GPS. The cobalt GPS exceedances at MW-305 have been determined to be statistically significant. The cobalt GPS exceedance at MW-306 has been determined not to be statistically significant or the determination is ongoing. See the accompanying reporttext for additional information regarding determinations of statistical significance.
- 2. GPS is the United States Environmental Protection Agency (US EPA) Maximum Contamination Level (MCL), if established; otherwise, the values are from 40 CFR 257.95(h)(2)
- 3. Interwell UPLs calculated based on results from background well MW-301.

 Created by: NDK
 Date: 5/1/2018

 Last revision by: NDK
 Date: 7/11/2022

 Checked by: JR
 Date: 7/11/2022

 Proj Mgr QA/QC: TK
 Date: 7/15/2022

Table 4. Groundwater Analytical April 2022 Results Summary Ottumwa Generating Station Ash Pond / SCS Engineers Project #25220083.00

				Background Well		Complia	nce Wells		Delineation Well		Complia	ınce Well				Delineat	ion Wells		
				MW-301	MW-302	MW-303	MW-304	MW-305	MW-305A	MW-306	MW-307	MW-308	MW-309	MW-310	MW-310A	MW-311	MW-311A	MW-312	MW-313
Parameter Name	UPL Method	UPL	GPS	4/12/2022	4/12/2022	4/12/2022	4/12/2022	4/11/2022	4/12/2022	4/12/2022	4/14/2022	4/14/2022	4/14/2022	4/11/2022	4/12/2022	4/11/2022	4/14/2022	4/11/2022	4/11/2022
Appendix III					l											<u> </u>			
Boron, ua/L	Р	839		640	1,300	620	940	850	210	760	200	220	1400	640	1.500	79 J	1500	560	570
Calcium, mg/L	Р	103		92	170	190	130	120	180	110	250	230	130	190	99	150	54	200	200
Chloride, mg/L	Р	210		140	170	58	270	200	160	260	210	150	57	200	120	17	140	170	170
Fluoride, mg/L	Р	0.381		<0.22	<0.22	<0.22	1.7	<0.22	<0.22	<0.22	<0.28	<0.28	<0.28	<0.22	0.40 J	<0.22	2.4	<0.22	<0.22
Field pH, Std. Units	Р	6.74		6.37	6.43	6.71	6.95	6.90	7.19	6.66	6.59	6.7	7	6.86	7.43	6.74	7.53	7.07	6.94
Sulfate, mg/L	Р	208		160	750	200	260	150	160	70	92 F1	270	360	630	1,200	78	1,200	550	500
Total Dissolved Solids, mg/L	Р	697		610	1,100	630	1,700	950	700	710	1,000	1100	940	1,400	2,100	480	2,200	1,100	3,200
Appendix IV	•	UTL	GPS								•				•	•		•	
Antimony, ug/L	NP	1.10	6	<0.69	<0.69	<0.69	<0.69	<0.69	<0.69	< 0.69	<1.1	<1.1	<1.1	0.89 J	0.85 J	<0.69	<0.69	<0.69	<0.69
Arsenic, ug/L	NP	0.88	10	<0.75	<0.75	<0.75	0.76 J	<0.75	<0.75	<0.75	<0.75	<0.75	<0.75	1.0 J	<0.75	<0.75	<0.75	4.4	1.2 J
Barium, ug/L	P	71.0	2.000	40	17	64	78	120	91	94	160	140	52	75	14	170	10	50	44
Beryllium, ug/L	NP	0.270	4	<0.27	<0.27	<0.27	<0.27	<0.27	<0.27	<0.27	<0.27	<0.27	<0.27	<0.27	<0.27	<0.27	<0.27	<0.27	<0.27
Cadmium, ua/L	P	0.149	5	<0.055	0.21	0.15	<0.055	<0.055	<0.055	1.3	<0.051	<0.051	<0.051	0.23	<0.055	<0.055	<0.055	<0.055	<0.055
Chromium, ug/L	NP	1.10	100	<1.1	1.4 J	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1
Cobalt, ug/L	P	5.26	6	0.23 J	1.3	1.6	0.41 J	21	1.7	9.1	46	0.16 J	2.3	0.93	0.41 J	<0.19	0.32 J	9.1	5.7
Fluoride, mg/L	Р	0.417	4	<0.22	<0.22	<0.22	1.7	<0.22	<0.22	<0.22	<0.28	<0.28	<0.28	<0.22	0.40 J	<0.22	2.4	<0.22	<0.22
Lead, ug/L	NP	0.270	15	<0.24	<0.24	<0.24	<0.24	<0.24	<0.24	<0.24	<0.21	<0.21	<0.21	<0.24	<0.24	<0.24	<0.24	<0.24	<0.24
Lithium, ug/L	Р	31.8	40	19	9.1 J	4.0 J	3.4 J	<2.5	17	<2.5	14	16	8.9 J	54	260	6.3 J	280	40	28
Mercury, ug/L	DQ	DQ	2	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.15	<0.15	<0.15	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11
Molybdenum, ug/L	NP	1.3	100	<1.2	2.6	2.7	1.9 J	7.8	4.5	14	<1.3	<1.3	<1.3	47	4.4	<1.2	1.6 J	1.3 J	4.8
Selenium, ug/L	Р	9.01	50	6.0	2.4 J	8.3	1.3 J	1.1 J	<0.96	<0.96	<0.96	<0.96	<0.96	2.3 J	1.4 J	2.0 J	1.3 J	<0.96	<0.96
Thallium, ug/L	NP	0.500	2	<0.26	<0.26	0.26 J	<0.26	0.42 J	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26
Radium 226/228 Combined, pCI/L	Р	1.71	5	0.378	0.294	0.619	2.87	1.03	3.44	2.03	3.08	2.87	1.05	0.316	4.61	0.224	3.99	0.357	0.543
Additional Parameters Collec	led for Sele	ction of R	emedy																
Cobalt, dissolved, ug/L			-					17		7.6	49								
Lithium, dissolved, ug/L														52	260		310	37	26
Iron, dissolved, ug/L				<36	<36	<36	3,800	55 J	<36	<250	3,400	3,900	660	<36	<140	<36	<140	510	630
Iron, ug/L				<36	45 J	<36	4,800	76 J	<36	68 J	3,700	3,900	900	<36	56 J	<36	<36	350	920
Magnesium, ug/L				36,000	49,000	26,000	45,000	53,000	32,000	44,000	30,000	26,000	19,000	90,000	42,000	37,000	25,000	65,000	68,000
Manganese, dissolved, ug/L	LIDI or CI	DC not an	plicable	5.0 J	91	410	3,500	3,200	120	23,000	360	1,300	640	400	20 J	<3.6	<14	1,200	3,200
Manganese, ug/L	UPL OF G	PS not app	plicable	8.1 J	110	490	4,200	4,000	140	26,000	330	1,300	630	520	26	4.6 J	3.7 J	1,400	3,800
Potassium, ug/L				1,100	1,600	930	8,700	8,700	4,200	6,000	2,000	4,400	750	16,000	11,000	860	10,000	4,800	6,100
Sodium, ug/L				89,000	240,000	110,000	240,000	210,000	60,000	180,000	98,000	100,000	180,000	170,000	650,000	6,300	800,000	170,000	140,000
Bicarbonate Alkalinity, mg/L				190	100	520	380	520	320	470	490	370	280	260	360	440	370	240	300
Carbonate Alkalinity, mg/L				<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6	<4.6
Total Alkalinity, mg/L				190	100	520	380	520	320	470	490	370	280	260	360	440	370	240	300

^{4.4} Blue highlighted cell indicates the compliance or delineation well result exceeds the UPL (background) and the LOQ. 30.8 Yellow highlighted cell indicates the compliance or delineation well result exceeds the GPS.

Table 4. Groundwater Analytical April 2022 Results Summary Ottumwa Generating Station Ash Pond / SCS Engineers Project #25220083.00

UTL= Upper Tolerance Limits

Abbreviations:

UPL = Upper Prediction Limit
NA = Not Analyzed
GPS = Groundwater Protection Standard
MNA = Monitorized Natural Attenuation

LOD = Limit of Detection LOQ = Limit of Quantitation -- = Not Analyzed mg/L = milligrams per liter ug/L = micrograms per liter
DQ = Double Quantification Rule (not detected in background)
NP = Nonparametric UPL (highest background value)

P = Parametric UPL with 1-of-2 retesting

Lab Notes

J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

F1 = MS and/or MSD Recovery is outside acceptance limits.

Notes

- 1. An individual result above the UPL or GPS does not constitute an SSI above background or statistically significant level above the GPS. See the accompanying text for identification of statistically significant results.
- 2. GPS is the United States Environmental Protection Agency (USEPA) Maximum Contamination Level (MCLs), if established; otherwise, the values from 40 CFR 257.95(h)(2).
- 3. Interwell UPLs and UTLs calculated based on results from background well MW-301. UPLs and UTLs were upated in April 2022.
- 4. Compliance wells represent the groundwater monitoring network at the boundary of the CCR unit. The delineation wells were installed during the selection of remedy process to evaluate an extension of the downgradient groundwater monitoring network.

Created by: NDK	Date:	5/1/2018
Last revision by: NDK	Date:	7/11/2022
Checked by: JAO	Date:	7/11/2022
Sci./PM QA/QC: TK	Date:	7/15/2022

 $\label{thm:linear_lin$

Table 5. Groundwater Field Parameters - CCR Program - Assessment Monitoring Ottumwa Generating Station / SCS Project # 25220083.00 November 2017 - June 2022

Well	Sample Date	Groundwater Elevation (feet)	Field Temperature (deg C)	Field pH (Std. Units)	Oxygen, Dissolved (mg/L)	Field Specific Conductance (umhos/cm)	Field Oxidation Potential (mV)	Turbidity (NTU)
MW-301	11/8/2017	681.54	13.9	6.41	4.16	743	201	1.03
	4/18/2018	681.53	7.2	6.41	6.52	770	106	0.66
	8/14/2018	680.91	20.4	6.26	3.18	867	-56	0.52
	8/29/2018	681.09	20.6	6.31	4.71	781		0.63
	10/16/2018	682.50	16.6	6.27	4.12	599	120	2.91
	1/8/2019	682.22	7.9	5.68	5.68	310	118	0.77
	4/8/2019 10/24/2019	682.69 683.07	7.3 13.7	6.61 6.33	8.32 4.94	501 902	38 10	1.87 1.6
	2/5/2020	683.30	5.4	6.39	7.28	966	68	1.43
	3/12/2020	682.82	6.9	6.48	7. <u>20</u> 5.3	962	258.5	1.33
	4/14/2020	683.25	8.7	6.58	5.1	939	176.3	0.87
	10/8/2020	682.34	15.4	6.22	4.2	1,035	163.6	0.02
	4/14/2021	682.94	9.1	6.26	5.99	1,062	232.5	1.61
	10/7/2021	681.95	17.9	6.26	4.17	1,062	207.3	8.90
	4/12/2022	682.08	7.4	6.37	3.26	976	117.6	5.03
MW-302	11/8/2017	655.40	13.8	6.55	0.4	2,274	191.7	1.63
	4/18/2018	655.71	10.7	6.47	0.2	2,248	82.6	2.41
	8/14/2018	656.05	14.3	6.76	0.17	2,304	-336.6	4.01
	8/29/2018 10/16/2018	655.89	14.6 14.1	6.77	0.23	2,357	 114.2	1.42
	1/8/2019	656.91 656.03	12.2	6.37 6.58	0.26 6.4	1,912 1,473	70.2	88.24 4.39
	4/8/2019	657.23	12.2	6.61	0.86	2,159	68.3	4.37 26.9
	10/24/2019	660.14	12.9	6.55	0.35	2,184	-0.5	11.9
	4/14/2020	656.45	10.5	6.70	0.22	1,971	135.6	31.1
	10/8/2020	655.80	14.4	7.00	0.14	2,100	34.5	18.7
	4/13/2021	656.05	11.9	6.44	0.37	2,087	198.2	22.9
	10/7/2021	654.86	14.9	6.49	0.30	1,920	211.5	15.6
	4/12/2022	654.77	11.4	6.43	0.41	1,741	145.2	5.13
MW-303	11/8/2017	651.34	15.2	6.60	0.5	1,896	176.8	3.67
	4/18/2018	652.47	8.2	6.63	0.17	1,862	3.2	3.69
	8/14/2018	652.57	17.2	6.83	0.19	1,833	-307.9	1.51
	8/29/2018 10/16/2018	655.07 656.17	18.7 17.1	7.03 6.66	1.92 0.29	1,161 1,573	32.8	10.13 5.99
	1/8/2019	654.65	9.1	6.83	3.19	1,373 750	32.0 73.7	14.2
	4/8/2019	655.55	8.5	7.00	2.29	1,181	73.7 51.7	3.49
	10/24/2019	653.86	15.3	6.83	0.28	1,287	-5.1	4.24
	4/14/2020	654.08	8.9	6.98	1.94	1,097	104.3	12.1
	10/8/2020	650.37	17.0	8.28	0.13	1,602	-0.4	30.2
	4/13/2021	653.82	9.7	6.67	2.83	1,118	184.7	4.31
	10/7/2021	649.80	17.6	6.70	0.32	1,343	66.5	11.1
	4/12/2022	652.95	9.0	6.71	1.19	1,245	158.2	6.2
MW-304	11/8/2017	653.03	13.3	7.00	0.25	2,205	162.7	3.88
	4/18/2018	655.55	12.8	6.90	0.15	2,141	137.5	39.29
	8/15/2018 8/29/2018	656.35 (57.83	15.1	7.34	0.21	2,085	35.5 	81.42
	10/16/2018	657.82 658.20	13.7 13.5	7.22 6.86	0.16 0.11	2,123 2,058	-114.5	55.94 17.12
	1/8/2019	656.28	12.8	7.16	0.72	1,368	-62.1	4.38
	4/8/2019	659.33	13.8	7.17	0.41	1,876	-58.3	57.9
	10/23/2019	657.71	13.6	7.05	0.44	1,871	-57.5	18.9
	4/13/2020	656.42	11.9	7.12	0.24	1,764	-119.8	54.1
	10/8/2020	652.95	13.6	7.88	0.18	1,675	-113	11.1
	4/14/2021	654.34	13.1	6.94	0.20	1,797	-97.5	16.9
	10/8/2021	649.53	13.8	6.97	0.32	1,617	-78.7	7.3
	4/12/2022	652.14	13.3	6.95	0.13	1,772	-56.9	3.7
MW-305	11/8/2017	659.76	13.2	7.01	0.2	1,738	146.1	2.68
	4/18/2018 8/15/2018	660.99	12.8	6.90	0.15	1,840	-32.7	7.37
	8/15/2018 10/16/2018	661.56 663.37	14.8 13.9	7.21 6.86	0.18 0.09	1,832 1,836	31 -26.8	14.9 6.96
	1/8/2019	662.13	13.9	6.99	0.81	1,235	-26.6 36.4	6.76 4.76
	4/8/2019	664.01	13.8	7.06	0.59	1,728	32.6	21.7
	10/23/2019	663.21	13.2	6.91	0.42	1,794	-6.7	6.21
	3/13/2020	661.41	12.4	7.02	0.2	1,788	192.6	42.68
	4/13/2020	662.44	9.1	7.00	0.28	1,772	6.6	21.7
	10/9/2020	659.81	14.0	7.44	0.13	1,810	-13	12.9
	4/16/2021	661.15	12.9	6.92	0.16	1,799	43.6	8.17
	10/6/2021	654.83	13.7	6.94	0.44	1,629	46.9	3.8
	2/14/2022	656.35	12.4	7.20	4.8	1,500	50	0.0
1	4/11/2022	657.62	12.8	6.90	0.23	1,742	134.8	4.97

Table 5. Groundwater Field Parameters - CCR Program - Assessment Monitoring Ottumwa Generating Station / SCS Project # 25220083.00 November 2017 - June 2022

Well	Sample Date	Groundwater Elevation (feet)	Field Temperature (deg C)	Field pH (Std. Units)	Oxygen, Dissolved (mg/L)	Field Specific Conductance (umhos/cm)	Field Oxidation Potential (mV)	Turbidity (NTU)
MW-305A	3/13/2020 4/14/2020	651.64 653.69	11.8 11.2	8.09 7.63	3.79 2.26	745 807	204.2 106.7	63.2 4.91
	10/5/2020	648.01	14.2	7.46	0.19	1,102	111	NM
	4/15/2021	651.16	12.4	7.05	0.88	1,224	158.3	1.02
	10/8/2021	645.57	14.7	6.90	2.02	1,145	147.8	14.3
1111 201	4/12/2022	649.24	21.6	7.19	4.85	1,242	79.7	12.5
MW-306	11/8/2017 4/18/2018	669.04 668.92	13.6 13.1	6.49 6.42	0.18 0.14	1,186 1,228	174.1 14.2	0.82 0.59
	8/15/2018	668.66	14.6	6.74	0.14	1,271	22.8	3.95
	10/16/2018	670.24	13.4	6.42	0.08	1,340	13.3	7.07
	1/8/2019	669.84	13.3	6.65	0.47	965	59.5	0.89
	4/8/2019	670.96	13.6	6.66	0.92	1,350	49.1	28.5
	10/23/2019 4/14/2020	671.28 670.71	13.1 11.7	6.74 6.68	0.29 0.21	1,266 1,158	-0.5 49.7	12.3 15.7
	10/9/2020	670.18	13.4	6.54	0.12	1,294	41.4	13.7
	2/23/2021	669.86	13.4	6.34	0.50	1,277	64.2	2.86
	4/13/2021	670.27	12.7	6.42	0.14	1,339	92	8.99
	7/6/2021	661.87	14.3	7.44	0.33	1,357	119.2	1.37
	10/8/2021	662.27 663.66	14.7 13.6	6.66 7.07	0.40 1.05	1,506 1,770	86 39	6.7 0.0
	2/14/2022 4/12/2022	664.61	13.8	7.07 6.66	0.24	1,770	17.1	2.64
MW-307	11/8/2017	647.37	13.2	6.61	0.17	1,656	176.7	11.16
	4/16/2018	649.66	11.6	7.04	0.29	1,674	-105.9	11.93
	5/30/2018	652.45	12.7	6.44	0.18	1,710	-45.8	18.58
	6/28/2018 7/18/2018	652.87 652.27	13.4 12.9	6.87	0.21 0.21	1,686 1,718	-43.4	53.34
	10/16/2018	652.27 654.13	14.3	6.62 6.54	0.08	1,/18	-416.3 -65.7	14.94 14.08
	4/8/2019	654.90	12.5	6.76	0.51	1,599	-3.7	26
	10/23/2019	651.89	13.4	6.68	0.25	1,684	-24.8	12.5
	12/11/2019	649.59	11.5	6.37	0.18	1,576	-45.8	43.13
	2/5/2020	649.88	11.7	6.67	0.9	1,681	-15.6	9.74
	4/14/2020 10/7/2020	650.66 646.18	10.6 13.2	6.76 6.97	0.69 0.08	1,554 1,637	-52.9 -62.2	28.9 4.56
	2/23/2021	646.80	12.2	6.50	0.20	1,632	0.8	4.56 2.41
	4/14/2021	649.53	11.5	6.59	0.41	1,675	-39.9	21.2
	7/6/2021	647.03	13.2	7.05	0.21	1,705	14.7	17.91
	10/7/2021	644.49	14.4	6.71	0.19	1,552	-23.8	10.0
	2/14/2022 4/11/2022	645.82 648.40	12.3 11.8	7.03 6.63	0.97 0.13	1,810 1,718	-51 46.3	0.0 4.09
MW-308	11/8/2017	644.99	13.0	6.76	0.13	1,577	169.7	0.73
	4/16/2018	647.91	11.8	7.14	0.35	1,577	-47.2	0.93
	5/30/2018	651.05	12.1	6.61	0.14	1,611	-48.2	3.34
	6/28/2018	651.43	13.1	7.08	0.19	1,584	-60.3	5.87
	7/18/2018 10/16/2018	650.67 NM	12.6 13.1	6.73 6.68	0.13 0.08	1,628 1,594	-415.4 -80.8	1.54 5.49
	4/8/2019	653.70	12.5	6.90	0.66	1,539	-80.8 -23	6.87
	10/23/2019	651.31	13.2	6.78	4.42	1,637	-38.7	7.42
	12/11/2019	647.39	10.5	6.55	0.43	1,532	-56.6	15.72
	2/5/2020	650.12	11.4	6.78	1.48	1,630	-35.9	3.49
	4/14/2020	650.09	10.9	6.90	0.28	1,502	-69.1	5.12
	10/7/2020 4/15/2021	642.85 647.66	13.2 11.5	7.24 6.70	0.11 0.44	1,575 1,598	-56.5 -49.3	1.15 4.47
	10/7/2021	641.81	13.0	6.83	0.17	1,453	-26.1	12.80
	4/12/2022	645.75	12.7	6.70	0.26	1,491	-30.9	6.0
MW-309	11/8/2017	644.20	13.1	7.11	0.13	1,431	149.7	3.71
	4/16/2018 5/30/2018	647.65 650.98	11.2 12.4	7.52 6.92	0.37 0.12	1,445 1,484	-58.5 -38	36.7 40.55
	6/28/2018	651.47	13.8	7.36	0.12	1,477	-30 -45.5	241.4
	7/18/2018	650.69	12.6	7.02	0.11	1,501	-432.6	40.38
	10/16/2018	651.61	13.5	6.95	0.03	1,464	-81.6	28.27
	4/8/2019	653.55	12.4	7.18	0.66	1,396	-3.3	72.1
	10/23/2019 12/11/2019	651.28 647.24	12.8 11.5	6.98 6.7	0.36 0.26	1,461 1,350	-27.5 -37.8	42.6 413.6
	2/5/2020	647.24	11.5	6.67 7.09	1.07	1,433	-37.8 -7.8	18.1
	4/14/2020	649.19	11.2	7.21	0.16	1,322	-51.5	100.1
	10/7/2020	641.50	13.3	7.57	0.09	1,371	-71.1	7.7
	4/14/2021	646.46	11.7	7.00	0.36	1,411	-40.6	9.32
	10/7/2021	640.71	13.1	7.18	0.21	1,297	-8.1	19.60
<u> </u>	4/14/2022	644.32	11.7	7.16	0.70	1,305	28.1	14

Table 5. Groundwater Field Parameters - CCR Program - Assessment Monitoring Ottumwa Generating Station / SCS Project # 25220083.00 November 2017 - June 2022

Well	Sample Date	Groundwater Elevation (feet)	Field Temperature (deg C)	Field pH (Std. Units)	Oxygen, Dissolved (mg/L)	Field Specific Conductance (umhos/cm)	Field Oxidation Potential (mV)	Turbidity (NTU)
MW-310	10/24/2019	649.31	13.7	7.15	0.41	1,906	-9.3	2.29
ľ	2/5/2020	644.71	12.5	7.08	0.68	1,723	42.2	0.9
ľ	3/12/2020	645.45	12.8	6.89	0.3	1,902	252.2	2.77
ľ	4/13/2020	645.91	10.3	7.00	0.22	1,823	179.4	0.87
ľ	10/12/2020	638.46	13.9	7.07	0.16	1,709	146.5	0.02
ľ	2/23/2021	638.77	13.6	7.11	0.09	962	91.3	0.02
ľ	4/13/2021	642.70	12.6	7.07	0.46	2,362	161	2.38
ľ	7/6/72021	639.32	13.0	8.23	0.21	1,852	88.6	0.0
ľ	10/6/2021	638.19	15.4	7.20	0.48	1,425	96.8	1.0
ľ	4/11/2022	640.79	12.6	6.86	0.30	2,007	161.1	4.0
MW-310A	3/13/2020	645.45	12.5	7.73	6.28	3,160	178.9	109
ľ	4/14/2020	645.91	8.8	7.85	6.39	2,915	146.1	
ľ	10/5/2020	640.20	13.1	7.48	0.48	3,122	89.7	NM
ľ	4/15/2021	644.88	12.5	7.47	0.98	3,106	160.2	2.25
ľ	10/8/2021	639.57	15.6	7.65	6.21	2,808	143.1	15
ľ	4/12/2022	640.83	17.2	7.43	4.72	2,920	26.7	14.2
MW-311	10/24/2019	647.80	13.9	6.95	0.29	926	-24.7	3.88
ľ	2/5/2020	645.00	10.2	6.72	2.11	891	21	1.89
ľ	3/13/2020	644.18	10.0	7.11	0.23	877	222.6	3.44
ľ	4/13/2020	646.79	8.8	6.86	0.29	912	103.4	0.44
ľ	10/12/2020	638.73	14.4	6.93	7.12	1024	-53	NM
Ī	4/14/2021	643.02	9.3	6.66	1.18	945	179.8	0.78
Ī	7/7/2021	642.38	14.2	8.19	0.42	3381	80.8	0.0
Ī	10/6/2021	Dry	NM	NM	NM	NM	NM	NM
Ī	4/11/2022	641.44	10.1	6.74	0.51	880	125.4	3.57
MW-311A	3/13/2020	624.11	12.1	7.85	2.29	3,336	206	7.74
ľ	4/13/2020	648.42	7.9	8.40	3.87	3,027	115.8	3.19
ľ	6/30/2020	647.73	12.6	7.64	1.51	3,391	23.4	1.43
ľ	10/6/2020	641.09	12.7	8.33	0.44	3,177	39.6	NM
ľ	2/25/2021	641.16	11.5	7.55	3.23	3,243	129.7	0.02
	4/16/2021	644.16	12.3	7.76	0.77	3,332	146.9	0.02
	10/8/2021	640.58	15.1	8.12	1.68	2,930	140.7	9.6
	4/14/2022	643.23	14.1	7.53	4.66	3,211	54.6	9.61
MW-312	2/15/2022	641.86	13.0	7.24	1.34	1,800	-67.00	0.0
<u> </u>	4/11/2022	644.62	12.3	7.07	0.15	1,855	112.1	8.39
MW-313	2/15/2022	640.58	13.9	7.01	1.22	925	-29.00	0.0
	4/11/2022	642.06	13.2	6.94	0.09	1,788	126.5	7.44

 Created: NDK
 Date:
 7/13/2022

 Updated: NDK
 Date:
 7/13/2022

 QC Checked: JR
 Date:
 7/13/2022

Table 6. Preliminary Evaluation of Corrective Measure Alternatives Ottumwa Generating Station / SCS Engineers Project #25220083.00

	Alternative #1	Alternative #3	Alternative #4	Alternative #5	Alternative #6	Alternative #7	Alternative #8
	No Action	Consolidate on Site and Cap with MNA	Excavate and Dispose on site with MNA	Excavate and Dispose in Off-Site Landfill with MNA	Consolidate and Cap with Chemical Amendment and Groundwater Collection	Consolidate and Cap with Groundwater Collection	Consolidate and Cap with Barrier Wall and Groundwater Collection
CORRECTIVE ACTION ASSESSMENT	- 40 CFR 257.97(b)						
257.97(b)(1) Is remedy protective of human health and the environment?	No	Yes	Yes	Yes	Yes	Yes	Yes
257.97(b)(2) Can the remedy attain the groundwater protection standard?	Unlikely	Yes	Yes	Yes	Yes	Yes	Yes
257.97(b)(3) Can the remedy control the source(s) of releases so as to reduce or eliminate, to the maximum extent feasible, further releases of constituents in appendix IV to this part into the environment?	No	Yes	Yes	Yes	Yes	Yes	Yes
257.97(b)[4] Can the remedy remove from the environment as much of the contaminated material that was released from the CCR unit as is feasible?	No	Yes, if MNA is feasible or coupled with an alternative groundwater restoration method.	Yes, if MNA is feasible or coupled with an alternative groundwater restoration method.	Yes, if MNA is feasible or coupled with an alternative groundwater restoration method.	Yes, as updated to include groundwater restoration via groundwater collection. Alternatively, groundwater restoration via MNA is appropriate if feasible.	Yes	Yes, as updated to include groundwater restoration via groundwater collection. Alternatively, groundwater restoration via MNA is appropriate if feasible.
257.97(b)(5) Can the remedy comply with standards for management of wastes as specified in §257.98(d)?	Not Applicable	Yes	Yes	Yes	Yes	Yes	Yes
LONG- AND SHORT-TERM EFFECTIVE	NESS - 40 CFR 257.97(c)(1)						
257.97(c)(1)(i) Magnitude of reduction of existing risks	No reduction of existing risk	Existing risk reduced through consolidation of CCR into a smaller footprint thereby reducing or eliminating the volume of source material in contact with groundwater after closure. Risk is aslo reduced by achieving GPS.	Similar to Alternative #3 with potential increased reduction of risk due to CCR removal and elimination of groundwater interaction with CCR.	Similar to Alternative #3 with potential increased reduction of risk due to CCR removal and elimination of groundwater interaction with CCR.	Similar to Alternative #3. Long-term risk may be reduced with additional source control and in-situ stabilization/fixation of CCR that may be in contact with groundwater.	Similar to Alternative #3 with potential increased reduction of risk due to removal of contaminant from the aquifer.	Similar to Alternative #3. Long-term risk may be reduced with additional containment offered by barrier wall.
257.97(c)(1)(ii) Magnitude of residual risks in terms of likelihood of further releases due to CCR remaining following implementation of a remedy	No reduction of existing risk. Residual risk is limited for all alternatives due to limited extent of impacts and lack of receptors.	Magnitude of residual risk of further releases is lower than current conditions due to consolidation, reduction or elimination of CCR and groundwater interaction, and final cover eliminating infiltration through CCR	Reduced risk over Alternative #3 due to composite liner and cover	Reduced risk over Alternative #3 due to removal of CCR from site	Same as Alternative #3 with potential further reduction in release risk due to CCR material footprint; Residual risk is further reduced by way of chemical / physical alteration of the source of impacts.	Same as Alternative #3 with potential further reduction in release risk due to CCR material footprint; Residual risk is potentially reduced by way of the ability to respond to potential future/ongoing releases from CCR that might be in contact with groundwater following closure.	Same as Alternative #3 with potential further reduction in release risk due to CCR material footprint; Residual risk of source material in contact with groundwater is further reduced by the containment of groundwater impacts provided by barrier walls;
257.97(c)(1)(iii) The type and degree of long-term management required, including monitoring, operation, and maintenance	Not Applicable	30-year post-closure groundwater monitoring; Groundwater monitoring network maintenance and as- needed repair/replacement Final cover maintenance (e.g., mowing and as-needed repair); Periodic final cover inspections; Additional corrective action as required based on post- closure groundwater monitoring	Same as Alternative #3	No on-site long-term management required; Limited on-site post-closure groundwater monitoring until GPS are achieved; Receiving disposal facility will have same/similar long- term monitoring, operation, and maintenance requirements as Alternative #3	Same as Alternative #3.	Same as Alternative #3 with additional effort for groundwater pump operation and maintenance (O&M), groundwater treatment system O&M, and treatment system discharge monitoring/reporting.	Same as Alternative #3 with additional monitoring of wall performance.

Table 6. Preliminary Evaluation of Corrective Measure Alternatives Ottumwa Generating Station / SCS Engineers Project #25220083.00

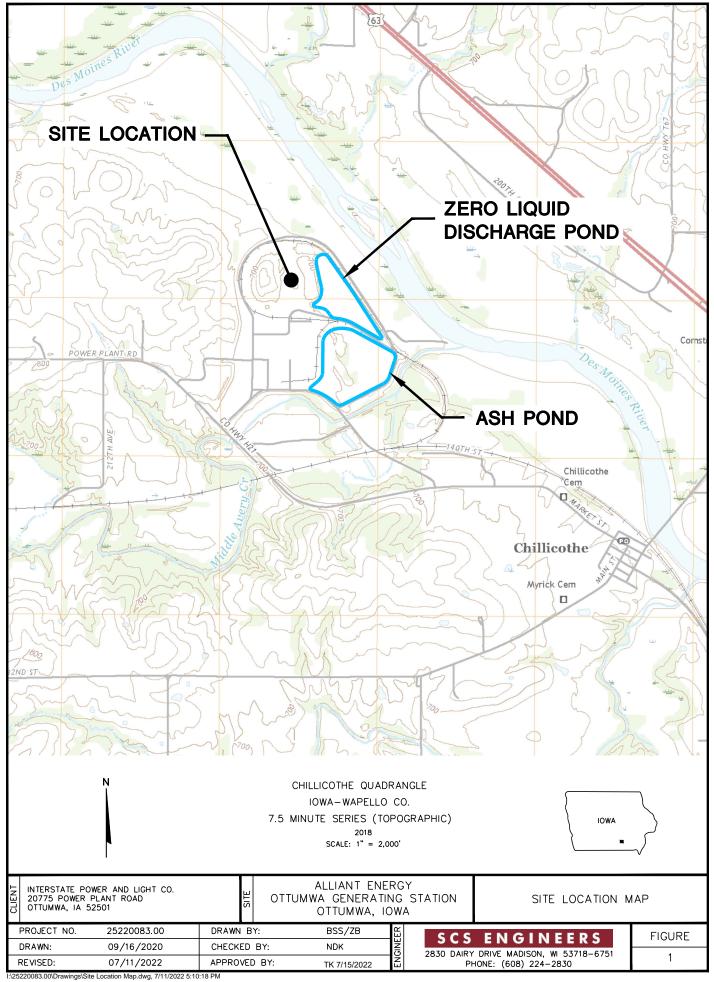
	Alternative #1	Alternative #3	Alternative #4	Alternative #5	Alternative #6	Alternative #7	Alternative #8
	No Action	Consolidate on Site and Cap with MNA	Excavate and Dispose on site with MNA	Excavate and Dispose in Off-Site Landfill with MNA	Consolidate and Cap with Chemical Amendment and Groundwater Collection	Consolidate and Cap with Groundwater Collection	Consolidate and Cap with Barrier Wall and Groundwater Collection
LONG- AND SHORT-TERM EFFECTIVE	ENESS - 40 CFR 257.97(c)(1) (continued)						
257.97(c)(1)(iv) Short-term risks - Implementation							
Excavation	None	Limited risk to community and environment due to limited amount of excavation(likely>200K cy but <420K cy) required to establish final cover subgrades. Risk to environment due to increased excavation volumes required for consolidation	Same as Alternative #3 with increased risk to environment due to increased excavation volumes (~420K cy) and temporary CCR storage during disposal site construction required for removal and on-site redisposal	Same as Alternative #4 with reduced risk to environment from excavation due to limited on-site storage	Similar to Alternative #3 with some increased potential risk due to exposure during the application of the chemical amendment.	Similar to Alternative #3 with some increased construction risk due to drilling, trenching, and excavation for groundwater pumping and treatment system construction.	Similar to Alternative #3 with some increased construction risk due to excavation or installation of the barrier wall.
Transportation	None	No risk to community or environment from off-site CCR transportation; Typical risk due to construction traffic delivering final cover materials to site	Same as Alternative #3 with increased risk from construction traffic due to increased material import requirements (liner and cap construction required)	Highest level of community and environmental risk due to CCR volume export (~420K cy)	Similar to Alternative #3 with increased risk from importing chemical material for stabilization/treatment.	Similar to Alternative #3 with increased risk from importing groundwater pumping and treatment system materials.	Similar to Alternative #3 with increased risk from importing barrier wall system materials.
Re-Disposal	None	Limited risk to community and environment due to limited volume of CCR re-disposal due to increased volumes (likely >200K cy but <420K cy) required for consolidation	Same as Alternative #3 with increased risk to environment due to increased excavation volumes (~420K cy) and temporary CCR storage during disposal site construction required for removal and on-site redisposal	Same as Alternative #4 with increased risk to community and environment due to re-disposal of large CCR volume (~420K cy) at another facility; Re-disposal risks are managed by the receiving disposal facility	Similar to Alternative #3 with some increased potential risk due to exposure during the application of the chemical amendment.	Same as Alternative #3	Same as Alternative #3
257.97(c)(1)(v) Time until full protection is achieved	Unknown	Closure and capping can be completed by end of 2023. Groundwater protection timeframe to reach GPS potentially 2 to 10 years following closure construction, achievable within 30-year post-closure monitoring period. Potential for increase in time to reach GPS due to significant source disturbance during construction. Potential for decrease in time to reach GPS due to consolidation of CCR. Scoring is based on balance between potential increase or decrease due to factors listed.	Increased time required to implement remedy in comparison to Alternative #3. Anticipated increase in time required to identify, site and develop onsite disposal capacity if located outside of existing impoundment footprint. Increased time required for closure construction due CCR excavation, temporary storage, liner construction, and redisposal if completed within impoundment footprint. Potential for increase in time to reach GPS due to significant source disturbance during construction, Potential decrease in time to reach GPS due to source isolation within liner/cover system.	Increased time required to implement remedy in comparison to Alternative #3, and potentially the longest required time to implement closure. Implementation schedule extends the time required to achieve full protection. Extended implementation timeframe is driven by the time required to identifying and secure off-site disposal capacity, or develop the capacity at an existing Alliant-owned facility. If landfill capacity is not owned by Alliant, additional time may be required to permit and develop the necessary disposal capacity. Increased construction time likely required due to the capacity of the receiving site to unload and place material. Potential for increase in time to reach GPS due to significant source disturbance during construction. Potential decrease in time to reach GPS due to impounded CCR source removal.	Similar to Alternative #3. Potential for reduction in time to reach GPS due to chemical/physical stability of CCR.	Similar to Alternative #3. Potential decrease in time to reach GPS from implementation of groundwater pumping.	Similar to Alternative #3. Potential decrease in time to reach GPS upon implementation of barrier wall.
257.97(c)(1)(vi) Potential for exposure of humans and environmental receptors to remaining wastes, considering the potential threat to human health and the environment associated with excavation, transportation, redisposal, or containment	No change in potential exposure	Potential for exposure is low, Remaining waste is capped with risk to construction workers during consolidation of CCR.	Similar to Alternative #3 with increased risk to construction workers during excavation and re-disposal. Increased risk due to higher material management volumes.	No potential for on-site exposure to remaining waste since no waste remains on site; Risk of potential exposure is transferred to receiving disposal facility and is likely similar to Alternative #3 Highest level of risk due to excavation, transportation, and re-disposal for construction workers removing CCR and solid waste workers at receiving facility.	Same as Alternative #3.	Similar to Alternative #3 with potential for secondary impacts from releases of extracted groundwater or disruption in treatment.	Same as Alternative #3
257.97(c)(1)(vii) Long-term reliability of the engineering and institutional controls	Not Applicable	Long-term reliability of cap is good; Significant industry experience with methods/controls; Capping is common practice/industry standard for closure in place for remediation and solid waste management	Same as Alternative #3	Success of remedy at OGS does not rely on long-term reliability of engineering or institutional controls; Overall success relies on reliability of the engineering and institutional controls at the receiving facility	Same as Alternative #3.	Same as Alternative #3. Remedy relies upon active equipment that will require additional operations and maintenance.	Same as Alternative #3. Remedy relies on continued hydraulic conductivity of the selected barrier. Breaches or short circuiting can develop and must be monitored.
257.97(c)(1)(viii) Potential need for replacement of the remedy	Not Applicable	Limited potential for remedy replacement if maintained; Some potential for remedy enhancement due to residual groundwater impacts following source control	Same as Alternative #3 with further reduction in potential need for remedy enhancement composite with liner	No potential for remedy replacement; Limited potential for remedy enhancement due to residual groundwater impacts following source control	Similar to Alternative #3, with further reduction in potential need for remedy enhancement due to stabilized/solidified CCR material.	Similar to Alternative #3, with reduced potential of remedy replacement, but added expectation for pump, conveyance system and treatment system replacement.	Similar to Alternative #3, with reduced potential of remedy replacement, but added expectation for potential replenishment of consumptive barrier product.

