2018 Annual Groundwater Monitoring and Corrective Action Report

Ottumwa Midland Landfill Ottumwa, Iowa

Prepared for:

Alliant Energy

25216073.18 | January 31, 2019

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830

Table of Contents

Sect	ion			Page
1.0	Intro	duction		1
2.0	§ 25	7.90(E)	Annual Report Requirements	1
	2.1	§257.	90(e)(1) Site Map	1
	2.2	§257.	90(e)(2) Monitoring System Changes	1
	2.3	§257.	90(e)(3) Summary of Sampling Events	2
	2.4	§ 257.	.90(e)(4) Monitoring Transition Narrative	2
	2.5	§ 257.	90(e)(5) Other Requirements	2
		2.5.1	§ 257.90(e) General Requirements	2
		2.5.2	§ 257.94(d) Alternative Detection Monitoring Frequency	3
		2.5.3	§ 257.94(e)(2) Alternative Source Demonstration for Detection Monitoring.	3
		2.5.4	§ 257.95(c) Alternative Assessment Monitoring Frequency	4
		2.5.5	§ 257.95(d)(3) Assessment Monitoring Results and Standards	4
		2.5.6	§ 257.95(g)(3)(ii) Alternative Source Demonstration for Assessment Monitor	ring.4
		2.5.7	§ 257.96(a) Extension of Time for Corrective Measures Assessment	4

Tables

Table 1.CCR Rule Groundwater Samples Summary

Figures

Figure 1. Site Plan and Monitoring Well Locations

Appendix A – Laboratory Reports

- A1 April 2018 Detection Monitoring
- A2 October 2018 Detection Monitoring

Appendix B – Alternative Source Demonstrations

- B1 Alternative Source Demonstration, November 2017 Detection Monitoring
- B2 Alternative Source Demonstration, April 2018 Detection Monitoring

l:\25216073.00 \Deliverables \2018 Annual OML GW Mon. and CA Report \190131_2018 Annual CCR GW Report_OML_Final.docx

i

[This page left blank intentionally]

1.0 INTRODUCTION

This 2018 Annual Groundwater Monitoring and Corrective Action Report was prepared to support compliance with the groundwater monitoring requirements of the Coal Combustion Residuals (CCR) Rule [40 CFR 257.50-107]. Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.90(e). The applicable sections of the Rule are provided below in *italics*, followed by applicable information relative to the 2018 Annual Groundwater Monitoring and Corrective Action Report for the CCR Units.

This report covers the period of groundwater monitoring from January 1, 2018, through December 31, 2018.

The groundwater monitoring system at the Ottumwa Midland Landfill (OML) is a multi-unit system that monitors two existing CCR landfills, the Existing Landfill and the Phase 1 Expansion, as required by 40 CFR 257.91(d). The groundwater monitoring system consists of two upgradient and three downgradient monitoring wells.

2.0 § 257.90(E) ANNUAL REPORT REQUIREMENTS

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1). At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

2.1 §257.90(E)(1) SITE MAP

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

A map showing the OML CCR units and all background (or upgradient) and downgradient monitoring wells with identification numbers for the groundwater monitoring program is provided as **Figure 1**.

2.2 §257.90(E)(2) MONITORING SYSTEM CHANGES

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

1

No new monitoring wells were installed and no wells were decommissioned as part of the groundwater monitoring program for OML in 2018.

2.3 §257.90(E)(3) SUMMARY OF SAMPLING EVENTS

In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

Two groundwater sampling events were completed in 2018 for OML as part of ongoing detection monitoring.

Groundwater samples collected during the semiannual events, in April and October 2018, were analyzed for the Appendix III constituents. A summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring program is included in **Table 1**. The results of the analytical laboratory analyses are provided in the laboratory reports in **Appendices A1** through **A2**.

Assessment monitoring has not been initiated for the CCR units at OML.

2.4 § 257.90(E)(4) MONITORING TRANSITION NARRATIVE

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels);

There were no transitions between monitoring programs during 2018. OML remained in the detection monitoring program.

In 2018, the monitoring results for the November 2017 and April 2018 monitoring events were evaluated for statistically significant increases (SSIs) in detection monitoring parameters relative to background. For both events, SSIs for chloride were identified; however, alternative source demonstrations (ASDs) were completed, demonstrating that sources other than the CCR units were the likely cause of the observed concentrations. The ASD reports are provided in **Appendix B**.

2.5 § 257.90(E)(5) OTHER REQUIREMENTS

Other information required to be included in the annual report as specified in §§ 257.90 through 257.98.

Additional potentially applicable requirements for the annual report, and the location of the requirement within the Rule, are provided in the following sections. For each cited section of the Rule, the portion referencing the annual report requirement is provided below in italics, followed by applicable information relative to the 2018 Annual Groundwater Monitoring and Corrective Action Report for OML.

2.5.1 § 257.90(e) General Requirements

For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year.

Status of Groundwater Monitoring and Corrective Action Program. The groundwater monitoring and corrective action program is currently in detection monitoring.

Summary of Key Actions Completed.

- Statistical evaluation and determination of SSIs for the November 2017 and April 2018 monitoring events.
- ASD reports for the SSIs identified from the November 2017 and April 2018 monitoring events.
- Two semiannual groundwater sampling and analysis events (April and October 2018).

Description of Any Problems Encountered. No problems were encountered in 2018.

Discussion of Actions to Resolve the Problems. Not applicable.

Projection of Key Activities for the Upcoming Year (2019):

- Statistical evaluation and determination of any SSIs for the October 2018 and April 2019 monitoring events.
- If an SSI is determined, then within 90 days either:
 - Complete ASD (if applicable), or
 - Establish an assessment monitoring program.
- Two semiannual groundwater sampling and analysis events (April and October 2019).

2.5.2 § 257.94(d) Alternative Detection Monitoring Frequency

The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer in the annual groundwater monitoring and corrective action report required by § 257.90(e).

Not applicable. No alternative detection monitoring frequency has been proposed.

2.5.3 § 257.94(e)(2) Alternative Source Demonstration for Detection Monitoring

The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

The ASD reports prepared to address the SSIs observed for the November 2017 and April 2018 sampling events are provided in **Appendix B**. The ASD reports are certified by a qualified professional engineer.

2.5.4 § 257.95(c) Alternative Assessment Monitoring Frequency

The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer in the annual groundwater monitoring and corrective action report required by § 257.90(e).

Not applicable. Assessment monitoring has not been initiated.

2.5.5 § 257.95(d)(3) Assessment Monitoring Results and Standards

Include the recorded concentrations required by paragraph (d)(1) of this section, identify the background concentrations established under § 257.94(b), and identify the groundwater protection standards established under paragraph (d)(2) of this section in the annual groundwater monitoring and corrective action report required by § 257.90(e).

Not applicable. Assessment monitoring has not been initiated.

2.5.6 § 257.95(g)(3)(ii) Alternative Source Demonstration for Assessment Monitoring

The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

Not applicable. Assessment monitoring has not been initiated.

2.5.7 § 257.96(a) Extension of Time for Corrective Measures Assessment

The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measure due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

Not applicable. Corrective measures assessment has not been initiated.

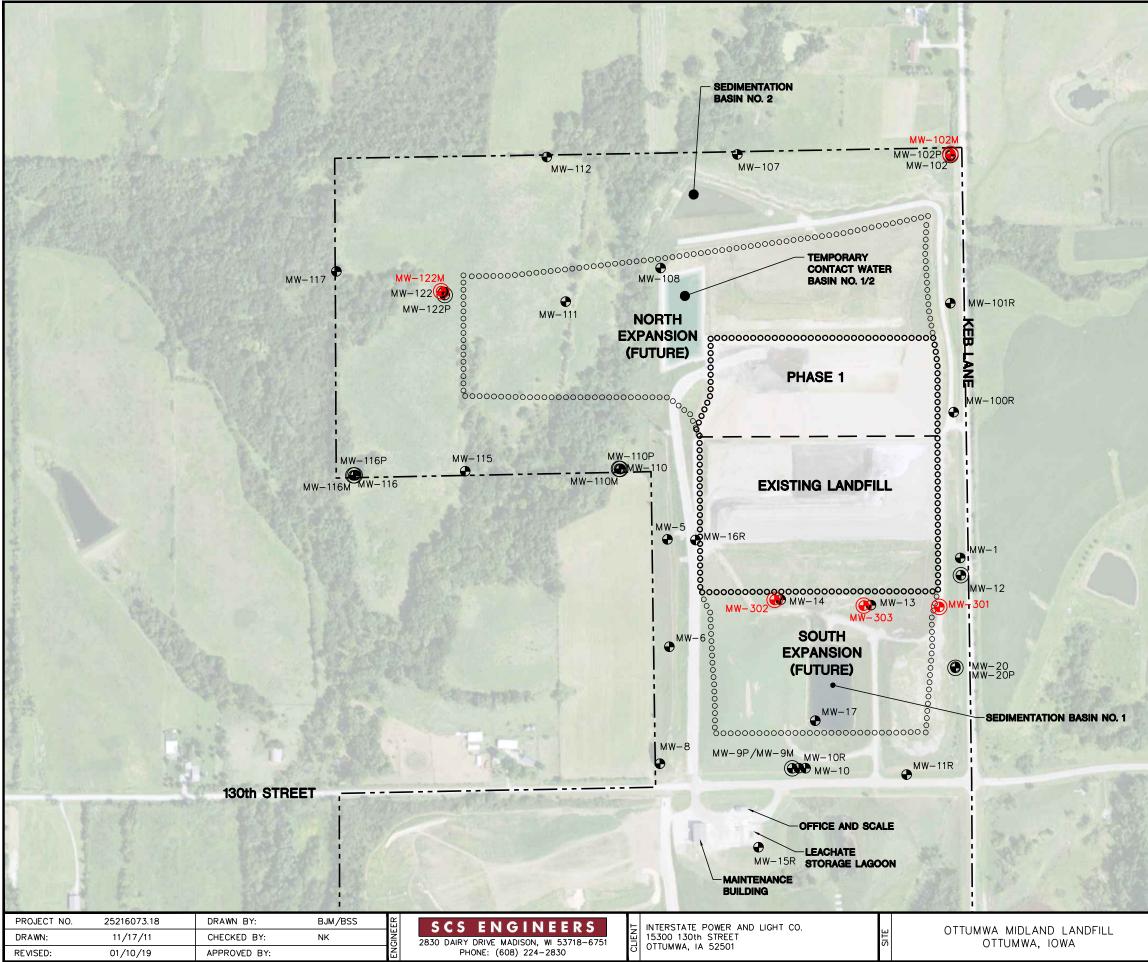
Table 1

CCR Rule Groundwater Samples Summary

Table 1. CCR Rule Groundwater Samples SummaryOttumwa Midland Landfill / SCS Engineers Project #25216073

Sample Dates	Do	wngradient We	Background Wells			
Sample Dates	MW-301	MW-302	MW-303	MW-102M	MW-122M	
4/17/2018	D	D	D	D	D	
10/15-16/2018	D	D	D	D	D	
Total Samples	2	2	2	2	2	

Abbreviations:

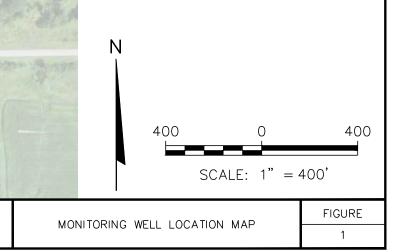

D = Required by Detection Monitoring Program

Created by:	NDK	Date: 1/4/2019
Last revision by:	NDK	Date: 1/4/2019
Checked by:	MDB	Date: 1/4/2019

I:\25216073.00\Deliverables\2018 Annual OML GW Mon. and CA Report\Table\[GW_Samples_Summary_Table_OML-1.xlsx]GW Summary

Figure 1

Site Plan and Monitoring Well Locations



25216073.00\Drawings\CCR Rule Piezometers.dwg, 1/10/2019 4:30:16 PM

	LEGEND
	APPROXIMATE PROPERTY LINE
00000000	EXISTING WASTE LIMITS
.00000000	PERMITTED WASTE LIMITS
•	MONITORING WELL
۲	PIEZOMETER
\bigcirc	CCR RULE PIEZOMETER

NOTES:

- 1. 2015 AERIAL PHOTOGRAPH IS FROM THE IOWA GEOGRAPHIC MAP SERVER-IOWA STATE UNIVERSITY GEOGRAPHIC INFORMATION SYSTEMS SUPPORT & RESEARCH FACILITY.
- PROPERTY LINE SOUTH OF 130[™] STREET FROM SURVEY MAP PREPARED BY GARDEN & ASSOCIATES, OSKALOOSA, IOWA, DATED DECEMBER 20, 1988.
- PROPERTY LINE NORTH OF 130TH STREET FROM PLAT OF SURVEY MAP PREPARED BY SCS ENGINEERS, MADISON, WISCONSIN, DATED FEBRUARY 20, 2013.
- 4. EXISTING LIMITS OF WASTE ARE APPROXIMATE.
- MONITORING WELLS MW-301 AND MW-302 WERE INSTALLED BY CASCADE DRILLING BETWEEN NOVEMBER 16, 2015, AND DECEMBER 3, 2015.
- MONITORING WELL MW-303 WAS INSTALLED BY TEAM SERVICES BETWEEN APRIL 11, 2016 AND APRIL 26, 2016.
- MONITORING WELLS MW-301 THROUGH MW-303 WERE SURVEYED BY FRENCH-RENEKER-ASSOCIATES ON MAY 19, 2016.

Appendix A

Laboratory Reports

A1 April 2018 Detection Monitoring

Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

May 04, 2018

Meghan Blodgett SCS Engineers 2830 Dairy Drive Madison, WI 53718

RE: Project: Ottumwa Midland LF/25216073.18 Pace Project No.: 60268634

Dear Meghan Blodgett:

Enclosed are the analytical results for sample(s) received by the laboratory on April 20, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Judy Sipson

Trudy Gipson trudy.gipson@pacelabs.com 1(913)563-1405 Project Manager

Enclosures

cc: Tom Karwaski, SCS Engineers Kyle Kramer, SCS Engineers Jeff Maxted, Alliant Energy

CERTIFICATIONS

Project: Ottumwa Midland LF/25216073.18

Pace Project No.: 60268634

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 17-016-0 Illinois Certification #: 200030 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212018-1 Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407 Utah Certification #: KS00021 Kansas Field Laboratory Accreditation: # E-92587 Missouri Certification: 10070

SAMPLE SUMMARY

Project: Ottumwa Midland LF/25216073.18

Pace Project No.: 60268634

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60268634001	MW-301	Water	04/17/18 12:10	04/20/18 08:45
60268634002	MW-302	Water	04/17/18 10:00	04/20/18 08:45
60268634003	MW-303	Water	04/17/18 10:50	04/20/18 08:45
60268634004	MW-102M	Water	04/17/18 13:00	04/20/18 08:45
60268634005	MW-122M	Water	04/17/18 13:45	04/20/18 08:45
60268634006	FIELD BLANK	Water	04/17/18 11:40	04/20/18 08:45

SAMPLE ANALYTE COUNT

Project: Ottumwa Midland LF/25216073.18

Pace Project No.: 60268634

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60268634001		EPA 6010	TDS	2	PASI-K
		SM 2540C	OL	1	PASI-K
		EPA 9040	MJK	1	PASI-K
		EPA 9056	LDB	3	PASI-K
60268634002	MW-302	EPA 6010	TDS	2	PASI-K
		SM 2540C	OL	1	PASI-K
		EPA 9040	MJK	1	PASI-K
		EPA 9056	LDB	3	PASI-K
60268634003	MW-303	EPA 6010	TDS	2	PASI-K
		SM 2540C	OL	1	PASI-K
		EPA 9040	MJK	1	PASI-K
		EPA 9056	OL	3	PASI-K
60268634004	MW-102M	EPA 6010	TDS	2	PASI-K
		SM 2540C	OL	1	PASI-K
		EPA 9040	MJK	1	PASI-K
		EPA 9056	OL	3	PASI-K
60268634005	MW-122M	EPA 6010	TDS	2	PASI-K
		SM 2540C	OL	1	PASI-K
		EPA 9040	MJK	1	PASI-K
		EPA 9056	OL	3	PASI-K
60268634006	FIELD BLANK	EPA 6010	TDS	2	PASI-K
		SM 2540C	OL	1	PASI-K
		EPA 9040	MJK	1	PASI-K
		EPA 9056	OL	3	PASI-K

Project: Ottumwa Midland LF/25216073.18

Pace Project No.:

60268634

Sample: MW-301	Lab ID:	60268634001	Collecte	d: 04/17/18	3 12:10	Received: 04/	20/18 08:45 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytica	I Method:							
Collected By	CLIENT				1		04/17/18 12:10		
Field pH	7.09	Std. Units	0.10	0.050	1		04/17/18 12:10		
Field Temperature	13.0	deg C	0.50	0.25	1		04/17/18 12:10		
Field Specific Conductance	1910	umhos/cm	1.0	1.0	1		04/17/18 12:10		
Field Oxidation Potential	-102.8	mV			1		04/17/18 12:10		
Oxygen, Dissolved	0.16	mg/L			1		04/17/18 12:10	7782-44-7	
Turbidity	1.13	NTU	1.0	1.0	1		04/17/18 12:10		
Groundwater Elevation	684.85	feet			1		04/17/18 12:10		
6010 MET ICP	Analytica	I Method: EPA 6	010 Prepa	ration Meth	od: EPA	3010			
Boron	854	ug/L	100	12.5	1	04/26/18 17:10	04/30/18 19:32	7440-42-8	
Calcium	131	mg/L	0.20	0.054	1	04/26/18 17:10	04/30/18 19:32	7440-70-2	
2540C Total Dissolved Solids	Analytica	I Method: SM 25	540C						
Total Dissolved Solids	1400	mg/L	5.0	5.0	1		04/24/18 11:55		
9040 pH	Analytica	I Method: EPA 9	040						
рН	6.8	Std. Units	0.10	0.10	1		04/24/18 14:33		H6
9056 IC Anions	Analytica	l Method: EPA 9	056						
Chloride	33.9	mg/L	5.0	2.3	5		04/28/18 14:21	16887-00-6	
Fluoride	0.87	mg/L	0.20	0.063	1		04/28/18 14:06	16984-48-8	
Sulfate	638	mg/L	50.0	11.8	50		04/30/18 02:42	14808-79-8	

Project: Ottumwa Midland LF/25216073.18

Pace Project No .:

60268634

Sample: MW-302	Lab ID:	60268634002	Collecte	d: 04/17/18	3 10:00	Received: 04/	(20/18 08:45 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytica	I Method:							
Collected By	CLIENT				1		04/17/18 10:00		
Field pH	7.8	Std. Units	0.10	0.050	1		04/17/18 10:00		
Field Temperature	12.7	deg C	0.50	0.25	1		04/17/18 10:00		
Field Specific Conductance	1091	umhos/cm	1.0	1.0	1		04/17/18 10:00		
Field Oxidation Potential	-138.7	mV			1		04/17/18 10:00		
Oxygen, Dissolved	0.30	mg/L			1		04/17/18 10:00	7782-44-7	
Turbidity	200.6	NTU	1.0	1.0	1		04/17/18 10:00		
Groundwater Elevation	683.87	feet			1		04/17/18 10:00		
6010 MET ICP	Analytica	I Method: EPA 6	010 Prepa	ration Meth	od: EPA	3010			
Boron	834	ug/L	100	12.5	1	04/26/18 17:10	04/30/18 19:34	7440-42-8	
Calcium	77.3	mg/L	0.20	0.054	1	04/26/18 17:10	04/30/18 19:34	7440-70-2	
2540C Total Dissolved Solids	Analytica	I Method: SM 25	540C						
Total Dissolved Solids	690	mg/L	5.0	5.0	1		04/24/18 11:55		
9040 pH	Analytica	I Method: EPA 9	040						
рН	7.6	Std. Units	0.10	0.10	1		04/24/18 14:28		H6
9056 IC Anions	Analytica	l Method: EPA 9	056						
Chloride	8.6	mg/L	1.0	0.46	1		04/28/18 15:20	16887-00-6	
Fluoride	1.0	mg/L	0.20	0.063	1		04/28/18 15:20	16984-48-8	
Sulfate	79.3	mg/L	5.0	1.2	5		04/30/18 02:57	14808-79-8	

Project: Ottumwa Midland LF/25216073.18

Pace Project No.: 602

60268634

Sample: MW-303	Lab ID:	60268634003	Collected	l: 04/17/18	3 10:50	Received: 04/	/20/18 08:45 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
Collected By	CLIENT				1		04/17/18 10:50		
Field pH	7.32	Std. Units	0.10	0.050	1		04/17/18 10:50		
Field Temperature	13.3	deg C	0.50	0.25	1		04/17/18 10:50		
Field Specific Conductance	1358	umhos/cm	1.0	1.0	1		04/17/18 10:50		
Field Oxidation Potential	-103.8	mV			1		04/17/18 10:50		
Oxygen, Dissolved	0.38	mg/L			1		04/17/18 10:50	7782-44-7	
Turbidity	248	NTU	1.0	1.0	1		04/17/18 10:50		
Groundwater Elevation	684.68	feet			1		04/17/18 10:50		
6010 MET ICP	Analytical	Method: EPA 6	010 Prepar	ation Meth	od: EPA	3010			
Boron	738	ug/L	100	12.5	1	04/26/18 17:10	04/30/18 19:36	7440-42-8	
Calcium	103	mg/L	0.20	0.054	1	04/26/18 17:10	04/30/18 19:36	7440-70-2	
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	839	mg/L	5.0	5.0	1		04/24/18 11:55		
9040 pH	Analytical	Method: EPA 9	040						
рН	7.2	Std. Units	0.10	0.10	1		04/24/18 14:30		H6
9056 IC Anions	Analytical	I Method: EPA 9	056						
Chloride	7.3	mg/L	1.0	0.46	1		05/01/18 09:40	16887-00-6	
Fluoride	0.80	mg/L	0.20	0.063	1		05/01/18 09:40	16984-48-8	
Sulfate	262	mg/L	20.0	4.7	20		05/01/18 14:00	14808-79-8	

Project: Ottumwa Midland LF/25216073.18

Pace Project No.:

o.: 60268634

Lab ID:	60268634004	Collected	d: 04/17/18	3 13:00	Received: 04/	20/18 08:45 M	atrix: Water	
Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Analytica	I Method:							
CLIENT				1		04/18/18 08:30		
8.34	Std. Units	0.10	0.050	1		04/18/18 08:30		
10.1	deg C	0.50	0.25	1		04/18/18 08:30		
2113	umhos/cm	1.0	1.0	1		04/18/18 08:30		
-77.8	mV			1		04/18/18 08:30		
4.51	mg/L			1		04/18/18 08:30	7782-44-7	
717.38	feet			1		04/18/18 08:30		
Analytica	I Method: EPA 6	010 Prepar	ation Meth	od: EPA	3010			
1550	ug/L	100	12.5	1	04/26/18 17:10	04/30/18 19:39	7440-42-8	
25.3	mg/L	0.20	0.054	1	04/26/18 17:10	04/30/18 19:39	7440-70-2	
Analytica	I Method: SM 25	40C						
1540	mg/L	5.0	5.0	1		04/24/18 11:55		
Analytica	I Method: EPA 9	040						
8.0	Std. Units	0.10	0.10	1		04/24/18 14:35		H6
Analytica	I Method: EPA 9	056						
13.5	mg/L	1.0	0.46	1		05/01/18 11:58	16887-00-6	
4.5	0	-		1		05/01/18 11:58		
352	0	50.0	11.8	50				
	Results Analytica CLIENT 8.34 10.1 2113 -77.8 4.51 717.38 Analytica 1550 25.3 Analytica 1540 Analytica 8.0 Analytica 13.5 4.5	Analytical Method: CLIENT 8.34 Std. Units 10.1 deg C 2113 umhos/cm -77.8 mV 4.51 mg/L 717.38 feet Analytical Method: EPA 6 1550 ug/L 25.3 mg/L Analytical Method: SM 25 1540 mg/L Analytical Method: EPA 9 8.0 Std. Units Analytical Method: EPA 9 13.5 mg/L 4.5 mg/L	Results Units PQL Analytical Method: CLIENT 8.34 Std. Units 0.10 10.1 deg C 0.50 2113 umhos/cm 1.0 -77.8 mV 4.51 4.51 mg/L 717.38 717.38 feet 100 25.3 mg/L 100 25.3 mg/L 0.20 Analytical Method: EPA 6010 Prepare 1550 ug/L 100 25.3 mg/L 5.0 Analytical Method: EPA 9040 8.0 Std. Units 0.10 Analytical Method: EPA 9040 8.0 8.0 Std. Units 0.10 Analytical Method: EPA 9056 1.0 4.5 mg/L 1.0	Results Units PQL MDL Analytical Method:	Results Units PQL MDL DF Analytical Method: 1 1 1 1 CLIENT 1 0.10 0.050 1 10.1 deg C 0.50 0.25 1 2113 umhos/cm 1.0 1.0 1 -77.8 mV 1 1 4.51 mg/L 1 1 717.38 feet 1 1 Analytical Method: EPA 6010 Preparation Method: EPA 1 550 ug/L 100 12.5 1 25.3 mg/L 0.20 0.054 1 Analytical Method: SM 2540C 1 1 1 4.51 mg/L 5.0 5.0 1 Analytical Method: EPA 9040 8.0 Std. Units 0.10 0.10 8.0 Std. Units 0.10 0.10 1 Analytical Method: EPA 9056 1 1 1 13.5 mg/L 1.0 </td <td>Results Units PQL MDL DF Prepared Analytical Method: 1</td> <td>Results Units PQL MDL DF Prepared Analyzed Analytical Method: 1 04/18/18 08:30 08:34 Std. Units 0.10 0.050 1 04/18/18 08:30 10.1 deg C 0.50 0.25 1 04/18/18 08:30 2113 umhos/cm 1.0 1.0 1 04/18/18 08:30 -77.8 mV 1 04/18/18 08:30 04/18/18 08:30 4.51 mg/L 1 04/18/18 08:30 04/18/18 08:30 717.38 feet 1 04/18/18 08:30 Analytical Method: EPA 6010 Prepared Adv/18/18 08:30 717.38 feet 1 04/26/18 17:10 04/30/18 19:39 Analytical Method: SM 2540C 1 04/26/18 17:10 04/24/18 11:55 Analytical Method: EPA 9040 1 <</td> <td>Results Units PQL MDL DF Prepared Analyzed CAS No. Analytical Method: 1 04/18/18 08:30 64/18/18 08:30 64/18/18 08:30 64/18/18 08:30 64/18/18 08:30 64/18/18 08:30 64/18/18 08:30 64/18/18 08:30 64/18/18 08:30 64/18/18 08:30 64/18/18 08:30 64/18/18 08:30 64/18/18 08:30 64/18/18 08:30 64/18/18 08:30 7782-44-7 717.38 mV 1 64/18/18 08:30 7782-44-7 717.38 feet 1 04/18/18 08:30 7782-44-7 717.38 feet 0.20 0.054 1 04/26/18 17:10 04/30/18 19:39 7440-42-8 25.3 mg/L 0.20 0.054 1 04/26/18 17:10 04/30/18 19:39 7440-70-2</td>	Results Units PQL MDL DF Prepared Analytical Method: 1	Results Units PQL MDL DF Prepared Analyzed Analytical Method: 1 04/18/18 08:30 08:34 Std. Units 0.10 0.050 1 04/18/18 08:30 10.1 deg C 0.50 0.25 1 04/18/18 08:30 2113 umhos/cm 1.0 1.0 1 04/18/18 08:30 -77.8 mV 1 04/18/18 08:30 04/18/18 08:30 4.51 mg/L 1 04/18/18 08:30 04/18/18 08:30 717.38 feet 1 04/18/18 08:30 Analytical Method: EPA 6010 Prepared Adv/18/18 08:30 717.38 feet 1 04/26/18 17:10 04/30/18 19:39 Analytical Method: SM 2540C 1 04/26/18 17:10 04/24/18 11:55 Analytical Method: EPA 9040 1 <	Results Units PQL MDL DF Prepared Analyzed CAS No. Analytical Method: 1 04/18/18 08:30 64/18/18 08:30 64/18/18 08:30 64/18/18 08:30 64/18/18 08:30 64/18/18 08:30 64/18/18 08:30 64/18/18 08:30 64/18/18 08:30 64/18/18 08:30 64/18/18 08:30 64/18/18 08:30 64/18/18 08:30 64/18/18 08:30 64/18/18 08:30 7782-44-7 717.38 mV 1 64/18/18 08:30 7782-44-7 717.38 feet 1 04/18/18 08:30 7782-44-7 717.38 feet 0.20 0.054 1 04/26/18 17:10 04/30/18 19:39 7440-42-8 25.3 mg/L 0.20 0.054 1 04/26/18 17:10 04/30/18 19:39 7440-70-2

Project: Ottumwa Midland LF/25216073.18

Pace Project No.:

No.: 60268634

Sample: MW-122M	Lab ID:	60268634005	Collecte	d: 04/17/1	8 13:45	Received: 04/	/20/18 08:45 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytica	Method:							
Collected By	CLIENT				1		04/17/18 13:55		
Field pH	6.65	Std. Units	0.10	0.050	1		04/17/18 13:55	i i i i i i i i i i i i i i i i i i i	
Field Temperature	13.4	deg C	0.50	0.25	1		04/17/18 13:55		
Field Specific Conductance	13773	umhos/cm	1.0	1.0	1		04/17/18 13:55		
Field Oxidation Potential	-61.1	mV			1		04/17/18 13:55		
Oxygen, Dissolved	0.36	mg/L			1		04/17/18 13:55	7782-44-7	
Groundwater Elevation	723.25	feet			1		04/17/18 13:55		
6010 MET ICP	Analytica	Method: EPA 6	010 Prepa	ration Meth	nod: EPA	3010			
Boron	5560	ug/L	100	12.5	1	04/26/18 17:10	04/30/18 19:41	7440-42-8	
Calcium	402	mg/L	0.20	0.054	1	04/26/18 17:10	04/30/18 19:41	7440-70-2	
2540C Total Dissolved Solids	Analytica	Method: SM 2	540C						
Total Dissolved Solids	14400	mg/L	5.0	5.0	1		04/24/18 11:55		
9040 pH	Analytica	Method: EPA 9	040						
рН	6.4	Std. Units	0.10	0.10	1		04/24/18 14:36	i	H6
9056 IC Anions	Analytica	Method: EPA 9	056						
Chloride	8.0	mg/L	1.0	0.46	1		05/01/18 12:25	16887-00-6	
Fluoride	< 0.063	mg/L	0.20	0.063	1		05/01/18 12:25		
Sulfate	10400	mg/L	1000	236	1000		05/01/18 13:46		

Project: Ottumwa Midland LF/25216073.18

Pace Project No.: 60268634

Sample: FIELD BLANK	Lab ID: 60268634006		Collected	Collected: 04/17/18 11:40		Received: 04/20/18 08:45 Ma		atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical	Method: EPA 6	010 Prepai	ation Meth	od: EPA	A 3010			
Boron Calcium	<12.5 0.11J	ug/L mg/L	100 0.20	12.5 0.054	1 1	04/26/18 17:10 04/26/18 17:10	04/30/18 19:44 04/30/18 19:44		
2540C Total Dissolved Solids	Analytical Method: SM 2540C								
Total Dissolved Solids	6.0	mg/L	5.0	5.0	1		04/24/18 11:55		
9040 pH	Analytical	Method: EPA 9	040						
рН	6.2	Std. Units	0.10	0.10	1		04/24/18 14:32		H6
9056 IC Anions	Analytical	Method: EPA 9	056						
Chloride Fluoride Sulfate	<0.46 <0.063 <0.24	mg/L mg/L mg/L	1.0 0.20 1.0	0.46 0.063 0.24	1 1 1		05/01/18 15:35 05/01/18 15:35 05/01/18 15:35	16984-48-8	

