2020 Annual Groundwater Monitoring and Corrective Action Report

Ottumwa Midland Landfill Ottumwa, Iowa

Prepared for:

Alliant Energy

SCS ENGINEERS

25220073.00 | January 29, 2021

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830

Overview of Current Status Ottumwa-Midland Landfill 2020 Annual Report

In accordance with §257.90(e)(6), this section at the beginning of the annual report provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. The groundwater monitoring system at the Ottumwa Midland Landfill (OML) monitors a single CCR unit. Supporting information is provided in the text of the annual report.

Category	Rule Requirement	Site Status
Monitoring Status – Start of Year	(i) At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95;	Detection
Monitoring Status – End of Year	(ii) At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95;	Detection
Statistically Significant Increases (SSIs)	(iii) If it was determined that there was a statistically significant increase over background for one or more constituents listed in appendix III to this part pursuant to §257.94(e):	
	(A) Identify those constituents listed in appendix III to this part and the names of the monitoring wells associated with such an increase; and	May/June 2020 Chloride: MW-303 October 2020 No SSIs
	(B) Provide the date when the assessment monitoring program was initiated for the CCR unit.	Alternative Source Demonstration prepared for the May 2020 event. Assessment monitoring not required.

Category	Rule Requirement	Site Status
Statistically Significant Levels (SSL) Above Groundwater Protection Standard	(iv) If it was determined that there was a statistically significant level above the groundwater protection standard for one or more constituents listed in appendix IV to this part pursuant to §257.95(g) include all of the following:	Not applicable No Appendix IV sampling required
	(A) Identify those constituents listed in appendix IV to this part and the names of the monitoring wells associated with such an increase;	
	(B) Provide the date when the assessment of corrective measures was initiated for the CCR unit;	
	(C) Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and	
	(D) Provide the date when the assessment of corrective measures was completed for the CCR unit.	
Selection of Remedy	(v) Whether a remedy was selected pursuant to §257.97 during the current annual reporting period, and if so, the date of remedy selection; and	Not applicable In detection monitoring
Corrective Action	(vi) Whether remedial activities were initiated or are ongoing pursuant to §257.98 during the current annual reporting period.	Not applicable In detection monitoring

Table of Contents

Sect	ion	Pag	jе
Over	view o	f Current Status	i
1.0		duction	
2.0		groundground	
	2.1	Geologic and Hydrogeologic Setting	
		2.1.1 Regional Information	
		2.1.2 Site information	
	2.2	CCR Rule Monitoring System	.2
3.0	§ 25	7.90(e) Annual Report Requirements	
	3.1	§257.90(e)(1) Site Map	.3
	3.2	§257.90(e)(2) Monitoring System Changes	.3
	3.3	§257.90(e)(3) Summary of Sampling Events	.3
	3.4	§ 257.90(e)(4) Monitoring Transition Narrative	.4
	3.5	§ 257.90(e)(5) Other Requirements	.4
		3.5.1 § 257.90(e) General Requirements	.4
		3.5.2 § 257.94(d) Alternative Detection Monitoring Frequency	.5
		3.5.3 § 257.94(e)(2) Alternative Source Demonstration for Detection Monitoring	.5
		3.5.4 § 257.95(c) Alternative Assessment Monitoring Frequency	.5
		3.5.5 § 257.95(d)(3) Assessment Monitoring Results and Standards	.6
		3.5.6 § 257.95(g)(3)(ii) Alternative Source Demonstration for Assessment Monitoring	.6
		3.5.7 § 257.96(a) Extension of Time for Corrective Measures Assessment	
	3.6	§257.90(e)(6) Overview	
4.0	Refe	rences	
		Tables	
Table Table Table Table Table	2. 3. 4. 5.	Groundwater Monitoring Well Network CCR Rule Groundwater Samples Summary Groundwater Elevation Summary Horizontal Gradients and Flow Velocity Groundwater Analytical Results Summary 2020 Groundwater Field Data Summary	
		Figures	
Figure Figure Figure Figure	e 2. e 3.	Site Location Map Site Plan and Monitoring Well Locations Potentiometric Surface Map, May 20 – 26, 2020 Potentiometric Surface Map, October 5 – 6, 2020	

Appendices

Appendix A Regional Hydrogeologic Information

Appendix B Boring Logs and Well Construction Documentation

Appendix C Laboratory Reports

C1 May 2020 Detection Monitoring

C2 June 2020 Resample

C3 October 2020 Detection Monitoring

Appendix D Historical Monitoring Results

Appendix E Statistical Evaluation

Appendix F May 2020 Alternative Source Demonstration

 $I:\25220073.00\Deliverables\2020\ Fed\ CCR\ Annual\ Report\210129_2020\ Annual\ CCR\ GW\ Report_OML_Final.docx$

1.0 INTRODUCTION

This 2020 Annual Groundwater Monitoring and Corrective Action Report was prepared to support compliance with the groundwater monitoring requirements of the Coal Combustion Residuals (CCR) Rule [40 CFR 257.50-107]. Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.90(e). The applicable sections of the Rule are provided below in *italics*, followed by applicable information relative to the 2020 Annual Groundwater Monitoring and Corrective Action Report for the CCR Units.

This report covers the period of groundwater monitoring from January 1, 2020, through December 31, 2020.

The groundwater monitoring system at the Ottumwa Midland Landfill (OML) monitors a single CCR unit with two phases:

• OML Landfill & OML Landfill Expansion - Phase 1 (existing landfill)

The system is designed to detect monitored constituents in the uppermost aquifer at the waste boundary of OML as required by 40 CFR 257.91(d). The groundwater monitoring system consists of two upgradient and three downgradient monitoring wells.

2.0 BACKGROUND

To provide context for the annual report, the following background information is provided in this section of the report, prior to the annual report requirement sections:

- Geologic and hydrogeologic setting
- CCR Rule monitoring system

2.1 GEOLOGIC AND HYDROGEOLOGIC SETTING

2.1.1 Regional Information

The uppermost bedrock unit in the site area consists of Pennsylvanian shales with minor siltstone, sandstone, limestone, and coal intervals. The continuity of these minor beds is highly variable. The thickness of the Pennsylvanian shale is variable; in some areas of Wapello County it is over 100 feet thick, while in other areas it is absent. The variation in thickness is due to erosion of the bedrock surface. Underlying the Pennsylvanian shales are Mississippian limestone and dolomite, with some shale and sandstone. The Devonian units underlying the Mississippian are composed of shale, dolomite, and limestone, and are in turn underlain by Silurian dolomite (Montgomery Watson, 1994). A summary of the regional hydrogeologic stratigraphy is presented in **Appendix A**.

The Des Moines River and associated alluvial aquifers are a major source of surface water and shallow groundwater in the area; however, the alluvial aquifer is not present at the OML site. Unconsolidated deposits at the site consist of clays overlain by loess, which are not productive sources of groundwater. The uppermost Pennsylvanian bedrock unit is considered to be a regional aquitard. The Mississippian unit is the shallowest regional bedrock aquifer. The Cambrian-Ordovician aquifer, comprised of dolomite and sandstone, is commonly the source of municipal and industrial high-capacity wells in the region (Coble, 1971).

A summary of the regional hydrogeologic stratigraphy and a map showing regional bedrock surface topography and the top of the Mississippian limestone in Southeastern lowa are included in **Appendix A**. The bedrock surface elevation is highly variable due to erosion. Regional information indicates that groundwater flow within the Mississippian limestone is to the south-southeast. A map showing the regional potentiometric surface in the Mississippian limestone is included with the hydrogeologic background information presented in **Appendix A**.

For the purposes of groundwater monitoring, the Mississippian limestone unit is considered to be the uppermost aquifer unit at the OML site as defined under 40 CFR 257.53.

2.1.2 Site information

Unconsolidated soils at the site include clay, loam, silt loam, silty clay, sandy loam, and intermediate types. Where present, these soils are generally 5 to 7 feet thick. Pennsylvanian shales and Mississippian limestone underlie the unconsolidated soils. Soils encountered during the drilling and installation of the existing background wells MW-102M and MW-122M were described as 10 to 11 feet of lean clay, overlying 126 to 129 feet of shale with intermittent stringers of sandstone and coal. The shale was underlain by Mississippian limestone at 138 to 139 feet below ground surface.

During drilling of CCR wells MW-301, MW-302, and MW-303, soils were described as 4 to 11 feet of clay and silt, overlying 112 to 173 feet of shale with intermittent stringers of sandstone and coal. The shale was underlain by Mississippian limestone at 116 to 168 feet below ground surface.

The boring logs for the landfill CCR monitoring wells are provided in **Appendix B**. All CCR monitoring wells are screened within the Mississippian bedrock unit.

Shallow groundwater flow at the water table appears to be controlled partially by the landfill underdrain system and partially by the top of the Pennsylvanian shale. Shallow groundwater, near the current fill area, flows toward the landfill and the sedimentation pond. The landfill underdrain system includes a drainage layer and collection piping below the landfill liner, and is used to ensure that shallow groundwater does not affect performance of the landfill liner.

Based on water levels in the existing Mississippian piezometers at the OML site, a generally south-southeast flow direction has been identified in the Mississippian limestone aquifer, consistent with the regional flow information. The groundwater flow pattern in May 2020 is shown on **Figure 3**, and the groundwater flow pattern of the October 2020 sampling is shown on **Figure 4**. The groundwater elevation data for the CCR monitoring wells are provided in **Table 3**. Calculated horizontal gradients and flow velocities for each of the flow paths are provided in **Table 4**.

2.2 CCR RULE MONITORING SYSTEM

The groundwater monitoring system established within the CCR Rule consists of two upgradient (background) monitoring wells and three downgradient monitoring wells (**Table 1** and **Figure 2**). The upgradient monitoring wells include MW-122M and MW-102M. The downgradient monitoring wells include MW-301, MW-302, and MW-303. The CCR Rule wells are installed in the upper portions of the Mississippian Limestone aquifer. Well depths range from approximately 150.0 to 204.5 feet, measured from the top of the well casing.

3.0 § 257.90(E) ANNUAL REPORT REQUIREMENTS

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1). At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

3.1 §257.90(E)(1) SITE MAP

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

A map showing the location of the site is provided as **Figure 1**. The OML CCR units and all background (or upgradient) and downgradient monitoring wells with identification numbers for the groundwater monitoring program are shown on **Figure 2**.

3.2 §257.90(E)(2) MONITORING SYSTEM CHANGES

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No new monitoring wells were installed and no wells were decommissioned as part of the groundwater monitoring program for OML in 2020.

3.3 §257.90(E)(3) SUMMARY OF SAMPLING EVENTS

In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

Two semiannual groundwater sampling events were completed in 2020 for OML as part of ongoing detection monitoring.

Groundwater samples collected during the semiannual events, in May and October 2020, were analyzed for the Appendix III constituents. For the May event, resampling was completed for selected parameters at MW-303 in June 2020. A summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring program is included in **Table 2**.

The sampling results for Appendix III parameters in 2020 are summarized in **Tables 5A** and **5B**. Field parameter results for the 2020 sampling events are provided in **Table 6**. The results of the analytical laboratory analyses are provided in the laboratory reports in **Appendix C**. Historical results for each monitoring well are summarized in **Appendix D**.

3.4 § 257.90(E)(4) MONITORING TRANSITION NARRATIVE

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels);

There were no transitions between monitoring programs during 2020. OML remained in the detection monitoring program.

In 2020, the monitoring results for the October 2019 and May 2020 monitoring events were evaluated for statistically significant increases (SSIs) in detection monitoring parameters relative to background. As part of the evaluation of the October 2020 monitoring results, the Interwell and Intrawell UPLs were updated based on additional background monitoring results. The Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities (USEPA, 2009) recommends periodic updating of background, The UPL update calculations are included in Appendix E. The UPLs calculated in January 2021 were applied to the evaluation of the October 2020 monitoring results.

For the May 2020 event, an SSI for chloride was identified; however, an alternative source demonstration (ASD) was completed, demonstrating that the SSI likely reflected natural variability and was not due to the CCR landfill. The ASD report is provided in **Appendix F**.

3.5 § 257.90(E)(5) OTHER REQUIREMENTS

Other information required to be included in the annual report as specified in §§ 257.90 through 257.98.

Additional potentially applicable requirements for the annual report, and the location of the requirement within the Rule, are provided in the following sections. For each cited section of the Rule, the portion referencing the annual report requirement is provided below in italics, followed by applicable information relative to the 2020 Annual Groundwater Monitoring and Corrective Action Report for OML.

3.5.1 § 257.90(e) General Requirements

For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year.

Status of Groundwater Monitoring and Corrective Action Program. The groundwater monitoring and corrective action program is currently in detection monitoring.

Summary of Key Actions Completed.

- Statistical evaluation and determination of SSIs for the October 2019 and May 2020 monitoring events.
- ASD report for the SSI identified from the May 2020 monitoring event.
- Two semiannual detection monitoring events (May and October 2020).
- One groundwater resampling event for MW-303 (June 2020).

Description of Any Problems Encountered. No problems were encountered in 2020.

Discussion of Actions to Resolve the Problems. Not applicable.

Projection of Key Activities for the Upcoming Year (2021):

Statistical evaluation and determination of any SSIs for the October 2020 and April 2021 monitoring events.

- If an SSI is determined, then within 90 days either:
 - Complete ASD (if applicable), or
 - Establish an assessment monitoring program.
- Two semiannual groundwater sampling and analysis events (April and October 2021).

3.5.2 § 257.94(d) Alternative Detection Monitoring Frequency

The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer in the annual groundwater monitoring and corrective action report required by § 257.90(e).

Not applicable. No alternative detection monitoring frequency has been proposed.

3.5.3 § 257.94(e)(2) Alternative Source Demonstration for Detection Monitoring

The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

The ASD report prepared to address the chloride SSI observed for the May 2020 sampling event is provided in **Appendix F**. The ASD report is certified by a qualified professional engineer.

3.5.4 § 257.95(c) Alternative Assessment Monitoring Frequency

The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer in the annual groundwater monitoring and corrective action report required by § 257.90(e).

Not applicable. Assessment monitoring has not been initiated.

3.5.5 § 257.95(d)(3) Assessment Monitoring Results and Standards

Include the recorded concentrations required by paragraph (d)(1) of this section, identify the background concentrations established under § 257.94(b), and identify the groundwater protection standards established under paragraph (d)(2) of this section in the annual groundwater monitoring and corrective action report required by § 257.90(e).

Not applicable. Assessment monitoring has not been initiated.

3.5.6 § 257.95(g)(3)(ii) Alternative Source Demonstration for Assessment Monitoring

The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

Not applicable. Assessment monitoring has not been initiated.

3.5.7 § 257.96(a) Extension of Time for Corrective Measures Assessment

The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measure due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

Not applicable. Corrective measures assessment has not been initiated.

3.6 §257.90(E)(6) OVERVIEW

A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit.

The specific requirements for the overview under §257.90(e)(6) are listed and the information is provided at the beginning of this report, before the Table of Contents.

4.0 REFERENCES

Coble, R.W., and Roberts, J.V., 1971, The Water Resources of Southeast Iowa: Iowa Geological Survey Water Atlas Number 4, 101 p.

Montgomery Watson, 1994, May 24, 1994, Hydrogeological Investigation Report and Hydrologic Monitoring System Plan, Ottumwa-Midland Commercial Landfill, Montgomery Watson, 1994.

U.S. Environmental Protection Agency (USEPA), 2009, Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, EPA 530-R-09-007, March 2009.

Tables

1 Groundwater Monitoring N	Network
----------------------------	---------

- 2 CCR Rule Groundwater Samples Summary
- 3 Groundwater Elevation Summary
- 4 Horizontal Gradients and Flow Velocity
- 5A Groundwater Analytical Results Summary January September 2020
- 5B Groundwater Analytical Results Summary October December 2020
- 6 2020 Groundwater Field Data Summary

Table 1. Groundwater Monitoring Well Network
Ottumwa Midland Landfill / SCS Engineers Project #25220073.00

Monitoring Well	Location in Monitoring Network	Role in Monitoring Network
MW-102M	Upgradient	Background
MW-122M	Upgradient	Background
MW-301	Downgradient	Compliance
MW-302	Downgradient	Compliance
MW-303	Downgradient	Compliance

Created by:	RM	Date:	12/14/2020
Last revision by:	RM	Date:	1/8/2021
Checked by:	TK	Date:	1/17/2021

Table 2. CCR Rule Groundwater Samples Summary Ottumwa Midland Landfill / SCS Engineers Project #25220073.00

Sample Dates	Do	owngradient We	Background Wells		
Sample Dales	MW-301	MW-302	MW-303	MW-102M	MW-122M
5/21-26/2020	D	D	D	D	D
6/29/2020			D-R	-	
10/6-7/2020	D	D	D	D	D
Total Samples	2	2	3	2	2

Abbreviations:

D = Required by Detection Monitoring Program

D-R = Detection Monitoring Retest Sample

Created by:	NDK	Date:	1/4/2019
Last revision by:	RM	Date:	1/17/2021
Checked by:	TK	Date:	1/17/2021

Table 3. Groundwater Elevation Summary
Ottumwa-Midland Landfill / SCS Engineers Project #25220073.00

Ground Water	Elevation in fe	et above mea	ın sea level (a	msl)		
Well Number	MW-301	MW-302	MW-303	MW-102M	MW-122M	
Top of Casing Elevation (feet amsl)	817.88	761.77	762.40	798.03	792.70	
Screen Length (ft)	5.0	5.0	5.0	5.0	5.0	
Total Depth (ft from top of casing)	204.5	157.7	150.0	152.1	155.3	
Top of Well Screen Elevation (ft)	618.38	609.07	617.40	652.65	642.94	
Measurement Date						
May 4, 2016	686.46	685.80	686.04	728.73	729.27	
June 22, 2016	686.40	685.79	687.72	718.74	725.67	
August 9, 2016	686.19	685.48	687.77	715.65	725.16	
October 25-26, 2016	683.70	684.94	685.56	716.94	724.61	
January 17, 2017	685.57	685.68	685.60	717.91	724.02	
April 19-20, 2017	685.72	684.73	685.51	717.80	724.04	
June 20-21, 2017	685.88	684.76	685.59	714.83	723.51	
July 17, 2017	NM	NM	684.92	NM	NM	
August 21-22, 2017	684.96	683.89	684.70	713.23	722.02	
November 7-8, 2017	684.50	683.38	684.26	713.53	720.52	
April 16-18, 2018	684.85	683.87	684.68	717.38	723.25	
October 15-16, 2018	684.58	683.52	684.33	717.05	723.36	
April 16-17, 2019	686.38	685.35	686.13	717.97	723.43	
June 6, 2019	NA	NA	686.05	NA	NA	
August 7, 2019	NA	NA	NA	712.00	720.42	
October 14-15,2019	686.56	685.44	686.08	715.50	708.94	
May 20-26, 2020	687.29	686.25	687.14	717.61	724.23	
June 29, 2020	NA	NA	687.36	NA	NA	
October 5-6, 2020	686.80	685.86	686.35	712.05	718.39	
Bottom of Well Elevation (ft)	613.38	604.07	612.40	645.93	637.40	

 Notes:
 Created by:
 KAK
 Date: 5/1/2017

 NM = not measured
 Last rev. by:
 RM
 Date: 1/8/2021

 Checked by:
 TK
 Date: 1/17/2021

Table 4. Horizontal Gradients and Flow Velocity Ottumwa Midland Landfill / SCS Engineers Project #25220073.00 January - December 2020

		Southeast						
Sampling Dates	h1 (ft)	h2 (ft)	ΔI (ft)	Δh/Δl (ft/ft)	V (ff/d)			
5/20-26/2020	715.00	690.00	1354	0.018	0.3			
10/5-6/2020	710.00	690.00	1398	0.014	0.2			

Well	K Value (cm/sec)	K Value (ft/d)
MW-102M	N/A	N/A
MW-122M	N/A	N/A
MW-301	8.0E-04	2.3
MW-302	3.6E-04	1.0
MW-303	1.1E-02	30
Geometric		
Mean	1.5E-03	4.1

Assumed Porosity, n

Groundwater flow velocity equation: $V = [K^*(\Delta h/\Delta I)] / n$

ft = feet

ft/d = feet per day

K = hydraulic conductivity

n = effective porosity

V = groundwater flow velocity

h1, h2 = point interpreted groundwater

elevation at locations 1 and 2

 ΔI = distance between location 1 and 2

 $\Delta h/\Delta l = hydraulic gradient$

N/A = Not applicable, geometric mean K

based on downgradient wells

 Created by:
 RM
 Date:
 12/29/2020

 Last revision by:
 RM
 Date:
 1/18/2021

 Checked by:
 SCC
 Date:
 1/18/2021

Table 5A. Groundwater Analytical Results Summary Ottumwa Midland Landfill / SCS Engineers Project #25220073.00 January - September 2020

		Backgro	ound Wells		Compliance Wells					
	Interwell	MW-102M	MW-122M	MW-	-301	MW	/-302		MW-303	
Parameter Name	UPL	5/21/2020	5/21/2020	Intrawell UPL	5/26/2020	Intrawell UPL	5/21/2020	Intrawell UPL	5/26/2020	6/29/2020
Appendix III										
Boron, ug/L	5,220	1,500	5,100		660		780		770	NA
Calcium, mg/L	599	38	430		120		41		120	NA
Chloride, mg/L		16	9.0	67.0	61	10.4	8.9	7.92	8.5	6.9
Fluoride, mg/L	6.31	5.0	0.23 J		0.77		1.0		0.81	NA
Field pH, Std. Units	8.63	7.82	6.91		5.67		7.05		6.21	6.74
Sulfate, mg/L	17,500	350	9,800		390		79		440	NA
Total Dissolved Solids, mg/L	18,100	3,700	16,000		1,100		930		1,100	NA

4.4 Blue shaded cell indicates the compliance well result exceeds the UPL and the LOQ.

Abbreviations:

UPL = Upper Prediction Limit LOQ = Limit of Quantitation μ g/L = micrograms per liter SSI = Statistically Significant Increase LOD = Limit of Detection μ g/L = milligrams per liter

Lab Notes:

J = Estimated concentration at or above the LOD and below the LOQ.

Notes

- 1. An individual result above the UPL does not constitute an SSI above background. See the accompanying report text for identification of statistically significant results.
- 2. Interwell UPLs calculated based on results from background wells MW-102M and MW-122M for the period from May 2016 through November 2017. Interwell UPLs based on 1-of-2 retesting approach.
- 3. Intrawell UPL for chloride was calculated based on results from each monitoring well for the period from May 2016 through April 2018.

 Created by: NDK
 Date: 5/1/2018

 Last revision by: RM
 Date: 1/8/2021

 Checked by: NDK
 Date: 1/18/2021

 PM/Scient. QA/QC: TK
 Date: 1/18/2021

Table 5B. Groundwater Analytical Results Summary Ottumwa Midland Landfill / SCS Engineers Project #25220073.00 October - December 2020

	Compliance Wells											
	Interwell	MW-102M	MW-122M	MW-	-301	MW	/-302	MW	/-303			
Parameter Name	UPL	10/7/2020	10/7/2020	Intrawell 10/6/202		Intrawell UPL	10/6/2020	Intrawell UPL	10/6/2020			
Appendix III												
Boron, ug/L	5,560	1,600	4,100		770		870		740			
Calcium, mg/L	599	150	430		180		65		100			
Chloride, mg/L		14	8.3	62.7	24	10.1	7.2	11.5	7.3			
Fluoride, mg/L	5.70	5.3	<0.23 J		0.67		1.1		0.88			
Field pH, Std. Units	8.63	8.29	7.00		7.22		7.14		7.01			
Sulfate, mg/L	17,500	350	8,700		620		73		230			
Total Dissolved Solids, mg/L	18,100	1,700	14,000		1,400		700		840			

Blue shaded cell indicates the compliance well result exceeds the UPL and the LOQ.

Abbreviations:

4.4

UPL = Upper Prediction Limit LOQ = Limit of Quantitation μ g/L = micrograms per liter SSI = Statistically Significant Increase LOD = Limit of Detection μ g/L = miligrams per liter

Lab Notes:

J = Estimated concentration at or above the LOD and below the LOQ.

Notes:

- 1. An individual result above the UPL does not constitute an SSI above background. See the accompanying report text for identification of statistically significant results.
- 2. Interwell UPLs calculated based on results from background wells MW-102M and MW-122M for the period from May 2016 through October 2020. Interwell UPLs based on 1-of-2 retesting approach. The UPLs were updated in January 2021.
- 3. Intrawell UPL for chloride was calculated based on results from each monitoring well for the period from April 2019 through May 2020. Intrawell UPLs based on 1-of-2 retesting approach. The UPLs were updated in January 2021.

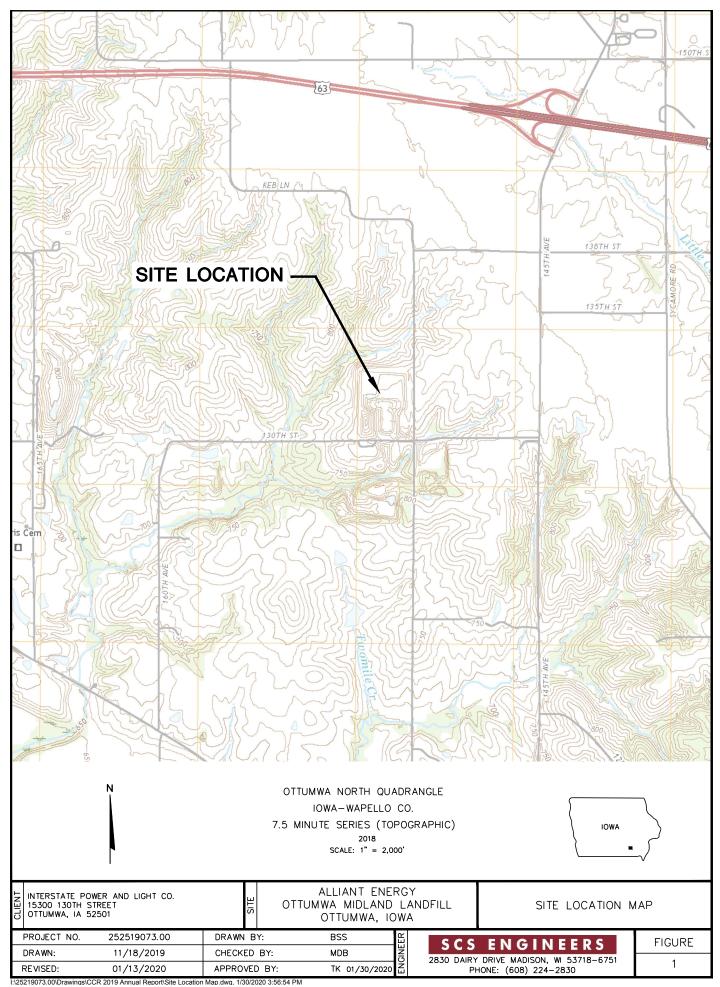
Created by: NDK
Last revision by: RM
Checked by: NDK

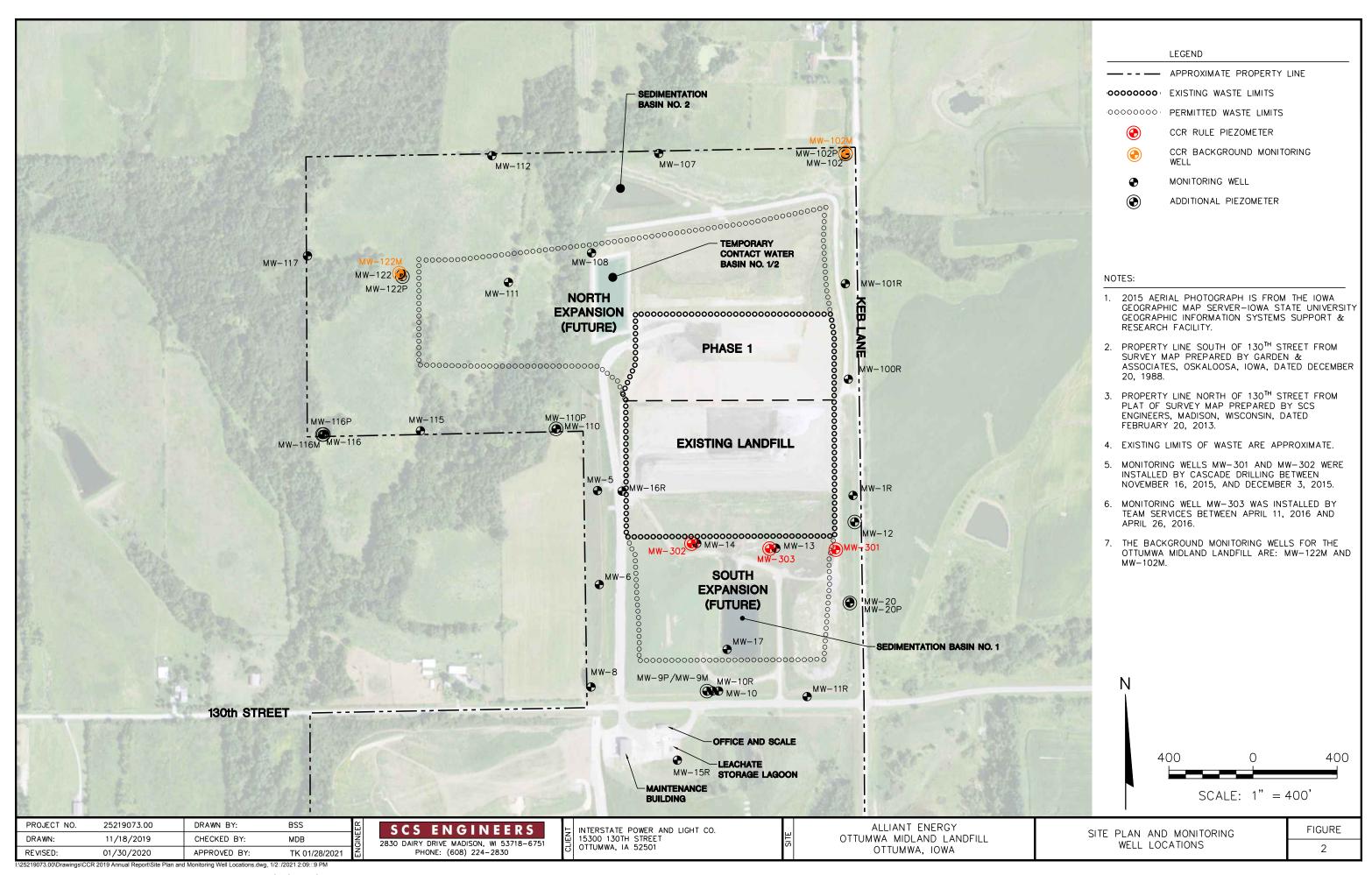
PM/Scient. QA/QC: TK

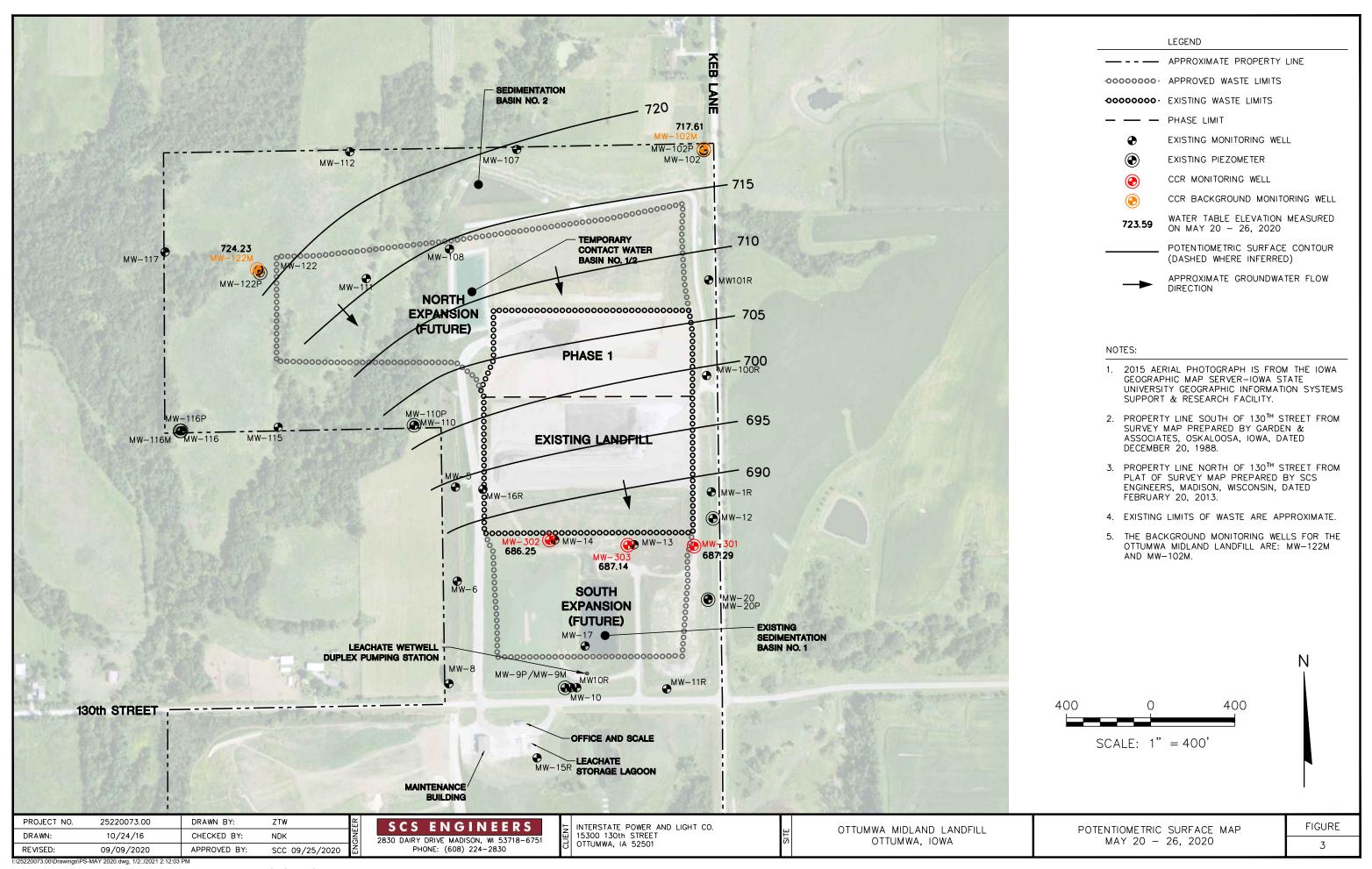
Date: 5/1/2018
Date: 1/18/2021
Date: 1/18/2021
Date: 1/18/2021

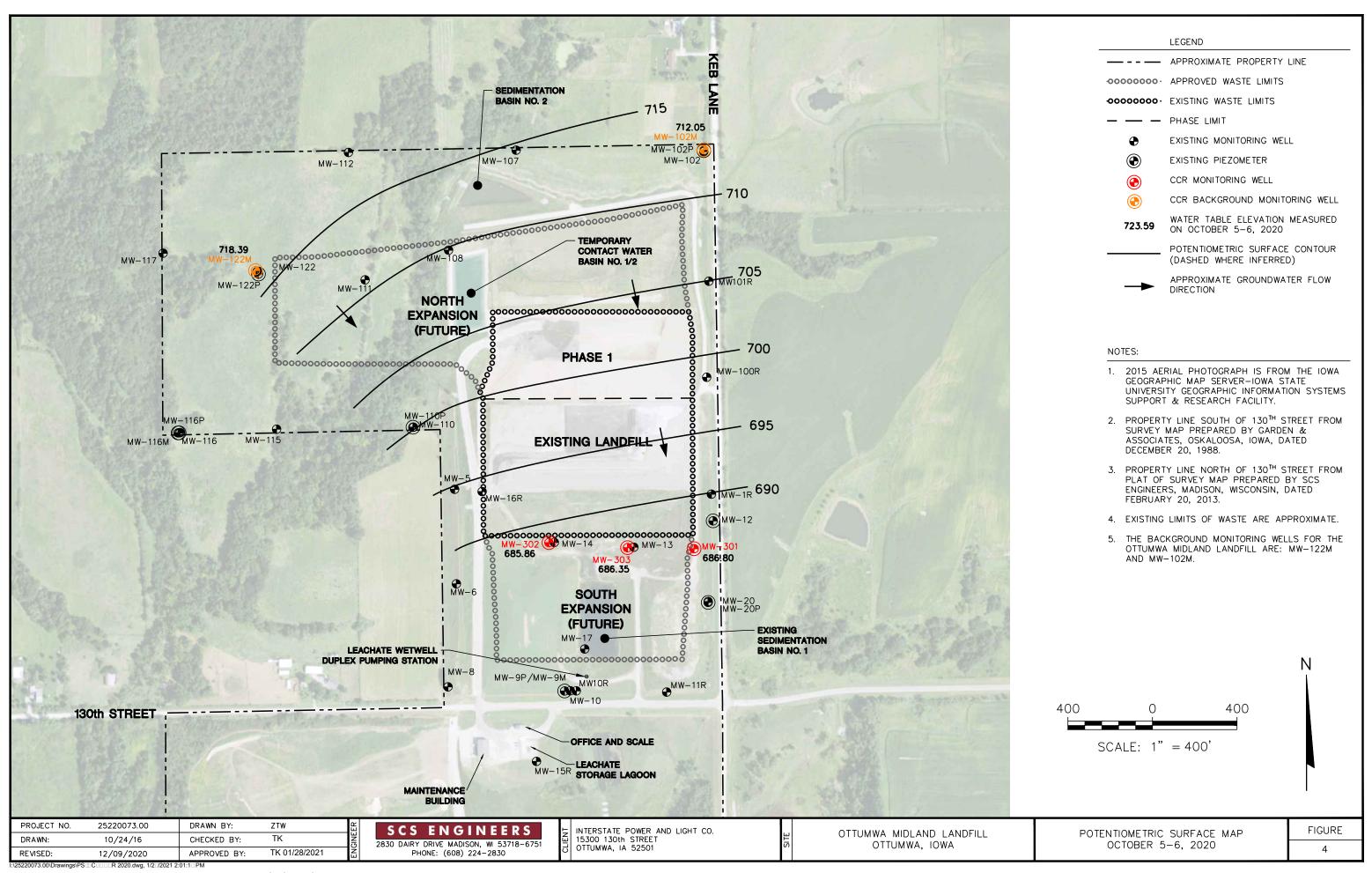
Table 6. 2020 Groundwater Field Data Summary Ottumwa Midland Landfill / SCS Engineers Project #25220073.00 January - December 2020

Well	Sample Date	Groundwater Elevation (feet)	Field Temperature (deg C)	Field pH (Std. Units)	Oxygen, Dissolved (mg/L)	Field Specific Conductance (umhos/cm)	Field Oxidation Potential (mV)	Turbidity (NTU)
MW-102M	5/21/2020	717.61	13.1	7.82	1.59	2260	21.20	297
	10/7/2020	712.05	14.5	8.29	5.11	2123	22.00	
MW-122M	5/21/2020	724.23	13.0	6.91	0.61	14090	-4.400	2.31
	10/7/2020	718.39	13.6	7.00	0.56	13603	-28.20	
MW-301	5/26/2020	687.29	15.8	5.67	0.41	1546	-57.80	21.8
	10/6/2020	686.80	14.5	7.22	0.25	1820	-105.9	21.4
MW-302	5/21/2020	686.25	13.1	7.05	1.06	1129	-83.40	12.5
	10/6/2020	685.86	13.5	7.14	0.28	1025	-169.4	136
MW-303	5/26/2020	687.14	14.4	6.21	2.31	1963	-30.00	57.1
	6/29/2020	687.36	16.1	6.74	0.49	1739	-53.30	59.0
	10/6/2020	686.35	13.9	7.01	0.30	1262	-137.3	240

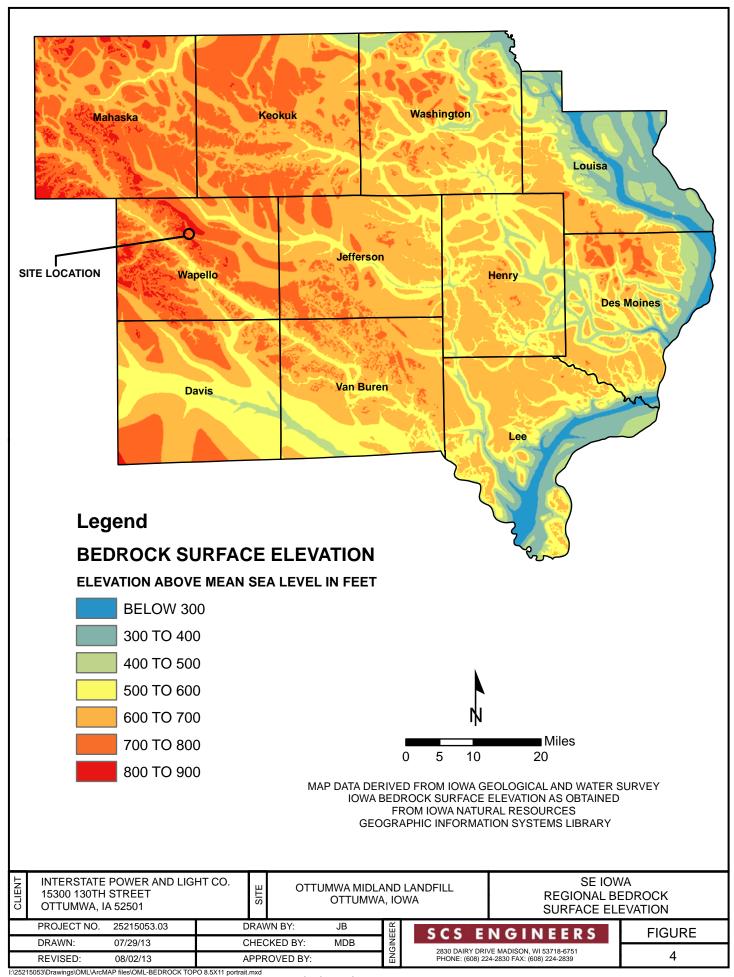

 Created by: RM
 Date: 12/22/2020

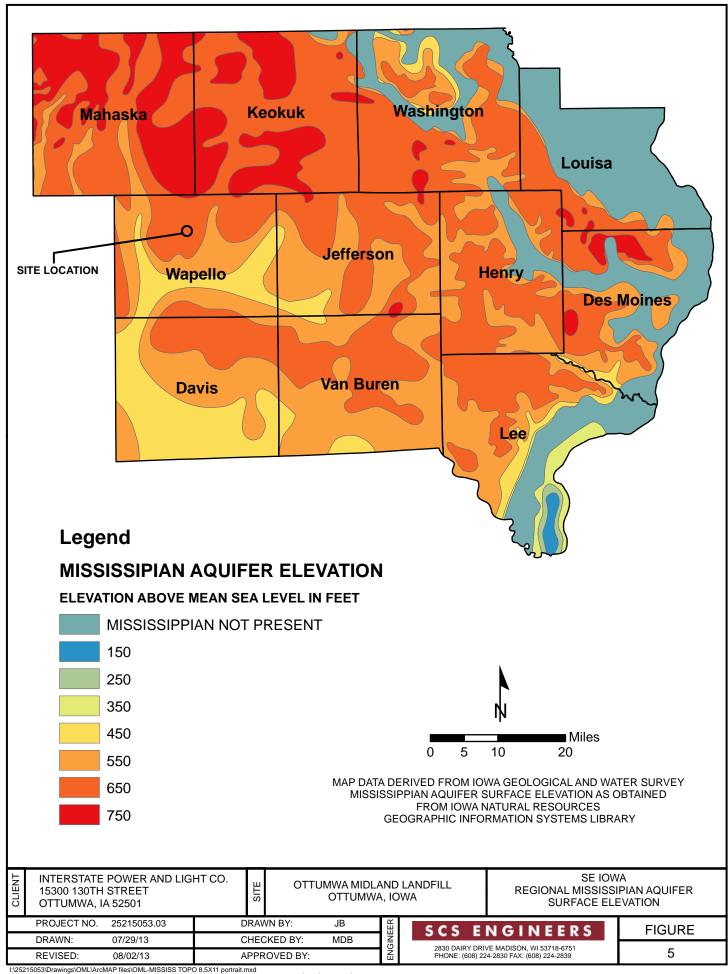

 Last revision by: RM
 Date: 1/8/2021

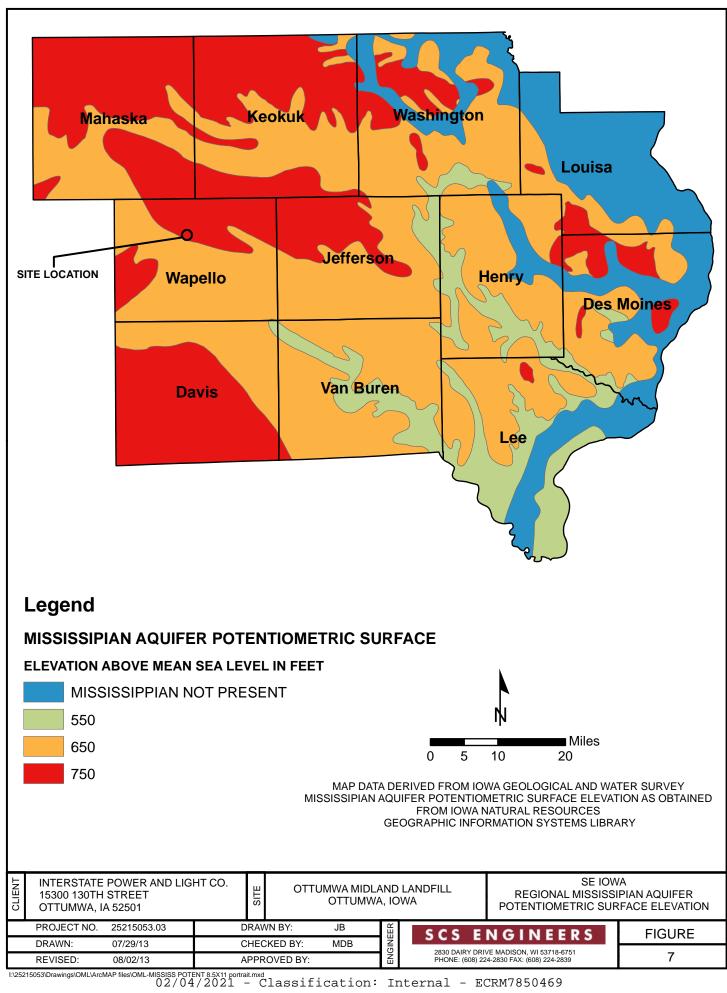

 Checked by: NDK
 Date: 1/18/2021

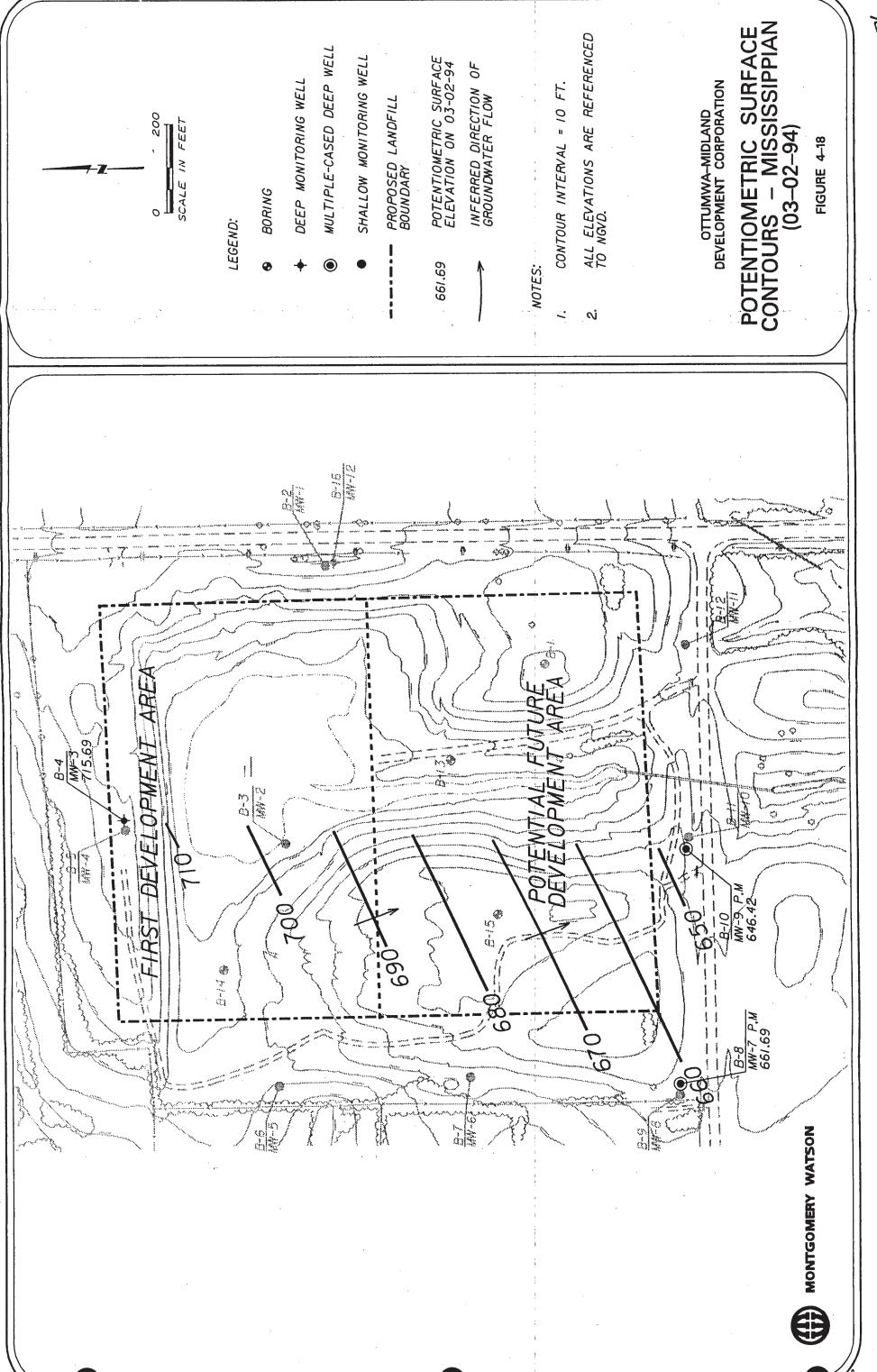

Figures

- 1 Site Location Map
- 2 Site Plan and Monitoring Well Locations
- 3 Potentiometric Surface Map, May 20 26, 2020
- 4 Potentiometric Surface Map, October 5 6, 2020









Appendix A Regional Hydrogeologic Information

g

Appendix B

Boring Logs and Well Construction Documentation

SCS ENGINEERS Civil & Environmental Engineering

Page 1

Facility Ott	//Projec	t Name Midland	l Landfill		SCS# 25211	509.03	License	e/Permit	t/Monito	ring N	lumber		Borin	ng Nu 3-102	ımber
	Drilled art Lon		m name a	nd name of cre Pau	w chief) Il Dickinson		Drilling 08/2	Started			lling Co 08/27/	omplete 2012	ed		ling Method A, Air Hammer, Co
Facility	Well 1	No.	Uniqu	ie Well No.	Common Well N MW-102M	Name Static Water Level Feet			Surface Elevation 795.0 Feet				Borehole Diam. 10.5/6 Inches		
State P			of Section	N, on 34, T. 73 N	E		Lat. Long.	a 9		Loc	al Grid	Locati	on (If	appli	cable)
County	Wa	apello				Locat	tion Code	е	Civil To	wn/C	ity/or V	Village			
San	nple											Soil	Prope	ties	
Number	Length Recovered	Blow Counts	Depth in Feet		Soil/Rock Descrip And Geologic Origi Each Major Un	in For		NSCS	Graphic Log	Well Diagram	Max. PID/FID	Standard Penetration	Moisture Content	P200	RQD/ Comments
S1	8	05,07 09,12			_AY, dark brown (* sive, few roots (top			CL-ML				1.25	М		begin drilling with 6-1/4" hollow stem augers and sampling with split-spoons and 140 lb hammer
S2	8	06,13 09,18		6/8) and	AY, mottled olive light olive brown (2 cky (loess).		4	CL				>4.5	M		Italiinei
00		12,17	5 —									>4.5	М		
S3	14	10,14		(2.5Y 3/2	AY, very dark gray) mottled dark red very stiff, cobble at	(2.5YR 3/6)	,					4.0	М		
S4 ST	24							CL		(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			M		pushed shelby tube from 7.5' to 9.5'
l hereb	certify	that the	informat	ion on this forr	n is true and correct		f my kno	wledge		A X					
Signatu	re -	12	lay	th_		Firm	SCS E	NGINE	ERS T	yler N	lunsor				
	0														

		D-102							Coil	Duomon	tion	rage 2
San	nple	_	ا ب				и	Q	5011	Proper	ues	
Number	Length Recovered	Blow Counts	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	Max. PID/FID	Standard Penetration	Moisture Content	P200	RQD/ Comments
S5	10	12,21 38,		CLAY, grayish brown (10YR 5/2) with black (10YR 2/1) and dark reddish brown (2.5YR 2.5/4) mottles, hard.	CL		XXX		4.25	М		
		30/2"		WEATHERED SHALE, gray (2.5Y 5/1), trace to few black (2.5Y 2.5/1) zones, massive, with silt (Pennsylvanian).					>4.5	М		
S6	12	22,17 61/4"		As above, except silty with pale red zones instead of black zones.	Shale				>4.5	М		at 15' auger refusal, begin drilling with 6" air hammer and sample drill cuttings
S7			- 15	SHALE, light brownish gray (10YR 6/2) and brownish yellow (10YR 6/6).								
			20	As above, except trace very dark grayish								
S8				brown (10YR 3/2).	Shale							
S 9			- 25	As above, except gray (10YR 6/1 to 10YR 5/1).								