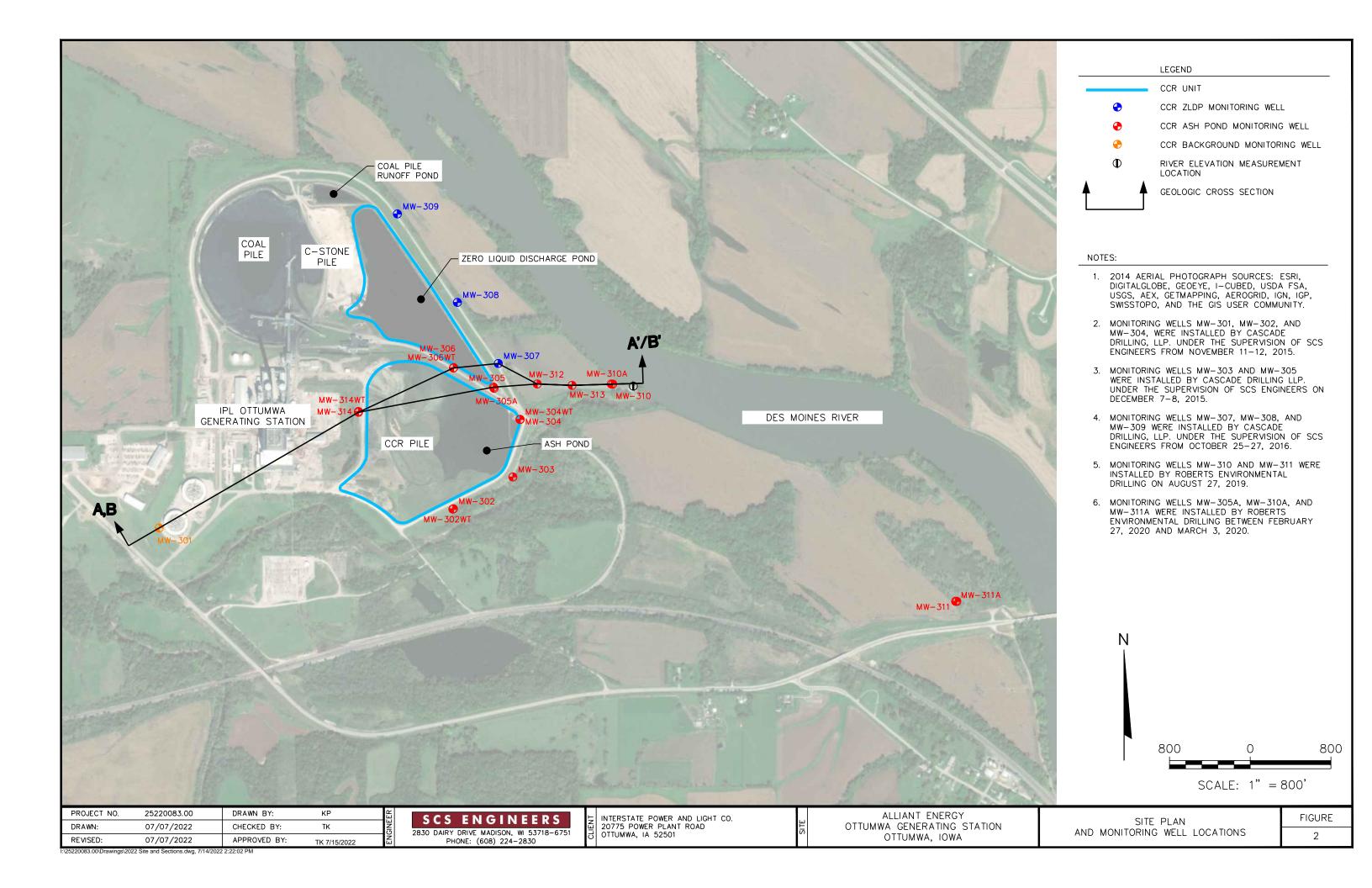
Table 6. Preliminary Evaluation of Corrective Measure Alternatives Ottumwa Generating Station / SCS Engineers Project #25220083.00

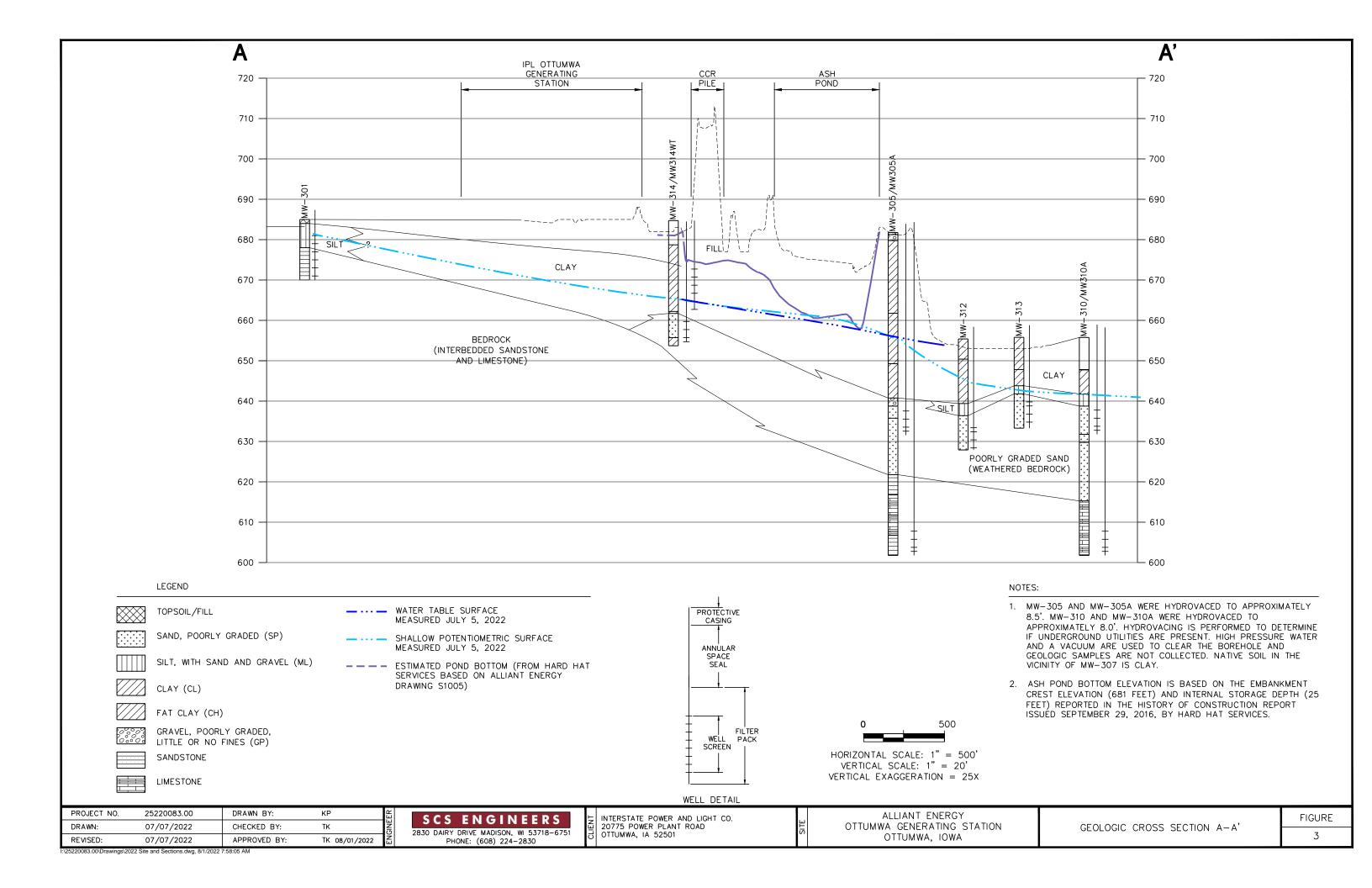
	Alternative #1	Alternative #3	Alternative #4	Alternative #5	Alternative #6	Alternative #7	Alternative #8
	No Action	Consolidate on Site and Cap with MNA	Excavate and Dispose on site with MNA	Excavate and Dispose in Off-Site Landfill with MNA	Consolidate and Cap with Chemical Amendment and Groundwater Collection	Consolidate and Cap with Groundwater Collection	Consolidate and Cap with Barrier Wall and Groundwater Collection
SOURCE CONTROL TO MITIGATE FU	TURE RELEASES - 40 CFR 257.97(c)(2)						
257.97(c) (2) (i) The extent to which containment practices will reduce further releases	No reduction in further releases	Cap will reduce further releases by minimizing infiltration through CCR	Same as Alternative #3 with further reduction due to composite liner and 5-foot groundwater separation required by CCR Rule	Removal of CCR prevents further releases at OGS; Receiving disposal site risk similar to Alternative #3	Similar to Alternative #3 with further reduction due to lower mobility of contaminants in residual source material as a result of chemical amendment.	Similar to Alternative #3 with the added ability to contain or restore groundwater impacts if MNA mechanisms are not active or site attenuation capacity is not adequate.	Similar to Alternative #3 with the added ability to contain groundwater impacts if MNA mechanisms are not active or site attenuation capacity is not adequate.
257.97(c)(2)(ii) The extent to which treatment technologies may be used	Alternative does not rely on treatment technologies	Alternative does not rely on treatment technologies	Alternative does not rely on treatment technologies	Alternative does not rely on treatment technologies	Alternative relies on the indentification and availability of a suitable chemical amendment. Implementation of and contact with physical/chemical stabilizing agent will require specialized field implementation methods and health and safety measures.	This alternative relies on conventional pump and treat remediation.	Alternative relies on the indentification and availability of a suitable barrier wall technology (e.g., permeable reactive barrier material or slurry wall). Implementation of and contact with barrier wall materials will require specialized field implementation methods and health and safety measures.
IMPLEMENTATION - 40 CFR 257.97(:)(3)	1		1			
257.97(c)(3)(i) Degree of difficulty associated with constructing the technology	Not Applicable	Low complexity construction; Moderate degree of logistical complexity; Moderate level of dewatering effort - dewatering required for material excavation/placement and capping	Moderately complex construction due to composite liner and cover; High degree of logistical complexity due to excavation and on-site storage of ~420K cy of CCR while new lined disposal area is constructed; High level of dewatering effort - dewatering required for excavation of full CCR volume	Low complexity construction; High degree of logistical complexity including the excavation and off-site transport of ~420K cy of CCR and permitting/development of off-site disposal facility airspace; High level of dewatering effort - dewatering required for excavation of full CCR volume	Moderate complexity construction due to the equipment required to apply the selected amendment; requirements to ensure consistent contact and dosing of amendment; Medium degree of logistical complexity involving the import of specialty chemicals; Moderate to low level of dewatering effort dewatering required for material excavation/placement and capping	Low complexity construction; Moderate degree of logistical complexity; Moderate to low level of dewatering effort - dewatering required for material excavation/placement and capping. Moderate complexity contruction for the installation of extraction wells and conveyance to a site-specific groundwater treatment plant.	High complexity construction; Barrier walls require specialty installation equipment and knowledge. Highly specialized and experience contractors required to achieve proper installation. Moderate degree of logistical complexity; Moderate to low level of dewatering effort - dewatering required for material excavation/placement and capping.
257.97(c)(3)(ii) Expected operational reliability of the technologies	Nat Applicable	High reliability based on historic use of capping as corrective measure	Same as Alternative #3	Success at OGS does not rely on operational reliability of technologies; Overall success relies on off-site disposal facility, which is likely same/similar to Alternative #3, but may not be controlled by the Owner.	Similar to Alternative #3; however, success at OGS relies on the successful application of specialty chemicals.	Similar to Alternative #3; however, success of this remedy relies on the successful operation of a site-specific groundwater treatment plant.	Similar to Alternative #3; however, success this remedy relies on continued hydraulic conductivity of the selected barrier. Breaches or short circuiting can develop and must be monitored.
257.97(c)(3)(iii) Need to coordinate with and obtain necessary approvals and permits from other agencies	Not Applicable	Need is low in comparison to other alternatives; State Closure Permit required	Need is high in comparison to other alternatives State Closure Permit required; State Landfill Permit may be required	Need is highest in comparison to other alternatives; State Closure Permit required; Approval of off-site disposal site owner required; May require State solid waste comprehensive planning approval; Local road use permits likely required	Need is moderate in comparison to other alternatives; State Closure Permit required; Underground Injection Control Permit may be required if chemical materials placed within groudwater. State and local erosion control/construction stormwater management permits required; Federal/State/Local Floodplain permitting likely required.	Need is moderate in comparison to other alternatives; State Closure Permit required; Well permitting for extraction well installation; NPDES Permit for groundwater treatment and discharge; State and local erosion control/construction stormwater management permits required; Federal/State/Local Floodplain permitting likely required.	Need is moderate in comparison to other alternatives State Closure Permit required; Well permitting for barrier wall monitoring; Federal/State/Local Floodplain permitting required; State and local erosion control/construction stormwater management permits required
257.97(c)(3)(iv) Availability of necessary equipment and specialists	Not Applicable	Necessary equipment and specialists are highly available. cap construction materials are readily available and accessible in the area. Requires dewatering, treatment and conditioning of CCR.	Same as Alternative #3; Similar level of demand for liner and cap construction material. Increase in demand for specialty materials and services due to composite liner construction.	Availability of necessary equipment to develop necessary off-site disposal facility airspace and transport -420K cy of CCR to new disposal facility will be a limiting factor in the schedule for executing this alternative; No liner or cover material demands for on-site implementation of remedy	Similar to Alternative #3; Moderate level of demand for liner and cap construction material. Specialized mixing equipment likely required to apply chemical amendment and achieve required dosing.	Similar to Alternative #3; Moderate level of demand for liner and cap construction material. A site-specific, trained employee will be required to operate the groundwater treatment system.	Similar to Alternative #3; Moderate level of demand for liner and cap construction material; Availability of the necessary specallized equipment and extensive experience required for barrier installation is potentially low or in high demand.
257.97(c) (3)(v) Available capacity and location of needed treatment, storage, and disposal services	Nat Applicable	Capacity and location of treatment, storage, and disposal services is unlikely to be a factor for this alternative	Available temporary on-site storage capacity for ~420K cy of CCR while composite liner is constructed is significant limiting factor	Off-site disposal capacity, facility logistical capacity, or the time required to develop the necessary off-site disposal and logistical capacity is a significant limiting factor.	Capacity and location of treatment, storage, and disposal services is unlikely to be a factor for this alternative	Capacity and location of treatment, storage, and disposal services is unlikely to be a factor for this alternative	Capacity and location of treatment, storage, and disposal services is unlikely to be a factor for this alternative
COMMUNITY ACCEPTANCE - 40 CI	R 257.97(c)(4)						
257.97(c)(4) The degree to which community concerns are addressed by a potential remedy (Anticipated)	No comments were received during the public meeting held on June 4, 2020 or February 2021. Assume all alternatives are acceptable to interested/affected parties.	No comments were received during the public meeting held on June 4, 2020 or February 2021. Assume all alternatives are acceptable to interested/affected parties.	No comments were received during the public meeting held on June 4, 2020 or February 2021. Assume all alternatives are acceptable to interested/affected parties.	No comments were received during the public meeting held on June 4, 2020 or February 2021. Assume all alternatives are acceptable to interested/affected parties.	No comments were received during the public meeting held on June 4, 2020 or February 2021. Assume all alternatives are acceptable to interested/affected parties.	No comments were received during the public meeting held on June 4, 2020 or February 2021. Assume all alternatives are acceptable to interested/affected parties.	No comments were received during the public meeting held on June 4, 2020 or February 2021. Assume all alternatives are acceptable to interested/affected parties.

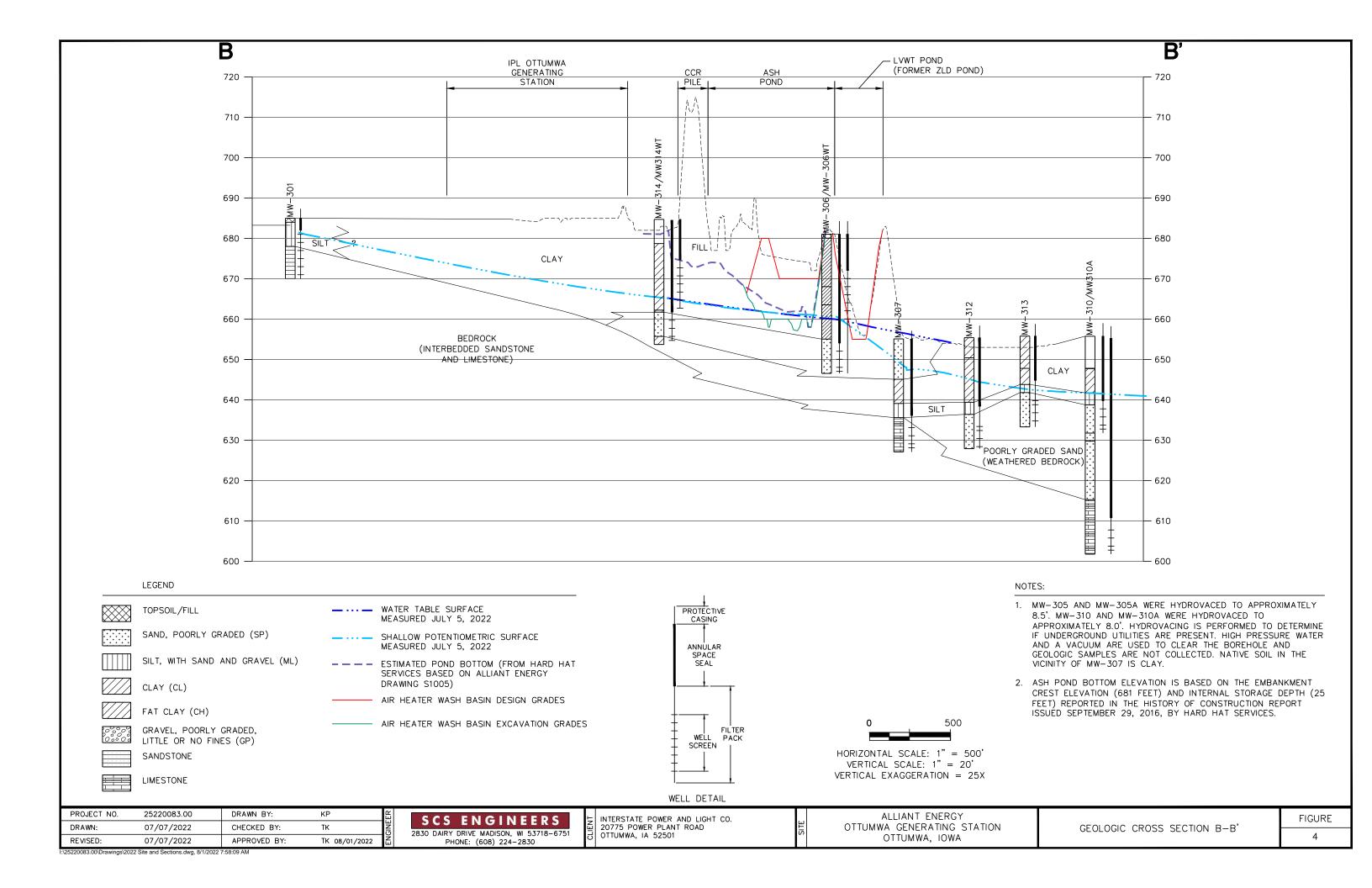
NOTES:

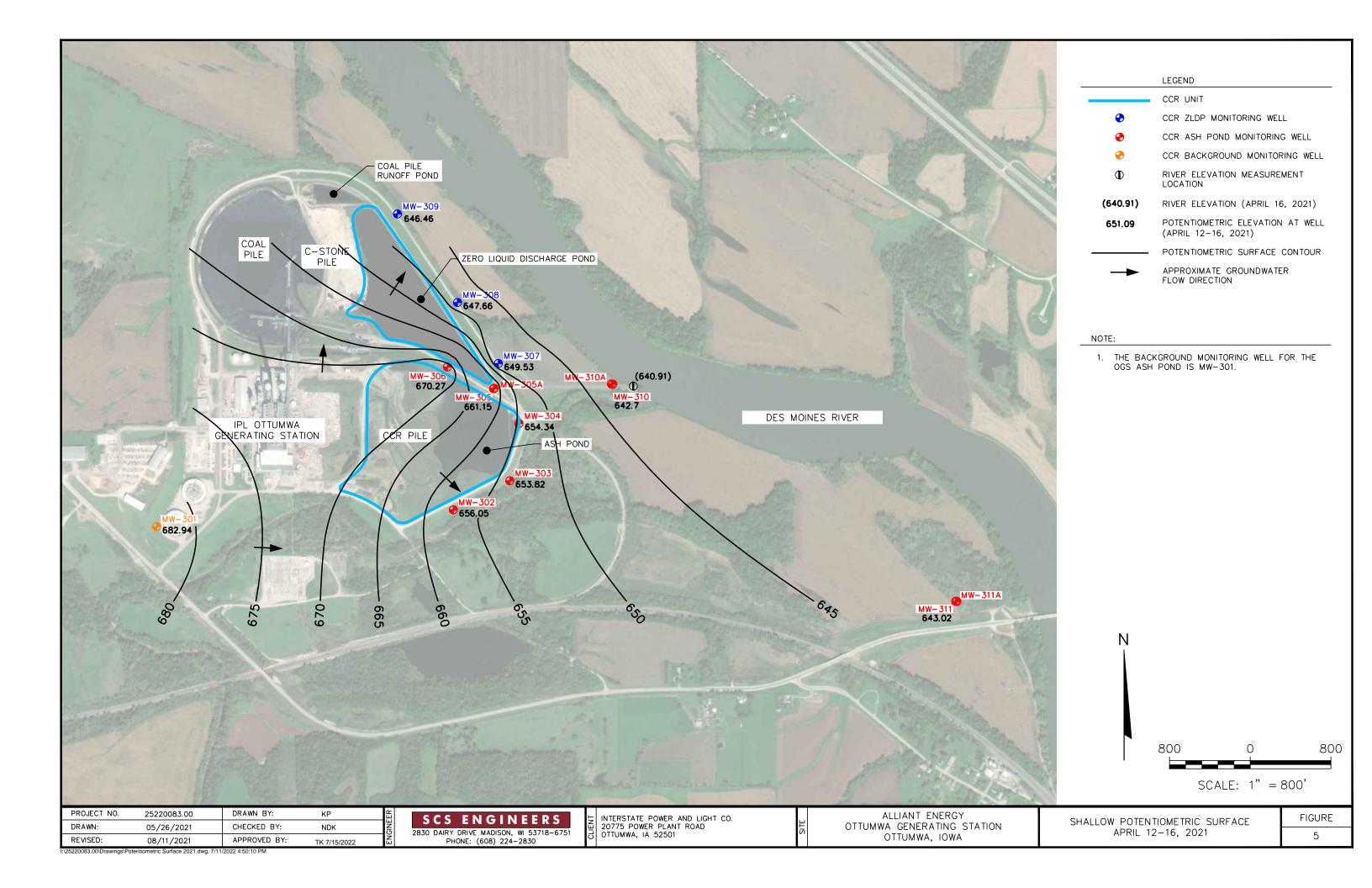
- 1) Alternatives #1 through #5 were developed and submitted within the Assessment of Correctvie Measures Report (ACM), dated September 2019
- 2) Alternatives #6 through #8 were added in November 2020 as part of Addendum #1 to the September 2020 ACM Report
- 3) Former Alternative #2 (Close and Cap in Place with MNA) is not viable due to the completed removal of the OGS ZLD Pond and contents, Alternative #2 has been eliminated from further evaluation.

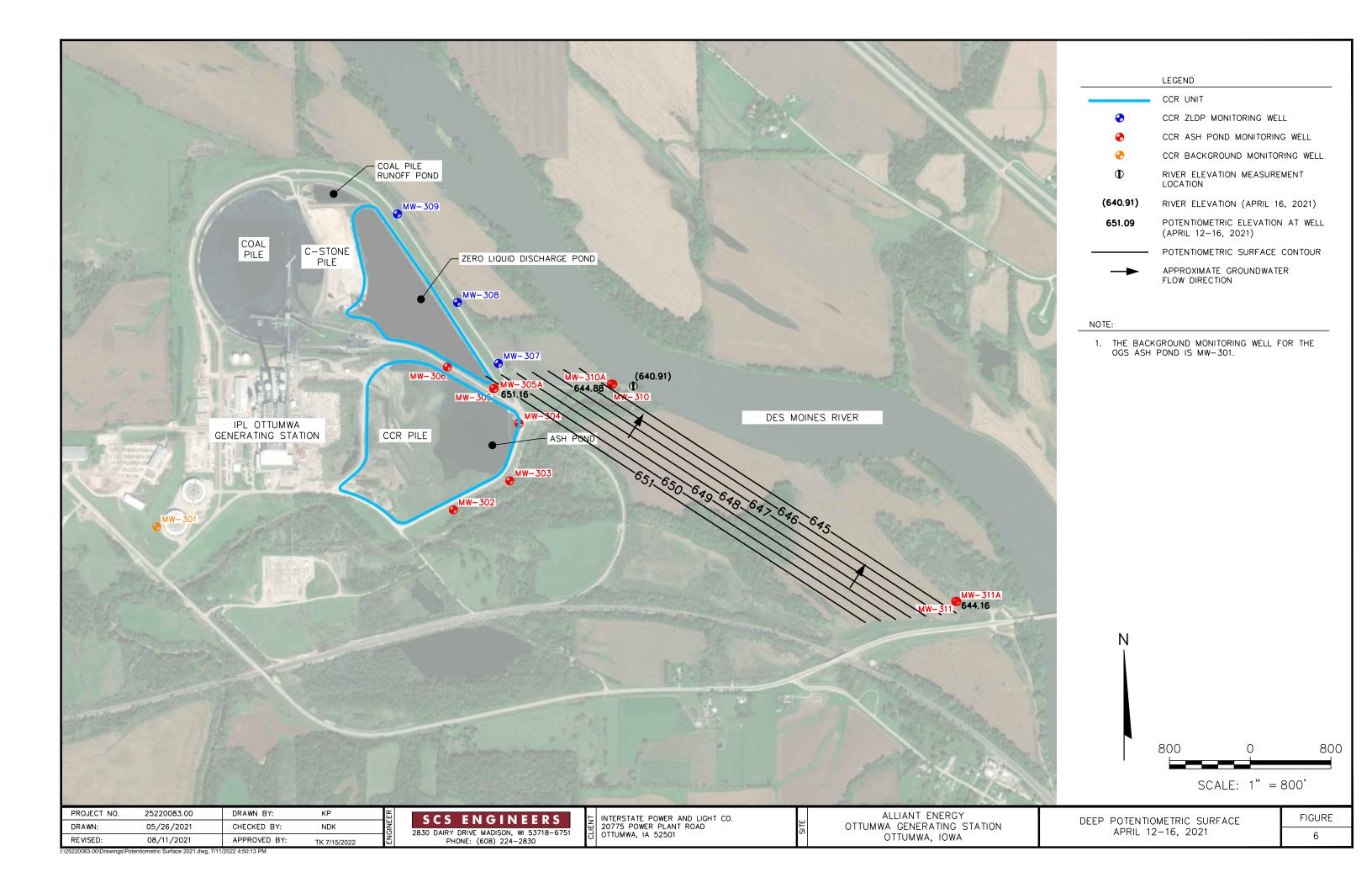

 Created by: LAB/SK
 Date: 6/20/2019

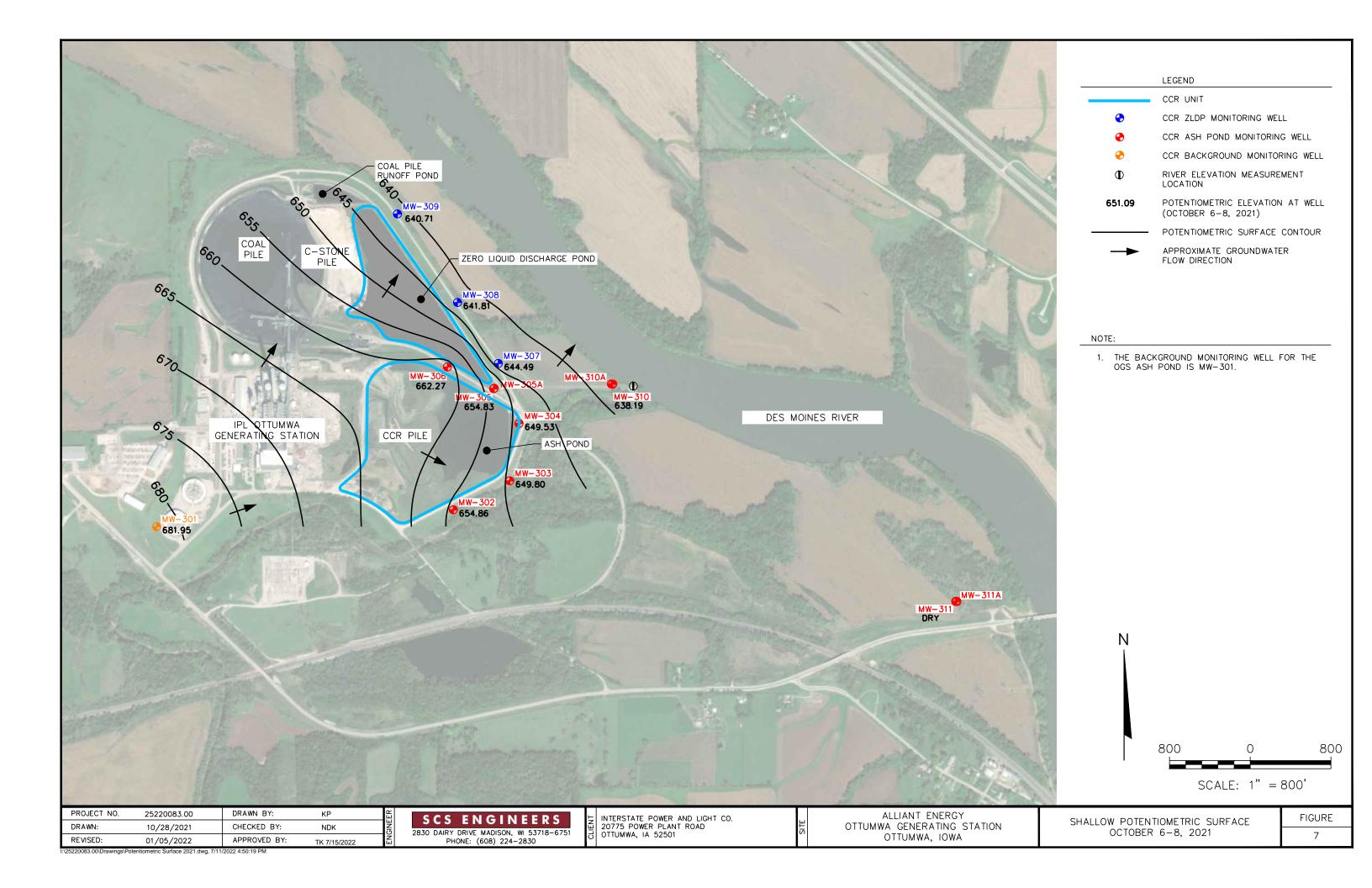

 Last revision by: EJN
 Date: 8/1/2022

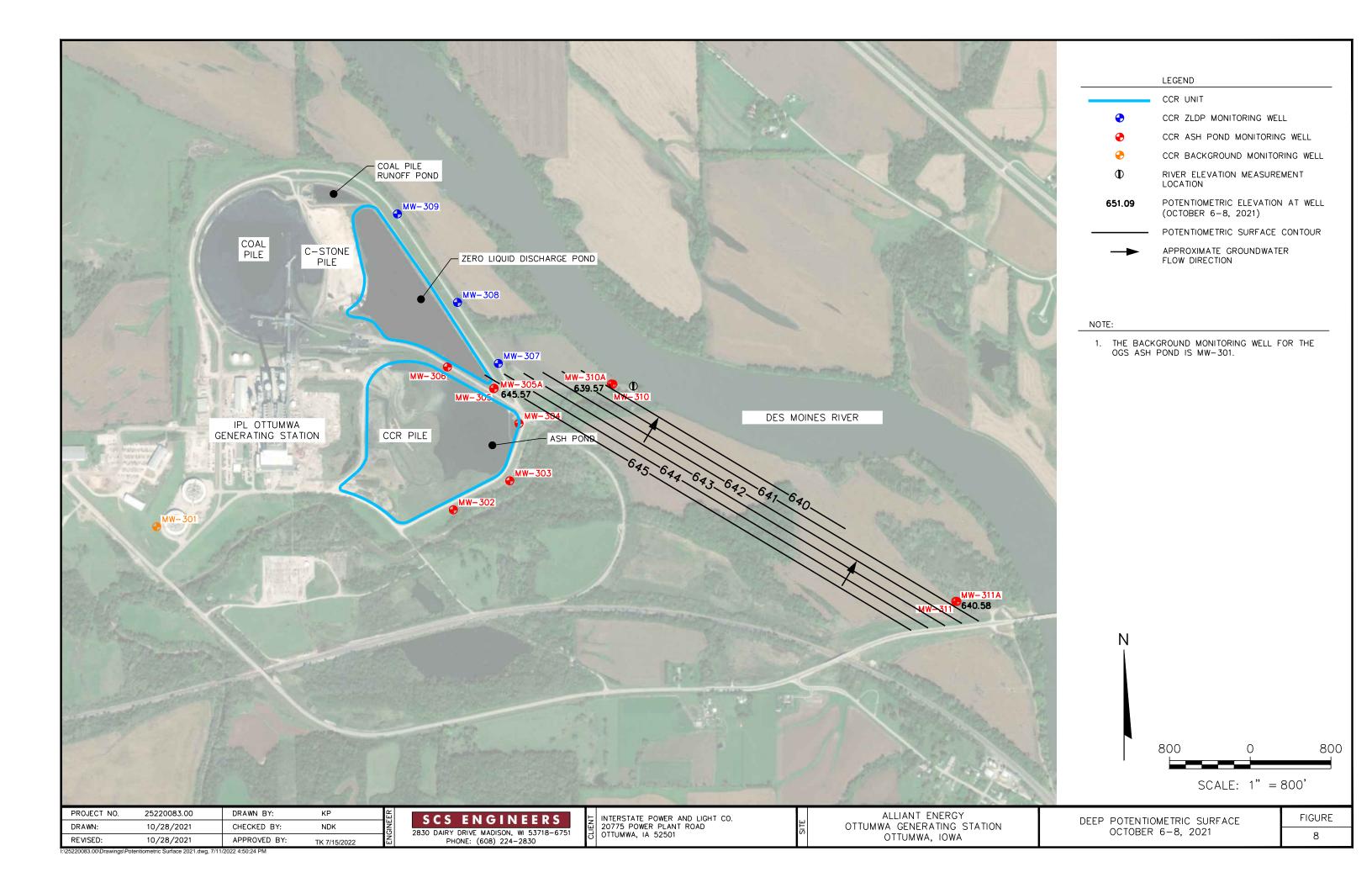

 Checked by: TK
 Date: 8/1/2022

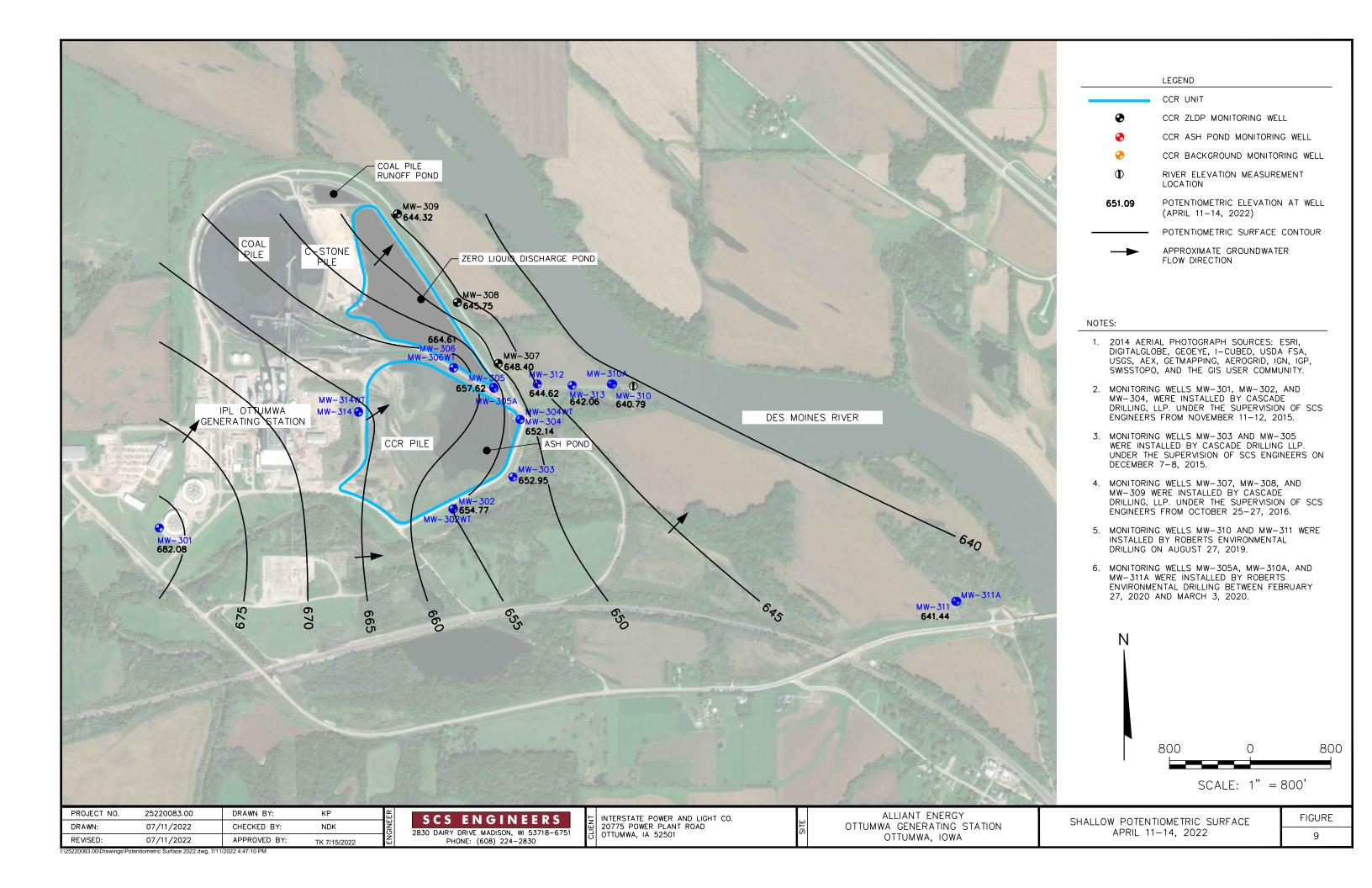

Figures

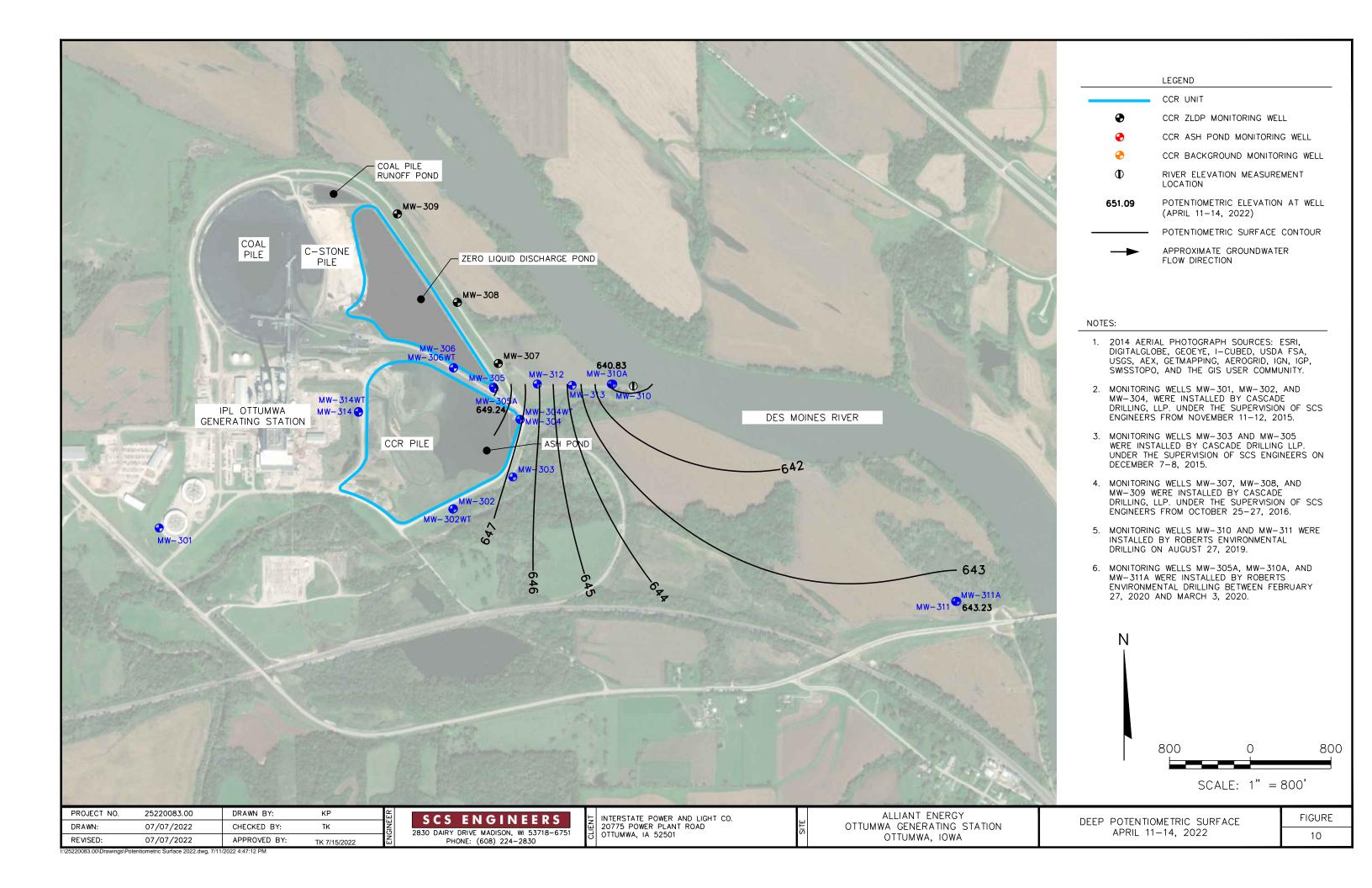

- 1 Site Location Map
- 2 Site Plan and Monitoring Well Locations
- 3 Geologic Cross Section A-A'
- 4 Geologic Cross Section B-B'
- 5 Shallow Potentiometric Surface April 12-16, 2021
- 6 Deep Potentiometric Surface April 12-16, 2021
- 7 Shallow Potentiometric Surface October 6-8, 2021
- 8 Deep Potentiometric Surface October 6-8, 2021
- 9 Shallow Potentiometric Surface April 11-14, 2022
- 10 Deep Potentiometric Surface April 11-14, 2022
- 11 Water Table Map July 05, 2022