Project:	Ottumwa	Midland LF	/25216073.18											
Pace Project No.:	60268634	4												
QC Batch:	523410			Analysi	is Method:	E	PA 6010							
QC Batch Method:	EPA 30	10		Analysi	is Descript	ion: 6	010 MET							
Associated Lab Sa	amples: 6	026863400	1, 60268634002	, 602686340	003, 60268	8634004, 6	0268634005	5, 6026	86340	006				
METHOD BLANK:	2142788			N	latrix: Wat	er								
Associated Lab Sa	amples: 6	026863400	1,60268634002	, 602686340	003, 60268	8634004, 6	0268634005	5, 6026	686340	006				
				Blank	Re	eporting								
Para	ameter		Units	Result	t	Limit	MDL		An	alyzed	Qua	alifiers		
Boron			ug/L	<	:12.5	100		12.5	04/30	/18 19:10	6			
Calcium			mg/L	<0	.054	0.20	0	.054	04/30	/18 19:10	6			
LABORATORY CO	ONTROL SA	MPLE: 2	142789											
LABORATORY CO	ONTROL SA	MPLE: 2'	142789	Spike	LCS		LCS	%	Rec					
	ONTROL SA	MPLE: 2	142789 Units	Spike Conc.	LCS Resu		LCS % Rec		Rec	Q	ualifiers			
LABORATORY CO Para Boron		MPLE: 2 ⁻		•							ualifiers			
Para		MPLE: 2 [.]	Units	Conc.		lt	% Rec		mits	20	ualifiers			
Para Boron Calcium	ameter		Units ug/L mg/L	Conc. 1000 10		lt 982 10.4	% Rec 98		mits 80-1	20	ualifiers			
Para	ameter		Units ug/L mg/L	Conc. 1000 10		lt 982	% Rec 98		mits 80-1	20	ualifiers			
Para Boron Calcium	ameter		Units ug/L mg/L	Conc. 1000 10	Resu	lt 982 10.4	% Rec 98		mits 80-1 80-1	20	ualifiers % Rec		Мах	
Para Boron Calcium	ameter MATRIX SF		Units ug/L mg/L CATE: 214275	Conc. 1000 10 90 MS	Resu	10.4 2142791	% Rec 98 104	Li	80-1 80-1	20 20		RPD	Max RPD	Qual
Para Boron Calcium MATRIX SPIKE &	ameter MATRIX SF		Units ug/L mg/L CATE: 214279 60268626009	Conc. 1000 10 90 MS Spike	Resu MSD Spike	tt 982 10.4 2142791 MS	% Rec 98 104 MSD	Li MS % Re	80-1 80-1	20 20 MSD	% Rec Limits	RPD 2	RPD	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

- ,	Ottumwa Midland	LF/25216073.18						
Pace Project No.:	60268634							
QC Batch:	522900		Analysis Me	ethod:	SM 2540C			
QC Batch Method:	SM 2540C		Analysis De	escription:	2540C Total D	issolved Solids		
Associated Lab Samp	oles: 60268634	4001, 6026863400	2, 60268634003,	60268634004,	60268634005	, 60268634006		
METHOD BLANK:	2140683		Matrix	x: Water				
Associated Lab Sam	oles: 60268634	4001, 6026863400	2, 60268634003,	60268634004,	60268634005	, 60268634006		
			Blank	Reporting				
Parame	eter	Units	Result	Limit	MDL	Analy	zed	Qualifiers
Total Dissolved Solid	S	mg/L	<5.0) 5	.0	5.0 04/24/18	11:55	
LABORATORY CON	TROL SAMPLE:	2140684						
			Spike	LCS	LCS	% Rec		
Parame	eter	Units	Conc.	Result	% Rec	Limits	Quali	fiers
Total Dissolved Solid	S	mg/L	1000	999	100	80-120		
SAMPLE DUPLICAT	E: 2140685							
			60268297005	Dup		Max		
Parame	eter	Units	Result	Result	RPD	RPD		Qualifiers
Total Dissolved Solid	S	mg/L	506	5 50)7	0	10 H1	
SAMPLE DUPLICATI	E: 2140686			-				
Parame	ator	Units	60268634001 Result	Dup Result	RPD	Max RPD		Qualifiers
Total Dissolved Solids	S	mg/L	1400) 141	0	1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Ottumwa Midland LF/25216073.18

Pace Project No.: 60268634

QC Batch:	5229	90	Analysis Method:	EPA 9040
QC Batch Method:	EPA	9040	Analysis Description:	9040 pH
Associated Lab Sam	ples:	60268634001, 60268634002, 6	0268634003, 60268634004	, 60268634005, 60268634006

SAMPLE	DUPLICATE:	2140945
	DUI LICAIL.	2140340

		60268289002	Dup		Max	
Parameter	eter Units		Result	RPD	RPD	Qualifiers
pH	Std. Units	13.4	13.4	0	10	H6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	Ottumwa Midla 60268634	and LF/2	5216073.18										
QC Batch:	523619			Analys	is Method	: E	PA 9056						
QC Batch Method:	EPA 9056			•	is Descrip		056 IC Anion	IS					
Associated Lab San	nples: 60268	634001,	60268634002,	, 60268634	003, 6026	8634004, 6	60268634005	i					
METHOD BLANK:	2143926			N	Aatrix: Wa	ter							
Associated Lab San	nples: 60268	634001,	60268634002,	, 60268634	003, 6026	8634004, 6	60268634005	5					
				Blank	K R	eporting							
Paran	neter		Units	Resul	t	Limit	MDL		Analyzed	Qu	alifiers		
Chloride			mg/L	<	<0.46	1.0) (0.46 0)4/28/18 09:5	2			
Fluoride			mg/L	<(0.063	0.20) 0.	.063 0)4/28/18 09:5	2			
LABORATORY COM		E: 214	43927 Units	Spike Conc.	LCS Resi		LCS % Rec	% F Lim		ualifiers			
Chloride			mg/L	5	·	4.9	98		80-120		-		
Fluoride			mg/L	2.5		2.4	98		80-120				
MATRIX SPIKE & M			ATE: 214392 60268626007 Result	28 MS Spike Conc.	MSD Spike Conc.	2143929 MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
i aramete										·			
Fluoride		mg/L	0.11J	2.5	2.5	2.8	2.9	10	06 110	80-120	3	15	
		mg/L	Units	2.5 60268626 Resul	6008	2.8 Dup Result	2.9 RPD	10	Max RPD	80-120 Qualifi		15	
Fluoride SAMPLE DUPLICA		mg/L		60268626	6008	Dup	RPD	10 	Max			15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Ottumwa Midland Pace Project No.: 60268634	LF/25216073.18						
QC Batch: 523648		Analysis Mo	ethod:	EPA 9056			
QC Batch Method: EPA 9056		Analysis De	escription:	9056 IC Anic	ns		
Associated Lab Samples: 60268634	4001, 60268634002						
METHOD BLANK: 2144152		Matrix	x: Water				
Associated Lab Samples: 60268634	1001, 60268634002						
		Blank	Reporting	9			
Parameter	Units	Result	Limit	MDL	An	alyzed	Qualifiers
Sulfate	mg/L	<0.24	1	1.0	0.24 04/30	/18 00:58	
LABORATORY CONTROL SAMPLE:	2144153						
		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits	Qua	alifiers
Sulfate	mg/L	5	4.8	96	80-1	20	
SAMPLE DUPLICATE: 2144156							
- .		60268626009			M		0 11/1
Parameter	Units	Result	Result	RPD	RF	יםי 	Qualifiers
Sulfate	mg/L	373	3 ;	352	6	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Ottumwa Midland LF/25216073.18 Project:

Pace Proiect No 60268634

Pro	ject	NO.:	6026863
-	,		

QC Batch:	523924	Analysis Method:	EPA 9056	
QC Batch Method:	EPA 9056	Analysis Description:	9056 IC Anions	
Associated Lab Sam	nples: 60268634003, 6026863400	94, 60268634005, 6026863400	6	
METHOD BLANK:	2144833	Matrix: Water		

Associated Lab Samples: 60268634003, 60268634004, 60268634005, 60268634006

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.46	1.0	0.46	05/01/18 08:40	
Fluoride	mg/L	<0.063	0.20	0.063	05/01/18 08:40	
Sulfate	mg/L	<0.24	1.0	0.24	05/01/18 08:40	

LABORATORY CONTROL SAMPLE: 2144834

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L	5	4.8	97	80-120	
Fluoride	mg/L	2.5	2.4	98	80-120	
Sulfate	mg/L	5	4.9	99	80-120	

MATRIX SPIKE & MATRIX SP	IKE DUPLICA	TE: 21448	35		2144836							
			MS	MSD								
	60	0268634003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	 mg/L	7.3	5	5	12.6	12.7	107	109	80-120	1	15	
Fluoride	mg/L	0.80	2.5	2.5	3.3	3.4	101	103	80-120	2	15	
Sulfate	mg/L	262	100	100	352	367	90	104	80-120	4	15	

SAMPLE DUPLICATE: 2144837

Parameter	Units	60268634004 Result	Dup Result	RPD	Max RPD	Qualifiers
Chloride	mg/L	13.5	13.5	0	15	
Fluoride	mg/L	4.5	4.5	1	15	
Sulfate	mg/L	352	342	3	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALIFIERS

Project: Ottumwa Midland LF/25216073.18

Pace Project No.: 60268634

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-K Pace Analytical Services - Kansas City

ANALYTE QUALIFIERS

- H1 Analysis conducted outside the EPA method holding time.
- H6 Analysis initiated outside of the 15 minute EPA required holding time.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Ottumwa Midland LF/25216073.18

Pace Project No.: 60268634

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60268634001	 MW-301		524189		
60268634002	MW-302		524189		
60268634003	MW-303		524189		
60268634004	MW-102M		524189		
60268634005	MW-122M		524189		
60268634001	MW-301	EPA 3010	523410	EPA 6010	523461
60268634002	MW-302	EPA 3010	523410	EPA 6010	523461
60268634003	MW-303	EPA 3010	523410	EPA 6010	523461
60268634004	MW-102M	EPA 3010	523410	EPA 6010	523461
60268634005	MW-122M	EPA 3010	523410	EPA 6010	523461
60268634006	FIELD BLANK	EPA 3010	523410	EPA 6010	523461
60268634001	MW-301	SM 2540C	522900		
60268634002	MW-302	SM 2540C	522900		
60268634003	MW-303	SM 2540C	522900		
60268634004	MW-102M	SM 2540C	522900		
60268634005	MW-122M	SM 2540C	522900		
60268634006	FIELD BLANK	SM 2540C	522900		
60268634001	MW-301	EPA 9040	522990		
60268634002	MW-302	EPA 9040	522990		
60268634003	MW-303	EPA 9040	522990		
60268634004	MW-102M	EPA 9040	522990		
60268634005	MW-122M	EPA 9040	522990		
60268634006	FIELD BLANK	EPA 9040	522990		
60268634001	MW-301	EPA 9056	523619		
60268634001	MW-301	EPA 9056	523648		
60268634002	MW-302	EPA 9056	523619		
60268634002	MW-302	EPA 9056	523648		
60268634003	MW-303	EPA 9056	523619		
60268634003	MW-303	EPA 9056	523924		
60268634004	MW-102M	EPA 9056	523619		
60268634004	MW-102M	EPA 9056	523924		
60268634005	MW-122M	EPA 9056	523619		
60268634005	MW-122M	EPA 9056	523924		
60268634006	FIELD BLANK	EPA 9056	523924		

FedEx 🗹

Client Name:

Packing Material:

Sufficient volume:

Correct containers used: Pace containers used:

Thermometer Used:

Courier:

Tracking #:

WO#:60268634 Sample Condition Upon Receipt FURTNEERS UPS 🗆 Clay 🗆 VIA 🗆 PEX 🗆 ECI 🗆 Pace 🗆 Xroads Client Other 4122 4945 6428 Pace Shipping Label Used? Yes No 🖅 Custody Seal on Cooler/Box Present: Yes Provide No D Seals intact: Yes I No 🗆 Bubble Wrap □ Bubble Bags Foam 🗆 None 🗆 Other C ZPLC 1298 Type of Ice: Wet Blue None Date and initials of person Cooler Temperature (°C): As-read 0,9 Corr. Factor 1. Corrected 2.0 examining contents: SDG4-20 Temperature should be above freezing to 6°C EYes DNo DN/A Chain of Custody present: Chain of Custody relinquished: □Yes INo □N/A Ves No N/A Samples arrived within holding time: □n/A Short Hold Time analyses (<72hr): Yes No DN/A Rush Turn Around Time requested: Yes No N/A Yes No N/A

Containers intact:	TYes [No	□n/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hr	s? □Yes [∃No		
Filtered volume received for dissolved tests?	□Yes [∃No		3.
Sample labels match COC: Date / time / ID / analyses	TYes [∃No	□n/a	
Samples contain multiple phases? Matrix: WT	, □Yes [□n/a	
Containers requiring pH preservation in compliance? (HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)	Hes [∃No	⊡n/A	List sample IDs, volumes, lot #'s of preservative and the date/time added.
Cyanide water sample checks:			_	
Lead acetate strip turns dark? (Record only)	□Yes □	□No		
Potassium iodide test strip turns blue/purple? (Preserve	e) 🛛 Yes 🗆	∃No		
Trip Blank present:	□Yes □	∃No		
Headspace in VOA vials (>6mm):	🗆 Yes 🛙	∃No		
Samples from USDA Regulated Area: State:	□Yes □	∃No		
Additional labels attached to 5035A / TX1005 vials in th	e field? □Yes □	No		
	COC to Client?	Y /	O	Field Data Required? Y / N
Person Contacted:	Date/Time:		1000	
Comments/ Resolution:				

Project Manager Review:

Jost

4-20-18 Date:

	n bo
	50
	S
	Ia Pa
	Analytica
	co
C	2
	D.
0	()
	N 1

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT., All relevant fields must be completed accurately.

Section A	tient Information:	Section B Required Project Information:	ject Info	ormatic	:uo					Section C Invoice Info	Section C Invoice Information:	ion:								Page:	<u>::</u>		oť		
Company:	leers	Report To: Meghan Blodgett	Aegha	in Blo	dgett					Attention:		Veghar	Meghan Blodgett/Jess Valcheff	stt/Jess	Valci	heff									
Address:	2830 Dairy Drive	Copy To: T	Tom Karwaski	arwas	ski					Compar	Company Name:		SCS Engineers	ers				REGULATORY	TORY	AGENCY				19.11	
	Madison WI 53718									Address								I NPDES	ES ES	GROU	GROUND WATER	ER	DRINKIN	DRINKING WATER	œ
Email To:	mblodgett@scsengineers.com	Purchase Order No.	der No							Pace Quote	ote 						Γ	L UST		RCRA			OTHER		
Phone:		Project Name:		ttumw	Ottumwa Midland Landfill	ind Lan	dfill			Pace Pro	Ľ	Trudy Gipson		913-563-1405	3-140	5		Site Location	ation	4					
Requeste	Requested Due Date/TAT:	Project Number. 25216073.18	ber. 25	52160	073.18					Pace Profile #:	file #:	6696 Line 2	ine 2					ST	STATE:						
					T				1						L.	seque	sted A	Requested Analysis Filtered (Y/N)	Filtered	(NIX)					
	Section D Valid Matrix Codes	sabo		(COLL	COLLECTED		_			Preservatives	atives	L. C. M.	Z	z	z								
	DEVENDENCE DENKING WATER WASTE WATER PRODUCT SOLLSOLID OIL		ol sebos bilav ee	IOD=D 8AAB	COMPOSITE START	E	COMI	COMPOSITE END/GRAB	OLLECTION	S						*	e-Sulfate				(N/X) əı			· . (
# WE	SAMPLE ID WIFE (A-Z, 0-9, /-) OTHER Sample IDS MUST BE UNIQUE TISSUE	AR OT TS							A MPLE TEMP AT C	OF CONTAINER	⁵ 2O ⁴ ubleselved	ICI INO ³	laOH laOff)ther Methanol	Analysis Tese 10 Total Metals: B-6	SIEIBH WRIELD	56 Chloride-Fluorid	040 bH			Residual Chlorin		Code 8634	634	
ш	MMA-301				DATE	TIME	4-17-18	2/:C/ 8			4	4	V			59 ×		-		1222U	AN	M	2		100
	MW-302		-	U	XXX	×	-			e	-	2			×	×	×××	××			-				220
4 6	MW-303		-	U	XX	×		10:50	0 33	3	1	2			×	×	××	××						U	603
4	MW-102M		_	U	XXX	×		13:00	D 10.	3	1	2			×	×	××	××		_					004
co	MW-122M		WT	U	XXX	XX		13:45	5 134	e	-	2		-	×	×	×	× ×		-					S
40	FIELD BLANK		ŢŴ	U	XXX	XX	>	11:40	10	n	-	2		-	×	×	×	×	_	1	\ddagger	_		2	900
7				-					-		_	-			_		-		+	_	-				
8									-		-			-					_	_	+				
6								_	-					-	-		-								
10				-				_						-						+					
11				-				_	+				F	T	1	T			-		┢				
12	ADDITIONAL COMMENTS		RELIN	Ioush	RELINQUISHED BY / AFFILIATION	AFFILIA'	LION	Ď	DATE	F	TIME	1	ACCI	ACCEPTED BY / AFFILIATION	BYIA	FILIAT	NO		DATE	TIME		SA	SAMPLE CONDITIONS	ITIONS	
Ship To	Ship To: 9608 Loiret Boulevard, Lenexa, KS 66219											Γ	1		- Dites	3		2	4.20-18	SHEO	2.0	>	7	X	
* Sb-As	 Sb-As-Ba-Be-Cd-Cr-Co-Pb-Mo-Se-Ti 					÷.							P			}				× I		-	-	e j	
*	423.15: Ber Meghan																	_			_		_	_	
	Blodgett. chort					1												_					¢		
						SAMP	SAMPLER NAME AI	IE AND SI	ND SIGNATURE	RE											р. ц			00401	
	20 of						PRINT Name		of SAMPLER:	,											i dwe	eviece Y) eci	s (oq) (səlqm
	f 20						SIGNA	SIGNATURE of SAMPLER	MPLEF						-	(MM/DD/YY):	:(\\\/				T			_	Sai

"Important Note: By signing this form you are accepting Pace's NET 30 day payment lerms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

F-ALL-Q-020rev.07, 15-Feb-2007

A2 October 2018 Detection Monitoring

November 01, 2018

Meghan Blodgett SCS Engineers 2830 Dairy Drive Madison, WI 53718

RE: Project: Ottumwa Midland Landfill Pace Project No.: 60284061

Dear Meghan Blodgett:

Enclosed are the analytical results for sample(s) received by the laboratory on October 18, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

AA

Hank Kapka hank.kapka@pacelabs.com (913)599-5665 PM Lab Management

Enclosures

cc: Tom Karwaski, SCS Engineers Nicole Kron, SCS Engineers Jeff Maxted, Alliant Energy Jess Valcheff, SCS Engeineers

CERTIFICATIONS

Project: Ottumwa Midland Landfill Pace Project No.: 60284061

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 Missouri Certification Number: 10090 Arkansas Drinking Water WY STR Certification #: 2456.01 Arkansas Certification #: 18-016-0 Arkansas Drinking Water Illinois Certification #: 004455 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212018-1 Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407-18-11 Utah Certification #: KS000212018-8 Kansas Field Laboratory Accreditation: # E-92587 Missouri Certification: 10070 Missouri Certification Number: 10090

SAMPLE SUMMARY

Project: Ottumwa Midland Landfill

Pace Project No.: 60284061

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60284061001	MW-301	Water	10/15/18 15:30	10/18/18 09:00
60284061002	MW-302	Water	10/15/18 14:35	10/18/18 09:00
60284061003	MW-303	Water	10/16/18 08:23	10/18/18 09:00
60284061004	MW-102M	Water	10/16/18 09:20	10/18/18 09:00
60284061005	MW-122M	Water	10/16/18 09:00	10/18/18 09:00
60284061006	FIELD BLANK	Water	10/16/18 10:00	10/18/18 09:00

SAMPLE ANALYTE COUNT

Project: Ottumwa Midland Landfill

Pace Project No.: 60284061

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60284061001		EPA 6010	EMR	2	PASI-K
		SM 2540C	LDF	1	PASI-K
		EPA 9040	RMT	1	PASI-K
		EPA 9056	WNM	3	PASI-K
60284061002	MW-302	EPA 6010	EMR	2	PASI-K
		SM 2540C	LDF	1	PASI-K
		EPA 9040	RMT	1	PASI-K
		EPA 9056	WNM	3	PASI-K
60284061003	MW-303	EPA 6010	EMR	2	PASI-K
		SM 2540C	LDF	1	PASI-K
		EPA 9040	RMT	1	PASI-K
		EPA 9056	WNM	3	PASI-K
0284061004	MW-102M	EPA 6010	EMR	2	PASI-K
		SM 2540C	LDF	1	PASI-K
		EPA 9040	RMT	1	PASI-K
		EPA 9056	WNM	3	PASI-K
60284061005	MW-122M	EPA 6010	EMR	2	PASI-K
		SM 2540C	LDF	1	PASI-K
		EPA 9040	RMT	1	PASI-K
		EPA 9056	WNM	3	PASI-K
0284061006	FIELD BLANK	EPA 6010	EMR	2	PASI-K
		SM 2540C	LDF	1	PASI-K
		EPA 9040	RMT	1	PASI-K
		EPA 9056	WNM	3	PASI-K

Project: Ottumwa Midland Landfill

Pace Project No.: 60284061

Sample: MW-301	Lab ID:	60284061001	Collecte	d: 10/15/18	3 15:30	Received: 10/	(18/18 09:00 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
Collected By	Client				1		10/15/18 15:30		
Collected Date	10/15/2018				1		10/15/18 15:30		
Collected Time	15:30				1		10/15/18 15:30		
Field pH	6.59	Std. Units	0.10	0.050	1		10/15/18 15:30		
Field Temperature	13.6	deg C	0.50	0.25	1		10/15/18 15:30		
Field Specific Conductance	2,112	umhos/cm	1.0	1.0	1		10/15/18 15:30		
Oxygen, Dissolved	0.20	mg/L			1		10/15/18 15:30	7782-44-7	
REDOX	88.2	mV			1		10/15/18 15:30		
Turbidity	4.91	NTU	1.0	1.0	1		10/15/18 15:30		
Groundwater Elevation	684.58	feet			1		10/15/18 15:30		
6010 MET ICP	Analytical	Method: EPA 6	010 Prepa	ration Meth	od: EPA	3010			
Boron	784	ug/L	100	12.5	1	10/19/18 11:20	10/19/18 20:25	7440-42-8	
Calcium	135	mg/L	0.20	0.054	1	10/19/18 11:20	10/19/18 20:25	7440-70-2	
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	1550	mg/L	5.0	5.0	1		10/22/18 16:06		
9040 pH	Analytical	Method: EPA 9	040						
рН	7.5	Std. Units	0.10	0.10	1		10/24/18 16:26		H6
9056 IC Anions	Analytical	Method: EPA 9	056						
Chloride	26.9	mg/L	5.0	1.4	5		10/27/18 19:45	16887-00-6	
Fluoride	0.84	mg/L	0.20	0.19	1		10/28/18 00:53		
Sulfate	837	mg/L	50.0	12.0	50		10/27/18 20:01		

Project: Ottumwa Midland Landfill

Pace Project No.: 60284061

Sample: MW-302	Lab ID:	60284061002	2 Collecte	d: 10/15/18	3 14:35	Received: 10/	(18/18 09:00 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytica	Method:							
Collected By	Client				1		10/15/18 14:35		
Collected Date	10/15/2018				1		10/15/18 14:35		
Collected Time	14:35				1		10/15/18 14:35		
Field pH	7.25	Std. Units	0.10	0.050	1		10/15/18 14:35		
Field Temperature	13.4	deg C	0.50	0.25	1		10/15/18 14:35		
Field Specific Conductance	1,102	umhos/cm	1.0	1.0	1		10/15/18 14:35		
Oxygen, Dissolved	0.22	mg/L			1		10/15/18 14:35	7782-44-7	
REDOX	-103.6	mV			1		10/15/18 14:35		
Turbidity	131.5	NTU	1.0	1.0	1		10/15/18 14:35		
Groundwater Elevation	683.52	feet			1		10/15/18 14:35		
6010 MET ICP	Analytica	Method: EPA	6010 Prepa	ration Meth	od: EPA	A 3010			
Boron	752	ug/L	100	12.5	1	10/19/18 11:20	10/19/18 20:28	7440-42-8	
Calcium	66.9	mg/L	0.20	0.054	1	10/19/18 11:20	10/19/18 20:28	7440-70-2	
2540C Total Dissolved Solids	Analytica	Method: SM 2	540C						
Total Dissolved Solids	708	mg/L	5.0	5.0	1		10/22/18 16:06		
9040 pH	Analytica	Method: EPA	9040						
рН	7.5	Std. Units	0.10	0.10	1		10/24/18 16:26		H6
9056 IC Anions	Analytica	Method: EPA	9056						
Chloride	9.2	mg/L	1.0	0.29	1		10/28/18 01:08	16887-00-6	
Fluoride	1.1	mg/L	0.20	0.19	1				
Sulfate	80.9	mg/L	5.0	1.2	5		10/27/18 20:33	14808-79-8	

Project: Ottumwa Midland Landfill

Pace Project No.: 60284061

Sample: MW-303	Lab ID:	60284061003	Collected	d: 10/16/18	3 08:23	Received: 10/	18/18 09:00 M	latrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytica	l Method:							
Collected By	Client				1		10/16/18 08:20	1	
Collected Date	10/16/2018				1		10/16/18 08:20	1	
Collected Time	08:20				1		10/16/18 08:20	1	
Field pH	6.87	Std. Units	0.10	0.050	1		10/16/18 08:20)	
Field Temperature	13.5	deg C	0.50	0.25	1		10/16/18 08:20	1	
Field Specific Conductance	1,416	umhos/cm	1.0	1.0	1		10/16/18 08:20	1	
Oxygen, Dissolved	0.41	mg/L			1		10/16/18 08:20	7782-44-7	
REDOX	-117.7	mV			1		10/16/18 08:20	1	
Turbidity	61.64	NTU	1.0	1.0	1		10/16/18 08:20	1	
Groundwater Elevation	684.33	feet			1		10/16/18 08:20		
6010 MET ICP	Analytica	I Method: EPA 6	6010 Prepa	ration Meth	od: EPA	3010			
Boron	661	ug/L	100	12.5	1	10/19/18 11:20	10/19/18 20:30	7440-42-8	
Calcium	90.5	mg/L	0.20	0.054	1	10/19/18 11:20	10/19/18 20:30	7440-70-2	
2540C Total Dissolved Solids	Analytica	I Method: SM 2	540C						
Total Dissolved Solids	891	mg/L	5.0	5.0	1		10/22/18 16:06	i	
9040 pH	Analytica	I Method: EPA	9040						
рН	7.1	Std. Units	0.10	0.10	1		10/24/18 16:29)	H6
9056 IC Anions	Analytica	I Method: EPA	9056						
Chloride	7.4	mg/L	1.0	0.29	1		10/28/18 01:22	16887-00-6	
Fluoride	0.84	mg/L	0.20	0.19	1		10/28/18 01:22		
Sulfate	310	mg/L	50.0	12.0	50		10/27/18 22:09		

Project: Ottumwa Midland Landfill

Pace Project No.: 60284061

Sample: MW-102M	Lab ID:	60284061004	Collecte	d: 10/16/18	3 09:20	Received: 10/	(18/18 09:00 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytica	Method:							
Collected By	Client				1		10/16/18 09:20		
Collected Date	10/16/2018				1		10/16/18 09:20		
Collected Time	09:20				1		10/16/18 09:20		
Field pH	7.80	Std. Units	0.10	0.050	1		10/16/18 09:20		
Field Temperature	12.9	deg C	0.50	0.25	1		10/16/18 09:20		
Field Specific Conductance	2,162	umhos/cm	1.0	1.0	1		10/16/18 09:20		
Oxygen, Dissolved	2.14	mg/L			1		10/16/18 09:20	7782-44-7	
REDOX	-104.7	mV			1		10/16/18 09:20		
Groundwater Elevation	717.05	feet			1		10/16/18 09:20		
6010 MET ICP	Analytica	Method: EPA	6010 Prepa	ration Meth	od: EPA	3010			
Boron	1340	ug/L	100	12.5	1	10/19/18 11:20	10/19/18 20:32	7440-42-8	
Calcium	12.9	mg/L	0.20	0.054	1	10/19/18 11:20	10/19/18 20:32	7440-70-2	
2540C Total Dissolved Solids	Analytica	Method: SM 2	540C						
Total Dissolved Solids	1500	mg/L	5.0	5.0	1		10/22/18 16:06		
9040 pH	Analytica	Method: EPA	9040						
рН	8.0	Std. Units	0.10	0.10	1		10/24/18 16:32		H6
9056 IC Anions	Analytica	Method: EPA	9056						
Chloride	13.6	mg/L	1.0	0.29	1		10/28/18 01:36	16887-00-6	
Fluoride	4.7	mg/L	0.20	0.19	1		10/28/18 01:36	16984-48-8	
Sulfate	384	mg/L	50.0	12.0	50		10/27/18 22:41	14808-79-8	

Project: Ottumwa Midland Landfill

Pace Project No.: 60284061

Sample: MW-122M	Lab ID:	60284061005	Collected	: 10/16/1	8 09:00	Received: 10/	(18/18 09:00 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
Collected By	Client				1		10/15/18 09:00		
Collected Date	10/15/2018				1		10/15/18 09:00		
Collected Time	09:00				1		10/15/18 09:00		
Field pH	6.31	Std. Units	0.10	0.050	1		10/15/18 09:00		
Field Temperature	11.8	deg C	0.50	0.25	1		10/15/18 09:00		
Field Specific Conductance	13,094	umhos/cm	1.0	1.0	1		10/15/18 09:00		
Oxygen, Dissolved	1.48	mg/L			1		10/15/18 09:00	7782-44-7	
REDOX	-53.5	mV			1		10/15/18 09:00		
Groundwater Elevation	723.36	feet			1		10/15/18 09:00		
6010 MET ICP	Analytical	Method: EPA 6	010 Prepara	ation Meth	od: EPA	3010			
Boron	4580	ug/L	100	12.5	1	10/19/18 11:20	10/19/18 20:34	7440-42-8	
Calcium	366	mg/L	0.20	0.054	1	10/19/18 11:20	10/19/18 20:34	7440-70-2	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	13300	mg/L	5.0	5.0	1		10/22/18 16:06		
9040 pH	Analytical	Method: EPA 9	040						
рН	6.4	Std. Units	0.10	0.10	1		10/24/18 16:31		H6
9056 IC Anions	Analytical	Method: EPA 9	056						
Chloride	8.6	mg/L	1.0	0.29	1		10/28/18 01:50	16887-00-6	
Fluoride	<0.19	mg/L	0.20	0.19	1		10/28/18 01:50	16984-48-8	
Sulfate	<0.24	mg/L	1.0	0.24	1		10/28/18 01:50	14808-79-8	