Dornig	Number	D-10	12									Page 3
Sar	nple								Soil	Proper	ties	
Number	Length Recovered	Blow Counts	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	Max. PID/FID	Standard Penetration	Moisture Content	P200	RQD/ Comments
\$10			35	As above.	Shale							
S11			40	SHALE with coal, black (10YR 2/1) to very dark brown (10YR 2/2).	Shale							
S12			- 45	COAL, black (10YR 2/1).	Coal							
S13				SHALE, light gray (10YR 7/1) to gray (10YR 6/1).	Shale							

	nple								Soil	Proper	rties	Tuge 1
Number	Length Recovered	Blow Counts	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	Max. PID/FID	Standard Penetration	Moisture Content	P200	RQD/ Comments
S14			55	SHALE, gray (10YR 5/1)								
S16			- 60 — - — - — - — 65 —	As above, except gray (10YR 6/1) to dark gray (10YR 4/1). As above, except very dark gray (10YR 3/1).	Shale							
S17												

		D-102	_									r age 3
San	nple						_	\circ	Soil	Proper	ties	
Number	Length Recovered	Blow Counts	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	NSCS	Graphic Log	Well Diagram	Max. PID/FID	Standard Penetration	Moisture Content	P200	RQD/ Comments
S18				SHALE, gray (10YR 6/1).	Shale							at 74', begin
			- 75 	SILTY SHALE, gray (10YR 5/1), 1mm to 3mm-thick lamina, intensely fractured. SANDSTONE, gray (10YR 5/1) with some light yellowish brown (10YR 6/4) lamina, strong, moderately fractured. SILTY SHALE, gray (10YR 5/1), 1mm to 3mm-thick lamina, moderately fractured,	Shale Sand-stone Shale							NQ3 coring
Run 1	58/78			moderate to strong. SANDSTONE, gray (10YR 5/1) with some light yellowish brown (10YR 6/4) lamina, strong, moderately fractured. SILTY SHALE, gray (10YR 5/1), 1mm to 3mm-thick lamina, moderately fractured, moderate to strong. SANDSTONE, gray (10YR 5/1), strong,	Sand- stone Shale Sand- stone							Run 1 (74' to 81.5') TCR=74% SCR=74% MCR=45% RQD=Poor
Run 2	8/24		- 80	MODE THERED SHALE (closs)	Shale							Run 2 (81.5' to 83.5') TCR=33% SCR=0% MCR=0%
			_ 85	WEATHERED SHALE (clay). SHALE, very dark gray (10YR 3/1), moderate strength, intensely fractured, few pyrite nodules up to 1mm by 3mm in size, some highly decomposed zones.	Shale							RQD=Very Poor
Run 3	57/96				Shale							(83.5' to 91.5') TCR=59% SCR=53% MCR=8% RQD=Very Poor

		D-10	_						G '1	D	4:-	Tage 0
San	nple		<u>+</u>				Е	А		Proper	ues	
Number	Length Recovered	Blow Counts	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	Max. PID/FID	Standard Penetration	Moisture Content	P200	RQD/ Comments
Run 4	31/ 120		- 95 — - 100—	As above. SILTY SHALE, black (10YR 2/1), weak to moderate strength, intensely fractured.	Shale							Run 4 (91.5' to 101.5') TCR=26% SCR=21% MCR=3% RQD=Very Poor
Run 5	88/ 120		- — — — — — — — — — — — — — — — — — — —	SILTY SHALE, dark brown (7.5YR 3/2), very weak, 1mm to 3mm-thick lamina, highly decomposed. SILTY SHALE, dark gray (7.5YR 4/1), moderate strength to strong, massive, few weak zones, no decomposition.	Shale							Run 5 (101.5'-111.5') TCR=73% SCR=73% MCR=35% RQD=Poor

Dornig	Number	D-10										Page 7
San	nple							\sim	Soil	Proper	ties	
Number	Length Recovered	Blow Counts	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	Max. PID/FID	Standard Penetration	Moisture Content	P200	RQD/ Comments
Run 6	119/ 120			As above, except calcitic, pyrite nodules 5mm by 20mm in size at 112.8' and 117.3', slightly disintegrated and decomposed, slightly fractured, with some pyrite infilling. SHALE, greenish gray (5GY 6/1), weak to moderate strength purite.	Shale							Run 6 (111.5'-121.5') TCR=99% SCR=99% MCR=84% RQD=Good
				to moderate strength, pyrite mineralization along laminated zones, few disintegrated zones. As above, except dark gray (7.5YR 4/1),								
Run 7	44/ 120			massive, aphanitic.	Shale							Run 7 (121.5'-131.5') TCR=37% SCR=35% MCR=27% RQD=Poor
				SHALE, reddish brown (2.5YR 4/3), highly decomposed.	Shale							
				SHALE, gray (7.5YR 5/1), weak to moderate strength, with white limestone	Shale							

Bornig Numb		, <u> </u>			1						Tage 0
Sample						e l	\circ	Soil	Proper	ties	
Number Length Recovered	Blow Counts	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	Max. PID/FID	Standard Penetration	Moisture Content	P200	RQD/ Comments
			gravel, slighty to moderately disintegrated.	Shale							
			WEATHERED SHALE, highly decomposed, possibly soft shale in clay.								
		135									
Run 8 0/120				Shale							Run 8 (131.5'-141.5') TCR=0% SCR=0% MCR=0%
			Possible limestone at 138'.								RQD=Very Poor at 138', driller
											reports change in drilling
			LIMESTONE, gray (10YR 5/1), strong (Mississippian).								
Run 9 29/60				Lime- stone							Run 9 (141.5'-146.5') TCR=48% SCR=38% MCR=15% RQD=Very
		_ 145— 	Blind drill.								Poor
			Biii10 Ofiii.								after coring, reamed hole with 6" air hammer to 153'
											har

boring	Number											Page 9
San	nple								Soil	Proper	ties	
Number	Length Recovered	Blow Counts	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	Max. PID/FID	Standard Penetration	Moisture Content	P200	RQD/ Comments
				Blind drill.								
				End of boring @ 153'. Set MW-102M with 5' PVC screen to 148'.								
			— 155— — —									
			— 160— — —									
			—— 165——									

SCS ENGINEERS Civil & Environmental Engineering

Page 1

Ott	umwa		Landfill		SCS# 25211	509.03			t/Monitor				В	-122	
_	Drilled art Lon		m name ar	nd name of crev Pau	v chief) I Dickinson		Drilling 12/0	Starte 06/201			lling Co 12/09/	omplete 2012	ed		ling Method A, Air Hammer, Co
Facilit	y Well l	No.	Uniqu	e Well No.	Common Well N MW-122M	Name	Static W Fee		evel	Sur	face El 790.6	evation Feet		Bor 10.	ehole Diam. 5/6 Inches
State P				N, n 34, T. 73 N.	E , R. 14 W.		Lat. Long.			Loc	al Grid	Locati	ion (If	appli	cable)
County	Wa	apello	mak			Locat	ion Code		Civil To Ottu	wn/C mwa	ity/or \	Village			
San	nple										0	Soil	Proper	ties	
Number	Length Recovered	Blow Counts	Depth in Feet		Soil/Rock Descrip And Geologic Origi Each Major Un	in For		NSCS	Graphic Log	Well Diagram	Max. PID/FID	Standard Penetration	Moisture Content	P200	RQD/ Comments
04		06-10			yellowish brown few roots (topsoil/			ML				4.5			1
S1	9	14-20		mottled gr brown (5)	AY, olive yellow (2 ay (2.5Y 6/1) and 'R 4/4), trace fine	reddish						1.5	М		
				sand (till).				CL				2.75			
S2	24	06-17 20-26		(2.5Y 6/6) 3/4) layers	ay (5Y 5/1), few ol and dark reddish s, hard, 1mm to 5 eathered shale).	brown (5YR						4.5	М		
S3 ST	20		5 —					CL		(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX					pushed shelby tube from 5' to 7'
S4	24	07-17 27-34		black laye						XXXXXXXXXX		3.5	М		at 10', auger refusal, and begin drilling
				2mm-thick	ck (2.5Y 2.5/1), 1 c lamina (weathere	ed shale)		CL		XXXXX					with 6" air hammer and sampling drill cuttings
					is true and correct	to the best of Firm	my knov	wledge							E CAR
orgnatu		gh	a Be	left		Firm	SCS EN	NGINE	ERS Me	eghai	n Blod	gett			

Doring	Number	D 12										Page 2
San	nple							_	Soil	Proper	ties	
Number	Length Recovered	Blow Counts	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	Max. PID/FID	Standard Penetration	Moisture Content	P200	RQD/ Comments
S5				WEATHERED SHALE, black (2.5Y 2.5/1), lamina up to 5mm-thick.								
S6			- 15 — —	WEATHERED SHALE, dark gray (2.5Y 4/1) to black (2.5Y 2.5/1).								
S 7			- 20	SHALE and WEATHERED SHALE, dark gray (2.5Y 4/1).	Shale							
\$8			- 25	SHALE and WEATHERED SHALE, dark gray (2.5Y 4/1) to black (2.5Y 2.5/1).								

	nple	D-12							Soil	Proper	ties	rage 3
Number	Length Recovered	Blow Counts	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	Max. PID/FID	Standard Penetration	Moisture Content	P200	RQD/ Comments
S9				As above. SHALE, dark gray (2.5Y 4/1).								
S10			40	As above.	Shale							
S11			- — - — - 45 —	As above.								
S12												

		D-12			Т				Soil	Proper	tios	Tage 4
San	nple		,,				ш			Proper	ues	
Number	Length Recovered	Blow Counts	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	Max. PID/FID	Standard Penetration	Moisture Content	P200	RQD/ Comments
S13			- — - —	SHALE, dark gray (2.5Y 4/1) to black (2.5Y 2.5/1).								
S14				As above.								
\$15				As above, except 6" coal seam at approximately 64.5'.	Shale							
S16			- 65 — - — - —	SHALE, light gray (2.5Y 7/1) to very dark gray (2.5y 3/1).								

	Number	. D 12			1							Page 5
San	nple							\sim	Soil	Proper	ties	
Number	Length Recovered	Blow Counts	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	Max. PID/FID	Standard Penetration	Moisture Content	P200	RQD/ Comments
Run 1	68/78		 	SHALE, very dark gray (2.5Y 3/1) to gray (2.5Y 5/1), weak to moderate strength, 1mm to 5mm-thick lamina, moderatly decomposed (clay along fractures), intensely fractured, some sand at 70' to 71'.								begin NQ3 coring at 70' Run 1 (70' to 76.5') TCR=87% SCR=82% MCR=46% RQD=Poor
Run	E4/60		- 75 	As above, except few sandy intervals up to 2" in length at 77.5' to 78.5'.								Run 2 (76.5' to 81.5') TCR=90%
2	54/60		- 80	SHALE, very dark gray (2.5Y 3/1) with little gray (2.5Y 5/1 & 6/1), 1mm to 5mm-thick lamina, moderately weathered (clay along fractures), trace pyrite nodules throughout.	Shale							SCR=75% MCR=8% RQD=Very Poor
Run 3	40/60		- 85									(81.5' to 86.5') TCR=67% SCR=55% MCR=0% RQD= Very Poor
Run 4	36/60			As above.								Run 4 (86.5' to 91.5') TCR=60% SCR=53% MCR=40% RQD=Poor

Domis	Number	D-12										Page 6
San	nple						_	_	Soil	Proper	ties	
Number	Length Recovered	Blow Counts	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	Max. PID/FID	Standard Penetration	Moisture Content	P200	RQD/ Comments
Run				As above.	Shale		X X					
4 (cont)			_	SILTSTONE, very dark gray (2.5Y 3/1), moderately strong, massive, trace fractures infilled with calcite.	Silt- stone							four 6" to 8" bit drops one foot
				SHALE, very dark gray (2.5Y 3/1), very weak to weak, 1mm to 5mm-thick lamina, moderately to highly decomposed (highly decomposed in top 2' of recovered shale), trace pyrite throughout, possible voids from approximately 93' to 97', bedding planes are horizontal where								apart indicated possible voids from 93' to 97'
Run 5	59/ 120		- 95	present.								Run 5 (91.5'-101.5') TCR=49% SCR=29% MCR=7% RQD=Very Poor
			- 100	SHALE, light to dark gray (2.5Y 7/1 to 4/1), weak, 1mm to 3mm-thick lamina, massive from 104' to 105', trace coal on fracture planes, trace pyrite throughout.	Shale							
Run 6	48/60		- 105									Run 6 (101.5'-106.5') TCR=80% SCR=68% MCR=48% RQD=Poor
Run 7	6/60			SHALE, gray (2.5Y 5/1), weak to moderate strength, 1mm to 3mm-thick lamina, silty.								Run 7 (106.5'-111.5') TCR=10% SCR=10% MCR=7% RQD=Very Poor

Domig	Number	D-12										Page 7
San	nple								Soil	Proper	ties	
Number	Length Recovered	Blow Counts	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	Max. PID/FID	Standard Penetration	Moisture Content	P200	RQD/ Comments
Run 7 (cont)			_	As above.								
Run 8	30/30		-	SHALE, dark gray (2.5Y 4/1) with gray (2.5Y 5/1), weak to moderate strength, bedding vairable, 1mm-thick lamina to 2cm-thick beds, moderately decomposed (clay in fractures), few 1cm to 3cm-thick sandy zones, trace pyrite nodules throughout.								Run 8 (111.5'-114') TCR=100% SCR=80% MCR=60% RQD=Fair
Run 9	65/90		- 115	Interbedded SHALE, SILTSTONE, and SANDSTONE, gray (10YR 6/1) to very dark gray (10YR 3/1), weak strength to strong, sandstone/siltstone/shale intervals are 1" to 10"-thick, bedding ranges from 1mm-thick lamina in shale to massive in siltstones, some slump/flame structures in sand, intensely fractured, fresh to moderately decomposed (clay in fractures), trace pyrite throughout.	Shale							Run 9 (114'-121.5') TCR=72% SCR=70% MCR=9% RQD=Very Poor
Run 10	12/12			SHALY SILTSTONE and SANDSTONE, black (2.5Y 2.5/1) with bands of light gray (2.5Y 7/1), moderate strength, 1mm to								Run 10 (121.5'-122.5') TCR=100% SCR=92% MCR=0% RQD=Very Poor
Run 11	108/ 108		- 125 	10mm-thick lamina, trace pyrite throughout, moderately to intensely fractured.	Silt- stone							Run 11 (122.5'-131.5') TCR=100% SCR=95% MCR=60%
			_	SHALE, black (2.5Y 2.5/1), weak, 1mm to 5mm-thick lamina, some silt and sand, moderatly decomposed, moderately fractured, trace pyrite throughout.	Shale							RQD=Fair

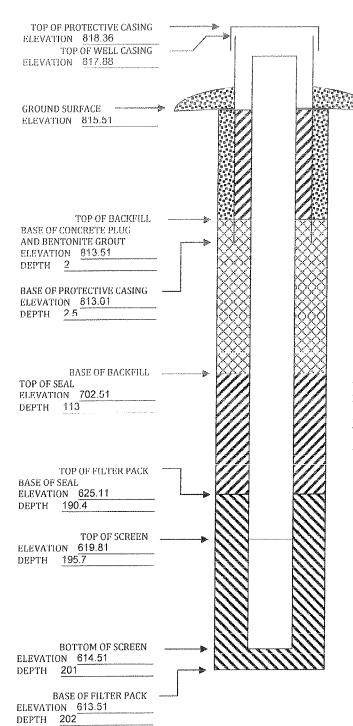
Run 110 (cont)	Recovered Polaric Country	Blow Counts	Soil/Rock Description And Geologic Origin For Each Major Unit As above. SHALE, dark greensih gray (5GY 4/1), weak to moderate strength, 1mm to 5mm-thick lamina, moderately to highly decomposed.	Shale	Graphic Log	Well Diagram	Max. PID/FID	Standard Penetration Standard	Moisture Content	P200	RQD/ Comments
Run 11 (cont)	10/		And Geologic Origin For Each Major Unit As above. SHALE, dark greensih gray (5GY 4/1), weak to moderate strength, 1mm to 5mm-thick lamina, moderately to highly	Shale	Graphic Log	Well Diagram	Max. PID/FIL	Standard Penetration	Moisture Content	P200	RQD/ Comments
11 (cont)		 - 135	SHALE, dark greensih gray (5GY 4/1), weak to moderate strength, 1mm to 5mm-thick lamina, moderately to highly								
(cont)			weak to moderate strength, 1mm to 5mm-thick lamina, moderately to highly	Shale							
		_ 135		Shale							
	20										Run 12 (131.5'-141.5') TCR=92% SCR=86% MCR=63% RQD=Fair
		_ 140	LIMESTONE CONGLOMERATE, reddish brown (5YR 5/3) with gray shale between clasts, weak, massive. SHALY LIMESTONE, greenish gray	Lime- stone							
			(5GY 5/1), weak, massive, 2" of light gray clay at interface with above conglomerate.	Lime- stone							
Run 114 13 120			SHALY LIMESTONE, reddish brown (5YR 4/3), few greenish gray zones, moderate strength, few clasts of hard competent limestone up to 1.5" in diameter, moderately decomposed.	Lime- stone							Run 13 (141.5'-151.5') TCR=95% SCR=95% MCR=73% RQD=Fair

Boring Nu	ımber	B-12	2									Page 9
Sample	e								Soil	Proper	ties	
Number	Recovered	Blow Counts	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	Max. PID/FID	Standard Penetration	Moisture Content	P200	RQD/ Comments
Run 13 (cont)	0/30		155	SHALY LIMESTONE, yellowish gray (5GY 5/1), weak, massive, fresh to slightly decomposed. As above. End of Boring @ 154'. Set MW-122M with 5' PVC screen to 152'.	Lime-stone							Run 14 (151.5'-154') TCR=100% SCR=90% MCR=900d RQD=Good

IOWA DEPARTMENT OF NATURAL RESOURCES

MONITORING WELL/PIEZOMETER CONSTRUCTION DOCUMENTATION FORM

Disposal Site Name: IPL - Ottumwa Midland Landfill	Permit No.: 90-SDP-8-92P
Well or Piezometer No: MW-301	
Dates Started: 11/23/15	Date Completed: 11/24/15
A. SURVEYED LOCATIONS AND ELEVATIONS	B. SOIL BORING INFORMATION
Locations (± 0.5 ft):	Name & Address of Construction Company:
Specify corner of site: SE	Cascade Drilling, LP
Distance & direction along boundary: 700'N	301 Alderson St
Distance & direction from boundary to wall: 90' W	Schofield, WI 54476
Elevations (± 0.01 ft MSL):	Name of Driller: Todd Schmalfeld
Ground Surface: 815.51'	Drilling Method: 4.25' HSA to 24.5'/Air Rotary to 164'/coring
Top of protective casing: 818.36'	Drilling Fluid: NA
Top of well casing: 817.88'	Bore Hole Diameter: 8.50 inch/ 6 inch
Benchmark elevation: 818.70	Soil Sampling Method: Split Spoon/cuttings/core
Benchmark description: Control Point #2	Depth of Boring: 202'
C. MONITORING WELL INSTALLATION	
Casing material: sch 80 PVC	Placement method: tremie
Length of casing: 196'	Volume: 400 gallons
Outside casing diameter: 2.38"	Backfill (if different from seal):
Inside casing diameter: 1.9"	Material: 3/8" bentonite chips and Aqua Guard grout
Casing joint type: threaded	Placement method: gravity/tremie
Casing/screen joint type: threaded	Volume:
Screen material: PVC	Surface seal design:
Screen opening size: 0.010	Material of protective casing: Steel 6 inch
Screen length: 5 ft	Material of grout between protective casing and well casing: sand
Depth of well: 201 ft	Protective cap:
Filter Pack:	Material: Steel
Material: Red Flint	Vented: Yes No Locking: ■ Yes No
Grain size: #40	Well Cap:
Volume: 2 cubic ft	Material: PVC
Seal (minimum 3 ft length above filter pack):	Vented: ☐ Yes ■ No
Material: AquaGuard grout	
D. GROUNDWATER MEASURMENT (± 0.01 ft below top of in	nner well casing)
Water level: 125.9	Stabilization Time: 20 HR
Well development method: Surged and bailed, then pumped	to reduce turbidity.
Average depth of frostline: 3.5'	
Attachments: Driller's log. Pipe schedules and grouting scl	nedules. 8 ½x11 inch map showing locations of all


monitoring wells and piezometers.

Please mail completed for to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E 9th St, Des Moines IA 50319-0034.

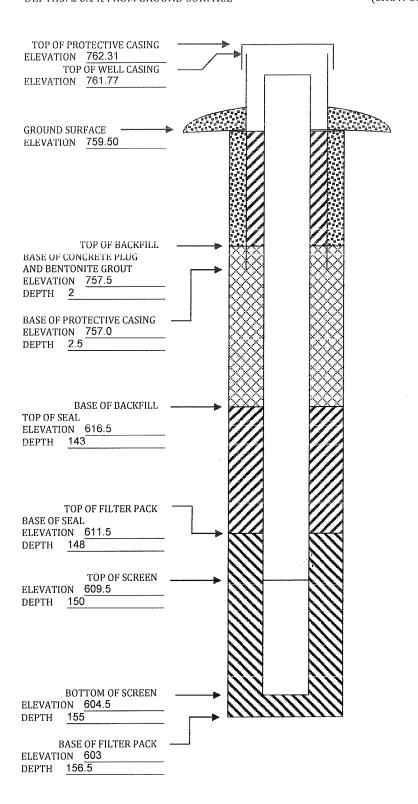
Questions? Call or Email: Nina Koger, Environmental Engineer Sr., 515-281-8986, Nina.Koger@dnr.iowa.gov

06/2011 cmz

DNR Form 542-1277

Note: Grout placed from 190.4' bgs to 113' bgs. Void noted from 105' bgs to 113'. Grout basket placed at 95'bgs. Annular space above grout basket sealed with 3/8" bentonite chips (80'-95' bgs) and bentonite grout (3' bgs to 80' bgs).

06/2011 cmz DNR Form 542-1277


IOWA DEPARTMENT OF NATURAL RESOURCES MONITORING WELL/PIEZOMETER CONSTRUCTION DOCUMENTATION FORM

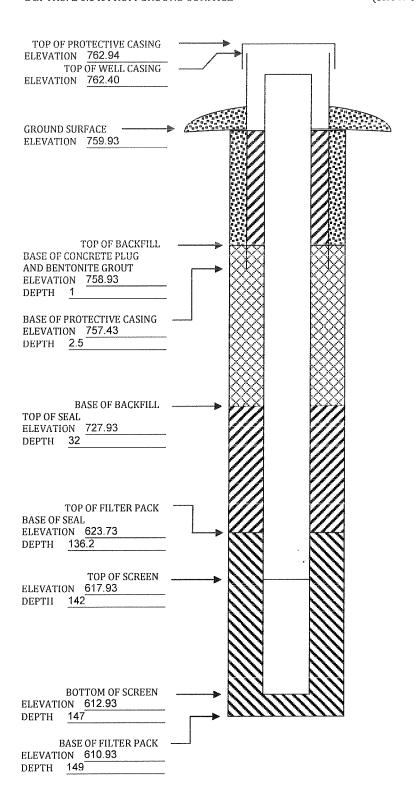
Disposal Site Name: IPL - Ottumwa Midland Landfill	Permit No.: 90-SDP-8-92P
Well or Piezometer No: MW-302	
Dates Started: 12/1/15	Date Completed: 12/3/15
A. SURVEYED LOCATIONS AND ELEVATIONS	B. SOIL BORING INFORMATION
Locations (± 0.5 ft):	Name & Address of Construction Company:
Specify corner of site: SE	Cascade Drilling, LP
Distance & direction along boundary: 700' N	301 Alderson St
Distance & direction from boundary to wall: 725' W	Schofield, WI 54476
Elevations (± 0.01 ft MSL):	Name of Driller: Todd Schmalfeld
Ground Surface: 759.50'	Drilling Method: 4.25'HSA to 14.5'/Air Rotary to 95'/coring
Top of protective casing: 762.31'	Drilling Fluid: NA
Top of well casing: 761.77'	Bore Hole Diameter: 8.5 inch/6 inch
Benchmark elevation: 818.70	Soil Sampling Method: Spoon/cuttings/core
Benchmark description: Control Point #2	Depth of Boring: 156.5'
C. MONITORING WELL INSTALLATION	
Casing material: sch 80 PVC	Placement method: gravity
Length of casing: 150'	Volume: 0.5 cubic ft
Outside casing diameter: 2.38"	Backfill (if different from seal):
Inside casing diameter: 1.9"	Material: Agua Guard Grout
Casing joint type: threaded	Placement method: Tremie
Casing/screen joint type: threaded	Volume: 300 gallons
Screen material: PVC	Surface seal design:
Screen opening size: 0.010	Material of protective casing: Steel 6 inch
Screen length:5'	Material of grout between protective casing and well casing: sand
Depth of well: 155'	activates that is the property of the control of th
Dopui of Wolfi	Protective cap: Material: Steel
Filter Pack: Red Flint	Vented: Yes □ No Locking: ■ Yes □ No
Grain size: #40	Well Cap:
Volume: 2 cubic ft	Material: PVC
Seal (minimum 3 ft length above filter pack): Material: 3/8" bentonite chips	Vented: ☐ Yes ■ No
D. GROUNDWATER MEASURMENT (± 0.01 ft below top	of inner well casing)
Water level: 75.97'	Stabilization Time: <1 hour
Well development method: Surged and bailed then pum	ped to reduce turbidity
Average depth of frostline: 3.5'	
Attachments: Driller's log. Pipe schedules and groutin	g schedules. 8 ½x11 inch map showing locations of all

monitoring wells and piezometers.

Please mail completed for to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E 9th St, Des Moines IA 50319-0034.

Questions? Call or Email: Nina Koger, Environmental Engineer Sr., 515-281-8986, Nina.Koger@dnr.iowa.gov

IOWA DEPARTMENT OF NATURAL RESOURCES


MONITORING WELL/PIEZOMETER CONSTRUCTION DOCUMENTATION FORM

Disposal Site Name: IPL - Ottumwa Midland Land	Permit No.: 90-SDP-8-92P
Well or Piezometer No: MW-303	
Dates Started: 4/25/16	Date Completed: 4/26/16
A. SURVEYED LOCATIONS AND ELEVATIONS	B. SOIL BORING INFORMATION
Locations (± 0.5 ft):	Name & Address of Construction Company:
Specify corner of site: SE	
Distance & direction along boundary: 700' N	
Distance & direction from boundary to wall: 350'	W
Elevations (± 0.01 ft MSL):	
Ground Surface: 759.93	Drilling Method: 4.25'HSA to/Air Rotary/coring
Top of protective casing: 762.94	Drilling Fluid: NA
Top of well casing: 762.40	Bore Hole Diameter: 8.5 inch/6 inch
Benchmark elevation: 818.70	Soil Sampling Method: Spoon/cuttings/core
Benchmark description: Control Point #2	Depth of Boring:
C. MONITORING WELL INSTALLATION	
Casing material: sch 80 PVC	Placement method: tremie
Length of casing: 142'	Volume: 300 gal
Outside casing diameter: 2.40"	Backfill (if different from seal):
Inside casing diameter: 1.9"	Material: 3/8" bentonite chips
Casing joint type: threaded	Placement method: gravity
Casing/screen joint type: threaded	Volume: 15 cubic ft
Screen material: PVC sch 80	Surface seal design:
Screen opening size: 0.010	Material of protective casing: steel
Screen length:5'	Material of grout between protective casing and well casing: bentonite chips and sand
Depth of well: 147'	Protective cap:
Filter Pack:	Material: steel
Material: Unamin Filtersil	Vented: Yes □ No Locking: ■ Yes □ No
Grain size: 10/20 mesh	Well Cap:
Volume: 2.5 cubic ft	Material: Plastic
Seal (minimum 3 ft length above filter pack):	Vented: ■ Yes □ No
Material: 3/8" bentonite chips	
D. GROUNDWATER MEASURMENT (± 0.01 ft bel	
Water level: 76.36	Stabilization Time: <1hr.
Well development method: surged and bailed, the	en pumped to reduce turbidity.
Average depth of frostline: 3.5	
Attendamenta Duillawa lan Dina sala dala assal a	overeties a she delta = 0.1/14 in the second having largeties = 6.11

Attachments: Driller's log. Pipe schedules and grouting schedules. $8 \frac{1}{2} \times 11$ inch map showing locations of all monitoring wells and piezometers.

Please mail completed for to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E 9th St, Des Moines IA 50319-0034.

Questions? Call or Email: Nina Koger, Environmental Engineer Sr., 515-281-8986, Nina.Koger@dnr.iowa.gov

06/2011 cmz DNR Form 542-1277

SCS ENGINEERS

SOIL BORING LOG INFORMATION

Environmental Consultants and Contractors

Page 1 of 9				<u>Ro</u>	ute To:	Watershed/V			Waste Mother	_	ement										
Facility To South Rock Description And Gologic Origin For Each Major Unit South Rock Description And Gologic Origin For Each Major Unit South Rock Description And Gologic Origin For Each Major Unit South Rock Description And Gologic Origin For Each Major Unit South Rock Description And Gologic Origin For Each Major Unit South Rock Description And Gologic Origin For Each Major Unit South Rock Description South Rock Description And Gologic Origin For Each Major Unit South Rock Description South Rock Descrip						Kemediation	/ Kedevelopi	пен 🗀	Oulei							Doo	1	o.f	0		
Borng Polled By Name of rewe chief (first, last) and Firm	Facilit	y/Projec	et Nam	ne					License/I	Permit/	Monito	ring Nı	ımber		Boring		er				
Todd Schmalfeld Todd Schma								5215135.50					ID.	D :11:		1 . 1	M\				
Cascade Drilling Inling Well No.					crew cn	nei (first, last) a	and Firm		Date Drii	Date Drilling Started Date Dri					ng Con	npieted			_		
N/A	Cas	cade I	Orilli													2015		rot	core/		
Local Grid Origin Costimated: Original Plane 1,930,292 N. 394,330 E S./C/N Lat Original Plane No. 1,930,292 N. 394,330 E S./C/N Lat Original Plane No. 1,930,292 N. 394,330 E S./C/N Lat Original Plane No. 1,930,292 N. 394,330 E S./C/N No. 1,44 of SE 1/4 of SE 1/4 of Section 34, T. 73 N. R. 14 W Long Original Plane No. 1,44 of SE No. 1,	Uniqu				DNR V										Bo						
Sale Plane	Local) or Bo	ring Locatio	on 🖂	<u> </u>			,	,,					0.5	/O III		
County C			a (I)		-	, ,									_	□ N		_			
Wapello Ottumwa Soil Properties Soil Pro										/illage	Feet	⊔ s]	Feet U W						
Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For And Geologic Origin For Each Major Unit Ea																					
S1	San	nple													Soil	Prope	rties	ties			
S1		t. & l (in)	nts	eet				_					 <u> </u>	_							
S1	er ype	h At vered	Cou	In F							ic	am	Shea	ard ratio	ure	ਚ	city	_	, nents		
S1	Vum Ind T	engt	3low)eptl		La	en wajor o	int		S	Graph	Well Diagr	/ane	Stand	Moist Conte	iqui	Plasti ndex	200	₹QD,		
S2	Ĩ			-	FAT CI	LAY, very dark g	rayish brown	, (2.5Y 3/2).				N B		91 1							
S2	S1	16	56	-1						CII					M						
S2			8 10	E						Сп											
S2 16 56 69 4 M M M M M M M M M M M M M M M M M M	П			E	EAT CI	(A.V. 1-11(2-5X	7.2.5/1)														
Same as above, except very dark grayish brown (2.5Y 3/2). Same as above, except black (2.5Y 2.5/1). CH M Same as above, except black (2.5Y 2.5/1). CH M M Ihereby certify that the information on this form is true and correct to the best of my knowledge. Signature Firm SCS Engineers Tel: (608) 224-2830				_3	FAICI	LAY, black (2.5)	(2.5/1).														
Same as above, except very dark grayish brown (2.5Y 3/2). Same as above, except black (2.5Y 2.5/1). CH M M Same as above, except black (2.5Y 2.5/1). CH M M Ihereby certify that the information on this form is true and correct to the best of my knowledge. Signature Firm SCS Engineers Tel: (608) 224-2830	S2	16		E_4											M						
S3 22 55 67 6 Same as above, except very dark grayish brown (2.5Y 3/2). S4 5 87 812 9 Same as above, except black (2.5Y 2.5/1). CH M M M Ihereby certify that the information on this form is true and correct to the best of my knowledge. Signature Firm SCS Engineers Tel: (608) 224-2830	Ц			F .																	
Same as above, except black (2.5Y 2.5/1). CH M Solution Tel: (608) 224-2830	П			<u>-</u> 5																	
Same as above, except black (2.5Y 2.5/1). CH M Solution Tel: (608) 224-2830	S3	22	5 5	<u>-</u> 6	Sama a	a above, eveent v	ery dork grov	ich brown (2.5)	V 2/2)						M						
Same as above, except black (2.5Y 2.5/1). CH M Signature Same as above, except very dark grayish brown (2.5Y 3/2). CH M M M M M M M M M M M M M			67	E _	Same a	s above, except v	ery dark gray	isii biowii (2.3	1 3/2).												
S4 5 8 7	-			E 7																	
S4 5 87 5 9 10 CH M M S5 20 3 6 11 1				-8	Same as	s above, except b	lack (2.5Y 2.	5/1).													
Solution 10 Solution 11 Solution 11 Solution 11 Solution 12 Solution 12 Solution 13 Solution 10 Soluti	S4	5		E _o			`	,		СН					M						
So 20 3 6 7 11	Ш			E																	
So	П			= 10																	
So	S5	20	3 6	-11											м						
Solution Signature The Company of th	55	20	7 11	E											141						
Solution Signature Signature Same as above, except very dark grayish brown (2.5Y 3/2). Same as above, except very dark grayish brown (2.5Y 3/2). M M I hereby certify that the information on this form is true and correct to the best of my knowledge. Firm SCS Engineers Tel: (608) 224-2830	-			12																	
I hereby certify that the information on this form is true and correct to the best of my knowledge. Signature Firm SCS Engineers Tel: (608) 224-2830				_13																	
I hereby certify that the information on this form is true and correct to the best of my knowledge. Signature Firm SCS Engineers Tel: (608) 224-2830	S6	21		F 14	Same as	s above, except v	ery dark gray	ish brown (2.5°	Y 3/2).						M						
I hereby certify that the information on this form is true and correct to the best of my knowledge. Signature Signature SCS Engineers Tel: (608) 224-2830	Ц			- 14																	
Signature Scs Engineers Tel: (608) 224-2830				-15																	
- 101. (000) 224-2030			y that	the info	rmation o	on this form is t	rue and corr				ge.										
	Signat	uie /	hye		rume	in) SCB			dison, '	WI 537	11					Tel: (6			

Environmenta	Consultants	and Contractors

Borin	g Numl	oer	MW	V-301									Pag	ge 2	of	9
	nple											Soil	Prope			
	% (E)	ıts	eet	Soil/Rock Description						_						
er /pe	n Att ered	Cour	In F	And Geologic Origin For	S	.c			田田	Shea	urd atior	nre 1	_	ity		ents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each Major Unit	USC	Graphic	Log	Well	Diagram	Vane Shear	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
<u>a</u> ×	L W	В	_ <u></u>	LEAN CLAY WITH SAND, gray (2.5Y 5/1), fine grained	1 2	9		>		>	S	20	7 7	P II	_Ь	0 8
S7	23	3 4	- -16	sand.								M				
57	23	3 4 8 9	E		CL							IVI				
_			17													
			18	FAT CLAY, primary color-black (2.5Y 2.5/1), secondary color-yellowish brown (10YR 5/6).												
S8	20	4 9 9 11	19		СН							M				
			E 19		Сп											
П			20													
S9	24	8 27	E -21	SILT, ash, black (2.5Y 2.5/1).			П	ı				M				
39	24	8 27 22 24	F		ML							IVI				
			-22		IVIL											
			23	SHALE, gray (10YR 5/1) matrix, moderate strength,		\perp	Ш									
S10	16	18 28 34 44	<u>-</u> 24	massive.								M				Saturation @ 23.5 ft
			= 2 4													bgs
	_		25													
			-26													
M			Ē													
G11			- 27									_				A . D .
S11			28									S				Air Rotary
			E 20													
			29													
'			= 30													
			- 31													
M			E	Same as above, except light yellowish brown (10YR 6/4).												
S12			32									S				
312			=33									3				
			= -34													
			E 34													
	_		35													
			- 36													
W			E													
G12			37	Same as above, except gray (10YR 5/1).								_				
S13			-38									S				
			= -39													
			- 39 -													
Ľ	-		-40	02/04/2021 - Classification: I	nterr	na]		E	CR	м78!	50469					
									-							

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A

Boring Number	MW	V-301							Pag	e 3	of	9
Sample								Soil	Prope			
Number and Type Length Att. & Recovered (in) Blow Counts	eet	Soil/Rock Description				<u>_</u>						
er ype h Att	In F	And Geologic Origin For Each Major Unit	S	. <u>S</u>	am	Shea	ard	ure nt	_	city		nents
Number and Type Length Att. & Recovered (ir	Depth In Feet	Each Major Onit	USCS	Graphic Log	Vell	Vane Shear	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
H W I a N	<u> </u>	SHALE, gray (10YR 5/1) matrix, moderate strength, massive. (continued)		0			SH	Z 0	ПП	P		<u> </u>
li l	-41	massive. (continued)										
M	E											
	42											
S14	_43							S				
	F 44											
	- 44	Same as above, except yellowish brown (10YR 6/4).										
H	45											
li l	E 46											
M	F											
015	-47											
S15 W	48							S				
	-49											
	E 49											
H	50											
li l	-51											
M	F											
016	-52											
S16	_53							S				
	<u>-</u> 54											
M	F 34											
H	55											
li l	_56											
M	F											
S17	- 57							S				
31/	E-58	Same as above, except dark gray (10YR 4/1).						3				
	E -59	3 3 ()										
M	F 39											
	E-60											
li l	E ₋₆₁											
M	E											
S18	62							S				
310	E-63	Same as above, except black (10YR 2/1).						3				
	E -64											
	04											
4	- 65	02/04/2021 - Classification: In	terr	al -	ECI	RM785	0469	}				

Boring Numb	er	MW	V-301								ge 4	of	9
Sample									Soil	Prope	erties		
t. &	nts	eet	Soil/Rock Description										70
oer ype th At	Cou	In F	And Geologic Origin For Each Major Unit	S	nic .		Shea	ard ratio	fure		city	_	/ nents
Number and Type Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Laci Major Cint	USC	Graphic Log	Well	Diagram Vane Shear	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1		_	SHALE, gray (10YR 5/1) matrix, moderate strength, massive. (continued)	,									
		-66											
		<u>-</u> 67				ı							
S19									S				
		-68 -69				ı							
		69											
		E 70				ı							
		E /0											
		- 71											
		- -72											
S20		E				ı			S				
		-73											
		74											
<u>"</u>													
						ı							
		76 77											
		77											
S21		E - 78				ı			S				
		F	Same as above, except light gray (2.5Y 7/1).										
		- 79											
		80				ı							
		E 81				ı							
		F											
Gaa		L 62				ı							
S22		83	Same as above, except very dark gray (5Y 3/1).						S				
		- -84	Same as assis, sheeps very dam gray (o' 1 3/1).										
		- 04											
		85											
		86											
		- -87											
S23		E 8/				ı			S				
		88											
		E 89											
		F											
7		- 90	02/04/2021 - Classification: In	terr	nal -	Е	CRM78	50469					

Boring Number	MW	V-301							Pag	e 5	of	9
Sample								Soil	Prope	rties		
Number and Type Length Att. & Recovered (in) Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic Log	Well Diagram	Vane Shear	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
	-	SHALE, gray (10YR 5/1) matrix, moderate strength, massive. (continued)		<u> </u>			01 H	7				
S24	-91 -92 -93 -94 -95	mussive. (commuted)						S				
S25	-96 -97 -98 -99 -100	Same as above, except black (10YR 2/1).						S				
S26	-101 -102 -103 -104 -105	VOID.						S				
S27	-106 -107 -108 -109 -110 -111 -112 -113 -114 -115	SHALE, black (10YR 2/1).						S				Void @ 105 ft bgs, sulfur smell.
<u> </u>	- 115	02/04/2021 - Classification: In	tern	al -	ECR	м785	0469	,				

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A

Boring	Numb	er	MW	V-301								ge 6	of	9
Samj										Soil	Prope			
	Length Att. & Recovered (in)	nts	eet	Soil/Rock Description				<u> </u>	l u					100
ber	th At	Con	h In F	And Geologic Origin For Each Major Unit	S	hic	2	She	lard tratio	ture	. e	icity		/ ment
Number and Type	Leng	Blow Counts	Depth In Feet	Later Mager Chit	USCS	Graphic Log	Well	Vane Shear	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
,,,,,			E	SHALE, black (10YR 2/1). (continued)										
			116											
			117											
S28			-							S				
			118											
			119											
Ш			120											
			-											
Ш			121											
M			122											
S29			123							S				
			Ė I											
			124											
H			125											
11			126											
M			_											
520			127											
S30			128							S				
			129											
			_											
			= 130											
			131											
			E -132											
S31			E							S				
			133											
			134											
			135											
			E											
Ш			136											
M			137											
S32			138							S				
			- 136											
			139											
Щ			140	02/04/2021 - Classification: In	+ 0	21	TI C		50466					
				UZ/UT/ZUZI - CIASSILICALIUII. III	CCII	ıaı -	ъC	1/141 \ Q	70+05	,				

Sample Soil Properties S	Boring Number	MW	V-301								ge 7	of	9
S33 SHALE, black (10YR 2/1). (continued) 141									Soil	Prope	erties		
S33 SHALE, black (10YR 2/1). (continued) 141	nber Type gth Att. & overed (in)	oth In Feet	And Geologic Origin For	CS	phic	II gram	e Shear	ndard etration	isture itent	uid nit	sticity ex	00	D/ nments
S33	Nur and Len Rec Blo			S D	Gra	We	Var	Sta ₁ Pen	Cor	Lig	Plas Indo	P 2(RQ
S33		-	SHALE, black (10YR 2/1). (continued)										
S33													
S33		142											
S34	S33	- 142							S				
S34		143											
S34 - 149 - 150 - 150 - 151 - 152 - 153 - 153 - 154 - 155 - 155 - 155 - 156 WEATHERED SHALE AND LIMESTONE, dark grayish brown (10YR 3/2), gray limestone (10YR 6/1).		144											
S34 - 149 - 150 - 150 - 151 - 152 - 153 - 153 - 154 - 155 - 155 - 155 - 156 WEATHERED SHALE AND LIMESTONE, dark grayish brown (10YR 3/2), gray limestone (10YR 6/1).		145											
S34 - 149 - 150 - 150 - 151 - 152 - 153 - 153 - 154 - 155 - 155 - 155 - 156 WEATHERED SHALE AND LIMESTONE, dark grayish brown (10YR 3/2), gray limestone (10YR 6/1).		- 146											
Same as above, except drak grayish brown (10YR 3/2). Same as above, except drak grayish brown (10YR 3/2). 151 152 153 WEATHERED SHALE AND LIMESTONE, dark grayish brown (10YR 3/2), gray limestone (10YR 6/1).		146											
Same as above, except drak grayish brown (10YR 3/2). 150		147											
Same as above, except drak grayish brown (10YR 3/2). Same as above, except drak grayish brown (10YR 3/2). Same as above, except drak grayish brown (10YR 3/2). Same as above, except drak grayish brown (10YR 3/2). Same as above, except drak grayish brown (10YR 3/2).	S34	148							S				
Same as above, except drak grayish brown (10YR 3/2). Same as above, except drak grayish brown (10YR 3/2). Same as above, except drak grayish brown (10YR 3/2). Same as above, except drak grayish brown (10YR 3/2). Same as above, except drak grayish brown (10YR 3/2).													
Same as above, except drak grayish brown (101 R 3/2). 151		149											
S35 WEATHERED SHALE AND LIMESTONE, dark grayish brown (10YR 3/2), gray limestone (10YR 6/1).		150	Same as above, except drak grayish brown (10YR 3/2).										
S35 WEATHERED SHALE AND LIMESTONE, dark grayish brown (10YR 3/2), gray limestone (10YR 6/1).		- -151											
S35 WEATHERED SHALE AND LIMESTONE, dark grayish brown (10YR 3/2), gray limestone (10YR 6/1).													
WEATHERED SHALE AND LIMESTONE, dark grayish brown (10YR 3/2), gray limestone (10YR 6/1).	\$25	E							_ c				
brown (10YR 3/2), gray limestone (10YR 6/1).	333	153											
brown (10YR 3/2), gray limestone (10YR 6/1).		E 154											
brown (10YR 3/2), gray limestone (10YR 6/1).	M												
		155	WEATHERED SHALE AND LIMESTONE, dark grayish brown (10YR 3/2), gray limestone (10YR 6/1).										
		156											
		157											
S36 S S S S	S36	L							S				
		L 1											
159		159											
160 NO RECOVERY	<u>"</u>	160											
NO RECOVERT.		- I	NO RECOVERY.										
		163											
The state of the s													
WEITHERED STREET, gray (2.3 1 or 1),550 t Shale in Oldy.	П	- I											
02/04/2021 - Classification: Internal - ECRM7850469		165	02/04/2021 - Classification: Tr	terr	nal -	F.C1	RM781	0469	}				

Boring Number	MW	V-301							Pag	ge 8	of	9
Sample								Soil	Prope	erties		
Number and Type Length Att. & Recovered (in) Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well	Vane Shear	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
	+ -	WEATHERED SHALE, gray (2.5Y 6/1),soft shale in clay. (continued)		<u> </u>		1 /	01 11	20				
R1 62/72	166 -167 -168 -169	LIMESTONE, gray (10YR 5/1), strong, massive.										Run 1 164'-170' bgs TCR=86% SCR=73% MCR=33%
R2 22/24	-170 -171 -172											Run 2 170'-172'bgs TCR=92% SCR=92% MCR=66%
R3 32/36	173 -174 -175	SHALE, greenish gray (5G 5/1), with pyrite, weak.										Run 3 172'- 175' bgs TCR=88% SCR=88% MCR=82%
	176 	LIMESTONE, gray (10YR 5/1), interbedded with shale laminations, strong.										
R4 18/120	-180 -181 -182 -183 -184	SHALE, greenish gray (5G 5/1), weak.										Run 4 175'- 185' bgs TCR=98% SCR=98% MCR=89%
	-185 -186 -187	LIMESTONE, gray (10YR 5/1), strong. SHALE, grayish green (5G 4/2), weak.										
	F	SHALE, grayisti green (50 4/2), weak.										
	188 	LIMESTONE, gray (10YR 5/1), strong.				D 14 C 0						
, ,	•	02/04/2021 - Classification: Ir	iterr	na⊥ -	- EC	RM78	50469)		. '	•	

Environmental Consultants and Contractors Form 4400-122A

Boring Number	MW	V-301							Pag	ge 9	of	9
Sample								Soil	Prope			
. & (in) tts	eet	Soil/Rock Description				L						
er 7pe 1 Att	In F	And Geologic Origin For	S	. <u>2</u>	띭	Shea	urd atior	nre 1	_	ity		ents
Number and Type Length Att. & Blow Counts	Depth In Feet	Each Major Unit	USC	Graphic Log	Well Diagram	Vane Shear	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
R5 1 16/120	E	LIMESTONE, gray (10YR 5/1), strong. (continued)					S H	20	пп	H	<u>н</u>	Run 5 185'-195'
	191	GUALE (50.5(1))										bgs
	E	SHALE, greenish gray (5G 5/1), clayey.										bgs TCR=97% SCR=93% MCR=84%
	192											MCR=84%
	193											
	194	SANDSTONE, greenish gray (5G 6/1), strong, well										
	194	cemented.										
H	195											
	196											
	F											
R6 33/60	197	Very weak.										Run 6
K6 33/60	E 198											195'-200'
	E 199											bgs TCR=55% SCR=47%
	F											MCR=13%
-	= 200											
	201											
	E											
	-202	End of Boring at 202 feet bgs. Boring reamed to 202' bgs prior to installation of MW-301.										
		02/04/2021 - Classification: In	terr	al -	ECR	M78	0469	,				

SCS ENGINEERS

SOIL BORING LOG INFORMATION

Environmental Consultants and Contractors

			Ro	oute To:	Watershed/V	Wastewater □ n/Redevelopment □	Waste 1 Other	_	ement								
					Remediation	//Redevelopment 🗀	Oulei							Dov	ge 1	of	7
Facilit	y/Proje	ct Nam	ie				License/	Permit/	Monito	ring Nu	mber		Boring	Paş Numb		01	<u>'</u>
				nd Land		SCS#: 25215135.50	90-SI									<i>N</i> -30	
		-		f crew ch	nief (first, last)	and Firm	Date Dri	lling St	tarted		Dat	te Drilli	ng Con	npleted			ling Method
Cas	ld Sch scade l	Drilliı						12/1	/2015				12/3/2	2015			25'HSA /6"air /core
Uniqu	e Well			DNR V	Well ID No.	Common Well Name	Final Sta			el	Surface	e Elevat		4	Bo		Diameter
Local	N Grid Or	I/A rigin	☐ (es	stimated:	N/A	MW-302 oring Location ⊠		Fe				Local C	.5 Fee			8.5	5"/6" in
	Plane	115111			N, 394,359	E S/C/N	La	ıt	<u> </u>	<u>'</u>		Local	nia Lo		I		□Е
NW		of Sl	E 1	/4 of Sec		T 73 N, R 14 W	Lon		°	<u>'</u>			Feet	\Box s		:	Feet W
Facilit	y ID			1	County				Civil T		ty/ or V	Village					
Sar	nple	1			Wapello			<u> </u>	Ottur	nwa	l		Soil	Prope	ortios		
_ Sai	1				Soil/	Rock Description							5011	Порс			1
•	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			Geologic Origin For					sar .	l uo					ts
lber Гуре	gth A	, Co	h In			ach Major Unit		CS	hic	ram	Vane Shear	dard	sture	ig ±	Plasticity Index	0	men
Number and Type	Leng	Blov	Dep					S O	Graphic Log	Well Diagram	Van	Standard Penetration	Moisture Content	Liquid Limit	Plastic Index	P 200	RQD/ Comments
			-	TOPSOIL TOPSOIL TOPSOIL													
S1	20	2 3 5 8	<u>-</u> 1	FAT CI yellowi	FAT CLAY, dark gray (10YR 4/1), secondary color- Dark yellowish brown (10YR 4/4), organics, fill.												
		5 8	E														
			-2														
			-3	W/41	1 Cl1-			СН									
S2	6	3 50	E	weathe	ered Shale								M				
32 0																	
_			<u> </u>														
			Ė	SHALE	E, dark gray (10Y	(R 4/1), moderate strength, r	nassive.										
S3	18	6 17 44 50	-6										M				
		1130	E 7														
Г	I		Ė ′														
			-8														
S4	16	3 15 26 28	<u>-</u> 9										M				
	•																
Г			10														
		(50	Ė ,,														
S5	5	6 50	11 														
L			12														
Γ			-														
GC.	12	2 50	- 13														C-tt:
S6	12		14										S				Saturation @12.5 ft
L			<u> </u>														bgs.
	1		1 : 6	ı.	41: 6 :												
Signat	-	ry tnat 1	ine into	rmation (on this form is	true and correct to the bes			ge.							m : ::	
~-51141		1	hyl	1//	Mane	bC.	S Engine Dairy Dri	ers ve Ma	dison, V	WI 537	11					1el: (6	508) 224-2830 Fax:
				- July	usull-jev	1 353	,		,								

Environmental	Consultants	and	Contractors
---------------	-------------	-----	-------------

Boring	, Numb	er	MW	V-302								ge 2	of	7
Sam										Soil	Prop	erties		
	tt. & d (in)	ınts	Feet	Soil/Rock Description				ar	g g					SO.
ber 「ype	th Ai	Blow Counts	Depth In Feet	And Geologic Origin For Each Major Unit	S	hic	ram	Vane Shear	dard tratio	ture		icity)/ ment
Number and Type	Length Att. & Recovered (in)	Blow	Dept		USCS	Graphic Log	Well	Vane	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
			_	SHALE, dark gray (10YR 4/1), moderate strength, massive. (continued)										
Ш			16											
M			17	same as above, except black (2.5Y 2.5/1), clayey.										
S7			- -18	2.07 1 2.07 1, 0 kg/c/.						S				
			E											
			- 19											
			-20											
l li			E 21											
И			E											
S8			22							S				
			23											
			24											
Ш			E -25											
			<u> </u>											
M			26											
M			27	same as above, except dark gray (2.5Y 4/1), clayey.										
S9			28							S				
			- -29											
			29 											
			=30											
Ш			_31											
M			= -32											
S10			E							S				
			33											
			34											
<u> </u>			_35											
			= -36											
M			<u> </u>											
S11			37							S				
			38											
			39											
			-40											
_1			11 0	02/04/2021 - Classification: In	terr	hal -	EC	км78!	50469	}	I	1	I	I

Boring	g Numb	er	MW	V-302								ge 3	of	7
Sam										Soil	Prope	erties		
	tt. & d (in)	ınts	Feet	Soil/Rock Description And Geologic Origin For				ar	l u					SQ.
ber Type	th A1	Cou	h In l	Each Major Unit	S	hic		She	lard tratio	ture	. g	icity k		/ ment
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		USC	Graphic Log	Well	Diagram Vane Shear	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
			E	SHALE, dark gray (10YR 4/1), moderate strength, massive. (continued)										
			-41	same as above, except black (2.5Y 2.5/1).										
			-42				ı							
S12			F I							S				
			43											
			_ 44											
			- 45											
			45											
- 11			46											
			_ 47											
S13			E							S				
			48											
			49											
Ш			-50											
			E											
II II														
M			52											
S14			<u>-</u> 53							S				
			E											
			54				ı							
"			_ 55											
1.			E											
II II			-56											
			57											
S15			-58				ı			S				
			E				ı							
			- 59				ı							
H			60											
l.			E -61											
M														
21.5			- 62				ı			_				
S16			63							S				a lot of water @ 62
			E											ft bgs.
			64											
Ц			- 65	02/04/2021 - Classification: In	terr	al -	E	CRM78	50469	}				

Boring Num	ber	MW	V-302								ge 4	of	7
Sample									Soil	Prope	erties		
(ii)	ıts	eet	Soil/Rock Description										
er /pe n Att	Cour	In F	And Geologic Origin For	S S	.c		Shea	ard atior	ure nt	_	ity		ents
Number and Type Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each Major Unit	SC	Graphic Log	Well	Diagram Vane Shear	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
Z E J Z	В	Ι Ω	SHALE, dark gray (10YR 4/1), moderate strength, massive. (continued)	D	9	5		N G	20	77	P	P	
		E -66	(continued)										
M		F											
M		67	Shale, black (2.5Y2.5/1), not as clayey as above.										
S17		E -68											
		69				ı							
<u> </u>		E 70											
		F				ı							
		F 71											
		E_72											
S18		E											
		73											
		74											
		E											
		- 75				ı							
		75	same as above, except dark gray (2.5Y 4/1).										
		<u>-77</u>											
S19		E //											
		78											
		-79											
H		80				ı							
		81											
M		F											
W		82											
S20		E ₋₈₃											
		E											
		E-84											
H		85											
1.		Ė "				ı							
		E-86											
		87				ı							
S21		F				ı							
		E-88											
		89											
Ш		E -90											
	I	'90	02/04/2021 - Classification: In	terr	al -	E	скм78	50469)	I			1

SOIL BORING LOG INFORMATION SUPPLEMENT

Boring Nur	nber	MW	V-302								ge 5	of	7
Sample									Soil	Prope	erties		
Number and Type Length Att. &	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	SCS	Graphic Log	Well	Vane Shear	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
<u> </u>	<u>4 ш</u>		SHALE, dark gray (10YR 4/1), moderate strength, massive.	n				S	20		P I	P	<u> </u>
S22 V		-91 -92 -93 -94 -95	(continued) same as above, except gray (2.5Y 5/1).										
R1 24/3	6	-96 -97 -98 -99	WEATHERED SHALE, greenish gray (5G 5/1), clayey. SHALE, greenish gray (5G 5/1), weak, massive.										Run 1 96'-99' bgs TCR=66% SCR=66% MCR=47%
R2 1.02/1.	20	-100 -101 -102 -103 -104 -105 -106 -107 -108	SHALE, very dark brown (2.5YR 2.5/3), very weak. SHALE, clayey, greenish gray (5G 5/1), very weak.										Run 2 99'-109' bgs TCR=85% SCR=77% MCR=52%
R3 68/7	2	-1109 -1110 -1111 -112 -113 -114 -115	02/04/2021 - Classification: In	nterr	nal -	EC	RM78!	50469					Run 3 109'-117' bgs TCR=95% SCR=90%

Environmental	Consultants	and	Contractors
Liiviioiiiiciiai	Consultants	anu	Commacions

Borin	ng Numl	ber	MW	V-302								ge 6	of	7
Sar	nple									Soil	Prop	erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well	Vane Shear	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	MCK=12%
z g	7 %	B	Ā	SHALE, clayey, greenish gray (5G 5/1), very weak.	n	υğ	≥ €	j >	St	Σŭ	<u> </u>	Pl In	Ь	MCR=75%
R4 _	24/24			(continued) not as clayey, weak.										Run 4 117'-119' bgs TCR=100% SCR=100% MCR=92%
R5	116/120		121 - 122 - 123 - 124 - 125 - 126 - 127											Run 5 119'-129' bgs TCR=97% SCR=97% MCR=93%
R6	. 120/120		128 - 129 - 130 - 131 - 132 - 133 - 134 - 135 - 136 - 137 - 138 - 139 - 140		terr	hal -	EC	RM78	50469					Run 6 129'-139' bgs TCR=100% SCR=100% MCR=95%

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A

Boring Number	MV	W-302							Pag		of	7
Sample								Soil	Prope	rties		
Number and Type Length Att. & Recovered (in)	Feet	Soil/Rock Description				ar	l u					S.
Number and Type Length Att. & Recovered (ir	Depth In Feet	And Geologic Origin For Each Major Unit	S	hic	ram	Vane Shear	dard tratio	ture	t id	icity	0)/ ment
Number and Type Length At Recovered	Dept		USC	Graphic Log	Well Diagram	Vane	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
	E	LIMESTONE, gray (10YR 6/1), strong.										
	141											
	E 142	SHALE, greenish gray (5G 5/1), weak.										
	E											
	143											
R7 103/120	144	ı										Run 7
	E 145											139'-149' bgs
	E	grained.										bgs TCR=88% SCR=85% MCR=74%
	146											MCK-/4%
	147											
	148	3										
	F											
	149											
	150											
	151											
R8 45/60	150											Run 8 149'-154'
	152											bgs TCR=75% SCR=75%
	153	3										SCR=75% MCR=57%
Ц	154	ı										Wiek 3770
	155											
	= 13.											
	156											
		End of Boring at 156.5 ft bgs. Boring reamed with air rotary prior to installation of MW-302.										
		02/04/2021 - Classification: Ir	 nteri	nal -	ECI	КМ78	50469	}				