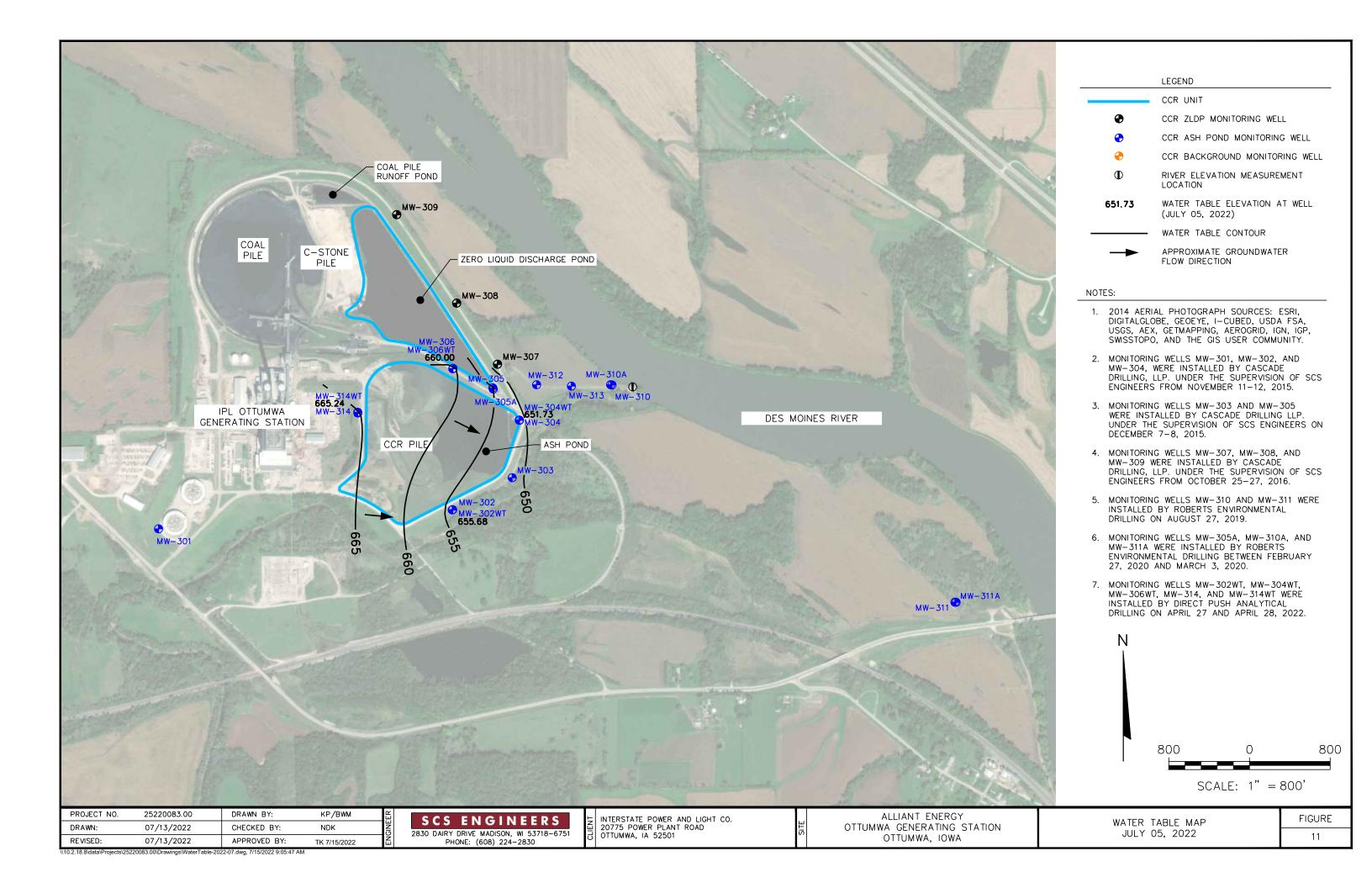












Appendix A

Regional Geological and Hydrogeological Information

Regional Hydrogeologic Stratigraphy Ottumwa Generating Station / SCS Engineers Project #25215053.01

Age of Rocks	Hydrogeologic Unit	General Thickness (feet)	Name of Rock Unit*	Type of Rock
Quaternary (0-1 million years old)	Surficial Aquifers • Alluvial • Buried-Channel • Drift	0 to 320	Undifferentiated	 Sand, gravel, silt, and clay Sand, gravel, silt, and clay Till (sandy, pebbly clay), sand, and silt
Pennsylvanian (180 to 310 million years old)	Aquiclude	0 to 370	Undifferentiated	Shale, sandstone, limestone, and coal
	Mississippian Aquifer • Upper		St. Louis Spergen	Limestone and sandstone Limestone
Mississippian (310 to 345 million years old	• Lower	0 to 600	Warsaw Keokuk Burlington Hampton Starrs Cave	 Shale and dolomite Dolomite, limestone, and shale Dolomite and limestone Limestone and dolomite Limestone
Devonian	Aquiclude	0 to 425	Prospect Hill McCraney Yellow Spring Lime Creek	Siltstone Limestone Shale, dolomite, and siltstone Dolomite and shale
(345 to 400 million years old)	- Devonian Aquifer	110 to 420	Cedar Valley Wapsipinicon	Limestone and dolomite Dolomite, limestone, shale, and gypsum
Silurian (400 to 425 million years old)	- Devolitali Aquilei	0 to 105	Undifferentiated	• Dolomite
Ordovician (425 to 500 million years old)	Aquiclude	150 to 600	Maquoketa Galena Decorah Platteville	 Dolomite and shale Dolomite and chert Limestone and shale Limestone, shale, and sandstone
years ora;	Cambrian-Ordovician	750 to	St. Peter Prairie du Chien	Sandstone Dolomite and sandstone
	aquifer	1,110	Jordan St. Lawrence	Sandstone Dolomite
Cambrian (500 to 600 million years old)	Not considered an aquifer in southeast	450 to 750+	Franconia Galesville Eau Claire Mt. Simon	 Shale, siltstone, and sandstone Sandstone Sandstone, shale, and dolomite Sandstone
Precambrian (600 million to 2 billion + years old)	lowa			Sandstone, igneous rocks, and metamorphic rocks

^{*}This nomenclature and classification of rock units in this report are those of the lowa Geological Survey and do not necessarily coincide with those accepted by the U.S. Geological Survey.

Source: "Water Resources of Southeast Iowa," <u>Iowa Geologic Survey Water Atlas No. 4</u>.

Appendix B

Boring Logs

Environmental	Consultants	and	Contractors	
Environmentat	Consultants	and	Contractors	•

		ect Nam			License/	Permit/	Monito	ring Nu	ımber		Boring	Pag	er	of	
Boring	Drille		Name o	rating Station SCS#: 25215135.40 f crew chief (first, last) and Firm	Date Dri	illing St	arted		Da	ite Drilli	ng Con	npleted		Sec. 15. 10.	1 ng Method /4 hollow
	cade	Drillin		DNR Well ID No. Common Well Name	Final Sta		0/2015 ter Leve		Surfac	e Eleva	1/10/	2015	Bo	ste	m auger Diameter
Local			□ (a)	MW-301 stimated: □) or Boring Location ⊠	, and on	Fe			-	4 3 15 17	.3 Fee				5 in
State NW	Plane	of S	400	,077 N, 1,899,709 E S/C/N //4 of Section 26, T 73 N, R 15 W	La		0	4	-,	Local				F	□ E
Facility		101 3	VV	County Wapello	Lon		Civil T	own/Ci	ty/ or	Village	reci	ш			cci 🖂 w
San	nple										Soil	Prope	erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit		uscs	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
				TOPSOIL.	7	OPSO	1.11. 1	8					-		
S1	10	woh 1 39	5	MEATHERED SANDSTONE very weak light or		ML					w				
S2	13	24 50	_ _9	WEATHERED SANDSTONE, very weak, light gr (10YR 7/1), scondary color very dark gray 910YR massive.	3/1),						w				
S3	5	50	11		SA	NDSTO	ONE				W				
S4	6	50	13								w				
	4	50	-15	Endo of Boring at 15 feet bgs.							W				

			R		Wastewater n/Redevelopment	Waste M Other	_	ement								
Facili	ty/Proje	ot Ma				II isanga/D		Manita	due M	las saala ass		Danina	Pag		of	2
				erating Station	SCS#: 25215135.40	License/Po	ermit/	Monito	ring N	umber		Boring	Numbe		V-30	2
				of crew chief (first, last)		Date Drill	ing St	arted		Da	ate Drilli	ng Con	pleted			ing Method
	dd Sch									116					100000000000000000000000000000000000000	1/4 hollow
	scade		ing					0/2015				1/10/	2015		ste	m auger
Uniqu	ie Well	No.		DNR Well ID No.	Common Well Name	Final Stati			el	Surfac	e Eleva		1	Во		Diameter
Local	Grid O	rigin	☐ (e	estimated:) or Bo	MW-302 oring Location ⊠	1	Fe	et			Local C	.6 Fee			8	.5 in
	Plane	i igiii),267 N, 1,902,625		Lat		0	'		Local	iiid Lo				□Е
NE		of S		1/4 of Section 26,	T 73 N, R 15 W	Long		o.	•	- 11		Feet			1	Feet W
Facili				County						ity/ or	Village	- 1				2012
				Wapello				Ottur	nwa							
Sar	nple											Soil	Prope	erties		
	s (ii)	S	to	Soil/	Rock Description											
- ec	Att.	onn	n Fe	And C	Geologic Origin For				-		dion	p		2		nts
Tyl	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Ea	ach Major Unit		CS	Graphic Log	III da	PID/FID	ndar	istur	Liquid Limit	Plasticity Index	00	D/ nme
Number and Type	Ler	Blo	Del	V			n s	Grap	Well	PID	Standard Penetration	Moisture Content	Liquid Limit	Plastic Index	P 200	RQD/ Comments
			E.	TOPSOIL		TC	PSO	11/11/		8						
S1 S2	19	1.4 5.7 2.4 7.11	-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16	LEAN CLAY WITH SA	ND, very dark gray (5Y 3/1		CL					М				

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Firm SCS Engineers 2830 Dairy Drive Madison, WI 53718

Tel: (608) 224-2830

Oall	nple		0							Soil	Prope	erties		
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content		Plasticity Index	P 200	RQD/ Comments
	24	23 99	17	POORLY GRADED SAND, olive yellow (2.5Y 6/6).	SP					М				
		44	18	LEAN CLAY, dark grayish brown (10YR 4/2).	CL					72.7				
4	24	44	-19	POORLY GRADED GRAVEL, fine.	GP	000				W				saturation 18 ft bgs.
n			-20	LEAN CLAY, brownish yellow (10YR 6/8). POORLY GRADED GRAVEL WITH CLAY, gray (10YR	CL	0 48								
5	15	23 36	-21 -22	5/1), fine.	GP-G0					w				
6	24	3 4 8 9	-23 -24	POORLY GRADED SAND, gray (10YR 5/1), medium						w				
7	24	43	-25 -26	grained.	SP	ļ				w				
8	24	78 119	-27 -28 -29 -30	Same as above, but brown (10YR 5/3). POORLY GRADED SAND, gray (10YR 5/1), fine grained, (weathered bedrock?).						w				
9	23	5 14 33 50/.	E	Medium grained.	SP					w				
0	12	2 50/.:	-33 -34							w				
П			35	POORLY GRADED SAND, olive yellow (2.5Y 7/1), fine grained, (weathered bedrock?).										
11	3	50/.3	36		SP					w				
			-37	End of Boring at 37 feet bgs.										

	ENG]			and Contractors					S	OIL	BOR	ING	LOG	INFO	ORM	ATION
			Ro	Watershed/W Remediation/	⁷ astewater □ ¹ Redevelopment □	Waste I Other	_	ement								
													Pa	ge 1	of	1
	y/Projec					License/I	Permit/	Monito	ring Nu	mber		Boring	Numb		XI 20	
				ating Station f crew chief (first, last) a	SCS#: 25220083.00	Date Dri	lling St	orted		Dot	e Drilli	ng Cor	nnlatad			2WT ing Method
_	an Kin	-	Name 0	i crew cilier (first, iast) a	na rum	Date Dili	iiiig Si	arteu		Dai	e Dillii	ng Coi	прискей	ļ		llow stem
	ect Pu		nalytic	al			4/27	/2022			4	4/27/2	2022			ger
Uniqu	e Well l	No.		DNR Well ID No.	Common Well Name	Final Sta			el :		Elevat					Diameter
Local	Grid Or	iain		stimated:) or Bor	MW-302WT	_	Feet N	MSL_			71.54 Local C			,	8	.25 in
State		igiii		,264 N, 1,902,620		La	t <u>41</u>	<u>°</u> 5		0.9"	Local C	ли го		J		□Е
NE		of S		/4 of Section 26,	T 73 N, R 16 W	Long	<u>-92</u>	°32		5.2"		Feet				Feet W
Facilit	y ID			County				Civil T		ty/ or V	illage					
				Wapello				Ottur	nwa		I	~ '1				<u> </u>
San	nple											Soil	Prop	erties		
	t. &	nts	eet		lock Description						_					
er /pe	ı At ered	Cou	In F		eologic Origin For		N	.c.	u u		ard atio	ure or	_	ity		lents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Eac	ch Major Unit		SC	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
<u>z ¤</u>	JA	В		Hydrovaced to 8 feet held	ow ground surface (bgs) and	l blind	n	Q J	M K	[P]	N G	Z O	i i	교표	Ь	<u> </u>
				End of boring at 16.5 fee	t below ground surface.	iniology.										

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Firm SCS Engineers 2830 Dairy Drive, Madison, WI Tel: 608-224-2830 Fax:

D 111													Pag		of	1
	ty/Projecty/Projecty			rating Station	SCS#: 25215135.40	License/	Permit	Monito	ring N	umber		Boring	Numb		V-30	3
Borin	g Drille	d By:	Name o	f crew chief (first, last)		Date Dri	illing S	tarted		Da	te Drilli	ng Con	npleted		Drilli	ng Method
	dd Sch scade I						12/8	/2015				12/8/2	2015			/4 hollow m auger
	ie Well		ng.	DNR Well ID No.	Common Well Name	Final Sta	tic Wa	ter Leve		Surfac	e Eleva	tion		Во	rehole I	Diameter
Local	Grid Or	rigin	☐ (e:	stimated:) or Bo	MW-303		Fe	et			659 Local C	.0 Fee			8.	5 in
	Plane	igin		,583 N, 1,903,213		La	ıt	0	1_	- 0	Local	nia Lo				□Е
NE		of S	E 1	/4 of Section 26,	T 73 N, R 15 W	Lon	g	0		- 00	7'11	Feet	\square s		F	cet 🗆 W
Facili	ly ID			County Wapello				Ottur		ity/ or	village					
Sar	nple											Soil	Prope	erties		
	. (ii)	str	eet		Rock Description											
ype	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		Geologic Origin For ach Major Unit		S	nic	am	A	Standard Penetration	ure	70	city		RQD/ Comments
Number and Type	Lengt	Blow	Deptl	L	acii wajor cint		usc	Graphic Log	Well	PID/FID	Stand	Moisture Content	Liquid	Plasticity Index	P 200	Somr
SI	Ĩ	50	2 3 4 5 6 7 8 10 11	WEATHERED SANDS (10YR 5/4).	TONE, medium grained, bro		FILL	DNE				w				
S2	NR		14													

Firm SCS Engineers 2830 Dairy Drive Madison, WI 53718

Tel: (608) 224-2830

Tel: (608) 224-2830

Environmental Consultants and Contractors

Facility/Project Name IPL- Ottumwa Generating Station Boring Drilled By: Name of crew chief (first, last) and Firm Todd Schmalfeld Cascade Drilling Unique Well No. DNR Well ID No. DNR Well ID No. DNR Well ID No. Common Well Name MW-304 Feet Date Drilling Started 11/11/2015 11/11/2015 11/11/2015 11/11/2015 11/11/2015 Stem 2 Boring Number MW-304 4-1/4 11/11/2015 I1/11/2015 Stem 2 Boring Number MW-304 Final Static Water Level Surface Elevation Borehole Dian Feet 680.1 Feet 8.5 i Local Grid Origin Gestimated: State Plane 401,152 N, 1,903,287 E S/C/N SE 1/4 of NE 1/4 of Section 26, T 73 N, R 15 W Long County Wapello County Wapello Soil Properties Soil Properties				R	oute To: Watershed/\ Remediation	Wastewater n/Redevelopment	Waste Ma	_	ement \square								
PI																of	3
Boring Drilled By: Name of retw chief (first, last) and Firm Date Drilling Started Date Drilling Completed A-1/4 Cascade Drilling A-1/4 Cascad					matica Centina	agal agains to	License/Per	mit/	Monitoring	y Nun	iber		Boring	Numbe		1/ 20	1
Todd Schmalfeld Cascade Drilling Continue Conti							Date Drillin	o St	arted	_	Da	te Drilli	na Con	mleted			
Cascade Drilling	7.7.				or even error (1113c, tast)	and I min	Date Dillin	.6.00	arred		100	ic Dilli	ng con	ipicica			1/4 hollow
Unique Well No. DNR Well ID No. Common Well Name Final Static Water Level Surface Elevation Borchole Dia MW-304 Feet Surface Elevation Borchole Dia MW-304 Surface Elevation Section Section							11	1/11	/2015			_ 1	1/11/	2015			m auger
Local Grid Origin	Uniqu	ie Well	No.		DNR Well ID No.	1	Final Static			S	urfac			7	Bo	rehole	Diameter
State Plane								Fee	et							8	.5 in
Second S			rigin				Lat		0 1			Local C	irid Loc				
Facility ID County Wapello Civil Town/City or Village Ottumwa Soil Properties Soil/Rock Description And Geologic Origin For Each Major Unit TOPSOIL TOPSOIL FAT CLAY, black (10YR 2/1). TOPSOIL FAT CLAY, yellowish brown (10YR 5/4). S2 19.5 4.5 11 13 FAT CLAY, yellowish brown (10YR 5/4). S2 SDIP Topsoil TOPSOIL TOPSOIL FAT CLAY, yellowish brown (10YR 5/4). CH M M M Civil Town/City or Village Ottumwa Soil Properties Soil Properties And Geologic Origin For Each Major Unit S2 S3 S4 S4 CH M M M M M M M M M M M M M			-c N						0 1		"		Г				☐ E Feet ☐ W
Sample Soil/Rock Description Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit And Geologic Origin For Each Major Unit And Geologic Origin For Each Ma			01 10	V.E.		1 /3 N, K 13 W	Long	-	Civil Town	n/City	or V	Village	reet	⊔ S	_	-	eet 🖂 w
Sample Soil/Rock Description Soil/Rock Descripti		9										, mage					
Soul/Rock Description And Geologic Origin For Each Major Unit TOPSOIL TOPSOIL FAT CLAY, black (10YR 2/1). TOPSOIL FAT CLAY, black (10YR 5/4). S2 19.5 4.4 5 19.5 4.4 5 19.5 4.4 5 19.5 4.4 5 TOPSOIL FAT CLAY, yellowish brown (10YR 5/4).	Sar	nnle			1			_		T			Soil	Prope	erties		
TOPSOIL. TOPSOIL. FAT CLAY, black (10YR 2/1). CH S1 23 4.5 -11 -12 -12 -13 FAT CLAY, yellowish brown (10YR 5/4).					Soil/	Rock Description	1										
TOPSOIL. TOPSOIL. FAT CLAY, black (10YR 2/1). CH S1 23 4.5 -11 -12 -12 -13 FAT CLAY, yellowish brown (10YR 5/4).	46	tt. &	unts	Fee			1					uc			200	16	73
TOPSOIL. TOPSOIL. FAT CLAY, black (10YR 2/1). CH S1 23 4.5 -11 -12 -12 -13 FAT CLAY, yellowish brown (10YR 5/4).	ber	th A	ပိ	h Th		500 LTD) - 10 LTD) - 10 1 40 1 40 1		20	pic	ram	EB	lard	ture	ъ.	city		/ men
TOPSOIL. TOPSOIL. FAT CLAY, black (10YR 2/1). CH S1 23 4.5 -11 -12 -12 -13 FAT CLAY, yellowish brown (10YR 5/4).	Tum Ind 7	eng	Slow	ept				S	og Vell)iag	9	tanc	fois	imi	last	200	RQD/ Comments
S1 23 45 -11 -12 FAT CLAY, black (10YR 2/1). S2 19.5 44 E	2 0		ш	-	TOPSOIL.				L. LIKA	N	д	O A	20	11	д =	д	20
S1 23 45 11				E.	C. A		TOI	PSO	F 777						7.71		
FAT CLAY, yellowish brown (10YR 3/4).				-4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14				СН									

Firm SCS Engineers 2830 Dairy Drive Madison, WI 53718

Soring 1		JCI	TATA	V-304					1	Soil	Prope	ge 2	OI	5
and Type	Recovered (in)	4 E Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit FAT CLAY, yellowish brown (10YR 3/4). (continued)	USCS	Graphic Log	Well	PID/FID	Standard Penetration			y	P 200	RQD/ Comments
	22		17							М				
	23	27 89	-20 -21 -22							М				
	23	3 4 8 6	-23 -24 -24							М				
	23	5 11 15 11	-25 -26 -27		СН					М				
	15	44 56	-28 -29 -30							М				
	18	46	-31 -32							М				
	24	4676	-33 -34 -35							М				
	16	2 2 4 6	-36 -37	FAT CLAY, DARK OLIVE BROWN (2.5Y 3/3).						М				
	24	43	-38 -39 -40		СН					М				
3	18	33	41							М				

San San			1117	V-304							Soil	Pag		of :	
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic	Well	Diagram	PID/FID	Standard Penetration	Moisture Content		Plasticity Index	P 200	RQD/ Comments
		2.4	-43	FAT CLAY, DARK OLIVE BROWN (2.5Y 3/3). (continued)	СН										
14	24	3 4 9 14	-44	SANDY SILT, very dark gray. POORLY GRADED SAND, medium grained, gray (5Y 6/1),	ML]				W				
п			E_45	(weathered bedrock).											
Ш			=												
16	15	30 50/.	4-46 E								W				
Ш			-47												
П			-48		SP										
17	5	33 50/.	Z -49								W				
Ц			E							1 .					
П			-50 E				-								
18		50/.4	-51				k	П			W				
Ц			-52	End of Boring at 52 feet bgs.			-								
				End of Boring at 52 feet bgs.											
										8					
					ļ										
										Ĭ.					
						1		Ш							

	ENG:			and Contrac	tors						SO	IL B	BORI	ING	LO	G I	INFC)RM	ATION
			Ro			Vastewater Redevelopment	Waste 1	_	ement										
															I	Page	e 1	of :	2
	y/Projec			ating Stati	ion	SCS#: 25220083.00	License/	Permit/	Monito	ring l	Num	ber]	Boring	Nun	nbe		W_30	4WT
					(first, last) a		Date Dri	lling St	arted			Date	Drillir	ng Cor	nplet	ed	171 7		ing Method
Dir	an Kin ect Pu	sh Ar	nalytic						/2022					1/27/2	2022	2		au	llow stem ger
Uniqu	e Well]	No.		DNR Wel	ll ID No.	Common Well Name MW-304WT	Final Sta		er Leve 3 Feet			rface I 67		ion Feet	MS	SL	Bo		Diameter .25 in
	Grid Or Plane	rigin		timated:) or Bor 1,903,286	ing Location E S/C/N	La	ıt <u>41</u>	° 5	,	49.	6" La	ocal G	rid Lo					
SE		of N		/4 of Section		T 73 N, R 15 W	Long	g <u>-92</u>	°32	<u>'</u>	46.	<u>4"</u>		Feet				I	□ E Feet □ W
Facilit	y ID			Cot	unty	,			Civil To	own/	-	or Vi	llage						
	. 1			W	apello				Ottun	nwa	· ·			G 1	D		4		
Sar	nple				G :1/D	1.5						-		Soil	Pro	pe	rties		
	tt. & d (in	ınts	Feet			lock Description eologic Origin For							n n						S
ber Sype	th A vere	Coı	h In			ch Major Unit		CS	hic			∄ ;	lard tratic	ture	<u>.</u>	_	icity		/ men1
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			J		N S (Graphic Log	Well	Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid	Limit	Plasticity Index	P 200	RQD/ Comments
			-	Hydrovaced drilled to 3	d to 8 feet belo 6 feet bgs. See	ow ground surface (bgs) and boring log MW-304 for lit	l blind hology.												
			2																
			_																
			- 4																
			_ _6																
			<u>-</u>																
			-8																
			- ₁₀																
			- ~~ -																
			-12																
			- 14																
			- ''																
			-16																
			- -18																
			10																
			-20																
											i.· I								
			24																

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature Firm SCS Engineers 2830 Dairy Drive, Madison, WI Tel: 608-224-2830 Fax:

SOIL BORING LOG INFORMATION SUPPLEMENT

Borin	g Numb	er	MW	V-304WT							Pag	e 2	of	2
	nple									Soil	Prope			
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
				End of boring at 36 feet below ground surface.										

			Ro	watershed/\ Remediation	Wastewater n/Redevelopment	Waste 1 Other		ement						. 2		2
Engilia	ty/Proje	at Mar				License/	Damait	Monitor	nin o M	umala au	-	Danina	Pag		of	3
				rating Station	SCS#: 25215135.40	License/	Permit	ivionitoi	ring iv	umber	100	Boring	Numbe		W-30	5
Borin	g Drille	d By:	Name o	f crew chief (first, last)	and Firm	Date Dri	lling S	tarted	_	Da	te Drilli	ng Con	npleted			ing Method
Too	dd Sch	malf	eld												4.0	1/4 hollow
Cas	scade l	Drilli						/2015		-		12/8/2	2015			m auger
Uniqu	ie Well	No.		DNR Well ID No.	Common Well Name	Final Sta			ı	Surfac	e Elevat			Bo		Diameter
					MW-305		Fe	et				.5 Fee			8	.5 in
	Grid Or	rigin		stimated: (1) or Bo		La	1	0	0		Local C	irid Loc				0.73
	Plane			,473 N, 1,903,023		11 6 7 6		0	V.			-				ДΕ
SE Facilit		of N	E	/4 of Section 26,	T 73 N, R 15 W	Long	g	Civil To	/C	itud on	Villaga	Feet	\Box s			Feet W
			-1	Wapello				Ottun		ity/ or	village					
Sar	nple											Soil	Prope	erties		
	(ii) &	33	t	Soil/	Rock Description											
r oc	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	And C	leologic Origin For		S		-		Standard Penetration	ο		2		RQD/ Comments
Tyl	gth	W	th.	Ea	ach Major Unit		SCS	phi	II gra	PID/FID	nda:	Moisture	uid	stici	00	D/ Dime
Number and Type	Len	Blo	Dep				U S	Graphic Log	Well	PID	Star	Moisture	Liquid	Plasticity Index	P 200	Co.
			E	TOPSOIL		Т	OPSO		8	3						
			Ei	GRAVEL			GP	000	\otimes	1						
			F	FAT CLAY			1000	500								
			-2	TATCLAT					8 1		11			-		
			E_3						W 11							
			- 3						n n							
			-4						1							
			Ε.)) I							
			-5													
			-6													
			E													
			-7					1 1		ı						
			-8													
			E						8 1		1 8					
			-9				CH	1								
			E					1	81.8							
П			=10	FAT CLAY, very dark g	grayish brown (10YR 3/2).											
SI	18	36	E-11						8 1			W				
31	16	3 6 9 11	E-11						8 1	1		VV				
L			-12													
П			E													
60	22	37	=13	same as above except, b	rown (10YR 4/3).							111				
S2	22	3 7 14 22	E-14					, V				W				
U			E					1 8					1			
П			-15													
			E_16				k, i						9			
			10													

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature Por Kyle Krane

Firm SCS Engineers 2830 Dairy Drive Madison, WI 53718

Tel: (608) 224-2830

гах:

San	g Numb	-	141,	V-305	T		Т				Soil	Prope	ge 2 erties		
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic	Well	Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid	Plasticity Index	P 200	RQD/ Comments
3	22	5 15 14 15	17	FAT CLAY (continued)											
4	20	3 5 13 15	18		СН										
5	24	45 711	-20 -21 -22	FAT CLAY WITH SILT, dark gray (10YR 4/1).							М				
	20	7 11 15 20	23	same as above except, very dark brown (10YR 2/2).							М				
, [24	48 11 12	-25 -26 -27	same as above except, very dark gray (10YR 3/1).	СН						М				
	24	8 12 16 21	-28 -29								М				
	13	44 712	-30 -31 -32								М				
0	24	5 6 9	-33 -34	LEAN CLAY, very dark brown (10YR 2/2).							w				
1	24	44 57	-35 -36 -37		CL						w				
2	22	22 35	38	same as above except, very dark grayish brown (10YR 3/2).							w				
3	6	3 9 11	-40 -41 -42	POORLY GRADED SANDY GRAVEL, fine, brown (10YR 4/3).	GPS	000					w				water @ 41.0 ft b

Environmental Consultants and Contractors Form 4400-122A

San	g Numl iple			V-305						Soil	Prope		of 3	
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/
14	22	23 50	-43 -44 -45	POORLY GRADED SAND, medium grained, yellowish brown (10YR 5/4), (weathered bedrock). (continued)	SP					S				
15	6	5 10 50	-46 -47		SP					s				
6	6	50	49							S				
			50	End of Boring at 50 ft bgs.										

SOIL BORING LOG INFORMATION

																			Page	1 of 4
Facility	-								License	/Permit	/Moni	torin	ıg Nu	ımber		Boring				
			enerati					220056.00						-	~ 111			·305A		
_		-	Name of	crew	chief (firs	st, last) a	nd Firm		Date Di	rilling S	started			Da	te Drilli	ing Con	npleted			ling Method
	Cranlerts E		nmen		rvices						5/202					2/27/2	2020		air/n	4" HSA and nud rotary
				DNR	R Well ID	No.		Well Name	Final St					Surfac	e Eleva			Bo		Diameter
T 1 4	C.:10			4:	1.	D		7-305A		32.7	Feet					76 Fe			10" a	nd 6" in.
Local C		ıgın			a: □) N, 1,9(ing Locatio	on K. C/N	L	at	· _			"	Local	Grid Loc		,		E4 🗆 =
SE	1/4	of N		/4 of S	ection	26,		ı, r. 15 w	Lor	ng	°			"		reet	□ N □ S			Feet E E W
Facility	y ID				County				County C	ode				ty/ or `	Village					
					Wape	ello					Ott	umv	va			~				
San	nple															Soil	Prope	erties		
	% (in)	ts	t s			Soil/R	lock Descri	ption												
. e	Att. red	onu	n Fe			And Ge	eologic Orig	gin For					п		d tion	و		>		nts
nber Tyf	gth	Ϋ́	th I			Eac	ch Major U	nit		CS	phic	_	ı gran	ÆII	ıdar	stur	bit it	ticit	2) / mine
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet							S O	Graphic	Log	wen Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
			_	Hydı	rovaced to	9.5 feet	t for utility	clearance.												Drilled using hollow stem
			F ,				•													augers to 55 feet
			<u> </u>									X	$\{[$							
			_2																	
			1																	
			E_3									K	1 🖔							
												\Diamond								
			-4																	
			E I																	
			_5																	
			E																	
			-6																	
			- 7																	
			E l																	
			- 8																	
			_ 9																	
										_L										
			10	Blind lithol	d drilled to	o 46 feet	. See boring	g log MW-30	05 for											
			E 10	nuio	iogy.															
			-11																	
			E																	
			-12																	
			-																	
			13																	
			Ė l																	
			14																	
			F , ,																	
I harab	v certif	iv that t	⊢15 he info	rmatics	n on this f	form is to	ne and ac-	ect to the be	et of my 1	novyle	lae						<u> </u>	<u> </u>		1
Signati	-	y mai i	THE HITO!	Пацог	on uns i	om is ti	ue and con	T-1	-		ige.									
Signali	ui C			1				scs	enginee	ers										Tel: Fax:
								1												гах:

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

SOIL BORING LOG INFORMATION SUPPLEMENT

Boring Number MW-305A Use only as an a	attachment to Form 4400-122.				P	Page	2 of 4
Sample				Soil Pro	perties		
Number and Type Length Att. & Recovered (in) Blow Counts Depth In Feet	Origin For	Graphic Log Well Diagram	PID/FID Standard Penetration	Moisture Content Liquid	Plasticity Index	P 200	RQD/ Comments
16							
17							
18							
<u> </u>							
= 20							
E-21							
= 24 = -25							
= 30							
= 31							
32 = 33							
34							
_35							
= 36							
= 37							
= 38							
- 39 - 40							

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A

MW-305A 3 of 4 Boring Number Use only as an attachment to Form 4400-122. Page Soil Properties Sample Length Att. & Recovered (in) Soil/Rock Description Depth In Feet Blow Counts Standard Penetration Comments Number and Type And Geologic Origin For Moisture Plasticity Index Diagram PID/FID USCS Graphic Content Liquid Limit Each Major Unit RQD/ P 200 Well Log Bagged auger samples to ~40 feet 41 42 43 45 Swithched to mud rotary drilling at 45 feet POORLY GRADED SAND, fine, light brown, 50/5 5 (weathered sandstone bedrock). W S1 47 48 49 50 51 -52 SP -53 Switched to air Same as above but very fine, light brown to light gray, rotary drilling at 55 feet with pieces of rock. 56 57 Driller noted rock became more compitant at 59' bgs. SANDSTONE, fine to medium, light brown, trace gravel and light gray to gray limestone, (bedrock). 62

SOIL BORING LOG INFORMATION SUPPLEMENT

Boring	g Numb	er	MW	V-305A Use only as an attachment to Form 4400-1	22.	1				Ca:1	Duan	auti a a	Page	4 of 4
San	nple			0.000 1.50 1.71						5011	Prope	rues		
	t. & 1 (in	nts	eet	Soil/Rock Description					Ē					ø
er ype	h At	Con	[In]	And Geologic Origin For Each Major Unit	S	iic	am	þ	ard ratio	ure		city		nent
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each Major Onit	SC	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
Z E	l l	В		LIMESTONE light grov with fine light brown	D	1 6	≱ □	Ь	S d	20	T T	P II	Ь	~ C
			E	LIMESTONE, light gray, with fine, light brown sandstone, (bedrock).		H								
			-66											
			67											
			E											
			68			中								At 68 feet, driller noted a fracture in the bedrock.
			E-69			中								in the bedrock.
			F											
			F 70	LIMESTONE, gray, with dark brownish gray shale,	<u> </u>									
			E 71	(bedrock).										
			F / 1											
			F-72											
			-73			\Box								
			F			\Box								
			- 74			Ħ								
			- ₇₅		L									
			F /	SANDSTONE, fine, light grayish white, with gray limestone, (bedrock).				-						
			- 76											
			77					-						
			E ''			: : : : :								
			78											
			E -79											
			E '			: : : : :								
			80	End of boring at 80 feet below ground surface.		1:::::		1						

Tel: (608) 224-2830

Fax:

Environmental	Consultants	and Contractors
Litvii Ommoniai	Consultants	and Contractors

			Ro			Wastewater n/Redevelopment	Waste ! Other		ement	Ш							
The still	/D!-	. 37					License/I	S	/				D	Pag		of	2
	ty/Proje			rating Station		SCS#: 25215135.40	License/i	ermit	ivionite	oring is	umber		Boring	Numb		W-30	6
				f crew chief (first,	last)		Date Dri	lling S	tarted		Da	ate Drilli	ng Con	npleted			ing Method
	dd Sch															4-	1/4 hollow
	scade l		ng	Invinue un un n		la musi			2/201:		10.0		1/12/	2015	- In	ste	em auger
Uniqu	ie Well	No.		DNR Well ID	NO.	Common Well Name MW-306	Final Sta	tic wa Fe		ei	Surfac	ce Eleva	uon .1 Fee	at .	В		Diameter .5 in
Local	Grid O	rigin	(es	stimated:	or Bo	oring Location 🖂	1	1.0		-	1	Local C			_	0	.5 m
	Plane			,666 N, 1,902			La	t	0			-			1		□Е
SE		of N	E 1		26,	T 73 N, R 15 W	Long	3 —	0				Feet			-	Feet \square W
Facili	ty ID			County	la.						City/ or	Village					
Car	1a	_	1	Wapel	10			r	Ottu	mwa	1	1	Call	Prop	aution		ľ
Sai	nple	3				D. I.D							3011	Frope	lities		
	Length Att. & Recovered (in)	unts	Depth In Feet			Rock Description Geologic Origin For						5					So
ype	h Al	Con	=			ach Major Unit		S	nic	E	10	ard	ure	P	city		nent
Number and Type	engl	Blow Counts	eptl		L	acii Major Offic		SC	Graphic	Well	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
7 4	1 M	щ		TOPSOIL.	_			ם		MI	7	S E	20	111	A 1	Д	20
			E,			brown (2.5Y 3/3).	Т	OPSO	1 24								
S1 S2	18	36 911 56	-10 -12 -13 -14 -15 -16 -17 -18 -19 -11 -12 -13	FAT CLAY, gray	· (10Y)	R 5/1).		СН					М				

Firm SCS Engineers 2830 Dairy Drive Madison, WI 53718

5 10 - 17 - 18 5 8 - 14 17 - 19 - 20 - 20	Soil/Rock Description And Geologic Origin For Each Major Unit FAT CLAY, gray (10YR 5/1). (continued) FAT CLAY, gray (10YR 5/1). FAT CLAY, dark olive brown (2.5Y 3/3).	CH	Graphic	Well Diagram	PID/FID	Standard Penetration		Liquid Limit	ity	00	RQD/ Comments
5 8 14 17 19 20		СН		W N		NH	ΣŬ	Ľ.	Plastic Index	P 200	RQ
5 8 14 17 — 19 — 20	FAT CLAY, dark olive brown (2.5Y 3/3).						М				
E							М				
5 6 -21 13 16 -22		СН					w				
3 5 7 9 -24 -25							W				
2.5 -26 7.11 -27	POORLY GRADED SAND, very dark grayish brown (10YR 3/2), medium to coarse grained, (weathered bedrock?).						W				
73 43 29 30		SP					W				
11 -31 22 -32 -33				目			W				
WOR = 34	End of Boring at 34.5 feet bgs.						W				
7	73 -28 -27 -28 -30 -31 -31 -32 -33 //OR	25	7 9	3 5	25	25	3 5	35 5	35 5	35 5	3 5 7 9

SCS Enviro				and Cont	ractors					S	OIL	BOR	ING	LOG	INFO)RM.	ATION
			<u>Ro</u>	ute To:	Watershed/W Remediation/	astewater Redevelopment	Waste I Other	_	ement								
														Pa	ge 1	of	1
Facility							License/I	Permit/	Monito	ring Nu	mber		Boring		er		
				ating St		SCS#: 25220083.00	D . D !!	u:	. 1		lp.	D :11:		1			6WT
_		-	Name o	f crew ch	ief (first, last) a	nd Firm	Date Dri	lling St	arted		Dat	e Drilli	ng Con	npleted	1		ing Method
	ın Kin ect Pu		nalytic	al				4/27/	/2022				4/27/2	2022			llow stem ger
Unique			iary tre		Well ID No.	Common Well Name	Final Sta				Surface	e Elevat			Во		Diameter Diameter
						MW-306WT	6	555.25	5 Feet	MSL		81.34			٠	8	.25 in
Local		rigin				ing Location 🖂	La	t <u>41</u>	° 5	5' 5	4.7"	Local C	Grid Lo				_
State I SE		of N		,002 IN, /4 of Sec	1,902,626 etion 26,	E S/C/N T 73 N, R 15 W	I .	-92		_	55.0"		East				☐ E Feet ☐ W
Facility		01 1			County	1 /3 N, K 13 W	Long			own/Ci		/illage	геец		<u> </u>		reet 🗆 w
,					Wapello				Ottur		,	J					
San	ıple												Soil	Prop	erties		
	& in)	S	ਫ		Soil/R	ock Description											
	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		And Ge	ologic Origin For				_		d ion	မ		>		nts
nber Typ	gth . over	w C	th I		Eac	h Major Unit		CS	Graphic Log	II gran	PID/FID	ndar	Moisture Content	bit it	Plasticity Index	0	D/ nme
Number and Type	Len Rec	Blo	Dep					S O	Grap Log	Well Diagram	PID	Standard Penetration	Moisture Content	Liquid Limit	Plastic Index	P 200	RQD/ Comments
				drilled t	to 22 feet bgs. See	we ground surface (bgs) and boring log MW-306 for little boring log MW-306	hology.										