Project: Ottumwa Midland Landfill

Pace Project No.: 60284061

Sample: FIELD BLANK	Lab ID:	60284061006	Collected	d: 10/16/18	8 10:00	Received: 10/	18/18 09:00 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical	Method: EPA 6	010 Prepa	ration Meth	od: EPA	3010			
Boron Calcium	<12.5 <0.054	ug/L mg/L	100 0.20	12.5 0.054	1 1	10/19/18 11:20 10/19/18 11:20	10/19/18 20:37 10/19/18 20:37		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	<5.0	mg/L	5.0	5.0	1		10/22/18 16:06		
9040 pH	Analytical	Method: EPA 9	040						
рН	6.1	Std. Units	0.10	0.10	1		10/24/18 16:34		H6
9056 IC Anions	Analytical	Method: EPA 9	056						
Chloride Fluoride Sulfate	<0.29 <0.19 4.9	mg/L mg/L mg/L	1.0 0.20 1.0	0.29 0.19 0.24	1 1 1		10/28/18 02:05 10/28/18 02:05 10/28/18 02:05		

Project: Pace Project No.:	Ottumv 602840	wa Midland La	Indfill										
QC Batch:	5504			Analysi	is Method:	E	PA 6010						
QC Batch Method:	EPA			Analysis Description: 6010 MET									
Associated Lab Sar			1, 60284061002	•				5, 602840	61006				
METHOD BLANK:	225693	30		N	latrix: Wat	er							
Associated Lab Sar	mples:	6028406100	1, 60284061002	, 602840610	003, 60284	061004, 6	028406100	5, 602840	61006				
				Blank	Re	eporting							
Parar	neter		Units	Result	t	Limit	MDL		Analyzed	Qua	alifiers		
Boron			ug/L	<	:12.5	100		12.5 10	/19/18 19:4	6			
Calcium			mg/L	<0	.054	0.20	C	.054 10	/19/18 19:4	6			
LABORATORY CO Parar	-	SAMPLE: 2	256931 Units	Spike Conc.	LCS Resul	t	LCS % Rec	% Re		ualifiers			
Boron			ug/L	1000		917	92	-	0-120				
Calcium			mg/L	10		9.4	94	8	0-120				
MATRIX SPIKE & N	ATRIX	SPIKE DUPLI	CATE: 22569:	32		2256933							
				MS	MSD								
			60283505006	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	ər	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron		ug/L	705	1000	1000	1640	1650	94	-		-		
Calcium		mg/L	452000 ug/L	10	10	449	456	-29	38	75-125	1	20	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	Ottumwa Midlano 60284061	d Landfill						
Pace Project No.:	550934		Analysis M	ethod:	SM 2540C			
QC Batch Method:	SM 2540C		Analysis De			issolved Solids		
Associated Lab San		1001, 6028406100		•				
Associated Lab San	npies. 0020400	1001, 0028400100	52, 00284001003,	00284001004,	00204001003)		
METHOD BLANK:	2259346		Matrix	x: Water				
Associated Lab San	nples: 6028406	1001, 6028406100	02, 60284061003,	60284061004,	60284061005	5		
			Blank	Reporting				
Paran	neter	Units	Result	Limit	MDL	Analyz	zed	Qualifiers
Total Dissolved Solie	ds	mg/L	<5.0) 5	.0	5.0 10/22/18	16:06	
LABORATORY CON		2259347						
		2200041	Spike	LCS	LCS	% Rec		
Paran	neter	Units	Conc.	Result	% Rec	Limits	Qua	lifiers
Total Dissolved Soli	ds	mg/L	1000	981	98	80-120		
	TE 0050040							
SAMPLE DUPLICA	TE: 2259348		60283721001	Dup		Max		
Paran	neter	Units	Result	Result	RPD	RPD		Qualifiers
Total Dissolved Soli	ds	mg/L	226	3 22		1	10	
							10	
	TE 0050040							
SAMPLE DUPLICA	IE: 2259349		60283911002	Dup		Max		
Paran	neter	Units	Result	Result	RPD	RPD		Qualifiers
Total Dissolved Soli	ds	mg/L	577	7 59		3	10	
	40	ing/L	011	0.		0	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Ottumwa Midla	and Landfill					
Pace Project No.: 60284061						
QC Batch: 550935		Analysis M	Method:	SM 2540C		
QC Batch Method: SM 2540C		Analysis [Description:	2540C Total D	Dissolved Solids	
Associated Lab Samples: 60284	061006					
METHOD BLANK: 2259350		Mati	rix: Water			
Associated Lab Samples: 60284	061006					
		Blank	Reporting	-		
Parameter	Units	Result	Limit	MDL	Analyz	zed Qualifiers
Total Dissolved Solids	mg/L	<5	.0	5.0	5.0 10/22/18	16:06
LABORATORY CONTROL SAMPL	E: 2259351					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Total Dissolved Solids	mg/L	1000	1010	101	80-120	
SAMPLE DUPLICATE: 2259352						
		6028411500	1 Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Solids	mg/L	542	20 54	430	0	10
SAMPLE DUPLICATE: 2259353						
		6028411500	2 Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Solids	mg/L	8	.0	5.5	37	10 D6
	5					

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Ottumwa Midland Landfill

Pace Project No.: 60284061

QC Batch:	551115		Analysis Method:	EPA 9040
QC Batch Method:	EPA	9040	Analysis Description:	9040 pH
Associated Lab Sam	ples:	60284061001, 60284061002, 60	0284061003, 60284061004	4, 60284061005, 60284061006

pH	Std. Units	7.5	7.5	1	1	0 H6
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
		60284061002	Dup		Max	
SAMPLE DUPLICATE: 2260274						

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Ottumwa Midland	l Landfill										
Pace Project No.: 60284061											
QC Batch: 551837		,	sis Method:		PA 9056						
QC Batch Method: EPA 9056		Analys	sis Descript	ion: 90	056 IC Anio	าร					
Associated Lab Samples: 6028406	1001, 60284061002	2, 60284061	003, 60284	061004							
METHOD BLANK: 2263033		Ν	Matrix: Wat	er							
Associated Lab Samples: 6028406	1001, 60284061002	2, 60284061	003, 60284	061004, 6	028406100	5, 602840	061006				
		Blank	k Re	eporting							
Parameter	Units	Resul	lt	Limit	MDL		Analyzed	Qua	alifiers		
Chloride	mg/L		<0.29	1.0		0.29 10	0/27/18 11:47	,			
Sulfate	mg/L		<0.24	1.0		0.24 10	0/27/18 11:47				
LABORATORY CONTROL SAMPLE:	2263034										
		Spike	LCS		LCS	% R	ec				
Parameter	Units	Conc.	Resu	t	% Rec	Limi	ts Qu	alifiers			
Chloride	mg/L	5	;	4.6	93		30-120				
Sulfate	mg/L	5	5	4.8	96	8	30-120				
MATRIX SPIKE & MATRIX SPIKE DU	PLICATE: 22630	135		2263036							
		MS	MSD	2203030							
	60283868001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter Ur	nits Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride mg	g/L 1.8	5	5	6.0	7.1	8	5 106	80-120	16	15	R1
Sulfate mo	g/L 3.7	5	5	8.1	9.3	88	8 113	80-120	15	15	
SAMPLE DUPLICATE: 2263037											
		2086025	002	Dup			Max				
Parameter	Units	Resul	lt	Result	RPD		RPD	Qualifie	ers		
Chloride	mg/L		6480	6600		2	15				
Sulfate											

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	Ottumwa Midland	Landfill						
Pace Project No.:	60284061							
QC Batch:	552042		Analysis M	ethod:	EPA 9056			
QC Batch Method:	EPA 9056		Analysis D	escription:	9056 IC Anio	ns		
Associated Lab Sar	mples: 60284061	1001, 60284061002	2, 60284061003	6028406100	4, 6028406100	5, 60284061006		
METHOD BLANK:	2264261		Matri	x: Water				
Associated Lab Sar	mples: 60284061	1001, 60284061002	2, 60284061003	6028406100	4, 6028406100	5, 60284061006		
			Blank	Reporting]			
Parar	neter	Units	Result	Limit	MDL	Analyz	zed	Qualifiers
Chloride		mg/L	<0.2	9	1.0	0.29 10/28/18	00:25	
Fluoride		mg/L	<0.1	э с	.20	0.19 10/28/18	00:25	
Sulfate		mg/L	<0.24	4	1.0	0.24 10/28/18	00:25	
LABORATORY CO		2264262						
		2201202	Spike	LCS	LCS	% Rec		
Parar	neter	Units	Conc.	Result	% Rec	Limits	Qualifie	ers
Chloride		mg/L	5	4.8	96	80-120		
Fluoride		mg/L	2.5	2.6	104	80-120		
Sulfate		mg/L	5	5.0	100	80-120		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Ottumwa Midland Landfill

Pace Project No.: 60284061

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-K Pace Analytical Services - Kansas City

WORKORDER QUALIFIERS

WO: 60284061

- [1] Rev. 1 11/1/2018
- [2] Corrected manual data entry error, reported groundwater elevation.

ANALYTE QUALIFIERS

- D6 The precision between the sample and sample duplicate exceeded laboratory control limits.
- H6 Analysis initiated outside of the 15 minute EPA required holding time.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Ottumwa Midland Landfill

Pace Project No.: 60284061

Analytical QC Batch Method Lab ID Sample ID QC Batch Batch **Analytical Method** 60284061001 MW-301 551586 60284061002 MW-302 551586 60284061003 MW-303 551586 60284061004 MW-102M 551586 60284061005 MW-122M 551586 MW-301 EPA 3010 550414 550619 60284061001 EPA 6010 MW-302 60284061002 EPA 3010 550414 EPA 6010 550619 60284061003 MW-303 EPA 3010 550414 EPA 6010 550619 60284061004 MW-102M EPA 3010 550414 EPA 6010 550619 60284061005 MW-122M EPA 3010 550414 EPA 6010 550619 FIELD BLANK 550414 550619 60284061006 EPA 3010 EPA 6010 60284061001 MW-301 SM 2540C 550934 60284061002 MW-302 SM 2540C 550934 60284061003 MW-303 SM 2540C 550934 60284061004 550934 MW-102M SM 2540C 60284061005 550934 MW-122M SM 2540C 60284061006 FIELD BLANK SM 2540C 550935 60284061001 **MW-301** EPA 9040 551115 60284061002 MW-302 EPA 9040 551115 60284061003 MW-303 EPA 9040 551115 MW-102M 551115 60284061004 EPA 9040 60284061005 MW-122M EPA 9040 551115 60284061006 FIELD BLANK EPA 9040 551115 60284061001 MW-301 EPA 9056 551837 MW-301 552042 60284061001 EPA 9056 60284061002 MW-302 551837 EPA 9056 MW-302 552042 60284061002 EPA 9056 60284061003 MW-303 EPA 9056 551837 60284061003 MW-303 552042 EPA 9056 60284061004 551837 MW-102M EPA 9056 60284061004 MW-102M EPA 9056 552042 60284061005 552042 MW-122M EPA 9056 60284061006 FIELD BLANK EPA 9056 552042

Sample Condition Upon Receipt

WO#:60284061

PEX 🗆 🛛 ECI		Pace Xroads Client Other
e Shipping Labe	el Used	d? Yes □ No 🕱
Seals intact:	Yes	
J Foa	ım 🗆	None \Box Other $\delta Z \rho l C$
lce: Vet Blu	ie No	
or <u>+0,2</u> 0	orrect	ted 1.8 Date and initials of person examining contents: 10/18/18
Yes 🗆 No	□n/a	
DYes No	□n/a	
Yes No	□n/a	
Yes □No	□n/a	РН
DYes XNo	⊡n/A	· · · · · · · · · · · · · · · · · · ·
Xyes □No	□n/a	
XYes □No		
XYes 🗆 No		
,Xyes □No	□n/a	
□Yes □No		
□Yes □No		
XYes □No	□n/a	
DYes XNo	□n/a	
¥Yes □No	□n/a	List sample IDs, volumes, lot #'s of preservative and the date/time added.
∐Yes □No	N/A	
	5 - 5 - C	
	Ν	Field Data Required? Y / N
lime:		
-	Date	e: F-KS-C-003-Rev.11, Februar p <u>გ</u>გ e209 &f 20
	e Shipping Lab Seals intact: Foa ice: Vet Blu or <u>+O, 2</u> XYes No Yes No	e Shipping Label User Seals intact: Yes i Ice: Vet Blue No or <u>+O, 2</u> Correct Seals intact: Yes i Ice: Vet Blue No or <u>+O, 2</u> Correct Seals into IN/A Yes No IN/A IYes No IN/A

Pace Analytical 0

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

	Section A Required C	section a Required Client Information:	Required Project Information:	Project	utiojuj .	ation:				Invoice Info	Invoice Information	rmation:						1			Page:			5	
Statulation Constrained Constrained Resolution Reso	ampan	 SCS Engineers 	Report To:	(Meg	han B	lodgett				Atte	ntion.	Me	ghan B	liodgett	/Jess	Valche	<u>1</u>								
	ddress	2830 Dairy Drive	Copy To:	Tom	Karw	(aski				Cor	hany N		SCS	aginee	LS			REC	SULAT	ORY A	GENCY				
		Madison WI 53718								Add	ress;							l	NPDE		GROUN	D WATER		DRINKING	WATER
			Purchase	Order N		1				Pac Refe	ence:							L.,	UST		RCRA		L	DTHER	
Определатор Солонание	none		Project Na		Ottun	nwa Midle	and Lan	Ilii		Pac	a Project		nk Kap		-563-	1404		Sit	e Locati	un	-				
Reduction for the form of the f	equest	ed Due Date/TAT:	Project Nu	imber						Pac	e Profile		36 Line	2				T	STAT	ii.	H				
Reference Mark Mark Concernance Mark Mark Mark Mark Mark Mark Mark Mark															-	100	queste	d Anal	ysis Fi	Itered	(N/A				
Monthania Monthania <t< td=""><td></td><td></td><td></td><td>(fial c</td><td>(an</td><td>e ur</td><td>COLLI</td><td>ECTED</td><td></td><td></td><td></td><td>Pres</td><td>servatív</td><td>/es</td><td>N /A</td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td></t<>				(fial c	(an	e ur	COLLI	ECTED				Pres	servatív	/es	N /A					_					
Mixed of the formation of the for			M WT WW G S ON	u səbop bilav əəs)	00=0 8499=6	COMPO STAR	E E	COMPC END/G	SITE SÅB						tta 🕴	e)-	00000000000					- (N\Y) ən	20)	840	()
MW-301 Wr (a) (b) (b) (b) (b) (b) (b) (b) (c) (c) </td <td># WELL</td> <td></td> <td>AR OT S</td> <td>9000 XIAT'AM</td> <td>) BRYF BJRMAR</td> <td>DA DA DA</td> <td></td> <td>DATE</td> <td>Ш Х F=</td> <td></td> <td>Unpreserved</td> <td>[€]ONH</td> <td>HOBN</td> <td>Nethanol</td> <td>the second s</td> <td>9 :slefeM lefoT 0108</td> <td></td> <td>Hq 0406</td> <td></td> <td></td> <td></td> <td>Residual Chlor</td> <td>Pace</td> <td>Project N</td> <td>o, Lab I.</td>	# WELL		AR OT S	9000 XIAT'AM) BRYF BJRMAR	DA DA DA		DATE	Ш Х F=		Unpreserved	[€] ONH	HOBN	Nethanol	the second s	9 :slefeM lefoT 0108		Hq 0406				Residual Chlor	Pace	Project N	o, Lab I.
INV-302 INV 6 INV 6 INV 7 <	-	MW-301		WT	U	XXX	XXX	NUSIR	06:51	-		2			10		-	×	S	NIG	BPt.	20			100
IMV-303 IM IMV-303 IM IMV-303 IMV-303<	2	MW-302		TW.	U	XXX	XXX	10/12/18	W:35		-	2			10		_	×							200
MW-102M WT 0 wm 0 0 1 2 1 2 1 2 1 <th1< th=""> 1 <th1< th=""> <th1< t<="" td=""><td>~</td><td>MW-303</td><td></td><td>TW.</td><td>Ø</td><td>XXX</td><td>XXX</td><td>10/16/18</td><td>8:23</td><td>5 1</td><td></td><td>17</td><td></td><td></td><td>1</td><td>-</td><td>-</td><td>×</td><td></td><td></td><td></td><td>_</td><td></td><td></td><td>8</td></th1<></th1<></th1<>	~	MW-303		TW.	Ø	XXX	XXX	10/16/18	8:23	5 1		17			1	-	-	×				_			8
MW-122M Wr I<	4	MW-102M		₩.	Ø	XOCK	XXX	10/16/18	9:20			Ci			T		-	×				_			tw
FIELD BLANK. WT 6 30 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	ŵ	MW-122M		TW	Ø	XXX	XXX	16/16/12	920			13					-	×				_			500
Temp in "Conversion" ADDITIONAL COMMENTS Time ADDITIONAL COMMENTS Image: Conversion of the conversion of	9	FIELD BLANK		WT	G	XXX	XXX	10/16/18	10:02	16	-	2			1		-	×			>				300
Time of Skinder Time Time Time Time Technology Date Time Date Time Technology Date Time Date Time Technology Date Time Date Date Technology Date Time Date Date Technology Date Date Date Date Technology Da	~									_					1					+		4		1	
ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITION DATE TIME ACCEPTED BY I AFFILIATION DATE TIME ADDITIONAL COMMENTS RELINOUISHED BY I AFFILIATION DATE TIME ADDITIONAL COMMENTS RELINDUCIER MACUAL RELINANCE MACUAL RELINANCE ADDITIONAL COMMENTS RELINDUCIER MACUAL RELINANCE MACUAL RELINANCE ADDITIONAL RELINANCE RELINANCE MACUAL RELINANCE MACUAL RELINANCE	00									_					1			_		+		1			
Tellinguished on Source of the second of the	o														1							-			
Total Signed on Solution tensor, KS 55719 ADDITIONAL COMMENTS RELINCUISHED BY / AFFILIATION ADDITIONAL COMMENTS RELINCUISHED BY / AFFILIATION DATE ADDITIONAL Lensor, KS 55719 CC // RC // RC // RC // RC // RC // RE ADDITIONAL Lensor, KS 55719 CC // RC // RC // RC // RC // RC // RE ADDITIONAL Lensor, KS 55719 CC // RC /	10														1										
Time ADDITIONAL COMMENTS RELINOUISHED BY / AFFILLATION DATE TIME ADDITIONAL COMMENTS Felluarian RELINOUISHED BY / AFFILLATION DATE TIME ACCEPTED BY / AFFILLATION DATE TIME Felluarian RELINOUISHED BY / AFFILLATION DATE TIME ACCEPTED BY / AFFILLATION DATE TIME Felluarian RELINOUISHED BY / AFFILLATION DATE TIME ACCEPTED BY / AFFILLATION DATE TIME Felluarian Relinantin Relinantin Relinantin Relinantin Relinantin Relinantin SamPLER NAME AND SIGNATURE PRINT Name of SAMPLER: DATE Signed DATE Signed DATE Signed	11														T							-			
ADDITIONAL COMMENTS RELINQUISHED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION DATE TIME ADDITIONAL COMMENTS RELINQUISHED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION DATE	12									-					-			-		-	_	-			
Geos Lorrer Doutevard, Lenexa, KS 56219 Tento In °C (1/3/118 0900 1.8 Tento In °C (1/3/118 0900 1.8) Tento In °C (1/3/118		ADDITIONAL COMMENTS	01	RELL	INDUIS	HED BY /	AFFILIAT	NO	DATE		TIME			ACCEP	TED BY	/ AFFIL	IATION.		DATE	-	TIME		SAMP	LE CONDIT	SNOI
Latiody Sealed Temp in "C Parter Name Part Name of SampleR: Part	To.	9608 Loiret Boulevard, Leriexa, KS											23	to.	17 :	CS.			10/18		8	1.8	7	λ	$\overline{}$
Tentody Sealed	1				- 1																				
SAMPLER NAME AND SIGNATURE SAMPLER NAME AND SIGNATURE FRINT Name of SAMPLER: FRINT Name of SAMPLER: DATE Signed DA	Pa											-													
PKINI Name of SAMPLEN: PROFILE Signed DATE Signed	ige 20						SAMPL		AND SIGNA	TURE									-			o, ui			(14) 1990 -
	012							PKINI Na	THE OF SAMPL	2						100	10 10	5				dulə,			

"emportant lote: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

F-ALL-Q-020rev-07, 15-Feb-2007

Appendix B

Alternative Source Demonstrations

B1 Alternative Source Demonstration, November 2017 Detection Monitoring

SCS ENGINEERS

Alternative Source Demonstration November 2017 Detection Monitoring

Ottumwa Midland Landfill Ottumwa, Iowa

Prepared by:

SCS ENGINEERS

2830 Dairy Drive Madison, Wisconsin 53718-6751 (608) 224-2830

> April 16, 2018 File No. 25216073.18

Offices Nationwide www.scsengineers.com

Alternative Source Demonstration November 2017 Detection Monitoring Ottumwa Midland Landfill Ottumwa, lowa

Prepared for:

Alliant Energy

Prepared by:

SCS ENGINEERS

2830 Dairy Drive Madison, Wisconsin 53718-6751 (608) 224-2830

> April 16, 2018 File No. 25216073.18

Table of Contents

Section

Page

PE Ce	ertifico	itioniii
1.0	Introd	duction
	1.1	§257.94(E)(2) Alternative Source Demonstration Requirements1
	1.2	Site Information and Map1
	1.3	Statistically Significant Increases Identified2
	1.4	Overview of ASD2
2.0	Back	ground
	2.1	Regional Geology and Hydrogeology2
	2.2	CCR Monitoring System
	2.3	Other Monitoring Wells
	2.4	Groundwater Flow Direction
3.0	Meth	odology and Analysis Review
	3.1	Sampling and Field Analysis Review4
	3.2	Laboratory Analysis Review4
	3.3	Statistical Evaluation Review5
	3.4	Summary of Methodology and Analysis Review Findings5
4.0	Alter	native Sources
	4.1	Potential Causes of SSI
		4.1.1 Natural Variation
		4.1.2 Man-made Alternative Sources
	4.2	Lines of Evidence
		 4.2.1 Mississippian Limestone Aquifer Water Quality
		4.2.2 Leachare versus Groundwater Concernations
		4.2.4 Landfill Liner System
		4.2.5 Shallow Groundwater Monitoring Results
5.0	ASD	Conclusions
6.0		Groundwater Monitoring Recommendations
7.0		rences

Tables

- 1 Detection Monitoring Results Summary November 2017
- 2 Chloride Analytical Results CCR Detection Monitoring Program
- 3 Groundwater Elevation Table State Monitoring Program
- 4 Groundwater Elevations CCR Rule Monitoring Network
- 5 Leachate and Contact Water Analytical Results 2016-2017 State Monitoring Program
- 6 Chloride Analytical Results for Shallow Groundwater 2016-2017 State Monitoring Program

i

Contents (Continued)

Figures

- Site Location Map 1
- 2 Monitoring Well Location Map
- Water Table Map August 21, 2017 3
- Potentiometric Surface Map May 2016 4
- Potentiometric Surface Map November 2017 5

Appendices

- CCR Well Trend Plot Chloride Α
- Regional Geologic and Hydrogeologic Information В
- Revised Laboratory Report June 2016 С
- D USGS 1983 Open File Investigation – Mississippian Aquifer Groundwater Quality

I:\25216073.00\Reports\2018 ASD Report\180416_ASD_OML_Final.docx

April 2018

PE CERTIFICATION

I, Eric J. Nelson, hereby certify	y that that the information			
in this alternate source demonstra-	tion is accurate and meets			
the requirements of 40 CFR 257.9	94(e)(2). This			
certification is based on my review	w of the groundwater data			
and related site information availa	able for the Ottumwa			
Midland Landfill. I am a duly lice	ensed Professional			
Engineer under the laws of the Sta	ate of Iowa.			
2 Mater	4/16/2018			
(signature)	(date)			
,				
Eric J. Nelson				
(printed or typed name)				
License number 23136				
My license renewal date is Decem	nber 31, 2018			
	,,			
Pages or sheets covered by this se	al:			
Alternative Source Demonstration				
Detection Monitoring, Ottumwa M				
Ottumwa, Iowa				

[This page left blank intentionally]

1.0 INTRODUCTION

This Alternative Source Demonstration (ASD) was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" published by the U.S. Environmental Protection Agency (USEPA) in the *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule*, dated April 17, 2015 (USEPA, 2015) and subsequent amendments. Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.94(e)(2). The applicable sections of the Rule are provided below in *italics*.

1.1 §257.94(E)(2) ALTERNATIVE SOURCE DEMONSTRATION REQUIREMENTS

The owner and operator may demonstrate that a source other than the CCR Unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels.

An ASD is completed when there are exceedances of one or more benchmarks established within the groundwater monitoring program. The ASD is completed to determine if any other sources are likely causes of the identified exceedance(s) of established benchmark(s) at the site. This ASD was performed in response to results indicating a statistically significant increase (SSI) over background levels during detection monitoring under the CCR Rule.

The ASD report is evaluating the SSI observed in the statistical evaluation of the November 2017 detection monitoring event at the Ottumwa Midland Landfill (OML).

1.2 SITE INFORMATION AND MAP

The OML facility is located at 15300 130th Street in Ottumwa, Wappello County, Iowa (**Figure 1**). OML is an active landfill, operating under Iowa Department of Natural Resources (IDNR) permit #90-SDP-8-92P. There are two existing CCR landfill units at the site:

- OML Existing Landfill (existing CCR landfill)
- OML Landfill Expansion Phase 1 (existing CCR landfill)

These CCR Units are monitored with a multi-unit groundwater monitoring system. There are no closed CCR landfills or existing, inactive, or closed CCR surface impoundments at OML.

The locations of the CCR Units and all background (or upgradient) and downgradient monitoring wells with identification numbers for the groundwater monitoring program are shown on **Figure 2**.

1.3 STATISTICALLY SIGNIFICANT INCREASES IDENTIFIED

The only SSI for the November 2017 monitoring event was for chloride at monitoring well MW-301. A summary of the November 2017 constituent concentrations and the established benchmark concentrations is provided in **Table 1**. The constituent concentrations with SSIs above the background concentration are highlighted in the table.

1.4 OVERVIEW OF ASD

This ASD report includes:

- Background information (Section 2.0)
- Evaluation of potential that SSIs are due to methodology or analysis (Section 3.0)
- Evaluation of potential that SSIs are due to natural sources or man-made sources other than the CCR Units (Section 4.0)
- ASD conclusions (Section 5.0)
- Monitoring recommendations (Section 6.0)

The chloride results from background and compliance sampling under the CCR Rule are provided in **Table 2**, and concentration trends for chloride are shown in **Appendix A**. Complete laboratory reports for the background monitoring events and the November 2017 detection monitoring event were included in the 2017 Annual Groundwater Monitoring and Corrective Action Report for OML.

2.0 BACKGROUND

2.1 REGIONAL GEOLOGY AND HYDROGEOLOGY

The uppermost bedrock unit in the site area consists of Pennsylvanian shales with minor siltstone, sandstone, limestone, and coal intervals. The continuity of these minor beds is highly variable. The thickness of the Pennsylvanian shale is variable; in some areas of Wapello County it is over 100 feet thick, while in other areas it is absent. The variation in thickness is due to erosion of the bedrock surface. Underlying the Pennsylvanian shales are Mississippian limestone and dolomite, with some shale and sandstone. The Devonian units underlying the Mississippian are composed of shale, dolomite, and limestone, and are in turn underlain by Silurian dolomite.

A summary of the regional hydrogeologic stratigraphy is presented in **Appendix B**. Maps showing regional bedrock surface topography and the top of the Mississippian limestone in Southeastern Iowa are also included in **Appendix B**. The bedrock surface elevation is highly variable due to erosion.

For the purposes of groundwater monitoring, the Mississippian limestone unit is considered to be the uppermost aquifer unit at the OML site as defined under 40 CFR 257.53.

The Des Moines River and associated alluvial aquifers are a major source of surface water and shallow groundwater in the area; however, the alluvial aquifer is not present at the OML site. Unconsolidated deposits at the site consist of clays overlain by loess, which are not productive sources of groundwater. The uppermost Pennsylvanian bedrock unit is considered to be a regional aquitard. The Mississippian unit is the shallowest regional bedrock aquifer. The Cambrian-Ordovician aquifer, comprised of dolomite and sandstone, is commonly the source of municipal and industrial high-capacity wells in the region (Coble, 1971).

Regional information indicates that groundwater flow within the Mississippian limestone is to the south-southeast. A map showing the regional potentiometric surface in the Mississippian limestone is included with the hydrogeologic background information presented in **Appendix B**.

2.2 CCR MONITORING SYSTEM

The groundwater monitoring system established within the CCR Rule consists of two upgradient (background) monitoring wells and three downgradient monitoring wells. The upgradient monitoring wells include MW-122M and MW-102M. The downgradient monitoring wells include MW-301, MW-302, and MW-303. The CCR Rule wells are installed in the upper portions of the Mississippian Limestone aquifer. Well depths range from approximately 150.0 to 204.5 feet, measured from the top of the wells' casing.

2.3 OTHER MONITORING WELLS

Forty-two groundwater monitoring wells currently exist at OML as part of the monitoring system developed for the state monitoring program. The well locations are shown on **Figure 2**. These monitoring wells are used to monitor groundwater conditions at the site under the IDNR state monitoring program.

Monitoring wells for the state monitoring program are installed in the unconsolidated deposits and in the Pennsylvanian shale unit, which are not the uppermost aquifer as defined under 40 CFR 257.53. This shallow monitoring system includes water table wells, piezometers in the Pennsylvanian shale, and piezometers in the Mississippian limestone. Well depths range from approximately 20 to 177 feet, measured from the top of the well casing.

2.4 GROUNDWATER FLOW DIRECTION

Shallow groundwater flow at the water table appears to be controlled partially by the landfill underdrain system and partially by the top of the Pennsylvanian shale. Shallow groundwater, near the current fill area, flows toward the landfill and the sedimentation pond, as shown on **Figure 3**. The landfill underdrain system includes a drainage layer and collection piping below the landfill liner, and is used to ensure that shallow groundwater does not affect performance of the landfill liner. The water table map on **Figure 3** represents the site conditions of the unconsolidated deposits during the last monitoring event in August 2017. The groundwater elevations for the August 2017 monitoring event are provided in **Table 3**.

Based on water levels in the existing Mississippian piezometers at the OML site, a generally south-southeast flow direction has been identified in the Mississippian limestone aquifer, consistent with the regional flow information. Two potentiometric surface maps of the limestone aquifer show site groundwater conditions at the beginning of background sampling for the CCR groundwater monitoring program in May 2016 (**Figure 4**), as well as site conditions at the time of the first compliance sampling at OML in November 2017 (**Figure 5**). The groundwater elevations for both sampling events, May 2016 and November 2017, are shown in **Table 4**.