SCS ENGINEERS

SOIL BORING LOG INFORMATION

Environmental Consultants and Contractors

				Rou	<u>ite To:</u>	Watershed/\	Vastewater \[\square	П	Waste I Other	_	ement								
						Kemediatioi	/ Redevelopment		Outer							Pag	na 1	of	7
	ity/Proj								License/I			ing Nu	mber		Boring		er		
					d Lanc		SCS#: 252151	135.50	90-SI				D-4	- Dailli	C	1.41		W-30	
Do	on Cai	lson		ne oi	crew cn	nief (first, last)	and Firm		Date Dri				Dat	e Drilli					ling Method 25'HSA /6"air
	am Se ue Wel		es		DND	Well ID No.	Common Well	Nome	Final Sta		/2016	1	Cumfoos	e Elevat	4/26/2	2016	Da	rot	/core Diameter
Omq		N/A			DINK	N/A	MW-30		Fillal Sta	Fee		1	Surrace		.1011 .9 Fee	et	BC		5"/6" in
	l Grid (e Plane	Origin			imated:	□) or Bo N, 394,335	oring Location [SES/C/N		La	t	0	,	"	Local G	Grid Lo				
NV		4 of \$		-	4 of Sec	-			Long		0		"		Feet	□ N : □ S		1	☐ E Feet ☐ W
Facil	ity ID					County					Civil To		ty/ or V	/illage					
Sa	mple	1				Wapello					Ottun	nwa			Soil	Prope	erties		1
	1										5011	Пор			-				
ے د	Att.	ount		n Fe		And G	eologic Origin Fo	or		S		u	hear	d tion	e 7		<u>5</u>		snts
Number and Tyne	Length Att. &	Blow Counts		Depth In Feet		Ea	ch Major Unit			USC	Graphic Log	Well Diagram	Vane Shear	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
	3 11 12	Н Н	+	+	TOPSO	DIL.			Т	<u> </u>				S H	20			н	<u> </u>
S1	11	2.4	E	1	FAT CI	LAY, light gray (10YR 7/1).			0150	77				M				
		6	Ē,	,		,g g, (
									СН										
S2	16	2 3 16	F:	3								M							
			Ē.	4	SHALE	E, Gray (10YR 6/	1), very weak, mass	sive, claye	ey.										
G2		50/:	5 E.	5															NT
S3	0	307.	`																No return- refusal.
			F	6															
	1		E	7	Same as	s above except, c	lark gray (10YR 4/1	1).											
	W		Ė,	8															
S4			Ė,	•															
			F:	9															
	<u>''</u>		Ė	10															
			F																
	VI		E	11															
	V		E	12															
S5	Y		Ė	13															
			F																
			E	14															
	 		_	15															
I her	-	ify tha	t the	infor	mation o	on this form is	true and correct to				ge.							T 1 (1	(00) 224 2022
		/hz	lle	1/1	ham	en		BCB	Engine Dairy Dri	ve Ma	dison, V	VI 537	11					1el: (6	508) 224-2830 Fax:
				-															

Environmental	Consultants	and	Contractors
Liiviioiiiiciiai	Consultants	anu	Commacions

Solid Properties Solid Prope	Boring	Numb	er	MW	V-303							Pa	nge 2	of	7
SHALE, Gray (10YR 6/1), very weak, massive, clayey. (continued) Same as above except, black (10YR 3/1). Same as above except, light gray (10YR 1/1). Same as above except, light gray (10YR 1/1). Same as above except, gray (10YR 6/1). Same as above except, gray (10YR 6/1). Same as above except, gray (10YR 7/1). Same as above except, light gray (10YR 7/1). Same as above except, light gray (10YR 7/1).		_									Soil	Prop	erties		
SHALE, Gray (10YR 6/1), very weak, massive, clayey. (continued) Same as above except, black (10YR 3/1). Same as above except, light gray (10YR 1/1). Same as above except, light gray (10YR 1/1). Same as above except, gray (10YR 6/1). Same as above except, gray (10YR 6/1). Same as above except, gray (10YR 7/1). Same as above except, light gray (10YR 7/1). Same as above except, light gray (10YR 7/1).		t. & 1 (in)	nts	eet					H	_ =					×
SHALE, Gray (10YR 6/1), very weak, massive, clayey. (continued) Same as above except, black (10YR 3/1). Same as above except, light gray (10YR 1/1). Same as above except, light gray (10YR 1/1). Same as above except, gray (10YR 6/1). Same as above except, gray (10YR 6/1). Same as above except, gray (10YR 7/1). Same as above except, light gray (10YR 7/1). Same as above except, light gray (10YR 7/1).	ber	th At	Con	h In I		S	hic	3	She	lard tratio	ture	<u>. e</u>	icity		/ ments
SHALE, Gray (10YR 6/1), very weak, massive, clayey. (continued) Same as above except, black (10YR 3/1). Same as above except, light gray (10YR 1/1). Same as above except, light gray (10YR 1/1). Same as above except, gray (10YR 6/1). Same as above except, gray (10YR 6/1). Same as above except, gray (10YR 7/1). Same as above except, light gray (10YR 7/1). Same as above except, light gray (10YR 7/1).	Num and T	Leng	Blow	Dept		n s (Grap	Well	Vane	Stand	Mois	Liqui I imi	Plast	P 20(RQD
Same as above except, black (10YR 3/1). 17				=	SHALE, Gray (10YR 6/1), very weak, massive, clayey. (continued)										
Same as above except, light gray (10YR 1/1). Same as above except, light gray (10YR 6/1). Same as above except, gray (10YR 6/1). Same as above except, gray (10YR 6/1). Same as above except, light gray (10YR 7/1).	- 11			16											
Same as above except, light gray (10YR 1/1). Same as above except, light gray (10YR 6/1). Same as above except, gray (10YR 6/1). Same as above except, gray (10YR 6/1). Same as above except, light gray (10YR 7/1).	M			E 17											
Same as above except, light gray (10YR 1/1). Same as above except, gray (10YR 6/1). Same as above except, gray (10YR 6/1). Same as above except, gray (10YR 7/1). Same as above except, light gray (10YR 7/1).	S6			E											
Same as above except, light gray (10YR 1/1). -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -30 -30 -30 -30 -30 -30 -30 -30 -30				- 18											
Same as above except, Ight gray (10YR 7/1). Same as above except, Ight gray (10YR 6/1). Same as above except, gray (10YR 6/1). Same as above except, light gray (10YR 7/1).				19											
Same as above except, Ight gray (10YR 7/1). Same as above except, Ight gray (10YR 6/1). Same as above except, gray (10YR 6/1). Same as above except, light gray (10YR 7/1).	<u>"</u>			E -20											
Same as above except, gray (10YR 6/1). Same as above except, gray (10YR 7/1). Same as above except, light gray (10YR 7/1).	١.			E	Same as above except, light gray (10YR 1/1).										
Same as above except, gray (10YR 6/1). Same as above except, gray (10YR 7/1). Same as above except, light gray (10YR 7/1).	W			- 21											
Same as above except, gray (10YR 6/1). Same as above except, gray (10YR 7/1). Same as above except, light gray (10YR 7/1).	M			22											
Same as above except, gray (10YR 6/1). 28 29 30 Same as above except, light gray (10YR 7/1).	S7			E -23											
Same as above except, gray (10YR 6/1). -25 -26 -27 -28 -29 -30 -30 -31 -31 -31 -31 -31 -31 -31 -31 -31 -31				E											
Same as above except, gray (101R 6/1). -26 -27 -28 -29 -30 -30 Same as above except, light gray (10YR 7/1).				-24	Same as above except, gray (10YR 6/1).										
S8				_25											
S8	l.			E 26	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										
Same as above except, light gray (10YR 7/1).	M			E											
Same as above except, light gray (10YR 7/1).	CO.			-27											
Same as above except, light gray (10YR 7/1).	56			28											
Same as above except, light gray (10YR 7/1).				29											
Same as above except, light gray (101 k //1).	IIII														
				-30	Same as above except, light gray (10YR 7/1).										
Same as above except, gray (10YR 6/1).				31											
Cave-in 32' to 45' bgs. Same as above except, gray (10YR 6/1). S10 O2 (04/2021 - Classification: Interval - FORM 7850468	M			E -32											
Single Same as above except, gray (10YR 6/1).	S9			E											Cave-in 32'
S10 Same as above except, gray (10YR 6/1). 37 38 39 40 02/04/2021 = Classification: Internal - ECHM7950469				-33											to 45' bgs.
S10 Same as above except, gray (10YR 6/1). -36 -37 -38 -39 -40 02 (04/2021 - Classification: Internal - ECPM7850469				34											
Same as above except, gray (10 Y R 6/1). Same as above except, gray (10 Y R 6/1).	<u>"</u>			E 35	400040										
S10				E	Same as above except, gray (10 Y R 6/1).										
S10	W			-36											
S10	M			_37											
-39 -40 02/04/2021 - Classification: Internal - ECHM7850469	S10			-38											
02/04/2021 - Classification: Internal - ECDM7850469				F											
				-39											
UZ/UT/ZUZI = CIABBILICACION: INCENNAL = ECEMIOUU403				- 40	02/04/2021 - Classification: Ir	 iteri	nal -	FEC	RM78	 50469	}				

Boring	g Numb	er	MW	V-303								Pag	ge 3	of	7
Sam	ple									So	il	Prope			
	Length Att. & Recovered (in)	S	t t	Soil/Rock Description											
_ e	Att.	ount	n Fe	And Geologic Origin For				n near	g. d.	e			ξ.		nts
Number and Type	gth	Blow Counts	Depth In Feet	Each Major Unit	USCS	Graphic Log		Diagram Vane Shear	Standard	Moisture	Content	Liquid Limit	Plasticity Index	00	RQD/ Comments
Num	Ler Rec	Blo	Dep		S O	Grap Log	Well		Sta	Ϋ́	Ŝ	Lig Lin	Plastic Index	P 200	RQ Co
			E	SHALE, Gray (10YR 6/1), very weak, massive, clayey. (continued)			anahanahanahanah								
Ш			-41												
M			F												
G11			42												201 451
S11			-43												38'-45' no return. need
			F												to add water.
			E-44												
1			45												
			F	Same as above except, dark gray (10YR 4/1), clayey.											
Ш			-46												
M			E -47												
S12			F 7'												
			48												
			F 40												
			-49												
l'il			E_50												
- 1.			E												
Ш			-51												
M			52												
S13			F												
			E-53												
			54												
			F 3.												
H			55	Same as above except, black (10YR 2/1), less clayey.											
- 1.			E 56												
M			F 36												
M			57												
S14			F 50												Borehole
			- 58												producing a lot of water.
			59												
			Ė												
			F-60												
l li			E ₋₆₁												
M			E												
V			62												
S15			E-63												
			F												
			64												
Ш			E -65												
ı			1 05	02/04/2021 - Classification: In	lterr	dal -	- E(CRM7	35046	g	ı		1 1		1

Environmental	Consultants and	Contractors

Boring Numb	er	MW	V-303								age 4	of	7
Sample									Soil	Pro	erties		
% (ii)	ıts	eet	Soil/Rock Description					_					
er /pe 1 Att	Cour	In F	And Geologic Origin For	S	.c	;	Shea	ard ation	ure		ity		ents
Number and Type Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each Major Unit	USCS	Graphic Log	Well	Diagram Vane Shear	Standard Penetration	Moisture Content	Liquid	Plasticity Index	P 200	RQD/ Comments
N L S N		<u> </u>	SHALE, Gray (10YR 6/1), very weak, massive, clayey. (continued)	1	1 0		7 >	S	20	17 -		1 4	<u> </u>
		66											
		E	Same as above except, black (10YR 2/1) and gray (10YR 6/1), laminated.										
G1.6		67											
S16		68											
		E											
		- 69											
H		- 70											
		-71											
		F											
S17		- 72											
51/		73											
		- 74											
		- /4											
		- 75											
		_ _76											
		E											
S18		- 77											
516		78											
		- - 79											
		F											
		80	Same as above except, gray (10YR 6/1), clayey.										
		81											
		- 82											
S19		F 82											Sulfur smell.
		83											
		84											
		E											
		- 85	Same as above except, gray (10YR 6/1), black (10YR 2/1), Reddish brown (5YR 4/3).										
		86	100000000000000000000000000000000000000										
		E 87											
S20		E 87											
		88											
		89											
		E											
7		- 90	02/04/2021 - Classification: In	terr	nal -	EC	CRM78	0469	}	1	I		1

	g Numb	er	MW	V-303								ge 5	of	7
San	nple									Soil	Prope	erties		
	t. &	nts	eet	Soil/Rock Description										
ser ype	h Ati ⁄ered	Com	In F	And Geologic Origin For Each Major Unit	S	ic		Shea	ard ratio	ure		city		nents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each Major Onit	USC	Graphic Log	Well	Vane Shear	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
7 8			-	SHALE, Gray (10YR 6/1), very weak, massive, clayey. (continued)		J			0, 11	2 0		1 1	<u> </u>	ш О
l l			E-91											
			E -92	Same as above except, black (10YR 2/1), reddish brown (5YR 4/3), dark greenish gray (5GY 4/1).										
S21			92											
			E-93											
			94											
			E -95											
			- 93											
l II			96											
M			97											
S22			- -98											
			- 98											
			E-99											
<u>"</u>	-		100											
1.			101											
W			101	Same as above with laminations.										
			102											
S23			103											Sulfur smell.
			F 104											
			104											
			105	SHALE, black (10YR 2/1), reddish brown (5YR 4/3), dark greenish gray (5G 4/1), clayey.										
l l			106	greenish gray (5G 4/1), clayey.										
			107											
S24			= 107											
			108											
			109											
			-110											
			110	Same as above except, black (10YR 3/1), pale brown (10YR 6/3), reddish brown (5YR 4/3), Dark Greenish Gray (5GY										
l li	W		-111	4/1), clayey.										
			112											
S25			F											
			-113											
			114	Same as above except, limestone fragments are encountered.										
[1]			E -115											
	. '		,	02/04/2021 - Classification: In	terr	ial -	- E(RM78	50469)	•	•	'	'

Environmenta	Consultants	and Contractors

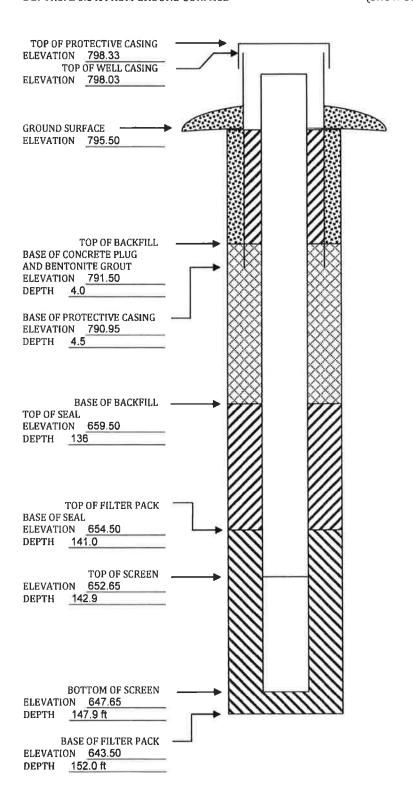
Borin	g Numb	er	MW	V-303								Pa	ge 6	of	7
Sar	nple									So	il]	Prop	erties		
	t. & l (in)	nts	eet	Soil/Rock Description				۳							
er ype	h At	Cou	In	And Geologic Origin For Each Major Unit	S	nic		am Shea	ard	arre	ij	ਚ	city		nents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each Major Omt	USC	Graphic Log	Well	Diagram Vane Shear	Standard Penetration	Moisture	Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
			-	SHALE, Gray (10YR 6/1), very weak, massive, clayey. (continued)		I			0, 1		_				
			116												
			F 117	LIMESTONE, dark greenish gray (5G 4/1), clayey, clay is pale brown (10YR 6/3) and reddish brown (5YR 4/3), shale fragments, shale is black (10YR 3/1).											
S26			_117			H									Air rotary
520			118												drilling complete.
			E -119												complete.
			E												
2.	0/10		120	SHALE, greensih gray (5GY 6/1), strong, massive, clayey.											D 1
R1	8/12		121												Run 1 120'-121'.
R2	12/12		E												Run 1 TCR=66%
			122	LIMESTONE, gray (10YR 6/1), interbedded with shale laminations, strong, shells.											SCR=66% MCR=42%
			123	ammutons, success, solution											Run 2 121'-122'.
R3	36/36		124												Run 2 TCR=100%
			124	SHALE, greenish gray (5GY 6/1), shells, very weak, clayey, massive.											SCR=100% MCR=77%.
			125												Run 3 122'-125'.
			E -126	LIMESTONE, gray (10YR 5/1), strong.											Run 3 TCR=100%
			E												SCR=100% MCR=92%.
			127												WICK-92/0.
			128	SHALE, greenish gray (5GY 6/1), weak.											
			E	SHALE, greenish gray (501-6/1), weak.											
			129	LIMESTONE, gray (10YR 5/1), strong, interbedded with shale laminations.											
			130	Sale annual cost.											
R4	100/120		121												Run 4 125.5'-135.5'.
			-131												Run4 TCR=83%
			132												SCR=83% MCR= 76%.
			133			Щ									MCK- 7070.
			E												
			134												
			135												
			E 126	SHALE, dark greenish gray (5GY 4/1), clayey, weak, interbedded with limestone-gray (10YR 5/1).											
			136	interbedded with limestone-gray (10YR 5/1).											
			137												
	50/50		138												D 5
R5	59/60		138												Run 5 135.5'-140.5'.
			139												TCR= 99% SCR=94%
1			E -140												MCR= 75%.
	1 1		1 10	02/04/2021 - Classification: In	terr	dal -	EC	CRM78	5046	g	ı		1	1	T

Environmental Consultants and Contractors

SOIL BORING LOG INFORMATION SUPPLEMENT

Borin	g Numb	er	MW	V-303						Pag	ge 7	of	7
Sar	nple								Soil	Prope	rties		
	(ii)	ıts	eet	Soil/Rock Description			I						
er /pe	ι Att	Cou	In F	And Geologic Origin For	S	ic III	Shea	arion	ure nt	_	ity		ents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each Major Unit	SC	Graphic Log Well Diagram	Vane Shear	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
<u>8 </u>	l M				n		>	S d	20	그그	P II	Ь	<u> </u>
			- -141	SANDSTONE, greenish gray (5GY 6/1), very weak, fine grained.									
			- 111	S.ueu									
			142										
			- -143										
			E										
			144										
			145										
R6	87/120		-										Run 6 140.5'-150.5'.
			146										Run 6
			147										TCR=73% SCR=69%
			148										MCR=59%.
			140										
			149	SHALE, dark greenish gray (5GY 4/1), clayey, weak, interbedded with limestone-gray (10YR 5/1).									
			E -150	interbedded with limestone-gray (10YR 5/1).									
L			= 100	End of boring at 150.5 ft bas. Boring reamed with 6" rotary									
				End of boring at 150.5 ft bgs. Boring reamed with 6" rotary before installation of MW-303.									
				 02/04/2021 - Classification: Ir	 nterr		м78'	0469	}				
				, , , , , , , , , , , , , , , , , , , ,									

IOWA DEPARTMENT OF NATURAL RESOURCES


MONITORING WELL/PIEZOMETER CONSTRUCTION DOCUMENTATION FORM

Disposal Site Name: Ottumwa Midland Landfill	Permit No.: 38223
Well or Piezometer No: MW-102M	
Dates Started: August 20, 2012	Date Completed: August 27, 2012
A. SURVEYED LOCATIONS AND ELEVATIONS	B. SOIL BORING INFORMATION
Locations (± 0.5 ft):	Name & Address of Construction Company:
Specify corner of site: NE	Boart Longyear
Distance & direction along boundary: 29 S	901D Grossman Drive
Distance & direction from boundary to wall: 7 W	Schofield, WI 54476
Elevations (± 0.01 ft MSL):	Name of Driller: Paul Dickinson
Ground Surface: 795.50	Drilling Method: HSA, Air Hammer, NQ3 Core
Top of protective casing: 798.23	Drilling Fluid: Air, Water
Top of well casing: 798.03	Bore Hole Diameter: 10.5/6.0 in
Benchmark elevation: 820.39	Soil Sampling Method: Split spoon, screen chips, core
Benchmark description: Brass cap in concrete, 408 ft N of MW-20	Depth of Boring: 153 ft
C. MONITORING WELL INSTALLATION	
Casing material: Flush threaded PVC schedule 80	Placement method: Gravity
Length of casing: 152.1	Volume: 0.7 ft^3
Outside casing diameter: 2.4 in	Backfill (if different from seal):
Inside casing diameter: 1.9 in	Material: Bentonite Slurry
Casing joint type: Flush Threaded	Placement method: Tremie pumped
Casing/screen joint type: Flush Threaded	Volume: 40.1 ft^3
Screen material: Sch 80 PVC	Surface seal design:
Screen opening size: 0.01 in	Material of protective casing: Steel
Screen length: 5 ft	Material of grout between protective casing and well casing: bentonite & concrete
Depth of well: 147.9 ft	Protective cap:
Filter Pack:	Material: Aluminum
Material: Red Flint Filter Sand	Vented: ■ Yes □ No Locking: ■ Yes □ No
Grain size: #40	Well Cap:
Volume: 1.5 ft^3	Material: plastic with rubber gasket
Seal (minimum 3 ft length above filter pack):	Vented: ■ Yes □ No
Material: 3/8 inch bentonite chips	
D. GROUNDWATER MEASURMENT (± 0.01 ft below top of in	ner well casing)
Water level: 100.81	Stabilization Time: 1 week
Well development method: Surged & bailed with bailer and p	ump
Average depth of frostline: 3 feet	
Attachments: Driller's log. Pipe schedules and grouting sch	nedules. 8 ½x11 inch map showing locations of all

monitoring wells and piezometers.

Please mail completed for to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E 9th St, Des Moines IA 50319-0034.

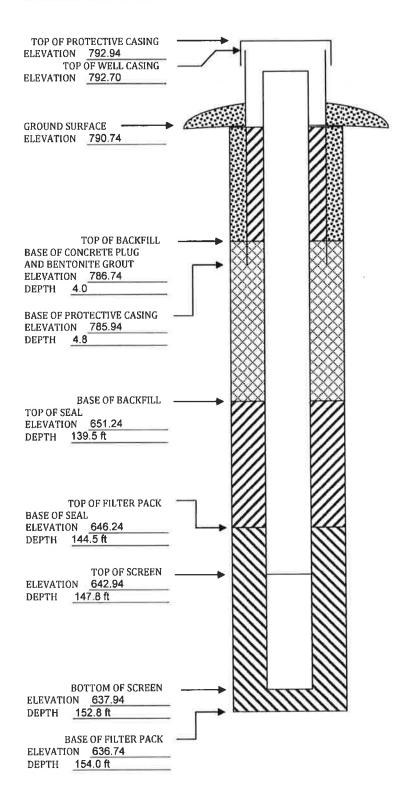
Questions? Call or Email: Nina Koger, Environmental Engineer Sr., 515-281-8986, Nina.Koger@dnr.iowa.gov

IOWA DEPARTMENT OF NATURAL RESOURCES MONITORING WELL/PIEZOMETER CONSTRUCTION DOCUMENTATION FORM Disposal Site Name: Ottumwa Midland Landfill Permit No.: 38230 Well or Piezometer No: MW-122M Dates Started: December 6, 2012 Date Completed: December 9, 2012 **B. SOIL BORING INFORMATION** A. SURVEYED LOCATIONS AND ELEVATIONS Name & Address of Construction Company: Locations (± 0.5 ft): Specify corner of site: NW **Boart Longyear** 901D Grossman Drive Distance & direction along boundary: 553 S Schofield, WI 54476 Distance & direction from boundary to wall: 462 E Name of Driller: Paul Dickinson Elevations (± 0.01 ft MSL): Ground Surface: 790.74 Drilling Method: Rotary, HSA Top of protective casing: 792.94 Drilling Fluid: Air Bore Hole Diameter: 10.5" to 10', 6" below 10' 792.70 Top of well casing: Soil Sampling Method: Split spoon, screen air rotary chips Benchmark elevation: 820.39 Depth of Boring: 154 ft Benchmark description: Brass cap in concrete, 408 ft N of MW-20 C. MONITORING WELL INSTALLATION Flush threaded PVC schedule 80 Placement method: Gravity Casing material: Volume: 0.67 ft^3 155.3 Length of casing: 2.4 in Outside casing diameter: Backfill (if different from seal): Material: Bentonite Slurry / 3/8" Chips 1.89 in Inside casing diameter: Placement method: Tremie Pumped / Gravity Flush Threaded Casing joint type: Volume: 400 gal. Slurry / 6 ft^3 Chips Casing/screen joint type: Flush Threaded Screen material: Surface seal design: Steel Screen opening size: 0.01 in Material of protective casing: Material of grout between protective casing and well casing: bentonite & concrete 5 ft Screen length: 152.8 ft Depth of well: Protective cap: Material: aluminum Filter Pack: Red Flint Filter Sand Vented: Yes No Locking: Yes No Material: #40 Grain size: Well Cap: Material: plastic with rubber gasket 1.5 ft^3 Volume: Vented: Yes No Seal (minimum 3 ft length above filter pack): Material: 3/8 inch bentonite chips

D. GROUNDWATER MEASURMENT (± 0.01 ft below top of inner well casing)

Water level: 68.81 Stabilization Time: 1 week

Well development method: Surged & bailed with bailer and pump


Average depth of frostline: 3 feet

Attachments: Driller's log. Pipe schedules and grouting schedules. $8 \frac{1}{2} \times 11$ inch map showing locations of all monitoring wells and piezometers.

Please mail completed for to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E 9th St, Des Moines IA 50319-0034.

Questions? Call or Email: Nina Koger, Environmental Engineer Sr., 515-281-8986, Nina.Koger@dnr.iowa.gov

ELEVATIONS: ± 0.01 ft MSL DEPTHS: ± 0.1 ft FROM GROUND SURFACE

Appendix C **Laboratory Reports**

Login Sample Receipt Checklist

Client: SCS Engineers Job Number: 310-182422-1

Login Number: 182422 List Source: Eurofins TestAmerica, Cedar Falls

List Number: 1

Creator: Johnson, Josie A

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Cedar Falls 3019 Venture Way Cedar Falls, IA 50613 Tel: (319)277-2401

Laboratory Job ID: 310-182422-1

Client Project/Site: Ottumwa Midland LF - 25216073

For:

SCS Engineers 2830 Dairy Drive Madison, Wisconsin 53718

Attn: Meghan Blodgett

Authorized for release by: 6/9/2020 8:44:38 AM

Sandie Fredrick, Project Manager II (920)261-1660

sandie.fredrick@testamericainc.com

.....LINKS

Review your project results through

Have a Question?

Visit us at: www.eurofinsus.com/Env This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

4

3

4

6

8

10

12

II.

T -	I . 1	_		^ -	4 _	1
I A	n		O T		nto	nts
I G	V		VI.	V		

Cover Page	2
Table of Contents	3
Case Narrative	4
Sample Summary	5
Detection Summary	6
Client Sample Results	8
Definitions	12
QC Sample Results	13
QC Association	15
Chronicle	17
Certification Summary	19
Method Summary	20
Chain of Custody	21
Field Data Sheets	25

Case Narrative

Client: SCS Engineers

Project/Site: Ottumwa Midland LF - 25216073

Job ID: 310-182422-1

Laboratory: Eurofins TestAmerica, Cedar Falls

Narrative

Job Narrative 310-182422-1

Comments

No additional comments.

Receipt

The samples were received on 5/22/2020 4:10 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was -0.4° C.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

Method 3010A: The reference method requires samples to be preserved to a pH of <2. The following sample was received with insufficient preservation at a pH of >2: MW-102M (310-182422-2). The sample(s) was preserved to the appropriate pH in the laboratory.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 310-182422-1

Sample Summary

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25216073

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
310-182422-1	MW-302	Water	05/21/20 14:15	05/22/20 16:10	
310-182422-2	MW-102M	Water	05/21/20 10:45	05/22/20 16:10	
310-182422-3	MW-122M	Water	05/21/20 10:05	05/22/20 16:10	
310-182422-4	Field Blank	Water	05/21/20 12:00	05/22/20 16:10	

Job ID: 310-182422-1

Job ID: 310-182422-1

Client: SCS Engineers Project/Site: Ottumwa Midland LF - 25216073

Client Sample ID: MW-302

Lab Sample ID: 310-182422-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	8.9		5.0	2.0	mg/L	5	_	9056A	Total/NA
Fluoride	1.0		0.50	0.23	mg/L	5		9056A	Total/NA
Sulfate	79		5.0	3.6	mg/L	5		9056A	Total/NA
Boron	780		100	73	ug/L	1		6020A	Total/NA
Calcium	41		0.50	0.19	mg/L	1		6020A	Total/NA
Total Dissolved Solids	930		30	26	mg/L	1		SM 2540C	Total/NA
pH	7.5	HF	0.1	0.1	SU	1		SM 4500 H+ B	Total/NA
Ground Water Elevation	686.25				ft	1		Field Sampling	Total/NA
Oxidation Reduction Potential	-83.4				millivolts	1		Field Sampling	Total/NA
Oxygen, Dissolved, Client Supplied	1.06				mg/L	1		Field Sampling	Total/NA
pH, Field	7.05				SU	1		Field Sampling	Total/NA
Specific Conductance, Field	1129				umhos/cm	1		Field Sampling	Total/NA
Temperature, Field	13.1				Degrees C	1		Field Sampling	Total/NA
Turbidity, Field	12.5				NTU	1		Field Sampling	Total/NA

Client Sample ID: MW-102M

Lab Sample ID: 310-182422-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	16		5.0	2.0	mg/L	5	_	9056A	Total/NA
Fluoride	5.0		0.50	0.23	mg/L	5		9056A	Total/NA
Sulfate	350		5.0	3.6	mg/L	5		9056A	Total/NA
Boron	1500		100	73	ug/L	1		6020A	Total/NA
Calcium	38		0.50	0.19	mg/L	1		6020A	Total/NA
Total Dissolved Solids	3700		150	130	mg/L	1		SM 2540C	Total/NA
pH	7.9	HF	0.1	0.1	SU	1		SM 4500 H+ B	Total/NA
Ground Water Elevation	717.61				ft	1		Field Sampling	Total/NA
Oxidation Reduction Potential	21.2				millivolts	1		Field Sampling	Total/NA
Oxygen, Dissolved, Client Supplied	1.59				mg/L	1		Field Sampling	Total/NA
pH, Field	7.82				SU	1		Field Sampling	Total/NA
Specific Conductance, Field	2260				umhos/cm	1		Field Sampling	Total/NA
Temperature, Field	13.1				Degrees C	1		Field Sampling	Total/NA
Turbidity, Field	297				NTU	1		Field Sampling	Total/NA

Client Sample ID: MW-122M

Lab Sample ID: 310-182422-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	9.0		5.0	2.0	mg/L	5	_	9056A	Total/NA
Fluoride	0.23	J	0.50	0.23	mg/L	5		9056A	Total/NA
Sulfate	9800		100	71	mg/L	100		9056A	Total/NA
Boron	5100		400	290	ug/L	4		6020A	Total/NA
Calcium	430		0.50	0.19	mg/L	1		6020A	Total/NA
Total Dissolved Solids	16000		300	260	mg/L	1		SM 2540C	Total/NA
pH	7.0	HF	0.1	0.1	SU	1		SM 4500 H+ B	Total/NA
Ground Water Elevation	724.23				ft	1		Field Sampling	Total/NA
Oxidation Reduction Potential	-4.4				millivolts	1		Field Sampling	Total/NA
Oxygen, Dissolved, Client Supplied	0.61				mg/L	1		Field Sampling	Total/NA
pH, Field	6.91				SU	1		Field Sampling	Total/NA
Specific Conductance, Field	14090				umhos/cm	1		Field Sampling	Total/NA
Temperature, Field	13.0				Degrees C	1		Field Sampling	Total/NA
Turbidity, Field	2.31				NTU	1		Field Sampling	Total/NA

This Detection Summary does not include radiochemical test results.

Detection Summary

Client: SCS Engineers Job ID: 310-182422-1

Project/Site: Ottumwa Midland LF - 25216073

Client Sample ID: Field Blank

Lab Sample ID: 310-182422-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Fluoride	0.056	J	0.10	0.046	mg/L	1	_	9056A	Total/NA
Total Dissolved Solids	330		30	26	mg/L	1		SM 2540C	Total/NA
pH	7.8	HF	0.1	0.1	SU	1		SM 4500 H+ B	Total/NA

_

4

5

7

9

10

12

Client: SCS Engineers Job ID: 310-182422-1

Project/Site: Ottumwa Midland LF - 25216073

Client Sample ID: MW-302 Lab Sample ID: 310-182422-1

Date Collect Date Received: 05/22/20 16:10

ected: 05/21/20 14:15	Matrix: Water
sived: 05/22/20 46:40	

Method: 9056A - Anions, Ion C Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8.9		5.0	2.0	mg/L			06/02/20 20:18	5
Fluoride	1.0		0.50	0.23	mg/L			06/02/20 20:18	5
Sulfate	79		5.0	3.6	mg/L			06/02/20 20:18	5
Method: 6020A - Metals (ICP/N	IS)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	780		100	73	ug/L		05/27/20 08:06	05/29/20 10:21	1
Calcium	41		0.50	0.19	mg/L		05/27/20 08:06	05/29/20 10:21	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	930		30	26	mg/L			05/26/20 12:14	1
pH	7.5	HF	0.1	0.1	SU			05/23/20 11:03	1
Method: Field Sampling - Field	d Sampling								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ground Water Elevation	686.25				ft			05/21/20 14:15	1
Oxidation Reduction Potential	-83.4				millivolts			05/21/20 14:15	1
Oxygen, Dissolved, Client Supplied	1.06				mg/L			05/21/20 14:15	1
pH, Field	7.05				SU			05/21/20 14:15	1
Specific Conductance, Field	1129				umhos/cm			05/21/20 14:15	1
Temperature, Field	13.1				Degrees C			05/21/20 14:15	1
Turbidity, Field	12.5				NTU			05/21/20 14:15	1

Client: SCS Engineers Job ID: 310-182422-1

Project/Site: Ottumwa Midland LF - 25216073

Supplied pH, Field

Specific Conductance, Field

Temperature, Field

Turbidity, Field

Client Sample ID: MW-102M Lab Sample ID: 310-182422-2

Date Collected: 05/21/20 10:45

Date Received: 05/22/20 16:10

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	16		5.0	2.0	mg/L			06/02/20 21:05	5
Fluoride	5.0		0.50	0.23	mg/L			06/02/20 21:05	5
Sulfate	350		5.0	3.6	mg/L			06/02/20 21:05	5
Method: 6020A - Metals (ICP/N	IS)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	1500		100	73	ug/L		05/27/20 08:06	05/29/20 10:23	1
Calcium	38		0.50	0.19	mg/L		05/27/20 08:06	05/29/20 10:23	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	3700		150	130	mg/L			05/26/20 12:14	1
рН	7.9	HF	0.1	0.1	SU			05/23/20 11:07	1
Method: Field Sampling - Field	l Sampling								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ground Water Elevation	717.61				ft			05/21/20 10:45	1
Oxidation Reduction Potential	21.2				millivolts			05/21/20 10:45	1
Oxygen, Dissolved, Client	1.59				mg/L			05/21/20 10:45	1

7.82

2260

13.1

297

SU

NTU

umhos/cm

Degrees C

Eurofins TestAmerica, Cedar Falls

05/21/20 10:45

05/21/20 10:45

05/21/20 10:45

05/21/20 10:45

Client: SCS Engineers Job ID: 310-182422-1

Project/Site: Ottumwa Midland LF - 25216073

Turbidity, Field

Client Sample ID: MW-122M Lab Sample ID: 310-182422-3

Date Collected: 05/21/20 10:05 Matrix: Water Date Received: 05/22/20 16:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	9.0		5.0	2.0	mg/L			06/02/20 21:52	5
Fluoride	0.23	J	0.50	0.23	mg/L			06/02/20 21:52	5
Sulfate	9800		100	71	mg/L			06/03/20 11:12	100
Method: 6020A - Metals (ICP/M	IS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	5100		400	290	ug/L		05/27/20 08:06	05/29/20 11:03	4
Calcium	430		0.50	0.19	mg/L		05/27/20 08:06	05/29/20 10:26	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	16000		300	260	mg/L			05/26/20 12:14	1
рН	7.0	HF	0.1	0.1	SU			05/23/20 11:09	1
Method: Field Sampling - Field	l Sampling								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ground Water Elevation	724.23				ft			05/21/20 10:05	1
Oxidation Reduction Potential	-4.4				millivolts			05/21/20 10:05	1
Oxidation Hoddoudin Fotontial					mg/L			05/21/20 10:05	1
Oxygen, Dissolved, Client	0.61				-				
Oxygen, Dissolved, Client Supplied pH, Field	0.61 6.91				SU			05/21/20 10:05	1
Oxygen, Dissolved, Client Supplied					SU umhos/cm			05/21/20 10:05 05/21/20 10:05	1

NTU

2.31

Eurofins TestAmerica, Cedar Falls

05/21/20 10:05

3

5

7

Ö

10

11

13

14

6/9/2020

Client: SCS Engineers Job ID: 310-182422-1

Project/Site: Ottumwa Midland LF - 25216073

Client Sample ID: Field Blank

Lab Sample ID: 310-182422-4 Date Collected: 05/21/20 12:00

Matrix: Water

05/23/20 11:12

Date Received: 05/22/20 16:10

рΗ

Method: 9056A - Anions, lo	n Chromatogi	aphy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.40		1.0	0.40	mg/L			06/02/20 22:07	1
Fluoride	0.056	J	0.10	0.046	mg/L			06/02/20 22:07	1
Sulfate	<0.71		1.0	0.71	mg/L			06/02/20 22:07	1
_ Method: 6020A - Metals (IC	P/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<73		100	73	ug/L		05/27/20 08:06	05/29/20 10:29	1
Calcium	<0.19		0.50	0.19	mg/L		05/27/20 08:06	05/29/20 10:29	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	330		30	26	mg/L			05/26/20 12:14	1

0.1

7.8 HF

0.1 SU

Definitions/Glossary

Client: SCS Engineers Job ID: 310-182422-1

Project/Site: Ottumwa Midland LF - 25216073

Qualifiers

HPLC/IC

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier Qualifier Description

HF Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)
LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)
MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

3

4

7

9

10

12

13

14

Job ID: 310-182422-1

Project/Site: Ottumwa Midland LF - 25216073

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 310-280927/3

Matrix: Water

Client: SCS Engineers

Analysis Batch: 280927

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client Sample ID: MW-302

Client Sample ID: MW-302

Prep Type: Total/NA

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Chloride <0.40 1.0 0.40 mg/L 06/02/20 19:47 Fluoride 0.10 0.046 mg/L 06/02/20 19:47 < 0.046 Sulfate 06/02/20 19:47 < 0.71 1.0 0.71 mg/L

Lab Sample ID: LCS 310-280927/4

Matrix: Water

Analysis Batch: 280927

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	10.0	10.2		mg/L		102	90 - 110	
Fluoride	2.00	1.97		mg/L		98	90 - 110	
Sulfate	10.0	10.2		mg/L		102	90 - 110	

Lab Sample ID: 310-182422-1 MS

Matrix: Water

Analysis Batch: 280927

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	8.9		25.0	32.8		mg/L		95	80 - 120	
Fluoride	1.0		5.00	6.12		mg/L		102	80 - 120	
Sulfate	79		25.0	102		mg/L		91	80 - 120	

Lab Sample ID: 310-182422-1 MSD

Matrix: Water

Analysis Ratch: 280927

Alialysis Dalcii. 200321												
•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	8.9		25.0	32.8		mg/L		95	80 - 120	0	15	
Fluoride	1.0		5.00	6.15		mg/L		103	80 - 120	0	15	
Sulfate	79		25.0	102		mg/L		92	80 - 120	0	15	

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: MB 310-280136/1-A	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 280544	Prep Batch: 280136
MB MB	

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Boron	<73	100	73 ug/L		05/27/20 08:06	05/29/20 09:43	1
Calcium	<0.19	0.50	0.19 mg/L		05/27/20 08:06	05/29/20 09:43	1

Lab Sample ID: LCS 310-280136/2-A	Client Sample ID: Lab Control Sample							
Matrix: Water						Prep Type: Total/NA		
Analysis Batch: 280544							Prep Batch: 280136	
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Boron	1760	1770		ug/L		101	80 - 120	
Calcium	4.00	4.06		mg/L		102	80 - 120	

Job ID: 310-182422-1

Prep Type: Total/NA

Client Sample ID: MW-302

Prep Type: Total/NA

Project/Site: Ottumwa Midland LF - 25216073

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 310-280050/1 **Client Sample ID: Method Blank**

Matrix: Water

Client: SCS Engineers

Analysis Batch: 280050

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 30 Total Dissolved Solids 26 mg/L 05/26/20 12:14 <26

Lab Sample ID: LCS 310-280050/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 280050

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits **Total Dissolved Solids** 1000 1080 mg/L 108 90 - 110

Method: SM 4500 H+ B - pH

Lab Sample ID: LCS 310-279933/1 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 279933

LCS LCS %Rec. Spike Added Analyte Result Qualifier Unit %Rec Limits 7.00 SU рН 7.0 100 98 - 102

Lab Sample ID: 310-182422-1 DU

Matrix: Water

Analysis Batch: 279933

DU DU RPD Sample Sample Result Qualifier Result Qualifier Unit RPD Analyte D Limit SU рН 7.5 HF 7.5 0 20

Eurofins TestAmerica, Cedar Falls

6/9/2020

QC Association Summary

Client: SCS Engineers Job ID: 310-182422-1

Project/Site: Ottumwa Midland LF - 25216073

HPLC/IC

Analysis Batch: 280927

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-182422-1	MW-302	Total/NA	Water	9056A	
310-182422-2	MW-102M	Total/NA	Water	9056A	
310-182422-3	MW-122M	Total/NA	Water	9056A	
310-182422-3	MW-122M	Total/NA	Water	9056A	
310-182422-4	Field Blank	Total/NA	Water	9056A	
MB 310-280927/3	Method Blank	Total/NA	Water	9056A	
LCS 310-280927/4	Lab Control Sample	Total/NA	Water	9056A	
310-182422-1 MS	MW-302	Total/NA	Water	9056A	
310-182422-1 MSD	MW-302	Total/NA	Water	9056A	

Metals

Prep Batch: 280136

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-182422-1	MW-302	Total/NA	Water	3010A	_
310-182422-2	MW-102M	Total/NA	Water	3010A	
310-182422-3	MW-122M	Total/NA	Water	3010A	
310-182422-4	Field Blank	Total/NA	Water	3010A	
MB 310-280136/1-A	Method Blank	Total/NA	Water	3010A	
LCS 310-280136/2-A	Lab Control Sample	Total/NA	Water	3010A	

Analysis Batch: 280544

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-182422-1	MW-302	Total/NA	Water	6020A	280136
310-182422-2	MW-102M	Total/NA	Water	6020A	280136
310-182422-3	MW-122M	Total/NA	Water	6020A	280136
310-182422-3	MW-122M	Total/NA	Water	6020A	280136
310-182422-4	Field Blank	Total/NA	Water	6020A	280136
MB 310-280136/1-A	Method Blank	Total/NA	Water	6020A	280136
LCS 310-280136/2-A	Lab Control Sample	Total/NA	Water	6020A	280136

General Chemistry

Analysis Batch: 279933

_					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-182422-1	MW-302	Total/NA	Water	SM 4500 H+ B	
310-182422-2	MW-102M	Total/NA	Water	SM 4500 H+ B	
310-182422-3	MW-122M	Total/NA	Water	SM 4500 H+ B	
310-182422-4	Field Blank	Total/NA	Water	SM 4500 H+ B	
LCS 310-279933/1	Lab Control Sample	Total/NA	Water	SM 4500 H+ B	
310-182422-1 DU	MW-302	Total/NA	Water	SM 4500 H+ B	

Analysis Batch: 280050

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-182422-1	MW-302	Total/NA	Water	SM 2540C	_
310-182422-2	MW-102M	Total/NA	Water	SM 2540C	
310-182422-3	MW-122M	Total/NA	Water	SM 2540C	
310-182422-4	Field Blank	Total/NA	Water	SM 2540C	
MB 310-280050/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 310-280050/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Eurofins TestAmerica, Cedar Falls

02/04/2021 - Classifi Page of 25 ernal - ECRM7850469

2

3

4

7

9

10

12

13

14

_ _ 4

QC Association Summary

Client: SCS Engineers Job ID: 310-182422-1

Project/Site: Ottumwa Midland LF - 25216073

Field Service / Mobile Lab

Analysis Batch: 281404

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-182422-1	MW-302	Total/NA	Water	Field Sampling	
310-182422-2	MW-102M	Total/NA	Water	Field Sampling	
310-182422-3	MW-122M	Total/NA	Water	Field Sampling	

4

5

ŏ

9

11

40

Project/Site: Ottumwa Midland LF - 25216073

Client Sample ID: MW-302

Client: SCS Engineers

Date Collected: 05/21/20 14:15 Date Received: 05/22/20 16:10 Lab Sample ID: 310-182422-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		5	280927	06/02/20 20:18	ACJ	TAL CF
Total/NA	Prep	3010A			280136	05/27/20 08:06	HED	TAL CF
Total/NA	Analysis	6020A		1	280544	05/29/20 10:21	ACJ	TAL CF
Total/NA	Analysis	SM 2540C		1	280050	05/26/20 12:14	SAS	TAL CF
Total/NA	Analysis	SM 4500 H+ B		1	279933	05/23/20 11:03	AFZ	TAL CF
Total/NA	Analysis	Field Sampling		1	281404	05/21/20 14:15	ANO	TAL CF

Client Sample ID: MW-102M

Date Collected: 05/21/20 10:45 Date Received: 05/22/20 16:10 **Lab Sample ID: 310-182422-2**

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		5	280927	06/02/20 21:05	ACJ	TAL CF
Total/NA	Prep	3010A			280136	05/27/20 08:06	HED	TAL CF
Total/NA	Analysis	6020A		1	280544	05/29/20 10:23	ACJ	TAL CF
Total/NA	Analysis	SM 2540C		1	280050	05/26/20 12:14	SAS	TAL CF
Total/NA	Analysis	SM 4500 H+ B		1	279933	05/23/20 11:07	AFZ	TAL CF
Total/NA	Analysis	Field Sampling		1	281404	05/21/20 10:45	ANO	TAL CF

Client Sample ID: MW-122M

Date Collected: 05/21/20 10:05 Date Received: 05/22/20 16:10 Lab Sample ID: 310-182422-3 Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		5	280927	06/02/20 21:52	ACJ	TAL CF
Total/NA	Analysis	9056A		100	280927	06/03/20 11:12	ACJ	TAL CF
Total/NA	Prep	3010A			280136	05/27/20 08:06	HED	TAL CF
Total/NA	Analysis	6020A		1	280544	05/29/20 10:26	ACJ	TAL CF
Total/NA	Prep	3010A			280136	05/27/20 08:06	HED	TAL CF
Total/NA	Analysis	6020A		4	280544	05/29/20 11:03	ACJ	TAL CF
Total/NA	Analysis	SM 2540C		1	280050	05/26/20 12:14	SAS	TAL CF
Total/NA	Analysis	SM 4500 H+ B		1	279933	05/23/20 11:09	AFZ	TAL CF
Total/NA	Analysis	Field Sampling		1	281404	05/21/20 10:05	ANO	TAL CF

Client Sample ID: Field Blank

Date Collected: 05/21/20 12:00

Date Received: 05/22/20 16:10

ab Sample	ID:	310-1	82422-4
-----------	-----	-------	---------

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A			280927	06/02/20 22:07	ACJ	TAL CF
Total/NA	Prep	3010A			280136	05/27/20 08:06	HED	TAL CF
Total/NA	Analysis	6020A		1	280544	05/29/20 10:29	ACJ	TAL CF
Total/NA	Analysis	SM 2540C		1	280050	05/26/20 12:14	SAS	TAL CF
Total/NA	Analysis	SM 4500 H+ B		1	279933	05/23/20 11:12	AFZ	TAL CF

Eurofins TestAmerica, Cedar Falls

Λ

5

ŏ

10

12

11

Lab Chronicle

Client: SCS Engineers

Project/Site: Ottumwa Midland LF - 25216073

Job ID: 310-182422-1

Laboratory References:

TAL CF = Eurofins TestAmerica, Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

3

4

5

8

10

11

13

Accreditation/Certification Summary

Client: SCS Engineers Job ID: 310-182422-1

Project/Site: Ottumwa Midland LF - 25216073

Laboratory: Eurofins TestAmerica, Cedar Falls

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
lowa	State	007	12-01-21

•

3

Δ

5

0

8

10

11

13

Method Summary

Client: SCS Engineers

Project/Site: Ottumwa Midland LF - 25216073

Method	Method Description	Protocol	Laboratory
9056A	Anions, Ion Chromatography	SW846	TAL CF
6020A	Metals (ICP/MS)	SW846	TAL CF
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL CF
SM 4500 H+ B	pH	SM	TAL CF
Field Sampling	Field Sampling	EPA	TAL CF
3010A	Preparation, Total Metals	SW846	TAL CF

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CF = Eurofins TestAmerica, Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

2

Job ID: 310-182422-1

4

6

0

9

10

12

13

Fredrick, Sandie

From: Blodgett, Meghan <mblodgett@scsengineers.com>

Sent: Wednesday, May 27, 2020 7:56 PM

To: Fredrick, Sandie

Cc: Kron, Nicole; Karwoski, Thomas

Subject: RE: Eurofins TestAmerica Sample Login Confirmation files from 310-182422 Ottumwa

Midland LF - 25216073

EXTERNAL EMAIL*

Sandie,

We also need chloride, fluoride, and sulfate on these samples. I don't see those listed on the login info.

Meghan Blodgett SCS Engineers Madison, WI 608-345-9221 (C) mblodgett@scsengineers.com

www.scsengineers.com

From: Sandie Fredrick < sandie.fredrick@testamericainc.com >

Sent: Tuesday, May 26, 2020 8:56 AM

To: Blodgett, Meghan <<u>mblodgett@scsengineers.com</u>>; Kron, Nicole <<u>NKron@scsengineers.com</u>>; Karwoski, Thomas

<TKarwoski@scsengineers.com>

Subject: Eurofins TestAmerica Sample Login Confirmation files from 310-182422 Ottumwa Midland LF - 25216073

This email originated from outside of SCS Engineers. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hello Everyone,

Attached, please find the Sample Confirmation files for job 310-182422; Ottumwa Midland LF - 25216073

Please feel free to contact me if you have any questions.

Thank you.

Sandie Fredrick

Project Manager

2

3

4

5

6

<u>۾</u>

4.6

11

TestAmerica Laboratories, Inc.

Phone: 920-261-1660

E-mail: sandie.fredrick@testamericainc.com

www.eurofinsus.com/env

Reference: [310-430992] Attachments: 3

Please let us know if we met your expectations by rating the service you received from Eurofins TestAmerica on this project by visiting our website at: Project Feedback

* WARNING - EXTERNAL: This email originated from outside of Eurofins TestAmerica. Do not click any links or open any attachments unless you trust the sender and know that the content is safe!

6/9/2020

Environment Testing TestAmerica

Cooler/Sample Receipt and Temperature Log Form

Client Information					
Client: SCS EN	aineers				
City/State: CITY	J	STATE	Project: Oftun	rua Midlana	JLF 252
Receipt Information					
Date/Time Received: DA	5/22/20	TIME 16(0	Received By:	ER	
Delivery Type: UPS	FedEx		FedEx Ground	☐ US Mail	☐ Spee-Dee
Lab Co	ourier 🗌 Lab Fie	eld Services [Client Drop-off	Other:	
Condition of Cooler/Contain	ners				
Sample(s) received in Coo	oler? Yes	☐ No	If yes: Cooler ID:	AB-37	
Multiple Coolers?	☐ Yes	No	If yes: Cooler # _	of	
Cooler Custody Seals Pre	sent? Tes	☐ No	If yes: Cooler cust	ody seals intact?	Pes □ No
Sample Custody Seals Pre	esent? Yes	PNo	If yes: Sample cus	stody seals intact?	Yes No
Trip Blank Present?	☐ Yes	No	If yes: Which VOA	samples are in coole	er? ↓
	(
Townsective Record					
Coolant: Wet ice	☐ Blue ice	☐ Dry ice	Other:	□ NOI	VF
	Blue ice	□ DIY ICE		N	1
Thermometer ID:	N		Correction Factor		C. T. C. C. C. C.
• Temp Blank Temperature		r temp blank tem			ier remperature
Uncorrected Temp (°C):	-0,9		Corrected Temp (0): -01-7	
Sample Container Temper	CONTAINER 1		CONT	AINER 2	
Container(s) used:	OOM PRINCE TO				
Uncorrected Temp (°C):					
Corrected Temp (°C):					
Exceptions Noted					
If temperature exceeds a) If yes: Is there evi				npling?	☐ No ☐ No
2) If temperature is <0°C (e.g., bulging septa, but	, are there obvious	us signs that stattles, frozen s	the integrity of samp solid?)	ole containers is comp	oromised?
NOTE: If yes, contact PM Additional Comments	before proceeding	g. If no, procee	ed with login		
		Of.			

Document: CF-LG-WI-002

Revision: 25 Date: 06/17/2019

Eurofins TestAmerica, Cedar Falls

General temperature criteria is 0 to 6°C Bacteria temperature criteria is 0 to 10°C

び。この

22/20

Date/Time:

Received by Received by:

Company

0 110

Date/Time:

whalan

linquished by:

Company Company

Date/Time:

Date/Time

Cooler Temperature(s) °C and Other Remarks:

Chain of Custody Record

Eurofins TestAmerica, Cedar Falls

Phone (319) 277-2401 Fax (319) 277-2425

Cedar Falls, IA 50613

3019 Venture Way

: eurofins

TestAmerica Des Moines SC

N - None
O - AsNaO2
P - Na2O45
Q - Na2SO3
R - Na2S2O3
S - H2SO4
T - TSP Dodecahydrate
U - Acetone
W - pH 4-5
Z - other (specify) Special Instructions/Note: Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont COC No: 310-48958-14130.1 Preservation Codes A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
E - NanSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid Page: Page 1 of 1 I - Ice J - DI Water K - EDTA L - EDA 0 0 d Total Number of containers CX **Method of Shipment** Analysis Requested Special Instructions/QC Requirements: E-Mail: sandie fredrick@testamericainc.com Return To Client × X × メチェ 2020A - B/Ca X Lab PM: Fredrick, Sandie 5240C Calcd, SM4500_H+ 2 Z Z Perform MS/MSD (Yes or No) me. Preservation Code: Water Water Water Water Matrix Water Water Water Cahalan Sample Type (C=comp, Radiological G=grab) 515-250-036-515 0 0 9 0 さかせつ 1200 Purchase Order Requested Sample 1045 1005 HIS Due Date Requested: Date: Sampler Unknown Sample Date 5/21/20 5/11/20 Sinlas 5/21/20 Project #: 31011020 SSOW#: ひら -hone: WO#: Poison B mcahalanesconjinuis, wa Canalas 11 Skin Irritant Midland Deliverable Requested: I, II, III, IV, Other (specify) wise Jennings Markhall 8450 Hickman Road Suite 20 27 Flammable Possible Hazard Identification 20150-055-21GS Ottumwa Midland LF 25216073 Ottomes Empty Kit Relinquished by: Client Information Sample Identification Non-Hazard SCS Engineers Client Contact. Field Blank MW-102M MW-122M State, Zip: IA, 50325 W-301 WW-303 **MW-302**

inquished by: linquished by:

Custody Seal No.