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Firm SCS Engineers 2830 Dairy Drive, Madison, WI Tel: 608-224-2830 Fax:

			Ro		Wastewater n/Redevelopment	Waste N Other		ement								
													Pag		of	2
	ty/Proje			atina Ctation	DODE 25015140.00	License/P	ermit	Monito	ring Nu	ımber	1 6	Boring	Numb		17.20	17
				ating Station f crew chief (first, last)	SCS#: 25216148.00 and Firm	Date Dril	ling S	tarted	_	Da	te Drilli	ng Con	noleted		V-3(ling Method
	ke Mu			2017 N. 2020 Constitution (Co.)	713,000	0.000.000					10.5110				100	
	scade l		ng	TEXANDER IN	Ta			5/2016				0/25/	2016			SA
Uniqu	ie Well	No.		DNR Well ID No.	Common Well Name MW-307	Final Stat	ic Wa		el	Surfac	e Eleva	ion 1 Fee		Bo		Diameter 3.5 in
Local	Grid Or	igin	☐ (es	stimated:) or Bo		1	1.0				Local C			_		5.5 III
	Plane			,707 N, 1,903,070		Lat		•	-	-			□ N			□E
NE Facili		of S	E 1	/4 of Section 26,	T 73 N, R 15 W	Long	_	0		H	Village	Feet	\square s		- 1	Feet W
raciii	ty ID			County Wapello				Ottu		ity/ or	village					
Sar	nple			7.045					1			Soil	Prope	erties		
	& (in)	S	*	Soil/	Rock Description											
_ e	1	Blow Counts	Depth In Feet	And C	Geologic Origin For		1.2		-		dion	o .	- 1	>		nts
Number and Type	Length Att. Recovered (W C	pth I	Ea	ach Major Unit		SCS	Graphic	Well	PID/FID	Standard Penetration	Moisture	Liquid Limit	Plasticity Index	00	RQD/ Comments
Nu and	Lei	Blc	De		AND WITH GRAVEL, tan,		US	Grap	Well	PIL	Sta	Sox	E. E.	Plastic Index	P 200	5.0
S1 S2	24	22 3 2 4 1 4 4 4	-1 -2 -3 -4 -5 -6 -7 -8 -10 -11 -12	LEAN CLAY, dark yell dense.	owish brown (10YR 4/4), sl	ightly	SP					W				water level 6.5 ft bgs.

Firm SCS Engineers 2830 Dairy Drive Madison, WI 53711

Tel: (608) 224-2830

Fax:

	y Num	Ī	1	V-307				1		Soil	Prope		of	Ī
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic Log	Well	PID/FID	Standard Penetration			ity	P 200	RQD; Comments
i				LEAN CLAY, dark yellowish brown (10YR 4/4), slightly dense. (continued)	CL	yez a								
53	24	1224	-16 -17	SILT, dark yellowish brown (10YR 3/4), fine to medium sand.	ML					W				
54	17	33	-18 -19		IVIE					W				Bedrock @19.5 ft bgs.
55	5	50/0.	-20 -21	SANDSTONE, dark brown (10YR 3/3),						w				More
			-22 -23			C								@20.5' -24.5' bgs.
			-24 -25	more weathered.										
			-26 -27											
66 =	1	100	28	Same as above except, gray (10YR 6/1). End of boring at 28 ft bgs.										

Tel: (608) 224-2830

Fax:

Environmental	Consultants and	Contractore
Environmental	Consultants and	Contractors

	KO			Vastewater /Redevelopment	Waste I Other	-	ement								
Facility/Project Nam	10				License/I	Damait	Manita	wina Mi	umbar		Darina	Pa		of	2
IPL-Ottumwa		ating Station		SCS#: 25216148.00	License/i	Permit	rivionito	oring iNt	ımber		Boring	Numb		W-3	08
Boring Drilled By:			st, last) a		Date Dri	lling S	tarted		Da	te Drilli	ing Cor	npleted			lling Method
Mike Mueller								3							
Cascade Drillin Unique Well No.	ng	DNR Well ID	No	Common Well Name	Final Sta		5/2010		Surfac	e Eleva	10/25/	2016			SA Diameter
Onique wen ivo.		DIVIN WEILID	140.	MW-308	r mai Sta	Fe		CI	Surrac		.9 Fee	et	В		8.5 in
Local Grid Origin	☐ (es	timated: [])	or Bo	ring Location 🛛	1		0	4	.,	Local C					0.0 m
State Plane		,312 N, 1,90			La		0	7=	-						□Е
NE 1/4 of S Facility ID	E 1	/4 of Section County	26,	T 73 N, R 15 W	Long	3		own/Ci		Tillago	Feet				Feet W
racinty ib		Wape					Ottu		ity/ Of	village					
Sample											Soil	Prop	erties		
S III S	#		Soil/I	Rock Description											1
Number and Type Length Att. & Recovered (in) Blow Counts	Depth In Feet		And G	eologic Origin For		1				ion			>		atu
Number and Type Length At Recovered Blow Cou	oth I		Ea	ch Major Unit		SCS	Graphic	Well Diagram	PID/FID	Standard Penetration	Moisture	nid nit	Plasticity Index	200	RQD/ Comments
Nun and Ler Rec Blo	Del			ND WITH GRAVEL, tan, t		US	Grap	Well S	PID	Star	Mo	Liquid Limit	Plastic Index	P 20	RQ Cor
S1 24 194 22	-1 -2 -3 -4 -5 -6 -7 -8 -9	LEAN CLAY, b		construction fill sand to fill 9.5 ft bgs). OYR 4/3), dense.		SP					W				water @ 6.5 ft bgs.

Firm SCS Engineers 2830 Dairy Drive Madison, WI 53711

	g Num nple	Ī		V-308	1						Soil	Prope	e 2	J.	
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic	Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content		Plasticity Index	P 200	RQD/ Con:ments
II			E	SILT, brown (10YR 4/3), some clay. (continued)	ML		П	Н							
3	18	12	-16	SILTY SAND, brown (10YR 4/3).	SM						W				
			E-17	POORLY GRADED SAND, brown (10YR 4/3), fine grained.	SP										
4	13	4 12 13 3	18	WELL GRADED SAND AND GRAVEL, dark grayish brown (10YR 3/2), fine to coarse grained, (weathered bedrock).	sw		***				w				
			- 19	SANDSTONE, dark grayish brown (10YR 4/2), weathered bedrock.		1									
5 []	6	12 26 50/0.4		Same as above except, brown (10YR 4/3).							W				
			22												
			-23												
п		50/0.4		Same as above except, dark grayish brown (10YR 4/2).				Ħ							
6	4	50/0.4	-25	End of boring at 25 ft bgs.	+		+				W				

			Ro		Wastewater n/Redevelopment	Waste I Other		ement								
													Pag		of 2	2
	ty/Proje				Verenders vitality	License/I	Permit	/Monito	oring N	ımber	1 8 5	Boring	Numbe			0
Porin	Ottu	nwa	Gener	ating Station f crew chief (first, last)	SCS#: 25216148.00	Data Data	D: C	1		ID	+ D.:III		1. 1	MV	V-30	
	ke Mu			i crew chief (first, last)	and rimi	Date Dri	ung S	tarted		Da	te Drilli	ing Con	npieted		וווווועם	ng Method
	scade l						10/2	7/201	6			0/27/	2016		HS	SA.
	ie Well			DNR Well ID No.	Common Well Name	Final Sta				Surfac	e Eleva		2010	Bo		Diameter
					MW-309		Fe				652	.5 Fee	et			.5 in
	Grid O	rigin	☐ (es	stimated:) or Bo	oring Location 🖂	1	-	0	-11	ú	Local C	Grid Lo	cation			
	Plane			,189 N, 1,902,070		La		0		-			\square N			□E
NE Facili		of S	E 1	/4 of Section 26,	T 73 N, R 15 W	Long	-	-		_	17:11	Feet			F	eet 🗆 W
racill	ty ID			County Wapello				Ottu	Town/C	ity/ or	village					
Sai	mple			w apeno		-		Out	iiwa			Soil	Prope	rtiec		_
Out				C-:1/	Davida Davida davi							Son	Тюрс	THES		
	tt. &	ınts	Feet		Rock Description leologic Origin For							-				10
ype	th A	Coo	E E		ich Major Unit		co	nic	am	9	ard	ure	70	city	100	nent
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	L.	ich Major Omi		SC	Graphic	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
2 14	1 2 2	щ	- 4	Hydrovac borehole to 10) ft hes		D	0 7	MK	Д	NA	20	11	P	Д	20
			F.					10								
			F1							1						
			-2													
			E													
			-3					3	S	}						
			E_4													
			-													
			-5					1. 3								
			E						64							
			F-6											1 4		
			E-7													
			E						8 B							
			-8			- 1			# U							
			E													
			-9			- 411										
100			= 10					-	ши		1					
- 1			=10	LEAN CLAY, very dark sand.	grayish brown (10YR 3/2),	trace										
SI		33	Eu	Saliu.					88			w				
31		33 67	Eu						11 1			W				
L			-12													
Г			Ε.,				CL									
		22	-13													
S2		22	E-14					100				W				
L			E '7													
			-15													

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature My

Firm SCS Engineers 2830 Dairy Drive Madison, WI 53711

Tel: (608) 224-2830

Fax:

Environmental Consultants and Contractors Form 4400-122A

oring Numb Sample			V-309	1					Soil		erties	of	
and Type Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Fach Major Unit	uses	Graphic	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid	Plasticity Index	P 200	RQD/ Comments
63	11111	16	SILTY SAND, very dark grayish brown (10YR 3/2), fine to medium grained.	SM					W				
§4	3 5 4 6	18	POORLY GRADED SAND, yellowish brown (10YR 5/4), coarse grained.						w				
35	23 750	-20 -21 -21	WEATHERED SANDSTONE.	SP					W				
56 []		23 -24 -25 -26 -27							w				
			End of boring at 27.5 ft bgs.										

·	artmen			oute To: Watersh	ied/Wastewater [] ation/Redevelopment []	Waste M				1	onn 44	00-122				1 of 2
				iting Station	SCS#: 25219028,00	License/P	ermi	/Monito	ring Ni	mber		Boring		-310		
				of crew chief (first, l		Date Drift	ing S	itarted		Da	te Drill				Drill	ing Method
	c Wei															/4 hollov
	nique V			ital Drilling, Inc	. Common Well Name	Final Stati		7/2019		Carrie	e Eleva	8/27/	2019	10.		m auger
X 1 4.4	inque.	, Cil Is	,,,	IDIAK WEN ID IA	MW-310	0 4 4 4 4 4 4 4		MSL	1		55.76		12M	150		Diameter 5 in.
.ocal	Grid C	rigin			Boring Location 🔯			0			Local (_	0,	J 1111.
State	Plane			,502 N, 1,904,	206 E S/C/N	Lat				-		Fee			J	Feet 🔲 E
in ail.	ly ID	4 of		/4 of Section ,	T N, R	Long County Cod		Lessant en	-		1701) 		□ W
acm	ty 117			Wapello		County Coa	HC.	Civil T Ottur		ly/ or	village					
Sai	nple	T		1		1	_	Totta	1			Soil	Prop	erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		nd Geologic Origin For Each Major Unit		uscs	Graphic Log	Well	PID/FID	Standard Penetration	Moisture Content	Liquid	Plasticity Index	P 200	ROD/ Comments
	1 1	WOR-1	2 -1 -5 -7 -8 -0, 9	LEAN CLAY, bro		ilt.						М				

S2 15 32 11 M/W

S3 20 11 SILT, brown, with clay

Thereby certify that the information on this form is true and correct to the best of my knowledge.

Signature

Firm SCS Engineers
2830 Dairy Drive Madison, WI 53718

Fet 608-224-2830

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis Stats. Completion of this form is mandatory. Father to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE. See instructions for more information, including where the completed form should be sent.

	Ple			/-310 Use only as an attachment to Form 4400					1		Soil	Prope	rties	135	2 of
T and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic	Well	Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/
	24	WOR	-16		SiL						M/W				
	18	1323	-17 -18	POORLY GRADED SAND, fine to medium, 1/2" coarse sand seam at 17.75'							w				
	14 W	OR WO	5				H				w				
-	10	WOR 2	-20 -21		25,						w				
-	24	6 6	22	Trace small rounded gravel							w				
		11 20	24	End of boring at 24*		N. V.									
								Ì							
							ľ								
								1							
			١.												
				÷											

																		Page	1 of 3
Facility				_				License/	Permit/	/Monito	oring N	Vumb	er]		Numbe			
IPL-	Ottum	wa Go	enerati	ng Sta	tion chief (first, las		5220056.00	Date Dri	lling C	tantad			Date D	\:11:s			310		ling Method
_	Cranl	-	varrie or	ciew	ciliei (ilisi, ias	i) aliu Filili		Date Di	ning S	iarieu			Date L	/111111	ilg Coll	ipieted			4" HSA &
			nment	tal Se	rvices				2/27	//2020)				3/2/2	020			rotary
				DNR	R Well ID No.		Well Name	Final Sta			rel	Sur	face El				Bo		Diameter
T 1	0:10				1 🗆 🗎		V-310A		12.0	Feet					26 Fe			10" a	nd 6" in.
State 1	Grid Or Plane	ıgın	☐ (es	timated 504 N	d: 🗌) or 1 N, 1,904,19	Boring Location	on K C/N	La	ıt	o	<u> </u>		Loc	al G	rid Loc				Foot D E
SW		of N		/4 of S			N, R 15 W	Lon	g	0	•		"		reet	□ N □ S			Feet ☐ E ☐ W
Facility					County	- ,,		County Co		Civil 7	Town/0	City/	or Villa	ige					
					Wapello					Ottu	mwa								
San	nple														Soil	Prope	erties		
	(ii)	ts	et		So	il/Rock Descri	iption												
r pe	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			Geologic Ori			N N	ွ		ء ا ∈	ء ا د	Penetration	re t		ty		ents
Number and Type	ngth	W (pth]			Each Major U	nit		SC	Graphic Log		DIA/FID	Standard	etra	Moisture Content	Liquid Limit	Plasticity Index	200	RQD/ Comments
Nu and	Le	Ble	De						5	Grap			Ste	Pe	<u>ဗိ</u> ပိ	Lii	Pla	P 2	
			E	Hydr	rovaced to 8 fe	et for utility cl	earance.												Drilled using hollow stem augers to 40 feet
			-1																augers to 40 rect
			Ė I									\rangle							
			- 2									3							
			_3																
			=									\rangle							
			-4																
			=																
			-5																
			$\stackrel{\vdash}{\vdash}_6$																
			Ë 📗																
			<u> </u>																
			Ė ,																
			-8		d drilled to 24	feet. See borin	g log MW-3	10 for											
			E ₉	lithol	logy.														
			E																
			10																
			E																
			-11																
			E ₁₂																
			_13																
			E l																
			-14																
			- -15																
I hereb	y certif	y that t		rmatior	non this form	is true and cor	rect to the be	st of my ki	nowled	ge.	1		'						<u> </u>
Signati	-		2	1			Tr.	enginee											Tel:
		()		X			505	-115111001											Fax:

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

SOIL BORING LOG INFORMATION SUPPLEMENT

	g Numl	oer	MV	V-310A Use only as an attachment to Form 4400-	122.								Page	2 of 3
San	nple									Soil	Prope	erties		
	t. & I (in)	nts	eet	Soil/Rock Description					l u					100
er ype	h At	Cou	In	And Geologic Origin For Each Major Unit	S	ic		日日	ard	ure		city		nents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each Major Unit	SC	Graphic Log	Well	Diagram PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
<u>Z </u>	그 ~	В			D	9 1	5		S d	20	77	P II	Ь	<u> </u>
			Ė.,											
			16											
			17											
			Ė											
			- 18											
			19											
			F 20											
			= 20											
			21											
			F 22											
			-22											
			23											
			<u>-</u> 24		L									
			E 24	POORLY GRADED SAND, fine to coarse, brown, trace gravel and lenses of lean clay.										
S1	14	7 20 23 21	25		SP					W				Began collecting
		20 21	E -26	POORLY GRADED SAND, fine, light gray, trace lean clay, (weathered sandstone bedrock).										Began collecting split spoon samples at 24 feet
			E	lean clay, (weathered sandstone bedrock).										
S2	17	9 11 12 13	27							W				
			E -28											
			F 20	Same as above but brown with small gravel.										
S3	13	14 36 50/5	= 29							W				
			30											
			F	Same as above but fine to medium and brown to light gray.										
S4	5	50/5	=31							W				
			_32											
			F	Same as above but fine and light gray.	SP									
S5	5	50/5	=33							W				
	1		34											
			F											
S6	5	50/5	=35							W				
	1		36											
		50/5	E											
S7	5	50/5	-37							W				
L	-		_38											
		50/4	E											
S8	4	50/4	- 39							W				Auger refusal at 39 fet
L	4		E ₄₀	Same as above but much more competent.										

SOIL BORING LOG INFORMATION SUPPLEMENT

Boring Num	ber	MW	V-310A Use only as an attachment to Form 4400-1.	22.	1	1		T				Page	3 of 3
Sample									Soil	Prope	erties		
Number and Type Length Att. & Recovered (in)	nts	eet	Soil/Rock Description					ے ا					
er 7pe 1 Att	Cour	In F	And Geologic Origin For	N N	.c	띮		urd ation	ıre	_	ity		ents
Number and Type Length Att. & Recovered (in	Blow Counts	Depth In Feet	Each Major Unit	SC	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
	B	<u> </u>)	5 Å	ĭ A O	PI	St	Σŭ	그 그	Pl	Ъ	<u> </u>
Н		E	LIMESTONE, light brownish gray, with fine to	SP _									
		-41	medium light gray sandstone, (bedrock).										
S9		42							W				Caritallia da ain
39		<u> </u>							**				Switching to air rotary drilling at 40 feet
		-43	Same as above but with gravel and very little sand.		Щ								Intermittent
		_ 44	, ,		H								gravel between 43 to 54 feet
					\Box								
		45											
		 46											
		47											
		Ė											
		-48											
		E -49											
		E			Щ								
		50			ĦĦ								
		-51											
		Ē			H								
		52											
		- -53			Ш								
		- 54	End of boring at 54 feet below ground surface.										

State	of Wis	consin	
Dena	dragad	at Natural	Dannurose

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98 Watershed/Wastewater Waste Management Route To: Remediation/Redevelopment ... Other [Page | of 2 Facility/Project Name License/Permit/Monitoring Number Boring Number IPL - Ottumwa Generating Station SCS#: 25219028.00 MW-311 Boring Drilled By: Name of crew chief (first, last) and Firm Date Drilling Completed Date Drilling Started Drilling Method Eric Wetzel 4 1/4 hollow Roberts Environmental Drilling, Inc. 8/27/2019 8/27/2019 stem auger WI Unique Well No. DNR Well ID No. Common Well Name Final Static Water Level Surface Elevation Borehole Diameter MW-311 Feet MSL 651.24 Feet MSL 8.5 in. Local Grid Origin (estimated) or Boring Location 🛛 Local Grid Location 399,350 N, 1,907,603 E Lat State Plane S/C/N Feet 🔲 N Feet 🗌 E 1/4 of 1/4 of Section N. R US Long W Facility ID County County Code Civil Town/City/ or Village Wapello Ottumwa Sample Soil Properties Soil/Ruck Description Recovered (in) Depth In Feet Blow Counts Length Att. And Geologic Origin For Penetration Standard PID/FID Moisture Graphic Each Major Unit Liquid Index Well Limit Log -1 LEAN CLAY, brown, massive, trace fine to medium sand, roots, $1^{\rm o}$ sand scarn at $1.5^{\rm o}$. 23 46 2]4 M -3 CE 4. S2 14 M 5 6 S3 M SIL I, brown, massive, ME 7 LEAN CLAY, brown, massive, 23 20 84 M/W POORLY GRADED SAND, fine to medium, brown massive 19 23 10. 12 W 2" clay seam at 10,5" 11 12 14W 13 TO I W I hereby certify that the information on this form is true and correct to the best of my knowledge

SCS Engineers Left 608-224-2830 2830 Dairy Drive Madison, Wt 53718 This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299. Wis Stats, Completion of this form is mandatory. Failure to file this form may

result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTF: See instructions for more information, including where the completed form should be sent

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A

am	ple	er		7-311 Use only as an attachment to Form 4400						Soil	Prope	erties		2 of
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Fach Major Unit	uscs	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
					SM									
			= 16	End of boring at 16'										
									i					

SOIL BORING LOG INFORMATION

- III	/n ·								l* ·	/5	2.5			,		. .			Page	1 of 3
-	y/Projec			ng Stat	tion		CCC#, 25	220056.00	Licens	e/Permit	/Monit	oring	Nur	nber		Boring	Numbe MW-		۸	
Boring	Drilled	By: 1	Vame of	f crew c	chief (first	t, last) ar	nd Firm	220036.00	Date D	rilling S	Started			Da	te Drilli			3117		ing Method
_	Cranl	•			`					C							•			'4" auger &
Rob	erts E	nviro	nmen	tal Ser							/2020					3/3/2	020	-		rotary
				DNR	Well ID	No.		Well Name -311A	Final S	Static Wa		vel	S	urfac	e Elevat	tion 16 Fe	ot	Bo		Diameter nd 6" in.
Local	Grid Or	igin	(es	timated	l:	or Bori	ing Location		<u> </u>	0.9						Grid Loc			10 a	iiu 0 iii.
State 1	Plane	_	399	,349 N	l, 1,90	7,615	E s/c	C/N]]	Lat	<u> </u>			"			□N			Feet E
SW		of SI	E 1	/4 of Se		25,	T 73 N	, R 15 W		ng	0	<u>'</u> -	/0:		7.11		\square S			□ W
Facility	y ID				County Wape	110			County (Jode		10wn ımwa		y/ or \	Village					
San	nple				wape	110						1111	<u> </u>			Soil	Prope	erties		
			4			Soil/R	ock Descrip	otion									11071	10100		
1)	Att. & ed (i	Blow Counts	Depth In Feet				ologic Orig							_	_ uo			_		ıts
ıber Typ	gth /	℃	th In				h Major Ur			CS	ohic		gram	Æ	dard	sture	pi ti	ticity x	0)/ nmer
Number and Type	Length Att. & Recovered (in)	Blov	Dep							S U	Graphic	Well	Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
			_			16 feet.	See boring	g log MW-3	11 for			X								Drilled using hollow stem
			<u> </u>	lithol	ogy.															augers to 28 feet
			Ē -																	
			-2										AND							
			E_3																	
			= 3																	
			-4																	
			Ė _										ı							
			- 5										ı							
			<u>-</u> 6										ı							
			E										ı							
			- 7										ı							
			<u>-</u> 8										ı							
			Ē										ı							
			<u>-</u> 9										ı							
			-10										ı							
			- 10										ı							
			-11										Н							
			Ė										Н							
			12										Н							
			13										ı							
			=										ı							
			14										ı							
I hereb	y certif	y that t		rmation	on this fo	orm is tr	ue and corr	ect to the be	est of my	knowled	lge.	<u> </u>			1	1	I	ı		1
Signati	-		<u> </u>	A					engine											Tel:
					<u></u>				<i>3</i>											Fax:

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

SOIL BORING LOG INFORMATION SUPPLEMENT

Form 4400-122A

	g Numl	oer	MW	V-311A Use only as an attachment to Form 4400-1	22.							Page	2 of 3
San	nple								Soil	Prope	rties		
	t. & (in)	nts	eet	Soil/Rock Description									
er ype	h Ati ered	Cou	In F	And Geologic Origin For	S	j. j.		ard atio	ure nt		city		nents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each Major Unit	SC	Graphic Log Well	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
<u> </u>	1 ×	<u> </u>		POORLY GRADED SAND, fine to coarse, brown,	D		Ь	S A	20	11	P In		<u> </u>
			F 16	with trace gravel and silt.									
			-16										
S1	2		17						W				Began collecting
			E -18										split spoon samples at 16 feet
			E 16										
S2	11	4 5 6 7	19						W				
		,	E -20										
			F 20										
S3	12	5 5 6 7	=21		SP				W				
			E										
S4		7 8 9 8	= 23						W				No return
			24										
			E										
S5		3 3 5 10	25						W				No return
	1												
			<u> </u>										
S6	14	5 9 50/5	<u>-27</u>						W				Driller noted bedrock at 27.5
	-		E-28	POORLY GRADED SAND, very fine, white, with pieces of competent rock, (weatherd sandstone	SP								feet Switched to air
			E 20	bedrock).	31								Switched to air rotary drilling at 28 feet
			E-29	LIMESTONE, gray with fine, light gray to white sandstone, (bedrock).									
			30	sandstone, (obdition).									
			-31	L									
			F 31	POORLY GRADED SAND, fine to medium, brown, with trace brown limestone, (bedrock).									
			=32										
			F										
			34		SP								
			35										
			E										
			36										
			_37	LIMESTONE gray with fine to medium beauties!	<u> </u>								
			E	LIMESTONE, gray, with fine to medium browinsh gray sandstone, (bedrock).			:						
			38										
			39										
			F 40										
	1	l	-40	I	I	1	I	1	I	1 1	l		I

SOIL BORING LOG INFORMATION SUPPLEMENT

Form 4400-122A

	g Numl	er	MW	V-311A Use only as an attachment to Form 4400-1	22.								Page	3 of 3
San	nple									Soil	Prope	rties		_
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
				End of boring at 46 feet below ground surface.										

	ENG			and Contra	actors						so	IL B	BOR	INC	ΞI	LOC	G I	INFC	RM	ATION
			<u>Ro</u>	ute To:		Vastewater \[\begin{align*} \text{/Redevelopment} \begin{align*}	Waste Other	Manage	ement											
																P	age	e 1	of Z	2
	ty/Proje						License/	Permit/	Monito	ring 1	Numl	ber		Bori	ng Ì	Num		r		
Ott	umwa	Gene	rating	Station	0.00 1 1	SCS#: 25221162.00	D . D	·111 G				In .	D 1111			•	_	M۱	V-31	
	_	•	Name of	f crew chie	ef (first, last) a	and Firm	Date Dr	illing St	arted			Date	Drilli	ng C	om	plete	ed		Drill	ling Method
	ke Mu scade l		19					12/14	1/2021				1	2/1-	4/2	2021	1		R	oto-Sonic
	ie Well		<u> </u>	DNR W	ell ID No.	Common Well Name	Final Sta				Su	rface I			.,_		_	Во		Diameter
						MW-312		642.2	Feet				655.						6	5.0 in
	Grid Or Plane	rigin			□) or Bo 1,903,457	ring Location ⊠ 'E S)/C/N	13	at <u>41</u>	0 5	5'	53.	1" Lo	ocal G	irid I	ос					
State		of N		,304 IN, /4 of Secti		T 72 N, R 15 W	1	g <u>-92</u>			44.			E	oot					☐ E Feet ☐ W
Facili		01 11	<u> </u>		ounty	1 /2 N, K 13 W	' LOII	<u>g</u>	Civil T	own/		_	llage	1.0	et.	<u> </u>	٥			reet 🗀 w
	•			I .	Wapello, Io	wa			Ottur		-		Ü							
Sai	mple			-										So	il :	Proj	pei	rties		
	(ii) &	×	et		Soil/I	Rock Description														
_ a	Att.	ount	n Fe		And G	eologic Origin For					ے ا ۔	, .	d Eion	روا				<u>ئ</u>		nts
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		Ea	ch Major Unit		CS	Graphic Log	=	Diagram	, k	Standard Penetration	Moisture	Content	Liquid	<u></u>	Plasticity Index	00	RQD/ Comments
Nul	Ler	Blo	Del					S U	Grap Log	Well		<u> </u>	Sta Pen	Mo	<u>5</u>	Liq	Limit	Plastic Index	P 200	RQD/ Comir
			E	Hydrovac	ced to 8' below	ground surface through clay														
			-1																	
			Ē,																	
			$\frac{-2}{2}$							Ď l	Š									
			<u>-</u> 3																	
			Ē																	
			-4								\S									
			E _							¥2 (Y									
			<u>-5</u>																	
			-6																	
			- 7																	
			-8																	
			E	LEAN CI roots, me	LAY, dark gray edium stiff.	vish brown (10YR 4/2) with	trace													
S1	21		_9										1.0	M						
			E																	
	1		10		above but stiff	to medium stiff with brown a	and black													
			- 11	mottling.																
			<u> </u>					CL												
			-12																	
S2	46		Ė ,.									0.7	75-1.2	5M/\	V					Water is at
			-13																	11.5' bgs.

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature Firm SCS Engineers 2830 Dairy Drive, Madison, WI 53718 Tel: 608-224-2830 Fax:

Environmental Consultants and Contractors

SOIL BORING LOG INFORMATION SUPPLEMENT

Form 4400-122A

Borin	g Numt	er	MW	V-312							Pag	e 2	of 2	2
San	nple									Soil	Prope	rties		_
	Length Att. & Recovered (in)	nts	Geet	Soil/Rock Description					Ē					×
ber ype	th At	Cou	l In I	And Geologic Origin For Each Major Unit	CS	hic	am.	<u>e</u>	lard ratio	ture	p .	city		/ nent
Number and Type	Length Att. & Recovered (in	Blow Counts	Depth In Feet	Eden Major Office	OS O	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
			=	Same as above but dark gray.	CL				02.1					
			16	SILT, dark graysish brown (10YR 4/2) to gray - dark gray	CL									
			Ė ,,	(2.5Y 3/1), soft to medium stiff.										
S3	60		<u></u> 17		ML			0.4	5/0.25 - () 5W				
			18		IVIL					, ,,				
			E - 19											
			Ē	POORLY GRADED SAND, fine to coarse grained, orange brown to white with trace gravel.										
			20	Same as above but fine grained, white to light gray (5Y 7/1) with pieces of rock and trace cobbles (Weathered Bedrock).										
			21	with pieces of fock and trace coopies (weathered Bedfock).										
			E_22											
S4	60		E 22							M				Hard drilling
			= 23		SP									from 20-27.5' bgs.
			24											
			E 25											
			-25	Same as above										
S5	28		26							M				Compled C4
33	20		- -27							1V1				Sampled S4 and S5.
			F	End of boring at 27.5' below ground surface.										

	ENG			and Contractors						SOIL	BOR	ING	LOG	INFO	ORM	ATION
			<u>Ro</u>	watershed/Wastewater Remediation/Redevelopment		Waste M Other	_	ement								
													Pag	e 1	of 2	2
Facilit	y/Projec	ct Nam	ie			License/F	Permit/	Monito	ring N	umber		Boring	Numbe	er		
				SCS#: 25221	162.00									MV	W-31	
	-	-	Name o	f crew chief (first, last) and Firm		Date Dril	ling St	arted		Da	te Drilli	ng Cor	npleted		Drill	ing Method
	ke Mu						10/1/	1/2021			1	2/14/	2021		D.	. 4 - C ! -
	scade I		ng	DNR Well ID No. Common Well	Name	Final Stat		1/2021		Surface	e Elevat	2/14/	2021	Bo		oto-Sonic Diameter
Omqu	ic wen	110.		MW-3			641.2		51	Surrac		.8 Fee	et			.0 in
Local	Grid Oı	rigin	(es		\boxtimes	<u> </u>			. ,	52 0 "	Local C					
State				,491 N, 1,903,802 E		1	t <u>41</u>			<u>52.9"</u>			\square N			□Е
SW		of N	W 1	/4 of Section 25, T 73 N, R	15 W	Long	-92	<u>° 32</u>		39.6"		Feet	: □ S			Feet W
Facilit	y ID			County						ity/ or V	Village					
Car	1.			Wapello, Iowa				Ottur	nwa 			C a i 1	Duani	4:		
Sar	nple											5011	Prope	erties		
	Length Att. & Recovered (in)	nts	eet	Soil/Rock Description												
er 'pe	At ered	Cou	In F	And Geologic Origin F	or		S	ု့	⊒ ا		urd atio	ıre		ify		ents
Number and Type	Length Att. Recovered (Blow Counts	Depth In Feet	Each Major Unit			SC	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
<u>z</u> #	13 % R E	BI	ă	X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1		Ω	Grap Log	ß Ö		St.	žŏ	<u> </u>	F E	۵	≥ 3
			_	Hydrovaced to 8' below ground surface thr	ougn clay.					\mathbb{X}						
			-1							4						
			Ε.													
			$\frac{1}{2}$							\$						
			_3													
			E ,							}						
			-4				CL			4						
			E							2						
			- 5													
			E,													
			F-6													
			E ₇													
			Ē													
H	1		-8	LEAN CLAY, dark grayish brown (10YR	4/2) with 1	trace										
			Ė	roots, stiff.	= , *******											
S1	12		- 9								1.25	M				
			10				CL									
			10				CL									
			- -11													
			E													
			12	SILT, dark grayish brown (10YR 4/2), with	h trace sar	nd, soft.										
S2	55		E	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•				(0.75/0.2	5 W				Water at 13'
			13				ML									bgs.
			14													
			15	POORLY GRADED SAND, fine to coarse (10YR 4/2) with trace fine gravel.	grained,	brown	SP									

I hereby certify that the information on this form is true and correct to the best of my knowledge.

2830 Dairy Drive, Madison, WI 53718 Signature Firm SCS Engineers Tel: 608-224-2830 Fax: Environmental Consultants and Contractors

SOIL BORING LOG INFORMATION SUPPLEMENT

Form 4400-122A

Boring	g Numl	er	MW	V-313							Pag	e 2	of 2	2
San	nple									Soil	Prope	rties		_ _
	. & (in)	ıts	eet	Soil/Rock Description										
er /pe	n Att ered	Cour	In F	And Geologic Origin For	\sigma	. <u>.</u>	目		urd atior	ıt e		ity		ents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each Major Unit	SC	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
Z #	L R	В		Same as above but ranging from dark grayish brown to red	n	G		<u> </u>	N Z	ΣÚ		Pl In	Ь	<u> </u>
			E -16	brown, gray, and tan.										
			E 10											
			17											
			E -18											
S3	85		- 10		SP					w				Sampled S3
			19		SP									
			E_20											
			E "	Same as above but with layer of cobbles at 21' bgs.										
			-21											
			-22	Trace silt at bottom of sample.										
			F	End of boring at 22.5' below ground surface.										
			1		1			l		l				

SCS ENGINEERS

SOIL BORING LOG INFORMATION

Environmental Consultants and Contractors

			Ro	ute To:		rshed/W		er \square	Waste Modern	_	emer	nt										
					Reme	didition	reacve	юриен 🗀	Outer									Do	ge		of 2)
Facilit	y/Projec	et Nam	ne						License/I	Permit/	Mor	nitor	ring N	Juml	er		Boring		er			
				ating St		1 0		: 25220083.00	D . D .:	1: 0:		1			ъ.	D :11:		1.			-31	
	g Drilleo an Kin		Name of	f crew ch	ief (first	i, last) a	nd Firm	l	Date Dri	ling St	tarte	d			Date	e Drilli	ng Cor	npleted	1		Drilli	ing Method
Dire	ect Pu	sh Aı	nalytic							4/28						4	4/28/2	2022				oprobe/HSA
Uniqu	e Well 1	No.		DNR V	Well ID	No.	1	on Well Name MW-314	Final Sta	tic Wa .67 F				Su		Elevat		MCI		3orel		Diameter .25 in
Local	Grid Oı	rigin	(es	stimated:		or Bor		ation 🛛							Ī	81.89 Local G			_			.23 111
State	Plane		401	,224 N,	1,90	1,685	E	S/C/N	I	t <u>41</u>				50	5"							□ E
SW Facilit		of N	E 1	/4 of Sec	tion County	26,	т 73	N, R 15 W	Long	-92	Civi	33		7.:	_	illage	Feet	: 🗆 :	S		I	Feet W
1 acmi	у по			I	Wape!	llo							nwa	Jity/	OI V	mage						
San	nple																Soil	Prop	ertie	;		
	(in)	ts	set			Soil/R	ock De	scription														
er /pe	n Att. ered	Coun	In Fe				_	Origin For		S	<u>د</u> .		1	∃ £	\Box	ırd ation	ıre		ity			ents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			Eac	h Majo	r Unit		USC	Graphic	Log	Well	Diagram.	ID/F	Standard Penetration	Moisture Content	Liquid	Plasticity	V Inc	200	RQD/ Comments
<u>∠ a</u>		<u> </u>		Hydrova	aced to 8	feet belo	ow groun	d surface (bgs).				ı		3 -	1	S	N O			+	Ь	
			E																			
			_2																			
			_ _4																			
			_										Y	//								
Г			-6	LEAN (CLAY, g	ray to da	ırk gray	with orange mottle	ing,													
S1	20		_	trace sa	nd (back	fill), med	lium stif	f.	Ç.								M					Hydrovaced
			-8																			hole collapsed in
			- -10																			from 6 to 8 feet bgs
S2	44		- 10	Same as medium		ut gray t	o browni	sh gray with trace	organics,								M					
			-12	G	1 1		12															
			_	Same as	s above b	ut son to	meaiun	1 SUII.														
S3	33		-14							CL							M					
										CL												
			 16																			
	40		- -18																			
S4	48		- 10														M					
				G	1 1			cc														
			_	Same as	s above b	ut sum to	very sti	П.														
S5	48		22														M/W					
								to coarse grained,	brown to													
			24	orangisl	h brown,	with trac	e clay.			SP												
I herel	y certif	y that	the info	rmation o	on this fo	orm is tr	ue and	correct to the be	st of mv kn	owled	ge.		<u> </u>									<u> </u>
Signat					J.K	- **		To:	S Engine		_	0 I	Dair	y D	rive	, Mac	lison	WI				Tel:
				1	X	>					608	<u>-2</u> 2	24-2	830								Fax:

Environmental Consultants and Contractors

SOIL BORING LOG INFORMATION SUPPLEMENT

Form 4400-122A

Borin	g Numl	er	MW	V-314							Pag	ge 2	of 2	2
San	nple									Soil	Prope	erties		
	& (in)	ī	et	Soil/Rock Description										
. s	Att.	Blow Counts	Depth In Feet	And Geologic Origin For			l g		Standard Penetration	8 _		5		RQD/ Comments
mbe Tyl	igth cove	Š.	oth I	Each Major Unit	CS	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	00	D/ nime
Number and Type	Length Att. & Recovered (in)	Blo	Del		S U	Grap Log	Well Diagr	PIE	Sta Pen	Mo Cor	Liquid Limit	Plastic Index	P 200	RQ Cor
96			- ₂₆							***				
S6	29		- 20	Same as above but with trace fine gravel.	SP					W				
			- -28	Same as above out with trace time graver.										
a=			- 26	CANDY LEAN CLAY C						***				
S7	24		-30	SANDY LEAN CLAY, fine to coarse grained, brown to orangish brown, brownish gray, and trace white, with trace	CL					W				
			- 30	gravel and organics. White clay appears to be thixotropic in composition.										
				End of boring at 31 feet below ground surface.										

	ENG:			and Contractors					S	OIL	BOR	ING	LOG	INFO	ORM	ATION
			Ro		/Wastewater on/Redevelopment	Waste I Other	_	ement								
													Pag	ge 1	of	[
	y/Projec					License/l	Permit/	Monito	ring Nu	mber		Boring	Numb			477.77
				ating Station	SCS#: 25220083.00	D (D :	11: 04	. 1		Ъ	· D :11:		1 . 1			4WT
	g Drilled an Kin	-	Name of	f crew chief (first, last) and Firm	Date Dri	lling St	arted		Da	te Drilli	ng Con	npieted	ļ		ing Method llow stem
			nalytic	al			4/28/	/2022				4/28/2	2022		1	ger
	e Well 1			DNR Well ID No.	Common Well Name	Final Sta			el	Surfac	e Elevat			Во		Diameter Diameter
					MW-314WT	667	7.85 F	eet M	SL	6	581.74			,	8	.25 in
Local State	Grid Or	rigin		stimated: \square) or 1,232 N, 1,901,68	Boring Location S5 E S/C/N	La	ıt <u>41</u>	° 5	' 5	50.6"	Local C	Grid Lo				
SW		of N		/4 of Section 76,	T 73 N, R 15 W		g <u>-92</u>			7.3 "		Foot				☐ E Feet ☐ W
Facilit		01 11	L I	County	1 /3 N, K 13 W	LOII		Civil To			Village	reci		•	-	rect 🗀 w
	-			Wapello				Ottun								
San	nple											Soil	Prop	erties		
	& in)	s	l t	Soil	1/Rock Description											
. o	Att.	tunc	ı Fe	And	Geologic Origin For						d ion	မ		>		nts
nber Typ	Length Att. & Recovered (in)	Blow Counts	Depth In Feet]	Each Major Unit		CS	Graphic Log	Well Diagram	PID/FID	ndar	Moisture Content	uid ii	Plasticity Index	0 0	D/ nme
Number and Type	Len Rec	Blo	Dep				n s	Grap Log	Well Diagr	PID	Standard Penetration	Mo	Liquid Limit	Plastic Index	P 200	RQD/ Comments
				drilled to 22.5 feet bg	pelow ground surface (bgs) an s. See boring log MW-314 for	d blind lithology.										