A 1994 potentiometric surface map for the site, prior to CCR disposal, also indicates a flow direction to the south-southeast (Montgomery Watson, 1994), consistent with current results. The 1994 map, based on water levels measured in three piezometers in the Mississippian limestone, is included in **Appendix B**.

3.0 METHODOLOGY AND ANALYSIS REVIEW

To evaluate the potential that an SSI is due to a source other than the regulated CCR Unit, SCS Engineers (SCS) used a two-step evaluation process. First, the sample collection, field and laboratory analysis, and statistical evaluation were reviewed to identify any potential error or analysis that led to exceedance of the benchmark. Second, potential alternative sources, including natural variation and man-made sources other than the CCR Unit, were evaluated. This section provides the findings of the methodology and analysis review. **Section 4.0** of this report addresses the potential alternative sources.

3.1 SAMPLING AND FIELD ANALYSIS REVIEW

Field notes and sampling results were reviewed to determine if any sampling error may have caused or contributed to the observed SSIs for chloride. Potential field sampling errors or issues could include mislabeling of samples, improper sample handling, missed holding times, cross contamination during sampling, or other field error. Field blank sample results were also reviewed for any indication of potential contamination from sampling equipment or containers. Based on the review of the field notes and results, SCS did not identify any indication that the chloride SSI was due to a sampling error.

Because chloride is a laboratory parameter, there is little potential for a field analysis error to contribute to an SSI.

3.2 LABORATORY ANALYSIS REVIEW

Laboratory reports for the background monitoring and the November 2017 detection monitoring were reviewed to determine if any laboratory analysis error or issue may have caused or contributed to the observed SSI for chloride. The laboratory report review included reviewing the laboratory quality control flags and narrative, verifying that correct methods were used and desired detection limits were achieved, and checking the field and laboratory blank sample results. Laboratory reports were included in the 2017 Annual Groundwater Monitoring and Corrective Action Report for the facility.

The June 2016 laboratory report was revised due to the incorrect sample time identified for MW-102M, during the review. The original June 2016 laboratory report noted the sampling time for MW-102M as 14:15 while the chain of custody (COC) indicates the sample time is 17:15. The revised report displaying the correct sample time noted on the COC is included in **Appendix C**.

Based on the review of the laboratory reports, SCS did not identify any indication that the chloride SSI was due to a laboratory analysis error. There were no laboratory quality control flags or issues identified in the laboratory report that affect the usability of the data for detection monitoring.

A time series plot of the analytical data for chloride was reviewed for any anomalous results that might indicate a possible sampling or laboratory error (e.g., dilution error or incorrect sample labeling). The time series plot is provided in **Appendix A**. No anomalous results affecting the SSI determinations were identified.

The chloride concentration trends appear to be stable or decreasing during the background and the compliance sampling. The MW-301 chloride concentration appears to be high early on during the background sampling period but decreased and stabilized in later sampling events. Because an interwell analysis was used for the SSI evaluation, which compares compliance well results to background well results, the initial background results for chloride at MW-301 do not affect the SSI determination for the November 2017 detection monitoring.

3.3 STATISTICAL EVALUATION REVIEW

The review of the statistical results and methods include a quality control check of the following:

- Input analytical data vs. laboratory analytical reports
- Review statistical method and outlier concentration lists for each monitoring well/CCR Unit

Based on the review of the statistical evaluation, SCS did not identify any errors or issues in the statistical evaluation that caused or contributed to the determination of an interwell SSI for chloride at well MW-301.

3.4 SUMMARY OF METHODOLOGY AND ANALYSIS REVIEW FINDINGS

In summary, there were no changes to the SSI determinations for the November 2017 monitoring event based on the methodology and analysis review, and no errors or issues causing or contributing to the reported chloride SSI were identified.

4.0 ALTERNATIVE SOURCES

This section of the report discusses the potential alternative sources for the chloride SSI at MW-301, identifies the most likely alternative source(s), and presents the lines of evidence indicating that an alternative source is the most likely cause of the observed SSI for chloride.

4.1 POTENTIAL CAUSES OF SSI

4.1.1 Natural Variation

The statistical analysis was completed using an interwell approach, comparing the November 2017 detection monitoring results to the Upper Prediction Limits (UPLs) calculated based on sampling of the background wells (MW-102 and MW-122M). If concentrations of a constituent that is naturally present in the aquifer vary spatially, then the potential exists that the downgradient concentrations may be higher than upgradient concentrations due to natural variation.

Chloride is naturally present in the limestone aquifer based on observations of previous studies in the area. Based on regional and site information, discussed below, natural variation appears to be a likely cause of the chloride SSI for well MW-301.

4.1.2 Man-made Alternative Sources

Man-made alternative sources that could potentially contribute to the chloride SSI at MW-301 include on-site management of CCR leachate or contact water, or non-CCR sources such as road salt use, septic systems, or surrounding agricultural land use. Based on the depth to the Mississippian aquifer and the low permeability of the overlying Pennsylvanian shale, it does not appear likely that one or more of these man-made alternative sources is the cause of the chloride SSI.

4.2 LINES OF EVIDENCE

The lines of evidence indicating that the SSI for chloride in compliance wells MW-301 relative to the background wells is due to natural variability include:

- 1. Regional and site-specific groundwater information indicates that the observed chloride concentrations for MW-301 are within typical ranges for the Mississippian limestone aquifer.
- 2. Other CCR indicator parameters, such as boron, were not detected at concentrations exceeding background levels in the sample from MW-301.
- 3. The hydraulic conductivity of the Pennsylvanian shale aquitard overlying the Mississippian limestone aquifer is very low, and there is limited hydrogeologic connection between the shallow groundwater and the aquifer.

- 4. Both the original landfill and expansion Phase 1 are designed with low permeability liner systems and underdrain systems that collect groundwater below the liner.
- 5. Monitoring results for the shallow groundwater below and adjacent to the landfill do not show elevated chloride concentrations.

Each of these lines of evidence and the supporting data are discussed in more detail in the following sections.

4.2.1 Mississippian Limestone Aquifer Water Quality

Regional and site-specific information indicates that chloride concentrations in the Mississippian limestone aquifer are variable and the concentrations detected in samples from MW-301 are well within the range of concentrations naturally present in the aquifer. The U.S. Geological Survey (USGS) Water completed an Open File Report 82-1014, Hydrology of Area 38, of the Western Region, Interior Coal Province of Iowa and Missouri. OML is located within the area of investigation, and a chapter from the report addressed water quality in the Mississippian limestone aquifer (**Appendix D**). The USGS investigation reported chloride concentrations ranging from 0.5 to 3,570 milligrams per liter (mg/L) for the limestone aquifer within the study area, with an average chloride concentration of 137 mg/L. The chloride concentration for MW-301 in the November 2017 detection monitoring event was 28.9 mg/L; therefore, the observed concentration for MW-301 was well below the average concentration of chloride in the limestone aquifer.

In background sampling performed for the Phase 1 expansion, four monitoring wells installed in the Mississippian aquifer were sampled in April 2013, prior to construction of the expansion. The wells included the two wells used as background wells for the CCR Rule monitoring system (MW-102M and MW-122M) and two additional wells in the Mississippian (MW-110M and MW-116M). The chloride results for the sample event ranged from 20 to 75.8 mg/L, with three of the four results exceeding the November 2017 chloride concentration at MW-301.

4.2.2 Leachate Versus Groundwater Concentrations

Although chloride exceeded the interwell SSI, other CCR indicator parameters, such as boron, were not detected at concentrations exceeding background levels in the sample from MW-301. In recent samples from the leachate lagoon, boron and sulfate have typically been detected at concentrations at least an order of magnitude higher than the chloride concentration. Leachate and ash contact water are monitored under the state monitoring program for the landfill. Monitoring results for leachate and contact water samples collected in 2016 and 2017 for the detection monitoring parameters included in the state monitoring program are summarized in **Table 5**. If leachate from the CCR landfill were the source of elevated chloride, then some increase in boron and sulfate relative to background would also be expected. The absence of other CCR indicator parameters with SSIs, or increasing concentration trends, suggests that the chloride SSI is due to natural variation rather than CCR disposal.

4.2.3 Overlying Pennsylvanian Shale Aquitard

The hydraulic conductivity of the Pennsylvanian shale aquitard overlying the Mississippian limestone aquifer is low, and there is limited hydrogeologic connection between the shallow groundwater and the aquifer. The lack of hydrogeologic connection is evidenced by large differences between water levels measured in wells in the unconsolidated deposits or Pennsylvanian shale and water levels measured in wells in the Mississippian limestone. Water levels in Mississippian aquifer monitoring wells MW-302 and MW-303 are approximately 40 feet below the water levels measured in adjacent Pennsylvanian shale monitoring wells MW-14 and MW-13.

4.2.4 Landfill Liner System

Both the original landfill and expansion Phase 1 have low permeability liners. The original landfill was lined with 4 feet of compacted fine-grained soil having a hydraulic conductivity of no more than 1×10^{-7} centimeters per second (cm/sec). Expansion Phase 1 has a composite liner system including 2 feet of compacted clay, a 60-mil high density polyethylene (HDPE) geomembrane, and a leachate collection drainage layer. The original landfill and expansion Phase 1 both have underdrain systems that collect groundwater below the liner and maintain separation between the water table and the liner.

4.2.5 Shallow Groundwater Monitoring Results

Monitoring results for the shallow groundwater below and adjacent to the landfill, summarized in **Table 6**, do not show elevated chloride concentrations. In the four monitoring wells sampled in the shallow hydrogeologic unit under the state monitoring program, the highest chloride concentrations were at upgradient well MW-1, which may be affected by road salt. Chloride concentrations in the remaining three shallow wells in the state program were below the October 2017 chloride concentration in CCR compliance well MW-301. The groundwater samples collected from the underdrain system, which collects groundwater below the landfill liner, also had chloride concentration in CCR compliance well MW-301.

5.0 ASD CONCLUSIONS

The lines of evidence discussed above regarding the SSI reported for the chloride concentration in downgradient monitoring well MW-301 demonstrate that the SSI is likely due to naturally occurring chloride in the limestone aquifer at the OML site.

6.0 SITE GROUNDWATER MONITORING RECOMMENDATIONS

In accordance with section 257.94(e)(2) of the CCR Rule, the OML site may continue with detection monitoring based on this ASD. The ASD report will be included in the 2018 Annual Report due January 31, 2019.

7.0 REFERENCES

Coble, R.W., 1971, The Water Resources of Southeast Iowa, Iowa Geological Survey Water Atlas Number 4, 1971.

Montgomery Watson, 1994, Ottumwa-Midland Development Corporation, Potentiometric Surface Contours – Mississippian, Figure 4-18, (03-02-94).

SCS Engineers, 2017 Annual Groundwater Monitoring and Corrective Action Report, Ottumwa Midland Landfill, Ottumwa, IA, 2018.

U.S. Environmental Protection Agency, Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule, April 2015.

U.S. Geological Survey Water Resources Investigations Open File Report 82-1014, Hydrogeology Area 38, Western Region, Interior Coal Province, Iowa and Missouri; Rolla, Missouri and Iowa City, Iowa, May 1983. [This page left blank intentionally]

TABLES

- 1 Detection Monitoring Results Summary November 2017
- 2 Chloride Analytical Results CCR Detection Monitoring Program
- 3 Groundwater Elevation Table State Monitoring Program
- 4 Groundwater Elevations CCR Rule Monitoring Network
- 5 Leachate and Contact Water Analytical Results 2016-2017 State Monitoring Program
- 6 Chloride Analytical Results for Shallow Groundwater 2016-2017 State Monitoring Program

Table 1. Detection Monitoring Results Summary - November 2017

IPL - Ottumwa Midland Landfill

Ottumwa, Iowa

Parameter Name	Units	Interwell Upper			Co	mpliance W	ells
		Prediction Limit (UPL)	MW-102M	MW-122M	MW-301	MW-302	MW-303
Boron	ug/L	5220	1480	5220	1010	848	738
Calcium	mg/L	599	10.4	383	161	74	94.9
Chloride	mg/L	21.9	12.3	7.2	28.9	7.8	6.9
Fluoride	mg/L	6.31	4.6	0.5	0.77	1.2	0.77
Field pH	Std. Units	8.63	8.16	6.16	6.56	7.41	6.96
Sulfate	mg/L	17500	335	9440	926	77.5	232
Total Dissolved Solids	mg/L	18100	1410	13400	1760	607	783

149 Statistically significant increase at compliance well

Notes:

- 1. UPL based on parametric prediction limit based on 1-of-2 resampling methodology for fluoride and pH.
- 2. UPL for boron, calcium, chloride, sulfate and total dissolved solids based on non-parametric prediction limit (highest background value). Optional resampling for chloride at MW-301 not performed.
- 3. UPLs calculated from background well results for April 2016 through November 2017.
- 4. Analytical laboratory reports provided in the 2017 Annual Groundwater Monitoring and Corrective Action Report.

I:\25216073.00\Reports\2018 ASD Report\Tables\[OML ASD Tables_R1.xlsx]Table 1. Detect Monit. Sum

Table 2. Chloride Analytical Results - CCR Detection Monitoring Program

IPL - Ottumwa Midland Landfill

Ottumwa, Iowa

Well Group	Well	Collection Date	Chloride (mg/L)
		5/4/2016	16.3
		6/22/2016	13.8
		8/10/2016	13.4
		10/26/2016	13
	MW-102M	1/18/2017	12.3
		4/20/2017	12.5
		6/21/2017	12.8
pu		8/22/2017	13.1
Background		11/8/2017	12.3
ckg		5/5/2016	16.4
Ba		6/23/2016	21.9
		8/10/2016	11.8
		10/26/2016	8.2
	MW-122M	1/18/2017	8.3
		4/20/2017	8
		6/21/2017	7.8
		8/22/2017	7.8
		11/8/2017	7.2
		5/4/2016	42.4
		6/22/2016	112
		8/9/2016	46.6
		10/26/2016	43.4
	MW-301	1/17/2017	32.6
		4/20/2017	58
		6/20/2017	38.9
ର		8/22/2017	40.8
lian		11/7/2017	28.9
Compliance		5/4/2016	9.2
ů		6/22/2016	8.1
		8/10/2016	7.5
		10/26/2016	6
	MW-302	1/17/2017	7.7
		4/19/2017	8
		6/20/2017	8
		8/22/2017	8.5
		11/7/2017	7.8

Table 2. Chloride Analytical Results - CCR Detection Monitoring Program

IPL - Ottumwa Midland Landfill Ottumwa, Iowa

Well Group	Well	Collection Date	Chloride (mg/L)
		5/4/2016	13.5
		6/22/2016	11.5
0		8/9/2016	8.7
ance		10/26/2016	7.5
Compliance	MW-303	1/17/2017	7.1
Long mo		4/19/2017	6.9
U		7/19/2017	7.2
		8/22/2017	7.3
		11/7/2017	6.9

Abbreviations:

mg/L = milligrams per liter or parts per billion (ppm)

Notes:

1. Laboratory reports included in 2017 Annual Groundwater

Monitoring and Corrective Action Report, Ottumwa Midland Landfill.

Created by:	NDK	2/22/2018
Last revision by:	NDK	2/22/2018
Checked by:	JD	3/1/2018

I:\25216073.00\Reports\2018 ASD Report\Tables\[OML ASD Tables.xlsx]Table 2 CCR CI

Table 3. Groundwater Elevation Table – State Monitoring Program

IPL - Ottumwa Midland Landfill

Ottumwa, Iowa

	MW-10R	MW-100R	MW-101R	MW-102	MW-107	MW-108	MW-110	MW-111	MW-112	MW-115	MW-116	MW-117	MW-122
				Well	Informatio	n							
Ground Surface Elevation (feet amsl)	786.06	819.84	796.73	795.16	786.14	756.90	758.11	785.29	809.94	749.84	740.20	778.46	792.06
Top of Casing Elevation (feet amsl)	788.56	822.40	799.358	797.24	788.50	765.57	760.39	787.38	811.93	752.44	742.47	780.77	794.02
Screen Length (ft)	15	15	15	15	15	15	15	15	15	15	15	15	15
Total Depth (from top of casing)	40.3	27.9	29.0	29.7	26.8	27.7	37.6	42.7	27.9	27.4	27.7	28.7	43.8
Top of Well Screen Elevation (ft)	763.06	809.65	785.4	782.80	776.75	746.62	737.92	760.05	799.6	740.59	729.98	769.96	765.84
		Grou	nd Water El	evation in	feet above	mean sea	level (ams	I)					
August 21, 2017	757.17	807.20	782.16	780.01	768.05	740.51	739.80	747.13	787.80	727.69	727.03	759.36	773.55
Bottom of Well Elevation (ft amsl)	748.26	794.5	770.358	767.54	761.7	731.39	722.79	744.68	784.03	725.04	714.77	752.07	750.22

Table 3. Groundwater Elevation Table – State Monitoring Program

IPL - Ottumwa Midland Landfill

Ottumwa, Iowa

	MW1	MW5	MW6	MW8	MW13	MW14	MW15R	MW16R	MW17
				W	ell Informatio	on	•		•
Ground Surface Elevation (feet amsl) ⁽⁵⁾	N/A	N/A	N/A	N/A	N/A	N/A	805.98	811.57	N/A
Top of Casing Elevation (feet amsl)	821.01	784.31	797.21	804.96	762.48	761.02	808.49	814.13	760.85
Screen Length (ft)	15.0	10.0	15.0	10.0	10.0	10.0	15.0	15.0	5.0
Total Depth (from top of casing)	19.6	56.4	25.3	20.4	48.4	48.0	57.7	105.0	19.6
Top of Well Screen Elevation (ft)	816.46	737.88	786.89	794.56	724.08	723.04	765.79	724.13	746.23
August 21, 2017	808.41	735.06	780.63	788.23	724.51	723.56	759.35	723.44	746.73
Bottom of Well Elevation (ft amsl)	801.46	727.88	771.89	784.56	714.08	713.04	750.79	709.13	741.23

Notes:	Created By:	NDK	Date:	2/27/2018
N/A = information not available	Revision By:	NDK	Date:	2/27/2018
amsl = above mean sea level	Checked By:	JD	Date:	3/1/2018

l:\25216073.00\Reports\2018 ASD Report\Tables\[OML ASD Tables_R1.xlsx]Table 3 State GW elev

Table 4. Groundwater Elevations – CCR Rule Monitoring Network

IPL - Ottumwa Midland Landfill Ottumwa, Iowa

Wall Neurobar	Ground Wate	Ground Water Elevation in feet above mean sea level (ams)							
Well Number	MW-301	MW-302	MW-303	MW-102M	MW-122M				
Top of Casing Elevation (feet amsl)	817.88	761.77	762.40	798.03	792.70				
Screen Length (ft)	5.00	5.00	5.00	5.00	5.00				
Total Depth (ft from top of casing)	204.50	157.70	150.00	152.10	155.30				
Top of Well Screen Elevation (ft)	618.38	609.07	617.40	652.65	642.94				
Measurement Date									
May 4, 2016	686.46	685.80	686.04	728.73	729.27				
August 21-22, 2017	684.96	683.89	684.70	713.23	722.02				
November 7-8, 2017	684.50	683.38	684.26	713.53	720.52				
Bottom of Well Elevation (ft)	613.38	604.07	612.40	645.93	637.40				

Notes:	Created by:	NDK	Date:	2/21/2018
NM = not measured	Last revision by:	NDK	Date:	2/21/2018
Water levels collected during Sample Collection	Checked by:	JD	Date:	3/1/2018

 $l:\25216073.00\Reports\2018\ ASD\ Report\Tables\[OML\ ASD\ Tables_R1.xlsx]Table\ 4\ CCR\ GW\ elevations$

Table 5. Leachate and Contact Water Analytical Results - 2016-2017 State Monitoring Program

IPL - Ottumwa Midland Landfill

Ottumwa, Iowa

Monitoring Point	Date	pH, Field (s.u.)	Boron (μg/L)	Chloride (mg/L)	Fluoride (mg/L)	Sulfate (mg/L)	Total Dissolved Soilds (mg/L)
Leachate Basin	9/7/2016	7.13	4,550	127	0.87	5,000	6,730
Leachate Lagoon	8/29/2017	6.71	5,330	138	0.78	5,290	8,340
Temporary Contact Water Basin TCB-1/2	3/23/2016	8.48	422	4.9	0.25	229	383
Temporary Contact Water Basin TCB-1/2	6/22/2016	7.92	455	5.8	0.21	223	391
Temporary Contact Water Basin TCB-1/2	9/7/2016	8.89	570	5.6	0.19 J	240	334
Temporary Contact Water Basin TCB-1/2	8/29/2017	7.80	820	8.5	0.24	411	611

Abbreviations:

 $\mu g/L = micrograms per liter$

mg/L = milligrams per liter

s.u. = standard units

Notes:

(1): Laboratory results from the 2016 and 2017 Annual Water Quality Reports for OML.

(2): Laboratory analyses are reported as total concentrations for all monitoring points.

I:\25216073.00\Reports\2018 ASD Report\Tables\[OML ASD Tables_R1.xlsx]Table 5. Leachate Results

Table 6. Chloride Analytical Results for Shallow Groundwater - 2016-2017 State Monitoring Program

IPL - Ottumwa Midland Landfill Ottumwa Jowa

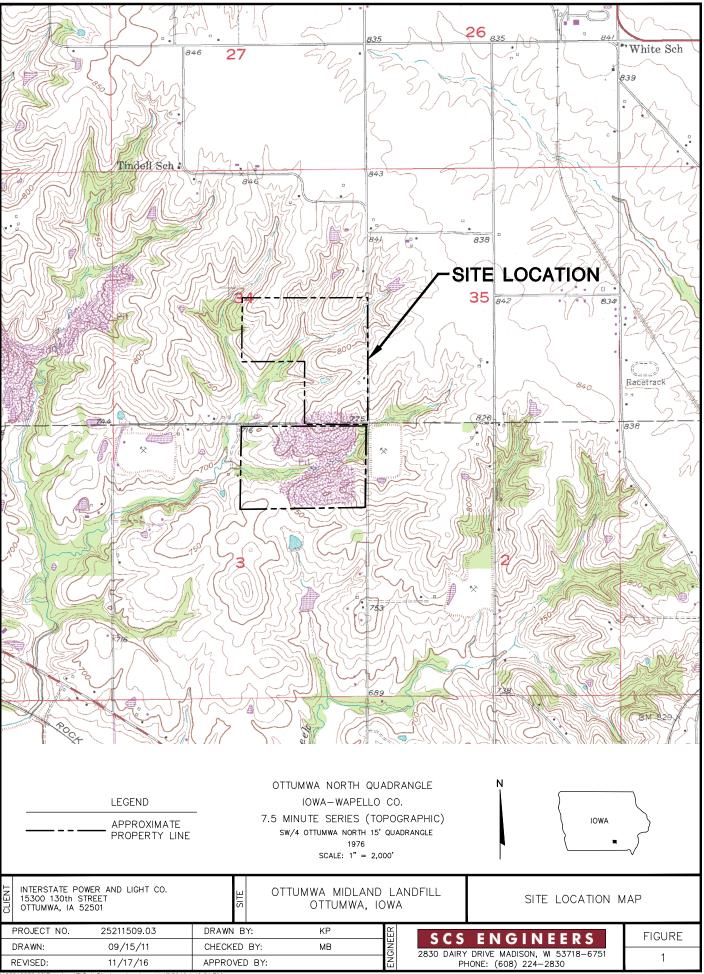
Ottui	nvva,	IUwa	

		Chloride
Monitoring Point	Date	(mg/L)
Shallow Hydrogeologic Unit		
MW-1	9/7/2016	64.9
MW-1	8/24/2017	60.6
MW-15R	9/7/2016	7.4
MW-15R	8/29/2017	5.6
MW-17	9/7/2016	6.7
MW-17	8/29/2017	7.0
MW-100R	9/7/2016	27.4
MW-100R	8/24/2017	26.4
Underdrain Groundwater		
Underdrain Lift Station (GU-EX)	9/7/2016	19.4
Underdrain Lift Station (GU-EX)	8/29/2017	14.8
Groundwater Underdrain GU-1 (Temp)	9/7/2016	17.2
Groundwater Underdrain GU-1 (Temp)	8/29/2017	16.7

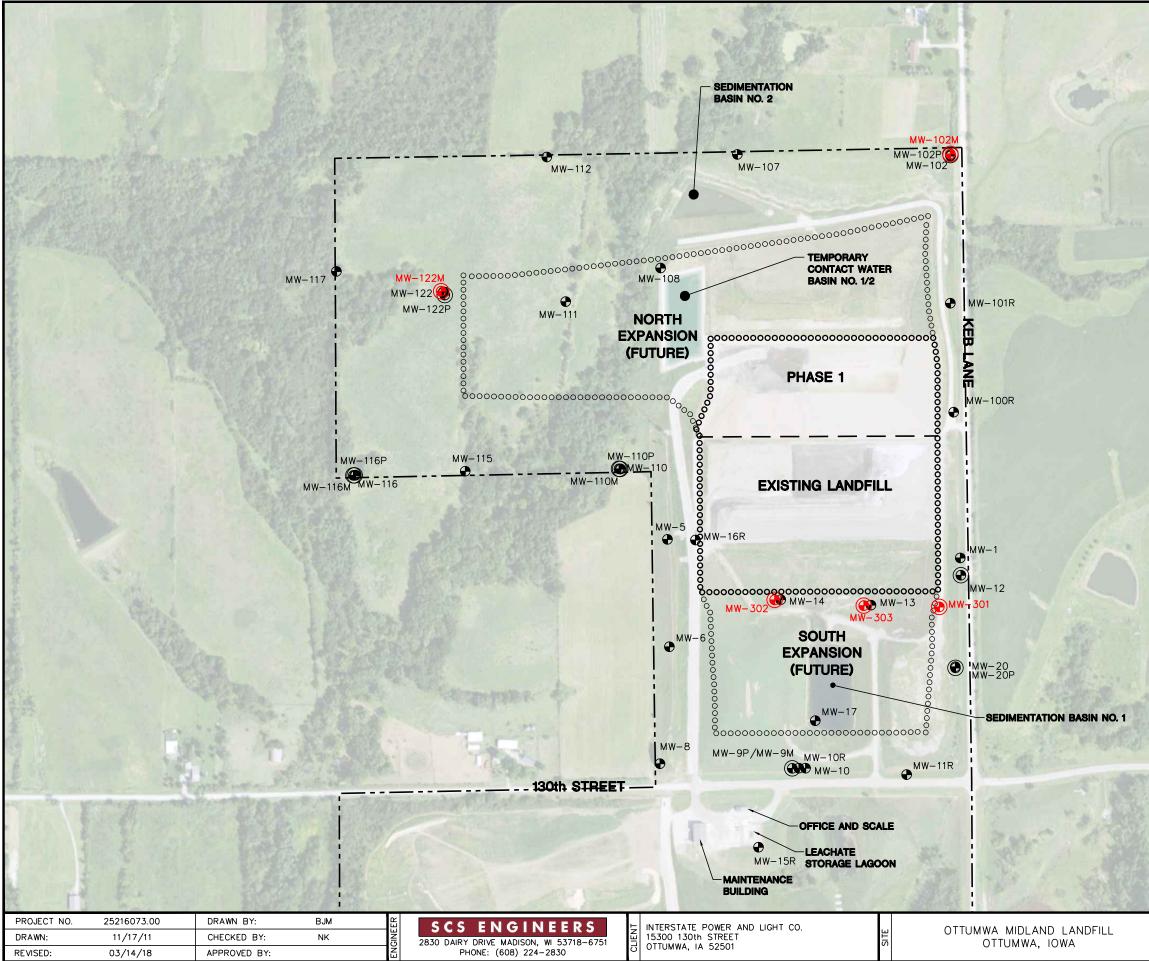
Abbreviations:	Created by:	TLC	Date:	10/17/2013
mg/L = milligrams per liter	Last Revision by:	MHL	Date:	9/21/2017
NA = Not Applicable	Checked by:	MDB	Date:	9/22/2017

Notes:

(1): Laboratory Results from the 2016 and 2017 Annual Water Quality Reports for OML.


(2): Laboratory analyses are reported as total concentrations for all monitoring points.