Custody Seals Intact: △ Yes △ No

Table X, Page 1 of 1

Ottumwa Midland Landfill / SCS Engineers Project #25220073.00 **Groundwater Monitoring Results - Field Parameters** May 2020

Sample	Date/Time	Groundwater Elevation (feet amsl)	Temperature (Deg. C)	pH (Std. Units)	Dissolved Oxygen (mg/L)	Specific Conductivity (µmhos/cm)	ORP (mV)	Turbidity (NTU)
MW-301	5/26 - 1320	687.29	15.8	5.67	0.41	1546	-57.8	21.8
MW-302	5/21 - 1415	686.25	13.1	7.05	1.06	1129	-83.4	12.5
MW-303	5/26 - 1215	687.14	14.4	6.21	2.31	1963	-30.0	1.73
MW-102M	5/21 - 1045	717.61	13.1	7.82	1.59	2260	21.2	262
MW-122M	5/21 - 1005	724.23	13.0	6.91	0.61	14090	-4.4	2.31

Abbreviations:

amsl = above mean sea level

ORP = Oxidation Reduction (REDOX)

NTU = Nephelometric Turbidity Units

mV = millivolts

umhos/cm = microSiemens per centimeter mg/L = milligrams per liter

NA = Not Analyzed

Laboratory Notes/Qualifiers:

none

Created by:

NPK \sim NSC Scientist QA/QC: Last revision by: Checked by:

10/21/2019 10/17/2019 10/31/2019 Date: Date: Date:

Date: 6/27/2019

ANALYTICAL REPORT

Eurofins TestAmerica, Cedar Falls 3019 Venture Way Cedar Falls, IA 50613 Tel: (319)277-2401

Laboratory Job ID: 310-182584-1

Client Project/Site: Ottumwa Midland LF 25220073

For:

eurofins 🔅

SCS Engineers 2830 Dairy Drive Madison, Wisconsin 53718

Attn: Meghan Blodgett

Authorized for release by: 6/9/2020 2:33:16 PM

Sandie Fredrick, Project Manager II (920)261-1660

sandie.fredrick@testamericainc.com

·····LINKS ······

Review your project results through Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

/04/2021 - Classification: Internal - ECRM7850469

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Detection Summary	5
Client Sample Results	6
Definitions	8
QC Sample Results	9
QC Association	11
Chronicle	12
Certification Summary	13
Method Summary	14
Chain of Custody	15
Receipt Checklists	19
Field Data Sheets	20

6

8

10

12

IR

Case Narrative

Client: SCS Engineers

Project/Site: Ottumwa Midland LF 25220073

Job ID: 310-182584-1

Job ID: 310-182584-1

Laboratory: Eurofins TestAmerica, Cedar Falls

Narrative

Job Narrative 310-182584-1

Comments

No additional comments.

Receipt

The samples were received on 5/27/2020 4:45 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.2° C.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Sample Summary

Client: SCS Engineers Project/Site: Ottumwa Midland LF 25220073

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
310-182584-1	MW-301	Water	05/26/20 13:20	05/27/20 16:45	
310-182584-2	MW-303	Water	05/26/20 12:15	05/27/20 16:45	

Job ID: 310-182584-1

Project/Site: Ottumwa Midland LF 25220073

Client Sample ID: MW-301

Lab Sample ID: 310-182584-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	61		5.0	2.0	mg/L	5	_	9056A	Total/NA
Fluoride	0.77		0.50	0.23	mg/L	5		9056A	Total/NA
Sulfate	390		5.0	3.6	mg/L	5		9056A	Total/NA
Boron	660		100	73	ug/L	1		6020A	Total/NA
Calcium	120		0.50	0.19	mg/L	1		6020A	Total/NA
Total Dissolved Solids	1100		60	52	mg/L	1		SM 2540C	Total/NA
pH	7.3	HF	0.1	0.1	SU	1		SM 4500 H+ B	Total/NA
Ground Water Elevation	687.29				ft	1		Field Sampling	Total/NA
Oxidation Reduction Potential	-57.8				millivolts	1		Field Sampling	Total/NA
Oxygen, Dissolved, Client Supplied	0.41				mg/L	1		Field Sampling	Total/NA
pH, Field	5.67				SU	1		Field Sampling	Total/NA
Specific Conductance, Field	1546				umhos/cm	1		Field Sampling	Total/NA
Temperature, Field	15.8				Degrees C	1		Field Sampling	Total/NA
Turbidity, Field	21.8				NTU	1		Field Sampling	Total/NA

Client Sample ID: MW-303

Lab Sample ID: 310-182584-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	8.5		5.0	2.0	mg/L	5	_	9056A	Total/NA
Fluoride	0.81		0.50	0.23	mg/L	5		9056A	Total/NA
Sulfate	440		5.0	3.6	mg/L	5		9056A	Total/NA
Boron	770		100	73	ug/L	1		6020A	Total/NA
Calcium	120		0.50	0.19	mg/L	1		6020A	Total/NA
Total Dissolved Solids	1100		30	26	mg/L	1		SM 2540C	Total/NA
pH	7.3	HF	0.1	0.1	SU	1		SM 4500 H+ B	Total/NA
Ground Water Elevation	687.14				ft	1		Field Sampling	Total/NA
Oxidation Reduction Potential	-30.0				millivolts	1		Field Sampling	Total/NA
Oxygen, Dissolved, Client Supplied	2.31				mg/L	1		Field Sampling	Total/NA
pH, Field	6.21				SU	1		Field Sampling	Total/NA
Specific Conductance, Field	1963				umhos/cm	1		Field Sampling	Total/NA
Temperature, Field	14.4				Degrees C	1		Field Sampling	Total/NA
Turbidity, Field	57.1				NTU	1		Field Sampling	Total/NA

Job ID: 310-182584-1

Client Sample Results

Client: SCS Engineers Job ID: 310-182584-1

Project/Site: Ottumwa Midland LF 25220073

Turbidity, Field

Client Sample ID: MW-301 Lab Sample ID: 310-182584-1

Date Collected: 05/26/20 13:20
Date Received: 05/27/20 16:45

21.8

Matrix: Water

05/26/20 13:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	61		5.0	2.0	mg/L			06/05/20 19:30	5
Fluoride	0.77		0.50	0.23	mg/L			06/05/20 19:30	5
Sulfate	390		5.0	3.6	mg/L			06/05/20 19:30	5
Method: 6020A - Metals (ICP/N	IS)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	660		100	73	ug/L		05/29/20 08:00	06/02/20 14:10	1
Calcium	120		0.50	0.19	mg/L		05/29/20 08:00	06/01/20 22:41	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1100		60	52	mg/L			05/28/20 14:53	1
рН	7.3	HF	0.1	0.1	SU			05/27/20 21:23	1
Method: Field Sampling - Field	l Sampling								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ground Water Elevation	687.29				ft			05/26/20 13:20	1
Oxidation Reduction Potential	-57.8				millivolts			05/26/20 13:20	1
Oxygen, Dissolved, Client Supplied	0.41				mg/L			05/26/20 13:20	1
pH, Field	5.67				SU			05/26/20 13:20	1
Specific Conductance, Field	1546				umhos/cm			05/26/20 13:20	1

NTU

Eurofins TestAmerica, Cedar Falls

Client Sample Results

Client: SCS Engineers Job ID: 310-182584-1

Project/Site: Ottumwa Midland LF 25220073

Turbidity, Field

Client Sample ID: MW-303 Lab Sample ID: 310-182584-2

Date Collected: 05/26/20 12:15

Date Received: 05/27/20 16:45

Matrix: Water

Method: 9056A - Anions, Ion C Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8.5		5.0	2.0	mg/L		-	06/05/20 19:46	5
Fluoride	0.81		0.50	0.23	mg/L			06/05/20 19:46	5
Sulfate	440		5.0	3.6	mg/L			06/05/20 19:46	5
Method: 6020A - Metals (ICP/N	NS)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	770		100	73	ug/L		05/29/20 08:00	06/02/20 14:15	1
Calcium	120		0.50	0.19	mg/L		05/29/20 08:00	06/01/20 22:46	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1100		30	26	mg/L			05/28/20 14:53	1
. J.a. 2.0001704 Oollab	1100		30	20	mg/L			00/20/20 14.00	
pH		HF	0.1		SU			05/27/20 21:24	1
pH	7.3	HF			3				1
	7.3 d Sampling	HF Qualifier		0.1	3	D	Prepared		1 Dil Fac
pH - Method: Field Sampling - Field	7.3 d Sampling		0.1	0.1	SU	_ D	Prepared	05/27/20 21:24	Dil Fac
pH Method: Field Sampling - Field Analyte	7.3 d Sampling Result		0.1	0.1	SU	_ D	Prepared	05/27/20 21:24 Analyzed	Dil Fac
Method: Field Sampling - Field Analyte Ground Water Elevation Oxidation Reduction Potential Oxygen, Dissolved, Client	7.3 d Sampling Result 687.14		0.1	0.1	SU Unit	_ <u>D</u>	Prepared	05/27/20 21:24 Analyzed 05/26/20 12:15	Dil Fac 1 1 1
Method: Field Sampling - Field Analyte Ground Water Elevation Oxidation Reduction Potential	7.3 d Sampling Result 687.14 -30.0		0.1	0.1	Unit ft millivolts	_ <u>D</u>	Prepared	05/27/20 21:24 Analyzed 05/26/20 12:15 05/26/20 12:15	1
Method: Field Sampling - Field Analyte Ground Water Elevation Oxidation Reduction Potential Oxygen, Dissolved, Client Supplied	7.3 d Sampling Result 687.14 -30.0 2.31		0.1	0.1	Unit ft millivolts mg/L	_ <u>D</u>	Prepared	Analyzed 05/26/20 12:15 05/26/20 12:15 05/26/20 12:15	1

57.1

NTU

Eurofins TestAmerica, Cedar Falls

05/26/20 12:15

Definitions/Glossary

Client: SCS Engineers Job ID: 310-182584-1

Project/Site: Ottumwa Midland LF 25220073

Qualifiers

General Chemistry

Qualifier **Qualifier Description**

HF Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DΙ

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) **EDL** Limit of Detection (DoD/DOE) LOD LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) Minimum Detectable Concentration (Radiochemistry) MDC

MDL Method Detection Limit ML Minimum Level (Dioxin) MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Job ID: 310-182584-1 Project/Site: Ottumwa Midland LF 25220073

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 310-281431/3 **Client Sample ID: Method Blank**

Matrix: Water

Analysis Batch: 281431

	MB	MB						
Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.40	1.0	0.40	mg/L			06/05/20 16:07	1
Fluoride	<0.046	0.10	0.046	mg/L			06/05/20 16:07	1
Sulfate	<0.71	1.0	0.71	mg/L			06/05/20 16:07	1

Lab Sample ID: LCS 310-281431/4 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 281431

Allalysis Datell. 201701								
-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 10.0	10.4		mg/L		104	90 - 110	
Fluoride	2.00	2.11		mg/L		105	90 - 110	
Sulfate	10.0	10.4		mg/L		104	90 - 110	
 <u> </u>								

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: MB 310-280347/1-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 280748

мв мв

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Calcium	<0.19		0.50	0.19 mg/L		05/29/20 08:00	06/01/20 21:43	1

Lab Sample ID: MB 310-280347/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 280866

MR MR

	IVID	VID							
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<73		100	73	ug/L		05/29/20 08:00	06/02/20 13:23	1

Lab Sample ID: LCS 310-280347/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 280748 LCS LCS Spike

%Rec. Added Analyte Result Qualifier D %Rec Limits Unit 4.00 108 80 - 120 Calcium 4.34 mg/L

Lab Sample ID: LCS 310-280347/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 280866 Prep Batch: 280347 Spike LCS LCS %Rec.

Analyte Added Result Qualifier Unit D %Rec Limits Boron 1760 1790 ug/L 102 80 - 120

Client Sample ID: MW-301 Lab Sample ID: 310-182584-1 DU

Matrix: Water Analysis Batch: 280748 Prep Batch: 280347 DU DU Sample Sample

Result Qualifier Result Qualifier RPD Analyte Unit Limit Calcium 120 124 mg/L

Eurofins TestAmerica, Cedar Falls

Prep Type: Total/NA

Prep Batch: 280347

Prep Type: Total/NA

Prep Batch: 280347

Prep Batch: 280347

Prep Type: Total/NA

RPD

6/9/2020

Client: SCS Engineers

Project/Site: Ottumwa Midland LF 25220073

Job ID: 310-182584-1

Method: 6020A - Metals (ICP/MS) (Continued)

Lab Sample ID: 310-182584-1 DU Client Sample ID: MW-301

Matrix: Water

Prep Type: Total/NA Analysis Batch: 280866

Prep Batch: 280347

Sample Sample DU DU **RPD** Analyte Result Qualifier Result Qualifier Unit D RPD Limit Boron 660 0.7 20 669 ug/L

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 310-280375/1 **Client Sample ID: Method Blank**

Matrix: Water Prep Type: Total/NA

Analysis Batch: 280375

мв мв

Result Qualifier RLMDL Unit Prepared Analyzed Dil Fac Total Dissolved Solids 30 05/28/20 14:53 <26 26 mg/L

Lab Sample ID: LCS 310-280375/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 280375

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits **Total Dissolved Solids** 1000 988 mg/L 99 90 - 110

Method: SM 4500 H+ B - pH

Lab Sample ID: LCS 310-280254/1 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 280254

LCS LCS Spike %Rec. Added Result Qualifier Unit Limits Analyte D %Rec 7.00 7.0 SU 100 98 - 102 рН

Eurofins TestAmerica, Cedar Falls

QC Association Summary

Client: SCS Engineers

Project/Site: Ottumwa Midland LF 25220073

HPLC/IC

Analysis Batch: 281431

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-182584-1	MW-301	Total/NA	Water	9056A	
310-182584-2	MW-303	Total/NA	Water	9056A	
MB 310-281431/3	Method Blank	Total/NA	Water	9056A	
LCS 310-281431/4	Lab Control Sample	Total/NA	Water	9056A	

Metals

Prep Batch: 280347

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-182584-1	MW-301	Total/NA	Water	3010A	
310-182584-2	MW-303	Total/NA	Water	3010A	
MB 310-280347/1-A	Method Blank	Total/NA	Water	3010A	
LCS 310-280347/2-A	Lab Control Sample	Total/NA	Water	3010A	
310-182584-1 DU	MW-301	Total/NA	Water	3010A	

Analysis Batch: 280748

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-182584-1	MW-301	Total/NA	Water	6020A	280347
310-182584-2	MW-303	Total/NA	Water	6020A	280347
MB 310-280347/1-A	Method Blank	Total/NA	Water	6020A	280347
LCS 310-280347/2-A	Lab Control Sample	Total/NA	Water	6020A	280347
310-182584-1 DU	MW-301	Total/NA	Water	6020A	280347

Analysis Batch: 280866

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-182584-1	MW-301	Total/NA	Water	6020A	280347
310-182584-2	MW-303	Total/NA	Water	6020A	280347
MB 310-280347/1-A	Method Blank	Total/NA	Water	6020A	280347
LCS 310-280347/2-A	Lab Control Sample	Total/NA	Water	6020A	280347
310-182584-1 DU	MW-301	Total/NA	Water	6020A	280347

General Chemistry

Analysis Batch: 280254

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-182584-1	MW-301	Total/NA	Water	SM 4500 H+ B	
310-182584-2	MW-303	Total/NA	Water	SM 4500 H+ B	
LCS 310-280254/1	Lab Control Sample	Total/NA	Water	SM 4500 H+ B	

Analysis Batch: 280375

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Ba	atch
310-182584-1	MW-301	Total/NA	Water	SM 2540C	
310-182584-2	MW-303	Total/NA	Water	SM 2540C	
MB 310-280375/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 310-280375/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Field Service / Mobile Lab

Analysis Batch: 281404

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-182584-1	MW-301	Total/NA	Water	Field Sampling	
310-182584-2	MW-303	Total/NA	Water	Field Sampling	

Job ID: 310-182584-1

Eurofins TestAmerica, Cedar Falls

Lab Chronicle

Client: SCS Engineers Job ID: 310-182584-1

Project/Site: Ottumwa Midland LF 25220073

Client Sample ID: MW-301

Date Collected: 05/26/20 13:20 Date Received: 05/27/20 16:45 Lab Sample ID: 310-182584-1

Matrix: Water

Batch Batch Dilution Batch **Prepared** Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis 9056A 5 281431 06/05/20 19:30 ACJ TAL CF Total/NA 3010A TAL CF Prep 280347 05/29/20 08:00 HED Total/NA Analysis 6020A 1 280748 06/01/20 22:41 ACJ TAL CF Total/NA Prep 3010A 280347 05/29/20 08:00 HED TAL CF Total/NA Analysis 6020A 1 280866 06/02/20 14:10 ACJ TAL CF Total/NA SM 2540C 1 280375 05/28/20 14:53 SAS TAL CF Analysis Total/NA Analysis SM 4500 H+ B 1 280254 05/27/20 21:23 JMH TAL CF Total/NA Analysis 281404 05/26/20 13:20 ANO TAL CF Field Sampling 1

Client Sample ID: MW-303

Date Collected: 05/26/20 12:15

Lab Sample ID: 310-182584-2

Matrix: Water

Date Received: 05/27/20 16:45

Dilution Batch **Batch** Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis 9056A 281431 06/05/20 19:46 ACJ TAL CF Total/NA 3010A 280347 05/29/20 08:00 HED TAL CF Prep Total/NA Analysis 6020A 1 280748 06/01/20 22:46 ACJ TAL CF TAL CF Total/NA Prep 3010A 280347 05/29/20 08:00 HED Total/NA Analysis 6020A 1 280866 06/02/20 14:15 ACJ TAL CF Total/NA Analysis SM 2540C 1 280375 05/28/20 14:53 SAS TAL CF Total/NA SM 4500 H+ B 05/27/20 21:24 JMH TAL CF Analysis 1 280254 281404 05/26/20 12:15 ANO TAL CF Total/NA Analysis Field Sampling 1

Laboratory References:

TAL CF = Eurofins TestAmerica, Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

4

5

7

9 10

11

13

14

Accreditation/Certification Summary

Client: SCS Engineers Job ID: 310-182584-1

Project/Site: Ottumwa Midland LF 25220073

Laboratory: Eurofins TestAmerica, Cedar Falls

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
lowa	State	007	12-01-21

1

3

4

5

8

9

11

40

14

Method Summary

Client: SCS Engineers

Project/Site: Ottumwa Midland LF 25220073

Method **Method Description** Protocol Laboratory 9056A Anions, Ion Chromatography SW846 TAL CF Metals (ICP/MS) SW846 TAL CF 6020A SM 2540C Solids, Total Dissolved (TDS) TAL CF SM SM 4500 H+ B рΗ SM TAL CF Field Sampling Field Sampling **EPA** TAL CF 3010A Preparation, Total Metals SW846 TAL CF

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CF = Eurofins TestAmerica, Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

Job ID: 310-182584-1

5

O

8

9

TU

12

13

A E

Eurofins TestAmerica, Cedar Falls

Environment Testing TestAmerica

Cooler/Sample Receipt and Temperature Log Form

Client Information		
Client: SCS Engineers		
City/State: Clive	STATE	Project: Ottumua Midland LF 25216073
Receipt Information		
Date/Time Received: DATE/27/20	1645	Received By:
Delivery Type: ☐ UPS ☐ FedEx	[☐ FedEx Ground ☐ US Mail ☐ Spee-Dee
Lab Courier 🔲 Lab Fie	eld Services [Client Drop-off Other:
Condition of Cooler/Containers		
Sample(s) received in Cooler? . Yes	☐ No	If yes: Cooler ID:
Multiple Coolers?	₽ No	If yes: Cooler # of
Cooler Custody Seals Present?	₩ No	If yes: Cooler custody seals intact? ☐ Yes ☐ No
Sample Custody Seals Present?	⊠ No	If yes: Sample custody seals intact?☐ Yes ☐ No
Trip Blank Present?	No No	If yes: Which VOA samples are in cooler? ↓
Temperature Record		是这一个人,我们就是一个人的人,也不是一个人的人,他们就是一个人的人。 第二章
Coolant: Wet ice Blue ice	☐ Dry ice	☐ Other:
Thermometer ID:		Correction Factor (°C): + O ₁
• Temp Blank Temperature - If no temp blank, or	r temp blank tem	perature above criteria, proceed to Sample Container Temperature
Uncorrected Temp (°C):		Corrected Temp (°C):
Sample Container Temperature		LOOMEDO
Container(s) used:		CONTAINER 2
Uncorrected Temp (°C):		
Corrected Temp (°C):		
Exceptions Noted		
If temperature exceeds criteria, was sar a) If yes: Is there evidence that the ch		
(e.g., bulging septa, broken/cracked bo	ottles, frozen s	
Note: If yes, contact PM before proceeding	g. If no, procee	ed with login
Additional Comments		
	91	

Document: CF-LG-WI-002

Revision: 25 Date: 06/17/2019

Eurofins TestAmerica, Cedar Falls

General temperature criteria is 0 to 6°C Bacteria temperature criteria is 0 to 10°C

Sample: Naturalan Phone: 515-250-05 ATT Requested: Due Date Requested: Due Date Requested: Due Date Requested: Due Date Requested: Political Profect # Profect # 31011020 Sample Date Sample (6) Sample (6) Sample (1) Samp	Sample Matrix Sample (Werman, Type (Werman, Analys Preservation Code: N N N N D D Water N N N N D D Water N N N N N D D Water N N N N N D D Water N N N N N D D Mater N N N N N N D D Mater N N N N N N D D Mater N N N N N N D D Mater N N N N N N N N N N N N N N N N N N N	Analysis Requested	200 C No. 310-48958-14130.1 Page: Page 1 of 1 Job #: A - HCL
Information Infor	Matr (W-war S-soul O-wastus, tion Co Wat	is Req	310-48968-1412 Page: Page 1 of 1 Job #:
Signature Matthew Canalan Phone 515-250-03 Skman Road Suite 26 27 Skman Road Suite 27 Skman Road Suite 26 27 Skman Road Suite 27 Skman Road Su	Matr (Www.mar Sesol Owwast Wat Wat	Analysis Requested	Page: Page 1 of 1 Job #: Paservation Coc A- HCL B- NaOH C- Th Acetate D- Nitric Acid E- NaHSO4 E- NaHSO4 G- Amchlor H - Ascorbic Acid J- Di Water K - EDTA Cother: Appecial Irr
Simple Date Requested: Skman Road Suite 20 27 Skman Road Suite 20 27 TAT Requested: School Contract TAT Requested: TAT Requested: Port Contract Port Contract Port Contract Port Contract Modern Requested: Midland LF 25216073 Sample Date Time 6 Sample MA MA MA MA A A A A A A A A	Matr (Wewa Sesol Owysation Co Wat Wat	Analysis Requested	Preservation Coc Preservation Coc A- HCL B- Nach CZn Acetate CZn Acetate D- Nitric Acid E- NathSO4 F- MeOH H- Ascorbic Acid I- Ice J- DI Water K- EDTA I- EDA Other:
Sample Due Date Requested: Sample Convication Midland LF 25216073 Sample (Sample Convication) Sample (Sample (Samp	Water N N 2540C_Calcd, SM4500_H+		Preservation Coc A- HCL B- NaOH C-Zn Acetate D- Nitric Acid E- NaHSO4 F- MeOH H- Ascorbic Acid J- Di Water K- EDTA L- EDA Other: Special In
TAT Requested (days): 15-250-0265 15-250-0265 15-250-0265 100-200-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Water V N 2540C_Calcd, SM4500_H+		B-NaCH B-NaCH C-Zn Acetate C-Zn
Per Constract 15-250-03105 Post. Post. Project Worth	Water W Water N N Schoc_Calcd, SMAS00_H+		Special Ir
15-250-0365 m.c.ahalang Siseasineers.com Work Midland LF 25216073 Admin A Midland LF Sample Date Time of Sample Date Sample (6) Sample Date Sample (6) Sample Date Time of Sample Date Sample (6) Sample (7) A A A A A A A A A A A A A	Water V Nater N Nater Na		F - MeOH G - Amchlor H - Ascorbic Acid J - Di Water L - EDA Other:
Messengineers.com Midland LF 25216073 Midland LF 25216073 Sow#: ALVIN WO #: Project #: 31011020 SSOW#: FLANN WO #: FLANN WO #: AND	Water N Nater N N N Nater N N N Nater N N N N N N N N N N N N N N N N N N N		I - Ice N - EDTA L - EDA Other:
## Project #: 310/1020 SSOW#: Sample Date Time of Tim	Water N X Scacc_Calcd, SM4500_H+		N - EDIA L - EDA Other: Special Ir
dentification Sample (IF Sample Date Time of Time of Sample (IF Sample (IF Sample Date Time of Sample (IF Sample Date Date Date Date Date Date Date Dat	Matrix Matrix (Www.en. (Www.en		Other:
Sample S	Matrix (Www.netr., Sepold, Sepold, Sepold, Sepold, Water N Wat		
Sample Date 1 1 1 1 1 1 1 1 1	Water N N Water Water Water N N N N N N N N N N N N N N N N N N N		
5/26/2020 1320	× × z z z		0
4 4 20 20 1215 (X Z Z		6
920 200 1215 (X Z Z		0
	Water		C
MWV-122M Field Blank			0
Field Blank	Water		0
	Water		0
	Water		
Possible Hazard Identification Non-Hazard Flammable Skin Irritant Porcor B Munknown Radiological		essed if samples are reposal By Lab	Archive For Months
, IIi, IV, Other (specify)	Spacial Instruction	Spacial Instructional de l'adquirements.	
l by:	Time:	Method of Shipment:	
Relinquished by: Relinquished by: Relinquished by:	Company Received by:	Date/Time.	26 13.36 Company
Relinquished by: Date/Time:	Company Received by:	t Muther Starts	1645 Company
Custody Seals Intact: Custody Seal No.:	Cooler/Tempera	Coolef/Temperature(s) °C and Other Remarks:	

Fredrick, Sandie

From: Blodgett, Meghan <mblodgett@scsengineers.com>

Sent: Wednesday, May 27, 2020 8:00 PM

To: Fredrick, Sandie Cc: Kron, Nicole

Subject: Parameter list for Ottumwa Midland Landfill MW-301 and MW-303 - SCS #25220073

EXTERNAL EMAIL*

Sandie,

We couldn't get to these two wells last week, so they were sampled yesterday. They should have arrived at the lab today. The parameter list is below (this should also be reflected on the COC).

Chloride

Fluoride

Sulfate

TDS

Boron

Calcium

рН

Let us know if you have any questions on this one. Thank you.

Meghan Blodgett, PG*
Hydrogeologist
SCS Engineers
2830 Dairy Drive
Madison, WI 53718-6751 USA
608-345-9221 (C)
mblodgett@scsengineers.com
*Licensed in WI

Driven by Client Success

www.scsengineers.com

* WARNING - EXTERNAL: This email originated from outside of Eurofins TestAmerica. Do not click any links or open any attachments unless you trust the sender and know that the content is safe!

Client: SCS Engineers Job Number: 310-182584-1

Login Number: 182584 List Source: Eurofins TestAmerica, Cedar Falls

List Number: 1

Creator: Homolar, Dana J

Creator. Holliolar, Dalla J		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins TestAmerica, Cedar Falls

Ottumwa Midland Landfill / SCS Engineers Project #25220073.00 **Groundwater Monitoring Results - Field Parameters** May 2020

Sample	Date/Time	Groundwater Elevation (feet amsl)	Temperature (Deg. C)	pH (Std. Units)	Dissolved Oxygen (mg/L)	Specific Conductivity (µmhos/cm)	ORP (mV)	Turbidity (NTU)
MW-301	5/26 - 1320	687.29	15.8	2.67	0.41	1546	-57.8	21.8
MW-302	5/21 - 1415	686.25	13.1	7.05	1.06	1129	-83.4	12.5
MW-303	5/26 - 1215	687.14	14.4	6.21	2.31	1963	-30.0	57.1
MW-102M	5/21 - 1045	717.61	13.1	7.82	1.59	2260	21.2	297
MW-122M	5/21 - 1005	724.23	13.0	16.91	0.61	14090	-4.4	2.31

Abbreviations:

amsl = above mean sea level

ORP = Oxidation Reduction (REDOX)

mV = millivolts

NTU = Nephelometric Turbidity Units

umhos/cm = microSiemens per centimeter mg/L = milligrams per liter

NA = Not Analyzed

Laboratory Notes/Qualifiers:

none

 \sim Last revision by: Created by:

NPK NSC Scientist QA/QC: Checked by:

10/21/2019 10/17/2019 10/31/2019 Date: Date:

Date: 6/27/2019

Date:

C2 June 2020 Resample

ANALYTICAL REPORT

Eurofins TestAmerica, Cedar Falls 3019 Venture Way Cedar Falls, IA 50613 Tel: (319)277-2401

Laboratory Job ID: 310-185156-1

Client Project/Site: Ottumwa Midland LF 25220073

For:

eurofins 🔅

SCS Engineers 2830 Dairy Drive Madison, Wisconsin 53718

Attn: Meghan Blodgett

Authorized for release by: 7/6/2020 4:34:29 PM

Sandie Fredrick, Project Manager II (920)261-1660

sandie.fredrick@testamericainc.com

·····LINKS ······

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents	
Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
	5
Client Sample Results	6
Definitions	8
QC Sample Results	9
QC Association	10
Chronicle	11
Certification Summary	12
Method Summary	13
Chain of Custody	14
Receipt Checklists	16
Field Data Sheets	17

Case Narrative

Client: SCS Engineers

Project/Site: Ottumwa Midland LF 25220073

Job ID: 310-185156-1

Job ID: 310-185156-1

Laboratory: Eurofins TestAmerica, Cedar Falls

Narrative

Job Narrative 310-185156-1

Comments

No additional comments.

Receipt

The samples were received on 6/30/2020 5:45 PM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 0.4° C.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Sample Summary

Client: SCS Engineers

Project/Site: Ottumwa Midland LF 25220073

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received
 Asset ID

 310-185156-1
 MW-303
 Water
 06/29/20 14:30
 06/30/20 17:45

 310-185156-2
 Field Blank
 Water
 06/29/20 14:30
 06/30/20 17:45

Job ID: 310-185156-1

3

4

5

_

9

11

16

14

Detection Summary

Client: SCS Engineers Job ID: 310-185156-1

Project/Site: Ottumwa Midland LF 25220073

Client Sample ID: MW-303

Lab Sample ID: 310-185156-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	6.9		5.0	2.0	mg/L	5	_	9056A	Total/NA
Ground Water Elevation	687.36				ft	1		Field Sampling	Total/NA
Oxidation Reduction Potential	-53.3				millivolts	1		Field Sampling	Total/NA
Oxygen, Dissolved, Client Supplied	0.49				mg/L	1		Field Sampling	Total/NA
pH, Field	6.74				SU	1		Field Sampling	Total/NA
Specific Conductance, Field	1739				umhos/cm	1		Field Sampling	Total/NA
Temperature, Field	16.1				Degrees C	1		Field Sampling	Total/NA
Turbidity, Field	59.0				NTU	1		Field Sampling	Total/NA

Client Sample ID: Field Blank

Lab Sample ID: 310-185156-2

No Detections.

This Detection Summary does not include radiochemical test results.

Client Sample Results

Client: SCS Engineers Job ID: 310-185156-1

Project/Site: Ottumwa Midland LF 25220073

Turbidity, Field

Lab Sample ID: 310-185156-1 Client Sample ID: MW-303

Date Collected: 06/29/20 14:30

Matrix: Water Date Received: 06/30/20 17:45

Method: 9056A - Anions, Ion C	hromatogr	aphy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6.9		5.0	2.0	mg/L			07/01/20 19:38	5
- Method: Field Sampling - Field	d Sampling								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ground Water Elevation	687.36				ft			06/29/20 14:30	1
Oxidation Reduction Potential	-53.3				millivolts			06/29/20 14:30	1
Oxygen, Dissolved, Client Supplied	0.49				mg/L			06/29/20 14:30	1
pH, Field	6.74				SU			06/29/20 14:30	1
Specific Conductance, Field	1739				umhos/cm			06/29/20 14:30	1
Temperature, Field	16.1				Degrees C			06/29/20 14:30	1

59.0

NTU

Eurofins TestAmerica, Cedar Falls

06/29/20 14:30

Client Sample Results

Client: SCS Engineers Job ID: 310-185156-1

Project/Site: Ottumwa Midland LF 25220073

Chloride

Client Sample ID: Field Blank

Lab Sample ID: 310-185156-2

Date Collected: 06/29/20 14:30 Matrix: Water Date Received: 06/30/20 17:45

Method: 9056A - Anions, Ion Chromatography
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

1.0

0.40 mg/L

< 0.40

5

6

07/01/20 19:53

9

11

13

14

Definitions/Glossary

Client: SCS Engineers Job ID: 310-185156-1

Project/Site: Ottumwa Midland LF 25220073

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dil Fac **Dilution Factor** DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins TestAmerica, Cedar Falls

QC Sample Results

Client: SCS Engineers Job ID: 310-185156-1

Project/Site: Ottumwa Midland LF 25220073

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 310-283997/3 **Client Sample ID: Method Blank**

Matrix: Water

Analysis Batch: 283997 MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Chloride 1.0 0.40 mg/L 07/01/20 13:23 <0.40

Lab Sample ID: LCS 310-283997/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 283997

LCS LCS %Rec. Spike Added Result Qualifier Analyte Unit D %Rec Limits

Chloride 10.0 9.59 96 mg/L 90 - 110

Prep Type: Total/NA

QC Association Summary

Client: SCS Engineers Job ID: 310-185156-1

Project/Site: Ottumwa Midland LF 25220073

HPLC/IC

Analysis Batch: 283997

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-185156-1	MW-303	Total/NA	Water	9056A	
310-185156-2	Field Blank	Total/NA	Water	9056A	
MB 310-283997/3	Method Blank	Total/NA	Water	9056A	
LCS 310-283997/4	Lab Control Sample	Total/NA	Water	9056A	

Field Service / Mobile Lab

Analysis Batch: 284211

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-185156-1	MW-303	Total/NA	Water	Field Sampling	

3

4

5

7

8

9

1 1

4.0

14

Lab Chronicle

Client: SCS Engineers Job ID: 310-185156-1

Project/Site: Ottumwa Midland LF 25220073

Client Sample ID: MW-303 Lab Sample ID: 310-185156-1

Date Collected: 06/29/20 14:30 Matrix: Water

Date Received: 06/30/20 17:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		5	283997	07/01/20 19:38	ACJ	TAL CF
Total/NA	Analysis	Field Sampling		1	284211	06/29/20 14:30	SJF	TAL CF

Client Sample ID: Field Blank

Lab Sample ID: 310-185156-2

Date Collected: 06/29/20 14:30 Matrix: Water

Date Received: 06/30/20 17:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1	283997	07/01/20 19:53	ACJ	TAL CF

Laboratory References:

TAL CF = Eurofins TestAmerica, Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

3

6

7

9

10

12

13

Accreditation/Certification Summary

Client: SCS Engineers Job ID: 310-185156-1

Project/Site: Ottumwa Midland LF 25220073

Laboratory: Eurofins TestAmerica, Cedar Falls

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
lowa	State	007	12-01-21

•

3

4

5

R

9

11

12

14

Method Summary

Client: SCS Engineers

Project/Site: Ottumwa Midland LF 25220073

Method	Method Description	Protocol	Laboratory
9056A	Anions, Ion Chromatography	SW846	TAL CF
Field Sampling	Field Sampling	EPA	TAL CF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CF = Eurofins TestAmerica, Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

Eurofins TestAmerica, Cedar Falls

Job ID: 310-185156-1

Environment Testing TestAmerica

Cooler/Sample Receipt and Temperature Log Form

Client Information	
Client: SCS Engineers	
City/State: STATEA	Project: Otherway Midland CF
Receipt Information	
Date/Time Received: DATE 20(20 745	Received By:
Delivery Type: ☐ UPS ☐ FedEx ☐	☐ FedEx Ground ☐ US Mail ☐ Spee-Dee
Lab Courier Lab Field Services	Client Drop-off Other:
Condition of Cooler/Containers	
Sample(s) received in Cooler? Yes No	If yes: Cooler ID:
Multiple Coolers? ☐ Yes ☐ Ño	If yes: Cooler # of
Cooler Custody Seals Present? Yes No	If yes: Cooler custody seals intact? ☐ Yes ☐ No
Sample Custody Seals Present? Yes No	If yes: Sample custody seals intact? ☐ Yes ☐ No
Trip Blank Present?	If yes: Which VOA samples are in cooler? ↓
/	
Temperature Record	
Coolant: Wet ice Blue ice Dry ice	Other: NONE
Thermometer ID:	Correction Factor (°C):
• Temp Blank Temperature - If no temp blank, or temp blank tem	perature above criteria, proceed to Sample Container Temperature
Uncorrected Temp (°C): 0.3	Corrected Temp (°C):
Sample Container Temperature	
Container(s) used:	CONTAINER 2
Uncorrected Temp (°C):	
Corrected Temp (°C):	
Exceptions Noted	
 If temperature exceeds criteria, was sample(s) receiv a) If yes: Is there evidence that the chilling process 	
 If temperature is <0°C, are there obvious signs that t (e.g., bulging septa, broken/cracked bottles, frozen s 	
Note: If yes, contact PM before proceeding. If no, proceed Additional Comments	d with login
Additional Comments	CONTRACTOR AND
<u>'</u>	
14	

Document: CF-LG-WI-002

Revision: 25 Date: 06/17/2019

Eurofins TestAmerica, Cedar Falls Bacteria tempe 02/04/2021 - Classifideageo14 of 18 ernal - ECRM7850469

General temperature criteria is 0 to 6°C Bacteria temperature criteria is 0 to 10°C

7/6/2020

3

5

7

10

12

14

Eurofins TestAmerica, Cedar Falls 3019 Venture Way Cedar Falls, 1A 50613 Phone: 319-277-2401 Fax: 319-277-2425	Ö	Chain of Custody Record	stody Re		TestAmerica Des Moines SC 214	s SC 💸 eurofins	Fins Environment Testing America
Client Information	Sampler	ni Cahalan		Lab PM: Fredrick, Sandie	Carrier Tracking No(s)	(s): COC No: 310-51415-15659.1	5-15659.1
Client Contact: Louise Jennings Matthicky Calvallan	Phone: 515-250	0		E-Mail: sandie.fredrick@testamericainc.com	ainc.com	Page: Page 1 of	-
					Analysis Requested	;# qor	
Address: 8450 Hickman Road Suite 🧨 🏋 🗖	Due Date Requested:	per TAT				Preservation Codes	73
	TAT Requested (days):	101		əjej		A - HCL B - NaOH C - Zn Acetate D - Nitric Acid	
IA, 50325 Phone: <15-250-03(ac	ropa	700				E - NaHSOA F - MeOH G - Amchlor	
Email:	WO#.		1	(0)			
Project Name: Ottumwa Midland LF 25216073	Project #: 31011020			10 88		tainer L-EDA L-EDA	
Site: Ottamined Midland LF	SSOW#:		Jumos	A) as		of con	
	Sample Date	Sample Type Sample (C=comp,	Matrix (W=water, S=solld, O=wastefoll,	ield Filtered : erform MS/M .0RGFM_		TedmuM leto	
	1	1	ation Code:	4X			Special instructions/Note:
MW-303	(6/29/2000 il	1430 G		*		1	bolo like analysis al
Field Blank	3020	1430 6	Water	× × ×		00197	all of A
0549							
					3.		
						10 X	- day TAT *
					V		
770.504							
						. 1	×
Possible Hazard Identification Non-Hazard Flammable Skin Irritant Pe	Poison B H Unknown	Radiological	je:	Sample Disposal (At	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Oisposal By Lab Mon	ples are retained longer	than 1 month) Months
ested: I, II, III, IV, Other (specify)				Special Instructions/QC Requirements	/QC Requirements:		
Empty Kit Relinquished by:	Date:	44		Time: /	Method of Shipment	ipment:	
Relinquished by: Matthew Calnalun	Date/Time	1340	Company	Received by:	Sold American	Date/Time (2012)	(74 Company
	Date/Time:		Company	Received by:		Date/Time:	Company
Relinquished by:	Date/Time:		Company	Received by:		Date/Time:	Company
Custody Seals Intact: Custody Seal No.:				Cooler Temperature	Cooler Temperature(s) °C and Other Remarks:		
J							0100/21/10 11

Login Sample Receipt Checklist

Client: SCS Engineers Job Number: 310-185156-1

Login Number: 185156 List Source: Eurofins TestAmerica, Cedar Falls

List Number: 1

Creator: Homolar, Dana J

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Fredrick, Sandie

Sandie,

Field data for MW-303 at OML are below:

Groundwater elevation: 687.36 ft amsl

Temperature: 16.1 deg C

pH: 6.74 std. units ORP: -53.3 mV DO: 0.49 mg/L Turbidity: 59.0 NTU Sp. Cond: 1739 us/cm

Meghan Blodgett SCS Engineers Madison, WI 608-345-9221 (C) mblodgett@scsengineers.com

www.scsengineers.com

Please let us know if we met your expectations by rating the service you received from TestAmerica on this project by visiting our website at: Project Feedback

We are thankful for your business and hope that you have a wonderful day!

Sandie Fredrick

Project Manager

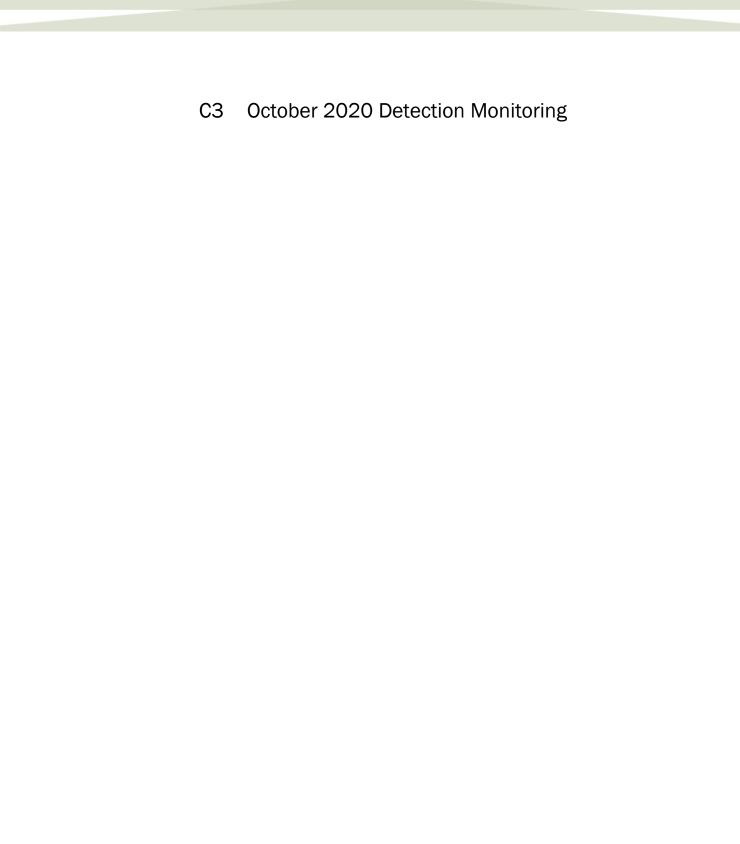
Eurofins TestAmerica 2417 Bond Street University Park, IL 60484 USA

Phone: 920-261-1660

E-mail: sandie.fredrick@testamericainc.com www.EurofinsUS.com | www.TestAmericainc.com

Please note: In order to continue to provide critical testing services, **Eurofins Environment Testing laboratories in the US are maintaining our courier services and continue to sample, analyze and report all test data as usual.** The situation around COVID-19 continues to be fluid and we are continuing to follow local and government mandates as applicable. For up-to-date business information, visit our website and follow us on Facebook and LinkedIn.

Links to use:


Website: https://www.eurofinsus.com/environment-testing/

1

7/6/2020

Facebook: https://www.facebook.com/EurofinsEnvTesting

LinkedIn: https://www.linkedin.com/company/eurofins-env-testing-america/

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Cedar Falls 3019 Venture Way Cedar Falls, IA 50613 Tel: (319)277-2401

Laboratory Job ID: 310-192584-1

Client Project/Site: Ottumwa Midland LF 25220073

For:

SCS Engineers 2830 Dairy Drive Madison, Wisconsin 53718

Attn: Meghan Blodgett

Sanden freduce

Authorized for release by: 10/23/2020 11:26:50 AM

Sandie Fredrick, Project Manager II (920)261-1660 sandra.fredrick@eurofinset.com

·····LINKS ······

Review your project results through
Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents	
Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Detection Summary	5
Client Sample Results	7
Definitions	13
QC Sample Results	14
QC Association	16
Chronicle	18
Certification Summary	20
Method Summary	21
Chain of Custody	22
Receipt Checklists	25
Field Data Sheets	26

Case Narrative

Client: SCS Engineers

Project/Site: Ottumwa Midland LF 25220073

Job ID: 310-192584-1

Job ID: 310-192584-1

Laboratory: Eurofins TestAmerica, Cedar Falls

Narrative

Job Narrative 310-192584-1

Comments

No additional comments.

Receipt

The samples were received on 10/8/2020 5:50 PM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 4.8° C.

HPLC/IC

Method 9056A: The following sample was diluted due to the nature of the sample matrix: MW-122M (310-192584-5). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method 3010A: The reference method requires samples to be preserved to a pH of <2. The following samples were received with insufficient preservation at a pH of >2: MW-102M (310-192584-4) and MW-122M (310-192584-5). The sample(s) was preserved to the appropriate pH in the laboratory.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Sample Summary

Client: SCS Engineers

310-192584-6

Project/Site: Ottumwa Midland LF 25220073

Field Blank

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
310-192584-1	MW-301	Water	10/06/20 13:17	10/08/20 17:50	
310-192584-2	MW-302	Water	10/06/20 09:30	10/08/20 17:50	
10-192584-3	MW-303	Water	10/06/20 11:22	10/08/20 17:50	
10-192584-4	MW-102M	Water	10/07/20 08:35	10/08/20 17:50	
310-192584-5	MW-122M	Water	10/07/20 09:24	10/08/20 17:50	

10/06/20 13:30 10/08/20 17:50

Water

Job ID: 310-192584-1

4

5

_

8

10

11

13

14

Job ID: 310-192584-1

Client: SCS Engineers Project/Site: Ottumwa Midland LF 25220073

Client Sample ID: MW-301

Lab Sample ID: 310-192584-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	24		5.0	2.0	mg/L	5	_	9056A	Total/NA
Fluoride	0.67		0.50	0.23	mg/L	5		9056A	Total/NA
Sulfate	620		20	14	mg/L	20		9056A	Total/NA
Boron	770		100	80	ug/L	1		6020A	Total/NA
Calcium	180		0.50	0.19	mg/L	1		6020A	Total/NA
Total Dissolved Solids	1400		150	130	mg/L	1		SM 2540C	Total/NA
pH	6.9	HF	0.1	0.1	SU	1		SM 4500 H+ B	Total/NA
Ground Water Elevation	686.80				ft	1		Field Sampling	Total/NA
Oxidation Reduction Potential	-105.9				millivolts	1		Field Sampling	Total/NA
Oxygen, Dissolved, Client Supplied	0.25				mg/L	1		Field Sampling	Total/NA
pH, Field	7.22				SU	1		Field Sampling	Total/NA
Specific Conductance, Field	1820				umhos/cm	1		Field Sampling	Total/NA
Temperature, Field	14.5				Degrees C	1		Field Sampling	Total/NA
Turbidity, Field	21.4				NTU	1		Field Sampling	Total/NA

Client Sample ID: MW-302

Lab Sample ID: 310-192584-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	7.2		5.0	2.0	mg/L	5	_	9056A	Total/NA
Fluoride	1.1		0.50	0.23	mg/L	5		9056A	Total/NA
Sulfate	73		5.0	3.6	mg/L	5		9056A	Total/NA
Boron	870		100	80	ug/L	1		6020A	Total/NA
Calcium	65		0.50	0.19	mg/L	1		6020A	Total/NA
Total Dissolved Solids	700		30	26	mg/L	1		SM 2540C	Total/NA
pH	7.6	HF	0.1	0.1	SU	1		SM 4500 H+ B	Total/NA
Ground Water Elevation	685.86				ft	1		Field Sampling	Total/NA
Oxidation Reduction Potential	-169.4				millivolts	1		Field Sampling	Total/NA
Oxygen, Dissolved, Client Supplied	0.28				mg/L	1		Field Sampling	Total/NA
pH, Field	7.14				SU	1		Field Sampling	Total/NA
Specific Conductance, Field	1025				umhos/cm	1		Field Sampling	Total/NA
Temperature, Field	13.5				Degrees C	1		Field Sampling	Total/NA
Turbidity, Field	136				NTU	1		Field Sampling	Total/NA

Client Sample ID: MW-303

Lab Sample ID: 310-192584-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	7.3		5.0	2.0	mg/L	5	_	9056A	Total/NA
Fluoride	0.88		0.50	0.23	mg/L	5		9056A	Total/NA
Sulfate	230		5.0	3.6	mg/L	5		9056A	Total/NA
Boron	740		100	80	ug/L	1		6020A	Total/NA
Calcium	100		0.50	0.19	mg/L	1		6020A	Total/NA
Total Dissolved Solids	840		30	26	mg/L	1		SM 2540C	Total/NA
pH	7.2	HF	0.1	0.1	SU	1		SM 4500 H+ B	Total/NA
Ground Water Elevation	686.35				ft	1		Field Sampling	Total/NA
Oxidation Reduction Potential	-137.3				millivolts	1		Field Sampling	Total/NA
Oxygen, Dissolved, Client Supplied	0.30				mg/L	1		Field Sampling	Total/NA
pH, Field	7.01				SU	1		Field Sampling	Total/NA
Specific Conductance, Field	1262				umhos/cm	1		Field Sampling	Total/NA
Temperature, Field	13.9				Degrees C	1		Field Sampling	Total/NA
Turbidity, Field	240				NTU	1		Field Sampling	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Cedar Falls

Job ID: 310-192584-1

Client: SCS Engineers Project/Site: Ottumwa Midland LF 25220073

Client Sample ID: MW-102M

Lab Sample ID: 310-192584-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	14		5.0	2.0	mg/L	5	_	9056A	Total/NA
Fluoride	5.3		0.50	0.23	mg/L	5		9056A	Total/NA
Sulfate	350		5.0	3.6	mg/L	5		9056A	Total/NA
Boron	1600		100	80	ug/L	1		6020A	Total/NA
Calcium	150		0.50	0.19	mg/L	1		6020A	Total/NA
Total Dissolved Solids	1700		150	130	mg/L	1		SM 2540C	Total/NA
pH	8.1	HF	0.1	0.1	SU	1		SM 4500 H+ B	Total/NA
Ground Water Elevation	712.05				ft	1		Field Sampling	Total/NA
Oxidation Reduction Potential	22.0				millivolts	1		Field Sampling	Total/NA
Oxygen, Dissolved, Client Supplied	5.11				mg/L	1		Field Sampling	Total/NA
pH, Field	8.29				SU	1		Field Sampling	Total/NA
Specific Conductance, Field	2123				umhos/cm	1		Field Sampling	Total/NA
Temperature, Field	14.5				Degrees C	1		Field Sampling	Total/NA
Turbidity, Field	NM				NTU	1		Field Sampling	Total/NA

Client Sample ID: MW-122M

Lab Sample ID: 310-192584-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	8.3		5.0	2.0	mg/L	5	_	9056A	Total/NA
Sulfate	8700		100	71	mg/L	100		9056A	Total/NA
Boron	4100		1000	800	ug/L	10		6020A	Total/NA
Calcium	430		0.50	0.19	mg/L	1		6020A	Total/NA
Total Dissolved Solids	14000		300	260	mg/L	1		SM 2540C	Total/NA
pH	6.9	HF	0.1	0.1	SU	1		SM 4500 H+ B	Total/NA
Ground Water Elevation	718.39				ft	1		Field Sampling	Total/NA
Oxidation Reduction Potential	-28.2				millivolts	1		Field Sampling	Total/NA
Oxygen, Dissolved, Client Supplied	0.56				mg/L	1		Field Sampling	Total/NA
pH, Field	7.00				SU	1		Field Sampling	Total/NA
Specific Conductance, Field	13603				umhos/cm	1		Field Sampling	Total/NA
Temperature, Field	13.6				Degrees C	1		Field Sampling	Total/NA
Turbidity, Field	NM				NTU	1		Field Sampling	Total/NA

Client Sample ID: Field Blank

Lab Sample ID: 310-192584-6

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	<u></u>	<u> </u>	100	80	ug/L		_	6020A	Total/NA
Calcium	0.24	J	0.50	0.19	mg/L	1		6020A	Total/NA
рН	6.4 H	HF	0.1	0.1	SU	1		SM 4500 H+ B	Total/NA

This Detection Summary does not include radiochemical test results.