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature Firm SCS Engineers 2830 Dairy Drive, Madison, WI Tel: 608-224-2830 Fax:

Appendix C

Hydrogeochemical Conceptual Model and Preliminary Summary of Groundwater Contaminant Attenuation

Subject: Cobalt assessment and Treatability Study

From: Bernd W. Rehm Date: 11 July 2022

Project: SCS – Alliant OGS Ash Pond CCR Evaluations 158-002a

Conclusion

Concentrations of cobalt downgradient of the Ottumwa Generating Station (OGS) Ash Pond exceed the groundwater protection standard of 6 μ g/L. Hydrogeochemical from the site suggest that the presence of the cobalt may be due to the adsorption to suspended sediment that is released when groundwater samples are acidified. The adsorption process also drives the natural of attenuation of cobalt with groundwater flow from the Ash Pond. Additional laboratory studies confirmed the adsorption of cobalt by iron minerals (presumably iron oxyhydroxides) in the aquifer solids and the suspended sediment in the groundwater samples and found that the adsorption was nearly irreversible.

1. Introduction.

This document focuses the application of monitored natural attenuation with respect to cobalt for the Ottumwa Generating Station Ash Pond. Two of the five shallow monitoring wells on the downgradient perimeter of the Ash Pond consistently show total (dissolved + suspended) cobalt concentrations exceed one or both of either the cobalt background upper prediction limit (UPL = $4.1~\mu g/L$) or the groundwater protection standard (GPS = $6.0~\mu g/L$):

	MW-305	MW-306
Mean	16.3	6.6
Median	16.0	6.1
Range	13.7 to 21.0	4.8 to 11.0
Number	21	22

Two of 18 observations from April 2016 through April 2022 at MW-302 exceeded the UPL but not the GPS with concentrations of 5.3 and 5.5 μ g/L. The final two monitoring wells, MW-303 and MW-304, did not exceed the cobalt UPL with 18 observations.

2. Conceptual Site Model.

- **2.1 Hydrogeology.** Four of the five monitoring wells downgradient of the Ash Pond are completed in saturated poorly graded sand (weathered sandstone) between elevations of approximately 655 to 625 feet above mean sea level. The fifth location (MW-303) encountered sandstone at an elevation of about 650 feet. Clay of variable thickness is generally found above the sand. The degree to which clay separates the Ash Pond from the saturated sand in uncertain. The saturated sand forms a permeable pathway from beneath the Ash Pond to well MW-310 and presumably to the Des Moines River immediately east of MW-310. The horizontal hydraulic gradient of ~0.01 beneath the Ash Pond decreases to ~0.006 from the Ash Pond to the river. The hydraulic conductivity of the sand was observed to range from 3.5 E-4 to 3.2 E-3 cm/s (median 2.8 E-3 cm/s, n=5). Assuming a porosity of 0.3 yields estimated groundwater flow rates on the order of 100 ft/yr below the Ash Pond, to on the order of 60 ft/yr from the pond to the river. The groundwater travel time from the pond to the river is estimated on the order of 30 years. The Ash Ponds were first commissioned in 1981, approximately 40 years ago.
- **2.2** General Geochemistry. The groundwater chemistry of the cobalt-bearing monitoring wells and the downgradient monitoring well within the potential groundwater flow path as observed in March, April and October 2020 are used to evaluate the site groundwater chemistry. The wells include MW-301 and MW-302. Table 1 summarizes the overall groundwater chemistry and Table 2 summarizes the data used in the preparation of the figures in Section 2 of this report.

The groundwater has near-neutral pH, with a slight increase east of the Ash Pond with no clear trend over time.

The ORP shows decreasing trends at the background well and MW-306 and increasing trend at MW-305 from April 2020 to April 2022. The three locations downgradient of the Ash Pond have no clear trend with time but suggest an increase to the east.

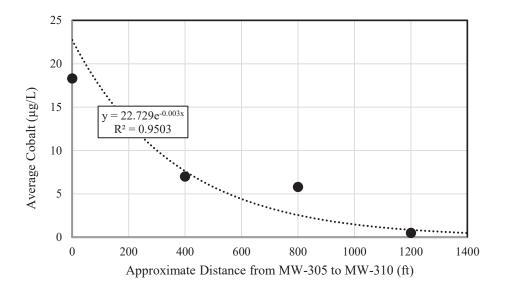
Samples from MW-301, -303, -305A and -310A show a weak positive correlation between ORP and dissolved oxygen above an ORP of about 0 mV (circled data, Figure 1). The remaining samples have little to no dissolved oxygen over a broad range of ORP. The DO measurements indicate the groundwater becomes less oxic as it travels beneath the Ash Pond from an upgradient mean of +200 mV. The ORP values at the

downgradient edge of the Ash Pond range from means of -90 mV at MW-304 to about +60 mV at MW-305 and -306. There is no consistent trend with time. Further downgradient of the Ash Pond the ORP is variable at MW-311 and -312, averaging about 30 mV while the DO decreases to <0.3 mg/L. Near the Des Moines River, the ORP rises sharply to +190 mV while the dissolved oxygen remains below 0.5 mg/L.

There is no measurable total or dissolved iron in the upgradient well consistent with the pH and ORP. At the Ash Pond perimeter, the total iron (including dissolved iron and iron associated with suspended sediment) increases to about 4,800 µg/L at MW-304 (Figure 2). Total iron concentrations are also high sometimes high at MW-302, -303, -305 and -306 (blue circle, Figure 2) and at downgradient locations MW-312 and -312 (red circle, Figure 2). Except for the blue circled data there is a general 1 to 1 correlation between the dissolved and total iron concentrations.

There is little correlation between the iron concentrations and pH. However, both dissolved and total iron are correlated with ORP (Figure 3). This is expected as reduced ferrous iron is more soluble that oxidized ferric iron.

As might be expected, the suspended sediment is also positively correlated with total iron concentrations (Figure 4, with one outlier from MW-304 and one from MW-310A).


Only dissolved manganese was consistently measured in the groundwater. The lowest concentrations are found at MW-301 and -310 (14 to 53 $\mu g/L$). At MW-304, -305 and -306 the concentrations range from 3,100 to 16,000 $\mu g/L$. There is a general negative correlation between dissolved manganese and ORP.

Sulfate concentrations increase from MW-301 to MW-306 with the possible seepage from the Ash Pond, and then decreased with continued downgradient migration to MW-305. This may suggest very limited and localized sulfate reduction is occurring or dilution (note the sulfate concentrations in the pond are not know). The subsequent increase in sulfate at MW-312, -313 and -310 is attributed to upward flowing deep groundwater mixing with the shallow groundwater as described elsewhere by SCS. The mixing is supported by the trends in boron and lithium concentrations that show sharp decreases and increases, respectively, as the deeper groundwater mixes with the shallower groundwater.

2.3 Cobalt Geochemistry. Cobalt is present as a 2+ cation (Co²⁺) and is the dominant species found in natural environments. Its valance state is not affected by the oxidation reduction potential in which it is found, but the ORP can affect ligands with which cobalt may complex, precipitate or absorb to. Assuming an ORP on the order of -100 to -400 mV (Eh on the order of 100 to -200 mV), and a pH on the order of 6 to 7 SU suggests cobalt could occur as aqueous Co²⁺ or precipitate as CoS. In many settings the aqueous concentrations are a function of adsorption to, or coprecipitation with iron, manganese or aluminum oxyhydroxides. Iron and manganese oxyhydroxide formation are controlled by pH and ORP. Aluminum oxyhydroxide is controlled by pH with maximum precipitation between pH of 6 to 7 SU.

Total and dissolved iron concentrations are less than 1 μ g/L at the upgradient well (MW-301). Cobalt concentrations are also less than 1 μ g/L at MW-303 and -304. Perimeter wells MW-302, and -305A yield total and dissolved cobalt concentrations between 1 and 6 μ g/L. MW-305 and -306 produced mean concentrations of 17 and 7 μ g/L cobalt, respectively. The concentrations at MW-305 were relatively constant while the concentrations at MW-306 increased from 2021 to 2022. In 2022, MW-312 averaged 7.0 and MW-313 averaged 5.8 μ g/L. The downgradient-most wells (MW-310 and -310A) produced <1 μ g/L of cobalt over 2 years of monitoring (March 2020 through April 2022). The concentration trend suggests an exponential concentration decrease with distance along the assumed flow path.

In the absence of natural attenuation, the estimated 60 ft/yr groundwater flow rate and the 40 years since the Ash Pond was commissioned there has been adequate time for cobalt present near the Ash Pond to have reached MW-310. The trend demonstrates natural attenuation is occurring.

The total cobalt concentrations (which includes cobalt associated with suspended sediment) shows positive correlations with suspended sediment loads as measured by turbidity at the time of sample collection (Figure 5). Two possible outliers on Figure 5 include one sample each from MW-304, and -305 for April 2020. The remaining data appear to fall into two groups. The data from MW-305, -305A within the solid blue outline suggest the total cobalt concentration increases with the amount of suspended sediment. All the remaining data suggest a similar correlation but offset by about 10 times lower total cobalt. The correlation between dissolved cobalt and turbidity is nearly identical to the total cobalt plot because dissolved and total cobalt are well correlated (Figure 6). This suggests the possibility that there is an absorption equilibrium between the aqueous dissolved cobalt and the cobalt associated with the iron-bearing suspended sediment.

While cobalt's valence state would not be affected by ORP, there is a general correlation between ORP and dissolved or total cobalt in the groundwater (Figure 7, except for possible outliers from MW-304 and -305). When reviewing all the data there was no correlation evident between ORP and iron. However, plotting dissolved iron (which is expected to increase with decreasing ORP) against dissolved cobalt (Figure 8) there is a positive correlation for MW-305, -305A and -306 where dissolved cobalt is present above 1 μ g/L (one sample from each of MW-304 and MW-310A are potential outliers with high iron concentrations). This suggests the cobalt that passes a 0.45 μ m filter may be absorbed to iron that passes a 0.45 μ m filter (i.e. "colloidal" particulate iron).

The mass of cobalt in the groundwater where the GPS may be exceeded between MW-305 and MW-310 is estimated at 0.67 kg assuming:

- Approximate plume dimensions of 120 m wide (assuming ~ half the distance between MW-305 and adjacent wells that do not exceed the GPS) by 320 m long and 6 m thick,
- Total porosity of 0.3,
- Cobalt concentration of 9.7 ug/L (average of MW-305, -312, -313 and -310).

3. Potential for Site-Specific Cobalt Natural Attenuation.

Immobilization within the saturated sand is the mechanism that drives natural attenuation of cobalt. If cobalt were not attenuated, the 30-year groundwater travel time from the Ash Pond to MW-310 suggests that cobalt should have arrived at MW-310 in the ~40 years since the Ash Pond was commissioned if it was not attenuated. The cobalt concentration from MW-305 to MW-310 appears to decrease by a factor of ~60. Dilution by mixing with upward flowing deep groundwater at MW-310 may be a factor in the decrease. Assuming lithium is a conservative constituent in the deep groundwater at 270 $\mu g/L$, its concentration is reduced to 48 $\mu g/L$ by mixing with the 3.2 $\mu g/L$ from MW-305. The potential mixing does not appear to be sufficient to account for the cobalt concentration reduction. Precipitation, coprecipitation or adsorption likely account for the remaining decrease.

The groundwater becomes more oxic from the Ash Pond perimeter to MW-310 at the Des Moines River. As the ORP increases, iron precipitates from the water and provides adsorption sites on iron oxyhydroxides for cobalt which is then also removed from the groundwater.

In addition, the sand at MW-305 is described as yellow-brown suggesting that some of the iron may be in an oxidized form on the surfaces of the sand. The color of the sand at MW-310 was not recorded. The iron oxyhydroxides on the aquifer matrix provide potential adsorption sites for the sequestration of cobalt.

4. Additional Assessment of Site-Specific Cobalt Monitored Natural Attenuation.

4.1 Introduction. Immobilization within the saturated sand is the mechanism that drives natural attenuation of cobalt. If cobalt were not attenuated, the 30-year groundwater travel time from the Ash Pond to MW-310 suggests that cobalt should have arrived at MW-310 in the ~40 years since the Ash Pond was commissioned if cobalt was not attenuated. The cobalt concentration from MW-305 to MW-310 appears to decrease by a factor of ~60. Dilution by mixing with upward flowing deep groundwater at MW-310 may be a factor in the decrease. Assuming lithium is a conservative constituent in the deep groundwater at 270 μ g/L, its concentration is reduced to 48 μ g/L by mixing with the 3.2 μ g/L from MW-305. The potential mixing does not appear to be sufficient to account for the cobalt concentration reduction. Precipitation, coprecipitation or adsorption likely account for the remaining decrease.

The groundwater becomes more oxic from the Ash Pond perimeter to MW-310 at the Des Moines River. As the ORP increases, iron precipitates from the water and provides adsorption sites on iron oxyhydroxides for cobalt which is then also removed from the groundwater.

In addition, the sand at MW-305 is described as yellow-brown suggesting that some of the iron may be in an oxidized form on the surfaces of the sand. The color of the sand at MW-310 was not recorded. The iron oxyhydroxides on the aquifer matrix provide potential adsorption sites for the sequestration of cobalt.

Groundwater sampling completed in February 2021 found 64 µg/L of total (unfiltered) cobalt in MW-307, downgradient of the zero liquid discharge pond. The cobalt concentration from MW-307 was higher than MW-305, which historically had the highest cobalt concentrations. SCS therefore added MW-307 to the assessment.

4.2 Treatability Study. ReSolution Partners (RP) completed bench-scale treatability studies (TS) to assess the following:

- The degree of iron precipitation and cobalt coprecipitation and adsorption from MW-305 groundwater with aeration (i.e. redox increase) to better understand the degree to which cobalt adsorption and coprecipitation contributes to attenuation.
- Samples of suspended sediment from MW-305 and -307 were analyses to assess the degree to which cobalt is associated with the suspended sediment.
- Samples of the saturated sand collected by SCS from the two new well locations, MW-312 and -313, and from the adjacent area to MW-305 (labeled as MW-305X) and MW-307 (MW-307X) was analyzed for:
 - o iron and manganese concentrations to assess potential for adsorption,
 - o cobalt concentrations to assess the degree to which cobalt has adsorbed or coprecipitated on to the sand matrix (i.e. defining the "immobile plume"),
 - o cobalt adsorption isotherms to assess capacity of the sand to absorb cobalt and determine maximum adsorption capacity.

4.3 Sample Collection. SCS collected four (4) samples representative of the aquifer solids through which the cobalt is migrating from the locations noted above. Each sample filled a 1-L plastic bottle and was saturated with groundwater from the well at each sampling location to as close as practical to zero-head-space to minimize atmospheric exposure and oxidation. The samples were placed on ice and delivered to RP on 17 December 2021. Each sample was mechanically homogenized, re-saturated and returned to their respective sample containers. The samples were placed in refrigerated storage until used in the treatability study.

Recent groundwater sampling found 5.6 μg/L of cobalt in MW-305 and 64 μg/L in MW-307. SCS therefore collected 9.5 L of groundwater from both MW-305 and MW-307 in nitrogen-purged stainless-steel sample collection vessels using low-flow pumping methods to minimize exposure to the atmosphere and potential iron precipitation prior to receipt by RP. In-field stabilization parameters (including pH, DO and ORP) were collected by SCS at the time of sample collection. The samples were delivered to RP on 13 January 2022. RP measured groundwater pH, DO, ORP and SEC upon receipt, transferred the groundwater to multi-layer (Nylon-PE-Al foil-PE) bags to minimize contact with atmospheric oxygen and place the samples in refrigerated storage until used in the TS.

Once the 9.5-L samples were collected, SCS filtered 4 litres of groundwater from each of MW-305, -307, -312 and -313 through 0.45 µm and 0.20 µm filters provided by RP. The filters were folded in half to protect the retained sediment and placed in plastic bags with the respective well numbers. The filter samples were packaged in plastic bags and delivered to RP on13 January 2022.

SCS also collected 1-L of groundwater from upgradient well MW-301 to zero-headspace in a glass bottle provided by RP. The samples were placed on ice and delivered to RP on 13 January 2022. In-field stabilization parameters (including pH, DO and ORP) was collected at the time of sample collection. Water samples and filters were delivered to RP on 13 January 2022.

4.4 Baseline Analyses. A summary of the soil samples provided for the treatability study is provided in Table 3. The soil sample from MW-307X contained <90 % by mass fine gravel to pebbles in the order of 2 to 3 cm in size. This coarse fraction does not provide the main portion of reactive solids in the soil. Sediment less than 4 mm in size was therefore separated from the sample. A representative aliquot of each soil sample

was submitted to CTL for analyses of cobalt, iron and manganese content by USEPA Method 6010 with the results provided in Table 4. Laboratory reports for the treatability study are provided in Appendix A.

MW-305X and -307X located near the CCR management units contained iron from 1,290 to 32,900 mg/kg. This iron likely represents iron oxyhydroxides coating the sediment grains in the samples. The iron oxyhydroxides provide sites for the adsorption of cobalt. This correlation is demonstrated on Figure 9.

An aliquot of each groundwater from the multilayer bag was measured by RP for pH, ORP, DO and SEC upon receipt. One aliquot of each groundwater was submitted to CT Laboratories (CTL) in Baraboo, Wisconsin for analyses of cobalt, iron and manganese content by USEPA Method 6010 with the results provided in Table 5. The MW-305 cobalt concentrations in January 2022 were comparable to historical results. The pH and DO are also comparable. However, the ORP continues to show a downward trend from 190 mV in March 2020 to -72 mV in January 2022 as do total iron concentrations (from 390 to 28.4 ug/L) and turbidity (43 to 0 NTU). MW-307 also had comparable cobalt concentrations from April 2020 to January 2022 and iron concentrations and turbidity also decreased. Cobalt concentrations at MW-312 and -313 were intermediate between concentrations near the CCR units and the most downgradient well, MW-310; consistent with the conceptual model of cobalt attenuation.

The previous RP November 2020 cobalt assessments identified positive correlations between total or dissolved cobalt concentrations and turbidity. This trend generally continued with the most recent sample results as illustrated on Figure 10. The two samples circled by the green dashed line are from MW-305 and-307 sampled in 2022. The low turbidity would suggest that the cobalt concentration would also be low. The unusual response of MW-305 is further highlighted on Figure 11 when the results only from Table 5 are plotted. Figure 12 illustrates the unusually low ORP results observed in the treatability study samples. The large decrease in ORP suggests that iron oxyhydroxides in the sediment that would have been able to sequester cobalt are being dissolved at the low ORP and releasing cobalt. However, the iron concentration increases that would be expected are not evident. Why there is no increase cannot be explained with the existing data.

4.5 Suspended Sediment Analyses. Aluminum and iron are expected to be part of suspended sediments in the form of clay or oxyhydroxide minerals that were retained on

the filter. Both clay minerals and iron oxyhydroxide can be expected to provide adsorption sites for cobalt. It is common practice to define "dissolved" species as those passing a 0.45 microns (μ m) filter; however, there are mineral oxide and hydroxide minerals that can present as suspended particulates on the order of 0.10 μ m in size ¹. Filters of 0.45 and 0.20 μ m were used to define potential suspended material in the OGS groundwater.

There was too little sediment on the filters to allow for sediment removal and testing. Therefore, the entire filters were cut up and digested with heated aqua regia by RP. A clean filter was also digested as a control. The digestate was shipped to CTL for analyses of aluminum, iron and cobalt by Method 6010. The results are summarized in Table 6 and on Figure 13.

The aluminum and iron concentrations have been normalized to present the amount of each element that was measured in the sediment retained by the filters for one litre of groundwater ("mg/L"). The 0.45 µm filter retained most of the suspended aluminum and iron. Except for MW-307 samples, the 0.45 µm filters retained from 74 to 81 percent of the aluminum and the from 76 to 87 percent of the iron. The MW-307 samples found the two elements were more equally divided between the two filters.

From 6 to 27 "mg/L" of aluminum and from 7 to 58 "mg/L" were retained by both filters. The mineralogy of the aluminum- and iron-bearing particulates is not known. Assuming the aluminum is in the form of kaolinite clay [Al₂Si₂O₅(OH)₄], the measured aluminum concentrations would represent about 29 to 130 mg/L of clay; and assuming the iron is in the form of iron oxyhydroxide (FeOOH), the measured iron concentrations would represent about 11 to 93 mg/L of iron oxyhydroxide.

Most of the results suggest two generally linear trends indicated by the ovals shown on Figure 13. As expected, at low turbidity (indicative of low suspended sediment concentration) the aluminum and iron concentrations are low, less than 10 "mg/L". As the amount of suspended sediment increases, the aluminum concentrations increased slightly to 10 to 15 "mg/L" while the iron concentration increases by about a factor of 10 as the turbidity reached 13 NTU. The results from MW-313 do not follow this trend because the reported turbidity was 0 NTU. The results suggest, but do not prove, that the

¹ J. D. Hem. 1970. Study and interpretation of the chemical characteristics of natural water. USGS Water-Supply Paper 1473, 363 pp.

turbidity results may be in error. MW-305 and -313 also show much wider differences between the elemental retentions for the two filter sizes.

Unfortunately, the cobalt reporting limits in the presence of the aluminum and iron concentrations were raised to the point at which the cobalt content could not be quantified. Assuming suspended particulates that pass the 0.45 μ m filter as dissolved when a groundwater sample is preserved with nitric acid, the results suggest from 7 to 9 μ g/L could be added to the "dissolved" phase from the particulates.

4.6 Cobalt and Iron Precipitation. The multi-layer bag of the selected groundwater was gently agitated to suspend any solids in the sample. A 50 mL subsample was withdrawn and preserved with nitric acid to determine dissolved and suspended cobalt and iron concentrations; immediately followed by a 50 mL subsample that was filtered at 0.45 μm and preserved with nitric acid to determine dissolved cobalt and iron concentrations. A 200 mL subsample was transferred to a beaker, a porous stone connected to a pump was placed in the beaker of groundwater, and air was pumped into the sample for 60 minutes. Following aeration, the pH and ORP of the groundwater was measured. The sample was stirred vigorously to suspend any solids in the sample. A 50 mL subsample was withdrawn and preserved with nitric acid to determine dissolved and suspended cobalt and iron concentrations; immediately followed by a 50 mL sample that was filtered at 0.45 μm and preserved with nitric acid to determine dissolved cobalt and iron concentrations. Analyses of cobalt and iron were completed by CTL. The results are presented in Table 7.

The pH of the samples increased with aeration by about 1.5 SU for both samples as a result of hydroxide loss with the precipitation of iron oxyhydroxide minerals. As expected, aeration increased the ORP of the water samples; however, the change was much greater for MW-307 (+240 mV) than MW-305 (+53 mV). The greater change in MW-307 may be due to the greater loss of reduced iron compared to MW-305.

Cobalt concentrations decreased less for MW-305 (about -8%) than for MW-307 (about -57%). The difference is due to amount of iron that was precipitated as illustrated on Figure 14. MW-307 lost $\sim\!300~\mu\text{g/L}$ of iron with aeration resulting in the loss of almost 8 $\mu\text{g/L}$ of cobalt (1 μg Co per 38 μg Fe) while MW-305 lost about 16 $\mu\text{g/L}$ of iron with a loss of 1.5 μg of cobalt (about 1 μg Co per 10 μg Fe). The presence of particulate iron minerals clearly reduces the dissolved cobalt concentrations.

4.7 Aquifer Sediment Adsorption Trials. Cobalt, typical of divalent metal ions in water, have variable degrees of adsorption to soil materials in competition with other ions that are present in the water. Adsorption is an equilibrium process such that the aqueous concentration reaches a stable concentration that is in equilibrium with the adsorbed concentration. Once adsorbed, the ions may desorb as the chemistry of the water in contact with the soil changes. Changes may include reductions in the aqueous concentrations of the metal ions. The correlation between the aqueous concentrations and the adsorbed concentrations is defined by adsorption isotherms that can be tested in batch trials. The following trials evaluated the degree to which cobalt adsorbed to site soils from site groundwater and potentially desorbed using adsorption isotherms.

Six trials were prepared for each soil samples MW-305X, MW-307X, MW-312 and MW-313, with 200 mL of MW-305 groundwater containing \sim 17 μ g/L of cobalt. The site groundwater provided only \sim 3 μ g of cobalt for adsorption using 200 mL trials. Given the analytical reporting limit of 0.6 μ g/L, this is too little cobalt to adequately define adsorption isotherms of the aquifer solids. The MW-305 groundwater was therefore spiked with CoCl₂ to increase the cobalt concentration to 137 μ g/L based on analyses by CTL. The pH and ORP immediately following spiking were 7.08 SU and -22 mV, respectively. The spiked groundwater was placed in a multi-layered bag to minimize exposure to the atmosphere.

Aquifer solids were combined with the spiked MW-305 groundwater as follows:

Groundwater	Approx. Aqueou	us Cobalt	Aquifer Solids	Liquid to Solids
(mL)	Concentration (µg/L)	Mass (µg)	(g, dry weight)	Ratio
200	137	27.4	1	200
			2	100
			4	50
			8	25
			20	10
			40	5

In addition to the 24 adsorption trials, duplicate controls consisting of groundwater without aquifer solids were also be prepared. The trials were allowed to react for 10 days to approach an adsorption equilibrium. The trials were inverted each business day to uniformly expose the soil particles to the groundwater.

Iron and manganese precipitation as oxyhydroxides, common points for metals adsorption, are very sensitive to the presence of dissolved oxygen. Therefore, the trial preparation was completed in a glove box purged with nitrogen and the trials during the adsorption period were stored in a nitrogen-purged desiccator box.

At the end of the 10-day equilibration period, the trials were removed from the box and an aqueous aliquot was removed and immediately filtered at $0.45~\mu m$, preserved with nitric acid and shipped to CTL for analyses of cobalt. The pH and ORP of the samples were measured by RP. The pH, ORP and adsorbed cobalt was determined by calculation from the reduction in aqueous concentrations as presented in Table 8.

The cobalt concentrations of the controls were just slightly less than the spiked concentrations, demonstrating that precipitation of cobalt from solution of cobalt adsorption to the bottles used in the trials were not significant mechanism of cobalt loss.

All the trials showed a pH decrease from the controls of \sim 0.3 SU with the addition of soil, and a continued slight decrease in pH (\leq 0.2 SU) as the liquid to solids ratio increased. As the liquid to solids ratio increased the ORP stayed relatively constant and near the starting spiked water level with MW-307X and MW-312 soil. The water from the ORP at MW-305X increased to 31 mV, approaching the control ORP as the liquid to about 4% of the cobalt was desorbed. One trial released 14 % of the adsorbed solids ratio increased. MW-313 saw a decrease in ORP to -66 mV. What drove the redox changes is not evident from the testing done.

A series of adsorption isotherms produced from the measured aqueous concentration (C_{aq}) and calculated absorbed concentration (C_{abs}) are presented on Figure 15.

Soil samples collected near the CCR units, MW-305 X and MW-307X (<4 mm fraction) had comparable near linear isotherms ($r^2 = 0.95$ and 0.90) with K_d values of 16.5 and 21.2 L/kg, respectively. MW-313 also provided a linear isotherm ($r^2 = 0.98$) with a higher K_d, 28.0 L/kg. The results for MW-312 soil had the lowest apparent K_d at 9.4 L/kg, but the results also reflected the least linearity ($r^2 = 0.14$). The MW-312 low K_d is likely due to the predominantly sand content of the samples where the other samples contained a much greater fraction of fine sediment.

Allison and Allison $(2005)^2$ found the mean K_d of 11 studies was 130 L/kg (range of 0.06 to 13,000 L/kg). Krupka and Serne $(2002)^3$ noted commonly reported K_d values ranged from 1,000 to 100,000 L/kg. They also note that cobalt studies completed at the Hanford attributed K_d values <100 L/kg to aqueous complexation of cobalt. At the OGS the adsorption of cobalt to suspended sediment may have lower K_d values much as complexation lowered the Hanford K_d values.

Adsorption tells only part of the story since the adsorbed cobalt may desorb is the aqueous concentrations of cobalt decrease. Desorption trials were therefore completed to assess the degree to which the absorbed cobalt is permanently bound to the site sediment. Two samples selected for desorption included MW-305 at the 10 to 1 liquid to solids ratio and MW-313 at the 10 to 1 liquid to solids ratio. The solids were vacuum filtered to quickly remove as much groundwater as practical without air-drying the solids. The filtered solids were combined with upgradient groundwater from MW-301 at 5 to 1 and 10 to 1 liquid to solids ratios and reacted for 10 days. After reaction, the water was filtered at 0.45 μ m, preserved and shipped to CTL for analyses of cobalt while RP measure pH and ORP. The cobalt desorption results are summarized in Table 9.

The pH of both samples decreased slightly with increasing liquid to solids ratio (means of 6.95 to 6.75 SU) while the ORP increased slightly (means of 70 to 80 mV). The soil samples absorbed from 0.905 to 0.950 µg of cobalt per g of soil. Most of the cobalt was retained on the soil during the desorption trials. The desorption trials at the 5 to 1 liquid to solids ratio released only 2.5 to 5.4 percent of the adsorbed cobalt. Increasing the liquid to solids ratio to 10 did not change the fraction of cobalt released from the MW-313 sample. The cobalt release increased to 14% at MW-305.

4.8 Summary of Findings.

- 1. Cobalt concentrations in groundwater used for the treatability study were comparable to the historical results from MW-305 and MW-317.
- 2. In general, the samples for the treatability study reflected the previously identified positive correlations between total or dissolved cobalt concentrations and turbidity. However, the trend was confounded by significant decreases in ORP

² Allison, J. and T. L. Allison. 2005. Partition coefficients for metals in surface water soil and sediment. USEPA, EPA/600/R-05/074.

³ Krupka, K. M. and R. J. Serme. 2002. Geochemical factors affecting the behavior of antinomy, cobalt, europium, technetium and uranium in vadose soils. PNNL-14126, Pacific Northwest National Laboratory, Richland, WA, 95 pp.

reported at MW-305 and -307. The large decrease in ORP suggests that iron oxyhydroxides in the sediment that would have been able to sequester cobalt are being dissolved at the low ORP and releasing cobalt. However, the iron concentration increases that would be expected are not evident. Why there is no increase cannot be explained with the existing data.

- 3. Suspended sediment in the groundwater would likely be a result of clay minerals (identified by elevated total aluminum concentrations in groundwater) or by iron oxyhydroxide minerals (identified by elevated total iron concentrations in groundwater). Both aluminum and iron show a positive correlation with turbidity, supporting the identification of clay and iron oxyhydroxides as potential absorbents of cobalt.
- 4. Aeration of groundwater samples resulted in the precipitation of dissolved iron in the groundwater which in turn reduced the concentrations of dissolved cobalt.
- 5. Adsorption trials produced linear cobalt isotherms with K_d values 16.5 to 28.0 L/kg for three of four samples. The fourth sample showed the poorest linearity and lowest K_d (9.4 L/kg); probably as a result of having the highest sand and lowest fines content of the four samples.
- 6. Three of four desorption trials of two soil samples at multiple liquid to solids ratios found that >95% of the cobalt was irreversibly adsorbed with the fourth 85% irreversibly sorbed.

Table 1. Groundwater chemistry summary for Section 2 of the evaluation.

		Location (from up to down gradient, left to right)												
Parameter	Units	MW	-301		MW-306			MW-305		MW-312	MW-313		MW-310	
rarameter	Ullits	April	April	April	April	April	April	April	April	April	April	April	April	April
		2020	2022	2020	2021	2022	2020	2021	2022	2022	2022	2020	2021	2022
рН	SU	6.6	6.4	6.7	6.4	6.7	7.0	6.9	6.9	7.1	6.9	7.0	7.1	6.9
ORP	mV	180	120	50	92	17	7	44	130	110	130	180	160	160
Dissolved Oxygen	mg/L	5.1	3.3	0.2	9.0	0.2	0.3	0.2	0.2	0.2	0.1	0.2	0.5	0.3
Specific Conductance	μS/cm	940	980	1,160	1,340	1,580	1,770	1,800	1,740	1,860	1,790	1,820	2,360	2,010
Temperature	°C	8.7	7.4	12.0	12.7	13.8	9.1	12.9	12.8	12.3	13.2	10.0	12.6	12.6
Turbidity	NTU	0.9	5	16	9	3	22	8	5	8	7	0.9	7	4
Cobalt (T)	μg/L	0.42	0.23	5.5	5.6	9.1	16	18	21	9.1	5.7	0.24	0.75	0.93
Cobalt (D)	μg/L	NA	NA	5.4	6.1	7.6	16	20	17	NA	NA	0.23	NA	NA
Lithium (T)	μg/L	24	19	<2.3	<2.5	<2.5	3.2	2.6	< 2.5	40	28	48	58	54
Calcium (T)	mg/L	84	92	73	74	110	100	110	120	200	200	200	210	190
Magnesium (T)	mg/L	33	36	26	25	44	47	47	53	200	68	86	100	190
Sodium (T)	mg/L	77	89	160	170	180	210	200	210	65	140	100	150	170
Potassium(T)	mg/L	1.5	1.1	3.7	3.5	6.0	7.6	7.9	8.7	4.8	6.1	12	17	16
Iron (T)	μg/L	50	<36	590	220	68	330	170	76	350	920	< 50	<36	<36
Iron (D)	μg/L	< 50	<36	140	110	<250	66	85	55	510	630	< 50	<36	<36
Manganese (D)	μg/L	16	5	16,000	15,000	23,000	3,400	3.500	3,200	1,200	3,200	280	330	400
Alkalinity (T,as CaCO3)	mg/L	150	190	280	270	470	460	470	520	240	300	190	130	260
Chloride (T)	mg/L	140	140	41	35	260	270	240	200	170	170	130	250	200
Sulfate (T)	mg/L	140	160	310	370	70	63	120	150	570	500	590	720	630
Total Dissolved Solids	mg/L	550	610	820	880	710	960	900	950	1,100	3,200	1,300	1,600	1.400

(D) Dissolved concentration filtered at 0.45 μm . (T) Total concentration, unfiltered. Ferrous iron measured in the field by Hach colorimetric kit. NA – not analyzed.

Table 2. Selected groundwater chemistry for MNA assessment (Section 2 of the report). Monitoring wells listed left to right

from upgradient to downgradient locations

Measure-			MW-301				MW-302		MW-303			MW-304			MW-305			MW-305A			
ment	Units	Mar- 20	Apr- 20	Apr - 21	Apr 22	Apr- 20	Apr- 21	Apr 22	Apr- 20	Apr- 21	Apr 22	Apr- 20	Apr- 21	Apr- 22	Apr-20	Apr- 21	Apr- 22	Mar- 20	Apr- 20	Apr- 21	Apr- 22
Iron-T		25	50	49	18	500	350	45	280	44	18	5200	4500	4800	330	170	76	720	64	18	18
Iron-D		25	25	18	18	25	18	18	25	18	18	4600	4500	3800	66	85	55	25	25	18	18
Cobalt-T	μg/L	0.43	0.52	0.29	0.23	5.3	5.5	1.3	0.87	0.43	0.16	0.57	0.43	0.41	18	16	21	2.4	2.7	0.5	1.7
Cobalt-D		0.32	0.44	NA	NA	0.81	NA	NA	0.37	NA	NA	0.37	NA	NA	16	20	17	2.1	2.8	NA	NA
Turbidity	NTU	1	0.9	2	5	31	23	5	12	4	6	54	17	NA	22	8	5	63	5	1	13
pH	SU	6.48	6.58	6.5	6.6	6.7	6.4	6.4	6.98	6.67	6.71	7.12	6.94	6.95	7	6.92	6.9	8.09	7.63	7.05	7.19
ORP	mV	260	180	230	120	140	200	150	100	190	160	-120	-98	-57	190	6.6	-13	200	110	160	80
DO	mg/L	5.3	5.1	6	3.3	0.2	0	0.4	1.9	2.8	1.2	0.2	0.2	0.1	0.3	0.2	0.2	3.8	2.3	0.9	4.9
				MW-306		MW-312		MW-313													
Measure-				MW-306			MW	7-312	MV	V-313		MV	V-310			MW	-310A				
Measure- ment	Units	Apr- 20	Oct-20	MW-306 Apr- 21	Oct- 21	Apr- 22	Jan-22	7-312 Apr- 22	Jan-22	V-313 Apr- 22	Mar- 20	Apr- 20	V-310 Apr- 21	Apr- 22	Mar-20	Apr- 20	Apr- 21	Apr- 22			
	Units			Apr-				Apr-		Apr-		Apr-	Apr-		Mar-20	Apr-	Apr-				
ment		20	Oct-20	Apr- 21	21	22	Jan-22	Apr- 22	Jan-22	Apr- 22	20	Apr- 20	Apr- 21	22		Apr- 20	Apr- 21	22			
ment Iron-T	Units μg/L	590	Oct-20 340	Apr- 21 220	180	68	Jan-22 NA	Apr- 22 350	Jan-22 NA	Apr- 22 920	20 NA	Apr- 20 25	Apr- 21 18	18	99	Apr- 20 230	Apr- 21 18	56			
Iron-T Iron-D		590 140	Oct-20 340 100	Apr- 21 220 110	21 180 100	68 125	Jan-22 NA 180	Apr- 22 350 510	Jan-22 NA 240	Apr- 22 920 360	20 NA 25	Apr- 20 25 25	Apr- 21 18 18	18 18	99 25	Apr- 20 230 220	Apr- 21 18 18	56 70	_		
Iron-T Iron-D Cobalt-T		590 140 5.5	Oct-20 340 100 5.9	Apr- 21 220 110 5.6	21 180 100	68 125 9.1	Jan-22 NA 180 4.9	Apr- 22 350 510 9.1	Jan-22 NA 240 5.9	Apr- 22 920 360 5.7	20 NA 25 0.32	Apr- 20 25 25 0.24	Apr- 21 18 18 0.75	18 18 0.93	99 25 0.63	Apr- 20 230 220 0.39	Apr- 21 18 18 0.48	56 70 0.41			
ment Iron-T Iron-D Cobalt-T Cobalt-D	- μg/L	590 140 5.5 5.4	Oct-20 340 100 5.9 5.1	Apr- 21 220 110 5.6 6.1	21 180 100 11 9.9	22 68 125 9.1 7.6	Jan-22 NA 180 4.9 3.4	Apr- 22 350 510 9.1 NA	Jan-22 NA 240 5.9 6	Apr- 22 920 360 5.7 NA	20 NA 25 0.32 0.31	Apr- 20 25 25 0.24 0.23	Apr- 21 18 18 0.75 NA	18 18 0.93 NA	99 25 0.63 0.67	Apr- 20 230 220 0.39	Apr- 21 18 18 0.48 NA	22 56 70 0.41 NA			
ment Iron-T Iron-D Cobalt-T Cobalt-D Turbidity	μg/L NTU	590 140 5.5 5.4	Oct-20 340 100 5.9 5.1	Apr-21 220 110 5.6 6.1	21 180 100 11 9.9	22 68 125 9.1 7.6	Jan-22 NA 180 4.9 3.4	Apr- 22 350 510 9.1 NA 8	Jan-22 NA 240 5.9 6	Apr- 22 920 360 5.7 NA	20 NA 25 0.32 0.31	Apr- 20 25 25 0.24 0.23	Apr- 21 18 18 0.75 NA 2	22 18 18 0.93 NA	99 25 0.63 0.67 110	Apr-20 230 220 0.39 0.4	Apr- 21 18 18 0.48 NA 2	22 56 70 0.41 NA			

Notes: T – total, result unfiltered with suspended solids. D – Dissolved, result filtered at 0.45 um. NA – Not analyzed. Charts use ½ of the laboratory reporting limits (green shading) for plotting purposes.

Table 3. Description of soil samples.

		Mass
Sample Id.	Soil Description	Received
		(kg)
MW-305X S8/S9	Sandy SILT, fine to medium sand with silt, trace clay, occasional	4.08
	pebbles. Non-plastic, odorless, light grey (2.5Y 7/1) and pale	
	yellow (2.5Y 7/3)	
MW-307X S5	Well-graded GRAVEL, fine to coarse gravel (up to 3 cm), trace	3.59
	fine to coarse sand, trace silt. Non-plastic, odorless, grey (10YR	
	5/1)	
MW-310X S3	Well-graded SAND, fine to coarse sand, trace silt, trace fine to	4.37
	coarse rounded gravel. Non-plastic, odorless, brown (10YR 4/3)	
MW-312 S4/S5	SILT with sand, fine sand, trace clay, trace fine gravel. Non-	4.33
	plastic, odorless, grey (2.5YR 6/1)	
MW-313 S3	Well-graded SAND, fine to coarse sand, trace silt, trace fine	4.10
	gravel. Non-plastic, odorless, brown (10YR 5/3)	

Table 4. Baseline soil chemistry.

Analytes	Units	MW-305X	MW-307X	MW-307X (<4 mm)	MW312	MW-313
Iron	ma/lea	1,410	11,500	32,900	1,290	2,960
Manganese	mg/kg	142	529	419	88.9	180
Cobalt	mg/kg	0.78	4.3	3.7	1.4	2.7
Solids Content	wt.%	85	95	83	85	86

Table 5. Baseline groundwater analyses.