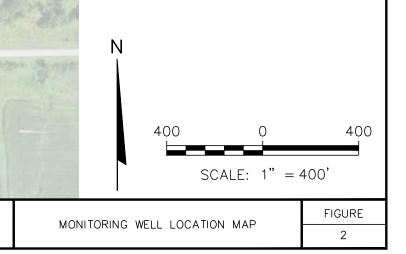
I:\25216073.00\Reports\2018 ASD Report\Tables\[OML ASD Tables_R1.xlsx]Table 6. State CI GW Results

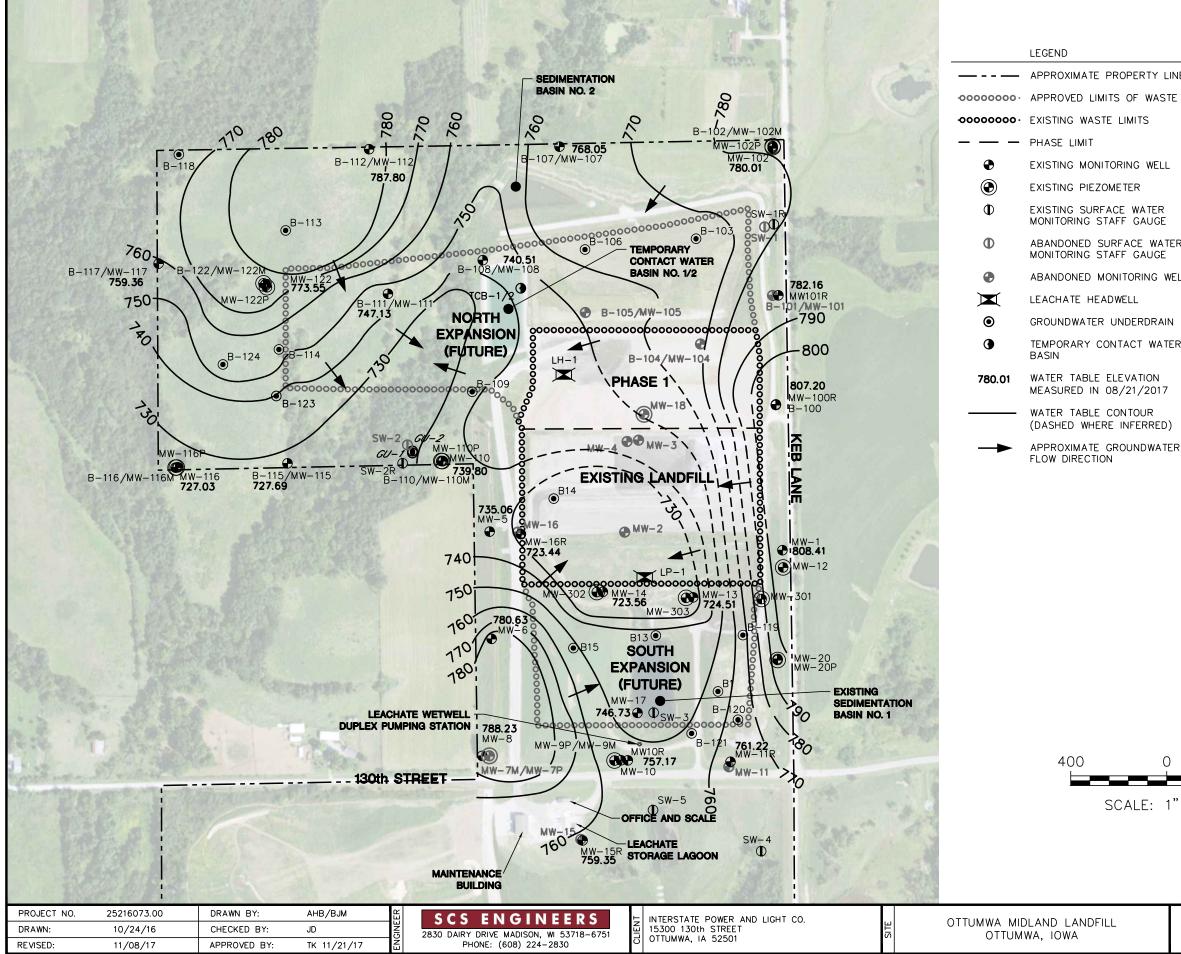

FIGURES

- Site Location Map

- Monitoring Well Location Map Water Table Map August 21, 2017 Potentiometric Surface Map May 2016 Potentiometric Surface Map November 2017

I:\25216073.00\Drawings\FIG 1_Site Location.dwg, 11/17/2016 1:49:51 PM




25216073.00\Drawings\CCR Rule Piezometers.dwg, 3/14/2018 4:09:14 PM

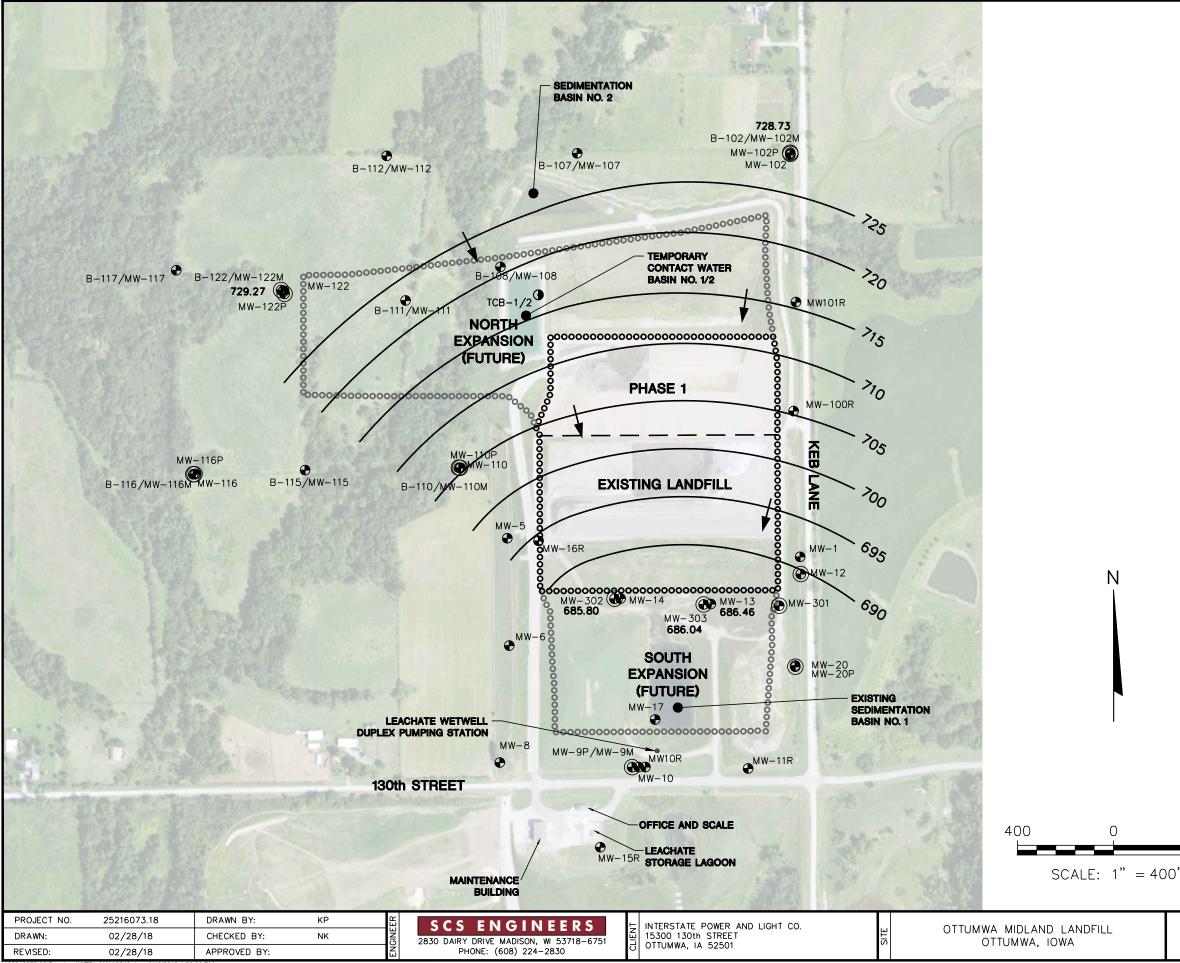
	LEGEND
	APPROXIMATE PROPERTY LINE
00000000	EXISTING WASTE LIMITS
.00000000	NORTH EXPANSION AREA
\bullet	MONITORING WELL
۲	PIEZOMETER
	CCR RULE PIEZOMETER

NOTES:

- 2015 AERIAL PHOTOGRAPH IS FROM THE IOWA GEOGRAPHIC MAP SERVER-IOWA STATE UNIVERSITY GEOGRAPHIC INFORMATION SYSTEMS SUPPORT & RESEARCH FACILITY.
- PROPERTY LINE SOUTH OF 130[™] STREET FROM SURVEY MAP PREPARED BY GARDEN & ASSOCIATES, OSKALOOSA, IOWA, DATED DECEMBER 20, 1988.
- PROPERTY LINE NORTH OF 130TH STREET FROM PLAT OF SURVEY MAP PREPARED BY SCS ENGINEERS, MADISON, WISCONSIN, DATED FEBRUARY 20, 2013.
- 4. EXISTING LIMITS OF WASTE ARE APPROXIMATE.
- MONITORING WELLS MW-301 AND MW-302 WERE INSTALLED BY CASCADE DRILLING BETWEEN NOVEMBER 16, 2015, AND DECEMBER 3, 2015.
- MONITORING WELL MW-303 WAS INSTALLED BY TEAM SERVICES BETWEEN APRIL 11, 2016 AND APRIL 26, 2016.
- MONITORING WELLS MW-301 THROUGH MW-303 WERE SURVEYED BY FRENCH-RENEKER-ASSOCIATES ON MAY 19, 2016.

I:\25216073.00\Drawings\WTBL-AUGUST 2017.dwg, 11/21/2017 3:34:14 PM

	NO	TES:
ERTY LINE	1.	2015 AERIAL PHOTOGRAPH IS FROM THE IOWA GEOGRAPHIC MAP SERVER-IOWA STATE
WASTE		UNIVERSITY GEOGRAPHIC INFORMATION SYSTEMS SUPPORT & RESEARCH FACILITY.
ITS G WELL	2.	PROPERTY LINE SOUTH OF 130 TH STREET FROM SURVEY MAP PREPARED BY GARDEN & ASSOCIATES, OSKALOOSA, IOWA, DATED DECEMBER 20, 1988.
R VA TER GAUGE	3.	PROPERTY LINE NORTH OF 130 TH STREET FROM PLAT OF SURVEY MAP PREPARED BY SCS ENGINEERS, MADISON, WISCONSIN, DATED FEBRUARY 20, 2013.
E WATER	4.	EXISTING LIMITS OF WASTE ARE APPROXIMATE.
GAUGE RING WELL - RDRAIN T WATER		MW-13 AND MW-14 ARE USED IN THE INTERPRETATION OF BOTH THE WATER TABLE MAP AND THE POTENTIOMETRIC SURFACE MAP BECAUSE THEY ARE SCREENED IN THE PENNSYLVANIAN UNIT (UPPERMOST AQUIFER) AND ACROSS WHAT COULD BE INTERPRETED AS THE WATER TABLE (1ST OCCURRENCE OF GROUNDWATER AT THE WELL LOCATIONS).
NTION /2017 DUR ERRED)	6.	A GROUNDWATER UNDERDRAIN SYSTEM IS PRESENT BELOW THE BASE OF THE CURRENT FILL AREA. ELEVATIONS IN THE BASE UNDERDRAIN SYSTEM RANGE FROM 748' TO 762'. ADDITIONALLY, FINGER DRAINS WERE INSTALLED ALONG THE EASTERN EDGE OF THE FILL AREA AT THE AN ELEVATION OF


APPROXIMATELY 795'. THESE FINGER DRAINS

ARE TIED TO THE UNDERDRAIN SYSTEM.

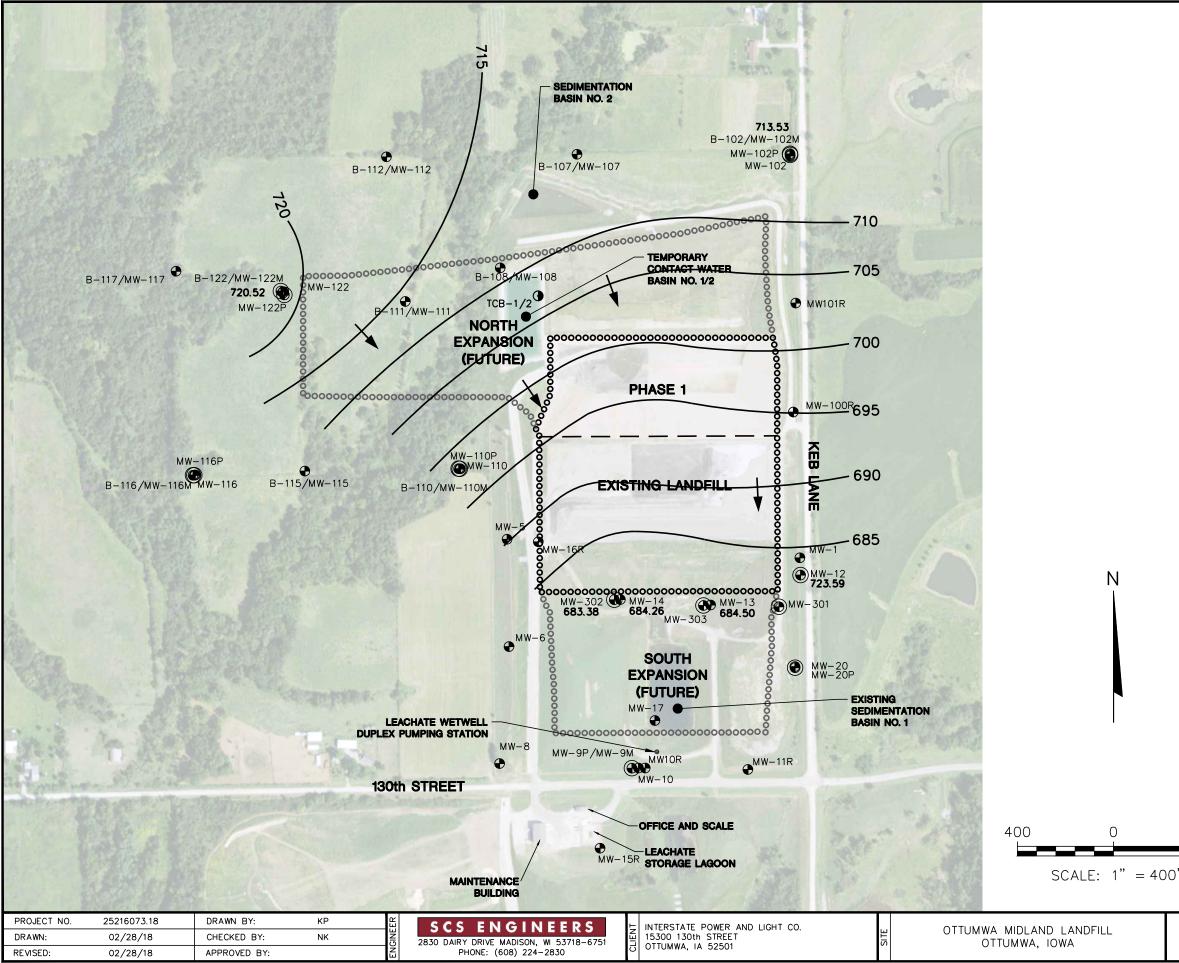
WATER	TABL	E MAP
AUGUS	T 21,	2017

Ν

3

:\25216073.00\Drawings\WTBL-MAY 2016.dwg, 3/13/2018 1:56:09 PM

	LEGEND
	APPROXIMATE PROPERTY LINE
.00000000	APPROVED WASTE LIMITS
•••••••••	EXISTING WASTE LIMITS
	PHASE LIMIT
•	EXISTING MONITORING WELL
۲	EXISTING PIEZOMETER
•	TEMPORARY CONTACT WATER BASIN
686.46	WATER TABLE ELEVATION (MAY 2016)
	POTENTIOMETRIC SURFACE CONTOUR (DASHED WHERE INFERRED)
->	APPROXIMATE GROUNDWATER FLOW DIRECTION


NOTES:

400

2015 AERIAL PHOTOGRAPH IS FROM THE IOWA
GEOGRAPHIC MAP SERVER-IOWA STATE
UNIVERSITY GEOGRAPHIC INFORMATION SYSTEMS
SUPPORT & RESEARCH FACILITY.

- PROPERTY LINE SOUTH OF 130TH STREET FROM SURVEY MAP PREPARED BY GARDEN & ASSOCIATES, OSKALOOSA, IOWA, DATED DECEMBER 20, 1988.
- PROPERTY LINE NORTH OF 130TH STREET FROM PLAT OF SURVEY MAP PREPARED BY SCS ENGINEERS, MADISON, WISCONSIN, DATED FEBRUARY 20, 2013.
- 4. EXISTING LIMITS OF WASTE ARE APPROXIMATE.
- 5. BORINGS AND WELLS INSTALLED DURING PREVIOUS SITE INVESTIGATIONS ARE NUMBERED B1 THROUGH B16, #1-#6, AND MW-1 THROUGH MW-18. WELLS INSTALLED IN 2012 TO THE SOUTH OF THE EXISTING LANDFILL UTILIZE THE EXISTING NUMBERING SCHEME. NUMBERING FOR NORTH EXPANSION AREA BORINGS/WELLS AND COAL SEAM BORINGS BEGINS WITH B-100.
- 6. MW-13 AND MW-14 ARE USED IN THE INTERPRETATION OF BOTH THE WATER TABLE MAP AND THE POTENTIOMETRIC SURFACE MAP BECAUSE THEY ARE SCREENED IN THE PENNSYLVANIAN UNIT (UPPERMOST AQUIFER) AND ACROSS WHAT COULD BE INTERPRETED AS THE WATER TABLE (1ST OCCURRENCE OF GROUNDWATER AT THE WELL LOCATIONS).

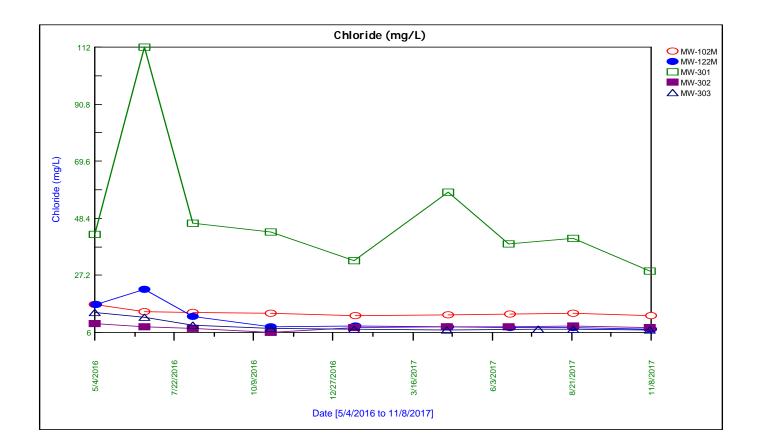
POTENTIOMETRIC SURFACE MAP	FIGURE
MAY 2016	4

:\25216073.00\Drawings\WTBL-NOV 2017.dwg, 3/13/2018 1:57:12 PM

	LEGEND
	APPROXIMATE PROPERTY LINE
•00000000	APPROVED WASTE LIMITS
.0000000	EXISTING WASTE LIMITS
	PHASE LIMIT
•	EXISTING MONITORING WELL
۲	EXISTING PIEZOMETER
•	TEMPORARY CONTACT WATER BASIN
684.50	WATER TABLE ELEVATION (NOVEMBER 2017)
	POTENTIOMETRIC SURFACE CONTOUR (DASHED WHERE INFERRED)
-	APPROXIMATE GROUNDWATER FLOW DIRECTION

NOTES:

400


1.	2015 AERIAL PHOTOGRAPH IS FROM THE IOWA
	GEOGRAPHIC MAP SERVER-IOWA STATE
	UNIVERSITY GEOGRAPHIC INFORMATION SYSTEMS
	SUPPORT & RESEARCH FACILITY.

- PROPERTY LINE SOUTH OF 130TH STREET FROM SURVEY MAP PREPARED BY GARDEN & ASSOCIATES, OSKALOOSA, IOWA, DATED DECEMBER 20, 1988.
- PROPERTY LINE NORTH OF 130TH STREET FROM PLAT OF SURVEY MAP PREPARED BY SCS ENGINEERS, MADISON, WISCONSIN, DATED FEBRUARY 20, 2013.
- 4. EXISTING LIMITS OF WASTE ARE APPROXIMATE.
- 5. BORINGS AND WELLS INSTALLED DURING PREVIOUS SITE INVESTIGATIONS ARE NUMBERED B1 THROUGH B16, #1-#6, AND MW-1 THROUGH MW-18. WELLS INSTALLED IN 2012 TO THE SOUTH OF THE EXISTING LANDFILL UTILIZE THE EXISTING NUMBERING SCHEME. NUMBERING FOR NORTH EXPANSION AREA BORINGS/WELLS AND COAL SEAM BORINGS BEGINS WITH B-100.
- 6. MW-13 AND MW-14 ARE USED IN THE INTERPRETATION OF BOTH THE WATER TABLE MAP AND THE POTENTIOMETRIC SURFACE MAP BECAUSE THEY ARE SCREENED IN THE PENNSYLVANIAN UNIT (UPPERMOST AQUIFER) AND ACROSS WHAT COULD BE INTERPRETED AS THE WATER TABLE (1ST OCCURRENCE OF GROUNDWATER AT THE WELL LOCATIONS).

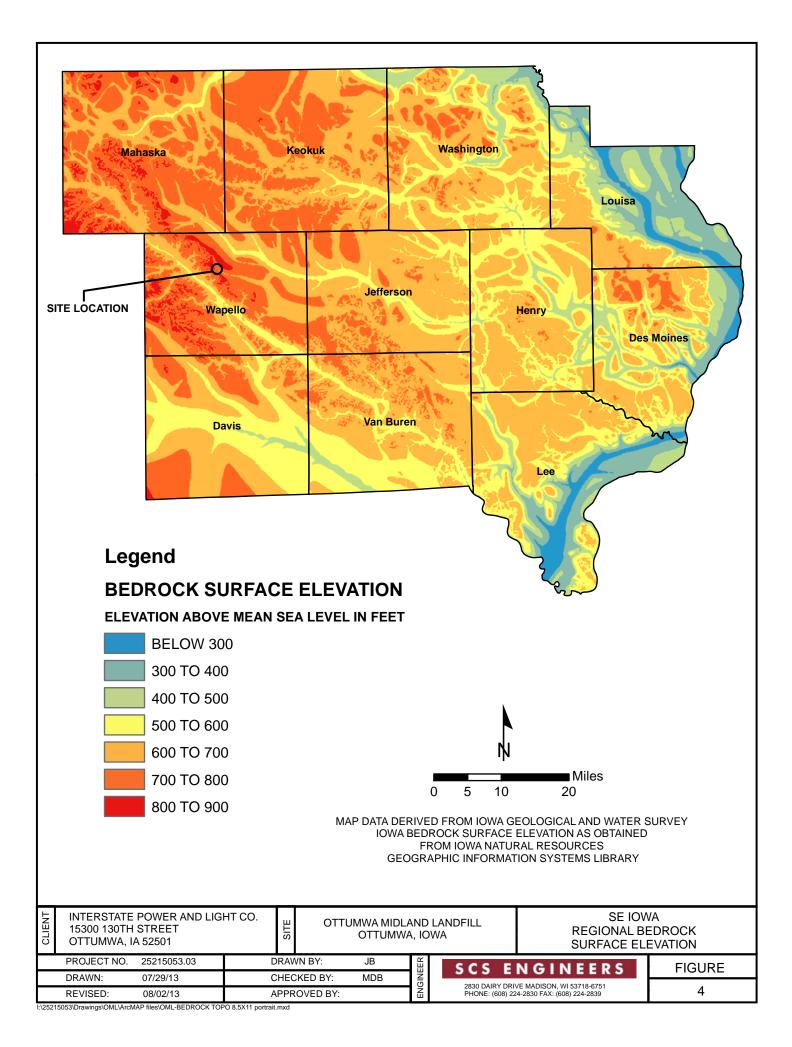
POTENTIOMETRIC SURFACE MAP	FIGURE
NOVEMBER 2017	5

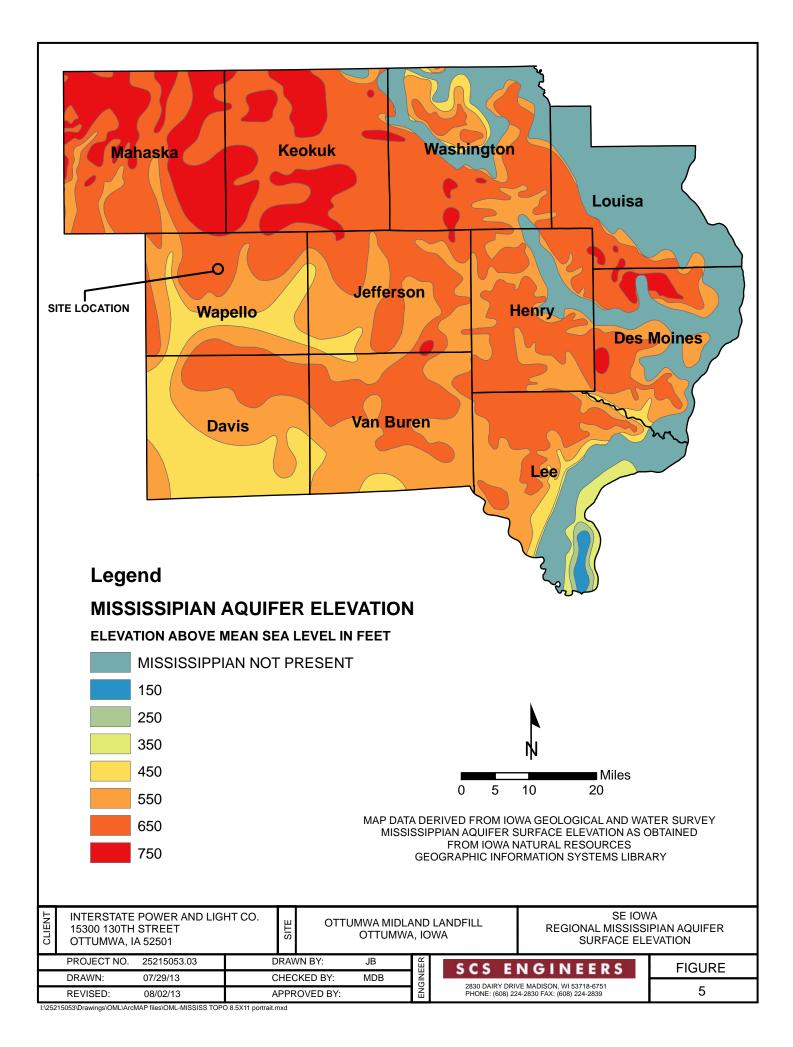
APPENDIX A

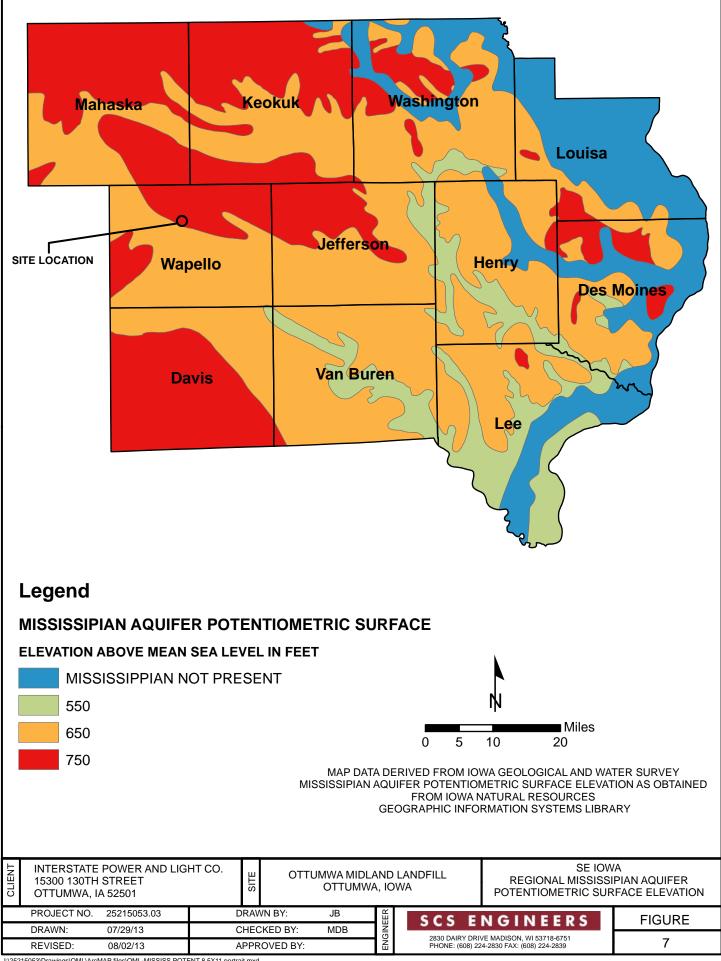
CCR Well Trend Plot – Chloride

APPENDIX B

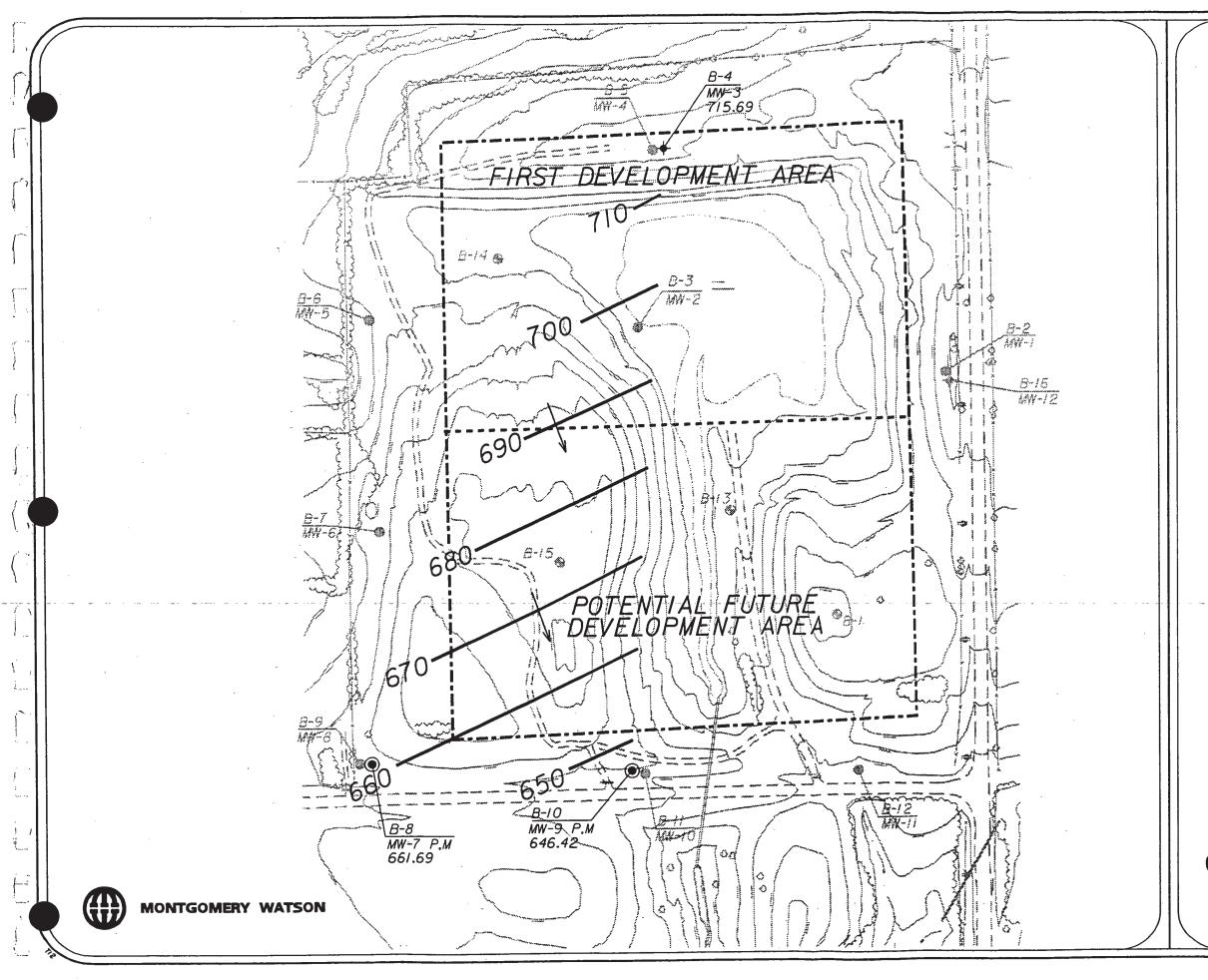
Regional Geologic and Hydrogeologic Information

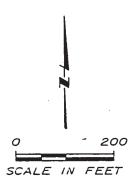

Table OML-3. Regional Hydrogeologic StratigraphyOttumwa Midland Landfill / SCS Engineers Project #25215053.01


Age of Rocks	Hydrogeologic Unit	General Thickness (feet)	Name of Rock Unit*	Type of Rock
Quaternary (0-1 million years old)	Surficial Aquifers • Alluvial • Buried-Channel • Drift	0 to 320	Undifferentiated	 Sand, gravel, silt, and clay Sand, gravel, silt, and clay Till (sandy, pebbly clay), sand, and silt
Pennsylvanian (180 to 310 million years old)	Aquiclude	0 to 370	Undifferentiated	• Shale, sandstone, limestone, and coal
	Mississippian Aquifer • Upper		St. Louis Spergen	Limestone and sandstoneLimestone
Mississippian (310 to 345 million years old	• Lower	0 to 600	Warsaw Keokuk Burlington Hampton Starrs Cave	 Shale and dolomite Dolomite, limestone, and shale Dolomite and limestone Limestone and dolomite Limestone
Devonian (345 to 400 million years old)	Aquiclude	0 to 425	Prospect Hill McCraney Yellow Spring Lime Creek	 Siltstone Limestone Shale, dolomite, and siltstone Dolomite and shale
	Devonian Aquifer	110 to 420	Cedar Valley Wapsipinicon	 Limestone and dolomite Dolomite, limestone, shale, and gypsum
Silurian (400 to 425 million years old)		0 to 105	Undifferentiated	• Dolomite
Ordovician (425 to 500 million years old) Cambrian (500 to 600 million years old)	Aquiclude	1 <i>5</i> 0 to 600	Maquoketa Galena Decorah Platteville	 Dolomite and shale Dolomite and chert Limestone and shale Limestone, shale, and sandstone
	Cambrian-Ordovician aquifer	750 to 1,110	St. Peter Prairie du Chien Jordan St. Lawrence	 Sandstone Dolomite and sandstone Sandstone Dolomite
	Not considered an aquifer in southeast	450 to 750+	Franconia Galesville Eau Claire Mt. Simon	 Shale, siltstone, and sandstone Sandstone Sandstone, shale, and dolomite Sandstone
Precambrian (600 million to 2 billion + years old)	lowa			 Sandstone, igneous rocks, and metamorphic rocks


*This nomenclature and classification of rock units in this report are those of the lowa Geological Survey and do not necessarily coincide with those accepted by the U.S. Geological Survey.