Client: SCS Engineers Job ID: 310-192584-1

Project/Site: Ottumwa Midland LF 25220073

Client Sample ID: MW-301 Lab Sample ID: 310-192584-1

Date Collected: 10/06/20 13:17
Date Received: 10/08/20 17:50

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	24		5.0	2.0	mg/L			10/13/20 15:50	5
Fluoride	0.67		0.50	0.23	mg/L			10/13/20 15:50	5
Sulfate	620		20	14	mg/L			10/14/20 08:16	20
Method: 6020A - Metals (ICP/M	IS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	770		100	80	ug/L		10/12/20 08:45	10/14/20 22:55	1
Calcium	180		0.50	0.19	mg/L		10/12/20 08:45	10/14/20 22:55	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1400		150	130	mg/L			10/12/20 11:43	1
pH	6.9	HF	0.1	0.1	SU			10/08/20 21:27	1
Method: Field Sampling - Field	l Sampling								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ground Water Elevation	686.80				ft			10/06/20 13:17	1
Oxidation Reduction Potential	-105.9				millivolts			10/06/20 13:17	1
Oxygen, Dissolved, Client	0.25				mg/L			10/06/20 13:17	1
Supplied					SU			10/06/20 13:17	
pH, Field	7.22								l
Specific Conductance, Field	1820				umhos/cm			10/06/20 13:17	1
Temperature, Field	14.5				Degrees C			10/06/20 13:17	1
Turbidity, Field	21.4				NTU			10/06/20 13:17	1

Eurofins TestAmerica, Cedar Falls

Client: SCS Engineers Job ID: 310-192584-1

Project/Site: Ottumwa Midland LF 25220073

Client Sample ID: MW-302 Lab Sample ID: 310-192584-2

Date Collected: 10/06/20 09:30 Date Received: 10/08/20 17:50

Turbidity, Field

10/06/20 09:30

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	7.2		5.0	2.0	mg/L			10/13/20 16:06	5
Fluoride	1.1		0.50	0.23	mg/L			10/13/20 16:06	5
Sulfate	73		5.0	3.6	mg/L			10/13/20 16:06	5
Method: 6020A - Metals (ICP/M	S)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	870		100	80	ug/L		10/12/20 08:45	10/14/20 22:58	1
Calcium	65		0.50	0.19	mg/L		10/12/20 08:45	10/14/20 22:58	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	700		30	26	mg/L			10/12/20 11:43	1
рΗ	7.6	HF	0.1	0.1	SU			10/08/20 21:32	1
Method: Field Sampling - Field	Sampling								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ground Water Elevation	685.86				ft			10/06/20 09:30	1
Oxidation Reduction Potential	-169.4				millivolts			10/06/20 09:30	1
Oxygen, Dissolved, Client Supplied	0.28				mg/L			10/06/20 09:30	1
pH, Field	7.14				SU			10/06/20 09:30	1
Specific Conductance, Field	1025				umhos/cm			10/06/20 09:30	1
Temperature, Field	13.5				Degrees C			10/06/20 09:30	1

136

NTU

Eurofins TestAmerica, Cedar Falls

Client: SCS Engineers Job ID: 310-192584-1

Project/Site: Ottumwa Midland LF 25220073

Turbidity, Field

Client Sample ID: MW-303 Lab Sample ID: 310-192584-3

Date Collected: 10/06/20 11:22 **Matrix: Water** Date Received: 10/08/20 17:50

Method: 9056A - Anions, Ion C	hromatogr	aphy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	7.3		5.0	2.0	mg/L			10/13/20 16:21	5
Fluoride	0.88		0.50	0.23	mg/L			10/13/20 16:21	5
Sulfate	230		5.0	3.6	mg/L			10/13/20 16:21	5
	IS)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	740		100	80	ug/L		10/12/20 08:45	10/14/20 23:01	1
Calcium	100		0.50	0.19	mg/L		10/12/20 08:45	10/14/20 23:01	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	840		30	26	mg/L			10/12/20 11:43	1
Total Dissolved Solids pH		HF			· ·		· · ·		1
pH	7.2	HF	30		J			10/12/20 11:43	1
	7.2 d Sampling	HF Qualifier	30		SU	- – D	Prepared	10/12/20 11:43	1
pH Method: Field Sampling - Field	7.2 d Sampling		30 0.1	0.1	SU	_ <u>D</u>	Prepared	10/12/20 11:43 10/08/20 21:34	1
pH Method: Field Sampling - Field Analyte	7.2 Sampling Result		30 0.1	0.1	SU	_ <u>D</u>	Prepared	10/12/20 11:43 10/08/20 21:34 Analyzed	1 1 Dil Fac
pH Method: Field Sampling - Field Analyte Ground Water Elevation Oxidation Reduction Potential Oxygen, Dissolved, Client	7.2 Sampling Result 686.35		30 0.1	0.1	SU Unit	_ <u>D</u>	Prepared	10/12/20 11:43 10/08/20 21:34 Analyzed 10/06/20 11:22	1 1 Dil Fac
Method: Field Sampling - Field Analyte Ground Water Elevation Oxidation Reduction Potential Oxygen, Dissolved, Client Supplied	7.2 Sampling Result 686.35 -137.3 0.30		30 0.1	0.1	Unit ft millivolts mg/L	_ <u>D</u>	Prepared	10/12/20 11:43 10/08/20 21:34 Analyzed 10/06/20 11:22 10/06/20 11:22 10/06/20 11:22	1 1 2 Dil Fac 1 1
Method: Field Sampling - Field Analyte Ground Water Elevation Oxidation Reduction Potential Oxygen, Dissolved, Client Supplied pH, Field	7.2 d Sampling Result 686.35 -137.3 0.30		30 0.1	0.1	Unit ft millivolts mg/L	_ <u>D</u>	Prepared	10/12/20 11:43 10/08/20 21:34 Analyzed 10/06/20 11:22 10/06/20 11:22 10/06/20 11:22 10/06/20 11:22	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Method: Field Sampling - Field Analyte Ground Water Elevation Oxidation Reduction Potential Oxygen, Dissolved, Client Supplied	7.2 Sampling Result 686.35 -137.3 0.30		30 0.1	0.1	Unit ft millivolts mg/L	_ <u>D</u>	Prepared	10/12/20 11:43 10/08/20 21:34 Analyzed 10/06/20 11:22 10/06/20 11:22 10/06/20 11:22	1 1 2 Dil Fac 1 1

NTU

240

10/06/20 11:22

Client: SCS Engineers Job ID: 310-192584-1

Project/Site: Ottumwa Midland LF 25220073

Client Sample ID: MW-102M Lab Sample ID: 310-192584-4

Date Collected: 10/07/20 08:35

Date Received: 10/08/20 17:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	14		5.0	2.0	mg/L			10/13/20 16:37	5
Fluoride	5.3		0.50	0.23	mg/L			10/13/20 16:37	5
Sulfate	350		5.0	3.6	mg/L			10/13/20 16:37	5
Method: 6020A - Metals (ICP/M	IS)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	1600		100	80	ug/L		10/12/20 08:45	10/14/20 23:03	1
Calcium	150		0.50	0.19	mg/L		10/12/20 08:45	10/14/20 23:03	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1700		150	130	mg/L			10/12/20 11:43	1
pH	8.1	HF	0.1	0.1	SU			10/08/20 21:35	1
Method: Field Sampling - Field	l Sampling								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ground Water Elevation	712.05				ft			10/07/20 08:35	1
Oxidation Reduction Potential	22.0				millivolts			10/07/20 08:35	1
Oxygen, Dissolved, Client Supplied	5.11				mg/L			10/07/20 08:35	1
pH, Field	8.29				SU			10/07/20 08:35	1
Specific Conductance, Field	2123				umhos/cm			10/07/20 08:35	1
Temperature, Field	14.5				Degrees C			10/07/20 08:35	1
Turbidity, Field	NM				NTU			10/07/20 08:35	1

Eurofins TestAmerica, Cedar Falls

6

3

5

7

0

10

12

4 4

Client: SCS Engineers Job ID: 310-192584-1

Project/Site: Ottumwa Midland LF 25220073

Client Sample ID: MW-122M Lab Sample ID: 310-192584-5

Date Collected: 10/07/20 09:24 **Matrix: Water**

Date Received: 10/08/20 17:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8.3		5.0	2.0	mg/L			10/13/20 16:52	5
Fluoride	<0.23		0.50	0.23	mg/L			10/13/20 16:52	5
Sulfate	8700		100	71	mg/L			10/14/20 08:31	100
Method: 6020A - Metals (ICP/M	S)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	4100		1000	800	ug/L	_	10/12/20 08:45	10/15/20 16:21	10
Calcium	430		0.50	0.19	mg/L		10/12/20 08:45	10/14/20 23:06	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	14000		300	260	mg/L			10/12/20 11:43	1
рН	6.9	HF	0.1	0.1	SU			10/08/20 21:37	1
Method: Field Sampling - Field	Sampling								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ground Water Elevation	718.39				ft			10/07/20 09:24	1
Oxidation Reduction Potential	-28.2				millivolts			10/07/20 09:24	1
Oxygen, Dissolved, Client Supplied	0.56				mg/L			10/07/20 09:24	1
oH, Field	7.00				SU			10/07/20 09:24	1
Specific Conductance, Field	13603				umhos/cm			10/07/20 09:24	1
Temperature, Field	13.6				Degrees C			10/07/20 09:24	1
Turbidity, Field	NM				NTU			10/07/20 09:24	1

Client: SCS Engineers Job ID: 310-192584-1

Project/Site: Ottumwa Midland LF 25220073

Client Sample ID: Field Blank

Lab Sample ID: 310-192584-6 Date Collected: 10/06/20 13:30

Matrix: Water

10/08/20 21:40

Date Received: 10/08/20 17:50

pН

Method: 9056A - Anions, Ion	Chromatogr	aphy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.40		1.0	0.40	mg/L			10/13/20 17:08	1
Fluoride	<0.046		0.10	0.046	mg/L			10/13/20 17:08	1
Sulfate	<0.71		1.0	0.71	mg/L			10/13/20 17:08	1
Method: 6020A - Metals (ICP/	MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	85	J	100	80	ug/L		10/12/20 08:45	10/14/20 23:11	1
Calcium	0.24	J	0.50	0.19	mg/L		10/12/20 08:45	10/14/20 23:11	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	<26		30	26	mg/L			10/12/20 11:43	1

0.1

0.1 SU

6.4 HF

Eurofins TestAmerica, Cedar Falls

Definitions/Glossary

Client: SCS Engineers Job ID: 310-192584-1

Project/Site: Ottumwa Midland LF 25220073

Qualifiers

Metals

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier Qualifier Description

HF Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)
LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

3

4

ļ

6

7

_

10

12

13

Job ID: 310-192584-1

Project/Site: Ottumwa Midland LF 25220073

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 310-295631/3 **Client Sample ID: Method Blank**

Matrix: Water

Client: SCS Engineers

Analysis Batch: 295631

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac D Chloride 1.0 0.40 mg/L < 0.40 10/13/20 13:15 Fluoride <0.046 0.10 0.046 mg/L 10/13/20 13:15 Sulfate < 0.71 1.0 0.71 mg/L 10/13/20 13:15

Lab Sample ID: LCS 310-295631/4 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 295631

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Chloride 9.84 90 - 110 10.0 mg/L 98 Fluoride 2.00 2.11 mg/L 106 90 - 110 Sulfate mg/L 10.0 10.3 103 90 - 110

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: MB 310-295023/1-A Client Sample ID: Method Blank **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 295528

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 100 Boron <80 80 ug/L 10/12/20 08:45 10/14/20 22:14 Calcium < 0.19 0.50 10/12/20 08:45 10/14/20 22:14 0.19 mg/L

Lab Sample ID: LCS 310-295023/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Prep Batch: 295023

Analysis Batch: 295528

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Boron	 200	219		ug/L		109	80 - 120	
Calcium	2.00	1.83		mg/L		92	80 - 120	

Lab Sample ID: 310-192584-5 DU Client Sample ID: MW-122M **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 295528 Prep Batch: 295023 Sample Sample DU DU **RPD** Analyte Result Qualifier Result Qualifier Unit **RPD** Limit Calcium 430 439 mg/L 20

Lab Sample ID: 310-192584-5 DU Client Sample ID: MW-122M Prep Type: Total/NA

Matrix: Water

Analysis Batch: 295753							Prep Bat	ch: 29	5023
	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Boron	4100		4230		ua/L			3	20

Eurofins TestAmerica, Cedar Falls

Prep Batch: 295023

Client: SCS Engineers Job ID: 310-192584-1

Project/Site: Ottumwa Midland LF 25220073

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 310-295081/1 **Client Sample ID: Method Blank**

Matrix: Water

Analysis Batch: 295081

MB MB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac D **Prepared** Total Dissolved Solids 30 26 mg/L 10/12/20 11:43 <26

Lab Sample ID: LCS 310-295081/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 295081

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits **Total Dissolved Solids** 1000 934 mg/L 93 90 - 110

Method: SM 4500 H+ B - pH

Lab Sample ID: LCS 310-294755/1 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 294755

Spike LCS LCS %Rec. Analyte Added Result Qualifier Limits Unit D %Rec рН 7.00 6.9 SU 99 98 - 102

Lab Sample ID: 310-192584-1 DU

Matrix: Water

Analysis Batch: 294755

DU DU RPD Sample Sample Result Qualifier RPD Limit Analyte Result Qualifier Unit D pН 6.9 HF 6.9 SU 0.6

Prep Type: Total/NA

Client Sample ID: MW-301

Prep Type: Total/NA

Client: SCS Engineers

Job ID: 310-192584-1 Project/Site: Ottumwa Midland LF 25220073

HPLC/IC

Analysis Batch: 295631

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-192584-1	MW-301	Total/NA	Water	9056A	
310-192584-1	MW-301	Total/NA	Water	9056A	
310-192584-2	MW-302	Total/NA	Water	9056A	
310-192584-3	MW-303	Total/NA	Water	9056A	
310-192584-4	MW-102M	Total/NA	Water	9056A	
310-192584-5	MW-122M	Total/NA	Water	9056A	
310-192584-5	MW-122M	Total/NA	Water	9056A	
310-192584-6	Field Blank	Total/NA	Water	9056A	
MB 310-295631/3	Method Blank	Total/NA	Water	9056A	
LCS 310-295631/4	Lab Control Sample	Total/NA	Water	9056A	

Metals

Prep Batch: 295023

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-192584-1	MW-301	Total/NA	Water	3010A	_
310-192584-2	MW-302	Total/NA	Water	3010A	
310-192584-3	MW-303	Total/NA	Water	3010A	
310-192584-4	MW-102M	Total/NA	Water	3010A	
310-192584-5	MW-122M	Total/NA	Water	3010A	
310-192584-6	Field Blank	Total/NA	Water	3010A	
MB 310-295023/1-A	Method Blank	Total/NA	Water	3010A	
LCS 310-295023/2-A	Lab Control Sample	Total/NA	Water	3010A	
310-192584-5 DU	MW-122M	Total/NA	Water	3010A	

Analysis Batch: 295528

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-192584-1	MW-301	Total/NA	Water	6020A	295023
310-192584-2	MW-302	Total/NA	Water	6020A	295023
310-192584-3	MW-303	Total/NA	Water	6020A	295023
310-192584-4	MW-102M	Total/NA	Water	6020A	295023
310-192584-5	MW-122M	Total/NA	Water	6020A	295023
310-192584-6	Field Blank	Total/NA	Water	6020A	295023
MB 310-295023/1-A	Method Blank	Total/NA	Water	6020A	295023
LCS 310-295023/2-A	Lab Control Sample	Total/NA	Water	6020A	295023
310-192584-5 DU	MW-122M	Total/NA	Water	6020A	295023

Analysis Batch: 295753

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-192584-5	MW-122M	Total/NA	Water	6020A	295023
310-192584-5 DU	MW-122M	Total/NA	Water	6020A	295023

General Chemistry

Analysis Batch: 294755

Lab Sample ID 310-192584-1	Client Sample ID MW-301	Prep Type Total/NA	Matrix Water	Method SM 4500 H+ B	Prep Batch
310-192584-2	MW-302	Total/NA	Water	SM 4500 H+ B	
310-192584-3	MW-303	Total/NA	Water	SM 4500 H+ B	
310-192584-4	MW-102M	Total/NA	Water	SM 4500 H+ B	
310-192584-5	MW-122M	Total/NA	Water	SM 4500 H+ B	
310-192584-6	Field Blank	Total/NA	Water	SM 4500 H+ B	

QC Association Summary

Client: SCS Engineers Job ID: 310-192584-1

Project/Site: Ottumwa Midland LF 25220073

General Chemistry (Continued)

Analysis Batch: 294755 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 310-294755/1	Lab Control Sample	Total/NA	Water	SM 4500 H+ B	
310-192584-1 DU	MW-301	Total/NA	Water	SM 4500 H+ B	

Analysis Batch: 295081

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-192584-1	MW-301	Total/NA	Water	SM 2540C	
310-192584-2	MW-302	Total/NA	Water	SM 2540C	
310-192584-3	MW-303	Total/NA	Water	SM 2540C	
310-192584-4	MW-102M	Total/NA	Water	SM 2540C	
310-192584-5	MW-122M	Total/NA	Water	SM 2540C	
310-192584-6	Field Blank	Total/NA	Water	SM 2540C	
MB 310-295081/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 310-295081/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Field Service / Mobile Lab

Analysis Batch: 296776

Lab Sample ID 310-192584-1	Client Sample ID MW-301	Prep Type Total/NA	Matrix Water	Method Prep Batc
310-192584-2	MW-302	Total/NA	Water	Field Sampling
310-192584-3	MW-303	Total/NA	Water	Field Sampling
310-192584-4	MW-102M	Total/NA	Water	Field Sampling
310-192584-5	MW-122M	Total/NA	Water	Field Sampling

2

3

0

10

13

14

10

Project/Site: Ottumwa Midland LF 25220073

Client Sample ID: MW-301

Date Received: 10/08/20 17:50

Lab Sample ID: 310-192584-1 Date Collected: 10/06/20 13:17

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A			295631	10/13/20 15:50	ACJ	TAL CF
Total/NA	Analysis	9056A		20	295631	10/14/20 08:16	ACJ	TAL CF
Total/NA	Prep	3010A			295023	10/12/20 08:45	HED	TAL CF
Total/NA	Analysis	6020A		1	295528	10/14/20 22:55	SAD	TAL CF
Total/NA	Analysis	SM 2540C		1	295081	10/12/20 11:43	SAS	TAL CF
Total/NA	Analysis	SM 4500 H+ B		1	294755	10/08/20 21:27	JMH	TAL CF
Total/NA	Analysis	Field Sampling		1	296776	10/06/20 13:17	SLD	TAL CF

Client Sample ID: MW-302 Lab Sample ID: 310-192584-2

Date Collected: 10/06/20 09:30 **Matrix: Water** Date Received: 10/08/20 17:50

Batch **Batch** Dilution Batch **Prepared** Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis 9056A 5 295631 10/13/20 16:06 ACJ TAL CF Total/NA 3010A 295023 10/12/20 08:45 HED TAL CF Prep Total/NA Analysis 6020A 1 295528 10/14/20 22:58 SAD TAL CF Total/NA Analysis SM 2540C 295081 10/12/20 11:43 SAS TAL CF 1 Total/NA Analysis SM 4500 H+ B 1 294755 10/08/20 21:32 JMH TAL CF Total/NA 296776 10/06/20 09:30 SLD TAL CF Analysis Field Sampling

Client Sample ID: MW-303 Lab Sample ID: 310-192584-3

Date Collected: 10/06/20 11:22 **Matrix: Water** Date Received: 10/08/20 17:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		5	295631	10/13/20 16:21	ACJ	TAL CF
Total/NA	Prep	3010A			295023	10/12/20 08:45	HED	TAL CF
Total/NA	Analysis	6020A		1	295528	10/14/20 23:01	SAD	TAL CF
Total/NA	Analysis	SM 2540C		1	295081	10/12/20 11:43	SAS	TAL CF
Total/NA	Analysis	SM 4500 H+ B		1	294755	10/08/20 21:34	JMH	TAL CF
Total/NA	Analysis	Field Sampling		1	296776	10/06/20 11:22	SLD	TAL CF

Lab Sample ID: 310-192584-4 Client Sample ID: MW-102M

Date Collected: 10/07/20 08:35 **Matrix: Water**

Date Received: 10/08/20 17:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A			295631	10/13/20 16:37	ACJ	TAL CF
Total/NA	Prep	3010A			295023	10/12/20 08:45	HED	TAL CF
Total/NA	Analysis	6020A		1	295528	10/14/20 23:03	SAD	TAL CF
Total/NA	Analysis	SM 2540C		1	295081	10/12/20 11:43	SAS	TAL CF
Total/NA	Analysis	SM 4500 H+ B		1	294755	10/08/20 21:35	JMH	TAL CF
Total/NA	Analysis	Field Sampling		1	296776	10/07/20 08:35	SLD	TAL CF

Eurofins TestAmerica, Cedar Falls

Client: SCS Engineers

Project/Site: Ottumwa Midland LF 25220073

Client Sample ID: MW-122M

Date Collected: 10/07/20 09:24 Date Received: 10/08/20 17:50

Lab Sample ID: 310-192584-5

Matrix: Water

Job ID: 310-192584-1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		5	295631	10/13/20 16:52	ACJ	TAL CF
Total/NA	Analysis	9056A		100	295631	10/14/20 08:31	ACJ	TAL CF
Total/NA	Prep	3010A			295023	10/12/20 08:45	HED	TAL CF
Total/NA	Analysis	6020A		1	295528	10/14/20 23:06	SAD	TAL CF
Total/NA	Prep	3010A			295023	10/12/20 08:45	HED	TAL CF
Total/NA	Analysis	6020A		10	295753	10/15/20 16:21	SAD	TAL CF
Total/NA	Analysis	SM 2540C		1	295081	10/12/20 11:43	SAS	TAL CF
Total/NA	Analysis	SM 4500 H+ B		1	294755	10/08/20 21:37	JMH	TAL CF
Total/NA	Analysis	Field Sampling		1	296776	10/07/20 09:24	SLD	TAL CF

Client Sample ID: Field Blank

Date Collected: 10/06/20 13:30

Date Received: 10/08/20 17:50

Lab Sample ID: 310-192584-6

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9056A		1	295631	10/13/20 17:08	ACJ	TAL CF
Total/NA	Prep	3010A			295023	10/12/20 08:45	HED	TAL CF
Total/NA	Analysis	6020A		1	295528	10/14/20 23:11	SAD	TAL CF
Total/NA	Analysis	SM 2540C		1	295081	10/12/20 11:43	SAS	TAL CF
Total/NA	Analysis	SM 4500 H+ B		1	294755	10/08/20 21:40	JMH	TAL CF

Laboratory References:

TAL CF = Eurofins TestAmerica, Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

Eurofins TestAmerica, Cedar Falls

Accreditation/Certification Summary

Client: SCS Engineers Job ID: 310-192584-1

Project/Site: Ottumwa Midland LF 25220073

Laboratory: Eurofins TestAmerica, Cedar Falls

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
lowa	State	007	12-01-21

3

Δ

5

9

11

40

14

Method Summary

Client: SCS Engineers

Project/Site: Ottumwa Midland LF 25220073

Method **Method Description** Protocol Laboratory 9056A Anions, Ion Chromatography SW846 TAL CF Metals (ICP/MS) SW846 TAL CF 6020A SM 2540C Solids, Total Dissolved (TDS) TAL CF SM SM 4500 H+ B рΗ SM TAL CF Field Sampling Field Sampling EPA TAL CF 3010A Preparation, Total Metals SW846 TAL CF

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CF = Eurofins TestAmerica, Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

Job ID: 310-192584-1

3

4

5

7

0

10

11

40

14

Environment Testing TestAmerica

310-192584 Chain of Custody

Cooler/Sample Receipt and Temperature Los

Client Information						
Client: SCS						
City/State: City		STATE	Project: 0H	umma Midlas	JLF	
Receipt Information		生活 主题				
Date/Time Received:	0 · 8 · 7 U	TIME 1750	Received By:	to	2	
Delivery Type: UPS	FedEx	[FedEx Groun	nd U	S Mail	Spee-Dee
Lab C	Courier 🗌 Lab Fie	eld Services [Client Drop-	off O	ther:	
Condition of Cooler/Conta	iners		企业等			1000
Sample(s) received in Co	ooler? Yes	□No	If yes: Cooler	ID:		
Multiple Coolers?	Yes	No	If yes: Cooler	# of _		
Cooler Custody Seals Pre	esent? Tes	□No	If yes: Cooler	custody seals	s intact? Yes	s No
Sample Custody Seals P	resent? Yes	⊠ No	If yes: Sample	e custody sea	ls intact?☐ Ye	s 🗌 No
Trip Blank Present?	Yes	⊠ No	If yes: Which	VOA samples	are in cooler?	Ţ
Temperature Record		7.74				
Coolant: Wet ice	☐ Blue ice	☐ Dry ice	Other:		NONE	
Thermometer ID:	0		Correction Fa	ctor (°C):	+0.1	
Thermometer ID: • Temp Blank Temperature	O a - If no temp blank, or	temp blank tem				Temperature
	O a – If no temp blank, or	temp blank tem		eria, proceed to		emperature
• Temp Blank Temperature	erature	temp blank tem	perature above crit Corrected Ter	eria, proceed to some (°C):		emperature
• Temp Blank Temperature Uncorrected Temp (°C): • Sample Container Tempe		temp blank tem	perature above crit Corrected Ter	eria, proceed to		emperature
• Temp Blank Temperature Uncorrected Temp (°C):	erature		perature above crit Corrected Ter	eria, proceed to some (°C):		emperature
• Temp Blank Temperature Uncorrected Temp (°C): • Sample Container Tempe	container 1		perature above crit Corrected Ter	eria, proceed to some (°C):		emperature
 Temp Blank Temperature Uncorrected Temp (°C): Sample Container Temperature Container(s) used: 	container 1		perature above crit Corrected Ter	eria, proceed to some (°C):		emperature
• Temp Blank Temperature Uncorrected Temp (°C): • Sample Container Temperature Container(s) used: Uncorrected Temp (°C):	container 1	60al 4.7	perature above crit Corrected Ter	eria, proceed to some (°C):		emperature
• Temp Blank Temperature Uncorrected Temp (°C): • Sample Container Tempe Container(s) used: Uncorrected Temp (°C): Corrected Temp (°C): Exceptions Noted 1) If temperature exceed	CONTAINER 1 PINHC 2	U.7 U.9	Corrected Tel	eria, proceed to smp (°C):		Femperature
• Temp Blank Temperature Uncorrected Temp (°C): • Sample Container Temper Container(s) used: Uncorrected Temp (°C): Corrected Temp (°C): Exceptions Noted	CONTAINER 1 PINHC 2	U.7 U.9	Corrected Tel	eria, proceed to smp (°C):	Sample Container	No
• Temp Blank Temperature Uncorrected Temp (°C): • Sample Container Tempe Container(s) used: Uncorrected Temp (°C): Corrected Temp (°C): Exceptions Noted 1) If temperature exceed	S criteria, was sampled that the ch	4.7 4.8 nple(s) receive	Corrected Ter	eria, proceed to smp (°C): CONTAINER 2 f sampling?	Yes Yes ners is compror	No No
• Temp Blank Temperature Uncorrected Temp (°C): • Sample Container Temper Container(s) used: Uncorrected Temp (°C): Corrected Temp (°C): Exceptions Noted 1) If temperature exceed a) If yes: Is there ever 2) If temperature is <0°C (e.g., bulging septa, bulging	Prature CONTAINER 1 PIAMIC 2(s criteria, was sampled and the characteristic container) c, are there obvious or oken/cracked both	MARCH 1998 1998	ced same day of sbegan?	eria, proceed to smp (°C): CONTAINER 2 f sampling?	Yes Yes ners is compror	No No mised?
• Temp Blank Temperature Uncorrected Temp (°C): • Sample Container Temper Container(s) used: Uncorrected Temp (°C): Corrected Temp (°C): Exceptions Noted 1) If temperature exceed a) If yes: Is there ev	Prature CONTAINER 1 PIAMIC 2(s criteria, was sampled and the characteristic container) c, are there obvious or oken/cracked both	MARCH 1998 1998	ced same day of sbegan?	eria, proceed to smp (°C): CONTAINER 2 f sampling?	Yes Yes ners is compror	No No mised?
• Temp Blank Temperature Uncorrected Temp (°C): • Sample Container Temper Container(s) used: Uncorrected Temp (°C): Corrected Temp (°C): Exceptions Noted 1) If temperature exceed a) If yes: Is there ev 2) If temperature is <0°C (e.g., bulging septa, but the september of the s	Prature CONTAINER 1 PIAMIC 2(s criteria, was sampled and the characteristic container) c, are there obvious or oken/cracked both	MARCH 1998 1998	ced same day of sbegan?	eria, proceed to smp (°C): CONTAINER 2 f sampling?	Yes Yes ners is compror	No No mised?
• Temp Blank Temperature Uncorrected Temp (°C): • Sample Container Temper Container(s) used: Uncorrected Temp (°C): Corrected Temp (°C): Exceptions Noted 1) If temperature exceed a) If yes: Is there ev 2) If temperature is <0°C (e.g., bulging septa, but the september of the s	Prature CONTAINER 1 PIAMIC 2(s criteria, was sampled and the characteristic container) c, are there obvious or oken/cracked both	MARCH 1998 1998	ced same day of sbegan?	eria, proceed to smp (°C): CONTAINER 2 f sampling?	Yes Yes ners is compror	No No mised?
• Temp Blank Temperature Uncorrected Temp (°C): • Sample Container Temper Container(s) used: Uncorrected Temp (°C): Corrected Temp (°C): Exceptions Noted 1) If temperature exceed a) If yes: Is there ev 2) If temperature is <0°C (e.g., bulging septa, bulging s	Prature CONTAINER 1 PIAMIC 2(s criteria, was sampled and the characteristic container) c, are there obvious or oken/cracked both	MARCH 1998 1998	ced same day of sbegan?	eria, proceed to smp (°C): CONTAINER 2 f sampling?	Yes Yes ners is compror	No No mised?

Document: CF-LG-WI-002

Revision: 25 Date: 06/17/2019

Eurofins TestAmerica, Cedar Falls

General temperature criteria is 0 to 6°C Bacteria temperature criteria is 0 to 10°C

Eurofins TestAmerica, Cedar Falls 3019 Venture Way Cedar Falls. IA 50613

Client Information	Tanten	Buszha	4	Fredric	Lab Film Fredrick, Sandie	ndie		Carrier Ire	Carrier Tracking No(s).	310	COC No. 310-54603-14130.	0.1
Client Contact. Tanten Buszka	Phone 264 - 9	193-085	S	E-Mail Sandr	ra fredr	ck@euro	E-Mail sandra fredrick@eurofinset.com			Page	Page: Page 1 of 1	
Company: SCS Engineers							Analysis	Analysis Requested		Job #.	#	
Address. 8450 Hickman Road Suite 28' 27	Due Date Requested:	d:			A PA					Pre	10	es:
City. Clive State, Zip:	TAT Requested (days):	ys):								A B O	A - HCL B - NaOH C - Zn Acetate D - Nitric Acid	M - Hexane N - None O - AsNaO2 P - Na2O4S
IA, 50325 Phone:	PO#:									ய்ம்		Q - Na2SO3 R - Na2S2O3
<580-5bb-697	Purchase Order	Rednested			(0)			_		Ė		T - TSP Dodecahydi
Email: tbuszka@scsengineers.com	#OM											U - Acetone V - MCAA
Project Name: Ottumwa Midland LF 25220073	Project #: 31011020					+н				-	K - EDTA L - EDA	W - pH 4-5 Z - other (specify)
Site: 2722co73	SSOW#:					009tW				of con	r.	
Sample Identification	Sample Date	Sample (Sample Type (C=comp, G=grab)	Matrix (w=water, S=solid, O=waste/oil, BT=Tissue, A=Air)	Field Filtered : Perform MS/M	2540C_Calcd, S 6020A - B/Ca				Total Number	Special In	Special Instructions/Note:
		1	Preservation Code:	ion Code:	X	0 Z				×	$\left \left \right \right $	V
MW-301	02-9-01	13:17	5	Water	3	×					Spp a	2 Hack
MW-302	02-9-01	9:30	5	Water	7	×				\cdot \	1	Prints
MW-303	02-9-01	22:11	5	Water	2	×				7/2	arametro	-
MVV-102M	10-7-20	8:35	5	Water	X	×				4	Si see	4
MW-122M	02-1-01	4:24	5	Water	5	×					5	515
Field Blank	02-9-01	13:30	5	Water	3	X						
				Water								
Possible Hazard Identification					San	ple Disp	osal (A fee may	oessesse eq	selumes ji	re retained l	1 usut than 1	monthi
Non-Hazard Elammable Skin Irritant	Poison B W Unknown		Radiological		П	Return	Return To Client Disposal By Lab Archive For Mon	Disposal	By Lab	Archive	For	Months
, III, IV, Ot					Spe	cial Instru	Special Instructions/QC Requirements:	ements:				
Empty Kit Relinquished by:		Date:			Time:	1	11) Meth	Method of Shipment:			
Relinquished by: Matthew (a)-elan	00	1 02	300	Company		Regeived by	MA	1	92	02-8-01	1780	Company
Relinquished by:	Date/Time:		0	Company		Received by	<i>y</i>		Date/Time	o o		Company
Relinquished by:	Date/Time:			Company		Received by	<i>U</i>		Date/Time:	ė.		Company
Custody Cools Intact: Custody Cool No					1	-	(00					

Table 2. Sampling Points and Parameters - CCR Rule Sampling Program - Detection Monitoring Groundwater Monitoring - Ottumwa Midland Landfill / SCS Engineers Project #25216073

	Parameter	MW-301	MW-302	MW-303	MW- 102M	MW- 122M	Field Blank	TOTAL
	Boron	х	х	х	х	х	х	6
= s	Calcium	х	х	х	X	х	х	6
ix	Chloride	×	х	х	х	x	х	6
me	Fluoride	х	х	х	x	×	×	6
Appendix III Parameters	рН	х	×	х	x	×	х	6
A G	Sulfate	х	x	х	x	х	х	6
	TDS	х	х	х	х	X	х	6
	Antimony					182		0
	Arsenic							0
	Barium							0
S	Beryllium							0
Appendix IV Parameters	Cadmium							0
Ĕ	Chromium							0
are	Cobalt							0
2	Fluoride							0
×	Lead							0
ngi	Lithium							0
be	Mercury							0
Ap.	Molybdenum							0
	Selenium							0
	Thallium							0
	Radium							0
	Groundwater Elevation	×	×	x	x	X		5
	Well Depth	×	×	x	x	х		5
SIS	pH (field)	x	×	x	x	x		5
ete	Specific Conductance	x	×	×	x	х		5
am	Dissolved Oxygen	×	×	×	×	х		5
Field Parameters	ORP	×	×	×	x	x		5
p	Temperature	×	×	х	x	х		5
Fie	Turbidity	×	x	x	х	х		5
	Color	x	x	x	x	x		5
	Odor	×	×	X	X	X		5

Notes: All samples are unfiltered (total).

I:\25216073.00\Data and Calculations\Field Notes\Field Work Requests\[Table_2_OML_CCR_Rule_Sampling_Deticles | Compared to the Compared to the

Table 2, page 1 of 1

Client: SCS Engineers Job Number: 310-192584-1

Login Number: 192584 List Source: Eurofins TestAmerica, Cedar Falls

List Number: 1

Creator: Marzen, Brita K

oroator: marzon, brita it		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Groundwater Monitoring Results - Field Parameters Ottumwa Midland Landfill / SCS Engineers Project #25220073.00 October 2020

Sample	Date	Groundwater Elevation (ft. amsl)	Temperature (Deg. C)	pH (Std. Units)	DO (mg/L)	Specific Conductivity (µmhos/cm)	ORP (mV)	Turbidity (NTU)
MW-301	10/6/2020	686.80	14.5	7.22	0.25	1820	-105.9	21.4
MW-302	10/6/2020	685.86	13.5	7.14	0.28	1025	-169.4	136
MW-303	10/6/2020	686.35	13.9	7.01	0.30	1262	-137.3	240
MW-102M	10/7/2020	712.05	14.5	8.29	5.11	2123	22.0	
MW-122M	10/5/2020	718.39	13.6	7.00	0.56	13603	-28.2	

Abbreviations:

amsl = above mean sea level

µmhos/cm = microSiemens per centimeter

Laboratory Notes/Qualifiers:

none

Created by: Date: 8/15/2019 AJR RM Date: 10/22/2020 Last revision by: Date: 10/22/2020 Checked by: ACW

Parameters.xlsx]GW Field Data

Appendix D Historical Monitoring Results

Name: IPL - Ottumwa Midland Landfill

Part	_ocation ID:	MW-102M																	
Boon ugl. 4510 4440 1480 1480 1460 1410 1440 1440 1500 1300 1500 1	Number of Sampling Dates:	17																	
Calcium mgL 469 147 - 129 129 - 315 236 286 677 707 104 253 129 51 140 38 130 130 Chorde mgL 463 138 138 - 134 1 - 133 123 125 128 131 123 135 136 136 14 15 15 16 14 16 14 16 15 16 14 16 14 16 15 16 14 16 14 16 15 16 14 16 14 16 15 16 14 15 16 14 16 14 16 15 16 14 16 14 16 15 16 14 16 14 16 16 14 16 14 16 15 16 14 16	Parameter Name	Units	5/4/2016	6/22/2016	6/23/2016	8/10/2016	10/25/2016	10/26/2016	1/18/2017	4/20/2017	6/21/2017	8/22/2017	11/8/2017	4/17/2018	10/16/2018	4/18/2019	10/15/2019	5/21/2020	10/7/2020
Chloride mgL 16.3 13.8 1 13.4 1 13. 12.3 12.5 12.8 13.1 12.3 13.5 13.6 14 15 16 16 14 Fluoride mgL 4.2 4.2 4.2 4.2 4.4 4 4.6 4.1 4. 4.6 4.5 4.6 4.5 4.6 4.5 4.7 5.7 4.5 5 5.3 1.5 Flielph Skillurink 809 7.88 1 1 1 1 1 1 1 1	Boron	ug/L	1510	1440		1480		1420	1480	1460	1410	1440	1480	1550	1340	1400	1500	1500	1600
Fluoride mg/L 42 42 42 444 46 4.1 4 4.6 4.5 4.6 4.5 4.6 4.5 4.7 5.7 4.5 5.7 4.5 5.3 5.3 Field pH Sut Units 8.00 7.68 34 354 354 415 48 46 45 45 4.6 8.9 8.16 8.34 7.8 8.55 7.81 7.32 8.29 Sulfate mg/L 378 8.350 354 354 354 415 348 358 8.35 8.35 354 354 3.00 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.	Calcium	mg/L	45.9	147		129		31.5	23.6	26	67.7	79.7	10.4	25.3	12.9	51	14	38	150
Field pH	Chloride	mg/L	16.3	13.8		13.4		13	12.3	12.5	12.8	13.1	12.3	13.5	13.6	14	15	16	14
Sulfate mgl. 378 350 354 354 384 415 348 356 358 335 352 384 340 350 350 350 350 350 350 350 350 350 35	Fluoride	mg/L	4.2	4.2		4.4		4.6	4.1	4	4.6	4.5	4.6	4.5	4.7	5.7	4.5	5	5.3
Total Dissolved Solids	Field pH	Std. Units	8.09	7.68					7.62	7.35	7.64	6.89	8.16	8.34	7.8	8.55	7.81	7.82	8.29
Antimory uglt 0.38 0.19 0.17 0.51 0.26 0.1 0.21 0.16	Sulfate	mg/L	378	350		354		384	415	348	356	358	335	352	384	340	350	350	350
Arsenic ugil. 0.84 0.68 0.78 0.79 0.9 0.9 0.9 0.9 0.9	Total Dissolved Solids	mg/L	1670	1530		1620		1420	1530	1620	1480	1400	1410	1540	1500	1700	1400	3700	1700
Barium uglt 485 39.5 55.4 28.2 21.1 28.4 37.2 31	Antimony	ug/L	0.38	0.19		0.17		0.51	0.26	0.1	0.21	0.16			-				
Beryllium uglt 0.74 1.4 1.1 0.37 0.19 0.34 0.54 0.41	Arsenic	ug/L	0.64	0.68		0.78		0.9	0.89	0.92	0.9	0.9							
Camirum ug/L <0.029 0.12 0.078 0.11 <0.029 0.046 0.063 0.062	Barium	ug/L	48.5	39.5		55.4		28.2	21.1	28.4	37.2	31							
Chromium ug/L 20.5 17.9 - 27.1 - 11.8 2.8 8.7 16 9.6 - <th< td=""><td>Beryllium</td><td>ug/L</td><td>0.74</td><td>1.4</td><td></td><td>1.1</td><td></td><td>0.37</td><td>0.19</td><td>0.34</td><td>0.54</td><td>0.41</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Beryllium	ug/L	0.74	1.4		1.1		0.37	0.19	0.34	0.54	0.41							
Cobalt ug/L 3.5 4.5 7.3 2.4 0.74 1.7 2.1 2.5	Cadmium	ug/L	<0.029	0.12		0.078		0.11	<0.029	0.046	0.063	0.062							
Lead uglL 3.1 3.6 3.8 1.7 0.87 1.4 2.2 1.8	Chromium	ug/L	20.5	17.9		27.1		11.8	2.8	8.7	16	9.6							
Lithium ug/L 46.7 80.7 - 52.3 - 75.4 71.8 73.6 52.7 54	Cobalt	ug/L	3.5	4.5		7.3		2.4	0.74	1.7	2.1	2.5							
Mercury ug/L < 0.039 < 0.039 - 0.039 - 0.039 < 0.039 < 0.046 < 0.046 < 0.046 < 0.046 < 0.046 < 0.046 < 0.046 < 0.046 < 0.046 < 0.046 < 0.046 < 0.046 < 0.046 < 0.046 < 0.046 < 0.046 < 0.046 < 0.046 < 0.046 < 0.046 < 0.046 < 0.046 < 0.046 < 0.046 < 0.046 < 0.046 < 0.046 < 0.046 < 0.046 < 0.046 < 0.046 < 0.046 < 0.046 < 0.046 < 0.046 < 0.046 < 0.044 < 0.049 < 0.043 < 0.04 < 0.040 < 0.048 < 0.067 < 0.057 < 0.056 < 0.056 < 0.056 < 0.056 < 0.056 < 0.056 < 0.056 < 0.056 < 0.058 < 0.058 < 0.044 < 0.059 < 0.058 < 0.044 < 0.044 < 0.0285 < 0.368 < 0.046 < 0.058 < 0.058 < 0.044 < 0.049 < 0.058 < 0.058 < 0.044 < 0.059 < 0.058 < 0.044 < 0.044 < 0.029 <	Lead	ug/L	3.1	3.6		3.8	-	1.7	0.87	1.4	2.2	1.8							
Molybdenum ug/L 21.7 10.3 20.9 11.7 10.6 10.8 11.1 9.5	Lithium	ug/L	46.7	80.7		52.3		75.4	71.8	73.6	52.7	54							
Selenium Ug/L 0.42 1 1.4 0.31 0.24 0.4 0.49 0.43	Mercury	ug/L	<0.039	<0.039		<0.039		<0.039	<0.039	<0.046	<0.046	<0.046							
Thallium	Molybdenum	ug/L	21.7	10.3		20.9		11.7	10.6	10.8	11.1	9.5							
Total Radium pCi/L 2.64 1.66 1.17 0.814 0.567 1.57 1.12 0.594	Selenium	ug/L	0.42	1		1.4		0.31	0.24	0.4	0.49	0.43							
Radium-226 pCi/L -0.058 0.58 0.144 0.444 0.209 0.754 0.285 0.368	Thallium	ug/L	<0.5	<0.5		<0.5		<0.5	<0.5	0.04	0.084	0.067							
Radium-228 pCi/L 2.64 1.08 1.03 0.37 0.358 0.816 0.832 0.226	Total Radium	pCi/L	2.64		1.66	1.17		0.814	0.567	1.57	1.12	0.594							
PH at 25 Degrees C Std. Units 7.9 7.9 7.9 7.9 7.9 7.8 8.1 7.9 8 8 8 7.8 8 8 8.2 7.9 7.9 8.1 Groundwater Elevation feet 728.73 718.74 730.49 716.94 717.91 717.8 714.83 713.23 713.53 717.38 717.05 717.97 715.5 717.61 712.05 716.14 Groundwater Elevation mV 128.2 -102.4 219.9 -77.8 -104.7 21.2 22 116.14 Groundwater Elevation with scalar and scalar an	Radium-226	pCi/L	-0.058		0.58	0.144	-	0.444	0.209	0.754	0.285	0.368							
Groundwater Elevation feet 728.73 718.74 730.49 716.94 717.91 717.8 714.83 713.23 713.53 717.38 717.05 717.97 715.5 717.61 712.05 716.94	Radium-228	pCi/L	2.64		1.08	1.03		0.37	0.358	0.816	0.832	0.226							
Field Oxidation Potential mV 128.2 -102.4 219.9 -77.8 -104.7 21.2 22 field Specific Conductance umhos/cm 2197 2037 2751 2085 2113 0 2260 2123 Field Temperature deg C 14 14.2 13.4 12.9 10.1 12.9 13.1 14.5 Oxygen, Dissolved mg/L 0.79 3.06	pH at 25 Degrees C	Std. Units	7.9	7.9		7.9		7.8	8.1	7.9	8	8	7.8	8	8	8.2	7.9	7.9	8.1
Field Specific Conductance umhos/cm 2197 2037 2751 2085 2113 0 2260 2123 Field Temperature deg C 14 14.2 13.4 12.9 10.1 12.9 13.1 14.5 Oxygen, Dissolved mg/L 0.79 3.06 0.73 4.51 2.14 1.59 5.11	Groundwater Elevation	feet	728.73	718.74		730.49	716.94		717.91	717.8	714.83	713.23	713.53	717.38	717.05	717.97	715.5	717.61	712.05
Field Temperature deg C 14 14.2 13.4 12.9 10.1 12.9 13.1 14.5 Oxygen, Dissolved mg/L 0.79 3.06 0.73 4.51 2.14 1.59 5.11	Field Oxidation Potential	mV	128.2	-102.4									219.9	-77.8	-104.7			21.2	22
Oxygen, Dissolved mg/L 0.79 3.06 0.73 4.51 2.14 1.59 5.11	Field Specific Conductance	umhos/cm	2197	2037								2751	2085	2113	0			2260	2123
	Field Temperature	deg C	14	14.2								13.4	12.9	10.1	12.9			13.1	14.5
Turkidh, NTU 2500 6442	Oxygen, Dissolved	mg/L	0.79	3.06									0.73	4.51	2.14			1.59	5.11
TUDICITY NTO 330.9 014.3	Turbidity	NTU	350.9	614.3		-									-			297	-

02/04/2021 - Classification: Internal - ECRM7850469

Page 1 1/25/2021 4:37:19 PM

Name: IPL - Ottumwa Midland Landfill

umber of Sampling Dates: Parameter Name	18 Units	5/4/2016	5/5/2016	6/22/2016	6/23/2016	8/10/2016	10/25/2016	10/26/2016	1/18/2017	4/20/2017	6/21/2017	8/22/2017	11/8/2017	4/17/2018	10/16/2018	4/17/2019	10/15/2019	5/21/2020	10/7/2020
Boron	ug/L		3140		1720	4550		4060	4720	4480	4710	4980	5220	5560	4580	5500	4100	5100	4100
Calcium	mg/L		599		312	419		415	386	382	386	386	383	402	366	400	400	430	430
Chloride	mg/L		16.4		21.9	11.8		8.2	8.3	8	7.8	7.8	7.2	8	8.6	8.8	10	9	8.3
Fluoride	mg/L		1.1		0.89	0.74		0.48	<0.027	0.88	1.1	0.6	0.5	<0.063	<0.19	0.7	<0.23	0.23	<0.23
Field pH	Std. Units		6.97		6.68				6.06		6.42	6.32	6.16	6.65	6.31	7.34	6.6	6.91	7
Sulfate	mg/L		8260		5330	8950		8600	9680	14300	17500	9190	9440	10400	<0.24	8300	8400	9800	8700
Total Dissolved Solids	mg/L		11500		7430	14200		13200	14100	18100	12800	14300	13400	14400	13300	13000	13000	16000	14000
Antimony	ug/L		0.36		1	0.26		0.29	0.12	<0.079	<0.13	<0.13							
Arsenic	ug/L		<0.52	-	<0.52	<0.21		<0.52	0.11	0.19	<0.26	<0.26					-	-	
Barium	ug/L		31.5		17.9	14.5		16.8	11.8	13	11.2	10.3							
Beryllium	ug/L		<0.4		<0.24	<0.16		<0.24	<0.4	0.054	<0.035	<0.058							
Cadmium	ug/L		<0.14		<0.14	<0.058		<0.14	<0.029	<0.053	<0.089	<0.089							
Chromium	ug/L		<1.7		<1.7	<0.68		1.3	0.51	0.26	<0.27	0.56							
Cobalt	ug/L		5.3		6.5	3.5		6	2.1	1.4	1.2	0.96							
Lead	ug/L		<0.96		<0.96	<0.39		<1.9	<0.19	0.22	<0.16	<0.16							
Lithium	ug/L		450	-	332	601		544	679	643	640	667				-	-		
Mercury	ug/L		<0.039	-	<0.039	<0.039		<0.039	<0.039	<0.046	<0.046	<0.046				-	-		
Molybdenum	ug/L		2.6	-	2.6	0.57		0.58	0.15	2.1	0.6	0.43				-			
Selenium	ug/L		<0.92		<0.92	<0.37		<0.92	<0.18	0.33	<0.43	<0.43							
Thallium	ug/L		<2.5		<2.5	<1		<5	<0.5	<0.11	<0.18	<0.18				-			
Total Radium	pCi/L		2.12	-	1.25	2.26		1.83	1.07	1.1	1.55	1.09				-			
Radium-226	pCi/L		0.157	-	0.56	0.75		0.392	0.32	0.796	0.333	0.559				-			
Radium-228	pCi/L		1.96	-	0.691	1.51		1.44	0.752	0.305	1.22	0.532							
pH at 25 Degrees C	Std. Units		6.5		6.7	6.1		6.2	6.1	6.4	6.2	6	6.2	6.4	6.4	6.6	6.7	7	6.9
Groundwater Elevation	feet	729.27		725.67		710.32	724.61		742.02	724.04	723.51	722.02	720.52	723.25	723.36	723.43	708.94	724.23	718.39
Field Oxidation Potential	mV		34.3	-	-50.7							-7.7	195.4	-61.1	-53.5	-		-4.4	-28.2
Field Specific Conductance	umhos/cm		3025		8161				-				13375	13773	0			14090	13603
Field Temperature	deg C		16.1		14.9							16.2	13.1	13.4	11.8			13	13.6
Oxygen, Dissolved	mg/L		1.92		2.29								0.49	0.36	1.48			0.61	0.56
Turbidity	NTU		212.1		-46.36													2.31	

02/04/2021 - Classification: Internal - ECRM7850469

Page 1 1/25/2021 4:37:39 PM

Name: IPL - Ottumwa Midland Landfill

lumber of Sampling Dates:																
Parameter Name	Units	5/4/2016	6/22/2016	8/9/2016	10/26/2016	1/17/2017	4/20/2017	6/20/2017	8/22/2017	11/7/2017	4/17/2018	10/15/2018	4/16/2019	10/15/2019	5/26/2020	10/6/202
Boron	ug/L	2280	1860	1770	1410	1310	1040	1040	994	1010	854	784	660	600	660	770
Calcium	mg/L	596	472	479	393	337	224	202	158	161	131	135	110	100	120	180
Chloride	mg/L	42.4	112	46.6	43.4	32.6	58	38.9	40.8	28.9	33.9	26.9	45	46	61	24
Fluoride	mg/L	0.68	0.38	0.55	0.72	0.77	0.72	0.93	0.78	0.77	0.87	0.84	0.85	0.85	0.77	0.67
Field pH	Std. Units	6.44	6.62	7.81	6.33	6.31	6.15	6.73	6.51	6.56	7.09	6.59	7.1	6.67	5.67	7.22
Sulfate	mg/L	5160	5370	4050	2630	1780	1170	1180	902	926	638	837	360	310	390	620
Total Dissolved Solids	mg/L	6260	5380	5810	4030	2830	1990	2060	1870	1760	1400	1550	970	860	1100	1400
Antimony	ug/L	<0.58	<0.12	<0.12	<0.058	0.089	<0.026	0.058	0.04							
Arsenic	ug/L	<1	0.84	0.29	0.3	0.64	0.56	0.42	0.56							
Barium	ug/L	28.1	26.6	24.2	32.1	41.5	41	47.1	45.7							
Beryllium	ug/L	<0.8	<0.24	<0.16	<0.08	<0.08	<0.012	<0.012	<0.012			-				
Cadmium	ug/L	<0.29	<0.058	<0.058	<0.029	<0.029	<0.018	<0.018	0.04							
Chromium	ug/L	<3.4	<0.68	<0.68	0.46	0.5	0.31	0.16	0.2							-
Cobalt	ug/L	<5	<1	<1	<0.5	<0.5	0.21	0.22	0.17							
Lead	ug/L	<1.9	<0.96	<0.39	<0.19	<0.19	0.046	0.038	0.091							
Lithium	ug/L	274	268	195	171	156	110	111	114							
Mercury	ug/L	<0.039	<0.039	<0.039	<0.039	<0.039	<0.046	<0.046	<0.046							
Molybdenum	ug/L	4.6	2	2.1	2.9	2.9	6.3	5.3	6.5			-				-
Selenium	ug/L	<1.8	<0.37	<0.37	<0.18	<0.18	<0.086	<0.086	0.12							
Thallium	ug/L	<5	<2.5	<1	<0.5	<0.5	<0.036	0.076	0.068			-				-
Total Radium	pCi/L	1.99	0.285	1.89	1.68	1.96	1.34	1.56	1.5							-
Radium-226	pCi/L	0.565	0.071	0.606	0.66	0.44	0.855	0.734	0.6							-
Radium-228	pCi/L	1.42	0.214	1.28	1.02	1.52	0.488	0.829	0.896							
pH at 25 Degrees C	Std. Units	6.2	6.2	6.2	6.2	6.2	6.9	6.4	6.4	6.4	6.8	7.5	6.8	7	7.3	6.9
Groundwater Elevation	feet	686.46	686.4	686.19	683.7	685.57	685.72	685.88	684.96	684.5	684.85	684.58	686.38	686.56	687.29	686.8
Field Oxidation Potential	mV	-58.5	-49.7	-53	-79.4	-57.8	-49.8	-63.1	-20.6	144.3	-102.8	88.2	-50.2	-58.4	-57.8	-105.9
Field Specific Conductance	umhos/cm	7267	5132	5607	4377	3607	2631	2384	3187	2395	1910	2112	1603	1512	1546	1820
Field Temperature	deg C	13.4	14.3	13.9	13.5	13.1	13	13.8	13.9	13.4	13	13.6	13.87	13.68	15.8	14.5
Oxygen, Dissolved	mg/L	0.27	0.14	0.1	0.55	0.19	0.18	0.16	0.11	0.37	0.16	0.2	1.27	0.4	0.41	0.25
Turbidity	NTU	2.86	3.34	1.05	0.92	0.63	1.12	2.69	0.99	1.91	1.13	4.91	8.88	4.75	21.8	21.4

02/04/2021 - Classification: Internal - ECRM7850469

Page 1 1/25/2021 4:37:59 PM

Name: IPL - Ottumwa Midland Landfill

mber of Sampling Dates:	15														T	T
Parameter Name	Units	5/4/2016	6/22/2016	8/10/2016	10/26/2016	1/17/2017	4/19/2017	6/20/2017	8/22/2017	11/7/2017	4/17/2018	10/15/2018	4/16/2019	10/15/2019	5/21/2020	10/6/202
Boron	ug/L	853	796	802	784	824	777	767	783	848	834	752	760	780	780	870
Calcium	mg/L	72.1	56.6	48.8	42.8	42.9	41	46.1	50.2	74	77.3	66.9	44	68	41	65
Chloride	mg/L	9.2	8.1	7.5	6	7.7	8	8	8.5	7.8	8.6	9.2	10	7.3	8.9	7.2
Fluoride	mg/L	1.1	1	0.98	1	0.97	1	1.1	1	1.2	1	1.1	1.5	1.2	1	1.1
Field pH	Std. Units	7.38	7.76	9.55	7.22	7.23	7.6	7.29	7.12	7.41	7.8	7.25	7.49	7.21	7.05	7.14
Sulfate	mg/L	201	133	102	78.9	76.7	76.7	79.3	77.2	77.5	79.3	80.9	83	73	79	73
Total Dissolved Solids	mg/L	784	715	671	644	639	671	656	672	607	690	708	690	680	930	700
Antimony	ug/L	0.12	0.15	0.095	<0.058	0.1	<0.026	0.094	0.056							
Arsenic	ug/L	0.19	0.39	0.28	0.24	0.31	0.23	0.25	0.38				-	-		
Barium	ug/L	39.3	45.4	50	54	57.2	48.9	49.9	47.5				-	-		
Beryllium	ug/L	0.22	0.16	<0.08	<0.08	<0.08	0.051	0.084	0.15							
Cadmium	ug/L	<0.029	<0.029	<0.029	<0.029	<0.029	<0.018	0.018	<0.018							
Chromium	ug/L	5.5	6.2	1.9	1.8	1.4	1.4	2.2	2.9							
Cobalt	ug/L	1.1	1.1	<0.5	<0.5	<0.5	0.24	0.38	0.66							
Lead	ug/L	1.1	0.9	0.32	0.26	0.26	0.25	0.36	0.54							
Lithium	ug/L	81.1	81.2	75.9	79.8	80.8	79.6	78.5	82							
Mercury	ug/L	<0.039	<0.039	<0.039	<0.039	<0.039	<0.046	<0.046	<0.046							
Molybdenum	ug/L	0.32	0.49	0.31	0.18	0.24	0.2	0.17	0.24				-			
Selenium	ug/L	0.19	0.39	<0.18	<0.18	<0.18	<0.086	0.21	0.21							
Thallium	ug/L	<0.5	<0.5	<0.5	<0.5	<0.5	<0.036	0.065	0.089							
Total Radium	pCi/L	0.874	0.677	1.17	1.17	1.57	1.65	1.54	2.6				-			
Radium-226	pCi/L	0.412	-0.066	0.426	0.505	0.525	0.872	0.987	1.74							
Radium-228	pCi/L	0.462	0.677	0.744	0.663	1.04	0.777	0.549	0.863							
pH at 25 Degrees C	Std. Units	7.3	7.1	7.3	7.4	7.6	7.5	7.6	7.4	7.2	7.6	7.5	7.4	7.5	7.5	7.6
Groundwater Elevation	feet	685.8	685.79	685.48	684.94	685.68	684.73	684.76	683.89	683.38	683.87	683.52	685.35	685.44	686.25	685.8
Field Oxidation Potential	mV	-153.3	-114.6	-100.7	-126.7	-109.6	-64	-66.8	-96.2	112.3	-138.7	-103.6	8.13	-56.4	-83.4	-169.
ield Specific Conductance	umhos/cm	1326	1132	1102	1075	1081	1081	1018	1429	1079	1091	1102	1168	1067	1129	1025
Field Temperature	deg C	13.6	14	13.9	13.5	12.9	14	14	13.7	13.1	12.7	13.4	13.63	14.26	13.1	13.5
Oxygen, Dissolved	mg/L	0.08	0.09	0.1	0.66	0.29	0.17	0.22	0.11	0.3	0.3	0.22	1.59	0.75	1.06	0.28
Turbidity	NTU	170.8	167.5	74.76	29.05	43.07	39.01	58.63	77.96	202.4	200.6	131.5	44.2	102.8	12.5	136

02/04/2021 - Classification: Internal - ECRM7850469

Page 1 1/25/2021 4:36:44 PM

Name: IPL - Ottumwa Midland Landfill

Location ID:	MW-303																	
Number of Sampling Dates:	17																	
Parameter Name	Units	5/4/2016	6/22/2016	8/9/2016	10/26/2016	1/17/2017	4/19/2017	7/19/2017	8/22/2017	11/7/2017	4/17/2018	10/16/2018	4/16/2019	6/6/2019	10/15/2019	5/26/2020	6/29/2020	10/6/2020
Boron	ug/L	3510	2430	1640	1100	955	800	755	737	738	738	661	850		760	770		740
Calcium	mg/L	686	462	250	157	116	97.4	87.7	94	94.9	103	90.5	150		120	120		100
Chloride	mg/L	13.5	11.5	8.7	7.5	7.1	6.9	7.2	7.3	6.9	7.3	7.4	8.1	8	7.5	8.5	6.9	7.3
Fluoride	mg/L	0.68	0.47	0.9	0.87	0.86	0.86	0.86	0.85	0.77	0.8	0.84	<0.23		0.87	0.81		0.88
Field pH	Std. Units	6.24	6.93	7.84	6.66	6.69	7.12	7.1	6.71	6.96	7.32	6.87	6.97	6.71	6.76	6.21	6.74	7.01
Sulfate	mg/L	6230	4690	1950	780	497	329	255	287	232	262	310	600		390	440		230
Total Dissolved Solids	mg/L	9540	7120	2750	1500	1080	931	809	868	783	839	891	1300		1100	1100		840
Antimony	ug/L	<0.58	<0.058	<0.12	<0.058	0.082	<0.026	0.042	0.041									
Arsenic	ug/L	<1	0.3	<0.21	0.13	0.2	0.24	0.59	0.53									
Barium	ug/L	55.8	47.6	19.3	13.4	11.7	11.9	12.8	13.1			-						
Beryllium	ug/L	1.2	<0.24	0.16	0.11	0.099	0.13	0.24	0.24									-
Cadmium	ug/L	<0.29	<0.029	<0.058	0.037	<0.029	<0.018	0.019	0.026									-
Chromium	ug/L	22.1	3.1	2.7	2.6	1.1	2.6	5.1	4.5			-						-
Cobalt	ug/L	12.7	1.6	1.2	1	<0.5	1.1	2.5	2.1									-
Lead	ug/L	5.7	1.6	0.51	0.57	0.3	0.57	1	1.2									
Lithium	ug/L	289	270	126	102	96.5	92.4	90.8	92.8			-						-
Mercury	ug/L	<0.039	<0.039	<0.039	<0.039	<0.039	<0.046	<0.046	<0.046			-			-			-
Molybdenum	ug/L	3	0.38	0.69	0.43	0.29	0.3	0.26	0.29									-
Selenium	ug/L	<1.8	0.38	<0.37	<0.18	<0.18	0.26	0.4	0.42									-
Thallium	ug/L	<5	<2.5	<1	<0.5	<0.5	<0.036	0.049	0.048			-	-		-	-		-
Total Radium	pCi/L	10.6	7.5	3.59	2.18	1.47	1.82	1.33	0.803									-
Radium-226	pCi/L	2.51	2.96	1.26	0.634	0.199	0.481	0.273	0.559									-
Radium-228	pCi/L	8.08	4.54	2.33	1.55	1.27	1.34	1.06	0.244									-
pH at 25 Degrees C	Std. Units	6.2	6.2	6.4	6.6	6.9	7	7	6.9	6.8	7.2	7.1	6.8		7	7.3		7.2
Groundwater Elevation	feet	686.04	687.72	687.77	685.56	685.6	685.51	684.92	684.7	684.26	684.68	684.33	686.13	686.05	686.08	687.14	687.36	686.35
Field Oxidation Potential	mV	-50	-49.5	-76.7	-102.1	-93.5	-56.6	-83.6	-72.6	125.7	-103.8	-117.7	-20	-40	-55.6	-30	-53.3	-137.3
Field Specific Conductance	umhos/cm	8206	6426	3419	2120	1681	1451	1300	1836	1307	1358	0	2209	1331	1628	1963	1739	1262
Field Temperature	deg C	14	14	14	13.7	13	13.7	14.5	14	13.2	13.3	13.5	14.07	16.7	15.44	14.4	16.1	13.9
Oxygen, Dissolved	mg/L	0.16	0.11	0.08	0.46	0.16	0.17	0.5	0.31	0.45	0.38	0.41	1.41	0.42	0.43	2.31	0.49	0.3
Turbidity	NTU	677.5	160.2	169.9	84.13	113.7	120.3	179.4	161.5	258.2	248	61.64	99.2	169.9	27.9	57.1	59	240

02/04/2021 - Classification: Internal - ECRM7850469

Page 1 1/25/2021 4:37:02 PM

Appendix E Statistical Evaluation

Environmental Consultants & Contractors

SCS ENGINEERS

January 12, 2021 File No. 25220073.00

TECHNICAL MEMORANDUM

SUBJECT: Statistical Evaluation of Groundwater Monitoring Results – UPL Update

Ottumwa Midland Landfill, CCR Units, October 2020

PREPARED BY: Nicole Kron

CHECKED BY: Sherren Clark

STATISTICAL METHOD

Groundwater monitoring data for the Ottumwa Midland Landfill (OML) CCR units is evaluated in accordance with 40 CFR 257.93(f)(3), using a prediction interval procedure, in which an interval for each constituent is established from the distribution of the background data, and the level of each constituent in each compliance well is compared to the upper prediction limit.