Augliotes III.:te	TT '.	Sample	MW-305 ^a	MW-305 ^b	MW-307°	MW-307 ^d	MW-312 ^d	MW-313 ^d	MW-310 ^a
Analytes	Analytes Units	Filtration	Oct. 2020	Jan. 2022	Apr. 2020	Jan. 2022	Jan. 2022	Jan. 2022	Oct. 2020
рН	SU	none	7.44	6.96	6.76	6.69	7.18	7.00	7.07
ORP	mV	none	-13	-72	-53	-190	-53	-51	150
DO	mg/L	none	0.1	2.6	0.7	2.4	0.3	0.2	0.2
T	⁰ C	none	14	18.8	10.6	18.2	12.6	14.6	13.9
SEC	μS/cm	none	1,810	1,530	1,550	1,450	1,760	1,860	1,710
Turbidity	NTU	none	13	0	29	8.8	0	0	0
Inon	~/T	0.45 μm	63	<27	3,100	<27	180	240	
Iron	μg/L	none	200	28.4	3,800	330			64.0
Cobalt	a/I	0.45 μm	17.0	18.3	19.0	15.7	3.4	5.9	
Coball	μg/L	none	17.0	19.8	19.0	16.5	4.9	5.9	0.38

- Notes: a.) SCS sampling and analysis
 - b.) RP sampling and analysis
 - c.) SCS sampling and analysis
 - d.) SCS sampling and analysis

Table 6. Suspended sediment analyses.

Groundwater	Filter	Blank	MW	-305	MW	-307	MW	-312	MW	-313
Turbidity ¹ (NTU)	N	A	1	3	Ģ)	()	()
Total Aqueous Cobalt¹ (μg/L)	N	NA		17		16.5		4.9		.9
Dissolved Cobalt at 0.45 um Filtration (µg/L)	N	NA		17		15.7		.4	5.	.9
Dissolved Cobalt at 0.20 um Filtration (µg/L)	N	A					5.1		6.	0
Filter for Sediment Capture (μm)	0.45	0.20	0.45	0.20	0.45	0.20	0.45	0.20	0.45	0.20
Concentrations as reported in sedin	ment on filters									
Aluminum (mg/kg)	24.9	18.6	85.7	39.3	69.5	63.0	43.5	31.6	109	49.6
Iron	73.1	61.5	258	101	168	209	93.6	79.4	252	109
Cobalt	< 0.047	< 0.036	< 0.046	< 0.030	< 0.042	< 0.032	< 0.039	< 0.036	< 0.046	< 0.034
Corrected for blank concentrations	and for to	otal sampl	e volume	of 4 L to y	rield mg in	sediment	per litre o	f groundw	ater.	
Aluminum (mg in sediment/L)			15.2	3.60	11.2	9.5	4.65	1.68	21.0	6.18
Iron	Not Ap	plicable	46.2	6.98	23.7	34.0	5.13	1.58	44.7	8.98
Cobalt			< 0.012	< 0.007	< 0.011	< 0.008	< 0.010	< 0.009	< 0.011	< 0.009

Notes: 1.) Data from baseline analyses, Table 5.

Table 7. Results of metals precipitation with groundwater aeration.

		Sample	MW	7-305	MW-307			
Analytes Units		Filtratio	Pre-	Post-	Pre-	Post-		
		n	aeration	aeration	aeration	aeration		
pН	SU	none	6.96	8.77	6.69	8.04		
ORP	mV	none	-72	-19	-190	48		
Iron	μg/L	none	28.4	12.9	330	27.2		
Iron		0.45 μm	<27	<27	<27	<27		
Cobalt	μg/L	none	19.8	17.9	16.5	8.9		
Cobalt		0.45 μm	18.3	17.4	15.7	6.1		

Table 8. Results for cobalt adsorption trials.

Soil Sample	Soil Mass (g)	Aqueous Volume (L)	Liquid to Solid Ratio	Co Initial Concentration (µg/L)	pH (SU)	ORP (mV)	C _{aq} (Cobalt Final Concentration, µg/L)	Cobalt Mass Lost from Solution (μg)	C _{abs} (Cobalt Adsorbed Concentration, μg/kg)
Control Rep 1	0	0.2			7.41	47	135		
Control Rep 2					7.38	42	136		
Mean					7.40	45	136		
MW-305X S8/S9	1.0	0.2	200	136	7.36	31	125	2.20	2200
	2.0		100		7.21	28	118	3.60	1800
	4.0		50		7.22	18	104	6.40	1600
	8.0		25		7.22	14	81.6	10.9	1360
	20.0		10		7.23	2.4	45.4	18.1	906
	40.0		5		7.22	-6.2	26.5	21.9	548
MW-307X S5	1.0	0.2	200	136	7.28	-5.3	122	2.80	2800
(<4 mm Fraction)	2.0		100		7.27	-7.1	115	4.20	2100
	4.0		50		7.25	-6.8	97.1	7.78	1945
	8.0		25		7.23	-6.8	71.1	13.0	1623
	20.0		10		7.22	-9.2	34.1	20.4	1019
	40.0		5		7.18	-8.9	18.3	23.5	589
MW-312 S4/S5	1.0	0.2	200	136	7.27	-8.6	132	0.800	800
	2.0		100		7.27	-16	123	2.60	1300
	4.0		50		7.28	-14	113	4.60	1150
	8.0		25		7.27	-14	96.3	7.94	993
	20.0		10		7.25	-17	57.5	15.7	785
	40.0		5		7.23	-23	31.9	20.8	521
MW-313 S3	1.0	0.2	200	136	7.29	-66	119	3.40	3400
	2.0		100		7.32	-56	106	6.00	3000
	4.0		50		7.28	-53	85.6	10.1	2520
	8.0		25		7.25	-50	66.6	13.9	1735
	20.0		10		7.21	-49	41.0	19.0	950
	40.0		5		7.21	-48	27.3	21.7	544

Table 9. Cobalt desorption summary.

	Adsorption ¹		Desorption										
Sample	L:S	μg Co/	L:S	рН	ORP	Soil	Water	Со		Co Desort	bed		
Sumple	Ratio	g soil	Ratio	(SU)	(mV)	(g)	(g)	(μg/L)	Total	μg Co/	Fraction		
	Katio	g son	Kano	(30)	(111 V)	(g)	(g)	(μg/L)	(µg)	g soil	Desorbed		
MW-305X S8/S9	10	0.905	5	6.98	77	9.83	49.2	9.7	0.477	0.0485	0.0536		
			10	6.73	82	9.76	97.6	12.5	1.22	0.125	0.138		
MW-313 S3	10	0.950	5	6.92	63	9.25	46.3	4.8	0.222	0.0240	0.0253		
			10	6.77	78	8.70	87	3.9	0.339	0.0390	0.0411		

Figure 1. Dissolved oxygen as a function of ORP.

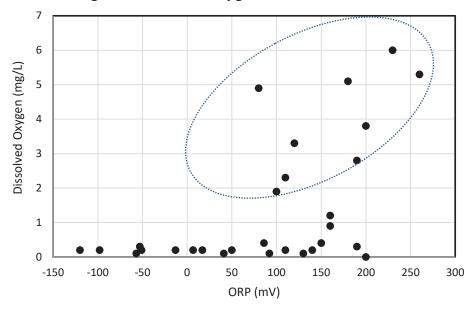


Figure 2. Dissolved iron as a function of total iron concentrations.

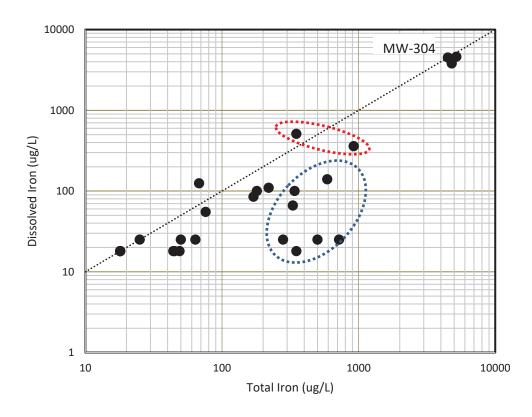


Figure 3. Iron concentrations as a function of ORP.

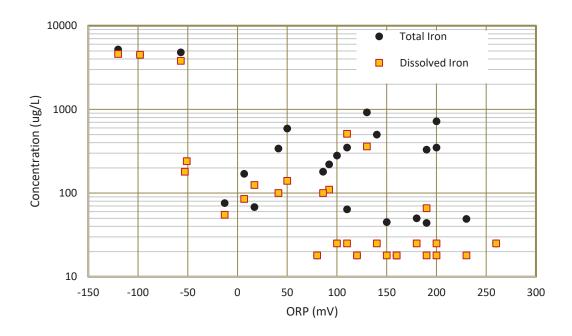


Figure 4. Total iron as a function of turbidity (suspended sediment surrogate).

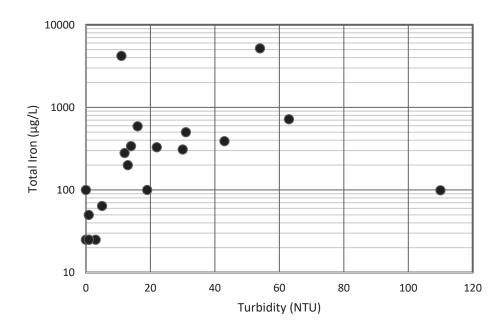


Figure 5. Total cobalt as a function of turbidity (suspended sediment surrogate).

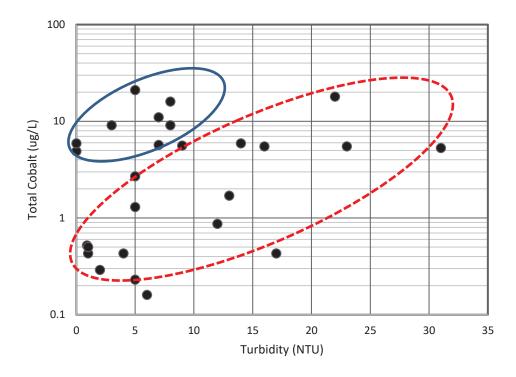
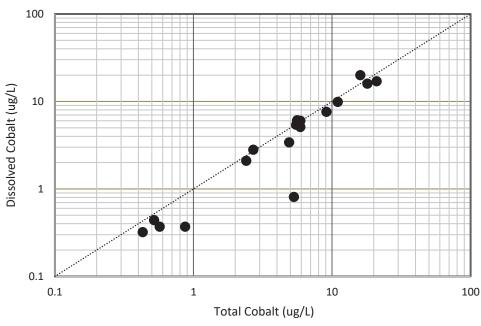



Figure 6. Dissolved cobalt as a function of total cobalt.

100 **Total Cobalt** Dissolved Cobalt Concentration (ug/L) 10 1 MW-304 0.1 0 50 -150 -100 -50 100 150 200 250 300 ORP (mV)

Figure 7. Cobalt concentration as a function of ORP.

Figure 8. Dissolved cobalt as a function of dissolved iron.

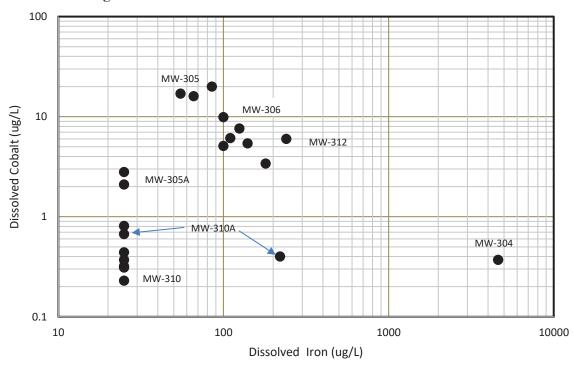


Figure 9. Cobalt adsorption to iron oxyhydroxide in sediment samples.

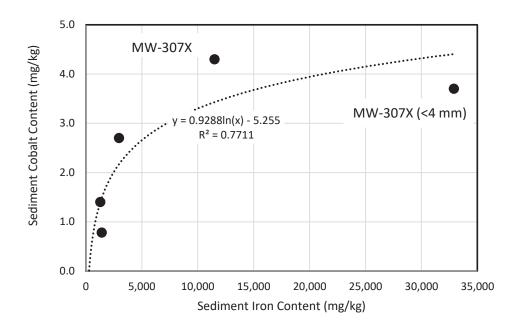


Figure 10. Total cobalt concentrations as a function of turbidity. The cobalt GPS is 6 $\mu g/L$.

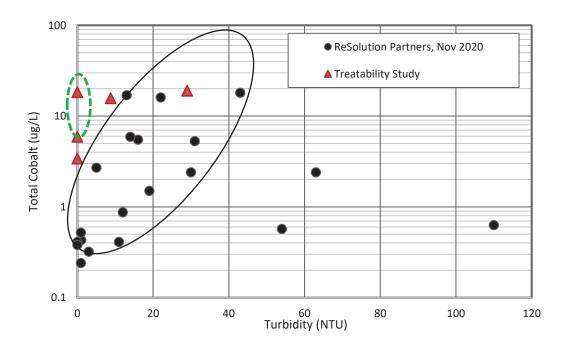


Figure 11. Table 5 baseline total cobalt concentrations as a function of turbidity.

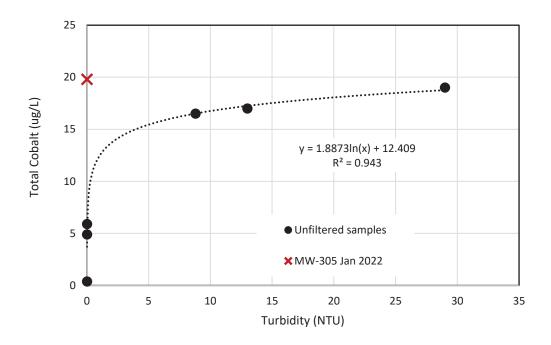


Figure 12. Cobalt concentrations as a function of ORP. (TS = treatability study results)



Figure 13. Aluminum and iron in sediment retained on 0.45 um and 0.20 um filters.

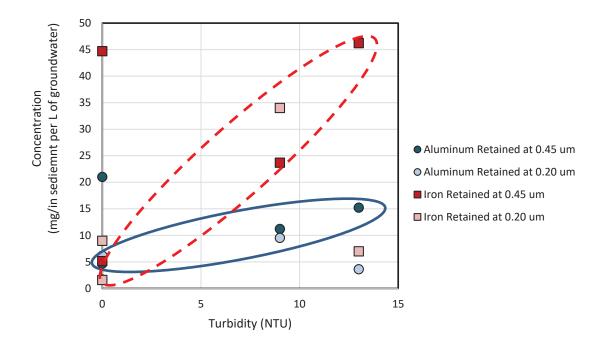
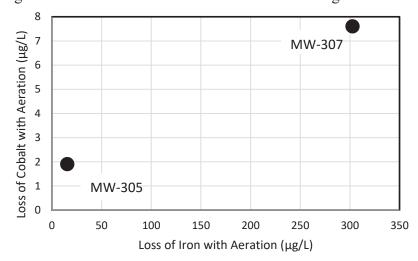



Figure 14. Loss of iron and cobalt with aeration of groundwater.

4000 Linear Isotherm K_d y = 27.981x 3500 $R^2 = 0.996$ MW-305X 3000 y = 21.157x R² = 0.8998 Adsorbed Cobalt (C_{ads}, ug/kg) MW-307 2500 MW-312 y = 16.479x2000 MW-313 $R^2 = 0.9498$ 1500 y = 9.3818x $R^2 = 0.9387$ 1000 **\Q** 500 Intercepts Set = 0 0 0 20 40 60 80 100 120 140 160 Aqueous Cobalt (C_{aq}, ug/L)

Figure 15. Cobalt isotherms.

Appendix A

Laboratory Reports

CT Laboratories LLC • 1230 Lange Ct • Baraboo, WI 53913

608 -356-2760 • www.ctlaboratories.com

ANALYTICAL REPORT

RESOLUTION PARTNERS LLC

ANGELA HASSELL

967 JONATHON DR.

MADISON, WI 53713

Project Name: SCS-ALLIANT OTTUMWA GS

Project Phase:

Contract #: 3364

Project #:

Folder #: 167331

Page 1 of 2

Arrival Temperature: 1.6

Report Date: 2/7/2022

Date Received: 1/28/2022

Reprint Date: 2/7/2022

CT LAB Sample#: 1096028 Sample	Description: MW-307	X <4MM							Sampled:	1/27/2022 13:00
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Tim	-	Method
Inorganic Results										
Solids, Percent	83.4	%			1			1/31/2022	11:46 BMM	EPA 8000C
Metals Results										
Cobalt	3.7	mg/kg	0.066	0.32	1		1/31/2022 12:54	2/1/2022	22:08 NAH	EPA 6010C
Iron	32900	mg/kg	12	64	1	M,Y	1/31/2022 12:54	2/1/2022	22:08 NAH	EPA 6010C
Manganese	419	mg/kg	0.13	0.54	1	M	1/31/2022 12:54	2/1/2022	22:08 NAH	EPA 6010C

Project Name: SCS-ALLIANT OTTUMWA GS

Project #: Project Phase: Contract #: 3364 Folder #: 167331 Page 2 of 2

Notes regarding entire Chain of Custody:

Notes: * Indicates a value in between the LOD (limit of detection) and the LOQ (limit of quantitation). All LOD/LOQs are adjusted to reflect dilution and also any differences in the sample weight / volume as compared to standard amounts.

All samples were received intact and properly preserved unless otherwise noted. The results reported relate only to the samples tested. This report shall not be reproduced, except in full, without written approval of this laboratory. The Chain of Custody is attached.

Submitted by:

Brett M. Szymanski Project Manager 608-356-2760

QC Qualifiers

Code	<u>Description</u>
В	Analyte detected in the associated Method Blank.
С	Toxicity present in BOD sample.
D	Diluted Out.
E	Safe, No Total Coliform detected.
F	Unsafe, Total Coliform detected, no E. Coli detected.
G	Unsafe, Total Coliform detected and E. Coli detected.
Н	Holding time exceeded.
I	Incubator temperature was outside acceptance limits during test period.
J	Estimated value.
L	Significant peaks were detected outside the chromatographic window.
M	Matrix spike and/or Matrix Spike Duplicate recovery outside acceptance limits.
N	Insufficient BOD oxygen depletion.
0	Complete BOD oxygen depletion.
Р	Concentration of analyte differs more than 40% between primary and confirmation analysis.
Q	Laboratory Control Sample outside acceptance limits.
R	See Narrative at end of report.
S	Surrogate standard recovery outside acceptance limits due to apparent matrix effects.
Т	Sample received with improper preservation or temperature.
U	Analyte concentration was below detection limit.
V	Raised Quantitation or Reporting Limit due to limited sample amount or dilution for matrix background interference.
W	Sample amount received was below program minimum.
X	Analyte exceeded calibration range.
Υ	Replicate/Duplicate precision outside acceptance limits.
Z	Specified calibration criteria was not met.

Current CT Laboratories Certifications

Wisconsin (WDNR) Chemistry ID# 157066030
Wisconsin (DATCP) Bacteriology ID# 289
Louisiana NELAP (primary) ID# 115843
Illinois NELAP Lab ID# 200073
Kansas NELAP Lab ID# E-10368
Virginia NELAP Lab ID# 460203
ISO/IEC 17025-2005 A2LA Cert # 3806.01
DoD-ELAP A2LA 3806.01

Rev. 02/2017						CHAIN OF	CUST	ODY											_			P	age	1	of1
Company: F Project Cont Telephone:	act: Angel	a Hassel 248	II		CT JA	167331	米米米米米米	* * * * ;	K M 32 36	ne het het me pêc	or!	oram:	608-3	356-27	60 www	Barabo Fax 6	08-3	56-27(ies.co	56 E	Repor EMAII Comp	L: a b k pany: ess:	ahass orehm (bake 90 M	n@r er@r 67 J ladis	esoluti resolut onathor son, WI	utionpartnersllc.net onpartnersllc.net ionpartnersllc.net n Drive _53713
Project Nam Project #:	e: SCS-Alli	iant Ottur	mwa GS			RESOLUT							ste	Other				<u>-</u>		EMAI Comp	L: a any:	ahass R	ell@ eSo	lution F	utionpartnersllc.net Partners LLC
Location:					****	Ву: егс нимимимими нимимимими	РМ: начини начини			(₽ <u>0</u>	#								Addre	ess:				n Drive 53713
Sampled By:	Kevin Bal	er 608-6	69-6949								I				*Par	ly listed	is res	ponsit	le for	paym	ent of	'invoic	e as	per CT L	aboratories' terms and conditions
Matrix: GW - groundwat S - soil/sediment	er SW-surfa	ce water W	ſW - wastew. ↓ - air		nking water /waste		Electrical V/V	cobalt	iron	manganese			AN	IALYSE	S REQ	UESTE						Total & Contained	TOTAL M CONTAINED	Designated MS/MSD	Turnaround Time Normal Date Needed: Rush analysis requires prior CT Laboratories' approval Surcharges: 24 hr 200% 2-3 days 100% 4-9 days 50%
Collect	tion	Matrix	Grab/ Comp	Sample #	Sample ID	Description							1	ill in S	paces	with Bo	ttles	per Te:	st						CT Lab ID # Lab use only
1/27/2022	1300	GW			1W-307X <4mm		1	v x	×	x x													\Box		1096028
										\perp	_	\sqcup	\dashv			1	_		_	4	4	_			
			ļ				_	+	-		-	\vdash	-	+	+	┼-	_	\vdash	\dashv		-	\dashv	+		
							+	+	+	+	+	\vdash	\dashv	+	+	+	┝	\vdash	\dashv	\dashv	\dashv	\dashv	\dashv		
															土										
									_	\perp	_	Ш			_	\perp				\dashv	4	_	4		
	-							+	-	-	-	\vdash	\dashv	+	+	+-		\square	_	-	\dashv	\dashv	-		-
								+-	+-	+-	╁	\vdash	-		+	+	-		\dashv	\dashv	\dashv	-	\dashv		
							_	+-	+	+-	+		_	\top	十	+-		\Box		\neg	\neg	_	\forall		
												\Box													
								\perp	I						I							\perp			
								<u> </u>		1			\Box		\perp	L					_		\perp		
		<u> </u>			In-varies - I		_				ــــــــــــــــــــــــــــــــــــــ	Щ	Ш.	\perp	\perp		Date/	l lime		\perp			4		
Relinquisted By:	1/30	L			Date/Time Date/Time	1305		ceived f		Poratory	by:					Hrc The		181	m		408			Ice Pro Temp Coole	

CT Laboratories LLC • 1230 Lange Ct • Baraboo, WI 53913

608 -356-2760 • www.ctlaboratories.com

ANALYTICAL REPORT

RESOLUTION PARTNERS LLC

ANGELA HASSELL

967 JONATHON DR.

MADISON, WI 53713

Project Name: SCS-ALLIANT OTTUMWA GS

Project Phase:

Contract #: 3364

Project #:

Folder #: 167266

Page 1 of 2

Arrival Temperature: 1

Report Date: 1/28/2022

Date Received: 1/26/2022

Reprint Date: 1/28/2022

CT LAB Sample#: 1095306	Sample Description: MW-30	5 CO SPIKE UNFIL	TERED					Sampled: 1/20/2022 16:00
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Analyst Method Date/Time
Metals Results								
Total Cobalt	137	ug/L	0.55	2.5	1		1/26/2022 09:39	1/27/2022 15:05 NAH EPA 6010C
CT LAB Sample#: 1095307	Sample Description: MW-30	5 CO SPIKE FILTER	RED					Sampled: 1/20/2022 16:05
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Analyst Method Date/Time
letals Results								
Dissolved Cobalt	131	ug/L	0.4	2.5	1			1/26/2022 14:24 NAH EPA 6010C

Project Name: SCS-ALLIANT OTTUMWA GS

Project #: Project Phase: Folder #: 167266

Page 2 of 2

Contract #: 3364

Notes regarding entire Chain of Custody:

Notes: * Indicates a value in between the LOD (limit of detection) and the LOQ (limit of quantitation). All LOD/LOQs are adjusted to reflect dilution and also any differences in the sample weight / volume as compared to standard amounts.

All samples were received intact and properly preserved unless otherwise noted. The results reported relate only to the samples tested. This report shall not be reproduced, except in full, without written approval of this laboratory. The Chain of Custody is attached.

Submitted by:

Brett M. Szymanski Project Manager 608-356-2760

Current CT Laboratories Certifications

Wisconsin (WDNR) Chemistry ID# 157066030 Wisconsin (DATCP) Bacteriology ID# 289 Louisiana NELAP (primary) ID# 115843 Illinois NELAP Lab ID# 200073 Kansas NELAP Lab ID# E-10368 Virginia NELAP Lab ID# 460203 ISO/IEC 17025-2005 A2LA Cert # 3806.01 DoD-ELAP A2LA 3806.01

Rev. 02/2017					CHAIN	OF CUS	TOE	ΣΥ	_														Pag	ge	of1
Company: Re					CT LABORA							12		nge (760		608	-356-	2766	EN	port 1	aha bre	hm@ aker@)resolu)resolu	lutionpartnersllc.net tionpartnersllc.net itionpartnersllc.net
Telephone: 6	608-669-12	248			·	******	 	***	****		Prog	ram:									mpai dress	-			on Drive // 53713
Project Name	: SCS-Alli	ant Ottur	nwa GS		Folder #: 167266					Ì	QSM		RCRA	SD'						Inv	oice	To: •	Ang	ela Has	
Project #:					Company: RESOLUT					١											ıAIL: mpai		ReS	Solution	Partners LLC
Location:					Project: SCS-ALLIA	NT OTT PM: E	3MS				PO#	!	_							Ad	dress	3:			on Drive /I 53713
Sampled By:	Kevin Bak	er 608-6	69-6949		· 美美 東 美 東 東 東 東 東 東 東 東 東 東 東 東 東 東 東 東	******************	C 34C 34C 34C	(###:	ole ole ole ole o	74C 34C 34C					* P 8	rty list	ed is	respo	nsible	for pa	ymen	t of in	voice a	s per CT	Laboratories' terms and conditions
Client Special I		•			1					,			Al	NALYS	ES RE	QUEST	ED	_	_	_	_	_	$\overline{}$		Turnaround Time
Matrix: GW - groundwate S - soil/sediment	er SW-surfa		W - wastewa		Irinking water iisc/waste		Filtered? Y/N	cobalt															Total # Containers	Designated MS/MSD	RUSH 3-DAY TAT Date Needed: Rush analysis requires prior CT Laboratories' approval Surcharges: 24 hr 200% 2-3 days 100% 4-9 days 50%
Collecti	ion Time	Matrix	Grab/ Comp	Sample #	Sample ID Description									Fill in S	paces	with I	ottle	s per	Test						CT Lab ID # Lab use only
1/20/2022	1600	ww			MW-305 Co Spike Unfiltered		N	х						\Box				I	I				1		109530€
1/20/2022	1605	ww			MW-305 Co Spike Filtered		Υ	x					\dashv	\perp	_		\downarrow	\downarrow	\perp	\perp	_	\perp	1	<u> </u>	. 07
											\square		\dashv	\perp	+	+	+	+	+	+	+	+		-	
				ļ					\dashv	_	\vdash	\dashv	\dashv	+	+	+	+	+	+	+	╁	+	+		
											\Box				\top	_				\dagger	†	\dagger	+-		
												\Box		_	_		\perp	\perp	\bot	\perp	\perp	\bot	\perp	<u> </u>	
									\vdash		\vdash	_		\dashv	+	+	╀	+	-	╀	+	╀	╁	├	
									\vdash		Н	-	\dashv	\dashv	+	-	+	+	+	╁	+	+	╁	-	
										-				_	+	+	\dagger	\top	+	+	\dagger	\dagger	+		
										- 1					\top		1			1					
																		\perp							
Relipquished By: Received by:	Bak	in			Date/Time				Labora							Bu	Dat	Pe/Tim	n	_	131	9		Ice P Tem Cool	resent (ret No 27) p O IR Gun 27

delivering more than data from your environmental analyses

CT LABORATORIE

ANALYTICAL REPORT

RESOLUTION PARTNERS LLC

ANGELA HASSELL

967 JONATHON DR.

MADISON, WI 53713

Project Name: SCS-ALLIANT OTTUMWA GS

Project Phase:

Contract #: 3364

Project #:

Folder #: 167195

Page 1 of 4

Arrival Temperature: 2.1

Report Date: 2/2/2022

Date Received: 1/20/2022

Reprint Date: 2/2/2022

nalyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method
CT LAB Sample#: 1093558	Sample Description: MW-305X	S8/S9							Sampled:	1/19/2022 08:10
issolved Manganese	287	ug/L	1.2	5.0	1			1/26/2022 14:0	NAH	EPA 6010C
Dissolved Iron	<27	ug/L	27	90	1			1/26/2022 14:0	NAH	EPA 6010C
issolved Cobalt	16.7	ug/L	0.4	2.5	1			1/26/2022 14:0	NAH	EPA 6010C
letals Results										
nalyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method
CT LAB Sample#: 1093557	Sample Description: MW-307								Sampled:	1/19/2022 08:05
issolved Manganese	3310	ug/L	1.2	5.0	1			1/26/2022 14:0	00 NAH	EPA 6010C
issolved Iron	<27	ug/L	27	90	1			1/26/2022 14:0	00 NAH	EPA 6010C
Dissolved Cobalt	18.6	ug/L	0.4	2.5	1			1/26/2022 14:0	00 NAH	EPA 6010C
letals Results										
nalyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method

Project Name: SCS-ALLIANT OTTUMWA GS

Project #:
Project Phase:

Contract #: 3364 Folder #: 167195

Page 2 of 4

Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method
norganic Results										
Solids, Percent	85.0	%			1			1/25/2022 11:22	2 BMM	EPA 8000C
letals Results										
Cobalt	0.78	mg/kg	0.062	0.30	1		1/24/2022 10:42	1/27/2022 01:2	I NAH	EPA 6010C
ron	1410	mg/kg	11	60	1		1/24/2022 10:42	1/27/2022 01:2	I NAH	EPA 6010C
Manganese	142	mg/kg	0.12	0.50	1		1/24/2022 10:42	1/27/2022 01:2	I NAH	EPA 6010C
CT LAB Sample#: 1093559 Sample	Description: MW-307	X S5							Sampled:	1/19/2022 08:
analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method
norganic Results										
Solids, Percent	94.6	%			1			1/25/2022 11:22	2 BMM	EPA 8000C
Metals Results										
Coholt	4.3	mg/kg	0.056	0.27	1		1/24/2022 10:42	1/27/2022 01:5	I NAH	EPA 6010C
Cobalt				5 4	1		1/24/2022 10:42	1/27/2022 01:5	I NAH	EPA 6010C
	11500	mg/kg	9.9	54						
ron	11500 529	mg/kg mg/kg	9.9 0.11	0.45	1		1/24/2022 10:42	1/27/2022 01:5		EPA 6010C
ron Manganese		mg/kg			•			1/27/2022 01:5	I NAH	EPA 6010C

Metals Results

Project Name: SCS-ALLIANT OTTUMWA GS

Project #:
Project Phase:

Contract #: 3364 Folder #: 167195

Page 3 of 4

CT LAB Sample#: 1093560 Sample Description: MW-312 S4/S5 Sampled: 1/19/2022 08:20

Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method
Cobalt	1.4	mg/kg	0.068	0.33	1		1/24/2022 10:42	1/27/2022 01:	58 NAH	EPA 6010C
Iron	1290	mg/kg	12	66	1		1/24/2022 10:42	1/27/2022 01:	58 NAH	EPA 6010C
Manganese	88.9	mg/kg	0.13	0.55	1		1/24/2022 10:42	1/27/2022 01:	58 NAH	EPA 6010C
CT LAB Sample#: 1093561	Sample Description: MW-313 S	3							Sampled:	1/19/2022 08:25
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method

Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analy: Date/Ti		nalyst	Method
Inorganic Results Solids, Percent	85.7	%			1			1/25/2022	11:22	ВММ	EPA 8000C
Metals Results											
Cobalt	2.7	mg/kg	0.063	0.31	1		1/24/2022 10:42	1/27/2022	02:27	NAH	EPA 6010C
Iron	2960	mg/kg	11	61	1		1/24/2022 10:42	1/27/2022	02:27	NAH	EPA 6010C
Manganese	180	mg/kg	0.12	0.51	1		1/24/2022 10:42	1/27/2022	02:27	NAH	EPA 6010C

Project Name: SCS-ALLIANT OTTUMWA GS

Project #: Project Phase: Contract #: 3364 Folder #: 167195 Page 4 of 4

Notes regarding entire Chain of Custody:

Notes: * Indicates a value in between the LOD (limit of detection) and the LOQ (limit of quantitation). All LOD/LOQs are adjusted to reflect dilution and also any differences in the sample weight / volume as compared to standard amounts.

All samples were received intact and properly preserved unless otherwise noted. The results reported relate only to the samples tested. This report shall not be reproduced, except in full, without written approval of this laboratory. The Chain of Custody is attached.

Submitted by:

Brett M. Szymanski Project Manager 608-356-2760

QC Qualifiers

Code	<u>Description</u>
В	Analyte detected in the associated Method Blank.
С	Toxicity present in BOD sample.
D	Diluted Out.
E	Safe, No Total Coliform detected.
F	Unsafe, Total Coliform detected, no E. Coli detected.
G	Unsafe, Total Coliform detected and E. Coli detected.
Н	Holding time exceeded.
I	Incubator temperature was outside acceptance limits during test period.
J	Estimated value.
L	Significant peaks were detected outside the chromatographic window.
M	Matrix spike and/or Matrix Spike Duplicate recovery outside acceptance limits.
N	Insufficient BOD oxygen depletion.
0	Complete BOD oxygen depletion.
Р	Concentration of analyte differs more than 40% between primary and confirmation analysis.
Q	Laboratory Control Sample outside acceptance limits.
R	See Narrative at end of report.
S	Surrogate standard recovery outside acceptance limits due to apparent matrix effects.
T	Sample received with improper preservation or temperature.
U	Analyte concentration was below detection limit.
V	Raised Quantitation or Reporting Limit due to limited sample amount or dilution for matrix background interference.
W	Sample amount received was below program minimum.
Χ	Analyte exceeded calibration range.
Υ	Replicate/Duplicate precision outside acceptance limits.
Z	Specified calibration criteria was not met.

Current CT Laboratories Certifications

Wisconsin (WDNR) Chemistry ID# 157066030
Wisconsin (DATCP) Bacteriology ID# 289
Louisiana NELAP (primary) ID# 115843
Illinois NELAP Lab ID# 200073
Kansas NELAP Lab ID# E-10368
Virginia NELAP Lab ID# 460203
ISO/IEC 17025-2005 A2LA Cert # 3806.01
DoD-ELAP A2LA 3806.01

		_								_																								
Rev. 02/2017									Cı	MIAH	OF C	USTO	PDY																Page	1	°	f1_	_	
Company: R															1				Lange 8-356	3-276	0 F	ax 6	08-35	6-27	66	Repo EMA	IL:	ahas	-	_		artnerslic		
Project Conta	act: Angel	a Hassel	l			(]		. A E	30	RF	11) R	1 €	5	#	-				١	ww.c	ilabo	ratori	es.co	m						-	rtnersllc.r rtnersllc.r		
Telephone: (608-669-1	248			4		****	****	****	****	不可加加 /	****	****	****	M31.	T	Program	m·								Com _l Addre	pany:		967	lonatho	n Drive	В		
Project Name	e: SCS-All	iant Ottur	nwa GS			older		167								- 10	QSM	RC					S		Ī	Invol	ce To	: •	Ange	la Has	sell			
Donings #1					•	omp	oany:	RESC	DLU	TION	PAR	TNE	RS I	LC	•		Solid V	vaste	O	iner_				_								artnerslic	c.net	
Project #:					p	rojec	et: S	CS-A	LLL	ANT	JTTO	MMI.	AG:	S		F	0#								-	Com _i Addre				olution I				
Location:								ere			l: B																		Madi	son, W	1 5371	3		
Sampled By:	Kevin Bal	er 608-6	69-6949		4	****	****	****	C 345 345 345 3	*****	***********	* * * * * * * * * * * * * * * * * * *	K 34 34 34 34 K 34 34 34 34	4 34 34 34 4 34 34 34	CHPIM CHPIM	H																		_
					Ĩ																*Party	listed	is resp	oonsil	de for	payn	nent o	f invo	ice as	per CT	Laborat	ories' terms	and conditi	ons
Client Special	Instruction	S												_		_			ANAL	YSES	REQU	ESTED			1	_						Turnarour	nd Time	
																															l na	Norm te Needed: _	nal	
																													2	SD	Rus	sh analysis re		
												2			l "														Total # Containers	esignated MS/MSD	C1	Laboratorie Surcha	rges:	
Matrix:												ed? Y			anes												İ		3 #	ated		24 hr 2 2-3 days		
GW – groundwate S - soil/sediment			W - wastew air		drinking nisc/was							Filtered? Y/N	cobalt	ļ.ē	manganese	,										ı		1	Total	Sesign		4-9 day:	50%	
Collect	ion	Matrix	Grab/	Sample			Samni	e ID De	ecrir	ntion		1	Ť	1	. , -				Filli	in Sna	ces wi	th Bot	tles o	er Te								CT Lab		
Date	Time		Comp	#								-	+	_		_		_	1	1	100		1									Lab use		
1/19/2022	800	GW			MW-3							Y	+	×		+	+	+	+	-				-			\dashv	\dashv	\dashv		16	1 5		
1/19/2022	805	GW S			MW-3		S8/S9					Y N	-	×	-	+	+	+	+				-	\dashv	-		\dashv	\dashv	\dashv			5		
1/19/2022	815	S			MW-3						-	- N	+	┤ ×	-	┿		╬	-	┢	-	\dashv	+	\dashv	\dashv	\dashv	\dashv		-			5		
1/19/2022	820	S			MW-3		******					N	+	^		+	+	╁	+		\vdash	\dashv	\dashv			\dashv	\dashv	\dashv	\dashv			6	•	_
1/19/2022	825	S			MW-3							N	+-	\ x		+	_	+	+		\vdash	\dashv	\dashv	\dashv	\dashv	\dashv			\neg			V 6		_
									-			+-	+	\dagger	+	+	_	╁	╁	\vdash	\vdash				\dashv	\dashv	\dashv	\dashv	\neg					
												\top	 	T	+-	╅		十	\top					\dashv	\dashv	\neg		\neg						_
													\top	十		Ť	$\neg \vdash$	1	1					\exists	\neg									
																		T								一								
																																	_	
														L																		_		
										_		\perp		\perp				\perp						_	_									
	ere constitution of the											4	\perp	\perp	1	1		\perp						_										
Inline with 10-4 Pc					<u> </u>	Day = #	lme :					Page	in sound Et-			\perp							Date/T	lma l					Щ					_
telinquished By:	1/31	4_				1/1	9/2	2	1	000	0	5	eived By	, l		2~	_						vert!/ []	mit6						lco Pi	reseat	Lab Use On Los I IR G	ly No	
Received by:	7 054				_	Date/T	ime		- 1						oratory	by:							Date/T		_					Temp	esent r#_	IR G	un_28	
·												1									14			M	_			145		Coole	er#	WX		
																					1	ne	V	W	n		14	117						

ANALYTICAL REPORT

RESOLUTION PARTNERS LLC

ANGELA HASSELL

967 JONATHON DR. MADISON, WI 53713 Project Name: SCS-ALLIANT OTTUMWA GS

Project Phase: Contract #: 3364

Project #:

Folder #: 167277

Page 1 of 4

Arrival Temperature: 1
Report Date: 2/3/2022

Date Received: 1/26/2022

Reprint Date: 2/3/2022

Purchase Order #:

CT LAB Sample#: 1095341 Samp	le Description: MW-305	U						Sampled: 1/20/2022 11:00
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Analyst Method Date/Time
Metals Results								
Total Cobalt	19.8	ug/L	0.55	2.5	1		1/26/2022 09:39	1/27/2022 15:13 NAH EPA 6010C
Total Iron	28.4	ug/L	11 *	37	1		1/26/2022 09:39	1/27/2022 15:13 NAH EPA 6010C
CT LAB Sample#: 1095344 Samp	le Description: MW-305	F						Sampled: 1/20/2022 11:02
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Analyst Method Date/Time
Metals Results								
	18.3	ug/L	0.4	2.5	1			1/27/2022 15:46 NAH EPA 6010C
Dissolved Cobalt	18.3 <27	ug/L ug/L	0.4 27	2.5 90	1			1/27/2022 15:46 NAH EPA 6010C 1/27/2022 15:46 NAH EPA 6010C
Dissolved Cobalt Dissolved Iron		ug/L			·			

Metals Results

Project Name: SCS-ALLIANT OTTUMWA GS

Project #:
Project Phase:

Contract #: 3364 Folder #: 167277

Page 2 of 4

CT LAB Sample#: 1095345	Sample Description: MW-307	′ U						Sampled: 1/20/2022 10:5
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Analyst Method Date/Time
Total Cobalt	16.5	ug/L	0.55	2.5	1		1/26/2022 09:39	1/27/2022 15:21 NAH EPA 6010C
otal Iron	330	ug/L	11	37	1		1/26/2022 09:39	1/27/2022 15:21 NAH EPA 6010C
CT LAB Sample#: 1095346	Sample Description: MW-307	'F						Sampled: 1/20/2022 10:5
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Analyst Method Date/Time
Metals Results								
Dissolved Cobalt	15.7	ug/L	0.4	2.5	1			1/27/2022 16:29 NAH EPA 6010C
Dissolved Iron	<27	ug/L	27	90	1			1/27/2022 16:29 NAH EPA 6010C
CT LAB Sample#: 1095347	Sample Description: MW-305	5 AU						Sampled: 1/20/2022 13:1
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Analyst Method Date/Time
Metals Results								
Total Cobalt	17.9	ug/L	0.55	2.5	1		1/26/2022 09:39	1/27/2022 15:29 NAH EPA 6010C
Total Iron	12.9	ug/L	11 *	37	1		1/26/2022 09:39	1/27/2022 15:29 NAH EPA 6010C
CT LAB Sample#: 1095348	Sample Description: MW-305	5 AF						Sampled: 1/20/2022 13:1
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Analyst Method Date/Time
Metals Results								
Metals Results Dissolved Cobalt	17.4	ug/L	0.4	2.5	1			1/27/2022 16:38 NAH EPA 6010C

Project Name: SCS-ALLIANT OTTUMWA GS

Project #:
Project Phase:

Contract #: 3364 Folder #: 167277

Page 3 of 4

CT LAB Sample#: 1095349 Sample Description: MW-307 AU Sample Description: MW-307 AU

·	· ·							· .	
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Analysi Date/Time	Method
Metals Results									
Total Cobalt	8.9	ug/L	0.55	2.5	1		1/26/2022 09:39	1/27/2022 15:38 NAI	H EPA 6010C
Total Iron	27.2	ug/L	11 *	37	1		1/26/2022 09:39	1/27/2022 15:38 NA	H EPA 6010C
CT LAB Sample#: 1095350 Sa	ample Description: MW-307 Result	AF Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Sample Analysis Analysi Date/Time	d: 1/20/2022 12:04
Metals Results									
Dissolved Cobalt	6.1	ug/L	0.4	2.5	1			1/27/2022 16:46 NA	H EPA 6010C
Dissolved Iron	<27	ug/L	27	90	1			1/27/2022 16:46 NA	H EPA 6010C

Project Name: SCS-ALLIANT OTTUMWA GS

Project #: Project Phase: Folder #: 167277

Contract #: 3364

Page 4 of 4

Notes regarding entire Chain of Custody:

Notes: * Indicates a value in between the LOD (limit of detection) and the LOQ (limit of quantitation). All LOD/LOQs are adjusted to reflect dilution and also any differences in the sample weight / volume as compared to standard amounts.