Source: "Water Resources of Southeast Iowa," Iowa Geologic Survey Water Atlas No. 4.


 $l:\25215053\Reports\Report\1 - OML\Table_Regional_Hydrogeologic_Stratigraphy.doc$



I:\25215053\Drawings\OML\ArcMAP files\OML-MISSISS POTENT 8.5X11 portrait.mxd

LEGEND:

• BORING

DEEP MONITORING WELL

MULTIPLE-CASED DEEP WELL

SHALLOW MONITORING WELL

----- PROPOSED LANDFILL BOUNDARY

661.69 POTENTIOMETRIC SURFACE ELEVATION ON 03-02-94

> INFERRED DIRECTION OF GROUNDWATER FLOW

NOTES:

I. CONTOUR INTERVAL = 10 FT.

2. ALL ELEVATIONS ARE REFERENCED TO NGVD.

OTTUMWA-MIDLAND DEVELOPMENT CORPORATION

POTENTIOMETRIC SURFACE CONTOURS – MISSISSIPPIAN (03–02–94)

FIGURE 4-18

APPENDIX C

Revised Laboratory Report – June 2016

Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

February 21, 2018

Meghan Blodgett SCS Engineers 2830 Dairy Drive Madison, WI 53718

RE: Project: Ottumwa Midland LF/25216073 Pace Project No.: 60222190

Dear Meghan Blodgett:

Enclosed are the analytical results for sample(s) received by the laboratory on June 25, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Amended Report, Revision 1 on 2/21/18, Per 2/21/18 Jackie DeBruyne e-mail

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Sudy Sipson

Trudy Gipson trudy.gipson@pacelabs.com 1(913)563-1405 Project Manager

Enclosures

cc: Tom Karwaski, SCS Engineers Kyle Kramer, SCS Engineers Jeff Maxted, Alliant Energy

CERTIFICATIONS

Project: Ottumwa Midland LF/25216073

Pace Project No.: 60222190

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 17-016-0 Illinois Certification #: 200030 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212018-1 Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407 Utah Certification #: KS00021 Kansas Field Laboratory Accreditation: # E-92587 Missouri Certification: 10070

SAMPLE SUMMARY

Project: Ottumwa Midland LF/25216073

Pace Project No.: 60222190

	_
60222190001 MW-301 Water 06/22/16 12:30 06/25/16 08:50	1
60222190002 MW-302 Water 06/22/16 11:30 06/25/16 08:50	
60222190003 MW-303 Water 06/22/16 10:15 06/25/16 08:50	1
60222190004 MW-102M Water 06/22/16 17:15 06/25/16 08:50	1
60222190005 MW-122M Water 06/23/16 08:00 06/25/16 08:50	1
60222190006 FIELD BLANK Water 06/22/16 12:10 06/25/16 08:50	1

SAMPLE ANALYTE COUNT

Project: Ottumwa Midland LF/25216073

Pace Project No.: 60222190

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60222190001		EPA 6010	NDJ	3	PASI-K
		EPA 6020	SMW	11	PASI-K
		EPA 7470	ZBM	1	PASI-K
		SM 2540C	HAC	1	PASI-K
		EPA 9040	LDB	1	PASI-K
		EPA 9056	OL	3	PASI-K
0222190002	MW-302	EPA 6010	NDJ	3	PASI-K
		EPA 6020	SMW	11	PASI-K
		EPA 7470	ZBM	1	PASI-K
		SM 2540C	HAC	1	PASI-K
		EPA 9040	LDB	1	PASI-K
		EPA 9056	OL	3	PASI-K
0222190003	MW-303	EPA 6010	NDJ	3	PASI-K
		EPA 6020	SMW	11	PASI-K
		EPA 7470	ZBM	1	PASI-K
		SM 2540C	HAC	1	PASI-K
		EPA 9040	LDB	1	PASI-K
		EPA 9056	OL	3	PASI-K
0222190004	MW-102M	EPA 6010	NDJ	3	PASI-K
		EPA 6020	SMW	11	PASI-K
		EPA 7470	ZBM	1	PASI-K
		SM 2540C	HAC	1	PASI-K
		EPA 9040	LDB	1	PASI-K
		EPA 9056	OL	3	PASI-K
0222190005	MW-122M	EPA 6010	NDJ	3	PASI-K
		EPA 6020	SMW	11	PASI-K
		EPA 7470	ZBM	1	PASI-K
		SM 2540C	HAC	1	PASI-K
		EPA 9040	LDB	1	PASI-K
		EPA 9056	OL	3	PASI-K
0222190006	FIELD BLANK	EPA 6010	NDJ	3	PASI-K
		EPA 6020	SMW	11	PASI-K
		EPA 7470	ZBM	1	PASI-K
		SM 2540C	HAC	1	PASI-K
		EPA 9040	LDB	1	PASI-K
		EPA 9056	OL	3	PASI-K

Project: Ottumwa Midland LF/25216073

Pace Project No.: 60222190

Sample: MW-301	Lab ID:	60222190001	Collected	d: 06/22/1	6 12:30	Received: 06/	25/16 08:50 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytica	I Method: EPA 6	010 Prepar	ation Meth	od: EPA	3010			
Boron	1860	ug/L	100	50.0	1	06/27/16 16:30	06/28/16 15:53	7440-42-8	
Calcium	472	mg/L	0.10	0.0081	1	06/27/16 16:30	06/28/16 15:53	7440-70-2	M1
Lithium	268	ug/L	10.0	4.9	1	06/27/16 16:30	06/28/16 15:53	7439-93-2	
6020 MET ICPMS	Analytica	I Method: EPA 6	020 Prepar	ation Meth	od: EPA	3010			
Antimony	ND	ug/L	2.0	0.12	2	06/27/16 16:30	06/30/16 11:00	7440-36-0	D3
Arsenic	0.84J	ug/L	2.0	0.21	2	06/27/16 16:30	06/30/16 11:00	7440-38-2	
Barium	26.6	ug/L	5.0	0.69	5	06/27/16 16:30	06/28/16 14:21	7440-39-3	
Beryllium	ND	ug/L	1.5	0.24	3	06/27/16 16:30	06/30/16 13:44	7440-41-7	
Cadmium	ND	ug/L	1.0	0.058	2	06/27/16 16:30	06/30/16 11:00	7440-43-9	D3
Chromium	ND	ug/L	2.0	0.68	2	06/27/16 16:30	06/30/16 11:00	7440-47-3	D3
Cobalt	ND	ug/L	2.0	1.0	2	06/27/16 16:30	06/30/16 11:00	7440-48-4	D3
Lead	ND	ug/L	5.0	0.96	5	06/27/16 16:30	06/28/16 14:21	7439-92-1	D3
Molybdenum	2.0J	ug/L	2.0	0.21	2	06/27/16 16:30	06/30/16 11:00	7439-98-7	В
Selenium	ND	ug/L	2.0	0.37	2	06/27/16 16:30	06/30/16 11:00	7782-49-2	D3
Thallium	ND	ug/L	5.0	2.5	5	06/27/16 16:30	06/28/16 14:21	7440-28-0	D3
7470 Mercury	Analytica	I Method: EPA 7	470 Prepai	ation Meth	od: EPA	7470			
Mercury	ND	ug/L	0.20	0.039	1	06/28/16 16:45	06/29/16 12:00	7439-97-6	
2540C Total Dissolved Solids	Analytica	I Method: SM 2	540C						
Total Dissolved Solids	5380	mg/L	5.0	5.0	1		06/28/16 10:28		
9040 pH	Analytica	I Method: EPA 9	040						
рН	6.2	Std. Units	0.10	0.10	1		06/27/16 09:00		H6
9056 IC Anions	Analytica	I Method: EPA 9	056						
Chloride	112	mg/L	10.0	5.0	10		07/03/16 15:17	16887-00-6	
Fluoride	0.38	mg/L	0.20	0.073	1		07/02/16 19:19	16984-48-8	
Sulfate	5370	mg/L	500	124	500		07/03/16 15:46	14808-79-8	

Project: Ottumwa Midland LF/25216073

Pace Project No.: 60222190

Sample: MW-302	Lab ID:	60222190002	Collected	1: 06/22/1	6 11:30	Received: 06/	25/16 08:50 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytica	Method: EPA 6	010 Prepar	ation Meth	od: EPA	3010			
Boron	796	ug/L	100	50.0	1	06/27/16 16:30	06/28/16 16:13	7440-42-8	
Calcium	56.6	mg/L	0.10	0.0081	1	06/27/16 16:30	06/28/16 16:13	7440-70-2	
Lithium	81.2	ug/L	10.0	4.9	1	06/27/16 16:30	06/28/16 16:13	7439-93-2	
6020 MET ICPMS	Analytica	Method: EPA 6	020 Prepar	ation Meth	od: EPA	3010			
Antimony	0.15J	ug/L	1.0	0.058	1	06/27/16 16:30	06/28/16 14:25	7440-36-0	В
Arsenic	0.39J	ug/L	1.0	0.10	1	06/27/16 16:30	06/28/16 14:25	7440-38-2	
Barium	45.4	ug/L	1.0	0.14	1	06/27/16 16:30	06/28/16 14:25	7440-39-3	
Beryllium	0.16J	ug/L	0.50	0.080	1	06/27/16 16:30	06/30/16 13:12	7440-41-7	
Cadmium	ND	ug/L	0.50	0.029	1	06/27/16 16:30	06/28/16 14:25	7440-43-9	
Chromium	6.2	ug/L	1.0	0.34	1	06/27/16 16:30	06/28/16 14:25	7440-47-3	
Cobalt	1.1	ug/L	1.0	0.50	1	06/27/16 16:30	06/28/16 14:25	7440-48-4	
Lead	0.90J	ug/L	1.0	0.19	1	06/27/16 16:30	06/28/16 14:25	7439-92-1	
Molybdenum	0.49J	ug/L	1.0	0.10	1	06/27/16 16:30	06/28/16 14:25	7439-98-7	В
Selenium	0.39J	ug/L	1.0	0.18	1	06/27/16 16:30	06/28/16 14:25	7782-49-2	
Thallium	ND	ug/L	1.0	0.50	1	06/27/16 16:30	06/28/16 14:25	7440-28-0	
7470 Mercury	Analytica	I Method: EPA 7	470 Prepar	ation Meth	od: EPA	7470			
Mercury	ND	ug/L	0.20	0.039	1	06/28/16 16:45	06/29/16 12:02	7439-97-6	
2540C Total Dissolved Solids	Analytica	Method: SM 25	540C						
Total Dissolved Solids	715	mg/L	5.0	5.0	1		06/28/16 10:28		
9040 pH	Analytica	Method: EPA 9	040						
рН	7.1	Std. Units	0.10	0.10	1		06/27/16 09:00		H6
9056 IC Anions	Analytica	Method: EPA 9	056						
Chloride	8.1	mg/L	1.0	0.50	1		07/02/16 19:48	16887-00-6	
Fluoride	1.0	mg/L	0.20	0.073	1		07/02/16 19:48	16984-48-8	
Sulfate	133	mg/L	10.0	2.5	10		07/03/16 16:15		

Project: Ottumwa Midland LF/25216073

Pace Project No.: 60222190

Sample: MW-303	Lab ID:	60222190003	Collected:	06/22/10	6 10:15	Received: 06/	25/16 08:50 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytica	Method: EPA 6	010 Prepara	ation Meth	od: EPA	3010			
Boron	2430	ug/L	100	50.0	1	06/27/16 16:30	06/28/16 16:15	7440-42-8	
Calcium	462	mg/L	0.10	0.0081	1	06/27/16 16:30	06/28/16 16:15	7440-70-2	
Lithium	270	ug/L	10.0	4.9	1	06/27/16 16:30	06/28/16 16:15	7439-93-2	
6020 MET ICPMS	Analytica	Method: EPA 6	020 Prepara	ation Meth	od: EPA	3010			
Antimony	ND	ug/L	1.0	0.058	1	06/27/16 16:30	06/30/16 11:09	7440-36-0	
Arsenic	0.30J	ug/L	1.0	0.10	1	06/27/16 16:30	06/30/16 11:09	7440-38-2	
Barium	47.6	ug/L	5.0	0.69	5	06/27/16 16:30	06/28/16 14:38	7440-39-3	
Beryllium	ND	ug/L	1.5	0.24	3	06/27/16 16:30	06/30/16 13:46	7440-41-7	D3
Cadmium	ND	ug/L	0.50	0.029	1	06/27/16 16:30	06/30/16 11:09	7440-43-9	
Chromium	3.1	ug/L	1.0	0.34	1	06/27/16 16:30	06/30/16 11:09	7440-47-3	
Cobalt	1.6	ug/L	1.0	0.50	1	06/27/16 16:30	06/30/16 11:09	7440-48-4	
Lead	1.6J	ug/L	5.0	0.96	5	06/27/16 16:30	06/28/16 14:38	7439-92-1	
Molybdenum	0.38J	ug/L	1.0	0.10	1	06/27/16 16:30	06/30/16 11:09	7439-98-7	В
Selenium	0.38J	ug/L	1.0	0.18	1	06/27/16 16:30	06/30/16 11:09	7782-49-2	
Thallium	ND	ug/L	5.0	2.5	5	06/27/16 16:30	06/28/16 14:38	7440-28-0	D3
7470 Mercury	Analytica	Method: EPA 7	470 Prepara	ation Meth	od: EPA	7470			
Mercury	ND	ug/L	0.20	0.039	1	06/28/16 16:45	06/29/16 12:05	7439-97-6	
2540C Total Dissolved Solids	Analytica	Method: SM 28	540C						
Total Dissolved Solids	7120	mg/L	5.0	5.0	1		06/28/16 10:30		
9040 pH	Analytica	Method: EPA 9	040						
рН	6.2	Std. Units	0.10	0.10	1		06/27/16 09:00		H6
9056 IC Anions	Analytica	Method: EPA 9	056						
Chloride	11.5	mg/L	1.0	0.50	1		07/02/16 20:03	16887-00-6	
Fluoride	0.47	mg/L	0.20	0.073	1		07/02/16 20:03	16984-48-8	
Sulfate	4690	mg/L	500	124	500		07/03/16 16:30	14808-79-8	

Project: Ottumwa Midland LF/25216073

Pace Project No.: 60222190

Sample: MW-102M	Lab ID:	60222190004	Collected	: 06/22/1	6 17:15	Received: 06/	25/16 08:50 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytica	Method: EPA 6	010 Prepar	ation Meth	od: EPA	3010			
Boron	1440	ug/L	100	50.0	1	06/27/16 16:30	06/28/16 16:18	7440-42-8	
Calcium	147	mg/L	0.10	0.0081	1	06/27/16 16:30	06/28/16 16:18	7440-70-2	
Lithium	80.7	ug/L	10.0	4.9	1	06/27/16 16:30	06/28/16 16:18	7439-93-2	
6020 MET ICPMS	Analytica	Method: EPA 6	020 Prepar	ation Meth	od: EPA	3010			
Antimony	0.19J	ug/L	1.0	0.058	1	06/27/16 16:30	06/28/16 14:43	7440-36-0	В
Arsenic	0.68J	ug/L	1.0	0.10	1	06/27/16 16:30	06/28/16 14:43	7440-38-2	
Barium	39.5	ug/L	1.0	0.14	1	06/27/16 16:30	06/28/16 14:43	7440-39-3	
Beryllium	1.4	ug/L	1.0	0.16	2	06/27/16 16:30	06/30/16 13:47	7440-41-7	
Cadmium	0.12J	ug/L	0.50	0.029	1	06/27/16 16:30	06/28/16 14:43	7440-43-9	
Chromium	17.9	ug/L	1.0	0.34	1	06/27/16 16:30	06/28/16 14:43	7440-47-3	
Cobalt	4.5	ug/L	1.0	0.50	1	06/27/16 16:30	06/28/16 14:43	7440-48-4	
Lead	3.6	ug/L	1.0	0.19	1	06/27/16 16:30	06/28/16 14:43	7439-92-1	
Molybdenum	10.3	ug/L	1.0	0.10	1	06/27/16 16:30	06/28/16 14:43	7439-98-7	
Selenium	1.0	ug/L	1.0	0.18	1	06/27/16 16:30	06/28/16 14:43	7782-49-2	
Thallium	ND	ug/L	1.0	0.50	1	06/27/16 16:30	06/28/16 14:43	7440-28-0	
7470 Mercury	Analytica	Method: EPA 7	470 Prepar	ation Meth	od: EPA	7470			
Mercury	ND	ug/L	0.20	0.039	1	06/28/16 16:45	06/29/16 12:07	7439-97-6	
2540C Total Dissolved Solids	Analytica	Method: SM 25	540C						
Total Dissolved Solids	1530	mg/L	5.0	5.0	1		06/28/16 10:30		
9040 pH	Analytica	I Method: EPA 9	040						
рН	7.9	Std. Units	0.10	0.10	1		06/27/16 09:00		H6
9056 IC Anions	Analytica	Method: EPA 9	056						
Chloride	13.8	mg/L	1.0	0.50	1		07/02/16 20:18	16887-00-6	
Fluoride	4.2	mg/L	0.20	0.073	1		07/02/16 20:18	16984-48-8	
Sulfate	350	mg/L	50.0	12.4	50		07/03/16 16:45	14808-79-8	

Project: Ottumwa Midland LF/25216073

Pace Project No.: 60222190

Sample: MW-122M	Lab ID:	60222190005	Collected	06/23/1	6 08:00	Received: 06/	25/16 08:50 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytica	I Method: EPA 6	010 Prepara	ation Meth	od: EPA	3010			
Boron	1720	ug/L	100	50.0	1	06/27/16 16:30	06/28/16 16:20	7440-42-8	
Calcium	312	mg/L	0.10	0.0081	1	06/27/16 16:30	06/28/16 16:20	7440-70-2	
Lithium	332	ug/L	10.0	4.9	1	06/27/16 16:30	06/28/16 16:20	7439-93-2	
6020 MET ICPMS	Analytica	I Method: EPA 6	020 Prepara	ation Meth	od: EPA	3010			
Antimony	1.0J	ug/L	5.0	0.29	5	06/27/16 16:30	06/28/16 14:47	7440-36-0	В
Arsenic	ND	ug/L	5.0	0.52	5	06/27/16 16:30	06/28/16 14:47	7440-38-2	D3
Barium	17.9	ug/L	5.0	0.69	5	06/27/16 16:30	06/28/16 14:47	7440-39-3	
Beryllium	ND	ug/L	1.5	0.24	3	06/27/16 16:30	06/30/16 13:49	7440-41-7	D3
Cadmium	ND	ug/L	2.5	0.14	5	06/27/16 16:30	06/28/16 14:47	7440-43-9	D3
Chromium	ND	ug/L	5.0	1.7	5	06/27/16 16:30	06/28/16 14:47	7440-47-3	D3
Cobalt	6.5	ug/L	5.0	2.5	5	06/27/16 16:30	06/28/16 14:47	7440-48-4	
Lead	ND	ug/L	5.0	0.96	5	06/27/16 16:30	06/28/16 14:47	7439-92-1	D3
Molybdenum	2.6J	ug/L	5.0	0.52	5	06/27/16 16:30	06/28/16 14:47	7439-98-7	В
Selenium	ND	ug/L	5.0	0.92	5	06/27/16 16:30	06/28/16 14:47	7782-49-2	D3
Thallium	ND	ug/L	5.0	2.5	5	06/27/16 16:30	06/28/16 14:47	7440-28-0	D3
7470 Mercury	Analytica	I Method: EPA 7	470 Prepara	ation Meth	od: EPA	7470			
Mercury	ND	ug/L	0.20	0.039	1	06/28/16 16:45	06/29/16 12:09	7439-97-6	
2540C Total Dissolved Solids	Analytica	I Method: SM 28	540C						
Total Dissolved Solids	7430	mg/L	5.0	5.0	1		06/28/16 10:39		
9040 pH	Analytica	I Method: EPA 9	040						
рН	6.7	Std. Units	0.10	0.10	1		06/27/16 09:00		H6
9056 IC Anions	Analytica	I Method: EPA 9	056						
Chloride	21.9	mg/L	2.0	1.0	2		07/03/16 17:29	16887-00-6	
Fluoride	0.89	mg/L	0.20	0.073	1		07/02/16 20:33	16984-48-8	
Sulfate	5330	mg/L	500	124	500		07/03/16 17:44	14808-79-8	

Project: Ottumwa Midland LF/25216073

Pace Project No.: 60222190

Sample: FIELD BLANK	Lab ID:	60222190006	Collecte	d: 06/22/1	6 12:10	Received: 06/	25/16 08:50 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytica	Method: EPA 6	010 Prepa	ration Meth	od: EPA	3010			
Boron	ND	ug/L	100	50.0	1	06/27/16 16:30	06/28/16 16:23	7440-42-8	
Calcium	0.035J	mg/L	0.10	0.0081	1	06/27/16 16:30	06/28/16 16:23	7440-70-2	
Lithium	ND	ug/L	10.0	4.9	1	06/27/16 16:30	06/28/16 16:23	7439-93-2	
6020 MET ICPMS	Analytica	Method: EPA 6	020 Prepa	ration Meth	od: EPA	3010			
Antimony	0.083J	ug/L	1.0	0.058	1	06/27/16 16:30	06/28/16 14:51	7440-36-0	В
Arsenic	ND	ug/L	1.0	0.10	1	06/27/16 16:30	06/28/16 14:51	7440-38-2	
Barium	0.16J	ug/L	1.0	0.14	1	06/27/16 16:30	06/28/16 14:51	7440-39-3	В
Beryllium	ND	ug/L	0.50	0.080	1	06/27/16 16:30	06/30/16 13:18	7440-41-7	
Cadmium	ND	ug/L	0.50	0.029	1	06/27/16 16:30	06/28/16 14:51	7440-43-9	
Chromium	0.45J	ug/L	1.0	0.34	1	06/27/16 16:30	06/28/16 14:51	7440-47-3	
Cobalt	ND	ug/L	1.0	0.50	1	06/27/16 16:30	06/28/16 14:51	7440-48-4	
Lead	ND	ug/L	1.0	0.19	1	06/27/16 16:30	06/28/16 14:51	7439-92-1	
Molybdenum	0.15J	ug/L	1.0	0.10	1	06/27/16 16:30	06/28/16 14:51	7439-98-7	В
Selenium	ND	ug/L	1.0	0.18	1	06/27/16 16:30	06/28/16 14:51	7782-49-2	
Thallium	ND	ug/L	1.0	0.50	1	06/27/16 16:30	06/28/16 14:51	7440-28-0	
7470 Mercury	Analytica	I Method: EPA 7	470 Prepa	ration Meth	od: EPA	7470			
Mercury	ND	ug/L	0.20	0.039	1	06/28/16 16:45	06/29/16 12:11	7439-97-6	
2540C Total Dissolved Solids	Analytica	Method: SM 2	540C						
Total Dissolved Solids	16.0	mg/L	5.0	5.0	1		06/28/16 10:31		
9040 pH	Analytica	Method: EPA 9	040						
рН	6.1	Std. Units	0.10	0.10	1		06/27/16 09:00		H6
9056 IC Anions	Analytica	Method: EPA 9	056						
Chloride	ND	mg/L	1.0	0.50	1		07/03/16 14:33	16887-00-6	
Fluoride	ND	mg/L	0.20	0.073	1		07/03/16 14:33	16984-48-8	
Sulfate	ND	mg/L	1.0	0.25	1		07/03/16 14:33	14808-79-8	

QUALITY CONTROL DATA

Project:	Ottumwa Midlano	LF/25216073										
Pace Project No.:	60222190											
QC Batch:	436477		Analys	sis Method	:	EPA 7470						
QC Batch Method:	EPA 7470		Analys	sis Descrip	tion:	7470 Mercur	у					
Associated Lab San	nples: 6022219	0001, 60222190002	2, 60222190	0003, 6022	2190004,	6022219000	5, 602221	90006				
METHOD BLANK:	1784604		1	Matrix: Wa	ter							
Associated Lab San	nples: 6022219	0001, 60222190002	2, 60222190	0003, 6022	2190004,	6022219000	5, 602221	90006				
			Blanl		eporting							
Paran	neter	Units	Resu	lt	Limit	MDL		Analyzed	Qua	alifiers		
Mercury		ug/L		ND	0.2	0 (0.039 06	/29/16 11:3	3			
LABORATORY CON	ITROL SAMPLE:	1784605										
			Spike	LCS	6	LCS	% Re	ec				
Paran	neter	Units	Conc.	Resu	ult	% Rec	Limit	s Q	ualifiers			
Mercury		ug/L	5	5	5.0	99	8	0-120		-		
MATRIX SPIKE & M	ATRIX SPIKE DU	PLICATE: 17846	606		1784607	,						
			MS	MSD								
		60222250001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r Ur	nits Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mercury	uç	g/L 0.81	5	5	5.0	4.9	84	81	75-125	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

EPA 6010

6010 MET

Project: Ottumwa Midland LF/25216073

436302

EPA 3010

Pace Project No.: 60222190

QC Batch:

QC Batch Method:

Analysis Method:

Analysis Description:

Associated Lab Samples: 60222190001, 60222190002, 60222190003, 60222190004, 60222190005, 60222190006

METHOD BLANK: 17838	44 Matrix: Water
Associated Lab Samples:	60222190001, 60222190002, 60222190003, 60222190004, 60222190005, 60222190006

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Boron	ug/L	ND	100	50.0	06/28/16 15:50	
Calcium	mg/L	ND	0.10	0.0081	06/28/16 15:50	
Lithium	ug/L	ND	10.0	4.9	06/28/16 15:50	

LABORATORY CONTROL SAMPLE: 1783845

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Boron	ug/L	1000	964	96	80-120	
Calcium	mg/L	10	9.4	94	80-120	
Lithium	ug/L	1000	986	99	80-120	

MATRIX SPIKE & MATRIX SPI	KE DUPLIC	ATE: 17838	46		1783847							
			MS	MSD								
	6	60222190001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	ug/L	1860	1000	1000	2910	2870	106	102	75-125	1	20	
Calcium	mg/L	472	10	10	494	489	216	171	75-125	1	20	M1
Lithium	ug/L	268	1000	1000	1370	1370	110	110	75-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Ottumwa Midland LF/25216073

Pace Project No.: 60222190

QC Batch:	43630)3		Analysis M	ethod:	EPA 6020	
QC Batch Method:	EPA 3	8010		Analysis D	escription:	6020 MET	
Associated Lab Samp	oles:	60222190001,	60222190002,	60222190003,	60222190004	60222190005,	60222190006

METHOD BLANK: 17838	48	Matrix: Water					
Associated Lab Samples:	60222190001, 60222190002	2, 60222190003, 60222190004	, 60222190005, 60222190006				

		Blank	Reporting				
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers	
Antimony	ug/L	0.094J	1.0	0.058	06/28/16 14:12		
Arsenic	ug/L	ND	1.0	0.10	06/28/16 14:12		
Barium	ug/L	0.15J	1.0	0.14	06/28/16 14:12		
Beryllium	ug/L	ND	0.50	0.080	06/30/16 13:03		
Cadmium	ug/L	ND	0.50	0.029	06/28/16 14:12		
Chromium	ug/L	ND	1.0	0.34	06/28/16 14:12		
Cobalt	ug/L	ND	1.0	0.50	06/28/16 14:12		
.ead	ug/L	ND	1.0	0.19	06/28/16 14:12		
lolybdenum	ug/L	0.17J	1.0	0.10	06/28/16 14:12		
Selenium	ug/L	ND	1.0	0.18	06/28/16 14:12		
Thallium	ug/L	ND	1.0	0.50	06/28/16 14:12		

LABORATORY CONTROL SAMPLE: 1783849

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Antimony	ug/L	40	42.4	106	80-120	
Arsenic	ug/L	40	43.5	109	80-120	
Barium	ug/L	40	40.8	102	80-120	
Beryllium	ug/L	40	43.8	109	80-120	
Cadmium	ug/L	40	42.7	107	80-120	
Chromium	ug/L	40	42.6	106	80-120	
Cobalt	ug/L	40	41.9	105	80-120	
ead	ug/L	40	40.2	100	80-120	
lolybdenum	ug/L	40	42.5	106	80-120	
Selenium	ug/L	40	43.3	108	80-120	
Thallium	ug/L	40	39.3	98	80-120	

MATRIX SPIKE & MATRIX S	SPIKE DUPLICA	TE: 17838	50		1783851							
Parameter	6 Units	0222190002 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Antimony	ug/L	0.15J	40	40	40.7	41.4	101	103	75-125	2	20	
Arsenic	ug/L	0.39J	40	40	41.5	42.5	103	105	75-125	2	20	
Barium	ug/L	45.4	40	40	86.7	87.8	103	106	75-125	1	20	
Beryllium	ug/L	0.16J	40	40	33.9	34.1	84	85	75-125	0	20	
Cadmium	ug/L	ND	40	40	40.7	41.3	102	103	75-125	1	20	
Chromium	ug/L	6.2	40	40	48.0	48.8	105	106	75-125	2	20	
Cobalt	ug/L	1.1	40	40	41.1	41.7	100	102	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Ottumwa Midland LF/25216073