Statistical evaluation is performed using commercially available software (Sanitas for Groundwater® or similar) in general accordance with the USEPA's *Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities* dated March 2009 (Unified Guidance) (USEPA, 2009) and generally accepted procedures.

The OML monitoring data includes two background monitoring wells, MW-102M and MW-122M, and three compliance monitoring wells, MW-301, MW-302, and MW-303. The statistical analysis includes intrawell evaluation for chloride and Interwell evaluation for the remaining Appendix III parameters.

The initial Interwell UPLs were calculated based on nine rounds of background monitoring performed up to the initiation of compliance monitoring for the existing CCR units at OML, from May 2016 through November 2017. In the November 2017 and April 2018 detection monitoring events, interwell SSIs for chloride were identified for compliance well MW-301. These SSIs were attributed to natural variation in ASDs completed for these two events. Following the completion of the April 2018 ASD, dated October 31, 2018, the statistical method for evaluating chloride data at the three compliance monitoring wells was modified to an intrawell approach. This approach is appropriate for constituents which exhibit natural spatial variability, as has been documented for chloride at the OML facility.

As part of the evaluation of the October 2020 monitoring results, the background data set for the UPL calculations is being updated. The updated interwell background dataset will include data from the background wells collected through October 2020. The updated intrawell background dataset for chloride will include data collected through April 2020. This memo addresses updated UPLs for Appendix III parameters.

TIME SERIES PLOTS

Time series plots are prepared for the required monitoring parameters to show the concentration variations over time. Time series graphs are included in **Attachment 1**.

OUTLIER ANALYSIS - INTERWELL

An outlier analysis is performed for background monitoring results. A statistical outlier is a value that is extremely different from the other values in the data set. The Sanitas outlier tests identify data points that do not fit the distribution of the rest of the data set and determine if they differ significantly from the rest of the data. The outlier analysis performed in Sanitas includes the following steps:

- 1) Run normality test (Shapiro Wilk/Francia).
- 2) If normally distributed, run USEPA's 1989 Outlier Test to identify suspected outliers.
 - a) If number of background samples is less than or equal to 25, run Dixon's test for suspected outliers.
 - b) If number of background samples is more than 25, run Rosner's test for suspected outliers.
- 3) If not normally distributed, run Tukey's test for outliers.
- 4) Review data flagged as possible outliers to evaluate whether they should be removed from the background data set. Also review time series plots for possible outliers that were not picked up in the statistical evaluation (e.g., outlier test may not identify outliers when two values are similar to each other, but very different from all other data).

Results identified as statistical outliers are checked for possible lab instrument failure, field collection problems, or data entry errors; however, outliers may exist naturally in the data if there is an extremely wide inherent or temporal variability in the data. The Unified Guidance states that unless a likely error can be identified, the outlier should not be removed.

For the October 2020 sampling event, the following background values from background wells MW-102M and MW-122M were identified as potential outliers for the interwell analysis and handled as described:

- Boron (MW-122M). One low result from the June 2016 event was flagged as a statistical
 outlier. This result was not removed from the dataset because there was no known
 explanation for the lower result and it appeared to be within the range of potential
 natural variation relative to the other observed boron concentrations.
- Calcium (MW-122M). Two results from the May and June 2016 events were flagged as
 statistical outliers. The May 2016 result was removed because it was the first sampling
 event, was higher than all subsequent results, and may represent conditions before the
 water quality at the well stabilized after installation. The June 2016 result was not
 removed from the dataset because there was no known explanation for the low result
 and the result appeared to be within the range of potential natural variation relative to
 the other observed calcium concentrations.

- Sulfate (MW-122M). Two results from the June 2017 and October 2018 events were
 flagged as statistical outliers. The high result (June 2017) was not removed from the
 dataset because there was no known explanation for the high result, the April 2017
 result was also higher than typical values, and the high result appeared to be within the
 range of potential natural variation relative to the other observed sulfate concentrations.
 The low result was removed as an outlier because it was below detection, which appears
 very unlikely to be a valid result based on other detections, and may represent a
 sampling or laboratory error.
- Total Dissolved Solids (MW-102M). One high result from the May 2020 event was flagged as a statistical outlier. This result was not removed from the dataset because there was no known explanation for the higher results and it appeared to be within the range of potential natural variation relative to the other observed Total Dissolved Solids (TDS) concentrations.
- Total Dissolved Solids (MW-122M). Two results from the June 2016 and April 2017
 events were flagged as statistical outliers. The results were not removed from the
 dataset because there was no known explanation for low and high results. Also, the high
 result appeared to be within the range of potential natural variation relative to the other
 observed TDS concentrations.

The outlier analysis is included in **Attachment 2.**

OUTLIERS ANALYSIS - INTRAWELL

An outlier analysis is performed for background monitoring results at the compliance wells when intrawell prediction limits are calculated for constituents. A statistical outlier is a value that is extremely different from the other values in the data set. The outlier analysis performed in Sanitas using the same steps noted above.

For the October 2020 sampling event, the following background values were identified as potential chloride outliers in the compliance monitoring wells (MW-301, MW-302, and MW-303) and handled as described:

- MW-301. One high result from the June 2016 event was flagged as a statistical outlier.
 This result was removed from the dataset because this results appeared to be outside the range of likely natural variation relative to the observed chloride concentrations at MW-301.
- MW-303. One high result from the May 2016 event was initially flagged by Sanitas as a
 statistical outlier. This result was removed from the dataset because it was the first
 sample from the newly installed well and exceeded subsequent observed chloride
 concentrations at MW-303. The second sample from this well (June 2016) was not
 initially flagged as an outlier, but was flagged as an outlier when the analysis was rerun
 after removing the May 2016 result. This result was also removed from the dataset for
 the prediction limit analysis.

Outlier analysis of chloride results from the compliance wells is included in Attachment 2.

BACKGROUND UPDATE

The background data pool was updated in accordance with the Unified Guidance, which recommends updating background every 2 to 3 years for semiannual sampling. Prior to expanding the interwell data pool, the original interwell background data set (5/2016 through 11/2017) and the data to be added (4/2018 through 10/2020) were compared. For the intrawell analysis of chloride, the previous intrawell background data set (5/2016 through 4/2018) and the data to be added (10/2018 through 4/2020) were compared. The Unified Guidance states that recently collected measurements from the background wells can be added to the existing pool if a Student's t-test or Wilcoxon rank-sum test finds no significant difference between the two groups at the 1% level of significance.

The Sanitas background group comparison for the OML background data sets, included in **Attachment 3**, indicated no signficant difference at the 1% level; therefore, the more recent data can be added to the background pool. The comparison uses Welch's t-test for normally distributed data and the Mann-Whitney test for non-normal data. (Note: The Sanitas output labels the earlier background dataset as "Background" and the later background dataset as "Compliance," but all data shown is proposed background data.)

INTERWELL PREDICTION LIMITS

Interwell prediction limits were calculated for Appendix III parameters except for chloride. Interwell prediction limits are calculated using background data from the upgradient monitoring wells (MW-122M and MW-102M) for each monitored constituent, with outliers removed as noted above. The prediction limit analysis performed in Sanitas includes the following steps:

- 1) If 100% of the background values are non-detect, the Double Quanitification rule applies and no prediction limit is calculated.
- 2) If 50% or more of results are non-detect, then a non-parametric prediction limit is calculated.
- 3) If fewer than 50% of the results are non-detect, run normality test (Shapiro Wilk/Francia) to assess whether the data fit a normal distribution or can be transformed to fit a normal distribution (e.g., lognormal).
- 4) If normal or transformed normal, calculate parametric prediction limit.
- 5) If not normal or transformed normal, calculate non-parametric prediction limit.

Consistent with the Unified Guidance, parametric prediction limits are calculated based on a 1-of-2 retesting protocol and a 10 percent site-wide false positive rate. Sanitas establishes the per-test significance level based on user inputs of the number of events per year, number of constituents being evaluated, and number of compliance wells. For the October 2020 event, the following values were used:

Parameter	Value	Comments
Evaluations per year	2	Spring and Fall events
Constituents analyzed	7	Total of 7 constituents analyzed
Compliance wells	3	MW-301, MW-302, MW-303

Non-parametric prediction limits are also based on a 1-of-2 retesting protocol. The non-parametric limit is the highest value in the background dataset, which provides an alpha value (false positive rate) similar to that used for the parametric analysis.

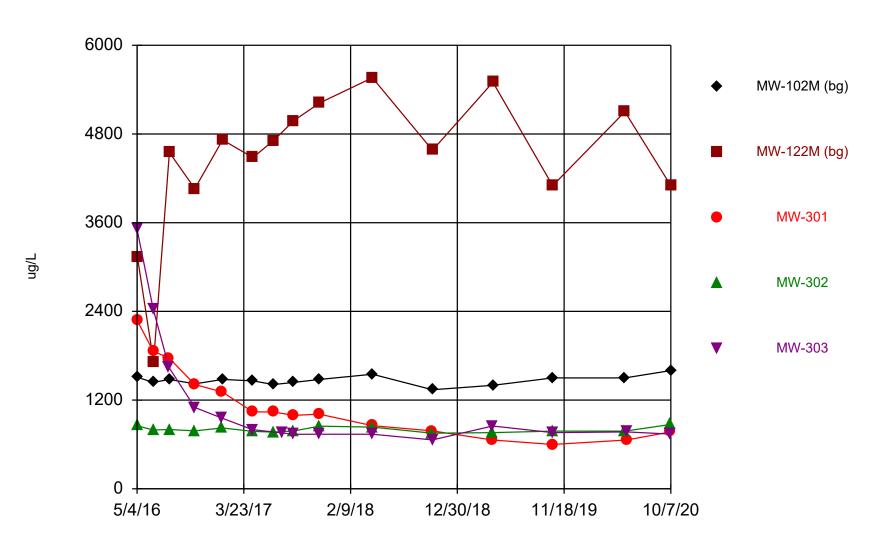
For evaluation of parameters with less than 100 percent non-detects in the background sampling, the non-detects were adjusted using the Kaplan-Meier technique, unless the non-detects represent less than 15 percent of the total samples, in which case one-half of the detection limit was used.

Interwell prediction limit analysis results are included in Attachment 4.

INTRAWELL PREDICTION LIMITS

Interwell prediction limits were calculated for chloride. Intrawell prediction limits are calculated using background data from the compliance monitoring wells (MW-301, MW-302, and MW303) for each monitored constituent, with outliers removed as noted above. For this evaluation of October 2020 results, background results from May 2016 through April 2020 were included to calculate the intrawell prediction limits. The intrawell prediction limit analysis performed in Sanitas includes the same steps noted above.

Intrawell prediction limit analysis results are included in **Attachment 4**.

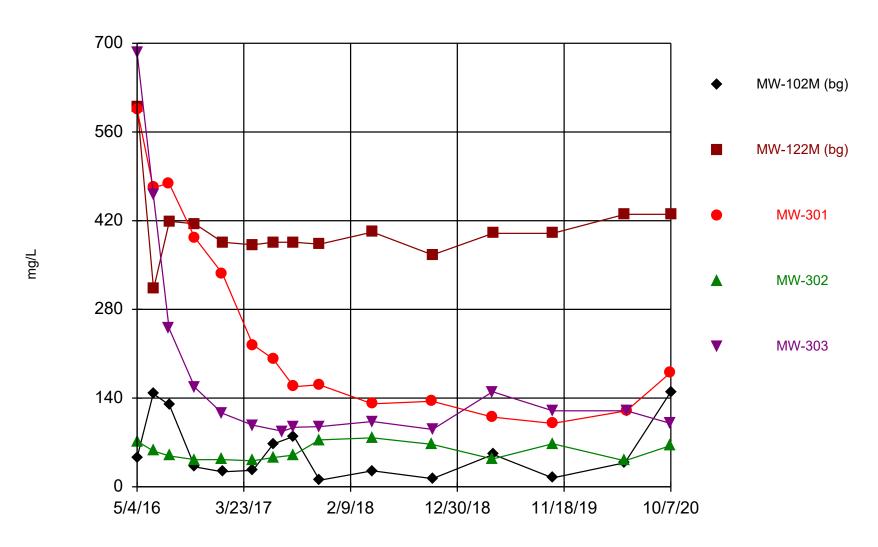

NDK/SCC

I:\25220073.00\Data and Calculations\Sanitas\OML_2020\Sanitas 2020 Output - CCR\OML CCR Stats Memo.docx

Attachment 1

Times Series Graphs

Boron


Time Series Analysis Run 12/4/2020 6:43 PM

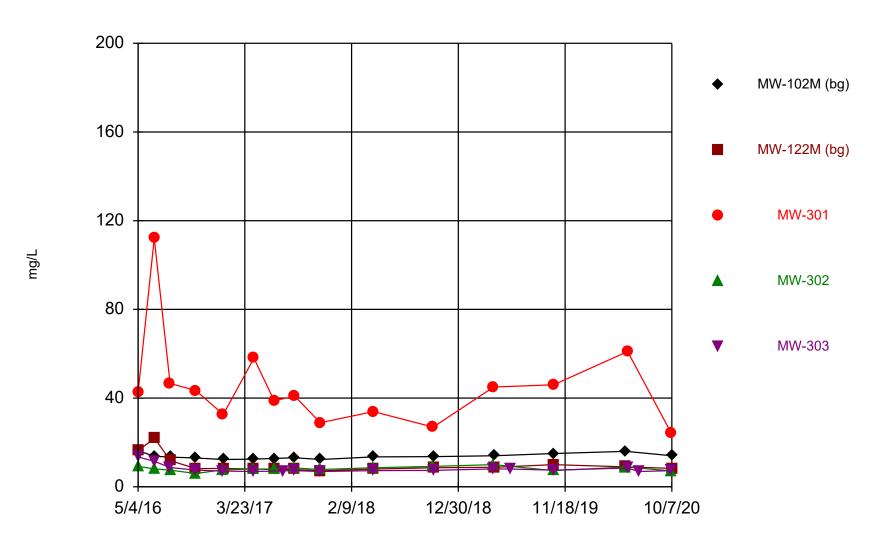
Time Series

Constituent: Boron (ug/L) Analysis Run 12/4/2020 6:45 PM

	MW-102M (bg)	MW-122M (bg)	MW-301	MW-302	MW-303
5/4/2016	1510		2280	853	3510
5/5/2016		3140			
6/22/2016	1440		1860	796	2430
6/23/2016		1720			
8/9/2016			1770		1640
8/10/2016	1480	4550		802	
10/26/2016	1420	4060	1410	784	1100
1/17/2017			1310	824	955
1/18/2017	1480	4720			
4/19/2017				777	800
4/20/2017	1460	4480	1040		
6/20/2017			1040	767	
6/21/2017	1410	4710			
7/19/2017					755
8/22/2017	1440	4980	994	783	737
11/7/2017			1010	848	738
11/8/2017	1480	5220			
4/17/2018	1550	5560	854	834	738
10/15/2018			784	752	
10/16/2018	1340	4580			661
4/16/2019			660	760	850
4/17/2019		5500			
4/18/2019	1400				
10/15/2019	1500	4100	600	780	760
5/21/2020	1500	5100		780	
5/26/2020			660		770
10/6/2020			770	870	740
10/7/2020	1600	4100			

Calcium

Time Series Analysis Run 12/4/2020 6:43 PM


Time Series

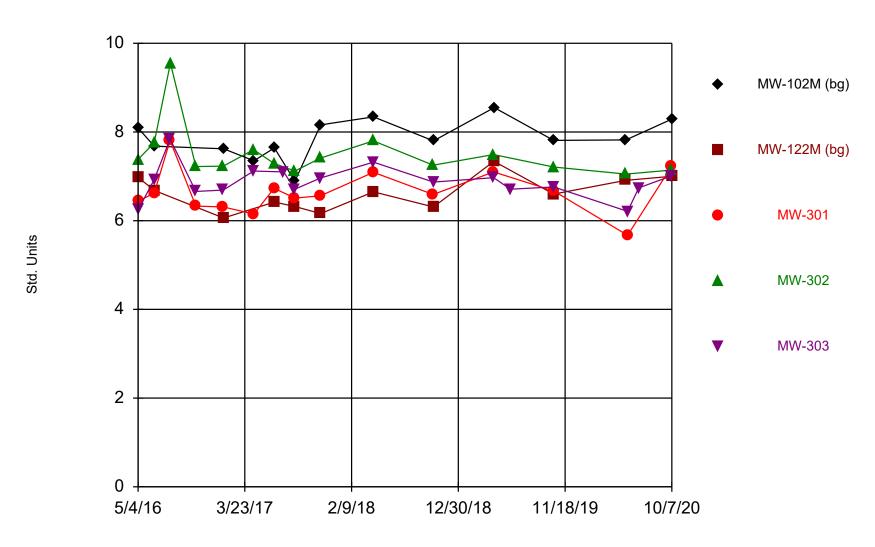
Constituent: Calcium (mg/L) Analysis Run 12/4/2020 6:45 PM

Ottumwa-Midland Landfill	Client: SCS Engineers	Data: OML- Chempoint- input-Oct2020

	MW-102M (bg)	MW-122M (bg)	MW-301	MW-302	MW-303
5/4/2016	45.9		596	72.1	686
5/5/2016		599			
6/22/2016	147		472	56.6	462
6/23/2016		312			
8/9/2016			479		250
8/10/2016	129	419		48.8	
10/26/2016	31.5	415	393	42.8	157
1/17/2017			337	42.9	116
1/18/2017	23.6	386			
4/19/2017				41	97.4
4/20/2017	26	382	224		
6/20/2017			202	46.1	
6/21/2017	67.7	386			
7/19/2017					87.7
8/22/2017	79.7	386	158	50.2	94
11/7/2017			161	74	94.9
11/8/2017	10.4	383			
4/17/2018	25.3	402	131	77.3	103
10/15/2018			135	66.9	
10/16/2018	12.9	366			90.5
4/16/2019			110	44	150
4/17/2019		400			
4/18/2019	51				
10/15/2019	14	400	100	68	120
5/21/2020	38	430		41	
5/26/2020			120		120
10/6/2020			180	65	100
10/7/2020	150	430			

Chloride

Time Series Analysis Run 12/4/2020 6:44 PM


Time Series

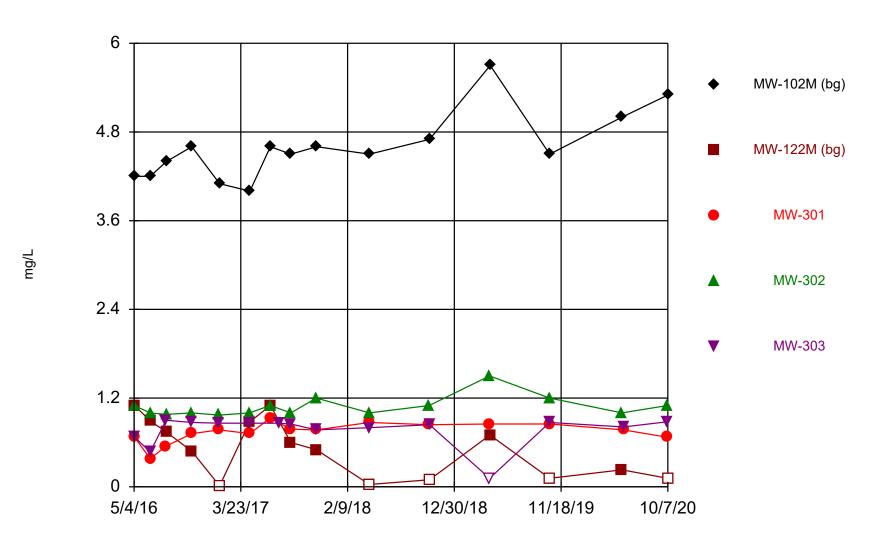
Constituent: Chloride (mg/L) Analysis Run 12/4/2020 6:45 PM

Ottumwa-Midiand Landiiii	Client: 5C5 Engineers	Data: OML- Chempoint- Input-Oct2020

	MW-102M (bg)	MW-122M (bg)	MW-301	MW-302	MW-303
5/4/2016	16.3		42.4	9.2	13.5
5/5/2016		16.4			
6/22/2016	13.8		112	8.1	11.5
6/23/2016		21.9			
8/9/2016			46.6		8.7
8/10/2016	13.4	11.8		7.5	
10/26/2016	13	8.2	43.4	6	7.5
1/17/2017			32.6	7.7	7.1
1/18/2017	12.3	8.3			
4/19/2017				8	6.9
4/20/2017	12.5	8	58		
6/20/2017			38.9	8	
6/21/2017	12.8	7.8			
7/19/2017					7.2
8/22/2017	13.1	7.8	40.8	8.5	7.3
11/7/2017			28.9	7.8	6.9
11/8/2017	12.3	7.2			
4/17/2018	13.5	8	33.9	8.6	7.3
10/15/2018			26.9	9.2	
10/16/2018	13.6	8.6			7.4
4/16/2019			45	10	8.1
4/17/2019		8.8			
4/18/2019	14				
6/6/2019					8
10/15/2019	15	10	46	7.3	7.5
5/21/2020	16	9		8.9	
5/26/2020			61		8.5
6/29/2020					6.9
10/6/2020			24	7.2	7.3
10/7/2020	14	8.3			

Field pH

Time Series Analysis Run 12/4/2020 6:44 PM


Time Series

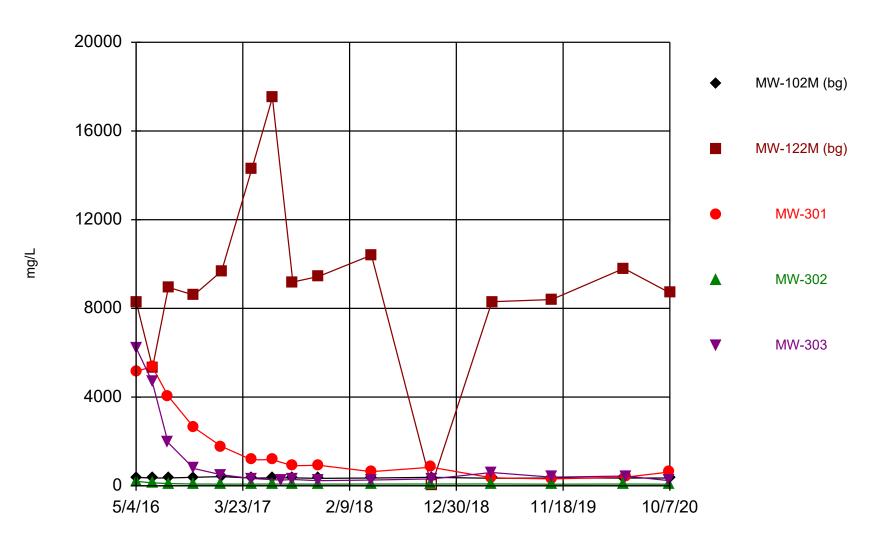
Constituent: Field pH (Std. Units) Analysis Run 12/4/2020 6:45 PM

Ottumwa-Midland L	Landfill	Client: SCS Engineers	Data: OML- Chempoint- input-Oct2020

	MW-102M (bg)	MW-122M (bg)	MW-301	MW-302	MW-303
5/4/2016	8.09		6.44	7.38	6.24
5/5/2016		6.97			
6/22/2016	7.68		6.62	7.76	6.93
6/23/2016		6.68			
8/9/2016			7.81		7.84
8/10/2016				9.55	
10/26/2016			6.33	7.22	6.66
1/17/2017			6.31	7.23	6.69
1/18/2017	7.62	6.06			
4/19/2017				7.6	7.12
4/20/2017	7.35		6.15		
6/20/2017			6.73	7.29	
6/21/2017	7.64	6.42			
7/19/2017					7.1
8/22/2017	6.89	6.32	6.51	7.12	6.71
11/7/2017			6.56	7.41	6.96
11/8/2017	8.16	6.16			
4/17/2018	8.34	6.65	7.09	7.8	7.32
10/15/2018			6.59	7.25	
10/16/2018	7.8	6.31			6.87
4/16/2019			7.1	7.49	6.97
4/17/2019		7.34			
4/18/2019	8.55				
6/6/2019					6.71
10/15/2019	7.81	6.6	6.67	7.21	6.76
5/21/2020	7.82	6.91		7.05	
5/26/2020			5.67		6.21
6/29/2020					6.74
10/6/2020			7.22	7.14	7.01
10/7/2020	8.29	7			

Fluoride

Time Series Analysis Run 12/4/2020 6:44 PM

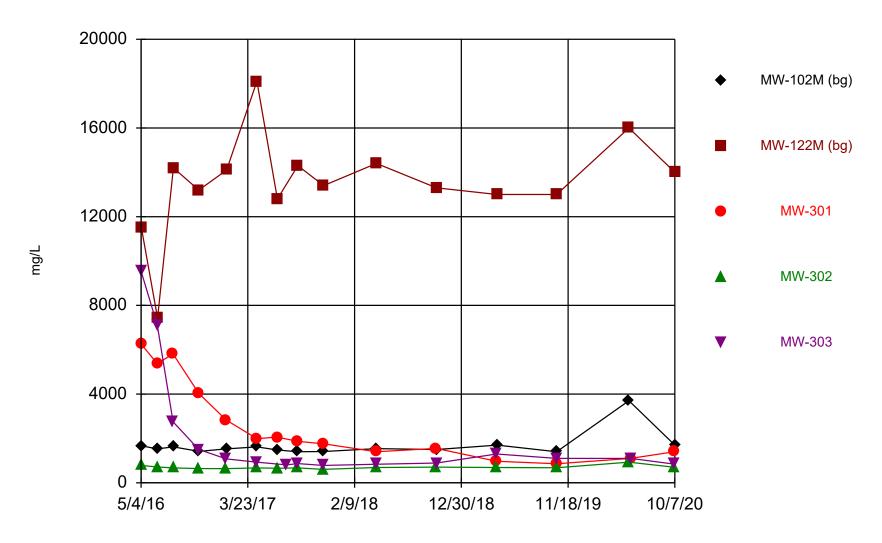

Time Series

Constituent: Fluoride (mg/L) Analysis Run 12/4/2020 6:45 PM

Ottumwa-Midland Landfill	Client: SCS Engineers	Data: OML- Chempoint- input-Oct2020

	MW-102M (bg)	MW-122M (bg)	MW-301	MW-302	MW-303
5/4/2016	4.2		0.68	1.1	0.68
5/5/2016		1.1			
6/22/2016	4.2		0.38	1	0.47
6/23/2016		0.89			
8/9/2016			0.55		0.9
8/10/2016	4.4	0.74		0.98	
10/26/2016	4.6	0.48	0.72	1	0.87
1/17/2017			0.77	0.97	0.86
1/18/2017	4.1	<0.027 (U)			
4/19/2017				1	0.86
4/20/2017	4	0.88	0.72		
6/20/2017			0.93	1.1	
6/21/2017	4.6	1.1			
7/19/2017					0.86
8/22/2017	4.5	0.6	0.78	1	0.85
11/7/2017			0.77	1.2	0.77
11/8/2017	4.6	0.5			
4/17/2018	4.5	<0.063 (U)	0.87	1	0.8
10/15/2018			0.84	1.1	
10/16/2018	4.7	<0.19 (U)			0.84
4/16/2019			0.85	1.5	<0.23 (U)
4/17/2019		0.7			
4/18/2019	5.7				
10/15/2019	4.5	<0.23 (U)	0.85	1.2	0.87
5/21/2020	5	0.23 (J)		1	
5/26/2020			0.77		0.81
10/6/2020			0.67	1.1	0.88
10/7/2020	5.3	<0.23 (U)			

Sulfate


Time Series Analysis Run 12/4/2020 6:44 PM

Time Series

Constituent: Sulfate (mg/L) Analysis Run 12/4/2020 6:45 PM

	MW-102M (bg)	MW-122M (bg)	MW-301	MW-302	MW-303
5/4/2016	378		5160	201	6230
5/5/2016		8260			
6/22/2016	350		5370	133	4690
6/23/2016		5330			
8/9/2016			4050		1950
8/10/2016	354	8950		102	
10/26/2016	384	8600	2630	78.9	780
1/17/2017			1780	76.7	497
1/18/2017	415	9680			
4/19/2017				76.7	329
4/20/2017	348	14300	1170		
6/20/2017			1180	79.3	
6/21/2017	356	17500			
7/19/2017					255 (255)
8/22/2017	358	9190	902	77.2	287
11/7/2017			926	77.5	232
11/8/2017	335	9440			
4/17/2018	352	10400	638	79.3	262
10/15/2018			837	80.9	
10/16/2018	384	<0.24 (U)			310
4/16/2019			360	83	600
4/17/2019		8300			
4/18/2019	340				
10/15/2019	350	8400	310	73	390
5/21/2020	350	9800		79	
5/26/2020			390		440
10/6/2020			620	73	230
10/7/2020	350	8700			

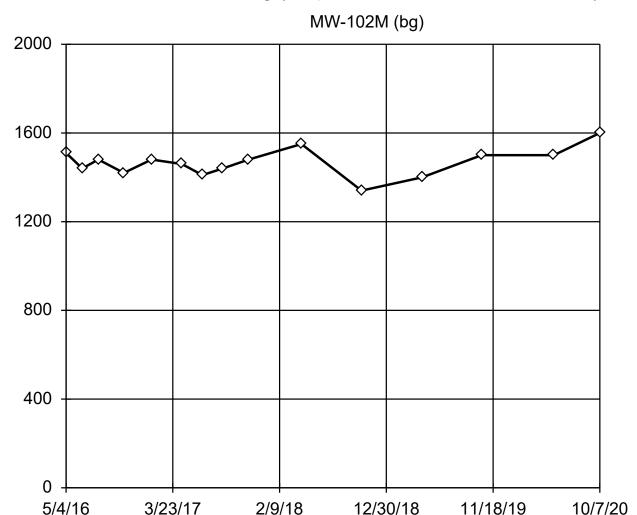
Total Dissolved Solids

Time Series Analysis Run 12/4/2020 6:44 PM

Time Series

Constituent: Total Dissolved Solids (mg/L) Analysis Run 12/4/2020 6:45 PM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

	MW-102M (bg)	MW-122M (bg)	MW-301	MW-302	MW-303
5/4/2016	1670		6260	784	9540
5/5/2016		11500			
6/22/2016	1530		5380	715	7120
6/23/2016		7430			
8/9/2016			5810		2750
8/10/2016	1620	14200		671	
10/26/2016	1420	13200	4030	644	1500
1/17/2017			2830	639	1080
1/18/2017	1530	14100			
4/19/2017				671	931
4/20/2017	1620	18100	1990		
6/20/2017			2060	656	
6/21/2017	1480	12800			
7/19/2017					809
8/22/2017	1400	14300	1870	672	868
11/7/2017			1760	607	783
11/8/2017	1410	13400			
4/17/2018	1540	14400	1400	690	839
10/15/2018			1550	708	
10/16/2018	1500	13300			891
4/16/2019			970	690	1300
4/17/2019		13000			
4/18/2019	1700				
10/15/2019	1400	13000	860	680	1100
5/21/2020	3700	16000		930	
5/26/2020			1100		1100
10/6/2020			1400	700	840
10/7/2020	1700	14000			


Attachment 2

Outlier Analysis

Outlier Analysis

	Ottumwa	a-Midland Land	fill Client: SC	S Engineers	Data: OML- Chempoint- input	-Oct2020 Pri	inted 12	/31/2020, 1	2:27 AM		
Constituent	<u>Well</u>	<u>Outlier</u>	Value(s)	Date(s)	Method	<u>Alpha</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	<u>Distribution</u>	Normality Test
Boron (ug/L)	MW-102M (bg)	No	n/a	n/a	EPA 1989	0.05	15	1467	63.64	normal	ShapiroWilk
Boron (ug/L)	MW-122M (bg)	Yes	1720	6/23/2016	Dixon's	0.05	15	4435	976.9	normal	ShapiroWilk
Calcium (mg/L)	MW-102M (bg)	No	n/a	n/a	EPA 1989	0.05	15	56.8	48.39	ln(x)	ShapiroWilk
Calcium (mg/L)	MW-122M (bg)	Yes	599,312	5/5/2016,	Dixon's	0.05	15	406.4	60.64	normal	ShapiroWilk
Field pH (Std. Units)	MW-102M (bg)	No	n/a	n/a	EPA 1989	0.05	13	7.849	0.4453	normal	ShapiroWilk
Field pH (Std. Units)	MW-122M (bg)	No	n/a	n/a	EPA 1989	0.05	12	6.618	0.3844	normal	ShapiroWilk
Fluoride (mg/L)	MW-102M (bg)	No	n/a	n/a	EPA 1989	0.05	15	4.593	0.4527	ln(x)	ShapiroWilk
Fluoride (mg/L)	MW-122M (bg)	No	n/a	n/a	Dixon`s	0.05	15	0.5307	0.3625	normal	ShapiroWilk
Sulfate (mg/L)	MW-102M (bg)	No	n/a	n/a	NP (nrm)	NaN	15	360.3	21.03	unknown	ShapiroWilk
Sulfate (mg/L)	MW-122M (bg)	Yes	17500,0.12	6/21/2017	NP (nrm)	NaN	15	9123	3775	unknown	ShapiroWilk
Total Dissolved Solids (mg/L)	MW-102M (bg)	Yes	3700	5/21/2020	Dixon's	0.05	15	1681	568.4	normal	ShapiroWilk
Total Dissolved Solids (mg/L)	MW-122M (bg)	Yes	18100,7430	4/20/2017	Dixon's	0.05	15	13515	2267	normal	ShapiroWilk

EPA Screening (suspected outliers for Dixon's Test)

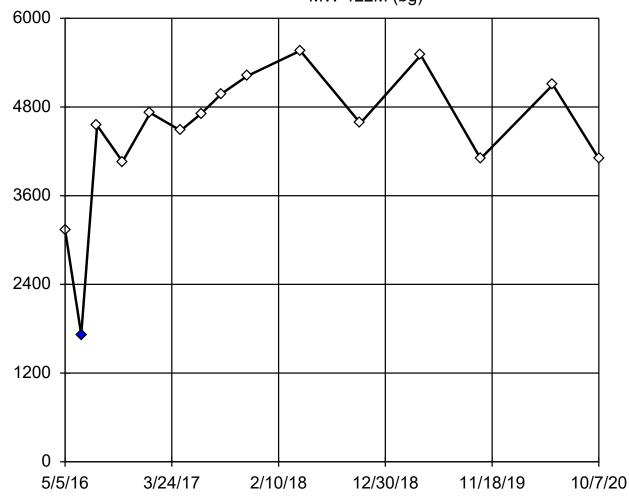
n = 15

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 1467, std. dev. 63.64, critical Tn 2.409

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9821 Critical = 0.901 The distribution was found to be normally distributed.

Constituent: Boron Analysis Run 12/31/2020 12:26 AM

EPA 1989 Outlier Screening


Constituent: Boron (ug/L) Analysis Run 12/31/2020 12:27 AM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

	MW-102M (bg)
5/4/2016	1510
6/22/2016	1440
8/10/2016	1480
10/26/2016	1420
1/18/2017	1480
4/20/2017	1460
6/21/2017	1410
8/22/2017	1440
11/8/2017	1480
4/17/2018	1550
10/16/2018	1340
4/18/2019	1400
10/15/2019	1500
5/21/2020	1500
10/7/2020	1600

ng/L

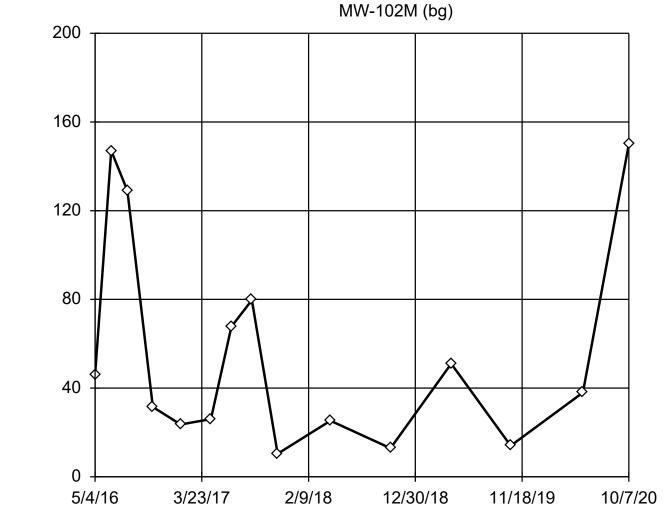
Dixon's Outlier Test

MW-122M (bg)

n = 15

Statistical outlier is drawn as solid.
Testing for 2 low outliers.
Mean = 4435.
Std. Dev. = 976.9.
3140: c = 0.4615
tabl = 0.525.
Alpha = 0.05.
1720: c = 0.6686
tabl = 0.525.
Alpha = 0.05.

Normality test used:
Shapiro Wilk@alpha = 0.1
Calculated = 0.9525
Critical = 0.895
The distribution, after
removal of suspect value, was found to be normally distributed.


Constituent: Boron Analysis Run 12/31/2020 12:26 AM

Dixon's Outlier Test

Constituent: Boron (ug/L) Analysis Run 12/31/2020 12:27 AM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

	MW-122M (bg
5/5/2016	3140
6/23/2016	1720 (O)
8/10/2016	4550
10/26/2016	4060
1/18/2017	4720
4/20/2017	4480
6/21/2017	4710
8/22/2017	4980
11/8/2017	5220
4/17/2018	5560
10/16/2018	4580
4/17/2019	5500
10/15/2019	4100
5/21/2020	5100
10/7/2020	4100

EPA Screening (suspected outliers for Dixon's Test)

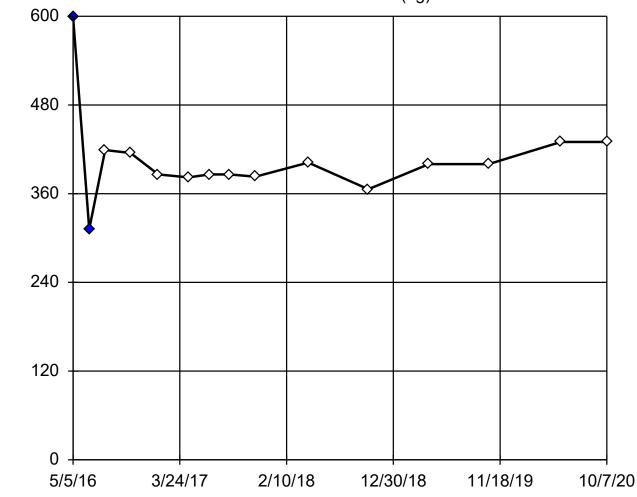
n = 15

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 56.8, std. dev. 48.39, critical Tn 2.409

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9507 Critical = 0.901 (after natural log transformation) The distribution was found to be log-normal.

Constituent: Calcium Analysis Run 12/31/2020 12:26 AM

EPA 1989 Outlier Screening


Constituent: Calcium (mg/L) Analysis Run 12/31/2020 12:27 AM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

	MW-102M (bg)
5/4/2016	45.9
6/22/2016	147
8/10/2016	129
10/26/2016	31.5
1/18/2017	23.6
4/20/2017	26
6/21/2017	67.7
8/22/2017	79.7
11/8/2017	10.4
4/17/2018	25.3
10/16/2018	12.9
4/18/2019	51
10/15/2019	14
5/21/2020	38
10/7/2020	150

mg/L

Dixon's Outlier Test

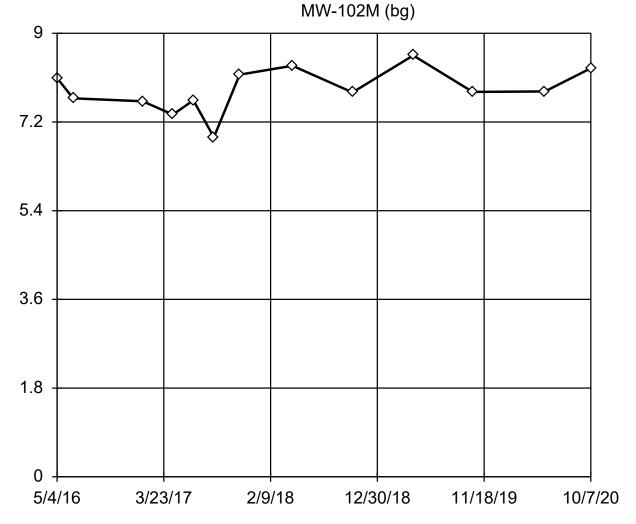
MW-122M (bg)

n = 15

Statistical outliers are drawn as solid.
Testing for 1 high and 1 low outliers.
Mean = 406.4.
Std. Dev. = 60.64.
599: c = 0.7788
tabl = 0.525.
312: c = 0.5932
tabl = 0.525.
Alpha = 0.05.

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9323 Critical = 0.889 The distribution, after removal of suspect values, was found to be normally distributed.

Constituent: Calcium Analysis Run 12/31/2020 12:27 AM


Dixon's Outlier Test

Constituent: Calcium (mg/L) Analysis Run 12/31/2020 12:27 AM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

	MW-122M (bg)
5/5/2016	599 (O)
6/23/2016	312 (O)
8/10/2016	419
10/26/2016	415
1/18/2017	386
4/20/2017	382
6/21/2017	386
8/22/2017	386
11/8/2017	383
4/17/2018	402
10/16/2018	366
4/17/2019	400
10/15/2019	400
5/21/2020	430
10/7/2020	430

Std. Units

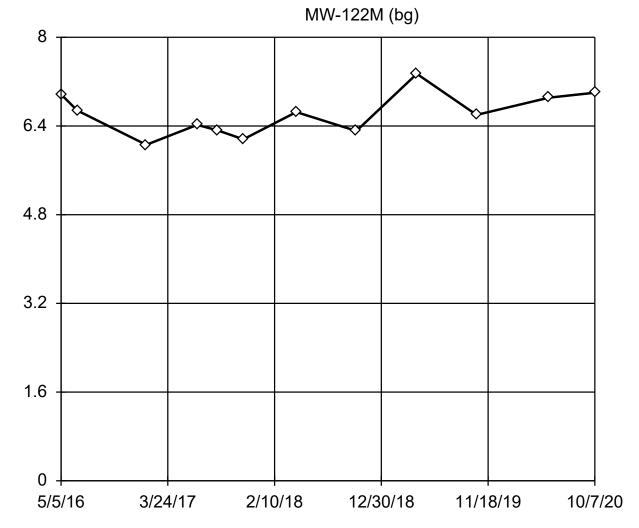
EPA Screening (suspected outliers for Dixon's Test)

n = 13

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 7.849, std. dev. 0.4453, critical Tn 2.331

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9648 Critical = 0.889 The distribution was found to be normally distributed.

Constituent: Field pH Analysis Run 12/31/2020 12:27 AM


EPA 1989 Outlier Screening

Constituent: Field pH (Std. Units) Analysis Run 12/31/2020 12:27 AM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

	MW-102M (bg)
5/4/2016	8.09
6/22/2016	7.68
1/18/2017	7.62
4/20/2017	7.35
6/21/2017	7.64
8/22/2017	6.89
11/8/2017	8.16
4/17/2018	8.34
10/16/2018	7.8
4/18/2019	8.55
10/15/2019	7.81
5/21/2020	7.82
10/7/2020	8.29

Std. Units

EPA Screening (suspected outliers for Dixon's Test)

n = 12

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 6.618, std. dev. 0.3844, critical Tn 2.285

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9675 Critical = 0.883 The distribution was found to be normally distributed.

Constituent: Field pH Analysis Run 12/31/2020 12:27 AM

EPA 1989 Outlier Screening

Constituent: Field pH (Std. Units) Analysis Run 12/31/2020 12:27 AM

Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

MW-122M (bg)
6.97
6.68
6.06
6.42
6.32
6.16
6.65
6.31
7.34
6.6
6.91
7

mg/L

EPA Screening (suspected outliers for Dixon's Test)

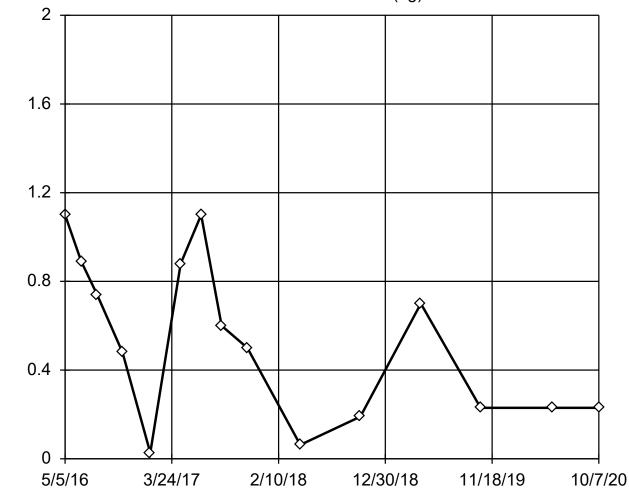
n = 15

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 4.593, std. dev. 0.4527, critical Tn 2.409

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9239 Critical = 0.901 (after natural log transformation) The distribution was found to be log-normal.

Constituent: Fluoride Analysis Run 12/31/2020 12:27 AM

EPA 1989 Outlier Screening


Constituent: Fluoride (mg/L) Analysis Run 12/31/2020 12:27 AM

Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

	MW-102M (bg)
5/4/2016	4.2
6/22/2016	4.2
8/10/2016	4.4
10/26/2016	4.6
1/18/2017	4.1
4/20/2017	4
6/21/2017	4.6
8/22/2017	4.5
11/8/2017	4.6
4/17/2018	4.5
10/16/2018	4.7
4/18/2019	5.7
10/15/2019	4.5
5/21/2020	5
10/7/2020	5.3

Dixon's Outlier Test

MW-122M (bg)

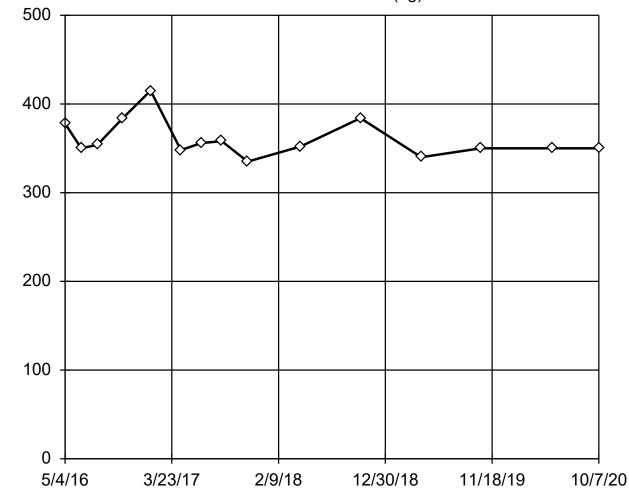
n = 15

No statistical outliers. Testing for 1 low outlier. Mean = 0.5307. Std. Dev. = 0.3625. <0.027 (U): c = 0.1889 tabl = 0.525. Alpha = 0.05.

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.93 Critical = 0.895 The distribution was found to be normally distributed.

Constituent: Fluoride Analysis Run 12/31/2020 12:27 AM

Dixon's Outlier Test


Constituent: Fluoride (mg/L) Analysis Run 12/31/2020 12:27 AM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

	MW-122M (bg)
5/5/2016	1.1
6/23/2016	0.89
8/10/2016	0.74
10/26/2016	0.48
1/18/2017	<0.027 (U)
4/20/2017	0.88
6/21/2017	1.1
8/22/2017	0.6
11/8/2017	0.5
4/17/2018	<0.063 (U)
10/16/2018	<0.19 (U)
4/17/2019	0.7
10/15/2019	<0.23 (U)
5/21/2020	0.23 (J)
10/7/2020	<0.23 (U)

mg/L

Tukey's Outlier Screening

MW-102M (bg)

n = 15

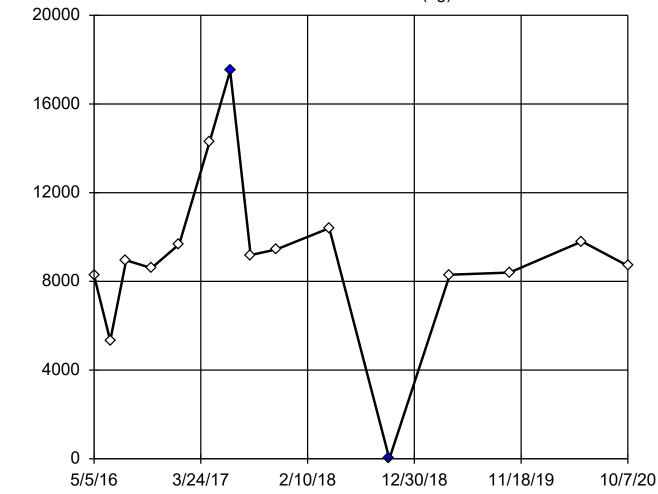
No outliers found. Tukey's method used in lieu of parametric test because the Shapiro Wilk normality test failed at the 0.1 alpha level.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 476.2, low cutoff = 277.8, based on IQR multiplier of 3.

Constituent: Sulfate Analysis Run 12/31/2020 12:27 AM

Tukey's Outlier Screening


Constituent: Sulfate (mg/L) Analysis Run 12/31/2020 12:27 AM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

		MW-102M (bg
5/4	1/2016	378
6/2	22/2016	350
8/	10/2016	354
10	/26/2016	384
1/	18/2017	415
4/2	20/2017	348
6/2	21/2017	356
8/2	22/2017	358
11	/8/2017	335
4/	17/2018	352
10	/16/2018	384
4/	18/2019	340
10	/15/2019	350
5/2	21/2020	350
10	/7/2020	350

mg/L

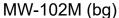
Tukey's Outlier Screening

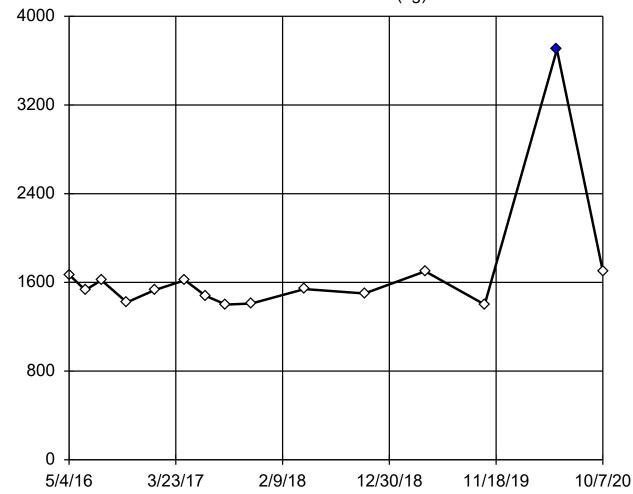
n = 15

Outliers are drawn as solid.
Tukey's method used in lieu of parametric test because the Shapiro Wilk normality test failed at the 0.1 alpha level.

Ladder of Powers transformations did not improve normality; analysis run on raw data.

High cutoff = 14300, low cutoff = 3800, based on IQR multiplier of 3.


Constituent: Sulfate Analysis Run 12/31/2020 12:27 AM


Tukey's Outlier Screening

Constituent: Sulfate (mg/L) Analysis Run 12/31/2020 12:27 AM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

	MW-122M (bg)
5/5/2016	8260
6/23/2016	5330
8/10/2016	8950
10/26/2016	8600
1/18/2017	9680
4/20/2017	14300
6/21/2017	17500 (O)
8/22/2017	9190
11/8/2017	9440
4/17/2018	10400
10/16/2018	<0.24 (UO)
4/17/2019	8300
10/15/2019	8400
5/21/2020	9800
10/7/2020	8700

Dixon's Outlier Test

n = 15

Statistical outlier is drawn as solid.
Testing for 1 high outlier.
Mean = 1681.
Std. Dev. = 568.4.
3700: c = 0.8734
tabl = 0.525.
Alpha = 0.05.

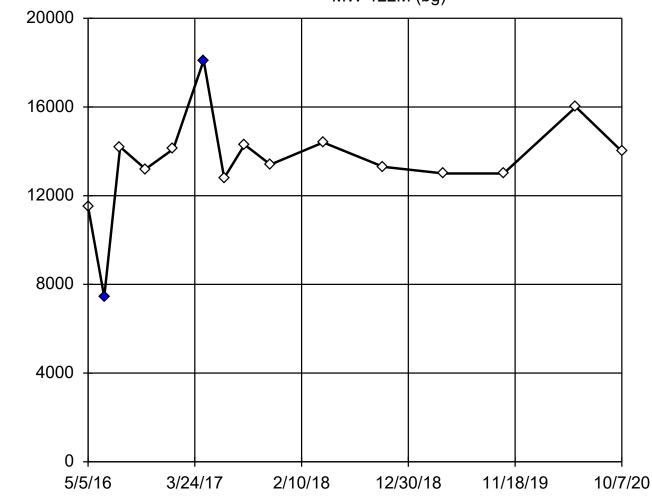
Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9087 Critical = 0.895 The distribution, after removal of suspect value, was found to be normally distributed.