All samples were received intact and properly preserved unless otherwise noted. The results reported relate only to the samples tested. This report shall not be reproduced, except in full, without written approval of this laboratory. The Chain of Custody is attached.

Submitted by:

Brett M. Szymanski Project Manager 608-356-2760

Current CT Laboratories Certifications

Wisconsin (WDNR) Chemistry ID# 157066030 Wisconsin (DATCP) Bacteriology ID# 289 Louisiana NELAP (primary) ID# 115843 Illinois NELAP Lab ID# 200073 Kansas NELAP Lab ID# E-10368 Virginia NELAP Lab ID# 460203 ISO/IEC 17025-2005 A2LA Cert # 3806.01 DoD-ELAP A2LA 3806.01

Rev. 02/2017	CHAIN OF CU	STO	DY	_														Pag	e <u>1</u>	of1
Company: ReSolution Partners LLC				,			12		inge C						Repo					Para and a sall a sal
Project Contact: Angela Hassell	CT LABORATO	R	l {	5	A			608-	356-27		Fax 6 ctlabo				EMA		breh	m@	resolut	utionpartnersllc.net ionpartnersllc.net tionpartnersllc.net
Telephone: 608-669-1248	1. 東京美國東京東京 1. 東京	****	****	M M M M	=== ===					_		-	_		Com	pany	:	967	Jonatho	n Drive
Project Name: SCS-Alliant Ottumwa GS	Folder #. 167277	- FF3F		• ~		QSI	d N Sram	RCR/	SDV Other	NA .	NPDE	S			Addr Invoi	ce To): *	Ange	ela Hass	sell
Project #:	Company: RESOLUTION PART					2011	y vva	310	Other				_		EMA Com					utionpartnersllc.net Partners LLC
i roject w.	Project: SCS-ALLIANT OTTU	MW.	4 GS	3		PO	#							$\overline{}$	Addr		•		Jonatho	W110 WF 1396(145,00.0) 14-15-1506(1
Location:	Logged By: erc PM: BN	# M M M 1																Mad	ison, W	1 53713
Sampled By: Kevin Baker 608-669-6949										*Part	y listed	is res	ponsi	ble fo	r payr	nent c	of invo	ice as	s per CT i	Laboratories' terms and conditions
Client Special Instructions		Τ				ــــــــــــــــــــــــــــــــــــــ		А	NALYSE	S REQ	UESTE)								Turnaround Time
																				Normal
																		s l	8	Date Needed:
		2																ainer	AS/M	CT Laboratories' approval Surcharges:
Matrix:		d? Y/N							Ì									Con	Ted P	24 hr 200% 2-3 days 100%
GW – groundwater SW - surface water WW - wastewater DW - drink 5 - soil/sediment SL - sludge A - air M - misc/	9	Filtered?	cobalt	ion														Total # Containers	Designated MS/MSD	4-9 days 50%
Collection Matrix Grab/ Sample	Sample ID Description		Ť		٠	1			Fill in S	paces v	vith Bo	ttles	per Te	st						CT Lab ID #
Date Time	/-305 U	N	x	×		1												1		1095741
1/20/2022 1102 WW MY	/-305 F	Y	x	х	\dagger													1		414
1/20/2022 1050 WW M	/-307 U	N	×	x														1		45
1/20/2022 1053 WW MI	1-307 F	Y	×	×														1		16
1/20/2022 1315 WW M	7-305 AU	N	х	х														1		47
1/20/2022 1317 WW M	/-305 AF	Y	x	×														1		44
1/20/2022 1205 WW M	7-307 AU	N	×	×									Ш					1		44
1/20/2022 1204 WW MY	/-307 AF	Y	x	×				Щ		\perp			Ш					1		050
		<u> </u>	_	$oxed{oxed}$	_	_					$oxed{\bot}$	_						<u> </u>		
		<u> </u>	ļ	_	_	_				_							<u> </u>			
		╄	╙	<u> </u>	\perp	_			_	_	_	<u> </u>		_			_		ļ	
		↓_	<u> </u>	ļ_	-	 			_	\perp								\vdash		
		 	_	_	<u> </u>	ـ	_		_	+							_		-	
		+-	_	\vdash	\vdash	 		\vdash	-	- -	+						_	H		<u> </u>
Relinquished By:	Date/Time	Recei	ved Bv	_			100				J	Date/	Time						-	
Religgueshed By: Bake	1/25/2022 0900	S	per	د [)ره	سإ					Bre	1	24	71_		13	,jv		Ice Po	resent (109 No 27
Received by:	Date/Time	Recei	ved for	r Labo	ratory	by:				E	Ste	Date/	Time	٤	ľ	40	8		Temp Coole	I. 8 U IR Gun/_

delivering more than data from your environmental analyses

CT Laboratories LLC • 1230 Lange Ct • Baraboo, WI 53913

608 -356-2760 • www.ctlaboratories.com

ANALYTICAL REPORT

. ESOLUTION PA. TNE. S LLC

ANGELA HASSELL J67 RONATHON D. i MADISON, WI 53713 Project Name: SCS-ALLIANT OTTUMWA GS

Project Phase: Contract #: 3364

Project #:

Folder #: 167279

Paf e 1 oB5

Arrv al Temgerature: 1

. egort Date: 20302p22 Date . eceV ed: 102602p22

. egrvnt Date: 20802p22

CT LAb Samgle#: 1pJ5353 Sam	ngle Descrygtvon: MW-3p5	FILTE. PAPE. pi2	UM						Samgled:	1@p@p22 15:pp
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method
Metals Results										
Dvssol/ ed Alumvnum	268	uf 0 L	9i4	29	1			102702p22 16:5	4 NAH	EPA 6p1pC
Dvssol/ ed Co <alt< td=""><td>* pi4</td><td>uf OL</td><td>pi4</td><td>2i5</td><td>1</td><td></td><td></td><td>102702p22 16:5</td><td>4 NAH</td><td>EPA 6p1pC</td></alt<>	* pi4	uf OL	pi4	2i5	1			102702p22 16:5	4 NAH	EPA 6p1pC
Dvssol/ ed Iron	691	uf OL	27	Jp	1			102702p22 16:5	4 NAH	EPA 6p1pC
CT LAb Samgle#: 1pJ5354 Sam	ngle Descrigtion: MW-3p5	FILTE. PAPE. pi4	5UM						Samgled:	1@p@p22 15:p5
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method
Metals Results										
Dvssol/ ed Alumvnum	373	uf OL	9i4	29	1			102702p22 17:p	1 NAH	EPA 6p1pC
Dvssol/ ed Co <alt< td=""><td>* pi4</td><td>uf OL</td><td>pi4</td><td>2i5</td><td>1</td><td></td><td></td><td>102702p22 17:p</td><td>1 NAH</td><td>EPA 6p1pC</td></alt<>	* pi4	uf OL	pi4	2i5	1			102702p22 17:p	1 NAH	EPA 6p1pC
Dvssol/ ed Iron	1120	uf 0 L	27	Jp	1			102702p22 17:p	1 NAH	EPA 6p1pC
									Carrantado	100000000 15:10
CT LAb Samgle#: 1pJ5355 San	ngle Descrygtvon: MW-3p7	FILTE. PAPE. pi2	UM						Samgled:	102p02p22 15:1p

Project Name: SCS-ALLIANT OTTUMWA GS

Project #: Project Phase: Contract #: 3364 Folder #: 167279

Paf e 2 oB5

Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method
Metals Results										
Ovssol/ ed Alumvnum	395	uf OL	9i4	29	1			102702p22 17:p	J NAH	EPA 6p1pC
Ovssol/ ed Co <alt< td=""><td>* pi4</td><td>uf OL</td><td>pi4</td><td>2i5</td><td>1</td><td></td><td></td><td>102702p22 17:p</td><td>J NAH</td><td>EPA 6p1pC</td></alt<>	* pi4	uf OL	pi4	2i5	1			102702p22 17:p	J NAH	EPA 6p1pC
Ossol/ ed Iron	1310	uf OL	27	Jp	1			102702p22 17:p	J NAH	EPA 6p1pC
CT LAb Samgle#: 1pJ5356 Samgle	Descrigtion: MW-3p7	FILTE. PAPE. pi45	SUM						Samgled:	1@p@p22 15:1
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method
Metals Results										
Ovssol/ ed Alumvnum	331	uf OL	9i4	29	1			102702p22 17:1	6 NAH	EPA 6p1pC
Dvssol/ ed Co <alt< td=""><td>* pi4</td><td>uf OL</td><td>pi4</td><td>2i5</td><td>1</td><td></td><td></td><td>102702p22 17:1</td><td>6 NAH</td><td>EPA 6p1pC</td></alt<>	* pi4	uf OL	pi4	2i5	1			102702p22 17:1	6 NAH	EPA 6p1pC
Ovssol/ ed Iron	801	uf OL	27	Jp	1			102702p22 17:1	6 NAH	EPA 6p1pC
CT LAb Samgle#: 1pJ5357 Samgle	Descrigtion: MW-312	FILTE. PAPE. pi2l	JM						Samgled:	1@p@p22 15:2
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method
Metals Results										
Ovssol/ ed Alumvnum	175	uf OL	9i4	29	1			102702p22 17:2	4 NAH	EPA 6p1pC
Ovssol/ ed Co <alt< td=""><td>* pi4</td><td>uf OL</td><td>pi4</td><td>2i5</td><td>1</td><td></td><td></td><td>102702p22 17:2</td><td>4 NAH</td><td>EPA 6p1pC</td></alt<>	* pi4	uf OL	pi4	2i5	1			102702p22 17:2	4 NAH	EPA 6p1pC
Ovssol/ ed Iron	440	uf OL	27	Jp	1			102702p22 17:2	4 NAH	EPA 6p1pC
CT LAb Samgle#: 1pJ5359 Samgle	Descrigtion: MW-312	FILTE. PAPE. pi45	SUM						Samgled:	1@p@p22 15:2
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep	Analysis	Analyst	Method

Project Name: SCS-ALLIANT OTTUMWA GS

Project #:
Project Phase:

Contract #: 3364 Folder #: 167279

Paf e 3 oB5

Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Analy Date/Time	st Method
Metals Results									
Dvssol/ ed Alumvnum	223	uf OL	9i4	29	1			102702p22 17:32 N	AH EPA 6p1pC
Ovssol/ ed Co <alt< td=""><td>* pi4</td><td>uf OL</td><td>pi4</td><td>2i5</td><td>1</td><td></td><td></td><td>102702p22 17:32 N</td><td>AH EPA 6p1pC</td></alt<>	* pi4	uf OL	pi4	2i5	1			102702p22 17:32 N	AH EPA 6p1pC
Ovssol/ ed Iron	480	uf OL	27	Jp	1			102702p22 17:32 N	AH EPA 6p1pC
CT LAb Samgle#: 1pJ535J Samgle	Descrugtvon: MW-313	FILTE. PAPE. pi2l	JM					Samo	led: 102p02p22 15:
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Analy Date/Time	st Method
letals Results									
Ovssol/ ed Alumvnum	290	uf OL	9i4	29	1			102702p22 19:pp N	AH EPA 6p1pC
Ovssol/ ed Co <alt< td=""><td>* pi4</td><td>uf OL</td><td>pi4</td><td>2i5</td><td>1</td><td></td><td></td><td>102702p22 19:pp N</td><td>AH EPA 6p1pC</td></alt<>	* pi4	uf OL	pi4	2i5	1			102702p22 19:pp N	AH EPA 6p1pC
Ovssol/ ed Iron	636	uf OL	27	Jp	1			102702p22 19:pp N	AH EPA 6p1pC
CT LAb Samgle#: 1pJ536p Samgle	Descrygtvon: MW-313	FILTE. PAPE. pi4	5UM					Samo	led: 102p02p22 15:
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Analy Date/Time	st Method
Metals Results									
Ovssol/ ed Alumvnum	479	uf OL	9i4	29	1			102702p22 19:p7 N	AH EPA 6p1pC
Ovssol/ ed Co <alt< td=""><td>* pi4</td><td>uf OL</td><td>pi4</td><td>2i5</td><td>1</td><td></td><td></td><td>102702p22 19:p7 N</td><td>AH EPA 6p1pC</td></alt<>	* pi4	uf OL	pi4	2i5	1			102702p22 19:p7 N	AH EPA 6p1pC
Ovssol/ ed Iron	1110	uf OL	27	Jp	1			102702p22 19:p7 N	AH EPA 6p1pC
CT LAb Samgle#: 1pJ5361 Samgle	Descrugtion: bLAN8	FILTE. PAPE. pi2U	M					Samo	led: 102p02p22 15:4
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Analy Date/Time	st Method

Project Name: SCS-ALLIANT OTTUMWA GS

Project #:
Project Phase:

Contract #: 3364 Folder #: 167279

Paf e 4 oB5

CT LAb Samgle#: 1pJ5361 Samgle Descrigtion: bLAN8 FILTE. PAPE. pi2UM Samgled: 10p0p22 15:4p

CT LAb Samgle#: 1pJ5361	Samgle Descrigtion: bLAN8	FILIE. PAPE. pi2U	M						Samgled:	102p02p22 15:4p
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method
Metals Results										
Dvssol/ ed Alumvnum	105	uf OL	9i4	29	1			102702p22 19:1	5 NAH	EPA 6p1pC
Dvssol/ ed Co <alt< td=""><td>* pi4</td><td>uf 0L</td><td>pi4</td><td>2i5</td><td>1</td><td></td><td></td><td>102702p22 19:1</td><td>5 NAH</td><td>EPA 6p1pC</td></alt<>	* pi4	uf 0L	pi4	2i5	1			102702p22 19:1	5 NAH	EPA 6p1pC
Dvssol/ed Iron	347	uf OL	27	Jp	1			102702p22 19:1	5 NAH	EPA 6p1pC
CT LAb Samgle#: 1pJ5362	Samgle Descrigtion: bLAN8	FILTE. PAPE. pi45	JM						Samgled:	1@p@p22 15:45
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method
Metals Results										
Dvssol/ ed Alumvnum	108	uf OL	9i4	29	1			102702p22 19:2	2 NAH	EPA 6p1pC
Dvssol/ ed Co <alt< td=""><td>* pi4</td><td>uf OL</td><td>pi4</td><td>2i5</td><td>1</td><td></td><td></td><td>102702p22 19:2</td><td>2 NAH</td><td>EPA 6p1pC</td></alt<>	* pi4	uf OL	pi4	2i5	1			102702p22 19:2	2 NAH	EPA 6p1pC
Dvssol/ ed Iron	314	uf OL	27	Jp	1			102702p22 19:2	2 NAH	EPA 6p1pC

Project Name: SCS-ALLIANT OTTUMWA GS

Project #: Project Phase: Contract #: 3364 Folder #: 167279 Paf e 5 oB5

Notes regarding entire Chain of Custody:

Notes: (Indvcates a / alue vn <etween the LOD)lvmvt oBdetectvonqand the LOQ)lvmvt oBzuantvtatvonq All LOD0LOQs are adjusted to reflect dvtutvon and also any dv etween the LOD olume as compared to standard amountsi

All samgles were receviled intact and grogerly greser/led unless otherwise noted. The results regorted relate only to the samgles tested. This regort shall not <e regroduced, except in Bull, without written aggro/lal oBthis la<oratory. The Chain oBCustody is attached.

Su<mvtted <y:

brett Mi SkymansKv Project Manaf er 6p9-356-276p

Current CT Laboratories Certifications

Wisconsin)WDN. qChemistry ID# 157p66p3p
Wisconsin)DATCPqbacteriolof y ID# 29J
Louisiana NELAP)grimaryqID# 115943
Illinois NELAP La< ID# 2ppp73
8 ansas NELAP La< ID# E-1p369
Vvf viva NELAP La< ID# 46p2p3
ISO0EC 17p25-2pp5 A2LA Cert # 39p6ip1
DoD-ELAP A2LA 39p6ip1

Rev. 02/201	7				CHAIN OF C	USTO	DY															Page		of1
Company: Project Con	ntact: Ange	ela Hasse			CTLABORATO) R	!	5			12		nge C 356-27	760	Barabo Fax 6	08-3	56-27	'66 om	Repor EMAI	L: i	ahas breh kbak	er@i	esoluti	utionpartnersllc.net onpartnersllc.net ionpartnersllc.net
Telephone:			mwa GS		Folder #: 167278	M M M M M	**************************************	* 表 表 表 开 用 用	IRR.	QSI		RCR/				ES	_		Comp Addre Invoic	ess: e To	. •	Madis Angel	son, WI la Hass	53713
Project #:					Project: SCS-ALLIANT OT	ARTN FUA	ERS Wa (LL(PO:	#								Comp	any:	:	ReSo		artners LLC
Location:					Logged By: erc Dist.	D) (C		7.)					_									Madis	son, Wi	53713
Sampled By			369-6949			Formany: RESOLUTION PARTNERS LLC Project: SCS-ALLIANT OTTUMWA GS Logged By: erc PAt: BMS **Party listed is responsible to the second				ponsi	ible fo	r paym	ent o	f invo	ice as	per CT L	aboratories' terms and conditions							
Matrix: GW - groundwai S - soil/sediment	ter SW-surf	ace water W	/W - wastew A - air		drinking water nisc/waste	iltered? Y/N	balt	ou	uminum			A	NALYS	ES REC	UESTE							Total # Containers	Designated MS/MSD	Turnaround Time Normal Date Needed: Rush analysis requires prior CT Laboratories' approval Surcharges: 24 hr 200% 2-3 days 100% 4-9 days 50%
Collec	tion	Matrix	Grab/ Comp	Sample #	'	+	8	. <u>E</u>	<u>la</u>		<u> </u>		Fill in S	paces	with B	ottles	per Te	est	الميا			اـــــــــــــــــــــــــــــــــــــ		CT Lab ID # Lab use anly
1/20/2022	1500	ww			MW-305 Filter Paper 0.2um	Y	х	x	x					Τ	1									1095353
1/20/2022	1505	ww			MW-305 Filter Paper 0.45um	Y	×	х	х															1 51
1/20/2022	1510	ww			MW-307 Filter Paper 0.2um	Y	х	х	×														0	55
1/20/2022	1515	ww			MW-307 Filter Paper 0.45um	Y	×	х	×						$oxed{oxed}$									56
1/20/2022	1520	ww			MW-312 Filter Paper 0.2um	Y	х	×	x															57
1/20/2022	1525	ww			MW-312 Filter Paper 0.45um	Y	x	х	х										Ш					55
1/20/2022	1530	ww			MW-313 Filter Paper 0.2um	Y	х	×	×															5-9
1/20/2022	1535	ww			MW-313 Filter Paper 0.45um	Y	х	x	×									_	Ш					60
1/20/2022	1540	ww			Blank Filter Paper 0.2um	Υ	х	х	×															61
1/20/2022	1545	ww			Blank Filter Paper 0.45um	٧	x	×	x				\perp	\perp	_	igspace	_	$oxed{oxed}$	Щ		_	Ш		62
														\bot	_	1	╙	╙			<u> </u>			
										L			_	_		╄-	ļ	<u> </u>						
						_			L_	<u> </u>			_	_	_	╄	<u> </u>			<u> </u>				
						_				<u> </u>	_	\square	\dashv	_	_	-	╙	<u> </u>		<u> </u>	<u> </u>	_		
efinquithed By:	Bak	er_			Date/Time 1/25/2022 0900 Date/Time	J	ved By:	40)econtrol to	2 by:	<u></u>				Luc Etic	Date	Time				121		Ice Pi Temp Cook	tab Use Only resent (res No 7 7

CT Laboratories LLC • 1230 Lange Ct • Baraboo, WI 53913

608 -356-2760 • www.ctlaboratories.com

ANALYTICAL REPORT

RESOLUTION PARTNERS LLC

ANGELA HASSELL

967 JONATHON DR.

MADISON, WI 53713

Project Name: SCS-ALLIANT OTTUMWA GS

Project Phase:

Contract #: 3364

Project #:

Folder #: 167527

Page 1 of p

Arrival Tem8erature: 2.9

Re8ort Date: / 0180/2//

Date Received: / 0p0/2//

Re8rint Date: / 01 p0/ 2/ /

CT LAK Sam8le#: 129p1p/	Sam8le Descri8tion: ADS-CC	ONTROL 1							Sam8led:	/ 070/2//2p:22
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method
letals Results										
Dissolved CoBalt	135	ug ①	2.4	/ .5	1			/090/2// //:	12 NAH	EPA 6212C
CT LAK Sam8le#: 129p1p3	Sam8le Descri8tion: ADS-CC	ONTROL/							Sam8led:	/ 070 2/ / 2p:25
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method
letals Results										
Dissolved CoBalt	136	ug û L	2.4	/ .5	1			/090/2// //:	3/ NAH	EPA 6212C
CT LAK Sam8le#: 129p1p4	Sam8le Descri8tion: ADS-32	5-/ 22							Sam8led:	/ 070 2/ / 2p:12
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method
letals Results										
Dissolved CoBalt	125	ug 0 L	2.4	/ .5	1			/090/2// //:	41 NAH	EPA 6212C

Project Name: SCS-ALLIANT OTTUMWA GS

Project #: Project Phase: Contract #: 3364 Folder #: 167527

Page / of p

CT LAK Sam8le#: 129p1p5	Sam8le Descri8tion: ADS-32	25-122							Sam8led:	/ 070 2// 2p:15
nalyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method
letals Results										
issolved CoBalt	118	ug û L	2.4	/ .5	1			/090/2// //:	49 NAH	EPA 6212C
CT LAK Sam8le#: 129p1p6	Sam8le Descri8tion: ADS-32	25-252							Sam8led:	/ 070 2// 2p:/ 2
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method
Metals Results										
Dissolved CoBalt	104	ug û L	2.4	/ .5	1			/090/2// //:	57 NAH	EPA 6212C
CT LAK Sam8le#: 129p1p7	Sam8le Descri8tion: ADS-32	25-2/ 5							Sam8led:	/ 070 2/ / 2p:/ 5
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method
letals Results										
Dissolved CoBalt	81.6	ug û L	2.4	/ .5	1			/090/2// /3	25 NAH	EPA 6212C
CT LAK Sam8le#: 129p1pp	Sam8le Descri8tion: ADS-32	25-212							Sam8led:	/ 07 0 2/ / 2p:32
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method
Metals Results										
Dissolved CoBalt	45.4	ug û L	2.4	/ .5	1			/090/2// /3	14 NAH	EPA 6212C
CT LAK Sam8le#: 129p1p9	Sam8le Descri8tion: ADS-32	25-225							Sam8led:	/ 070 2/ / 2p:35
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method

Project Name: SCS-ALLIANT OTTUMWA GS

Project #: Project Phase: Contract #: 3364 Folder #: 167527 Page 3 of p

Sam8led: / 070 2/ / 2p:35 CT LAK Sam8le#: 129p1p9 Sam8le Descri8tion: ADS-325-225 Analyte Result Units LOD LOQ Dilution Qualifier Prep Analysis Analyst Method Date/Time Date/Time **Metals Results** NAH EPA 6212C Dissolved CoBalt 26.5 ug0L 2.4 1.5 1 / 090/2// / 3:44 CT LAK Sam8le#: 129p192 Sam8le Descri8tion: ADS-327-/ 22 Sam8led: / 070 2/ / 2p:42 Analyte Result Units LOD LOQ Dilution Qualifier Prep Analysis Analyst Method Date/Time Date/Time **Metals Results** Dissolved CoBalt 2.4 1.5 1 / 090/2// / 3:5/ NAH EPA 6212C 122 ug0L CT LAK Sam8le#: 129p191 Sam8led: / 070/2/ / 2p:45 Sam8le Descri8tion: ADS-327-122 Analyte Result Units LOD LOQ Dilution Qualifier Prep Analysis Analyst Method Date/Time Date/Time **Metals Results** / 0120 2/ / 22:22 NAH EPA 6212C Dissolved CoBalt 115 ug0L 2.4 / .5 1 CT LAK Sam8le#: 129p19/ Sam8le Descri8tion: ADS-327-252 Sam8led: / 070 2/ / 2p:52 Units LOD LOQ Qualifier Method Analyte Result Dilution Prep Analysis Analyst Date/Time Date/Time **Metals Results** Dissolved CoBalt 97.1 ug0L 2.4 1.5 1 / 0120/2// 22:29 NAH EPA 6212C CT LAK Sam8le#: 129p193 Sam8le Descri8tion: ADS-327-2/5 Sam8led: / 070/2/ / 2p:55

LOQ

Dilution

Qualifier

Prep

Date/Time

Analysis

Date/Time

Analyst

Method

LOD

Units

Result

Analyte

Project Name: SCS-ALLIANT OTTUMWA GS

Project #: Project Phase: Contract #: 3364 Folder #: 167527 Page 4 of p

Sam8led: / 070 2/ / 2p:55 CT LAK Sam8le#: 129p193 Sam8le Descri8tion: ADS-327-2/5 Analyte Result Units LOD LOQ Dilution Qualifier Prep Analysis Analyst Method Date/Time Date/Time **Metals Results** Dissolved CoBalt 2.4 1.5 1 / 0120/2/ / 22:17 NAH EPA 6212C 71.1 ug0L CT LAK Sam8le#: 129p194 Sam8le Descri8tion: ADS-327-212 Sam8led: / 070 2/ / 29:22 LOD LOQ Analysis Analyte Result Units Dilution Qualifier Prep Analyst Method Date/Time Date/Time **Metals Results** Dissolved CoBalt 34.1 ug0L 2.4 1.5 1 / 0120 2/ / 22:/ 5 NAH EPA 6212C Sam8led: / 070 2/ / 29:25 CT LAK Sam8le#: 129p195 Sam8le Descri8tion: ADS-327-225 LOQ Analyte Result Units LOD Dilution Qualifier Prep Analysis Analyst Method Date/Time Date/Time **Metals Results** NAH EPA 6212C / .5 Dissolved CoBalt 18.3 ug0L 2.4 1 / 0120/2// 22:33 CT LAK Sam8le#: 129p196 Sam8le Descri8tion: ADS-31/-/22 Sam8led: / 070/2/ / 29:12 Analyte Result Units LOD LOQ Dilution Qualifier Prep Analysis Analyst Method Date/Time Date/Time **Metals Results** Dissolved CoBalt 1.5 / 0120/2// 22:41 NAH EPA 6212C 132 ug0L 2.4 1 CT LAK Sam8le#: 129p197 Sam8le Descri8tion: ADS-31/ -122 Sam8led: / 070/2/ / 29:15

LOQ

Dilution

Qualifier

Prep

Date/Time

Analysis

Date/Time

Analyst

Method

Result

Analyte

Units

LOD

Project Name: SCS-ALLIANT OTTUMWA GS

Project #: Project Phase: Contract #: 3364 Folder #: 167527 Page 5 of p

Sam8led: / 070 2/ / 29:35

Method

Analyst

Analysis

Date/Time

CT LAK Sam8le#: 129p197 Sam8le Descri8tion: ADS-31/-122 Sam8led: / 070 2/ / 29:15 Analyte Result Units LOD LOQ Dilution Qualifier Prep Analysis Analyst Method Date/Time Date/Time **Metals Results** Dissolved CoBalt 123 1.5 NAH EPA 6212C ug0L 2.4 1 / 0120/2/ / 22:52 Sam8led: / 070/2/ / 29:/ 2 CT LAK Sam8le#: 129p19p Sam8le Descri8tion: ADS-31/ -252 Analyte Result Units LOD LOQ Dilution Qualifier Prep Analysis Analyst Method Date/Time Date/Time **Metals Results** Dissolved CoBalt 1.5 2.4 1 / 0120/2// 22:5p NAH EPA 6212C 113 ug0L CT LAK Sam8le#: 129p199 Sam8le Descri8tion: ADS-31/-2/5 Sam8led: / 070 2/ / 29:/ 5 Units LOD LOQ Qualifier Prep **Analysis** Analyst Method Analyte Result Dilution Date/Time Date/Time **Metals Results** Dissolved CoBalt 2.4 1.5 1 / 0120 2/ / 21:/ p NAH EPA 6212C 96.8 ug0L CT LAK Sam8le#: 129p/ 22 Sam8le Descri8tion: ADS-31/-212 Sam8led: / 070 2/ / 29:32 Result Units LOD LOQ Dilution Qualifier Prep Analysis Analyst Method Analyte Date/Time Date/Time **Metals Results** Dissolved CoBalt 57.5 2.4 1.5 1 / 0120/2// 21:36 NAH EPA 6212C ug0L

LOQ

Dilution

Qualifier

Prep

Date/Time

Units

LOD

Sam8le Descri8tion: ADS-31/ -225

Result

CT LAK Sam8le#: 129p/ 21

Analyte

Project Name: SCS-ALLIANT OTTUMWA GS

Project #: Project Phase: Contract #: 3364 Folder #: 167527

Page 6 of p

CT LAK Sam8le#: 129p/ 21	Sam8le Descri8tion: AI	DS-31/ -225							Sam8led:	/070/2// 29:35
Analyte	Resu	lt Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method
Metals Results										
Dissolved CoBalt	31.9	ug û L	2.4	/ .5	1			/0120/2// 21:	44 NAH	EPA 6212C
CT LAK Sam8le#: 129p/ 2/	Sam8le Descri8tion: Al	DS-313-/ 22							Sam8led:	/070/2// 29:42
Analyte	Resu	lt Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method
Metals Results										
Dissolved CoBalt	119	ug û _	2.4	/ .5	1			/0120/2// 2/:	26 NAH	EPA 6212C
CT LAK Sam8le#: 129p/ 23	Sam8le Descri8tion: AI	DS-313-122							Sam8led:	/070/2// 29:45
Analyte	Resu	lt Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method
Metals Results										
Dissolved CoBalt	106	ug û _	2.4	/ .5	1			/0120/2// 2/:	14 NAH	EPA 6212C
CT LAK Sam8le#: 129p/ 24	Sam8le Descri8tion: Al	DS-313-252							Sam8led:	/070/2// 29:52
Analyte	Resu	lt Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method
Metals Results										
Dissolved CoBalt	85.6	ug û _	2.4	/ .5	1			/0120/2// 2/:	// NAH	EPA 6212C
CT LAK Sam8le#: 129p/ 25	Sam8le Descri8tion: AI	DS-313-2/ 5							Sam8led:	/070/2// 29:55
Analyte	Resu	lt Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method

Project Name: SCS-ALLIANT OTTUMWA GS

Project #:
Project Phase:

Contract #: 3364 Folder #: 167527 Page 7 of p

CT LAK Sam8le#: 129p/ 25 Same	8le Descri8tion: ADS-313	3-2/ 5							Sam8led:	/070/2//29:55
nalyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method
letals Results										
ssolved CoBalt	66.6	ug û _	2.4	/ .5	1			/ 0120/2/ / 2/	32 NAH	EPA 6212C
CT LAK Sam8le#: 129p/ 26 Sam	8le Descri8tion: ADS-313	3-212							Sam8led:	/070/2// 12:22
nalyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method
etals Results										
issolved CoBalt	41.0	ug û L	2.4	/ .5	1			/0120/2// 2/	39 NAH	EPA 6212C
CT LAK Sam8le#: 129p/ 27 Sam	8le Descri8tion: ADS-313	3-225							Sam8led:	/070/2// 12:25
nalyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method
letals Results										

RESOLUTION PARTNERS LLC

Project Name: SCS-ALLIANT OTTUMWA GS

Project #: Project Phase: Contract #: 3364 Folder #: 167527 Page p of p

Notes regarding entire Chain of Custody:

Notes: wIndicates a value in BetQeen the LOD *limit of detection(and the LOy *limit of) uantitation(. All LODQLOy s are adjusted to reflect dilution and also anb differences in the sam8le Qeight 0volume as com8ared to standard amounts.

All sam8les Qere received intact and 8ro8erlb 8reserved unless otherQise noted. The results re8orted relate onlb to the sam8les tested. This re8ort shall not Be re8roduced, exce8t in full, Qithout Qritten a88roval of this laBoratorb. The Chain of Custodb is attached.

SuBmitted Bb:

Krett M. Sqbmanszi Project Manager 62p-356-/ 762

Current CT Laboratories Certifications

Wisconsin *WDNR(Chemistrb ID# 157266232 Wisconsin *DATCP(Kacteriologb ID# / p9 Louisiana NELAP *8rimarb(ID# 115p43 Illinois NELAP LaB ID# / 22273 k ansas NELAP LaB ID# E-1236p Virginia NELAP LaB ID# 462/ 23 ISO0EC 172/ 5-/ 225 A/ LA Cert # 3p26.21 DoD-ELAP A/ LA 3p26.21

Rev. 02/2017					CHAIN OF CL	JSTO	DY															Pa	ge1	of2
Company: Re Project Conta	ct: Angel	a Hassell			CT LABORATO	R		[}	*		12			6-276	ort, Ba O F	ax 60	8-356	5-276	5 EA	port MAIL:	br kb	ehm@ aker(@resolu @resolu	lutionpartnersllc.net tionpartnersllc.net tionpartnersllc.net on Drive
Project Name			nwa GS		Folder =: 167507 Company: RESOLUTION PA	ARTN	vei	RS LI		QSI	gram VI d Wa	RCF		SDW/	A A	IPDE	s	_	Ac Inv		s: To: *	Ma	dison, W jela Has	1 53713
Project #:					Project: SCS-ALLIANT OT	TUM	ſW.	AGS												ompa		Res	Solution	Partners LLC
Location:					ingged By: erc PM:	2 34 34 34 34	4 mc aic	*****	; pk	PO	#								Ad	ldres	s:			on Drive /I 53713
Sampled By:	Kevin Bak	er 608-6	69-6949											,	Porty	isted	s resp	onsible	for p	oymer	nt of in	voice :	s per CT	Laboratories' terms and condition
Client Special	instruction	5				Τ	L	_		_			ANAL	YSES	REQUE	STED								
Matrix: GW – groundwatt S - soil/sediment			W - wastew		rinking water isc/waste	Filtered? Y/N	cobalt dissolved															Total # Containers	Designated MS/MSD	Turnaround Time Normal Date Needed: Rush analysis requires prior CT Laboratories' approval Surcharges: 24 hr 200% 2-3 days 100% 4-9 days 50%
Collect	ion Time	Matrix	Grab/ Comp	Sample #	Sample ID Description								Fill i	in Spa	ces wit	h Bot	les pe	r Test						CT Lab ID # Lab use only
2/7/2022	800	GW			ADS-Control 1	Y	×		Π						ГТ	T	Т	Т	Т	Т	Т	Т		1098182
2/7/2022	805	GW			ADS-Control 2	Y	×		T	П						\neg	\top	\top	\top	十	\top	\top		(82
2/7/2022	810	GW			ADS-305-200	Y	×	1	Т						П					\top				34
2/7/2022	815	GW			ADS-305-100	Y	×								П	\neg				\top	T			85
2/7/2022	820	GW			ADS-305-050	Υ	×											\top		Τ	丁			80
2/7/2022	825	GW			ADS-305-025	Y	х																	187
2/7/2022	830	GW			ADS-305-010	Y	×													\top		Т		58
2/7/2022	835	GW			ADS-305-005	Υ	х																	89
2/7/2022	840	GW			ADS-307-200	Y	×									П				T				90
2/7/2022	845	GW			ADS-307-100	Y	×									\neg				T	Т			51
2/7/2022	850	GW			ADS-307-050	Y	×										\neg		\top					42
2/7/2022	855	GW			ADS-307-025	Y	×											\top	\top					9?
2/7/2022	900	GW			ADS-307-010	Y	x											1		T				94
2/7/2022	905	GW			ADS-307-005	Y	×																	45
2/7/2022	910	GW			ADS-312-200	Y	х																	V 96
Relinquished By:	H3.	h			Date/Time 2/1/22 1030 A	Recei		By: for Labor	atory b	ıy:	_				En	- 0	ate/fim ン分 ate/fim	in		<u>, .</u>	70 50		Ice Pr Temp Coole	

Rev. 02/2017									Сн	AIN	OF C	USTO	DDY																Pag	θ	2	of_	2		\neg
Company: F	act: Angel	a Hassel			(T	L	A B)] () R	1 €	5	A		1		ange 8-356-	2760		ax 60	08-35	6-276	66 m	Repo	IL:	aha: breh kbal	nm@ ker@	resolu resolu	ution	partni partn	nersilc. ersilc.ne	et	
Telephone:			mwa GS					Plac	ce He	eader	Sticker	Here.				Q	rogran SM olid W	RCF			\N		s 	_	ļ		ess: ce To); *	Madi Ange	Jonath ison, V ela Has @reso	VI 53 ssell	3713	nerslic.	net	_
Project #:										16	7	50)	}		PC) #		-							Com Addr			967 .	olution Jonath ison, V	on D	rive	LC		
Sampled By:	Kevin Bal	er 608-6	69-6949							•						Г				•	Party	listed i	s resi	onsib	le foi	r payn	nent o	of invo	oice as	per C1	r Labo	ratorie	s' terms e	nd conditi	ons
Client Special Instructions Matrix: GW - groundwater SW - surface water WW - wastewater DW - drinking water S - soil/sediment SL - sludge A - air M - misc/waste											Filtered? Y/N	cobalt, dissolved						ANALY	SES F	REQUI	ESTED							Total # Containers	Designated MS/MSD	1	Date N Rush o CT Lol	-	nuires prior opproval es: 0%		
Collect	Collection Matrix Grab/ Sample Sample ID Descript								tion		 	8					1	Fill in	Spac	es wit	h Bot	les p	er Tes	t it		1	J					CT Lab I		\exists	
2/7/2022	915	GW			ADS-312-	-100						Y	×	Τ			T					T		T	П						\dagger	10	9819	77	
2/7/2022	920	GW		· ·	ADS-312-	-050						Y	×																			,	11	98	
2/7/2022	925	GW			ADS-312-	-025						Υ	х																				1	79	
2/7/2022	930	GW]	ADS-312-	-010						Υ	х																					00	
2/7/2022	935	GW			ADS-312-	-005					_	Y	×																				h	21_	
2/7/2022	940	GW		/	ADS-313-	-200						Y	×	┸				L								\sqcup								12	
2/7/2022	945	GW		<u>'</u>	ADS-313-	-100						Y	×	上			\perp	L		\Box				\perp	_								2		
2/7/2022	950	GW		ľ	ADS-313-	-050						Υ	×	1_	_		\perp					\perp			\Box	\perp	_							04	_
2/7/2022	955	GW			ADS-313-	-025						_ Y	+	\perp	4_						_	4	\perp	\perp		_	_				┸		_	5	_
2/7/2022	1000	GW			ADS-313-	-010						Y	×	\perp	\downarrow	\perp	\perp				_		_	_	\perp	_	_						74	6	_
2/7/2022	1005	GW			ADS-313-	-005						_ Y	x	\downarrow	\bot	\perp	_			_	_	\dashv	4	4	_	_	4				\bot		. 2	07_	_
												+	+	+	+-	+	+	_		_	\dashv	_	-	+	\dashv	\dashv	-				-				
												+	+	+	+-	+	+		$\vdash \vdash$	\dashv	-	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv				+-				_
												+	十	+-	+	+	+-	-	$\mid - \mid$	\dashv	\dashv	\dashv	\dashv	+	\dashv	\dashv	\dashv	\dashv	\dashv		+				_
Kan H Jahr 2/1/22 1030 A												eived B		Oratory	by:				2	jnc in			me V8/		_	12	0		ice P Tem Cook	resen pi er#_	10t	es No	21	_	

CT Laboratories LLC • 1230 Lange Ct • Baraboo, WI 53913

608 -356-2760 • www.ctlaboratories.com

ANALYTICAL REPORT

RESOLUTION PARTNERS LLC

ANGELA HASSELL

967 JONATHON DR.

MADISON, WI 53713

Project Name: SCS-ALLIANT OTTUMWA GS

Project Phase:

Contract #: 3364

Project #:

Folder #: 168093

Page 1 of 3

Arrival Temperature: 1.2

Report Date: 3/16/2022

Date Received: 3/9/2022

Reprint Date: 3/16/2022

Purchase Order #:

CT LAB Sample#: 1117509	Sample Description: DES-30	5-050-5:1							Sampled:	3/7/2022 10:00
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method
letals Results										
Dissolved Cobalt	9.7	ug/L	0.4	2.5	1			3/11/2022 05:	44 NAH	EPA 6010C
CT LAB Sample#: 1117510	Sample Description: DES-30	5-050-10:1							Sampled:	3/7/2022 10:05
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method
letals Results										
Dissolved Cobalt	12.5	ug/L	0.4	2.5	1			3/11/2022 05:	51 NAH	EPA 6010C
CT LAB Sample#: 1117511	Sample Description: DES-31	3-100-5:1							Sampled:	3/7/2022 10:10
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method
letals Results										
Dissolved Cobalt	4.8	ug/L	0.4	2.5	1			3/11/2022 05:	59 NAH	EPA 6010C

RESOLUTION PARTNERS LLC

Project Name: SCS-ALLIANT OTTUMWA GS

Project #:
Project Phase:

Contract #: 3364 Folder #: 168093

Page 2 of 3

Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis <i>A</i> Date/Time	Analyst	Method
Metals Results										
Dissolved Cobalt	3.9	ug/L	0.4	2.5	1	M,Y		3/11/2022 06:07	NAH	EPA 6010C

RESOLUTION PARTNERS LLC

Project Name: SCS-ALLIANT OTTUMWA GS

Project #: Project Phase: Contract #: 3364 Folder #: 168093 Page 3 of 3

Notes regarding entire Chain of Custody:

Notes: * Indicates a value in between the LOD (limit of detection) and the LOQ (limit of quantitation). All LOD/LOQs are adjusted to reflect dilution and also any differences in the sample weight / volume as compared to standard amounts.