Pace Project No.: 60222190

MATRIX SPIKE & MATRIX SP	PIKE DUPLICA	ATE: 17838	50		1783851							
Parameter	6 Units	0222190002 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Lead	ug/L	0.90J	40	40	43.9	44.3	107	109	75-125	1	20	
Molybdenum	ug/L	0.49J	40	40	40.5	42.2	100	104	75-125	4	20	
Selenium	ug/L	0.39J	40	40	37.8	38.8	94	96	75-125	3	20	
Thallium	ug/L	ND	40	40	41.6	42.7	104	107	75-125	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Ottumwa Midland	LF/25216073						
Pace Project No.: 60222190							
QC Batch: 436352		Analysis Me	ethod:	SM 2540C			
QC Batch Method: SM 2540C		Analysis De	escription:	2540C Total E	Dissolved Solids		
Associated Lab Samples: 60222190	0001, 60222190002	2					
METHOD BLANK: 1784036		Matrix	: Water				
Associated Lab Samples: 60222190	001, 60222190002	2					
		Blank	Reporting				
Parameter	Units	Result	Limit	MDL	Analyz	zed	Qualifiers
Total Dissolved Solids	mg/L	ND	5.	0	5.0 06/28/16	10:17	
LABORATORY CONTROL SAMPLE:	1784037						
		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits	Qua	lifiers
Total Dissolved Solids	mg/L	1000	994	99	80-120		
SAMPLE DUPLICATE: 1784038		60222217003	Dup		Max		
Parameter	Units	Result	Result	RPD	RPD		Qualifiers
Total Dissolved Solids	mg/L	2990	302	0	1	10	
SAMPLE DUPLICATE: 1784039							
		60222138001	Dup		Max		
Parameter	Units	Result	Result	RPD	RPD		Qualifiers
Total Dissolved Solids	mg/L	1570) 158		0	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	Ottumwa Midland	d LF/25216073						
Pace Project No.:	60222190							
QC Batch:	436354		Analysis M	ethod:	SM 2540C			
QC Batch Method:	SM 2540C		Analysis De	escription:	2540C Total D	issolved Solids		
Associated Lab San	nples: 6022219	0003, 6022219000	04, 60222190005,	60222190006				
METHOD BLANK:	1784043		Matrix	x: Water				
Associated Lab San	nples: 6022219	0003, 6022219000	04, 60222190005,	60222190006				
			Blank	Reporting				
Paran	neter	Units	Result	Limit	MDL	Analyz	zed	Qualifiers
Total Dissolved Soli	ds	mg/L	NE	5.	0	5.0 06/28/16	10:29	
LABORATORY COM	NTROL SAMPLE:	1784044						
			Spike	LCS	LCS	% Rec		
Paran	neter	Units	Conc.	Result	% Rec	Limits	Qua	alifiers
Total Dissolved Soli	ds	mg/L	1000	962	96	80-120		
SAMPLE DUPLICA	TE: 1784045							
			60222267002			Max		
Paran	neter	Units	Result	Result	RPD	RPD		Qualifiers
Total Dissolved Soli	ds	mg/L	2130) 212	0	0	10	
SAMPLE DUPLICA	TE: 1784046							
			60222021001	Dup		Max		
Paran	neter	Units	Result	Result	RPD	RPD		Qualifiers
Total Dissolved Soli	40	mg/L				1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Ottumwa Midland LF/25216073

Pace Project No.: 60222190

QC Batch:	436165		Analysis Method:	EPA 9040
QC Batch Method:	EPA 9040		Analysis Description:	9040 pH
Associated Lab Samples: 60222190001,		60222190001, 60222190002, 6	60222190003, 60222190004	4, 60222190005, 60222190006

SAMPLE DUPLICATE: 1783487		00000400000	D			
		60222190003	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
рН	Std. Units	6.2	6.1	0	1	0 H6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	Ottumwa Midland	LF/25216073						
Pace Project No .:	60222190							
QC Batch:	437069		Analysis M	ethod:	EPA 9056			
QC Batch Method:	EPA 9056		Analysis De	escription:	9056 IC Anions			
Associated Lab San	nples: 60222190	0001, 6022219000	2, 60222190003,	60222190004	, 60222190005			
METHOD BLANK:	1787659		Matrix	k: Water				
Associated Lab San	nples: 60222190	0001, 6022219000	2, 60222190003,	60222190004	, 60222190005			
			Blank	Reporting				
Paran	neter	Units	Result	Limit	MDL	Analyz	zed	Qualifiers
Chloride		mg/L	ND)	1.0 0.	50 07/02/16	17:34	
Fluoride		mg/L	NE	0.	.20 0.0	73 07/02/16	17:34	
LABORATORY CON		1787660 Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifier	s
Chloride		mg/L		4.8	96	80-120		
Fluoride		mg/L	2.5	2.4	95	80-120		
SAMPLE DUPLICA	TE: 1787663							
				-		Max		
			60222190001	Dup		IVIAA		
Paran	neter	Units	60222190001 Result	Dup Result	RPD	RPD	Qu	alifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

EPA 9056

9056 IC Anions

Project: Ottumwa Midland LF/25216073

Pace Project No.: 60222190

QC Batch:

QC Batch Method:

437083 Analysis Method: EPA 9056

Analysis Description:

Associated Lab Samples: 60222190001, 60222190002, 60222190003, 60222190004, 60222190005, 60222190006

METHOD BLANK: 17878	96 Matrix: Water
Associated Lab Samples:	60222190001, 60222190002, 60222190003, 60222190004, 60222190005, 60222190006
	Blank Reporting

Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	ND	1.0	0.50	07/03/16 12:50	
Fluoride	mg/L	ND	0.20	0.073	07/03/16 12:50	
Sulfate	mg/L	ND	1.0	0.25	07/03/16 12:50	

LABORATORY CONTROL SAMPLE: 1787897

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L	5	4.8	95	80-120	
Fluoride	mg/L	2.5	2.5	99	80-120	
Sulfate	mg/L	5	5.1	102	80-120	

MATRIX SPIKE & MATRIX SPIK		ATE: 17878	98		1787899							
			MS	MSD								
	6	0222164001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	41.1	25	25	66.9	66.7	103	103	80-120	0	15	
Fluoride	mg/L	ND	12.5	12.5	12.8	12.8	98	98	80-120	0	15	
Sulfate	mg/L	61.6	25	25	89.5	89.1	111	110	80-120	0	15	

SAMPLE DUPLICATE: 1787922

Parameter	Units	60222190001 Result	Dup Result	RPD	Max RPD	Qualifiers
Chloride	mg/L	112	112	0	15	
Fluoride	mg/L	0.38	0.95J			
Sulfate	mg/L	5370	4750	12	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Ottumwa Midland LF/25216073

Pace Project No.: 60222190

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-K Pace Analytical Services - Kansas City

ANALYTE QUALIFIERS

- B Analyte was detected in the associated method blank.
- D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
- H6 Analysis initiated outside of the 15 minute EPA required holding time.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Ottumwa Midland LF/25216073

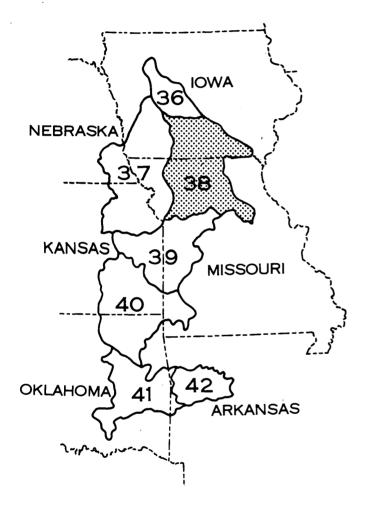
Pace Project No.: 60222190

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60222190001	MW-301	EPA 3010	436302	EPA 6010	436337
60222190002	MW-302	EPA 3010	436302	EPA 6010	436337
60222190003	MW-303	EPA 3010	436302	EPA 6010	436337
60222190004	MW-102M	EPA 3010	436302	EPA 6010	436337
60222190005	MW-122M	EPA 3010	436302	EPA 6010	436337
60222190006	FIELD BLANK	EPA 3010	436302	EPA 6010	436337
60222190001	MW-301	EPA 3010	436303	EPA 6020	436339
60222190002	MW-302	EPA 3010	436303	EPA 6020	436339
60222190003	MW-303	EPA 3010	436303	EPA 6020	436339
60222190004	MW-102M	EPA 3010	436303	EPA 6020	436339
60222190005	MW-122M	EPA 3010	436303	EPA 6020	436339
60222190006	FIELD BLANK	EPA 3010	436303	EPA 6020	436339
60222190001	MW-301	EPA 7470	436477	EPA 7470	436523
60222190002	MW-302	EPA 7470	436477	EPA 7470	436523
60222190003	MW-303	EPA 7470	436477	EPA 7470	436523
60222190004	MW-102M	EPA 7470	436477	EPA 7470	436523
60222190005	MW-122M	EPA 7470	436477	EPA 7470	436523
60222190006	FIELD BLANK	EPA 7470	436477	EPA 7470	436523
60222190001	MW-301	SM 2540C	436352		
60222190002	MW-302	SM 2540C	436352		
60222190003	MW-303	SM 2540C	436354		
60222190004	MW-102M	SM 2540C	436354		
60222190005	MW-122M	SM 2540C	436354		
60222190006	FIELD BLANK	SM 2540C	436354		
60222190001	MW-301	EPA 9040	436165		
60222190002	MW-302	EPA 9040	436165		
60222190003	MW-303	EPA 9040	436165		
60222190004	MW-102M	EPA 9040	436165		
60222190005	MW-122M	EPA 9040	436165		
60222190006	FIELD BLANK	EPA 9040	436165		
60222190001	MW-301	EPA 9056	437069		
60222190001	MW-301	EPA 9056	437083		
60222190002	MW-302	EPA 9056	437069		
60222190002	MW-302	EPA 9056	437083		
60222190003	MW-303	EPA 9056	437069		
60222190003	MW-303	EPA 9056	437083		
60222190004	MW-102M	EPA 9056	437069		
60222190004	MW-102M	EPA 9056	437083		
60222190005	MW-122M	EPA 9056	437069		
60222190005	MW-122M	EPA 9056	437083		
60222190006	FIELD BLANK	EPA 9056	437083		

Pace Analytical Sample Condition	Upon	ı Rec	eipt	WO#:60222190
				Optional Pace □ Other □ Client □ Proj Due Date: Jsed? Yes □ No □ Proj Name:
			tact: Y	
Custody Seal on Cooler/Box Present: Yes Ø No Packing Material: Bubble Wrap D Bubble Bag		ears m	Foam [. 4
CE-0.1 CE 0.0		e: V		Le None Samples received on ice, cooling process has begun
Cooler Temperature:		(é	(circle	
Temperature should be above freezing to 6°C				contents: JB6 25
Chain of Custody present:	Yes	ΠNo	□n/A	1
Chain of Custody filled out:	∕ ≜Yes	⊡No	□n/a	2
Chain of Custody relinguished:	□Yes	K No	□n/A	3.
Sampler name & signature on COC:	Yes	□No	□n/A	4
Samples arrived within holding time:	Yes	□No	□n/A	5.
Short Hold Time analyses (<72hr):	Yes	ΠNo	□n/A	6. DH
Rush Turn Around Time requested:	□Yes	No	□n/A	7.
Sufficient volume:	A Yes	□No	□n/A	8.
Correct containers used:	Ø Yes	ΩNo	□n/A	
Pace containers used:	Yes	□No	□n/A	9.
Containers intact:	¥ I¥iYes	ΠNo	□n/A	10.
Unpreserved 5035A soils frozen w/in 48hrs?	□Yes	□No		11.
Filtered volume received for dissolved tests?	□Yes	ΠNο	M/A	12.
Sample labels match COC:	X Yes	□No	□n/A	
Includes date/time/ID/analyses Matrix:	lu T			13.
All containers needing preservation have been checked.	1	□No	□n/A	
All containers needing preservation are found to be in compliance with EPA recommendation.	1	□No	□n/A	14.
Exceptions: VOA, Coliform, O&G, WI-DRO (water)	□Yes	No		Initial when Lot # of added completed preservative
Trip Blank present:	□Yes	□No	∦ IN/A	
Pace Trip Blank lot # (if purchased):				15.
Headspace in VOA vials (>6mm):	Yes	□No	₩ N/A	16.
Project sampled in USDA Regulated Area:	□Yes	□No		17. List State:
Additional labels attached to 5035A vials in the field?	⊡Yes	□No	M/A	18.
Client Notification/ Resolution: Copy CC	C to Clie	ent?	Y / C	
Person Contacted: Da	te/Time			
Comments/ Resolution:				
Project Manager Review:				Date: 6-27-16 F-KS-C-003-Rev.9, 30June2015

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document


The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

quired Ci	Required Client Information:	Section B Required Project Information	roject Info	ormation					Invo	Invoice Information:	nation:						1		<u>a</u>	Page:		of	,
Company:	SCS Engineers	Report To: Meghan Blodgett	Meghar	n Blodg	lett				Atte	Attention:	Megh	Meghan Blodgett/Jess Valcheff	dgett/Je	sss Val	cheff						1. 1. 1		a. 1
Address:	2830 Dairy Drive	Copy To:	Tom Karwaski	arwaski			-		Cor	Company Name		SCS Engineers	lineers		1		REGUL	ATORY	REGULATORY AGENCY	×			
	Madison WI 53718								Add	Address:							dN L	NPDES	- GRO	GROUND WATER	rer 1	DRINKIN	DRINKING WATER
Email To:	mblodgett@scsengineers.com	Purchase Order No :	Irder No .:						Pac	Pace Quote Reference:							L UST	F	RCRA	_	[OTHER	
Phone: 60	608-216-7362 Fax:	Project Name:		tumwa	Ottumwa Midland Landfill	I Landfi		P	Pac	Pace Project Manager.	Trudy	Trudy Gipson 913-563-1405	n 913-:	563-14	05		Site Location	cation		11			
uested	Requested Due Date/TAT:	Project Number: 25216073	nber. 25.	216073	-	ųų.			Pac	Pace Profile #:	6696	Line 2		uų.	ALL.	1	S	STATE:		≤			
	3	10								in the second se	1	6.8			Reque	sted /	Requested Analysis Filtered (Y/N)	: Filtere	(N/A) P				
Se Re	Section D Valid Matrix Codes Required Client Information COI	odes CODE			9	COLLECTED	TED	int i	o here United	ر المراجع توجوع الم	Presei	Preservatives	10	Z N/A	z	z							
	DRINKING WATER WATER WASTE WATER PRODUCT SCI//SOLID OIL	ors v wit	ee valid codes i		COMPOSITE STAR?		COMPOSIT END/GRAD	۳ø		A line of		nt ar i brechte				elsîlu? e		-p) (em)	1011	(N/Y) ə			
# WЭ1	SAMPLE ID WIFE (A-Z, 0-9 /) OTHER Sample IDS MUST BE UNIQUE TISSUE	A K A C C C C C C C C C C C C C C C C C	7000000000					TIME	# OF CONTAINER	perved	+CI +NO ³ +⁵2O ⁴	Va2S ₂ O3 HOBH	Vethanol Dther	Persi Metals: B-C P10 Total Metals: B-C	° sisteM IstoT 020	470 Total Hg 056 Chloride-Fluoride	040 pH 540C TDS	L. Hei Mi	1	Residual Chlorin	1 to a second	02C	COTTA 90
-	MW-301	end.	1.	-	+	y xxx	122/11	A	1 30	-	-			-	s ×	6 ×	6 ×	1			NZAR	BP2N2-0	° al
2	MW-302	197	WT G		-	xxx		1:30	_	-	+			×	×	× ×	×××					-	50
	MW-303	16.7	WT G	XXX		XXX		10:15	14.0 2	1	1			×	×	××	× ×	67			100		en B
4	MW-102M	1	WT G	XXX	_	XXX	1.1	1:15	HA 2	-	-			×	×	×××	××		_	_	_	-	ay
5	MW-122M		WT G	XXX	-	xxx 6	123/16	00:8	M .9 2	-	-			×	×	××	××	H		_	B	_	S
9	FIELD BLANK	6	MT G	XXX		XXX	122/101	13:10	1	-	-			×	×	××	× ×	2			*	-	are
7	0							201	-				-	i POL		45	5				2		
60	1	0)		H				n p						Hall		-				_			
6	6	100				-		10	-							-		_	-				
10	X			_	-			6m		_						-		_					
÷				_					-		_												
12				_					-		_			0		-		_	_	_			
	ADDITIONAL COMMENTS	1 H	RELING	UISHED	RELINQUISHED BY / AFFILIATION	ILIATION		DATE		TIME	9.4	Å	ACCEPTED BY / AFFILIATION	BY / A	FFILIA	NOL	-	DATE	JIME	-	SAA	SAMPLE CONDITIONS	ITIONS
Ship To: 96	9608 Loiret Boulevard, Lenexa, KS 66219		100			trijta						11	5	2	When		61	25	0520	0.8	>	7	>
-As-Ba	Sb-As-Ba-Be-Cd-Cr-Co-Pb-Mo-Se-TI	a			QX P	F(8)			_			11	1			Q.	-						4
				5.				1	-			1		1	20	in .	-8-1	2	-		E STATE		
Ра																2		4		•			
ge 2					S/	MPLER	SAMPLER NAME AND SIGNATURE	ID SIGNA	TURE	0	1	,							-	э.			
23 of						14 14	PRINT Name of SAMPLER:	of SAMPI	ER	d'al	14	1.1	25	216	J.C.					ui dwe	peviece NY) eol	S ybot: Y) 19loc	(N/Y) (N/Y)
23						10	SIGNATURE of SAMPLER.	IGMAS	19 .0-	-		1			UALES	naubi	5	111	1	1			16

APPENDIX D

USGS 1983 Open File Investigation – Mississippian Aquifer Groundwater Quality

HYDROLOGY OF AREA 38, WESTERN REGION, INTERIOR COAL PROVINCE IOWA AND MISSOURI

Ŷ

- CHARITON RIVER
- DES MOINES RIVER
- THOMPSON RIVER
- GRAND RIVER
- ELK FORK SALT RIVER

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

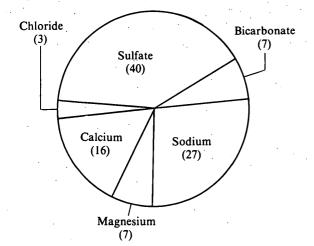
> WATER-RESOURCES INVESTIGATIONS OPEN-FILE REPORT 82-1014

Chemical Quality of Water from Mississippian and Pennsylvanian Aquifers is Variable and Generally Not Potable

Dissolved-solids concentrations in water from the Mississippian aquifer ranged from 370 to 8,220 milligrams per liter and in water from the Pennsylvanian aquifer dissolved-solids concentrations ranged from 250 to 6,790 milligrams per liter; sulfate and sodium are the dominant ionic species in water from both aquifers.

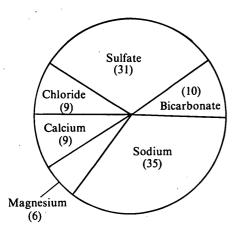
The quality of water in the Mississippian and Pennsylvanian aquifers is variable from place to place, but the water generally is not potable. The areal extent of Mississippian and Pennsylvanian bedrock throughout Area 38 is significant (figure 7.3-1). Neither the Pennsylvanian nor the Mississippian aquifer is a significant source of potable water in Area 38. Limited data for bedrock wells make it difficult to adequately define the characteristics of bedrock water throughout Area 38; however a general data analysis has been provided.

Minimum, maximum and average values for major chemical constituents in water from the Mississippian and Pennsylvanian aquifers are shown in tables 7.3-1 and 7.3-2. Ion-distribution diagrams are shown in figures 7.3-2 and 7.3-3 for both bedrock aquifers. These diagrams are designed to represent simultaneously the total solute concentration and the proportions assigned to each ionic species for a group of analyses.


Concentrations of dissolved solids averaged 3,140 mg/L (milligrams per liter) in water from wells completed in the Mississippian aquifer. The median pH was 7.2, and the average alkalinity was 345 mg/L. Sulfate concentrations ranged from 22 to 4,500 mg/L and sodium concentrations ranged from 6.8 to 2,660 mg/L. Sulfate and sodium are the dominant ionic species as they comprise 40 and 27 percent of the total solute concentration (93 milliequivalents per liter) in water from a typical well. Results of 70 chemical analyses of water from wells completed in the Mississippian aquifer in Iowa were used to compile figure 7.3-2.

The Mississippian aquifer is composed principal-

ly of carbonate rocks (limestone and dolomite). In Iowa, the aquifer can be divided into upper and lower units. The upper unit contains some gypsum and anhydrite beds that significantly affect the chemical quality of water (Cagle and Heinitz, 1978).


Concentrations of dissolved solids averaged 2,340 mg/L in water from wells completed in the Pennsylvanian aquifer. The median pH was 7.5 and the average alkalinity was 360 mg/L. Sulfate concentrations ranged from 1 to 4,000 mg/L and sodium concentrations ranged from 5.5 to 2,400 mg/L. Sodium and sulfate are the dominant ionic species as they comprise 35 and 31 percent of the total solute concentration (72 milliequivalents per liter) in water from a typical well. Results of 98 chemical analyses of water from wells completed in the Pennsylvanian aquifer, 76 in Iowa and 22 in Missouri, were used to compile figure 7.3-3.

The Pennsylvanian bedrock in Area 38 is composed predominately of impermeable shale beds, which are a regional confining bed that separates the surficial aquifer from underlying aquifers. However, limestone and sandstone beds are aquifers of local and subregional extent in parts of south-central Iowa (Cagle and Heinitz, 1978). Sources of the sodium and sulfate ions are ion exchange for sodium and pyrite for sulfate. Wells that penetrate clay and shale generally obtain water with excessive dissolved solids directly from the shale layers, which have large cation-exchange capabilities (Hem, 1970). Pyrite is commonly associated with biogenic deposits such as coal, which were deposited under extreme reducing conditions.

VALUES, IN PERCENTAGE OF TOTAL MILLEQUIVALENTS PER LITER

Figure 7.3-2 Average chemical composition for water from wells in the Mississippian aquifer.

VALUES, IN PERCENTAGE OF TOTAL MILLEQUIVALENTS PER LITER

Figure 7.3-3 Average chemical composition for water from wells in the Pennsylvanian aquifer.

Table 7.3-1 Summary of water-quality data available for the Mississippian aquifer.

[Concentrations in milligrams per liter unless otherwise specified; < = less than]

Constituent	Range	Average	Number of samples
Iron (Fe)	0.02 - 50	6.3	70
Manganese (Mn)	0.01 - 1.4	0.17	70 ⁻
Calcium (Ca)	10 - 642	279	70
Magnesium (Mg)	3.1 340	77	70
Sodium (Na)	6.8 - 2,660	584	70
Potassium (K)	0.2 - 45	14	68
Bicarbonate (HCO ₁)	168 - 1,350	420	. 70
Sulfate (SO ₄)	22 - 4,500	1,697	70
Chloride (C1)	0.5 - 3,570	137	70
Nitrate (NO ₃)	<0.1 - 150	4.5	70
pH	6.3 - 8.0	(median)7.2	66
Hardness (CaCO ₃)	38 - 2,950	1,029	69
Alkalinity (CaCO ₃) Dissolved solids	138 - 1,100	345	70
Dissolved solids	370 - 8,220	3,138	66
Specific conductance	370 - 9,000	3,850	63
(micromhos per centime	eter at 25° Cel	lsius)	

Table 7.3-2Summary of water-quality dataavailable for the Pennsylvanian aquifer.

[Concer	itrations	in	milligra	18	per	liter	
unless	otherwise	: 81	pecified:	<	= 1e	es tha	n 1

Constituent	Range	Average	Number of samples
Iron (Fe)	0.01 - 22	2.5	96
Manganese (Mn)	0.01 - 2.3	0.16	95
Calcium (Ca)	2.4 - 460	133	97
Magnesium (Mg)	1.5 394	48	97
Sodium (Na)	5.5 - 2,400	574	96
Potassium (K)	0.9 - 38	8.5	84
Bicarbonate (HCO ₁)	120 - 1.240	437	94
Sulfate (SO ₄)	1 - 4,000	1,046	97
Chloride (C1)	0.5 - 3.060		98
Nitrate (NO ₂)	<0.1 - 200	4.3	97
pH 3	6.5 - 8.3	(median)7.5	95
Hardness (CaCO ₁)	29 - 2,000		96
Alkalinity (CaCO ₁)	98 - 1,080		98
Dissolved solids	250 - 6,790		98
Specific conductance	350 - 7,700		75
(micromhos per centim	eter at 25° Ce	lsius)	

B2 Alternative Source Demonstration, April 2018 Detection Monitoring

Alternative Source Demonstration April 2018 Detection Monitoring

Ottumwa Midland Landfill Ottumwa, Iowa

Prepared for:

25216073.18 | October 31, 2018

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830

Table of Contents

Sect	ion		Pag	е
PE C	ERTIF	CATION		iii
1.0	INTR	ODUCTI	ON	1
	1.1	§257.9	94(E)(2) Alternative Source Demonstration Requirements	1
	1.2	Site In	formation and Map	1
	1.3	Statist	ically Significant Increases Identified	1
	1.4		ew of ASD	
2.0	BAC	GROUN	ID	2
	2.1	Region	al Geology and Hydrogeology	2
	2.2	CCR M	onitoring System	3
	2.3	Other I	Nonitoring Wells	3
	2.4	Ground	dwater Flow Direction	3
3.0	METI		DGY AND ANALYSIS REVIEW	-
	3.1	Sampli	ing and Field Analysis Review	3
	3.2		tory Analysis Review	
	3.3		ical Evaluation Review	
	3.4		ary of Methodology and Analysis Review Findings	
4.0	ALTE		E SOURCES	
	4.1	Potent	ial Causes of SSI	
		4.1.1	Natural Variation	
		4.1.2	Man-made Alternative Sources	-
	4.2	Lines o	of Evidence	
		4.2.1	Mississippian Limestone Aquifer Water Quality	
		4.2.2	Leachate Versus Groundwater Concentrations	
		4.2.3	Overlying Pennsylvanian Shale Aquitard	
		4.2.4	Landfill Liner System	
		4.2.5	Shallow Groundwater Monitoring Results	
5.0			JSIONS	
6.0			DWATER MONITORING RECOMMENDATIONS	-
7.0	REFE	RENCE	S	7

Tables

1	Detection Monitoring Results Summary – April 2018
2	Chloride Analytical Results - CCR Detection Monitoring Program
3	Groundwater Elevations – CCR Rule Monitoring Network

Figures

- 1 Site Location Map
- 2 3 Monitoring Well Location Map
- Potentiometric Surface Map April 2018

Appendix

CCR Well Trend Plot - Chloride Appendix A

I:\25216073.00\Reports\2018 ASD Report 2\181031_ASD_OML.docx

PE CERTIFICATION

ERIC J. NELSON	I, Eric J. Nelson, hereby certify that that the information in this alternate source demonstration is accurate and meets the requirements of 40 CFR 257.94(e)(2). This certification is based on my review of the groundwater data and related site information available for the Ottumwa Midland Landfill. I am a duly licensed Professional Engineer under the laws of the State of Iowa.			
/owa	[Muh	10/31/2018		
	(šignature)	(date)		
	Eric J. Nelson			
	(printed or typed name)			
	License number 23136			
	My license renewal date is Decembe	r 31, 2018.		
	Pages or chaots sovered by this seal			
	Pages or sheets covered by this seal. Alternative Source Demonstration Ap			
	Detection Monitoring, Ottumwa Midla			
	Ottumwa, Iowa			

[This page left blank intentionally]

1.0 INTRODUCTION

This Alternative Source Demonstration (ASD) was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" published by the U.S. Environmental Protection Agency (USEPA) in the Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule, dated April 17, 2015 (USEPA, 2015), and subsequent amendments. Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.94(e)(2). The applicable sections of the Rule are provided below in italics.

1.1 §257.94(E)(2) ALTERNATIVE SOURCE DEMONSTRATION REQUIREMENTS

The owner and operator may demonstrate that a source other than the CCR Unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels.

An ASD is completed when there are exceedances of one or more benchmarks established within the groundwater monitoring program. The ASD is completed to determine if any other sources are likely causes of the identified exceedance(s) of established benchmark(s) at the site. This ASD was performed in response to results indicating a statistically significant increase (SSI) over background levels during detection monitoring under the CCR Rule.

This ASD report is evaluating the SSI observed in the statistical evaluation of the April 2018 detection monitoring event at the Ottumwa Midland Landfill (OML). An ASD was previously prepared for this facility evaluating the SSIs observed in the statistical evaluation of the November 2017 detection monitoring event (SCS, 2018b). The November 2017 ASD (dated April 2018) concluded that several lines of evidence demonstrated the SSI reported for the chloride concentration in downgradient monitoring well MW-301 is likely due to naturally occurring chloride in the bedrock aquifer at OML.

As discussed in more detail in Section 4.2 of this ASD, the findings of the April 2018 monitoring event were consistent with those for the previous event.

1.2 SITE INFORMATION AND MAP

The OML facility is located at 15300 130th Street in Ottumwa, Wappello County, Iowa (Figure 1). OML is an active landfill, operating under Iowa Department of Natural Resources (IDNR) permit #90-SDP-8-92P.

The locations of the CCR Units and all background (or upgradient) and downgradient monitoring wells with identification numbers for the groundwater monitoring program are shown on **Figure 2**.

1.3 STATISTICALLY SIGNIFICANT INCREASES IDENTIFIED

The only SSI for the April 2018 monitoring event was for chloride at monitoring well MW-301. A summary of the April 2018 constituent concentrations and the established benchmark concentrations is provided in **Table 1**. The November 2017 results are also included for comparison.

The constituent concentrations with SSIs above the background concentrations are highlighted in the table.

1.4 OVERVIEW OF ASD

This ASD report includes:

- Background information (Section 2.0)
- Evaluation of potential that SSIs are due to methodology or analysis (Section 3.0)
- Evaluation of potential that SSIs are due to natural sources or man-made sources other than the CCR Units (Section 4.0)
- ASD conclusions (Section 5.0)
- Monitoring recommendations (Section 6.0)

The chloride results from background and compliance sampling under the CCR Rule are provided in **Table 2**. Complete laboratory reports for the background monitoring events and the November 2017 detection monitoring event were included in the 2017 Annual Groundwater Monitoring and Corrective Action Report for OML (SCS, 2018a). The April 2018 detection monitoring report was previously transmitted to IPL and will be included in the 2018 annual report due in January 2019.

2.0 BACKGROUND

To provide context for the ASD evaluation, the following background information is provided in this section of the report, prior to the ASD evaluation sections:

- Geologic and hydrogeologic setting
- CCR Rule monitoring system
- Other monitoring wells

A more detailed discussion of the background information for the site is provided in the ASD for the November 2017 event (SCS, 2018b).

2.1 REGIONAL GEOLOGY AND HYDROGEOLOGY

For the purposes of groundwater monitoring, the Mississippian limestone unit is considered to be the uppermost aquifer unit at the OML site as defined under 40 CFR 257.53 at OML. Devonian aged units underlay the Mississippian limestone and are composed of shale, dolomite, and limestone. Silurian dolomite underlays the Devonian shale, dolomite, and limestone.

The Des Moines River and associated alluvial aquifers are a major source of surface water and shallow groundwater in the area; however, the alluvial aquifer is not present at the OML site.

Unconsolidated deposits at the site consist of clays overlain by loess, which are not productive sources of groundwater. The uppermost Pennsylvanian bedrock unit is considered to be a regional aquitard. The Cambrian-Ordovician aquifer, comprised of dolomite and sandstone, is commonly the source of municipal and industrial high-capacity wells in the region (Coble, 1971).

Regional information indicates that groundwater flow within the Mississippian limestone is to the south-southeast.

2.2 CCR MONITORING SYSTEM

The groundwater monitoring system established under the CCR Rule consists of two upgradient (background) monitoring wells and three downgradient monitoring wells. The upgradient monitoring wells include MW-122M and MW-102M. The downgradient monitoring wells include MW-301, MW-302, and MW-303. The CCR Rule wells are installed in the upper portions of the Mississippian limestone aquifer. Well depths range from approximately 150.0 to 204.5 feet, measured from the top of the well casing.

2.3 OTHER MONITORING WELLS

Forty-two groundwater monitoring wells currently exist at OML as part of the monitoring system developed for the state monitoring program. The well locations are shown on **Figure 2**. These monitoring wells are used to monitor groundwater conditions at the site under the IDNR state monitoring program.