Constituent: Total Dissolved Solids Analysis Run 12/31/2020 12:27 AM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

02/04/2021 - Classification: Internal - ECRM7850469

Dixon's Outlier Test

Constituent: Total Dissolved Solids (mg/L) Analysis Run 12/31/2020 12:27 AM


Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

		MW-102M (bg)
5/4	/2016	1670
6/2	2/2016	1530
8/1	0/2016	1620
10/	26/2016	1420
1/1	8/2017	1530
4/2	0/2017	1620
6/2	1/2017	1480
8/2	2/2017	1400
11/	8/2017	1410
4/1	7/2018	1540
10/	16/2018	1500
4/1	8/2019	1700
10/	15/2019	1400
5/2	1/2020	3700 (O)
10/	7/2020	1700

mg/L

Dixon's Outlier Test

MW-122M (bg)

n = 15

Statistical outliers are drawn as solid.
Testing for 1 high and 1 low outliers.
Mean = 13515.
Std. Dev. = 2267.
18100: c = 0.6981
tabl = 0.525.
7430: c = 0.7704
tabl = 0.525.
Alpha = 0.05.

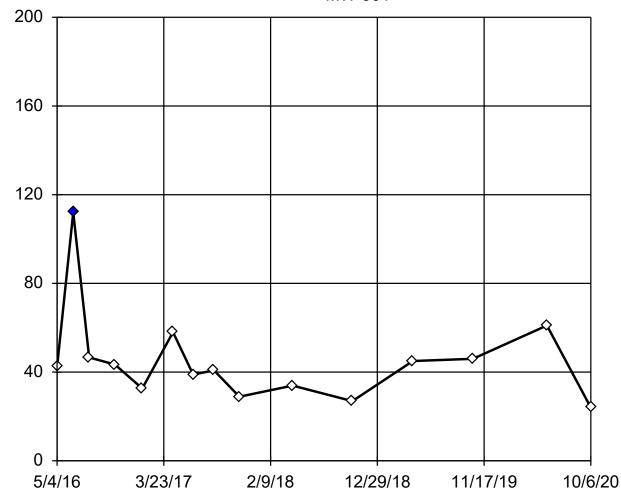
Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9447 Critical = 0.889 The distribution, after removal of suspect values, was found to be normally distributed.

Constituent: Total Dissolved Solids Analysis Run 12/31/2020 12:27 AM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

Dixon's Outlier Test

Constituent: Total Dissolved Solids (mg/L) Analysis Run 12/31/2020 12:27 AM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

	MW-122M (bg)
5/5/2016	11500
6/23/2016	7430 (O)
8/10/2016	14200
10/26/2016	13200
1/18/2017	14100
4/20/2017	18100 (O)
6/21/2017	12800
8/22/2017	14300
11/8/2017	13400
4/17/2018	14400
10/16/2018	13300
4/17/2019	13000
10/15/2019	13000
5/21/2020	16000
10/7/2020	14000


Outlier Analysis

	O	ttumwa-Midland Lan	idfill Client:	SCS Engineers	Data: OML- Chempoin	t- input-Oct2020	Printed 1	2/4/2020, 7	':07 PM		
Constituent	<u>Well</u>	<u>Outlier</u>	Value(s)	Date(s)	Method	<u>Alpha</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	<u>Distribution</u>	Normality Test
Chloride (mg/L)	MW-301	Yes	112	6/22/2016	Dixon`s	0.05	15	45.36	21.19	normal	ShapiroWilk
Chloride (mg/L)	MW-302	No	n/a	n/a	EPA 1989	0.05	15	8.133	0.9839	normal	ShapiroWilk
Chloride (mg/L)	MW-303	Yes	13.5	5/4/2016	NP (nrm)	NaN	17	8.094	1.777	unknown	ShapiroWilk

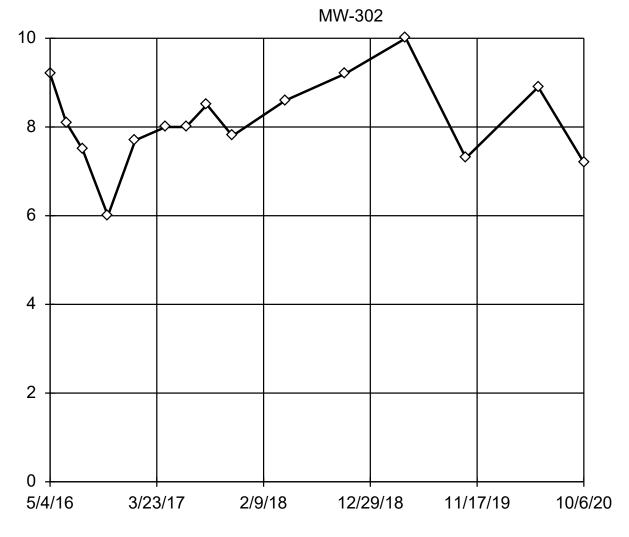
mg/L

Dixon's Outlier Test

n = 15

Statistical outlier is drawn as solid.
Testing for 1 high outlier.
Mean = 45.36.
Std. Dev. = 21.19.
112: c = 0.6498
tabl = 0.525.
Alpha = 0.05.

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9589 Critical = 0.895 The distribution, after removal of suspect value, was found to be normally distributed.


Constituent: Chloride Analysis Run 12/4/2020 7:06 PM

Dixon's Outlier Test

Constituent: Chloride (mg/L) Analysis Run 12/4/2020 7:07 PM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

	MW-301
5/4/2016	42.4
6/22/2016	112 (O)
8/9/2016	46.6
10/26/2016	43.4
1/17/2017	32.6
4/20/2017	58
6/20/2017	38.9
8/22/2017	40.8
11/7/2017	28.9
4/17/2018	33.9
10/15/2018	26.9
4/16/2019	45
10/15/2019	46
5/26/2020	61
10/6/2020	24

EPA Screening (suspected outliers for Dixon's Test)

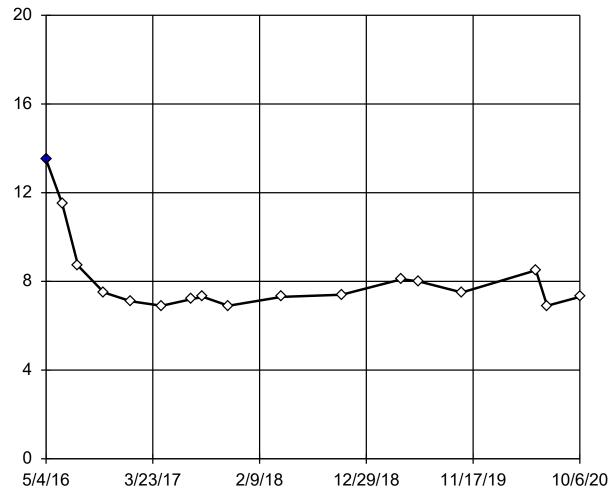
n = 15

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 8.133, std. dev. 0.9839, critical Tn 2.409

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9807 Critical = 0.901 The distribution was found to be normally distributed.

Constituent: Chloride Analysis Run 12/4/2020 7:06 PM

EPA 1989 Outlier Screening


Constituent: Chloride (mg/L) Analysis Run 12/4/2020 7:07 PM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

	MW-302
5/4/2016	9.2
6/22/2016	8.1
8/10/2016	7.5
10/26/2016	6
1/17/2017	7.7
4/19/2017	8
6/20/2017	8
8/22/2017	8.5
11/7/2017	7.8
4/17/2018	8.6
10/15/2018	9.2
4/16/2019	10
10/15/2019	7.3
5/21/2020	8.9
10/6/2020	7.2

mg/L

Tukey's Outlier Screening

n = 17

Outlier is drawn as solid. Tukey's method used in lieu of parametric test because the Shapiro Wilk normality test failed at the 0.1 alpha level.

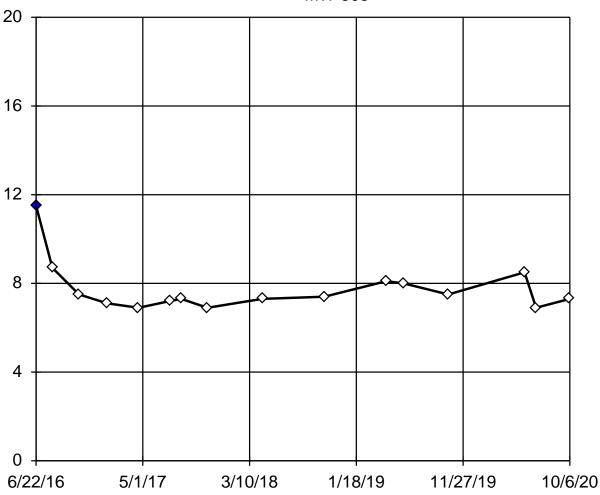
Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 12.97, low cutoff = 4.574, based on IQR multiplier of 3.

Constituent: Chloride Analysis Run 12/4/2020 7:06 PM

Tukey's Outlier Screening

Constituent: Chloride (mg/L) Analysis Run 12/4/2020 7:07 PM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020


	MW-303
5/4/2016	13.5 (O)
6/22/2016	11.5
8/9/2016	8.7
10/26/2016	7.5
1/17/2017	7.1
4/19/2017	6.9
7/19/2017	7.2
8/22/2017	7.3
11/7/2017	6.9
4/17/2018	7.3
10/16/2018	7.4
4/16/2019	8.1
6/6/2019	8
10/15/2019	7.5
5/26/2020	8.5
6/29/2020	6.9
10/6/2020	7.3

Outlier Analysis

		Ottumwa-Midland Land	fill Clie	ent: SCS Engineers	Data: OML- Chemp	point- input-Oct2020	Printed '	1/12/2021, 1	0:10 AM		
Constituent	<u>Well</u>	<u>Outlier</u>	Value(s	<u>Date(s)</u>	Method	<u>Alpha</u>	<u>a</u> <u>N</u>	<u>Mean</u>	Std. Dev.	<u>Distribution</u>	Normality Test
Chloride (mg/L)	MW-303	Yes	11.5	6/22/2016	NP (nrm)	NaN	16	7.756	1.139	unknown	ShapiroWilk

MW-303

n = 16

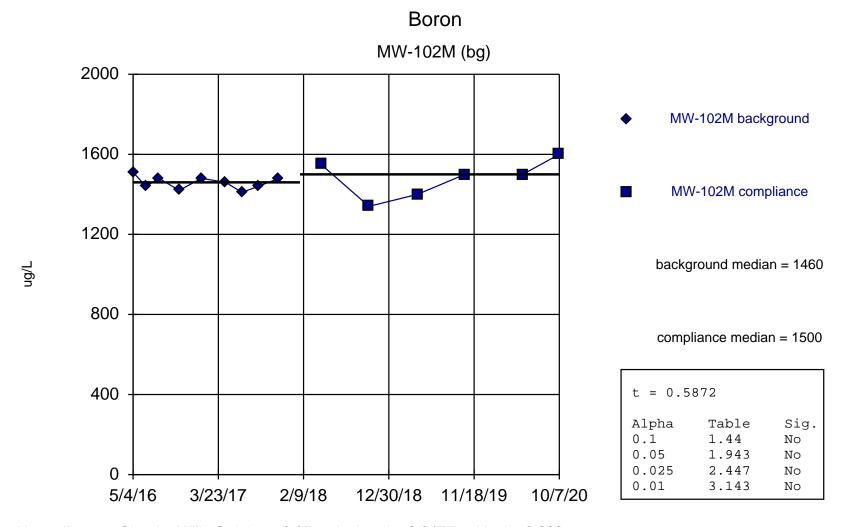
Outlier is drawn as solid. Tukey's method used in lieu of parametric test because the Shapiro Wilk normality test failed at the 0.1 alpha level.

High cutoff = 10.75, low cutoff = 4.45, based on IQR multiplier of 3.

Tukey's Outlier Screening Analysis Run 1/12/2021 10:09 AM

Tukey's Outlier Screening

Constituent: Chloride (mg/L) Analysis Run 1/12/2021 10:10 AM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

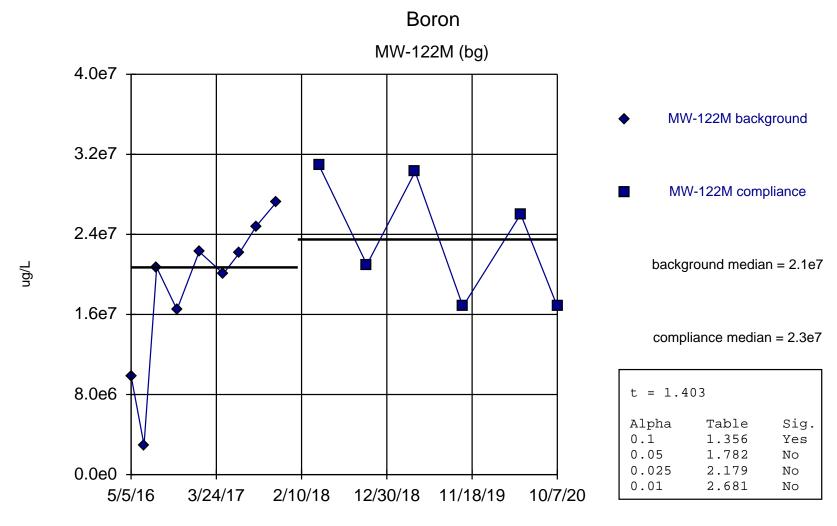

	MW-303
5/4/2016	13.5 (X)
6/22/2016	11.5 (O)
8/9/2016	8.7
10/26/2016	7.5
1/17/2017	7.1
4/19/2017	6.9
7/19/2017	7.2
8/22/2017	7.3
11/7/2017	6.9
4/17/2018	7.3
10/16/2018	7.4
4/16/2019	8.1
6/6/2019	8
10/15/2019	7.5
5/26/2020	8.5
6/29/2020	6.9
10/6/2020	7.3

Attachment 3

Welch's/Mann-Whitney Comparison

Welch's t-test/Mann-Whitney

	Ottumwa-Midlan	d Landfill	Client: S	SCS Engine	eers Da	ata: OML- (Chempoint- ir	put-Oct20	020 Printed 1/11/202	1, 9:13 PM
Constituent	<u>Well</u>	Calc.	<u>0.1</u>	0.05	0.025	0.01	<u>Alpha</u>	Sig.	Bg. Wells	Method
Boron (ug/L)	MW-102M (bg)	0.5872	No	No	No	No	0.01	No	(intrawell)	Welch`s
Boron (ug/L)	MW-122M (bg)	1.403	Yes	No	No	No	0.01	No	(intrawell)	Welch`s
Calcium (mg/L)	MW-102M (bg)	-0	No	No	No	No	0.01	No	(intrawell)	Welch`s
Calcium (mg/L)	MW-122M (bg)	0.5848	No	No	No	No	0.01	No	(intrawell)	Mann-W (normality)
Field pH (Std. Units)	MW-102M (bg)	2.21	Yes	Yes	Yes	No	0.01	No	(intrawell)	Welch`s
Field pH (Std. Units)	MW-122M (bg)	1.817	Yes	Yes	No	No	0.01	No	(intrawell)	Welch`s
Fluoride (mg/L)	MW-102M (bg)	2.813	Yes	Yes	Yes	No	0.01	No	(intrawell)	Welch`s
Fluoride (mg/L)	MW-122M (bg)	-2.951	No	No	No	No	0.01	No	(intrawell)	Welch`s
Sulfate (mg/L)	MW-102M (bg)	-0	No	No	No	No	0.01	No	(intrawell)	Welch`s
Sulfate (mg/L)	MW-122M (bg)	-0	No	No	No	No	0.01	No	(intrawell)	Welch`s
Total Dissolved Solids (mg/L)	MW-102M (bg)	1.12	No	No	No	No	0.01	No	(intrawell)	Welch`s
Total Dissolved Solids (mg/L)	MW-122M (bg)	0.6902	No	No	No	No	0.01	No	(intrawell)	Welch`s

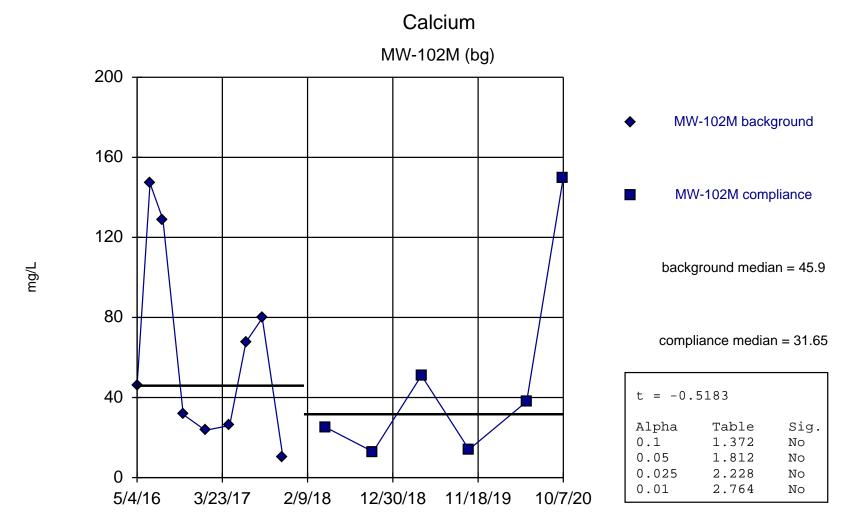

Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9475, critical = 0.829.

Welch's t-test Analysis Run 1/11/2021 9:06 PM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

Welch's t-test

Constituent: Boron (ug/L) Analysis Run 1/11/2021 9:13 PM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

	MW-102M	MW-102M
5/4/2016	1510	
6/22/2016	1440	
8/10/2016	1480	
10/26/2016	1420	
1/18/2017	1480	
4/20/2017	1460	
6/21/2017	1410	
8/22/2017	1440	
11/8/2017	1480	
4/17/2018		1550
10/16/2018		1340
4/18/2019		1400
10/15/2019		1500
5/21/2020		1500
10/7/2020		1600

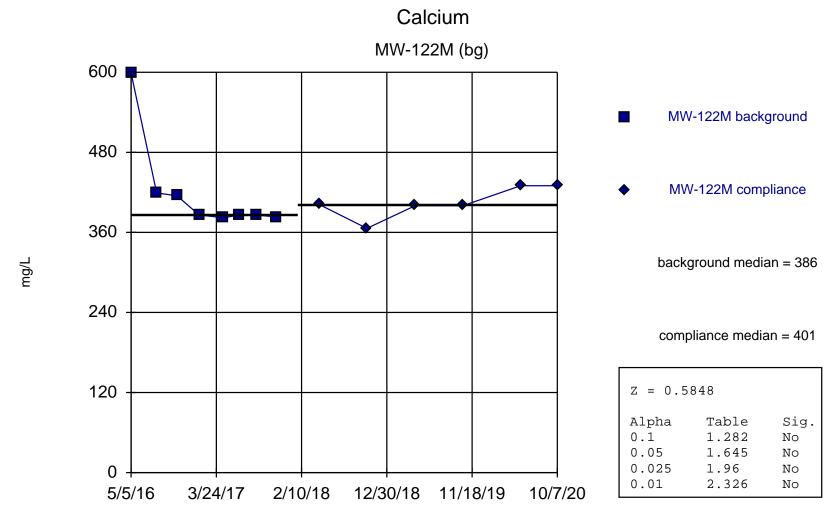

Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8905 after square transformation, critical = 0.829.

Welch's t-test Analysis Run 1/11/2021 9:06 PM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

Welch's t-test

Constituent: Boron (ug/L) Analysis Run 1/11/2021 9:13 PM

	MW-122M	MW-122M
5/5/2016	3140	
6/23/2016	1720	
8/10/2016	4550	
10/26/2016	4060	
1/18/2017	4720	
4/20/2017	4480	
6/21/2017	4710	
8/22/2017	4980	
11/8/2017	5220	
4/17/2018		5560
10/16/2018		4580
4/17/2019		5500
10/15/2019		4100
5/21/2020		5100
10/7/2020		4100

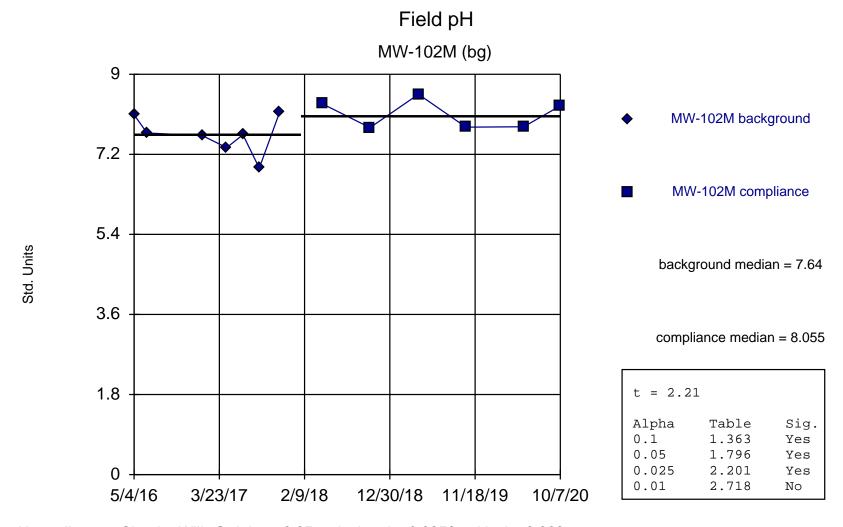

Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8861, critical = 0.829.

Welch's t-test Analysis Run 1/11/2021 9:06 PM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

Welch's t-test

Constituent: Calcium (mg/L) Analysis Run 1/11/2021 9:13 PM

	MW-102M	MW-102M
5/4/2016	45.9	
6/22/2016	147	
8/10/2016	129	
10/26/2016	31.5	
1/18/2017	23.6	
4/20/2017	26	
6/21/2017	67.7	
8/22/2017	79.7	
11/8/2017	10.4	
4/17/2018		25.3
10/16/2018		12.9
4/18/2019		51
10/15/2019		14
5/21/2020		38
10/7/2020		150

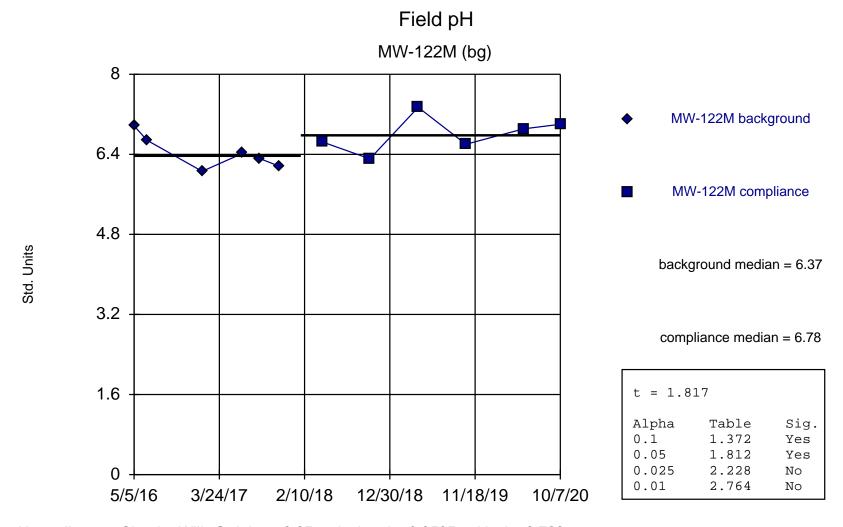

Mann-Whitney (Wilcoxon Rank Sum) used in lieu of Welch's t-test because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level.

Mann-Whitney (Wilcoxon Rank Sum) Analysis Run 1/11/2021 9:06 PM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

Mann-Whitney (Wilcoxon Rank Sum)

Constituent: Calcium (mg/L) Analysis Run 1/11/2021 9:13 PM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

	MW-122M	MW-122M
5/5/2016	599	
6/23/2016	312 (X)	
8/10/2016	419	
10/26/2016	415	
1/18/2017	386	
4/20/2017	382	
6/21/2017	386	
8/22/2017	386	
11/8/2017	383	
4/17/2018		402
10/16/2018		366
4/17/2019		400
10/15/2019		400
5/21/2020		430
10/7/2020		430

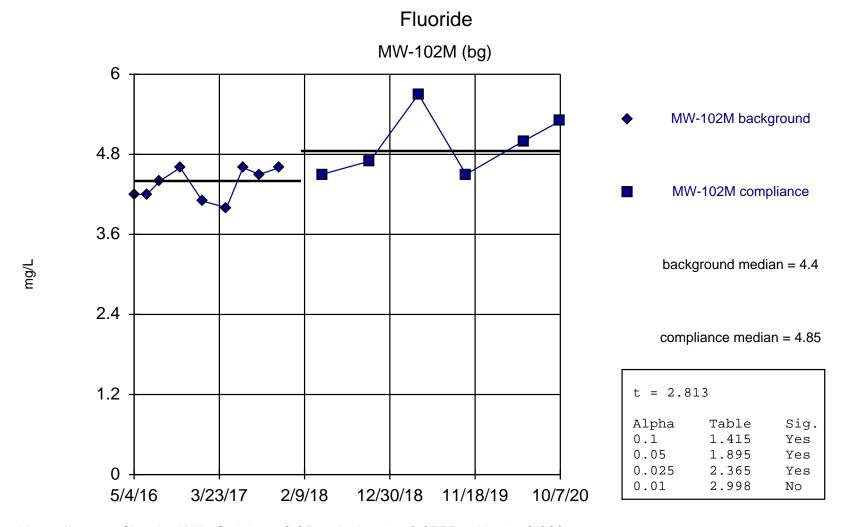

Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9358, critical = 0.803.

Welch's t-test Analysis Run 1/11/2021 9:06 PM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

Welch's t-test

Constituent: Field pH (Std. Units) Analysis Run 1/11/2021 9:13 PM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

	MW-102M	MW-102M
5/4/2016	8.09	
6/22/2016	7.68	
1/18/2017	7.62	
4/20/2017	7.35	
6/21/2017	7.64	
8/22/2017	6.89	
11/8/2017	8.16	
4/17/2018		8.34
10/16/2018		7.8
4/18/2019		8.55
10/15/2019		7.81
5/21/2020		7.82
10/7/2020		8 29

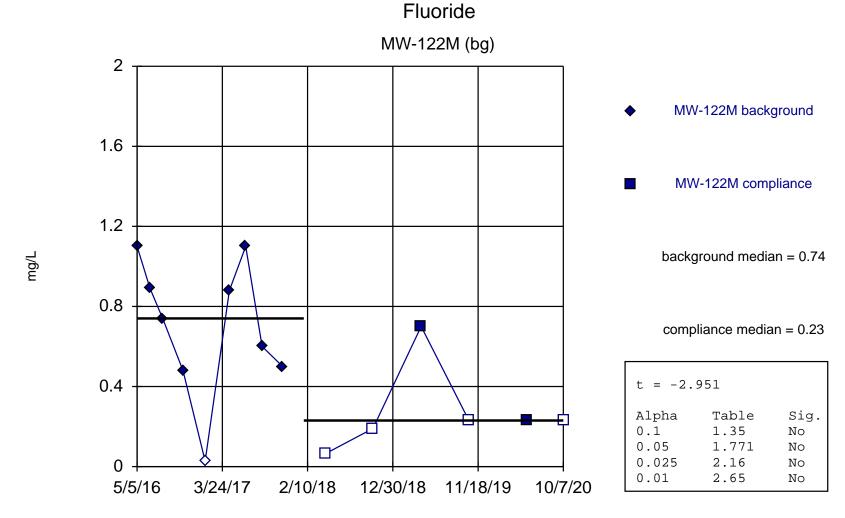

Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9505, critical = 0.788.

Welch's t-test Analysis Run 1/11/2021 9:06 PM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

Welch's t-test

Constituent: Field pH (Std. Units) Analysis Run 1/11/2021 9:13 PM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

	MW-122M	MW-122M
5/5/2016	6.97	
6/23/2016	6.68	
1/18/2017	6.06	
6/21/2017	6.42	
8/22/2017	6.32	
11/8/2017	6.16	
4/17/2018		6.65
10/16/2018		6.31
4/17/2019		7.34
10/15/2019		6.6
5/21/2020		6.91
10/7/2020		7

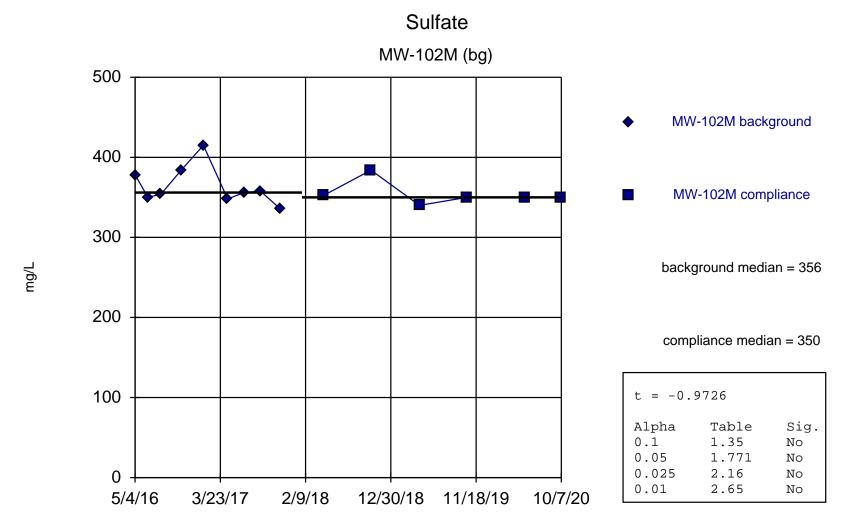


Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8775, critical = 0.829.

Welch's t-test Analysis Run 1/11/2021 9:06 PM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

Constituent: Fluoride (mg/L) Analysis Run 1/11/2021 9:13 PM

	MW-102M	MW-102M
5/4/2016	4.2	
6/22/2016	4.2	
8/10/2016	4.4	
10/26/2016	4.6	
1/18/2017	4.1	
4/20/2017	4	
6/21/2017	4.6	
8/22/2017	4.5	
11/8/2017	4.6	
4/17/2018		4.5
10/16/2018		4.7
4/18/2019		5.7
10/15/2019		4.5
5/21/2020		5
10/7/2020		5.3

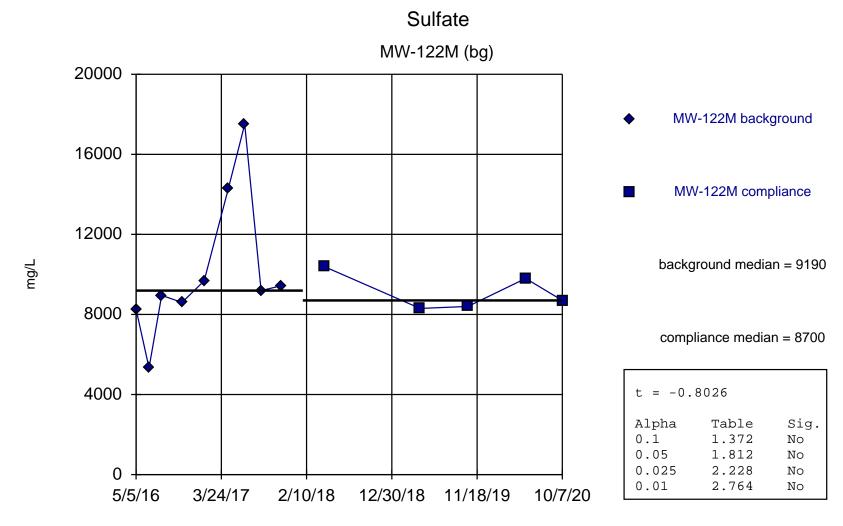


Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9316, critical = 0.829.

Welch's t-test Analysis Run 1/11/2021 9:06 PM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

Constituent: Fluoride (mg/L) Analysis Run 1/11/2021 9:13 PM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

	MW-122M	MW-122M
5/5/2016	1.1	
6/23/2016	0.89	
8/10/2016	0.74	
10/26/2016	0.48	
1/18/2017	<0.027 (U)	
4/20/2017	0.88	
6/21/2017	1.1	
8/22/2017	0.6	
11/8/2017	0.5	
4/17/2018		<0.063 (U)
10/16/2018		<0.19 (U)
4/17/2019		0.7
10/15/2019		<0.23 (U)
5/21/2020		0.23 (J)
10/7/2020		<0.23 (U)

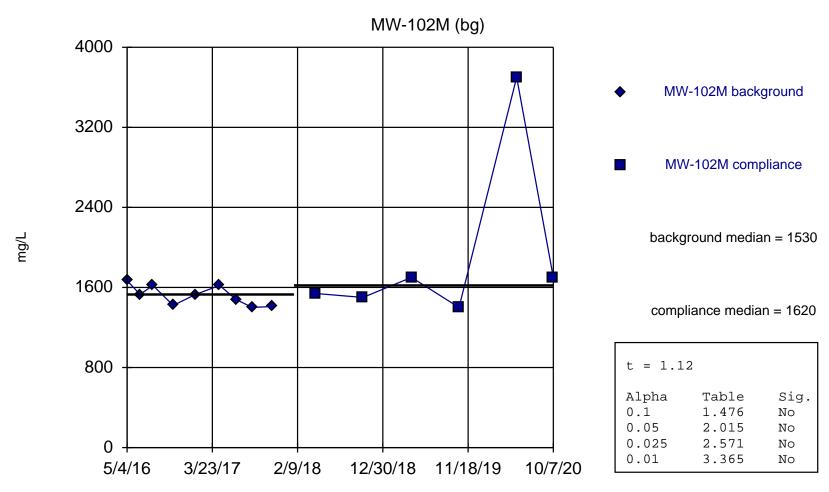


Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8925, critical = 0.829.

Welch's t-test Analysis Run 1/11/2021 9:06 PM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

Constituent: Sulfate (mg/L) Analysis Run 1/11/2021 9:13 PM

	MW-102M	MW-102M
5/4/2016	378	
6/22/2016	350	
8/10/2016	354	
10/26/2016	384	
1/18/2017	415	
4/20/2017	348	
6/21/2017	356	
8/22/2017	358	
11/8/2017	335	
4/17/2018		352
10/16/2018		384
4/18/2019		340
10/15/2019		350
5/21/2020		350
10/7/2020		350

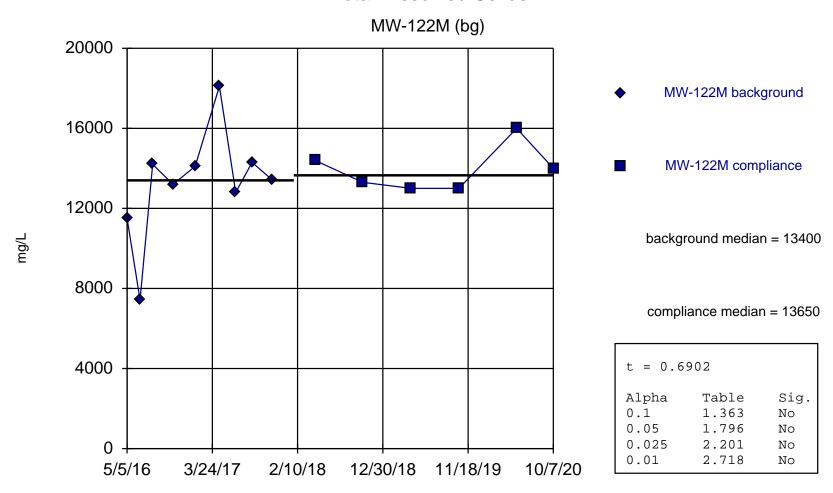

Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8507, critical = 0.829.

Welch's t-test Analysis Run 1/11/2021 9:06 PM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

Constituent: Sulfate (mg/L) Analysis Run 1/11/2021 9:13 PM

	MW-122M	MW-122M
5/5/2016	8260	
6/23/2016	5330	
8/10/2016	8950	
10/26/2016	8600	
1/18/2017	9680	
4/20/2017	14300	
6/21/2017	17500	
8/22/2017	9190	
11/8/2017	9440	
4/17/2018		10400
10/16/2018	<0.24 (UX)	
4/17/2019		8300
10/15/2019		8400
5/21/2020		9800
10/7/2020		8700

Total Dissolved Solids


Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9113, critical = 0.829.

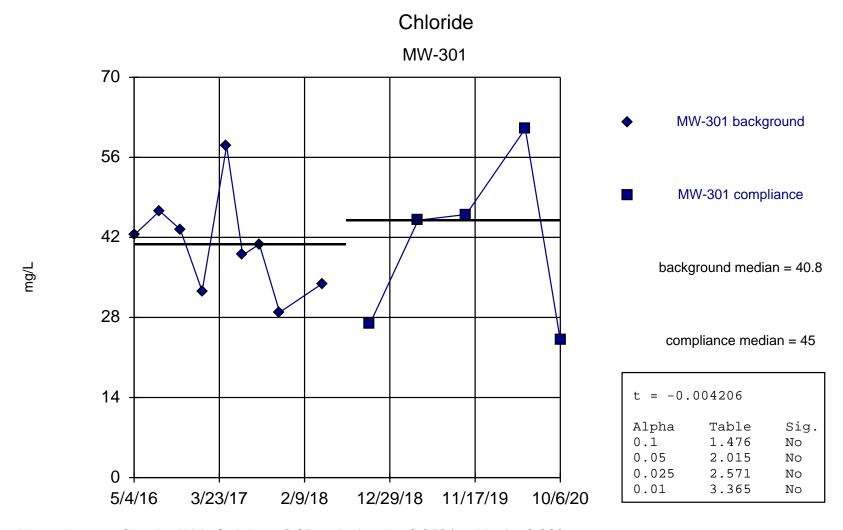
Welch's t-test Analysis Run 1/11/2021 9:06 PM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

Constituent: Total Dissolved Solids (mg/L) Analysis Run 1/11/2021 9:13 PM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

	MW-102M	MW-102M
5/4/2016	1670	
6/22/2016	1530	
8/10/2016	1620	
10/26/2016	1420	
1/18/2017	1530	
4/20/2017	1620	
6/21/2017	1480	
8/22/2017	1400	
11/8/2017	1410	
4/17/2018		1540
10/16/2018		1500
4/18/2019		1700
10/15/2019		1400
5/21/2020		3700
10/7/2020		1700

Total Dissolved Solids

Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8996, critical = 0.829.

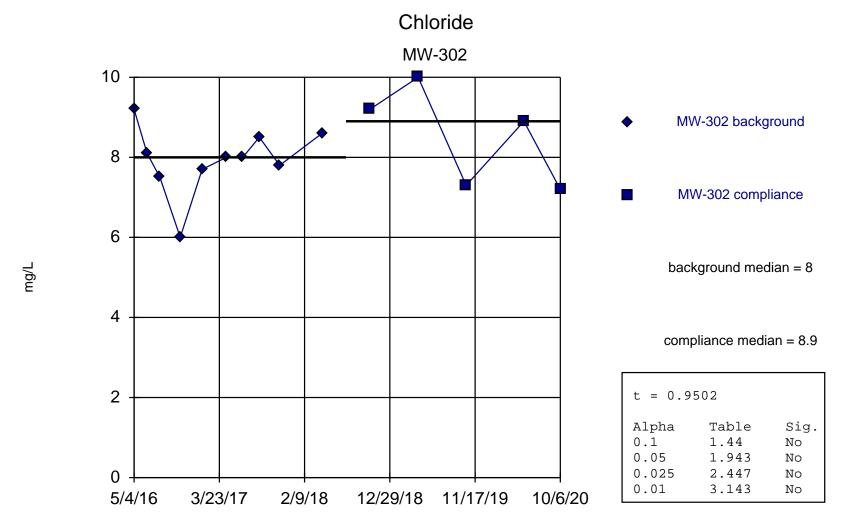

Welch's t-test Analysis Run 1/11/2021 9:06 PM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

Constituent: Total Dissolved Solids (mg/L) Analysis Run 1/11/2021 9:13 PM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

	MW-122M	MW-122M
5/5/2016	11500	
6/23/2016	7430	
8/10/2016	14200	
10/26/2016	13200	
1/18/2017	14100	
4/20/2017	18100	
6/21/2017	12800	
8/22/2017	14300	
11/8/2017	13400	
4/17/2018		14400
10/16/2018		13300
4/17/2019		13000
10/15/2019		13000
5/21/2020		16000
10/7/2020		14000

Welch's t-test/Mann-Whitney

	Ottumwa-Midland	Landfill	Client: SC	S Engine	ers Data	a: OML- Cl	nempoint- inpu	ut-Oct202	20 Printed 1/12/2021, 1	0:21 AM
Constituent	Well	Calc.	<u>0.1</u>	0.05	0.025	0.01	<u>Alpha</u>	Sig.	Bg. Wells	Method
Chloride (mg/L)	MW-301	-0	No	No	No	No	0.01	No	(intrawell)	Welch`s
Chloride (mg/L)	MW-302	0.9502	No	No	No	No	0.01	No	(intrawell)	Welch`s
Chloride (mg/L)	MW-303 (bg)	1.283	Yes	No	No	No	0.01	No	(intrawell)	Mann-W (normality)

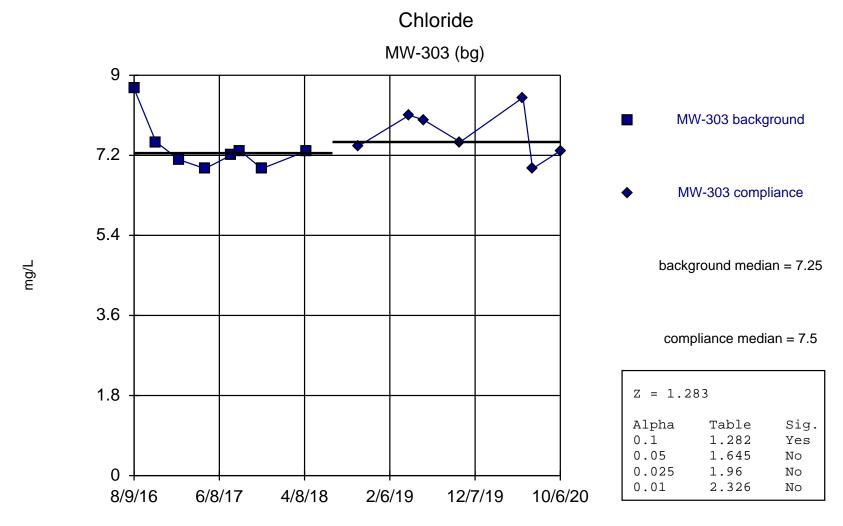


Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9531, critical = 0.829.

Welch's t-test Analysis Run 1/12/2021 10:19 AM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

Constituent: Chloride (mg/L) Analysis Run 1/12/2021 10:21 AM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

	MW-301	MW-301
5/4/2016	42.4	
6/22/2016	112 (X)	
8/9/2016	46.6	
10/26/2016	43.4	
1/17/2017	32.6	
4/20/2017	58	
6/20/2017	38.9	
8/22/2017	40.8	
11/7/2017	28.9	
4/17/2018	33.9	
10/15/2018		26.9
4/16/2019		45
10/15/2019		46
5/26/2020		61
10/6/2020		24



Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9043, critical = 0.842.

Welch's t-test Analysis Run 1/12/2021 10:19 AM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

Constituent: Chloride (mg/L) Analysis Run 1/12/2021 10:21 AM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

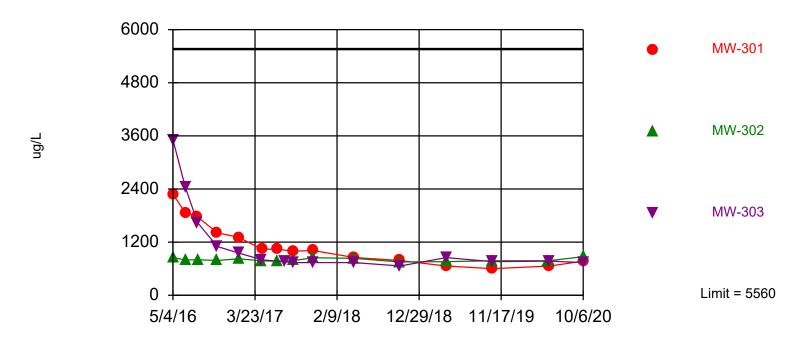
	MW-302	MW-302
5/4/2016	9.2	
6/22/2016	8.1	
8/10/2016	7.5	
10/26/2016	6	
1/17/2017	7.7	
4/19/2017	8	
6/20/2017	8	
8/22/2017	8.5	
11/7/2017	7.8	
4/17/2018	8.6	
10/15/2018		9.2
4/16/2019		10
10/15/2019		7.3
5/21/2020		8.9
10/6/2020		7.2

Mann-Whitney (Wilcoxon Rank Sum) used in lieu of Welch's t-test because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level.

Mann-Whitney (Wilcoxon Rank Sum) Analysis Run 1/12/2021 10:19 AM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

Mann-Whitney (Wilcoxon Rank Sum)

Constituent: Chloride (mg/L) Analysis Run 1/12/2021 10:21 AM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020


	MW-303	MW-303
5/4/2016	13.5 (X)	
6/22/2016	11.5 (X)	
8/9/2016	8.7	
10/26/2016	7.5	
1/17/2017	7.1	
4/19/2017	6.9	
7/19/2017	7.2	
8/22/2017	7.3	
11/7/2017	6.9	
4/17/2018	7.3	
10/16/2018		7.4
4/16/2019		8.1
6/6/2019		8
10/15/2019		7.5
5/26/2020		8.5
6/29/2020		6.9
10/6/2020		7.3

Attachment 4 Interwell Prediction Limit Analysis

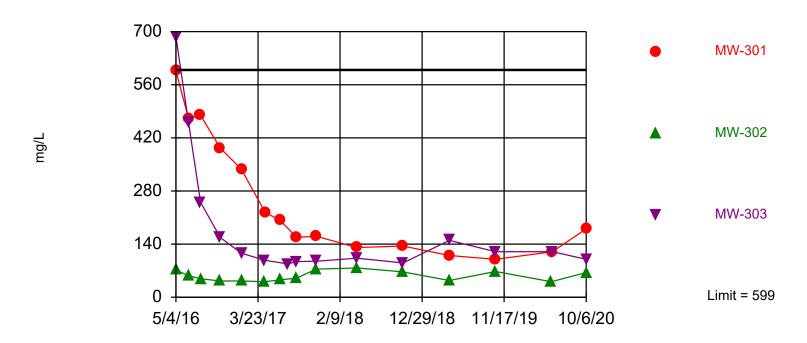
Interwell Prediction Limit

		Ottu	umwa-Midland	I Landfill C	lient: SCS	Engine	eers	Data: OML- Chempoint- input-	Oct2020	Printed '	12/31/202	0, 12:31 AM		
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	<u>Bg 1</u>	N Bg Wells Bg Mear	Std. Dev	<u>/.</u> <u>%NDs</u>	ND Adj.	Transform	<u>Alpha</u>	Method
Boron (ug/L)	MW-301	5560	n/a	10/6/2020	770	No	30	MW-102M,MW-122M n/a	n/a	0	n/a	n/a	0.00197	NP (normality) 1 of 2
Boron (ug/L)	MW-302	5560	n/a	10/6/2020	870	No	30	MW-102M,MW-122M n/a	n/a	0	n/a	n/a	0.00197	NP (normality) 1 of 2
Boron (ug/L)	MW-303	5560	n/a	10/6/2020	740	No	30	MW-102M,MW-122M n/a	n/a	0	n/a	n/a	0.00197	NP (normality) 1 of 2
Calcium (mg/L)	MW-301	599	n/a	10/6/2020	180	No	29	MW-102M,MW-122M n/a	n/a	0	n/a	n/a	0.002128	NP (normality) 1 of 2
Calcium (mg/L)	MW-302	599	n/a	10/6/2020	65	No	29	MW-102M,MW-122M n/a	n/a	0	n/a	n/a	0.002128	NP (normality) 1 of 2
Calcium (mg/L)	MW-303	599	n/a	10/6/2020	100	No	29	MW-102M,MW-122M n/a	n/a	0	n/a	n/a	0.002128	NP (normality) 1 of 2
Field pH (Std. Units)	MW-301	8.63	n/a	10/6/2020	7.22	No	25	MW-102M,MW-122M 7.258	0.7489	0	None	No	0.002505	Param 1 of 2
Field pH (Std. Units)	MW-302	8.63	n/a	10/6/2020	7.14	No	25	MW-102M,MW-122M 7.258	0.7489	0	None	No	0.002505	Param 1 of 2
Field pH (Std. Units)	MW-303	8.63	n/a	10/6/2020	7.01	No	25	MW-102M,MW-122M 7.258	0.7489	0	None	No	0.002505	Param 1 of 2
Fluoride (mg/L)	MW-301	5.70	n/a	10/6/2020	0.67	No	30	MW-122M,MW-102M n/a	n/a	16.67	n/a	n/a	0.00197	NP (normality) 1 of 2
Fluoride (mg/L)	MW-302	5.70	n/a	10/6/2020	1.1	No	30	MW-122M,MW-102M n/a	n/a	16.67	n/a	n/a	0.00197	NP (normality) 1 of 2
Fluoride (mg/L)	MW-303	5.70	n/a	10/6/2020	0.88	No	30	MW-122M,MW-102M n/a	n/a	16.67	n/a	n/a	0.00197	NP (normality) 1 of 2
Sulfate (mg/L)	MW-301	17500	n/a	10/6/2020	620	No	29	MW-102M,MW-122M n/a	n/a	0	n/a	n/a	0.002128	NP (normality) 1 of 2
Sulfate (mg/L)	MW-302	17500	n/a	10/6/2020	73	No	29	MW-102M,MW-122M n/a	n/a	0	n/a	n/a	0.002128	NP (normality) 1 of 2
Sulfate (mg/L)	MW-303	17500	n/a	10/6/2020	230	No	29	MW-102M,MW-122M n/a	n/a	0	n/a	n/a	0.002128	NP (normality) 1 of 2
Total Dissolved Solids (mg/L)	MW-301	18100	n/a	10/6/2020	1400	No	30	MW-102M,MW-122M n/a	n/a	0	n/a	n/a	0.00197	NP (normality) 1 of 2
Total Dissolved Solids (mg/L)	MW-302	18100	n/a	10/6/2020	700	No	30	MW-102M,MW-122M n/a	n/a	0	n/a	n/a	0.00197	NP (normality) 1 of 2
Total Dissolved Solids (mg/L)	MW-303	18100	n/a	10/6/2020	840	No	30	MW-102M,MW-122M n/a	n/a	0	n/a	n/a	0.00197	NP (normality) 1 of 2

Within Limit Boron
Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 30 background values. Annual per-constituent alpha = 0.01176. Individual comparison alpha = 0.00197 (1 of 2). Comparing 3 points to limit. Seasonality was not detected with 95% confidence.

Prediction Limit Analysis Run 12/31/2020 12:29 AM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020


Prediction Limit

Constituent: Boron (ug/L) Analysis Run 12/31/2020 12:31 AM

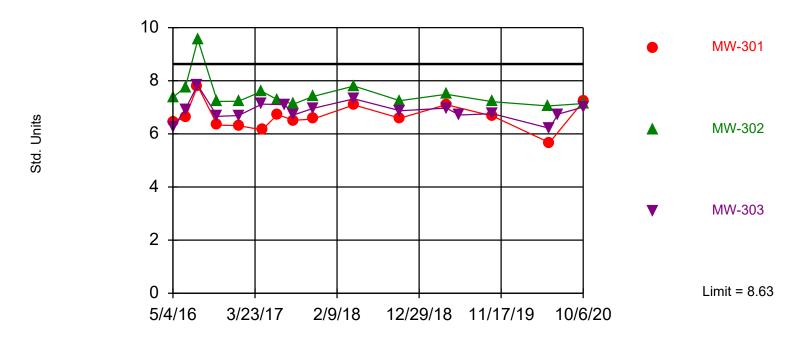
·	MW-102M (bg)	MW-303	MW-302	MW-301	MW-122M (bg)
5/4/2016	1510	3510	853	2280	
5/5/2016					3140
6/22/2016	1440	2430	796	1860	
6/23/2016					1720
8/9/2016		1640		1770	
8/10/2016	1480		802		4550
10/26/2016	1420	1100	784	1410	4060
1/17/2017		955	824	1310	
1/18/2017	1480				4720
4/19/2017		800	777		
4/20/2017	1460			1040	4480
6/20/2017			767	1040	
6/21/2017	1410				4710
7/19/2017		755			
8/22/2017	1440	737	783	994	4980
11/7/2017		738	848	1010	
11/8/2017	1480				5220
4/17/2018	1550	738	834	854	5560
10/15/2018			752	784	
10/16/2018	1340	661			4580
4/16/2019		850	760	660	
4/17/2019					5500
4/18/2019	1400				
10/15/2019	1500	760	780	600	4100
5/21/2020	1500		780		5100
5/26/2020		770		660	
10/6/2020		740	870	770	
10/7/2020	1600				4100

Within Limit Calcium

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 29 background values. Annual per-constituent alpha = 0.0127. Individual comparison alpha = 0.002128 (1 of 2). Comparing 3 points to limit. Seasonality was not detected with 95% confidence.

Prediction Limit Analysis Run 12/31/2020 12:29 AM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020


Prediction Limit

Constituent: Calcium (mg/L) Analysis Run 12/31/2020 12:31 AM

	MW-102M (bg)	MW-301	MW-302	MW-303	MW-122M (bg)
5/4/2016	45.9	596	72.1	686	
5/5/2016					599
6/22/2016	147	472	56.6	462	
6/23/2016					312 (X)
8/9/2016		479		250	
8/10/2016	129		48.8		419
10/26/2016	31.5	393	42.8	157	415
1/17/2017		337	42.9	116	
1/18/2017	23.6				386
4/19/2017			41	97.4	
4/20/2017	26	224			382
6/20/2017		202	46.1		
6/21/2017	67.7				386
7/19/2017				87.7	
8/22/2017	79.7	158	50.2	94	386
11/7/2017		161	74	94.9	
11/8/2017	10.4				383
4/17/2018	25.3	131	77.3	103	402
10/15/2018		135	66.9		
10/16/2018	12.9			90.5	366
4/16/2019		110	44	150	
4/17/2019					400
4/18/2019	51				
10/15/2019	14	100	68	120	400
5/21/2020	38		41		430
5/26/2020		120		120	
10/6/2020		180	65	100	
10/7/2020	150				430

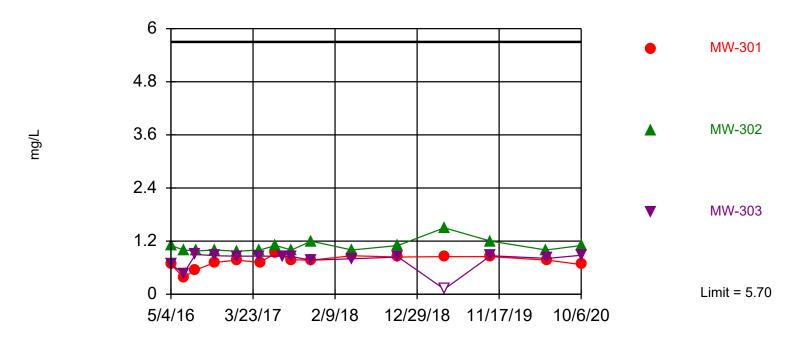
Within Limit Field pH

Interwell Parametric

Background Data Summary: Mean=7.258, Std. Dev.=0.7489, n=25. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9504, critical = 0.888. Kappa = 1.834 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Comparing 3 points to limit.