All samples were received intact and properly preserved unless otherwise noted. The results reported relate only to the samples tested. This report shall not be reproduced, except in full, without written approval of this laboratory. The Chain of Custody is attached.

Submitted by:

Brett M. Szymanski Project Manager 608-356-2760

QC Qualifiers

Code	<u>Description</u>
В	Analyte detected in the associated Method Blank.
С	Toxicity present in BOD sample.
D	Diluted Out.
E	Safe, No Total Coliform detected.
F	Unsafe, Total Coliform detected, no E. Coli detected.
G	Unsafe, Total Coliform detected and E. Coli detected.
Н	Holding time exceeded.
1	Incubator temperature was outside acceptance limits during test period.
J	Estimated value.
L	Significant peaks were detected outside the chromatographic window.
M	Matrix spike and/or Matrix Spike Duplicate recovery outside acceptance limits.
N	Insufficient BOD oxygen depletion.
0	Complete BOD oxygen depletion.
Р	Concentration of analyte differs more than 40% between primary and confirmation analysis.
Q	Laboratory Control Sample outside acceptance limits.
R	See Narrative at end of report.
S	Surrogate standard recovery outside acceptance limits due to apparent matrix effects.
T	Sample received with improper preservation or temperature.
U	Analyte concentration was below detection limit.
V	Raised Quantitation or Reporting Limit due to limited sample amount or dilution for matrix background interference.
W	Sample amount received was below program minimum.
Χ	Analyte exceeded calibration range.
Υ	Replicate/Duplicate precision outside acceptance limits.
Z	Specified calibration criteria was not met.

Current CT Laboratories Certifications

Wisconsin (WDNR) Chemistry ID# 157066030
Wisconsin (DATCP) Bacteriology ID# 289
Louisiana NELAP (primary) ID# 115843
Illinois NELAP Lab ID# 200073
Kansas NELAP Lab ID# E-10368
Virginia NELAP Lab ID# 460203
ISO/IEC 17025-2005 A2LA Cert # 3806.01
DoD-ELAP A2LA 3806.01

Rev. 02/2017								CH	HAIN (OF CUS	TOI	DY										-	_	_			Pag	e <u>1</u>	of1
Company: I	ReSolution	Partners	LLC										٠,			12		_		, Barat				Repo			**		
Project Con	tact: Ange	la Hasse	II)	(]	LA	B 0	RA	10	RI	E	3	A	-	_	608-	356-2		Fax w.ctla		356-2 ories.		EMA		bret	ım@	resolut	utionpartnersllc.net ionpartnersllc.net tionpartnersllc.net
Telephone:	608-669-1	248			 	-		L	Lab Use						Prog			,						Com	pany		967	Jonatho	n Drive I 53713
Project Nam	ie: SCS-Aii	iant Ottu	mwa GS		1	- Feld		168		PC 306 306 306 306 306	***	36 36 36 3	H 3K 3K P4 3	NC 346 346	QSN	Λ	RCR/	A SD	WA er	NPI	DES			Addr	ice To	o: *	Ange	la Has	sell
Project #:										ON PA	RT	NEF	RS L	LC											NL; Ipany		ReS	olution l	utionpartnersllc.net Partners LLC
Location:						Proje	ect: SC	CS-A	LLIAN	TO T	ΓUΝ	ЛW	A GS		PO i	¥								Addı	ress:				n Drive I 53713
Sampled By	: Kevin Bai	ker 608-6	69-6949			34 M 34 36	****	*****	34C 34C 34L 34C 34C	PM:]	34 34 34	34C 34C 34C 3	nd and and and a	***	-				•p	arty list	ed is ı	espon	sible f	or pay	ment (of invi	oico as	per CT	Laboratories' terms and conditions
Client Special	Instruction	s				_								-			Δ	NALYS		QUEST			-						
·																											ners	/MSD	Turnaround Time Normal TAT Date Needed: Rush analysis requires prior CT Laboratories' approval
Matrix: GW – groundwat S - soil/sediment			(W - wastew		rinking w isc/waste						Filtered? Y/N	cobalt															Total # Containers	Designated MS/MSD	Surcharges: 24 hr 200% 2-3 days 100% 4-9 days 50%
Collect	tion Time	Matrix	Grab/ Comp	Sample #		Sam	ple ID D	escrip	otion									Fill in	Space	s with	Bottle	s per 1	Test						CT Lab ID # Lab use anly
3/7/2022	1000	ww			DES-3	05-050)-5:1				Υ	х							П		\Box	Т					1		117509
3/7/2022	1005	ww			DES-3	05-050)-10:1				Υ	×			П		\Box		╅		十		T				1		, 10
3/7/2022	1010	ww			DES-3	13-100)-5:1				Υ	×															1		
3/7/2022	1015	ww			DES-3	13-100	-10:1				Υ	×							\Box	\perp							1		U ₁₂
												_	<u> </u>		Ш			\dashv	\dashv	+	+	+	\vdash	╀	_	-	├		
															\vdash			-	\dashv	-	+	+	╀	-	\vdash	-	┢		
													\vdash					\dashv	+	+	+	+-	+	\vdash			-		
														_				\neg	7			\top	T						
																									L				
														_	Ш				_	_	_	\perp			igspace	_	$oxed{oxed}$	<u> </u>	
																		_	4	4-	_	\bot	\perp	_	\vdash	 			
											_		_	_		_			\dashv	+	+	+	_		\vdash	-	-		
Relindulated By:	1/3e	h				8 20 ate/Time	NZ	2	808		5		Labora			 	<u></u>			Bu	3	e/Time	<u>ل</u>		25			Tem	
							_													bu		3/9	M		12	12		Cool	er# 197

Appendix D SPLP Sediment Analytical Laboratory Report

Environment Testing America

ANALYTICAL REPORT

Eurofins Cedar Falls 3019 Venture Way Cedar Falls, IA 50613 Tel: (319)277-2401

Laboratory Job ID: 310-228473-1

Client Project/Site: Ottumwa Generating Station

For:

SCS Engineers 2830 Dairy Drive Madison, Wisconsin 53718

Attn: Meghan Blodgett

4/18/2022 3:03:58 PM

Authorized for release by:

Sandie Fredrick, Project Manager II (920)261-1660

Sandra.Fredrick@et.eurofinsus.com

·····LINKS ······

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Detection Summary	5
Client Sample Results	6
Definitions	18
QC Sample Results	19
QC Association	21
Chronicle	23
Certification Summary	26
Method Summary	27
Chain of Custody	28
Pacaint Chacklists	30

4

8

9

11

16

Case Narrative

Client: SCS Engineers

Project/Site: Ottumwa Generating Station

Job ID: 310-228473-1

Job ID: 310-228473-1

Laboratory: Eurofins Cedar Falls

Narrative

Job Narrative 310-228473-1

Comments

No additional comments.

Receipt

The samples were received on 4/6/2022 5:10 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 0.6° C.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Sample Summary

Client: SCS Engineers Project/Site: Ottumwa Generating Station Job ID: 310-228473-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
310-228473-1	SC-1	Solid	04/05/22 11:45	04/06/22 17:10
310-228473-2	SC-2	Solid	04/05/22 09:00	04/06/22 17:10
310-228473-3	SC-3	Solid	04/05/22 11:00	04/06/22 17:10
310-228473-4	SC-5A	Solid	04/05/22 10:30	04/06/22 17:10
310-228473-5	SC-6	Solid	04/05/22 09:30	04/06/22 17:10
310-228473-6	SC-8A	Solid	04/05/22 10:00	04/06/22 17:10

Detection Summary

Client: SCS Engineers

Job ID: 310-228473-1 Project/Site: Ottumwa Generating Station

Client Sample ID: SC-1 Lab Sample ID: 310-228473-1

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cobalt	4.2 J	8.9	2.7	mg/Kg	4	₩	6010D	Total/NA
Iron	7600	450	120	mg/Kg	4	☼	6010D	Total/NA
pН	9.0 HF	0.1	0.1	SU	1		9045D	Soluble

Client Sample ID: SC-2 Lab Sample ID: 310-228473-2

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cobalt	4.4 J	8.3	2.5	mg/Kg	3	₩	6010D	Total/NA
Iron	7100	420	110	mg/Kg	3	₩	6010D	Total/NA
рН	9.3 HF	0.1	0.1	SU	1		9045D	Soluble

Client Sample ID: SC-3 Lab Sample ID: 310-228473-3

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cobalt	12	6.0	1.8	mg/Kg	2	✡	6010D	Total/NA
Iron	22000	300	78	mg/Kg	2	₩	6010D	Total/NA
pН	9.0 HF	0.1	0.1	SU	1		9045D	Soluble

Client Sample ID: SC-5A Lab Sample ID: 310-228473-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cobalt	12		6.3	1.9	mg/Kg	3	₩	6010D	Total/NA
Iron	23000		320	82	mg/Kg	3	₩	6010D	Total/NA
рН	10.3	HF	0.1	0.1	SU	1		9045D	Soluble

Client Sample ID: SC-6 Lab Sample ID: 310-228473-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cobalt	3.5	J	11	3.2	mg/Kg	4	₩	6010D	Total/NA
Iron	7900		530	140	mg/Kg	4	₩	6010D	Total/NA
Cobalt	0.0018	J	0.0025	0.00095	mg/L	1		6020B	SPLP West
pH	9.2	HF	0.1	0.1	SU	1		9045D	Soluble

Client Sample ID: SC-8A Lab Sample ID: 310-228473-6

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Cobalt		9.3	2.8 mg/l	√ g 3 ‡	6010D	Total/NA
Iron	23000	460	120 mg/l	√ g 3 ≎	€ 6010D	Total/NA
На	9.8 HF	0.1	0.1 SU	1	9045D	Soluble

This Detection Summary does not include radiochemical test results.

4/18/2022

Client: SCS Engineers Job ID: 310-228473-1

Project/Site: Ottumwa Generating Station

Client Sample ID: SC-1 Lab Sample ID: 310-228473-1

Date Collected: 04/05/22 11:45
Date Received: 04/06/22 17:10

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	<0.00095		0.0025	0.00095	mg/L		04/13/22 09:00	04/15/22 16:14	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	66.9		0.1	0.1	%			04/08/22 13:44	1
Percent Solids	33.1		0.1	0.1	%			04/08/22 13:44	1
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	9.0	HE	0.1	0.1	SU			04/12/22 13:07	1

4/18/2022

2

3

_

0

8

9

1 4

Client: SCS Engineers Job ID: 310-228473-1

Project/Site: Ottumwa Generating Station

Client Sample ID: SC-1 Lab Sample ID: 310-228473-1

Date Collected: 04/05/22 11:45

Date Received: 04/06/22 17:10

Matrix: Solid
Percent Solids: 33.1

Method: 6010D - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	4.2	J	8.9	2.7	mg/Kg	₩	04/12/22 10:00	04/13/22 10:14	4
Iron	7600		450	120	mg/Kg	₩	04/12/22 10:00	04/13/22 10:14	4

3

6

8

4.0

11

13

Client: SCS Engineers Job ID: 310-228473-1

Project/Site: Ottumwa Generating Station

Client Sample ID: SC-2 Lab Sample ID: 310-228473-2

Date Collected: 04/05/22 09:00 Matrix: Solid

Date Received: 04/06/22 17:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	<0.00095		0.0025	0.00095	mg/L		04/13/22 09:00	04/15/22 16:18	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	69.9		0.1	0.1	%			04/08/22 13:44	1
Percent Solids	30.1		0.1	0.1	%			04/08/22 13:44	1
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	9.3	HE	0.1	0.1	SU			04/12/22 13:08	1

Eurofins Cedar Falls

Page 8 of 30 4/18/2022

2

5

7

Q

9

10

12

Client: SCS Engineers Job ID: 310-228473-1

Project/Site: Ottumwa Generating Station

Client Sample ID: SC-2 Lab Sample ID: 310-228473-2

Method: 6010D - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	4.4	J	8.3	2.5	mg/Kg	☆	04/12/22 10:00	04/13/22 11:21	3
Iron	7100		420	110	mg/Kg	₽	04/12/22 10:00	04/13/22 11:21	3

5

6

8

10

12

13

Client: SCS Engineers Job ID: 310-228473-1

Project/Site: Ottumwa Generating Station

pН

Client Sample ID: SC-3 Lab Sample ID: 310-228473-3

Date Collected: 04/05/22 11:00
Date Received: 04/06/22 17:10

9.0 HF

. Matrix: Solid

04/12/22 13:10

Method: 6020B - Metals (ICP/MS) - SPLP West Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac Cobalt <0.00095 0.0025 0.00095 mg/L 04/13/22 09:00 04/15/22 16:22 **General Chemistry** Result Qualifier RL MDL Unit Analyte D Prepared Analyzed Dil Fac 0.1 0.1 % 04/08/22 13:44 **Percent Moisture** 74.5 0.1 % 04/08/22 13:44 **Percent Solids** 25.5 0.1 **General Chemistry - Soluble** Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac

0.1

0.1 SU

7

6

9

4 4

Client: SCS Engineers Job ID: 310-228473-1

Project/Site: Ottumwa Generating Station

Client Sample ID: SC-3 Lab Sample ID: 310-228473-3

te Received: 04/06/22 17:10 Percent Solids: 25.5

Method: 6010D - Metals (ICP)								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	12	6.0	1.8	mg/Kg	<u></u>	04/12/22 10:00	04/13/22 11:23	2
Iron	22000	300	78	mg/Kg	₩	04/12/22 10:00	04/13/22 11:23	2

Client: SCS Engineers Job ID: 310-228473-1

Project/Site: Ottumwa Generating Station

Lab Sample ID: 310-228473-4 **Client Sample ID: SC-5A**

Date Collected: 04/05/22 10:30 **Matrix: Solid**

Date Received: 04/06/22 17:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	<0.00095		0.0025	0.00095	mg/L		04/13/22 09:00	04/15/22 16:26	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	65.1		0.1	0.1	%			04/08/22 13:44	1
Percent Solids	34.9		0.1	0.1	%			04/08/22 13:44	1
General Chemistry - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	10.3	HE	0.1	0.1	SU			04/12/22 13:11	1

Eurofins Cedar Falls

Page 12 of 30

Client: SCS Engineers Job ID: 310-228473-1

Project/Site: Ottumwa Generating Station

Client Sample ID: SC-5A Lab Sample ID: 310-228473-4

Date Collected: 04/05/22 10:30

Matrix: Solid
Pate Peccived: 04/06/22 17:10

Percent Solids: 34.9

Date Received: 04/06/22 17:10 Percent Solids: 34.9

Method: 6010D - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	12		6.3	1.9	mg/Kg	₩	04/12/22 10:00	04/13/22 11:25	3
Iron	23000		320	82	mg/Kg	₽	04/12/22 10:00	04/13/22 11:25	3

4

6

8

10

12

13

Client: SCS Engineers Job ID: 310-228473-1

Project/Site: Ottumwa Generating Station

рН

Client Sample ID: SC-6 Lab Sample ID: 310-228473-5

Date Collected: 04/05/22 09:30 Matrix: Solid

Date Received: 04/06/22 17:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	0.0018	J	0.0025	0.00095	mg/L		04/13/22 09:00	04/15/22 16:30	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	66.4		0.1	0.1	%			04/08/22 13:44	1
Percent Solids	33.6		0.1	0.1	%			04/08/22 13:44	1
General Chemistry - Soluble									
General Chemistry - Soluble									

9.2 HF

0.1 SU

04/12/22 13:12

Client: SCS Engineers Job ID: 310-228473-1

Project/Site: Ottumwa Generating Station

Client Sample ID: SC-6 Lab Sample ID: 310-228473-5

Date Collected: 04/05/22 09:30 **Matrix: Solid** Date Received: 04/06/22 17:10

Percent Solids: 33.6

Method: 6010D - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	3.5	J	11	3.2	mg/Kg	☆	04/12/22 10:00	04/13/22 11:27	4
Iron	7900		530	140	mg/Kg	₽	04/12/22 10:00	04/13/22 11:27	4

Client: SCS Engineers Job ID: 310-228473-1

Project/Site: Ottumwa Generating Station

pН

Lab Sample ID: 310-228473-6 **Client Sample ID: SC-8A**

Date Collected: 04/05/22 10:00 Matrix: Solid

Date Received: 04/06/22 17:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	<0.00095		0.0025	0.00095	mg/L		04/13/22 09:00	04/15/22 16:34	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	73.1		0.1	0.1	%			04/08/22 13:44	1
Percent Solids	26.9		0.1	0.1	%			04/08/22 13:44	1
General Chemistry - Soluble									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac

0.1

0.1 SU

9.8 HF

Page 16 of 30

04/12/22 13:14

Client: SCS Engineers Job ID: 310-228473-1

Project/Site: Ottumwa Generating Station

Client Sample ID: SC-8A Lab Sample ID: 310-228473-6

Date Collected: 04/05/22 10:00 Eab Sample 1D. 310-226473-6

Matrix: Solid

Date Received: 04/06/22 17:10 Percent Solids: 26.9

Method: 6010D - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	11		9.3	2.8	mg/Kg	<u></u>	04/12/22 10:00	04/13/22 11:29	3
Iron	23000		460	120	mg/Kg	₩	04/12/22 10:00	04/13/22 11:29	3

2

Δ

5

9

11

13

Definitions/Glossary

Client: SCS Engineers Job ID: 310-228473-1

Project/Site: Ottumwa Generating Station

Qualifiers

Metals

Qualifier **Qualifier Description** MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier	Qualifier Description
-----------	-----------------------

Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

Glossary

Abbreviation	These commonly	v used abbreviations may	or may not be	present in this report.
ADDIEVIALIOII	THESE COMMISSION	/ useu abbievialions may	y OI IIIay IIOL De	present in tins repor

Listed under the "D" column to designate that the result is reported on a dry weight basis

Percent Recovery %R Contains Free Liquid **CFL** CFU Colony Forming Unit **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DΙ

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL Minimum Detectable Activity (Radiochemistry) MDA MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) ML MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

RL Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points RPD

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count **TNTC**

Page 18 of 30

Client: SCS Engineers Job ID: 310-228473-1

Project/Site: Ottumwa Generating Station

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 310-349532/1-A

Matrix: Solid Analysis Batch: 349734

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 349532

Prep Type: Total/NA

Prep Batch: 349532

Client Sample ID: SC-1

Client Sample ID: SC-1

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

80 - 120

100

Prep Type: SPLP West

Prep Type: SPLP West

Prep Batch: 349608

Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 349532

MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.84 04/12/22 10:00 04/13/22 09:59 <0.25 0.25 mg/Kg <11 42 11 mg/Kg 04/12/22 10:00 04/13/22 09:59

Lab Sample ID: LCS 310-349532/2-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Analyte

Cobalt

Iron

Analysis Batch: 349734

Spike LCS LCS

%Rec Analyte Added Result Qualifier Unit %Rec Limits Cobalt 97.1 103 mg/Kg 106 80 - 120 194 224 115 80 - 120 Iron mg/Kg

Lab Sample ID: 310-228473-1 MS

Matrix: Solid

Analysis Batch: 349734

Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier Limits Analyte Unit D %Rec

Cobalt 4.2 J. 229 222 mg/Kg ₩ 95 75 - 125 Iron 7600 458 8320 4 155 75 - 125 mg/Kg Ö

Lab Sample ID: 310-228473-1 MSD

Matrix: Solid

Analysis Batch: 349734 Prep Batch: 349532 Spike MSD MSD %Rec **RPD** Sample Sample Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit 222 Cobalt 4.2 217 mg/Kg 96 75 - 125 2 20 ₿ 7600 443 8410 4 179 Iron mg/Kg 75 - 125 20

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: LB 310-349513/1-C

Matrix: Solid

Analysis Batch: 350067

LB LB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Cobalt <0.00095 0.0025 0.00095 mg/L 04/13/22 09:00 04/15/22 15:59

0.498

mg/L

Lab Sample ID: LCS 310-349513/2-C

Matrix: Solid

Cobalt

Analysis Batch: 350067

Prep Batch: 349608 Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits

0.500

Eurofins Cedar Falls

4/18/2022

QC Sample Results

Client: SCS Engineers Job ID: 310-228473-1

Project/Site: Ottumwa Generating Station

Method: 9045D - pH

Lab Sample ID: LCS 310-349566/2

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

2

10

Analysis Batch: 349566

LCS LCS Spike Result Qualifier Added Analyte Unit D %Rec Limits SU рН 7.00 7.1 101 98 - 102

%Rec

Method: Moisture - Percent Moisture

33.1

Lab Sample ID: 310-228473-1 DU Client Sample ID: SC-1 **Prep Type: Total/NA**

Matrix: Solid

Percent Solids

Matrix: Solid

Analysis Batch: 349300

RPD Sample Sample DU DU Result Qualifier Result Qualifier RPD Limit Unit D 66.9 66.2 % 39 Percent Moisture 1

33.8

%

QC Association Summary

Client: SCS Engineers

Project/Site: Ottumwa Generating Station

Metals

Leach Batch: 349513

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-228473-1	SC-1	SPLP West	Solid	1312	
310-228473-2	SC-2	SPLP West	Solid	1312	
310-228473-3	SC-3	SPLP West	Solid	1312	
310-228473-4	SC-5A	SPLP West	Solid	1312	
310-228473-5	SC-6	SPLP West	Solid	1312	
310-228473-6	SC-8A	SPLP West	Solid	1312	
LB 310-349513/1-C	Method Blank	SPLP West	Solid	1312	
LCS 310-349513/2-C	Lab Control Sample	SPLP West	Solid	1312	

Prep Batch: 349532

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-228473-1	SC-1	Total/NA	Solid	3050B	
310-228473-2	SC-2	Total/NA	Solid	3050B	
310-228473-3	SC-3	Total/NA	Solid	3050B	
310-228473-4	SC-5A	Total/NA	Solid	3050B	
310-228473-5	SC-6	Total/NA	Solid	3050B	
310-228473-6	SC-8A	Total/NA	Solid	3050B	
MB 310-349532/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 310-349532/2-A	Lab Control Sample	Total/NA	Solid	3050B	
310-228473-1 MS	SC-1	Total/NA	Solid	3050B	
310-228473-1 MSD	SC-1	Total/NA	Solid	3050B	

Prep Batch: 349608

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-228473-1	SC-1	SPLP West	Solid	3010A	349513
310-228473-2	SC-2	SPLP West	Solid	3010A	349513
310-228473-3	SC-3	SPLP West	Solid	3010A	349513
310-228473-4	SC-5A	SPLP West	Solid	3010A	349513
310-228473-5	SC-6	SPLP West	Solid	3010A	349513
310-228473-6	SC-8A	SPLP West	Solid	3010A	349513
LB 310-349513/1-C	Method Blank	SPLP West	Solid	3010A	349513
LCS 310-349513/2-C	Lab Control Sample	SPLP West	Solid	3010A	349513

Analysis Batch: 349734

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-228473-1	SC-1	Total/NA	Solid	6010D	349532
310-228473-2	SC-2	Total/NA	Solid	6010D	349532
310-228473-3	SC-3	Total/NA	Solid	6010D	349532
310-228473-4	SC-5A	Total/NA	Solid	6010D	349532
310-228473-5	SC-6	Total/NA	Solid	6010D	349532
310-228473-6	SC-8A	Total/NA	Solid	6010D	349532
MB 310-349532/1-A	Method Blank	Total/NA	Solid	6010D	349532
LCS 310-349532/2-A	Lab Control Sample	Total/NA	Solid	6010D	349532
310-228473-1 MS	SC-1	Total/NA	Solid	6010D	349532
310-228473-1 MSD	SC-1	Total/NA	Solid	6010D	349532

Analysis Batch: 350067

Lab Sample ID 310-228473-1	Client Sample ID SC-1	Prep Type SPLP West	Solid	Method 6020B	Prep Batch 349608
310-228473-2	SC-2	SPLP West	Solid	6020B	349608
310-228473-3	SC-3	SPLP West	Solid	6020B	349608

Job ID: 310-228473-1

QC Association Summary

Client: SCS Engineers

Job ID: 310-228473-1 Project/Site: Ottumwa Generating Station

Metals (Continued)

Analysis Batch: 350067 (Continued)

Lab Sample ID 310-228473-4	Client Sample ID SC-5A	Prep Type SPLP West	Matrix Solid	Method 6020B	Prep Batch 349608
310-228473-5	SC-6	SPLP West	Solid	6020B	349608
310-228473-6	SC-8A	SPLP West	Solid	6020B	349608
LB 310-349513/1-C	Method Blank	SPLP West	Solid	6020B	349608
LCS 310-349513/2-C	Lab Control Sample	SPLP West	Solid	6020B	349608

General Chemistry

Analysis Batch: 349300

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-228473-1	SC-1	Total/NA	Solid	Moisture	_
310-228473-2	SC-2	Total/NA	Solid	Moisture	
310-228473-3	SC-3	Total/NA	Solid	Moisture	
310-228473-4	SC-5A	Total/NA	Solid	Moisture	
310-228473-5	SC-6	Total/NA	Solid	Moisture	
310-228473-6	SC-8A	Total/NA	Solid	Moisture	
310-228473-1 DU	SC-1	Total/NA	Solid	Moisture	

Leach Batch: 349557

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-228473-1	SC-1	Soluble	Solid	DI Leach	
310-228473-2	SC-2	Soluble	Solid	DI Leach	
310-228473-3	SC-3	Soluble	Solid	DI Leach	
310-228473-4	SC-5A	Soluble	Solid	DI Leach	
310-228473-5	SC-6	Soluble	Solid	DI Leach	
310-228473-6	SC-8A	Soluble	Solid	DI Leach	

Analysis Batch: 349566

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-228473-1	SC-1	Soluble	Solid	9045D	349557
310-228473-2	SC-2	Soluble	Solid	9045D	349557
310-228473-3	SC-3	Soluble	Solid	9045D	349557
310-228473-4	SC-5A	Soluble	Solid	9045D	349557
310-228473-5	SC-6	Soluble	Solid	9045D	349557
310-228473-6	SC-8A	Soluble	Solid	9045D	349557
LCS 310-349566/2	Lab Control Sample	Total/NA	Solid	9045D	

Page 22 of 30

Client: SCS Engineers Job ID: 310-228473-1

Project/Site: Ottumwa Generating Station

Client Sample ID: SC-1

Lab Sample ID: 310-228473-1

Matrix: Solid

Date Collected: 04/05/22 11:45 Date Received: 04/06/22 17:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP West	Leach	1312			349513	04/11/22 16:10	JTA	TAL CF
SPLP West	Prep	3010A			349608	04/13/22 09:00	ACM2	TAL CF
SPLP West	Analysis	6020B		1	350067	04/15/22 16:14	SAP	TAL CF
Soluble	Leach	DI Leach			349557	04/12/22 10:44	LBB	TAL CF
Soluble	Analysis	9045D		1	349566	04/12/22 13:07	LBB	TAL CF
Total/NA	Analysis	Moisture		1	349300	04/08/22 13:44	SJN	TAL CF

Client Sample ID: SC-1

Lab Sample ID: 310-228473-1 Date Collected: 04/05/22 11:45

Date Received: 04/06/22 17:10

Matrix: Solid Percent Solids: 33.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			349532	04/12/22 10:00	ACM2	TAL CF
Total/NA	Analysis	6010D		4	349734	04/13/22 10:14	СТВ	TAL CF

Client Sample ID: SC-2

Lab Sample ID: 310-228473-2 Date Collected: 04/05/22 09:00 Matrix: Solid

Date Received: 04/06/22 17:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP West	Leach	1312			349513	04/11/22 16:10	JTA	TAL CF
SPLP West	Prep	3010A			349608	04/13/22 09:00	ACM2	TAL CF
SPLP West	Analysis	6020B		1	350067	04/15/22 16:18	SAP	TAL CF
Soluble	Leach	DI Leach			349557	04/12/22 10:44	LBB	TAL CF
Soluble	Analysis	9045D		1	349566	04/12/22 13:08	LBB	TAL CF
Total/NA	Analysis	Moisture		1	349300	04/08/22 13:44	SJN	TAL CF

Client Sample ID: SC-2 Lab Sample ID: 310-228473-2

Date Collected: 04/05/22 09:00 **Matrix: Solid** Date Received: 04/06/22 17:10 Percent Solids: 30.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			349532	04/12/22 10:00	ACM2	TAL CF
Total/NA	Analysis	6010D		3	349734	04/13/22 11:21	CTB	TAL CF

Client Sample ID: SC-3 Lab Sample ID: 310-228473-3

Date Collected: 04/05/22 11:00 **Matrix: Solid** Date Received: 04/06/22 17:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP West	Leach	1312			349513	04/11/22 16:10	JTA	TAL CF
SPLP West	Prep	3010A			349608	04/13/22 09:00	ACM2	TAL CF
SPLP West	Analysis	6020B		1	350067	04/15/22 16:22	SAP	TAL CF
Soluble	Leach	DI Leach			349557	04/12/22 10:44	LBB	TAL CF
Soluble	Analysis	9045D		1	349566	04/12/22 13:10	LBB	TAL CF
Total/NA	Analysis	Moisture		1	349300	04/08/22 13:44	SJN	TAL CF

Eurofins Cedar Falls

Page 23 of 30

10

4/18/2022

Client: SCS Engineers Job ID: 310-228473-1

Project/Site: Ottumwa Generating Station

Client Sample ID: SC-3

Lab Sample ID: 310-228473-3 Date Collected: 04/05/22 11:00 **Matrix: Solid**

Percent Solids: 25.5

Date Received: 04/06/22 17:10

ı		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Prep	3050B			349532	04/12/22 10:00	ACM2	TAL CF
	Total/NA	Analysis	6010D		2	349734	04/13/22 11:23	СТВ	TAL CF

Lab Sample ID: 310-228473-4 Client Sample ID: SC-5A

Date Collected: 04/05/22 10:30 **Matrix: Solid** Date Received: 04/06/22 17:10

Batch Dilution Batch Prepared Method **Prep Type** Type Run Number or Analyzed **Factor** Analyst Lab SPLP West Leach 1312 349513 04/11/22 16:10 JTA TAL CF SPLP West 3010A Prep 349608 04/13/22 09:00 ACM2 TAL CF SPLP West 6020B Analysis 1 350067 04/15/22 16:26 SAP TAL CF Soluble DI Leach 349557 04/12/22 10:44 LBB TAL CF Leach Soluble Analysis 9045D 1 349566 04/12/22 13:11 LBB TAL CF Total/NA 349300 04/08/22 13:44 SJN TAL CF Analysis Moisture 1

Client Sample ID: SC-5A Lab Sample ID: 310-228473-4

Date Collected: 04/05/22 10:30 **Matrix: Solid**

Date Received: 04/06/22 17:10 Percent Solids: 34.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			349532	04/12/22 10:00	ACM2	TAL CF
Total/NA	Analysis	6010D		3	349734	04/13/22 11:25	CTB	TAL CF

Lab Sample ID: 310-228473-5 Client Sample ID: SC-6

Date Collected: 04/05/22 09:30 **Matrix: Solid** Date Received: 04/06/22 17:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP West	Leach	1312			349513	04/11/22 16:10	JTA	TAL CF
SPLP West	Prep	3010A			349608	04/13/22 09:00	ACM2	TAL CF
SPLP West	Analysis	6020B		1	350067	04/15/22 16:30	SAP	TAL CF
Soluble	Leach	DI Leach			349557	04/12/22 10:44	LBB	TAL CF
Soluble	Analysis	9045D		1	349566	04/12/22 13:12	LBB	TAL CF
Total/NA	Analysis	Moisture		1	349300	04/08/22 13:44	SJN	TAL CF

Client Sample ID: SC-6 Lab Sample ID: 310-228473-5

Date Collected: 04/05/22 09:30 **Matrix: Solid** Date Received: 04/06/22 17:10 Percent Solids: 33.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			349532	04/12/22 10:00	ACM2	TAL CF
Total/NA	Analysis	6010D		4	349734	04/13/22 11:27	СТВ	TAL CF

Lab Chronicle

Client: SCS Engineers Job ID: 310-228473-1

Project/Site: Ottumwa Generating Station

Client Sample ID: SC-8A

Date Collected: 04/05/22 10:00 Date Received: 04/06/22 17:10 Lab Sample ID: 310-228473-6

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP West	Leach	1312			349513	04/11/22 16:10	JTA	TAL CF
SPLP West	Prep	3010A			349608	04/13/22 09:00	ACM2	TAL CF
SPLP West	Analysis	6020B		1	350067	04/15/22 16:34	SAP	TAL CF
Soluble	Leach	DI Leach			349557	04/12/22 10:44	LBB	TAL CF
Soluble	Analysis	9045D		1	349566	04/12/22 13:14	LBB	TAL CF
Total/NA	Analysis	Moisture		1	349300	04/08/22 13:44	SJN	TAL CF

Client Sample ID: SC-8A

Date Collected: 04/05/22 10:00

Date Received: 04/06/22 17:10

Lab Sample ID: 310-228473-6 Matrix: Solid

Percent Solids: 26.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			349532	04/12/22 10:00	ACM2	TAL CF
Total/NA	Analysis	6010D		3	349734	04/13/22 11:29	СТВ	TAL CF

Laboratory References:

TAL CF = Eurofins Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

4

5

10

11

13

Accreditation/Certification Summary

Client: SCS Engineers Job ID: 310-228473-1

Project/Site: Ottumwa Generating Station

Laboratory: Eurofins Cedar Falls

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
lowa	State	007	12-01-21 *	

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Method Summary

Client: SCS Engineers

Project/Site: Ottumwa Generating Station

Method	Method Description	Protocol	Laboratory
6010D	Metals (ICP)	SW846	TAL CF
6020B	Metals (ICP/MS)	SW846	TAL CF
9045D	pH	SW846	TAL CF
Moisture	Percent Moisture	EPA	TAL CF
1312	SPLP Extraction	SW846	TAL CF
3010A	Preparation, Total Metals	SW846	TAL CF
3050B	Preparation, Metals	SW846	TAL CF
DI Leach	Deionized Water Leaching Procedure	ASTM	TAL CF

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

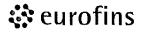
Laboratory References:

TAL CF = Eurofins Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

.

Job ID: 310-228473-1

3


6

9

10

11

13

Environment Testing America

Cooler/Sample Receipt and Temperature Log Form

Client Information	<u></u>				<u> </u>	
Client 665			_			
City/State CITY Made	50n	STATE	Project			
Receipt Information						
	TE -6 72	1710	Received By	1 PK		
Delivery Type UPS	☐ FedEx		FedEx Gro] US Mail	☐ Spee-Dee
☐ Lab C	ourier 🗌 Lab Fi	eld Services	Client Drop	o-off [] Other	
Condition of Cooler/Conta	iners					
Sample(s) received in Co	oler? □¥es	П No	If yes Coo	ler ID		
Multiple Coolers?	☐ Yes	<u> </u>		ler#		
Cooler Custody Seals Pre	esent? 🗔 🗸 es	☐ No	If yes Cool	ler custody s	eals intact?	Ύes □
Sample Custody Seals Pr No	resent? 🗌 Yes		If yes Sam	ple custody s	seals intact?[_	Yes 🗌
Trip Blank Present?	☐ Yes	□No	If yes. Which	ch VOA samp	oles are in coo	ler? ↓
						-
Temperature Reçórd						
Coolant Wet ice	☐ Blue ice	Dry ice	☐ Other.			NE
Thermometer ID	N		Correction F	actor (°C)	0	
 Temp Blank Temperature 	- If no temp blank,	or temp blank ter	nperature above	criteria, proceed	to Sample Conta	Iner Temperature
Uncorrected Temp (°C)	06		Corrected To	emp (°C)	06	
Sample Container Tempe						
Container(s) used	CONTAINER 1			CONTAINER 2		
Uncorrected Temp (°C)						
Corrected Temp (°C)						
Exceptions Noted						
If temperature exceed a) If yes. Is there ev				of sampling	? Yes	□ No □ No
2) If temperature is <0°C (e.g , bulging septa, b				of sample cor	ntainers is com ☐ Yes	promised?
Note If yes, contact Pl	√ before proceedir	ng If no, proce	ed with login			
Additional Comments			·			
			The state of the s			

Document: CED-P-SAM-FRM45521 Revision 26 Date. 27 Jan 2022

13 14

17.0 Sample Specific Notes. SOOS Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) For Lab Use Only Months Date/Time: Job / SDG No. Walk-in Client: .ab Sampling Therm ID No. Date/Time: Date/Time. COC No: Archive for_ Company. Company. Company⁻ Disposal by Lab Date: Carrier Cooler Temp. (°C): Obs'd Received in Laboratory by: Other-Lotoj Amerija La Notoj 19192 × Return to Client 4 *<u>*</u> × X Filtered Sample (Y/V)
Perform MS/MSD (Y/V)
H9 Abtor MS/MSD (M/V)
H × ~ × Received by: Received by × × × Lab Contact: Site Contact: ☐ RGR × NPDES Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the # of Cont Date/Time: Date/Time Date/Time: ☐ WORKING DAYS Matrix 1,05 1,24 10. <u>.</u> 本 Analysis Turnaround Time <u>™</u> Ł Type (C=Comp. G=Grab) TAT if different from Below Regulatory Program J J ں زہ ں J 2 weeks 1 week 2 days 1 day Sample Time 45 1000 ic 30 00 01 CALENDAR DAYS 900 9 30 Preservation Used 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Custody Seal No. Company Project Manager Poison B Sample Date Company. Company Tel/Email 事 5 壳 <u>4</u> <u>د</u> 415 <u>+</u> Site: Ottum Wa Crecating Station Po# Skin Irritant Special Instructions/QC Requirements & Comments. Comments Section if the lab is to dispose of the sample. 8118 **№** Company Name: 365 Engineers Sample Identification ☐ Yes Client Contact City/State/Zip. Madison WI Phone: 608-224-2830 Project Name: Oftom wa Possible Hazard Identification Address. 2830 Donry D Custody Seals Intact: Relinquished by: Kelinquished by: Relinquished by: SC-8A SC-5A Non-Hazard 2-28 4 ا الا Sc-3 SC-1 Address

Environment Testing

💸 eurofins

はいらいなるのでは

Chain of Custody Record

TestAmerica

Login Sample Receipt Checklist

Client: SCS Engineers Job Number: 310-228473-1

SDG Number:

Login Number: 228473 List Source: Eurofins Cedar Falls

List Number: 1

Creator: Homolar, Dana J

orcator. Homolar, Bana o		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
ls the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

9

4

5

7

9

11

12