Prediction Limit Analysis Run 12/31/2020 12:29 AM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

Prediction Limit


Constituent: Field pH (Std. Units) Analysis Run 12/31/2020 12:31 AM

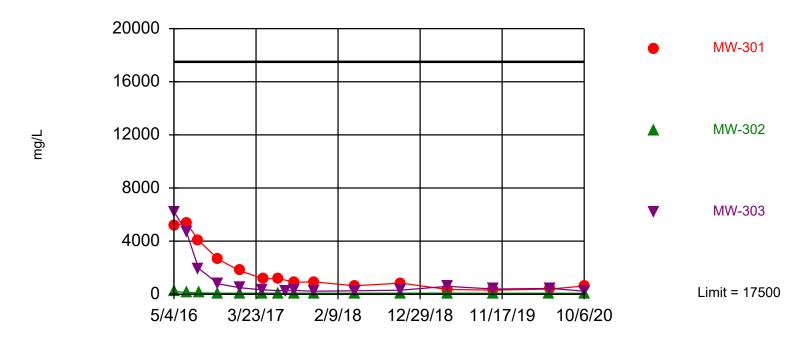
	MW-102M (bg)	MW-122M (bg)	MW-301	MW-302	MW-303
5/4/2016	8.09		6.44	7.38	6.24
5/5/2016		6.97			
6/22/2016	7.68		6.62	7.76	6.93
6/23/2016		6.68			
8/9/2016			7.81		7.84
8/10/2016				9.55	
10/26/2016			6.33	7.22	6.66
1/17/2017			6.31	7.23	6.69
1/18/2017	7.62	6.06			
4/19/2017				7.6	7.12
4/20/2017	7.35		6.15		
6/20/2017			6.73	7.29	
6/21/2017	7.64	6.42			
7/19/2017					7.1
8/22/2017	6.89	6.32	6.51	7.12	6.71
11/7/2017			6.56	7.41	6.96
11/8/2017	8.16	6.16			
4/17/2018	8.34	6.65	7.09	7.8	7.32
10/15/2018			6.59	7.25	
10/16/2018	7.8	6.31			6.87
4/16/2019			7.1	7.49	6.97
4/17/2019		7.34			
4/18/2019	8.55				
6/6/2019					6.71
10/15/2019	7.81	6.6	6.67	7.21	6.76
5/21/2020	7.82	6.91		7.05	
5/26/2020			5.67		6.21
6/29/2020					6.74
10/6/2020			7.22	7.14	7.01
10/7/2020	8.29	7			

Within Limit

Interwell Non-parametric

Fluoride

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 30 background values. 16.67% NDs. Annual perconstituent alpha = 0.01176. Individual comparison alpha = 0.00197 (1 of 2). Comparing 3 points to limit. Seasonality was not detected with 95% confidence.


Prediction Limit Analysis Run 12/31/2020 12:29 AM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

Prediction Limit

Constituent: Fluoride (mg/L) Analysis Run 12/31/2020 12:31 AM

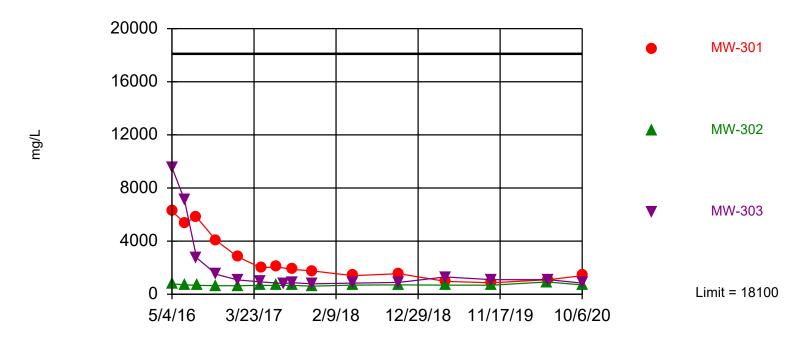
		MW-102M (bg)	MW-303	MW-302	MW-301	MW-122M (bg)
5/4	4/2016	4.2	0.68	1.1	0.68	
5/5	5/2016					1.1
6/2	22/2016	4.2	0.47	1	0.38	
6/2	23/2016					0.89
8/9	9/2016		0.9		0.55	
8/1	10/2016	4.4		0.98		0.74
10	/26/2016	4.6	0.87	1	0.72	0.48
1/1	17/2017		0.86	0.97	0.77	
1/1	18/2017	4.1				<0.027 (U)
4/1	19/2017		0.86	1		
4/2	20/2017	4			0.72	0.88
6/2	20/2017			1.1	0.93	
6/2	21/2017	4.6				1.1
7/1	19/2017		0.86			
8/2	22/2017	4.5	0.85	1	0.78	0.6
11	/7/2017		0.77	1.2	0.77	
11	/8/2017	4.6				0.5
4/1	17/2018	4.5	0.8	1	0.87	<0.063 (U)
10	/15/2018			1.1	0.84	
10	/16/2018	4.7	0.84			<0.19 (U)
4/1	16/2019		<0.23 (U)	1.5	0.85	
4/1	17/2019					0.7
4/1	18/2019	5.7				
10	/15/2019	4.5	0.87	1.2	0.85	<0.23 (U)
5/2	21/2020	5		1		0.23 (J)
5/2	26/2020		0.81		0.77	
10	/6/2020		0.88	1.1	0.67	
10	/7/2020	5.3				<0.23 (U)

Within Limit Sulfate
Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 29 background values. Annual per-constituent alpha = 0.0127. Individual comparison alpha = 0.002128 (1 of 2). Comparing 3 points to limit. Seasonality was not detected with 95% confidence.

Prediction Limit Analysis Run 12/31/2020 12:29 AM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

Prediction Limit


Constituent: Sulfate (mg/L) Analysis Run 12/31/2020 12:31 AM

	MW-102M (bg)	MW-301	MW-303	MW-302	MW-122M (bg)
5/4/2016	378	5160	6230	201	
5/5/2016					8260
6/22/2016	350	5370	4690	133	
6/23/2016					5330
8/9/2016		4050	1950		
8/10/2016	354			102	8950
10/26/2016	384	2630	780	78.9	8600
1/17/2017		1780	497	76.7	
1/18/2017	415				9680
4/19/2017			329	76.7	
4/20/2017	348	1170			14300
6/20/2017		1180		79.3	
6/21/2017	356				17500
7/19/2017			255 (255)		
8/22/2017	358	902	287	77.2	9190
11/7/2017		926	232	77.5	
11/8/2017	335				9440
4/17/2018	352	638	262	79.3	10400
10/15/2018		837		80.9	
10/16/2018	384		310		<0.24 (UX)
4/16/2019		360	600	83	
4/17/2019					8300
4/18/2019	340				
10/15/2019	350	310	390	73	8400
5/21/2020	350			79	9800
5/26/2020		390	440		
10/6/2020		620	230	73	
10/7/2020	350				8700

Within Limit

Total Dissolved Solids

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 30 background values. Annual per-constituent alpha = 0.01176. Individual comparison alpha = 0.00197 (1 of 2). Comparing 3 points to limit. Seasonality was not detected with 95% confidence.

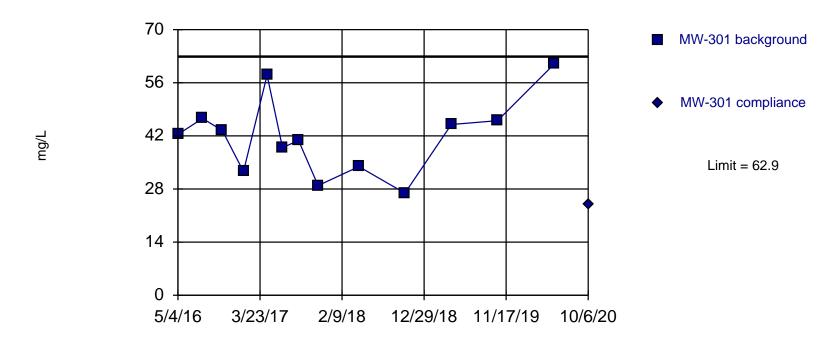
Prediction Limit Analysis Run 12/31/2020 12:29 AM

Prediction Limit

Constituent: Total Dissolved Solids (mg/L) Analysis Run 12/31/2020 12:31 AM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

	MW-102M (bg)	MW-303	MW-302	MW-301	MW-122M (bg)
5/4/2016	1670	9540	784	6260	
5/5/2016					11500
6/22/2016	1530	7120	715	5380	
6/23/2016					7430
8/9/2016		2750		5810	
8/10/2016	1620		671		14200
10/26/2016	1420	1500	644	4030	13200
1/17/2017		1080	639	2830	
1/18/2017	1530				14100
4/19/2017		931	671		
4/20/2017	1620			1990	18100
6/20/2017			656	2060	
6/21/2017	1480				12800
7/19/2017		809			
8/22/2017	1400	868	672	1870	14300
11/7/2017		783	607	1760	
11/8/2017	1410				13400
4/17/2018	1540	839	690	1400	14400
10/15/2018			708	1550	
10/16/2018	1500	891			13300
4/16/2019		1300	690	970	
4/17/2019					13000
4/18/2019	1700				
10/15/2019	1400	1100	680	860	13000
5/21/2020	3700		930		16000
5/26/2020		1100		1100	
10/6/2020		840	700	1400	
10/7/2020	1700				14000

Attachment 5 Intrawell Prediction Limit Analysis


Intrawell Prediction Limit

		Ot	tumwa-iviidian	ia Lanafili	Client: SCS	Engii	neers	Data: OIVIL- Chemp	oint- input-	Oct2020	Printea	1/12/202	1, 9:51 AM		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	<u>Bg 1</u>	N Bg Wells	Bg Mean	Std. Dev	%NDs	ND Adj.	Transform	<u>Alpha</u>	<u>Method</u>
Chloride (mg/L)	MW-301	62.9	n/a	10/6/2020	24	No	13	n/a	41.88	10.12	0	None	No	0.002505	Param 1 of 2
Chloride (mg/L)	MW-302	10.2	n/a	10/6/2020	7.2	No	14	n/a	8.2	0.9853	0	None	No	0.002505	Param 1 of 2
Chloride (ma/L)	MW-303	8.72	n/a	10/6/2020	7.3	No	14	n/a	7.521	0.586	0	None	No	0.002505	Param 1 of 2

Within Limit

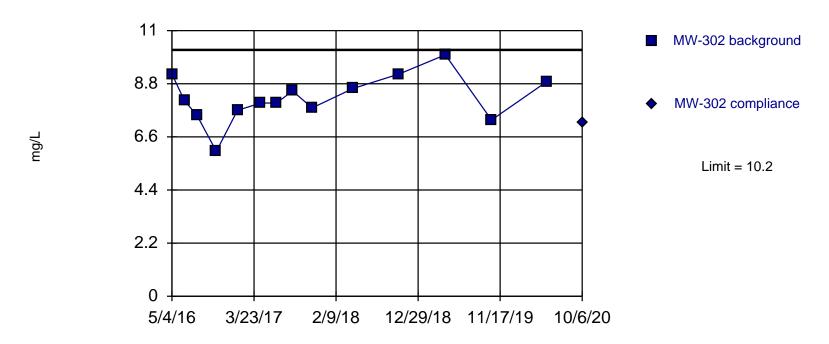
Chloride

Intrawell Parametric

Background Data Summary: Mean=41.88, Std. Dev.=10.12, n=13. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9513, critical = 0.814. Kappa = 2.077 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 1/12/2021 9:31 AM

Prediction Limit


Constituent: Chloride (mg/L) Analysis Run 1/12/2021 9:51 AM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

	MW-301	MW-301
5/4/2016	42.4	
6/22/2016	112 (X)	
8/9/2016	46.6	
10/26/2016	43.4	
1/17/2017	32.6	
4/20/2017	58	
6/20/2017	38.9	
8/22/2017	40.8	
11/7/2017	28.9	
4/17/2018	33.9	
10/15/2018	26.9	
4/16/2019	45	
10/15/2019	46	
5/26/2020	61	
10/6/2020		24

Within Limit

Chloride

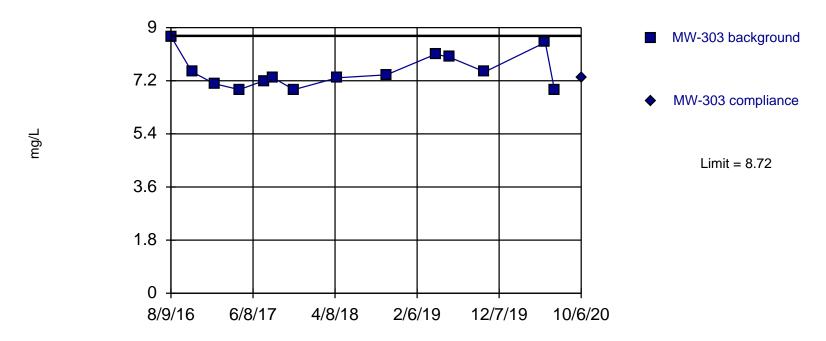
Intrawell Parametric

Background Data Summary: Mean=8.2, Std. Dev.=0.9853, n=14. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9725, critical = 0.825. Kappa = 2.041 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 1/12/2021 9:31 AM

Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

Prediction Limit


Constituent: Chloride (mg/L) Analysis Run 1/12/2021 9:51 AM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

	MW-302	MW-302
5/4/2016	9.2	
6/22/2016	8.1	
8/10/2016	7.5	
10/26/2016	6	
1/17/2017	7.7	
4/19/2017	8	
6/20/2017	8	
8/22/2017	8.5	
11/7/2017	7.8	
4/17/2018	8.6	
10/15/2018	9.2	
4/16/2019	10	
10/15/2019	7.3	
5/21/2020	8.9	
10/6/2020		7.2

Within Limit

Chloride

Intrawell Parametric

Background Data Summary: Mean=7.521, Std. Dev.=0.586, n=14. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.885, critical = 0.825. Kappa = 2.041 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 1/12/2021 9:31 AM

Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

Prediction Limit

Constituent: Chloride (mg/L) Analysis Run 1/12/2021 9:51 AM
Ottumwa-Midland Landfill Client: SCS Engineers Data: OML- Chempoint- input-Oct2020

	MW-303	MW-303
5/4/2016	13.5 (X)	
6/22/2016	11.5 (X)	
8/9/2016	8.7	
10/26/2016	7.5	
1/17/2017	7.1	
4/19/2017	6.9	
7/19/2017	7.2	
8/22/2017	7.3	
11/7/2017	6.9	
4/17/2018	7.3	
10/16/2018	7.4	
4/16/2019	8.1	
6/6/2019	8	
10/15/2019	7.5	
5/26/2020	8.5	
6/29/2020	6.9	
10/6/2020		7.3

Appendix F May 2020 Alternative Source Demonstration

Alternative Source Demonstration May 2020 Detection Monitoring

Ottumwa Midland Landfill Ottumwa, Iowa

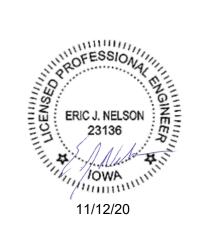
Prepared for:

SCS ENGINEERS

25220073.00 | November 12, 2020

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830

Table of Contents


Sect	ion		Page				
PE C	ertific	ation	iii				
1.0	Intro	duction	1				
	1.1	§257.94(E)(2) Alternative Source Demonstration Requirements	1				
	1.2	Site Information and Map	1				
	1.3	Statistically Significant Increases Identified	1				
	1.4	Overview of Alternative Source Demonstration	2				
2.0	Back	kground	2				
	2.1	Regional Geology and Hydrogeology	2				
	2.2	Coal Combustion Residuals Monitoring System	3				
	2.3	Other Monitoring Wells	3				
	2.4	Groundwater Flow Direction	3				
3.0	Meth	hodology and Analysis Review	3				
	3.1	Sampling and Field Analysis Review	3				
	3.2	Laboratory Analysis Review	4				
	3.3	Statistical Evaluation Review	4				
	3.4	Summary of Methodology and Analysis Review Findings	5				
4.0	Alter	native Sources					
	4.1	Potential Causes of Statistically Significant Increase	5				
		4.1.1 Natural Variation	5				
		4.1.2 Man-made Alternative Sources	5				
	4.2						
		4.2.1 Mississippian Limestone Aquifer Water Quality	6				
		4.2.2 Leachate Versus Groundwater Concentrations					
		4.2.3 Overlying Pennsylvanian Shale Aquitard	7				
		4.2.4 Landfill Liner System					
5.0	Alter	rnative Source Demonstration Conclusions					
6.0		Groundwater Monitoring Recomendations					
7.0		erences					
	110.0						
		Tables					
Table Table Table	e 2.	Groundwater Analytical Results Summary – May and June 2020 Eve Historical Analytical Results for Parameters with SSIs Groundwater Elevation – CCR Rule Monitoring Network	nts				
		Figures					
Figur Figur Figur	e 2.	Site Location Map Site Plan and Monitoring Well Locations Potentiometric Surface Map – May 20-26, 2020					

Appendix

Appendix A CCR Well Trend Plot - Chloride

I:\25220073.00\Deliverables\2020 May ASD\201112_ASD_OML-May20.docx

PE CERTIFICATION

I, Eric J. Nelson, hereby certify that that the information in this alternative source demonstration is accurate and meets the requirements of 40 CFR 257.94(e)(2). This certification is based on my review of the groundwater data and related site information available for the Ottumwa Midland Landfill. I am a duly licensed Professional Engineer under the laws of the State of Iowa.

(cignoturo)

11/12/2020

(signature)

(date)

Eric J. Nelson

(printed or typed name)

License number 23136

My license renewal date is December 31, 2020.

Pages or sheets covered by this seal:

Alternative Source Demonstration May 2020

Detection Monitoring, Ottumwa Midland Landfill,

Ottumwa, Iowa

1.0 INTRODUCTION

This Alternative Source Demonstration (ASD) was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" published by the U.S. Environmental Protection Agency (USEPA) in the Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule, dated April 17, 2015 (USEPA, 2015), and subsequent amendments. Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.94(e)(2). The applicable sections of the Rule are provided below in italics.

1.1 §257.94(E)(2) ALTERNATIVE SOURCE DEMONSTRATION REQUIREMENTS

The owner and operator may demonstrate that a source other than the CCR Unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels.

An ASD is completed when there are exceedances of one or more benchmark concentrations established within the groundwater monitoring program. The ASD is completed to determine if any other sources are likely causes of the identified exceedance(s) of established benchmark(s) at the site. This ASD was performed in response to results indicating a statistically significant increase (SSI) over background levels during detection monitoring under the CCR Rule.

This ASD report is evaluating the SSI observed in the statistical evaluation of the May 2020 detection monitoring event at the Ottumwa Midland Landfill (OML). The first ASD was prepared for this facility evaluating an SSI observed in the statistical evaluation of the November 2017 detection monitoring event (SCS Engineers [SCS], 2018). The November 2017 ASD concluded that several lines of evidence demonstrate that the SSI reported for chloride concentration in the compliance monitoring well was likely due to natural occurring chloride in the bedrock aguifer at OML.

As discussed in more detail in **Section 4.2** of this ASD, the findings of the May 2020 monitoring event were consistent with those for the previous event.

1.2 SITE INFORMATION AND MAP

The OML facility is located at 15300 130th Street in Ottumwa, Wappello County, Iowa (**Figure 1**). OML is an active CCR landfill, operating under Iowa Department of Natural Resources (IDNR) permit #90-SDP-8-92P.

The locations of the CCR Units and all background and compliance monitoring wells with identification numbers for the groundwater monitoring program are shown on **Figure 2**.

1.3 STATISTICALLY SIGNIFICANT INCREASES IDENTIFIED

The only SSI for the May 2020 monitoring event was for chloride at monitoring well MW-303. A summary of the May 2020 constituent concentrations and the established benchmark concentrations is provided in **Table 1**. Results from a resampling event completed in June for MW-303 are also included for comparison.

1.4 OVERVIEW OF ALTERNATIVE SOURCE DEMONSTRATION

This ASD report includes:

- Background information (Section 2.0)
- Evaluation of potential that SSIs are due to methodology or analysis (Section 3.0)
- Evaluation of potential that SSIs are due to natural sources or man-made sources other than the CCR Units (Section 4.0)
- ASD conclusions (**Section 5.0**)
- Monitoring recommendations (Section 6.0)

The chloride results from background and compliance sampling under the CCR Rule are provided in **Table 2**. The laboratory report for the May 2020 detection monitoring event will be included in the 2020 Annual Groundwater Monitoring and Corrective Action Report submitted in January 2021. Complete laboratory reports for the background monitoring events and previous detection monitoring events were included in the previous annual groundwater monitoring and corrective action reports.

2.0 BACKGROUND

To provide context for the ASD evaluation, the following background information is provided in this section of the report, prior to the ASD evaluation sections:

- Geologic and hydrogeologic setting
- CCR Rule monitoring system
- Other monitoring wells

A more detailed discussion of the background information for the site is provided in the ASD for the November 2017 event (SCS, 2018).

2.1 REGIONAL GEOLOGY AND HYDROGEOLOGY

For the purposes of groundwater monitoring, the Mississippian limestone unit is considered to be the uppermost aquifer unit at the OML site as defined under 40 CFR 257.53. Devonian aged units underlay the Mississippian limestone and are composed of shale, dolomite, and limestone. Silurian dolomite underlays the Devonian shale, dolomite, and limestone.

The Des Moines River and associated alluvial aquifers are a major source of surface water and shallow groundwater in the area; however, the alluvial aquifer is not present at the OML site.

Unconsolidated deposits at the site consist of clays overlain by loess, which are not productive sources of groundwater. The Pennsylvanian shale bedrock unit, which overlies the Mississippian limestone aquifer, is considered to be a regional aquitard. The Cambrian-Ordovician aquifer, comprised of dolomite and sandstone, is commonly the source of municipal and industrial high-capacity wells in the region (Coble, 1971).

Regional information indicates that groundwater flow within the Mississippian limestone is to the south-southeast.

2.2 COAL COMBUSTION RESIDUALS MONITORING SYSTEM

The groundwater monitoring system established under the CCR Rule consists of two background monitoring wells and three compliance monitoring wells. The background monitoring wells include MW-122M and MW-102M. The compliance monitoring wells include MW-301, MW-302, and MW-303. The CCR Rule wells are installed in the upper portions of the Mississippian limestone aquifer. Well depths range from approximately 150.0 to 204.5 feet, measured from the top of the well casing.

2.3 OTHER MONITORING WELLS

Additional groundwater monitoring wells currently exist at OML as part of the monitoring system developed for the state monitoring program. The well locations are shown on **Figure 2**.

Monitoring wells for the state monitoring program are installed in the unconsolidated deposits and in the Pennsylvanian shale unit, which are not the uppermost aquifer as defined under 40 CFR 257.53. The state monitoring system includes water table wells, piezometers in the Pennsylvanian shale, and piezometers in the underlying Mississippian limestone. Well depths range from approximately 20 to 177 feet, measured from the top of the well casing.

2.4 GROUNDWATER FLOW DIRECTION

As discussed in the November 2017 ASD (dated April 2018), shallow groundwater flow at the water table appears to be controlled partially by the landfill underdrain system and partially by the top of the Pennsylvanian shale. Shallow groundwater, near the current fill area, flows toward the landfill and the sedimentation pond.

The May 2020 potentiometric surface map for the Mississippian limestone aquifer (**Figure 3**) shows groundwater flow to the south, consistent with previous potentiometric surface maps, and the regional groundwater flow. The groundwater elevations for the May and June 2020 sampling events are shown in **Table 3**.

3.0 METHODOLOGY AND ANALYSIS REVIEW

To evaluate the potential that an SSI is due to a source other than the regulated CCR Unit, SCS used a two-step evaluation process. First, the sample collection, field and laboratory analysis, and statistical evaluation were reviewed to identify any potential error or analysis that led to exceedance of the benchmark. Second, potential alternative sources, including natural variation and man-made sources other than the CCR Unit, were evaluated. This section provides the findings of the methodology and analysis review. **Section 4.0** of this report addresses the potential alternative sources.

3.1 SAMPLING AND FIELD ANALYSIS REVIEW

Field notes and sampling results were reviewed to determine if any sampling error may have caused or contributed to the observed SSI for chloride. Potential field sampling errors or issues could include mislabeling of samples, improper sample handling, missed holding times, cross contamination during sampling, or other field error. Field blank sample results were also reviewed for any indication of potential contamination from sampling equipment or containers. Based on the review of the field notes and results, SCS did not identify any indication that the chloride SSI was due to a sampling error.

Because chloride is a laboratory parameter, there is little potential for a field analysis error to contribute to an SSI.

3.2 LABORATORY ANALYSIS REVIEW

Laboratory reports for the May 2020 detection monitoring were reviewed to determine if any laboratory analysis error or issue may have caused or contributed to the observed SSI for chloride. The laboratory report review included reviewing the laboratory quality control flags and narrative, verifying that correct methods were used and desired detection limits were achieved, and checking the field and laboratory blank sample results.

Based on the review of the laboratory reports, SCS did not identify any indication that the chloride SSI was due to a laboratory analysis error. There were no laboratory quality control flags or issues identified in the laboratory report that affect the usability of the data for detection monitoring.

Following a review of the sample results from the May 2020 event, SCS completed a retest of chloride at MW-303 in June of 2020. The chloride concentration at MW-303 did not exceed the UPL for MW-303 and does not confirm an SSI at OML. Further evaluation of the chloride SSI for MW-303 is provided in **Section 4**.

Time series plots of the analytical data for chloride were reviewed for any anomalous results that might indicate a possible sampling or laboratory error (e.g., dilution error or incorrect sample labeling). Time series plots are provided in **Appendix A**. The time series plot of chloride concentrations show the May and June events are within the historical range of chloride concentrations.

3.3 STATISTICAL EVALUATION REVIEW

The review of the statistical results and methods includes a quality control check of the following:

- Input analytical data vs. laboratory analytical reports
- Statistical method and process for each SSI

Based on the review of the statistical evaluation, SCS did not identify any errors in the statistical evaluation that caused or contributed to the determination of an intrawell SSI for chloride at well MW-303. However, the small size of the intrawell background data set and elimination of early results as outliers may have contributed to the identification of the May 2020 result as an SSI.

When detection monitoring under the CCR Rule was initiated in October 2017, the selected statistical approach was a prediction limit procedure using interwell statistics with two background wells. The interwell approach was chosen because the landfill was already active so we could not assume in advance that data collected during the background monitoring period would represent natural background. In the October 2017 and April 2018 detection monitoring events, interwell SSIs for chloride were identified for compliance well MW-301. These SSIs were attributed to natural variation in ASDs completed for these two events.

Following the completion of the April 2018 ASD, dated October 31, 2018, the statistical method for evaluating chloride data at the three compliance monitoring wells was modified to an intrawell approach. This approach is appropriate for constituents which exhibit natural spatial variability, as has been documented for chloride at the OML facility.

The intrawell upper prediction limits (UPLs) for chloride were calculated based on a parametric approach. Because the background results for compliance well MW-303 were lower than the background results for both upgradient wells, the intrawell UPL for chloride at MW-303 was lower than the previously used interwell UPL. The first three background chloride results for MW-303 were identified as outliers in the statistical analysis (Dixon's test) and were excluded from the dataset for calculation of the UPL. With these three results removed, the remaining background results for MW-303 were very consistent, resulting in a low calculated UPL that may not fully capture the natural variability of chloride concentrations at this well.

Further evaluation of the chloride SSI for MW-303 is provided in Section 4.2.

3.4 SUMMARY OF METHODOLOGY AND ANALYSIS REVIEW FINDINGS

In summary, there were no changes to the SSI determinations for the May 2020 monitoring event based on the methodology and analysis review, and no errors causing or contributing to the reported chloride SSI were identified. While not an error in the statistical analysis, the small dataset available to calculate the UPL likely contributed to the determination that an SSI had occurred for chloride at MW-303.

4.0 ALTERNATIVE SOURCES

This section of the report discusses the potential alternative sources for the chloride SSI at MW-303, identifies the most likely alternative source(s), and presents the lines of evidence indicating that an alternative source is the most likely cause of the observed SSI for chloride.

4.1 POTENTIAL CAUSES OF STATISTICALLY SIGNIFICANT INCREASE

4.1.1 Natural Variation

The statistical analysis for chloride was completed using an intrawell approach, comparing the May 2020 detection monitoring results to the UPLs calculated based on sampling of the background data from each monitoring well. The intrawell approach allows for spatial variability within the aquifer; however, if the background monitoring period is relatively short, it may not fully represent the temporal variability in constituent concentrations at a specific well.

Chloride is naturally present in the limestone aquifer based on observations of previous studies in the area. Based on regional and site information, discussed below, natural variation appears to be the most likely cause of the chloride SSI for well MW-303.

4.1.2 Man-made Alternative Sources

Man-made alternative sources that could potentially contribute to the chloride SSI at MW-303 include on-site management of CCR leachate or contact water, or non-CCR sources such as road salt use, septic systems, or surrounding agricultural land use. Based on the depth to the Mississippian aquifer and the low permeability of the overlying Pennsylvanian shale, it does not appear likely that one or more of these man-made alternative sources is the cause of the chloride SSI.

4.2 LINES OF EVIDENCE

The lines of evidence indicating that the SSI for chloride in compliance well MW-303 relative to the intrawell UPL is due to natural variability include:

- 1. Regional and site-specific groundwater information indicates that the observed chloride concentrations for MW-303 are within typical ranges for the Mississippian limestone aquifer and below the concentrations at the upgradient monitoring wells.
- 2. Other CCR indicator parameters, such as boron, were not detected at concentrations exceeding background levels in the sample from MW-303.
- 3. The hydraulic conductivity of the Pennsylvanian shale aquitard overlying the Mississippian limestone aquifer is very low, and there is limited hydrogeologic connection between the shallow groundwater and the aquifer.
- 4. Both the original landfill and expansion Phase 1 are designed with low permeability liner systems and underdrain systems that collect groundwater below the liner.

Each of these lines of evidence and the supporting data are discussed in more detail in the following sections. For lines of evidence that were discussed in detail in the ASD for the November 2017 detection monitoring event (SCS, 2018), a brief discussion is provided below, focusing on any updated information collected since the previous ASD, with references to the previous ASD for additional details.

4.2.1 Mississippian Limestone Aquifer Water Quality

Regional and site-specific information indicates that chloride concentrations in the Mississippian limestone aquifer are variable, and the concentrations detected in samples from MW-303 are well within the range of concentrations naturally present in the aquifer. The U.S. Geological Survey (USGS) completed an Open File Report 82-1014, Hydrology of Area 38, of the Western Region, Interior Coal Province of Iowa and Missouri (USGS, 1983). OML is located within the area of investigation, and a chapter from the report addressed water quality in the Mississippian limestone aquifer. The USGS investigation reported chloride concentrations ranging from 0.5 to 3,570 milligrams per liter (mg/L) for the limestone aquifer within the study area, with an average chloride concentration of 137 mg/L. The chloride concentration for MW-303 in the May 2020 detection monitoring event was 8.5 mg/L and in June, dropped to 6.9 mg/L; therefore, the observed concentration for MW-303 was well below the average concentration of chloride in the limestone aquifer.

In background sampling performed for the Phase 1 expansion, four monitoring wells installed in the Mississippian aquifer were sampled in April 2013, prior to construction of the expansion. The wells included the two wells used as background wells for the CCR Rule monitoring system (MW-102M and MW-122M) and two additional wells in the Mississippian aquifer (MW-110M and MW-116M). The chloride results for the sample event ranged from 20 to 75.8 mg/L, significantly exceeding the May and June 2020 chloride concentrations at MW-303.

The May and June 2020 chloride concentrations for samples from MW-303 were below the interwell UPL (21.9 mg/L) that was previously calculated based on the eight background monitoring events at upgradient wells MW-102M and MW-122M). The MW-303 chloride results were also lower than the May 2020 chloride results for the upgradient wells and the other two compliance wells (MW-301 and

MW-302). These findings demonstrate that the MW-303 results are at the low end of the range of natural variability for chloride concentrations in the Mississippian dolomite aquifer.

4.2.2 Leachate Versus Groundwater Concentrations

Although chloride exceeded the intrawell SSI, other CCR indicator parameters such as boron, were not detected at concentrations exceeding background levels in the sample from MW-303. In recent samples from the leachate lagoon, boron and sulfate have typically been detected at concentrations at least an order of magnitude higher than the chloride concentration. Leachate and ash contact water are monitored under the state monitoring program for the landfill. See the November 2017 ASD for additional details (SCS, 2018).

If leachate from the CCR landfill were the source of elevated chloride, then some increase in boron and sulfate relative to background would also be expected. The absence of other CCR indicator parameters with SSIs, or increasing concentration trends, suggests that the chloride SSI is due to natural variation rather than CCR disposal.

4.2.3 Overlying Pennsylvanian Shale Aguitard

The hydraulic conductivity of the Pennsylvanian shale aquitard overlying the Mississippian limestone aquifer is low, and there is limited hydrogeologic connection between the shallow groundwater and the aquifer. The lack of hydrogeologic connection is evidenced by large differences between water levels measured in wells in the unconsolidated deposits or Pennsylvanian shale and water levels measured in wells in the Mississippian limestone. Water levels in Mississippian aquifer monitoring wells MW-302 and MW-303 are approximately 40 feet below the water levels measured in adjacent Pennsylvanian shale monitoring wells MW-14 and MW-13.

4.2.4 Landfill Liner System

Both the original landfill and expansion Phase 1 have low permeability liners. The original landfill was lined with 4 feet of compacted fine-grained soil having a hydraulic conductivity of no more than 1×10^{-7} centimeters per second (cm/sec). Expansion Phase 1 has a composite liner system including 2 feet of compacted clay, a 60-mil high density polyethylene (HDPE) geomembrane, and a leachate collection drainage layer. The original landfill and expansion Phase 1 both have underdrain systems that collect groundwater below the liner and maintain separation between the water table and the liner.

5.0 ALTERNATIVE SOURCE DEMONSTRATION CONCLUSIONS

The lines of evidence discussed above regarding the SSI reported for the chloride concentration in downgradient monitoring well MW-303 demonstrate that the SSI is likely due to naturally occurring chloride in the limestone aquifer at the OML site.

6.0 SITE GROUNDWATER MONITORING RECOMENDATIONS

In accordance with section 257.94(e)(2) of the CCR Rule, the OML site may continue with detection monitoring based on this ASD. This ASD report will be included in the 2020 Annual Report due January 31, 2021.

7.0 REFERENCES

Coble, R.W., 1971, The Water Resources of Southeast Iowa, Iowa Geological Survey Water Atlas Number 4, 1971.

SCS Engineers, 2018, Alternative Source Demonstration November 2017 Detection Monitoring, Ottumwa Midland Landfill, Ottumwa, IA, April 2018. (2018)

U.S. Environmental Protection Agency, 2015, Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule, April 2015.

U.S. Geological Survey, 1983, Water Resources Investigations Open File Report 82-1014, Hydrogeology Area 38, Western Region, Interior Coal Province, Iowa and Missouri; Rolla, Missouri and Iowa City, Iowa, May 1983.

Tables

- 1 Groundwater Analytical Results Summary May and June 2020 Events
- 2 Historical Analytical Results for Parameters with SSIs
- 3 Groundwater Elevation CCR Rule Monitoring Network

Table 1. Groundwater Analytical Results Summary - May June 2020 Events Ottumwa Midland Landfill / SCS Engineers Project #25220073.00

		Backgrou	und Wells			Сс	ompliance V	Vells		
	Interwell	MW-102M	MW-122M	MW-301 MW-302			MW-303			
Parameter Name	UPL	5/21/2020	5/21/2020	Intrawell UPL	5/26/2020	Intrawell UPL	5/21/2020	Intrawell UPL	5/26/2020	6/29/2020
Appendix III										
Boron, ug/L	5,220	1,500	5,100		660		780		770	NA
Calcium, mg/L	599	38	430		120		41		120	NA
Chloride, mg/L		16	9.0	67.0	61	10.4	8.9	7.92	8.5	6.9
Fluoride, mg/L	6.31	5.0	0.23 J		0.77		1.0		0.81	NA
Field pH, Std. Units	8.63	7.82	6.91		5.67		7.05		6.21	6.74
Sulfate, mg/L	17,500	350	9,800		390		79		440	NA
Total Dissolved Solids, mg/L	18,100	3,700	16,000		1,100		930		1,100	NA

Blue shaded cell indicates the compliance well result exceeds the UPL (background) and the Limit of Quantitation (LOQ).

Abbreviations:

NA = Not Analyzed SSI = Statistically Significant Increase

Lab Notes:

J = Estimated concentration at or above the LOD and below the LOQ.

Notes:

- 1. An individual result above the UPL does not constitute an SSI above background. See the accompanying report text for identification of statistically significant results.
- 2. Interwell UPLs calculated based on results from background wells MW-102M and MW-122M for the period from May 2016 through November 2017. Interwell UPLs based on 1-of-2 retesting approach.
- 3. Intrawell UPL for chloride was calculated based on results from each monitoring well for the period from May 2016 through April 2018.

 Created by: NDK
 Date: 5/1/2018

 Last revision by: RM
 Date: 9/21/2020

 Checked by: NDK
 Date: 9/21/2020

 PM/Scient. QA/QC: TK
 Date: 10/28/2020

I:\25220073.00\Data and Calculations\Tables\[CCR GW Screening Summary_OML.xlsx]Table -single event

Table 2. Historical Analytical Results for Parameters with SSIs Ottumwa Midland Landfill / SCS Engineers Project #25220073.00

Well Group	Well	Collection Date	Chloride (mg/L)				
		5/4/2016	16.3				
		6/22/2016	13.8				
		8/10/2016	13.4				
		10/26/2016	13.0				
		1/18/2017	12.3				
		4/20/2017	16.3 13.8 13.4 13.0 12.3 12.5 12.8 13.1 12.3 13.5 13.6 14.0 15.0 16.0 16.4 21.9 11.8 8.20 8.30 8.00 7.80 7.80 7.20 8.00 8.60 8.60 8.80				
		6/21/2017	12.8				
	MW-102M	8/22/2017	16.3 13.8 13.4 13.0 12.3 12.5 12.8 13.1 12.3 13.5 13.6 14.0 15.0 16.0 16.4 21.9 11.8 8.20 8.30 8.00 7.80 7.80 7.20 8.00 8.60				
		11/8/2017	16.3 13.8 13.4 13.0 12.3 12.5 12.8 13.1 12.3 13.5 13.6 14.0 15.0 16.0 16.4 21.9 11.8 8.20 8.30 8.00 7.80 7.80 7.20 8.00 8.60				
		4/17/2018					
		10/16/2018	13.6				
		-					
		10/15/2019	15.0				
pund		5/21/2020	16.0				
Background		5/5/2016	16.4				
Ba		6/23/2016	21.9				
		8/10/2016	13.8 13.4 13.0 12.3 12.5 12.8 13.1 12.3 13.5 13.6 14.0 15.0 16.0 16.4 21.9 11.8 8.20 8.30 8.00 7.80 7.80 7.20 8.00 8.60 8.80 10.0				
		10/26/2016	8.20				
		1/18/2017	8.30				
		4/20/2017	8.00				
		6/21/2017	7.80				
	MW-122M	8/22/2017	7.80				
		11/8/2017	7.20				
		10/15/2019 15.0 5/21/2020 16.0 5/5/2016 16.4 6/23/2016 21.9 8/10/2016 11.8 10/26/2016 8.20 1/18/2017 8.30 4/20/2017 8.00 6/21/2017 7.80 8/22/2017 7.80 11/8/2017 7.20 4/17/2018 8.00 10/16/2018 8.60					
		10/16/2018	8.60				
		4/17/2019	8.80				
		10/15/2019	10.0				
		5/21/2020	9.00				

Table 2. Historical Analytical Results for Parameters with SSIs Ottumwa Midland Landfill / SCS Engineers Project #25220073.00

Well Group	Well	Collection Date	Chloride (mg/L)					
		5/4/2016	4.24					
		6/22/2016	112					
		8/9/2016	46.6					
		10/26/2016	43.4					
		1/17/2017	32.6					
		4/20/2017	112 46.6 43.4					
		6/20/2017	4.24 112 46.6 43.4 32.6 58.0 38.9 40.8 28.9 33.9 26.9 45.0 46.0 61.0 9.20 8.10 7.50 6.00 7.70 8.00 8.00 8.50 7.80 8.60 9.20 10.0 7.30					
	MW-301	8/22/2017	4.24 112 46.6 43.4 32.6 58.0 38.9 40.8 28.9 33.9 26.9 45.0 46.0 61.0 9.20 8.10 7.50 6.00 7.70 8.00 8.50 7.80 8.60 9.20 10.0					
		11/7/2017	28.9					
		4/17/2018	33.9					
		10/15/2018	33.9 26.9 45.0					
		4/16/2019	45.0					
		10/15/2019						
ance		5/26/2020	45.0 46.0 61.0 9.20					
Compliance		5/4/2016	9.20					
CO		6/22/2016	8.10					
		8/10/2016	46.6 43.4 32.6 58.0 38.9 40.8 28.9 33.9 26.9 45.0 46.0 61.0 9.20 8.10 7.50 6.00 7.70 8.00 8.50 7.80 8.60 9.20 10.0 7.30					
		10/26/2016	6.00					
		1/17/2017	7.70					
		4/19/2017	8.00					
		6/20/2017	8.00					
	MW-302	8/22/2017	8.50					
		11/7/2017	7.80					
		4/17/2018	8.60					
		10/15/2018	9.20					
		4/16/2019	10.0					
		10/15/2019	7.30					
		5/21/2020	8.90					

Table 2. Historical Analytical Results for Parameters with SSIs Ottumwa Midland Landfill / SCS Engineers Project #25220073.00

Well Group	Well	Collection Date	Chloride (mg/L)			
		5/4/2016	13.5			
		6/22/2016	11.5			
	8/9/2016	8/9/2016	8.70			
		10/26/2016	7.50			
		1/17/2017	7.10			
		4/19/2017	6.90			
4)	7/19/2017	7.20				
ance		8/22/2017	7.30			
Compliance	MW-303	11/7/2017	6.90			
		4/17/2018	7.30			
		10/16/2018 4/16/2019	7.40			
			8.10			
	6/6/2019	8.00				
		10/15/2019	7.50			
		5/26/2020	8.50			
		6/29/2020	6.90			

Abbreviations:

mg/L = milligrams per liter

 Created by:
 LMH
 Date:
 9/12/2019

 Last revision by:
 ACW
 Date:
 8/31/2020

 Checked by:
 AJR
 Date:
 8/31/2020

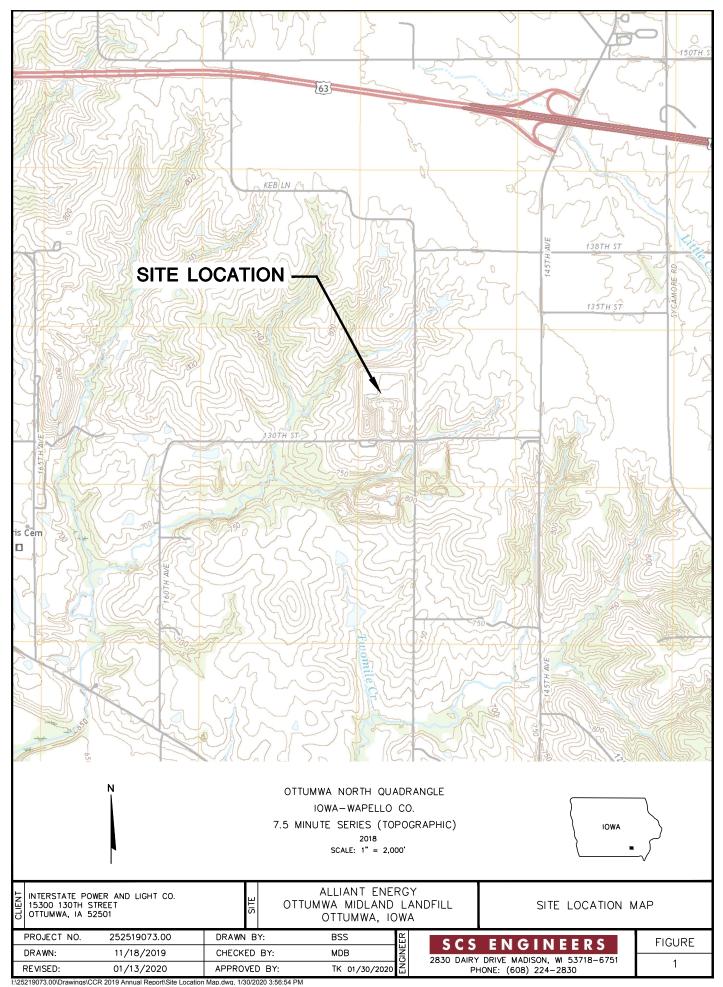
 Scientist QA/QC:
 NDK
 Date:
 9/30/2020

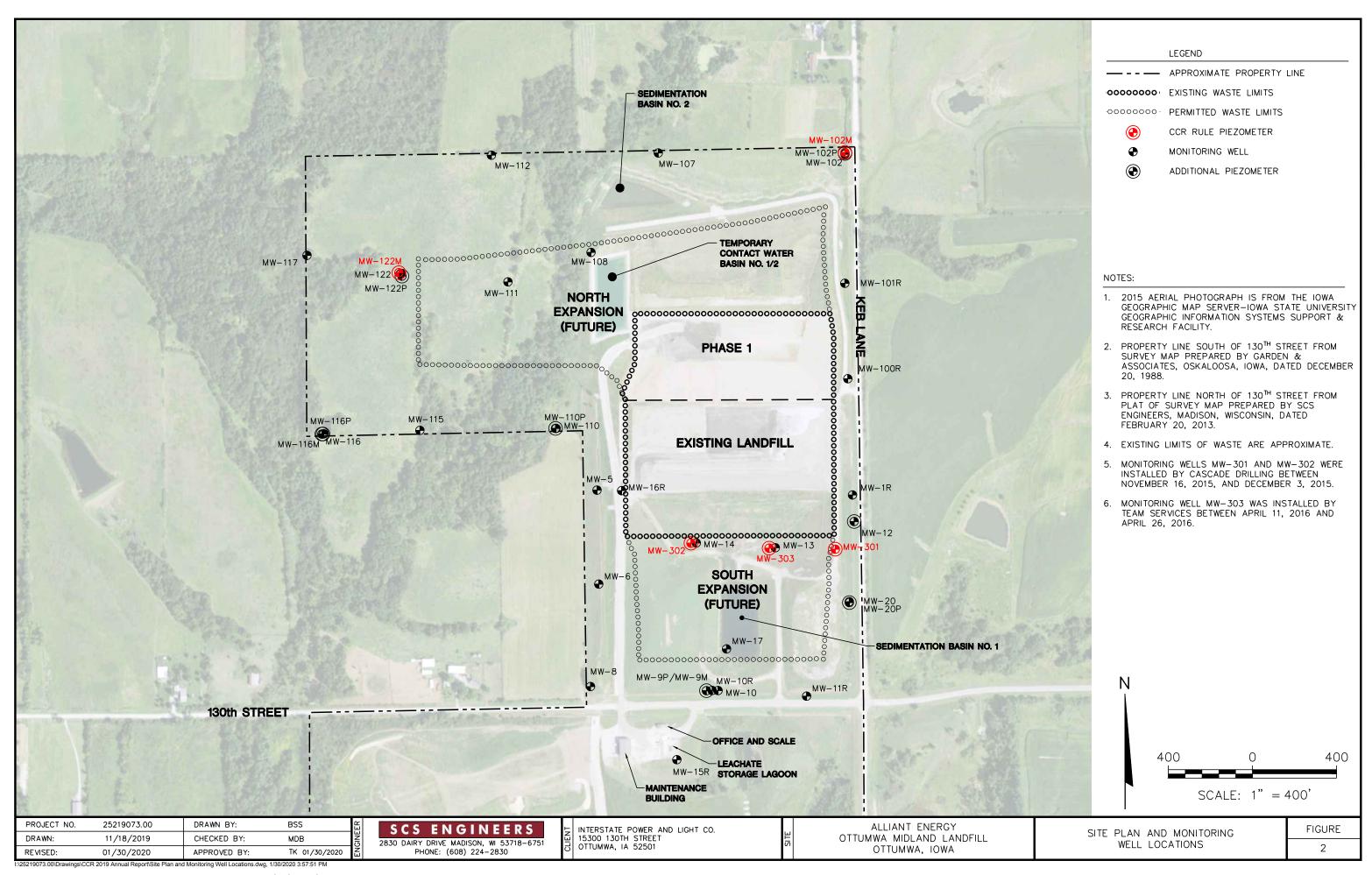
Table 3. Groundwater Elevation - CCR Rule Monitoring Network Ottumwa-Midland Landfill / SCS Engineers Project #25220073.00

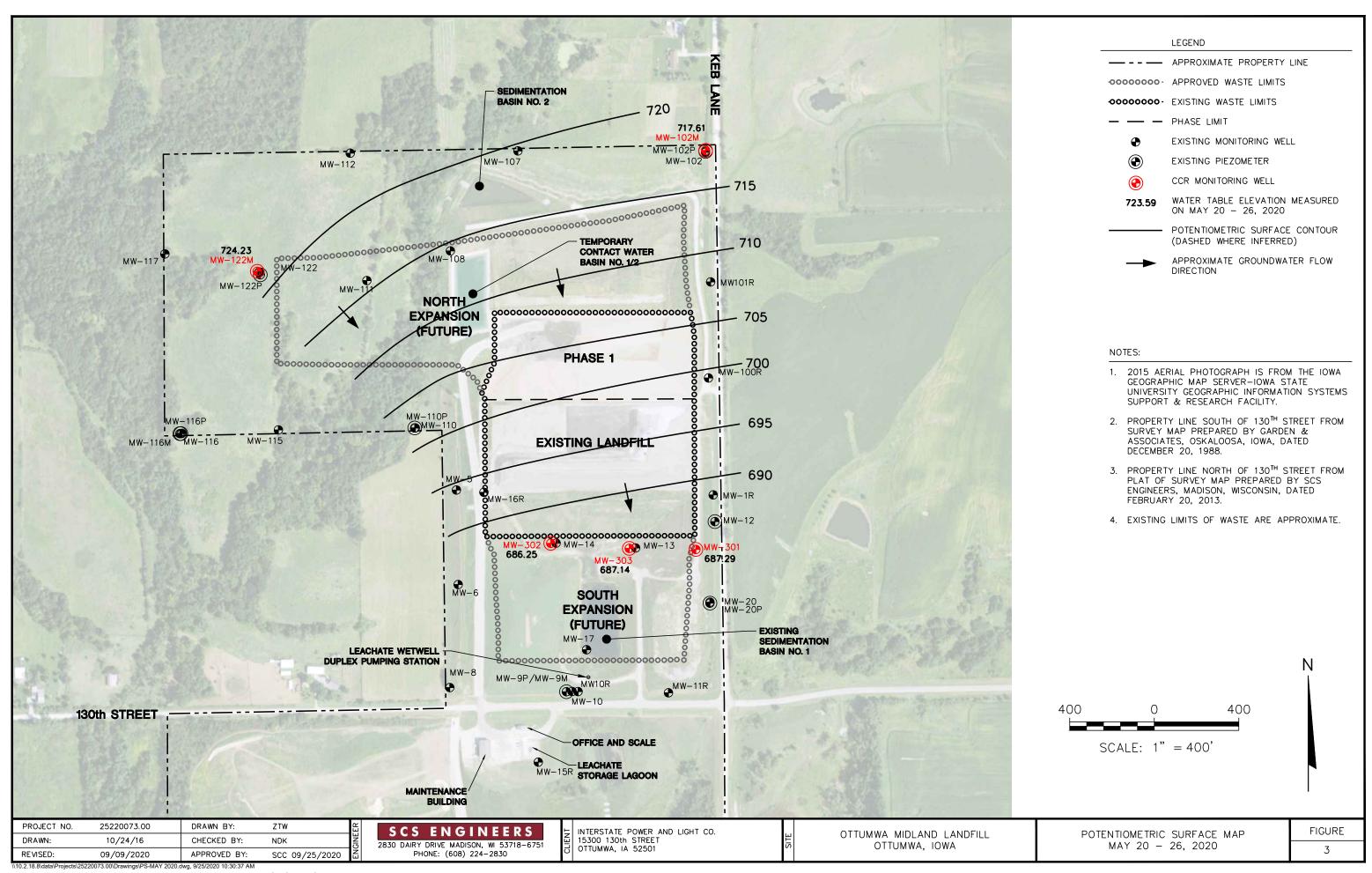
Depth to Water in feet below top of well casing									
Raw Data	Raw Data MW-301 MW-302 MW-303 MW-102M								
Measurement Date									
May 4, 2016	131.42	75.97	76.36	69.30	63.43				
June 22, 2016	131.48	75.98	74.68	79.29	67.03				
August 9, 2016	131.69	76.29	74.63	82.38	67.54				
October 25-26, 2016	134.18	76.83	76.84	81.09	68.09				
January 17, 2017	132.31	76.09	76.80	80.12	68.68				
April 19-20, 2017	132.16	77.04	76.89	80.23	68.66				
June 20-21, 2017	132.00	77.01	76.81	83.20	69.19				
July 17, 2017	NM	NM	77.48	NM	NM				
August 21-22, 2017	132.92	77.88	77.70	84.80	70.68				
November 7-8, 2017	133.38	78.39	78.14	84.50	72.18				
April 16-18, 2018	133.03	77.90	77.72	80.65	69.45				
October 15-16, 2018	133.30	78.25	78.07	80.98	69.34				
April 16-17, 2019	131.50	76.42	76.27	80.06	69.27				
June 6, 2019	NA	NA	76.35	NA	NA				
August 7, 2019	NA	NA	NA	86.03	72.28				
October 14-15,2019	131.32	76.33	76.32	82.53	83.76				
May 20-26, 2020	130.59	75.52	75.26	80.42	68.47				
June 29, 2020	NA	NA	75.04	NA	NA				
October 5-6, 2020	131.08	75.91	76.05	85.98	74.31				

Ground Water Elevation in feet above mean sea level (amsl)							
Well Number	MW-301	MW-302	MW-303	MW-102M	MW-122M		
Top of Casing Elevation (feet amsl)	817.88	761.77	762.40	798.03	792.70		
Screen Length (ft)	5.0	5.0	5.0	5.0	5.0		
Total Depth (ft from top of casing)	204.5	157.7	150.0	152.1	155.3		
Top of Well Screen Elevation (ft)	618.38	609.07	617.40	652.65	642.94		
Measurement Date							
May 4, 2016	686.46	685.80	686.04	728.73	729.27		
June 22, 2016	686.40	685.79	687.72	718.74	725.67		
August 9, 2016	686.19	685.48	687.77	715.65	725.16		
October 25-26, 2016	683.70	684.94	685.56	716.94	724.61		
January 17, 2017	685.57	685.68	685.60	717.91	724.02		
April 19-20, 2017	685.72	684.73	685.51	717.80	724.04		
June 20-21, 2017	685.88	684.76	685.59	714.83	723.51		
July 17, 2017	NM	NM	684.92	NM	NM		
August 21-22, 2017	684.96	683.89	684.70	713.23	722.02		
November 7-8, 2017	684.50	683.38	684.26	713.53	720.52		
April 16-18, 2018	684.85	683.87	684.68	717.38	723.25		
October 15-16, 2018	684.58	683.52	684.33	717.05	723.36		
April 16-17, 2019	686.38	685.35	686.13	717.97	723.43		
June 6, 2019	NA	NA	686.05	NA	NA		
August 7, 2019	NA	NA	NA	712.00	720.42		
October 14-15,2019	686.56	685.44	686.08	715.50	708.94		
May 20-26, 2020	687.29	686.25	687.14	717.61	724.23		
June 29, 2020	NA	NA	687.36	NA	NA		
October 5-6, 2020	686.80	685.86	686.35	712.05	718.39		
Bottom of Well Elevation (ft)	613.38	604.07	612.40	645.93	637.40		

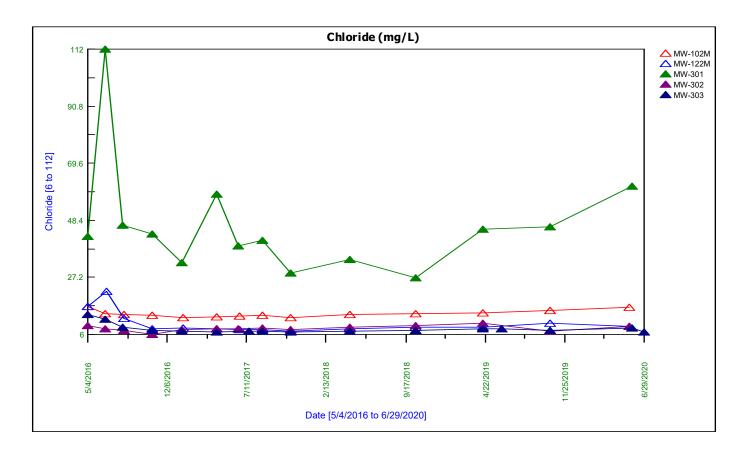
 Notes:
 Created by:
 KAK
 Date: 5/1/2017


 NM = not measured
 Last rev. by:
 RM
 Date: 10/22/2020


 Checked by:
 ACW
 Date: 10/22/2020


I:\25220073.00\Data and Calculations\Tables\[wlstat_OML_CCR_wells.xls]levels

Figures


- 1 Site Location Map
- 2 Site Plan and Monitoring Well Locations
- 3 Potentiometric Surface Map May 20-26, 2020

Appendix A CCR Well Trend Plot – Chloride