Monitoring wells for the state monitoring program are installed in the unconsolidated deposits and in the Pennsylvanian shale unit, which are not the uppermost aquifer as defined under 40 CFR 257.53. This shallow monitoring system includes water table wells, piezometers in the Pennsylvanian shale, and piezometers in the underlying Mississippian limestone. Well depths range from approximately 20 to 177 feet, measured from the top of the well casing.

2.4 GROUNDWATER FLOW DIRECTION

As discussed in the November 2017 ASD (dated April 2018), shallow groundwater flow at the water table appears to be controlled partially by the landfill underdrain system and partially by the top of the Pennsylvanian shale. Shallow groundwater, near the current fill area, flows toward the landfill and the sedimentation pond.

The April 2018 potentiometric surface map (**Figure 3**) shows groundwater flow to the south to southeast, consistent with previous potentiometric surface maps, and the regional groundwater flow. The groundwater elevations for the April 2018 sampling event are shown on **Table 3**.

3.0 METHODOLOGY AND ANALYSIS REVIEW

To evaluate the potential that an SSI is due to a source other than the regulated CCR Unit, SCS Engineers (SCS) used a two-step evaluation process. First, the sample collection, field and laboratory analysis, and statistical evaluation were reviewed to identify any potential error or analysis that led to exceedance of the benchmark. Second, potential alternative sources, including natural variation and man-made sources other than the CCR Unit, were evaluated. This section provides the findings of the methodology and analysis review. **Section 4.0** of this report addresses the potential alternative sources.

3.1 SAMPLING AND FIELD ANALYSIS REVIEW

Field notes and sampling results were reviewed to determine if any sampling error may have caused or contributed to the observed SSI for chloride. Potential field sampling errors or issues could include mislabeling of samples, improper sample handling, missed holding times, cross contamination during sampling, or other field error. Field blank sample results were also reviewed for any indication of potential contamination from sampling equipment or containers. Based on the review of the field notes and results, SCS did not identify any indication that the chloride SSI was due to a sampling error.

Because chloride is a laboratory parameter, there is little potential for a field analysis error to contribute to an SSI.

3.2 LABORATORY ANALYSIS REVIEW

Laboratory reports for the background monitoring for the April 2018 detection monitoring were reviewed to determine if any laboratory analysis error or issue may have caused or contributed to the observed SSI for chloride. The laboratory report review included reviewing the laboratory quality control flags and narrative, verifying that correct methods were used and desired detection limits were achieved, and checking the field and laboratory blank sample results.

Based on the review of the laboratory reports, SCS did not identify any indication that the chloride SSI was due to a laboratory analysis error. There were no laboratory quality control flags or issues identified in the laboratory report that affect the usability of the data for detection monitoring.

A time series plot of the analytical data for chloride was reviewed for any anomalous results that might indicate a possible sampling or laboratory error (e.g., dilution error or incorrect sample labeling). The time series plot is provided in **Appendix A**. The April 2018 chloride results for MW-301 are consistent with historical data.

3.3 STATISTICAL EVALUATION REVIEW

The review of the statistical results and methods include a quality control check of the following:

- Input analytical data vs. laboratory analytical reports
- Review of statistical method and outlier concentration lists for each monitoring well/CCR Unit

Based on the review of the statistical evaluation, SCS did not identify any errors or issues in the statistical evaluation that caused or contributed to the determination of an interwell SSI for chloride at well MW-301.

3.4 SUMMARY OF METHODOLOGY AND ANALYSIS REVIEW FINDINGS

In summary, there were no changes to the SSI determinations for the April 2018 monitoring event based on the methodology and analysis review, and no errors or issues causing or contributing to the reported chloride SSI were identified.

4.0 ALTERNATIVE SOURCES

This section of the report discusses the potential alternative sources for the chloride SSI at MW 301, identifies the most likely alternative source(s), and presents the lines of evidence indicating that an alternative source is the most likely cause of the observed SSI for chloride.

4.1 POTENTIAL CAUSES OF SSI

4.1.1 Natural Variation

The statistical analysis was completed using an interwell approach, comparing the April 2018 detection monitoring results to the Upper Prediction Limits (UPLs) calculated based on sampling of the background wells (MW-102 and MW-122M). If concentrations of a constituent that is naturally

present in the aquifer vary spatially, then the potential exists that the downgradient concentrations may be higher than upgradient concentrations due to natural variation.

Chloride is naturally present in the limestone aquifer based on observations of previous studies in the area. Based on regional and site information, discussed below, natural variation appears to be a likely cause of the chloride SSI for well MW-301.

4.1.2 Man-made Alternative Sources

Man-made alternative sources that could potentially contribute to the chloride SSI at MW-301 include on-site management of CCR leachate or contact water, or non-CCR sources such as road salt use, septic systems, or surrounding agricultural land use. Based on the depth to the Mississippian aquifer and the low permeability of the overlying Pennsylvanian shale, it does not appear likely that one or more of these man-made alternative sources is the cause of the chloride SSI.

4.2 LINES OF EVIDENCE

Each of these lines of evidence and the supporting data were discussed in detail in the ASD for the November 2017 detection monitoring event (SCS, 2018b). The lines of evidence are discussed briefly below, focusing on any updated information collected since the previous ASD, with references to the previous ASD for additional details.

4.2.1 Mississippian Limestone Aquifer Water Quality

Regional and site-specific information indicates that chloride concentrations in the Mississippian limestone aquifer are variable, and the concentrations detected in samples from MW-301 are well within the range of concentrations naturally present in the aquifer. The U.S. Geological Survey (USGS) Water completed an Open File Report 82-1014, Hydrology of Area 38, of the Western Region, Interior Coal Province of Iowa and Missouri. OML is located within the area of investigation, and a chapter from the report addressed water quality in the Mississippian limestone aquifer. The USGS investigation reported chloride concentrations ranging from 0.5 to 3,570 milligrams per liter (mg/L) for the limestone aquifer within the study area, with an average chloride concentration of 137 mg/L. The chloride concentration for MW-301 in the April 2018 detection monitoring event was 33.9 mg/L; therefore, the observed concentration for MW-301 was well below the average concentration of chloride in the limestone aquifer.

In background sampling performed for the Phase 1 expansion, four monitoring wells installed in the Mississippian aquifer were sampled in April 2013, prior to construction of the expansion. The wells included the two wells used as background wells for the CCR Rule monitoring system (MW-102M and MW-122M) and two additional wells in the Mississippian aquifer (MW-110M and MW-116M). The chloride results for the sample event ranged from 20 to 75.8 mg/L, with two of the four results exceeding the April 2018 chloride concentration at MW-301.

4.2.2 Leachate Versus Groundwater Concentrations

Although chloride exceeded the interwell SSI, other CCR indicator parameters such as boron, were not detected at concentrations exceeding background levels in the sample from MW-301. In recent samples from the leachate lagoon, boron and sulfate have typically been detected at concentrations at least an order of magnitude higher than the chloride concentration. Leachate and ash contact water are monitored under the state monitoring program for the landfill. See the October 2017 ASD for additional details (SCS, 2018b).

If leachate from the CCR landfill were the source of elevated chloride, then some increase in boron and sulfate relative to background would also be expected. The absence of other CCR indicator parameters with SSIs, or increasing concentration trends, suggests that the chloride SSI is due to natural variation rather than CCR disposal.

4.2.3 Overlying Pennsylvanian Shale Aquitard

The hydraulic conductivity of the Pennsylvanian shale aquitard overlying the Mississippian limestone aquifer is low, and there is limited hydrogeologic connection between the shallow groundwater and the aquifer. The lack of hydrogeologic connection is evidenced by large differences between water levels measured in wells in the unconsolidated deposits or Pennsylvanian shale and water levels measured in wells in the Mississippian limestone. Water levels in Mississippian aquifer monitoring wells MW-302 and MW-303 are approximately 40 feet below the water levels measured in adjacent Pennsylvanian shale monitoring wells MW-14 and MW-13.

4.2.4 Landfill Liner System

Both the original landfill and expansion Phase 1 have low permeability liners. The original landfill was lined with 4 feet of compacted fine-grained soil having a hydraulic conductivity of no more than 1×10^{-7} centimeters per second (cm/sec). Expansion Phase 1 has a composite liner system including 2 feet of compacted clay, a 60-mil high density polyethylene (HDPE) geomembrane, and a leachate collection drainage layer. The original landfill and expansion Phase 1 both have underdrain systems that collect groundwater below the liner and maintain separation between the water table and the liner.

4.2.5 Shallow Groundwater Monitoring Results

Monitoring results for the shallow groundwater below and adjacent to the landfill do not show elevated chloride concentrations. In the four monitoring wells sampled in the shallow hydrogeologic unit under the state monitoring program, the highest chloride concentrations were at upgradient well MW-1, which may be affected by road salt. Chloride concentrations in the remaining three shallow wells in the state program were below the April 2018 chloride concentrations in CCR compliance well MW-301. The groundwater samples collected from the underdrain system, which collects groundwater below the landfill liner, also had chloride concentrations below the level in the upgradient well (MW-1) and below the chloride concentrations in CCR compliance well MW-301 for the April 2018 events. Additional details regarding the shallow groundwater data were provided in the October 2017 ASD (SCS, 2018b).

5.0 ASD CONCLUSIONS

The lines of evidence discussed above regarding the SSI reported for the chloride concentration in downgradient monitoring well MW-301 demonstrate that the SSI is likely due to naturally occurring chloride in the limestone aquifer at the OML site.

6.0 SITE GROUNDWATER MONITORING RECOMMENDATIONS

In accordance with section 257.94(e)(2) of the CCR Rule, the OML site may continue with detection monitoring based on this ASD. This ASD report will be included in the 2018 Annual Report due January 31, 2019.

For future detection monitoring events, SCS recommends that the statistical method for evaluating chloride data at the three compliance wells be modified to an intrawell approach. This approach is appropriate for constituents which exhibit natural spatial variability, as has been documented for chloride at the OML facility.

7.0 **REFERENCES**

Coble, R.W., 1971, The Water Resources of Southeast Iowa, Iowa Geological Survey Water Atlas Number 4, 1971.

SCS Engineers, 2018a, 2017 Annual Groundwater Monitoring and Corrective Action Report, Ottumwa Midland Landfill, Ottumwa, IA, January 2018. (2018a)

SCS Engineers, 2018b, Alternative Source Demonstration November 2017 Detection Monitoring, Ottumwa Midland Landfill, Ottumwa, IA, April 2018. (2018b)

U.S. Environmental Protection Agency, 2015, Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule, April 2015.

U.S. Geological Survey, 1983, Water Resources Investigations Open File Report 82-1014, Hydrogeology Area 38, Western Region, Interior Coal Province, Iowa and Missouri; Rolla, Missouri and Iowa City, Iowa, May 1983.

[This page left blank intentionally]

Tables

- 1 Detection Monitoring Results Summary April 2018
- 2 Chloride Analytical Results CCR Detection Monitoring Program
- 3 Groundwater Elevations CCR Rule Monitoring Network

Table 1. Detection Monitoring Results Summary - November 2017 & April 2018

IPL - Ottumwa Midland Landfill

Ottumwa, Iowa

Parameter Name	Units	Interwell Upper	Background Wells			Compliance Wells						
		Prediction Limit (UPL)	MW-102M		MW-122M		MW-301		MW-302		MW-303	
			11/8/2017	4/18/2018	11/8/2017	4/18/2018	11/7/2017	4/18/2018	11/7/2017	4/18/2018	11/7/2017	4/18/2018
Boron	ug/L	5,220	1480	1550	5220	5560	1010	854	848	834	738	738
Calcium	mg/L	599	10.4	25.3	383	402	161	131	74	77.3	94.9	103
Chloride	mg/L	21.9	12.3	13.5	7.2	8	28.9	33.9	7.8	8.6	6.9	7.3
Fluoride	mg/L	6.31	4.6	4.5	0.5	<0.063	0.77	0.87	1.2	1	0.77	0.8
Field pH	Std. Units	8.63	8.16	8.34	6.16	6.65	6.56	7.09	7.41	7.8	6.96	7.32
Sulfate	mg/L	17,500	335	352	9440	10400	926	638	77.5	79.3	232	262
Total Dissolved Solids	mg/L	18,100	1410	1540	13400	14400	1760	1400	607	690	783	839

Statistically significant increase at compliance well

Notes:

- 1. UPL based on parametric prediction limit based on 1-of-2 resampling methodology for fluoride and pH.
- 2. UPL for boron, calcium, chloride, sulfate and total dissolved solids based on non-parametric prediction limit (highest background value). Optional resampling for chloride at MW-301 not performed.
- 3. UPLs calculated from background well results for April 2016 through November 2017.
- 4. Analytical laboratory reports provided in the 2017 Annual Groundwater Monitoring and Corrective Action Report.
- 5. The April 2018 Analytical laboratory report provided in the 2018 Annual Groundwater Monitoring and Corrective Action Report.

I:\25216073.00\Reports\2018 ASD Report 2\Tables\[OML ASD Tables_1,2,3.xlsx]Table 1. Detect Monit. Sum

Table 2. Chloride Analytical Results - CCR Detection Monitoring Program

IPL - Ottumwa Midland Landfill

Ottumwa, Iowa

Well Group	Well	Collection Date	Chloride (mg/L)
		5/4/2016	16.3
		6/22/2016	13.8
		8/10/2016	13.4
		10/26/2016	13
	MW-102M	1/18/2017	12.3
	M(VV-102/V(4/20/2017	12.5
		6/21/2017	12.8
		8/22/2017	13.1
р		11/8/2017	12.3
Background		4/18/2018	13.5
ckg		5/5/2016	16.4
Ba		6/23/2016	21.9
		8/10/2016	11.8
		10/26/2016	8.2
		1/18/2017	8.3
	MW-122M	4/20/2017	8
		6/21/2017	7.8
		8/22/2017	7.8
		11/8/2017	7.2
		4/18/2018	8
		5/4/2016	42.4
		6/22/2016	112
		8/9/2016	46.6
		10/26/2016	43.4
	1014 201	1/17/2017	32.6
	MW-301	4/20/2017	58
		6/20/2017	38.9
		8/22/2017	40.8
8		11/7/2017	28.9
iane		4/18/2018	33.9
Complianc		5/4/2016	9.2
ů		6/22/2016	8.1
		8/10/2016	7.5
		10/26/2016	6
	MNA/ 202	1/17/2017	7.7
	MW-302	4/19/2017	8
		6/20/2017	8
		8/22/2017	8.5
		11/7/2017	7.8
		4/18/2018	8.6

Table 2. Chloride Analytical Results - CCR Detection Monitoring Program

IPL - Ottumwa Midland Landfill

Ottumwa, Iowa

Well Group	Well	Collection Date	Chloride (mg/L)
		5/4/2016	13.5
		6/22/2016	11.5
Compliance		8/9/2016	8.7
		10/26/2016	7.5
	MW-303	1/17/2017	7.1
		4/19/2017	6.9
Ů		7/19/2017	7.2
		8/22/2017	7.3
		11/7/2017	6.9
		4/18/2018	7.3

Abbreviations:

mg/L = milligrams per liter or parts per billion (ppm)

Notes:

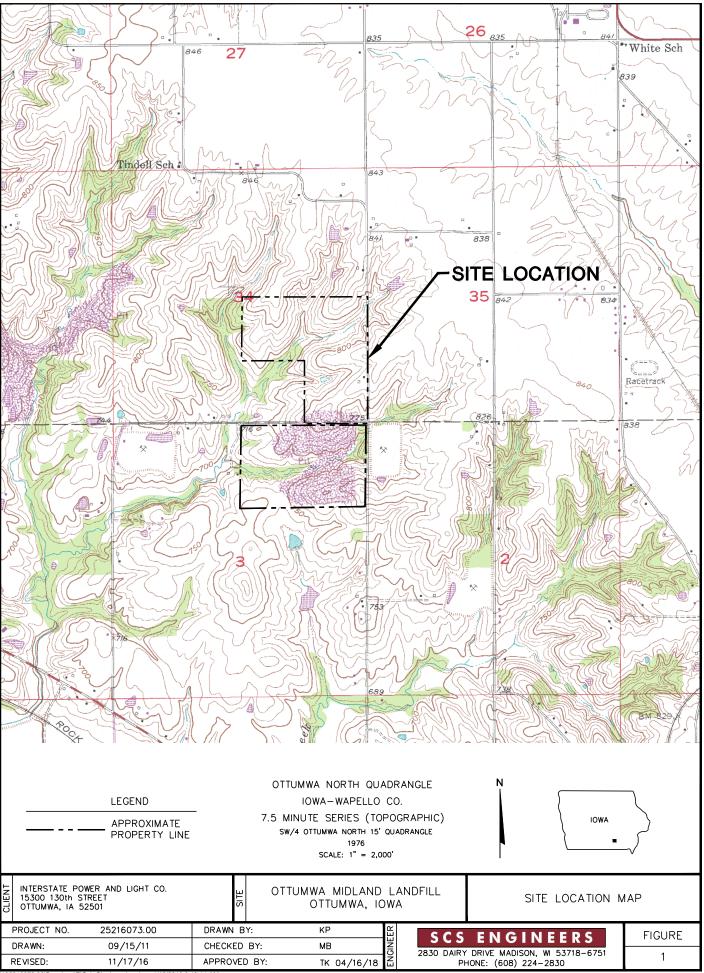
April 2016 through October 2017 analytical laboratory reports provided in the 2017 Annual Groundwater Monitoring and Corrective Action Report. The April 2018 analytical laboratory report will be provided in the 2018 Annual Groundwater Monitoring and Correction Action Report.

Created by:	NDK	2/22/2018
Last revision by:	NDK	9/10/2018
Checked by:	AJR	9/10/2018

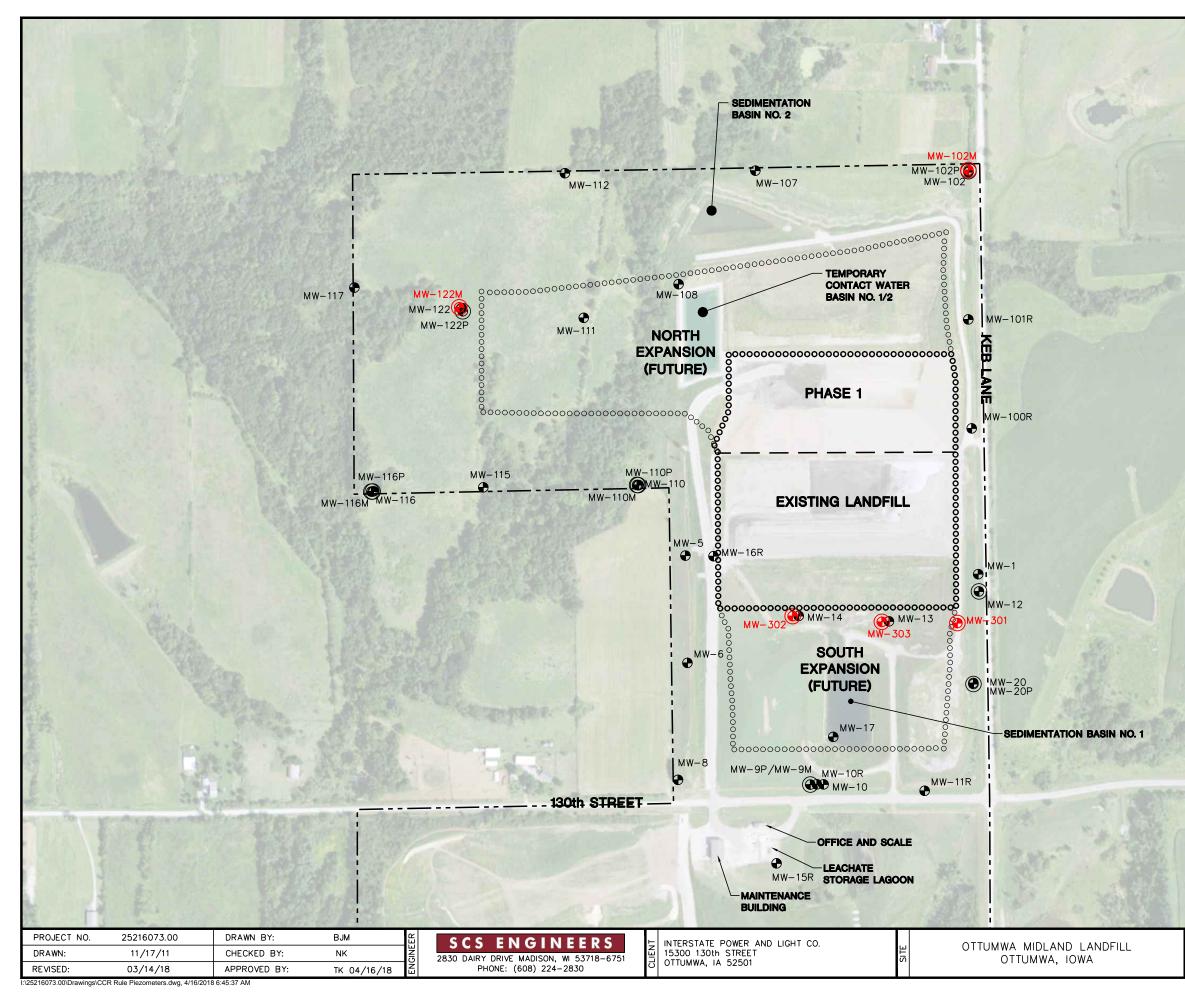
I:\25216073.00\Reports\2018 ASD Report 2\Tables\[OML ASD Tables_1,2,3.xlsx]Table 2 CCR CI

Table 3. Groundwater Elevations – CCR Rule Monitoring Network

IPL - Ottumwa Midland Landfill Ottumwa, Iowa


	Ground Wate	Ground Water Elevation in feet above mean sea level (amsl)					
Well Number	MW-301	MW-302	MW-303	MW-102M	MW-122M		
Top of Casing Elevation (feet amsl)	817.88	761.77	762.40	798.03	792.70		
Screen Length (ft)	5.00	5.00	5.00	5.00	5.00		
Total Depth (ft from top of casing)	204.50	157.70	150.00	152.10	155.30		
Top of Well Screen Elevation (ft)	618.38	609.07	617.40	652.65	642.94		
Measurement Date							
May 4, 2016	686.46	685.80	686.04	728.73	729.27		
June 22, 2016	686.40	685.79	687.72	718.74	725.67		
August 9, 2016	686.19	685.48	687.77	715.65	725.16		
October 25-26, 2016	683.70	684.94	685.56	716.94	724.61		
January 17, 2017	685.57	685.68	685.60	717.91	724.02		
April 19-20, 2017	685.72	684.73	685.51	717.80	724.04		
June 20-21, 2017	685.88	684.76	685.59	714.83	723.51		
August 21-22, 2017	684.96	683.89	684.70	713.23	722.02		
November 7-8, 2017	684.50	683.38	684.26	713.53	720.52		
April 16-18, 2018	684.85	683.87	684.68	717.38	723.25		
Bottom of Well Elevation (ft)	613.38	604.07	612.40	645.93	637.40		

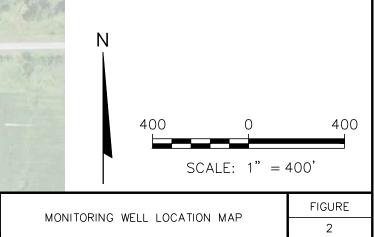
Notes:	Created by:	NDK	Date:	2/21/2018
NM = not measured	Last revision by:	NDK	Date:	9/10/2018
Water levels collected during Sample Collection	Checked by:	AJR	Date:	9/10/2018

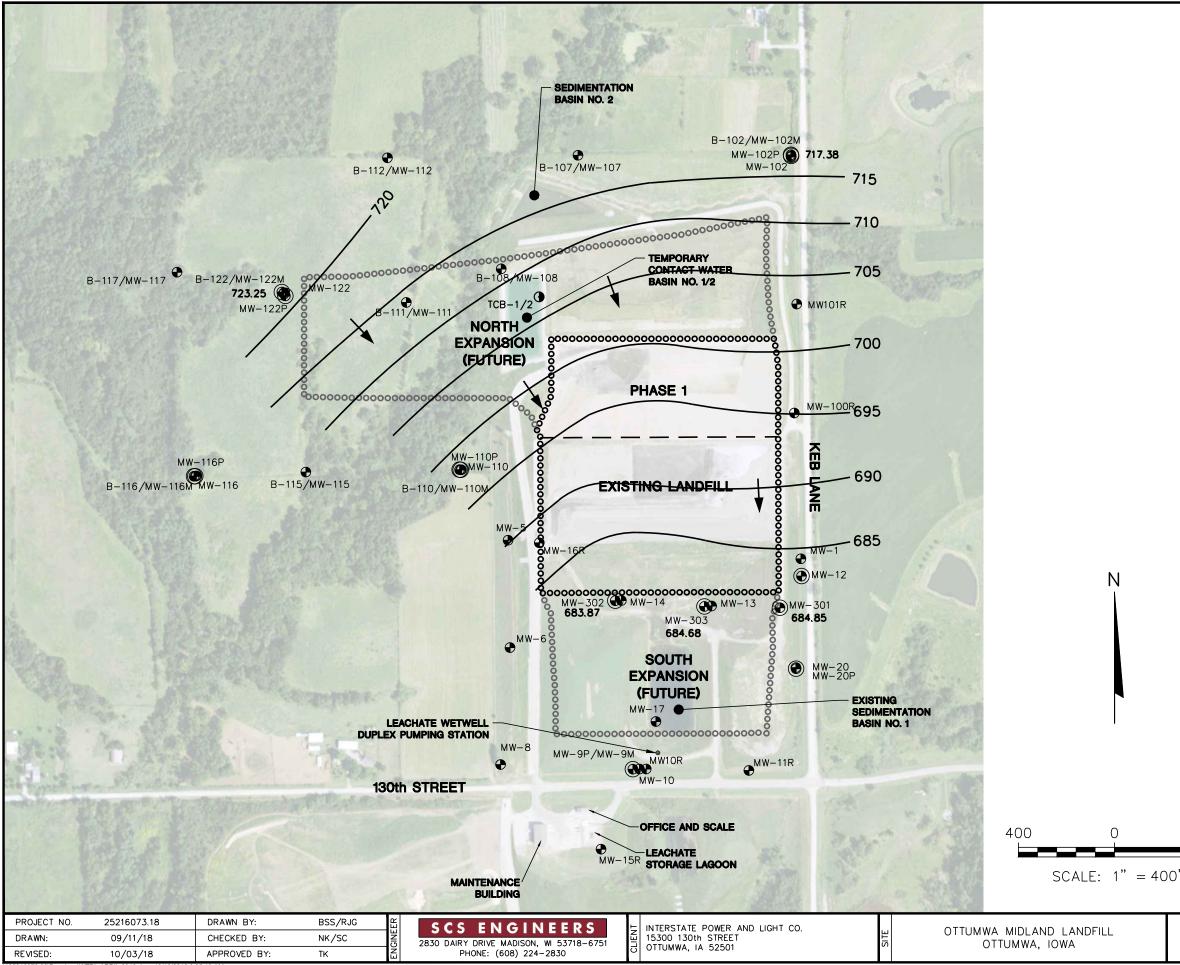

I:\25216073.00\Reports\2018 ASD Report 2\Tables\[OML ASD Tables_1,2,3.xlsx]Table 3 CCR GW elevations

Figures

- 1 Site Location Map
- 2 Monitoring Well Location Map
- 3 Potentiometric Surface Map April 2018

I:\25216073.00\Drawings\FIG 1 Site Location.dwg, 4/16/2018 6:43:14 AM




LEGEND

	APPROXIMATE PROPERTY LINE
0000000	EXISTING WASTE LIMITS
·00000000·	NORTH EXPANSION AREA
•	MONITORING WELL
۲	PIEZOMETER
\bigcirc	CCR RULE PIEZOMETER

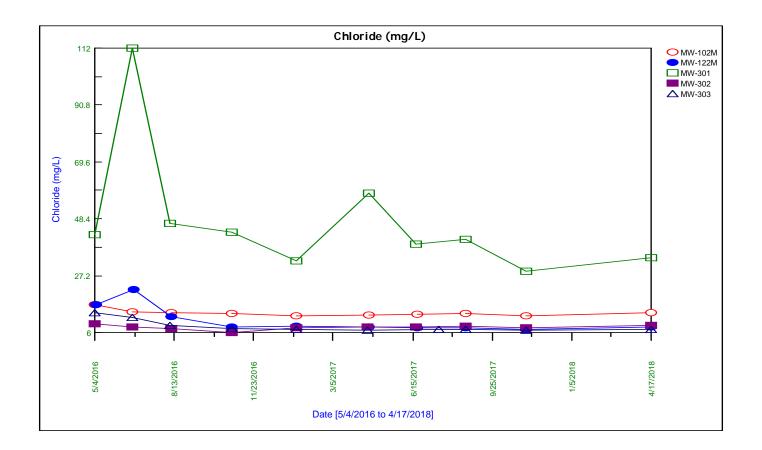
NOTES:

- 2015 AERIAL PHOTOGRAPH IS FROM THE IOWA GEOGRAPHIC MAP SERVER-IOWA STATE UNIVERSITY GEOGRAPHIC INFORMATION SYSTEMS SUPPORT & RESEARCH FACILITY.
- PROPERTY LINE SOUTH OF 130TH STREET FROM SURVEY MAP PREPARED BY GARDEN & ASSOCIATES, OSKALOOSA, IOWA, DATED DECEMBER 20, 1988.
- PROPERTY LINE NORTH OF 130TH STREET FROM PLAT OF SURVEY MAP PREPARED BY SCS ENGINEERS, MADISON, WISCONSIN, DATED FEBRUARY 20, 2013.
- 4. EXISTING LIMITS OF WASTE ARE APPROXIMATE.
- MONITORING WELLS MW-301 AND MW-302 WERE INSTALLED BY CASCADE DRILLING BETWEEN NOVEMBER 16, 2015, AND DECEMBER 3, 2015.
- MONITORING WELL MW-303 WAS INSTALLED BY TEAM SERVICES BETWEEN APRIL 11, 2016 AND APRIL 26, 2016.
- MONITORING WELLS MW-301 THROUGH MW-303 WERE SURVEYED BY FRENCH-RENEKER-ASSOCIATES ON MAY 19, 2016.

216073.00\Drawings\W -APRIL 2018.dwg, 10/

	LEGEND
	APPROXIMATE PROPERTY LINE
•0000000	APPROVED WASTE LIMITS
•0000000	EXISTING WASTE LIMITS
	PHASE LIMIT
•	EXISTING MONITORING WELL
۲	EXISTING PIEZOMETER
•	TEMPORARY CONTACT WATER BASIN
684.85	WATER TABLE ELEVATION (APRIL 2018)
	POTENTIOMETRIC SURFACE CONTOUR (DASHED WHERE INFERRED)
->	APPROXIMATE GROUNDWATER FLOW DIRECTION

NOTES:


- 1. 2015 AERIAL PHOTOGRAPH IS FROM THE IOWA GEOGRAPHIC MAP SERVER-IOWA STATE UNIVERSITY GEOGRAPHIC INFORMATION SYSTEMS SUPPORT & RESEARCH FACILITY.
- 2. PROPERTY LINE SOUTH OF 130TH STREET FROM SURVEY MAP PREPARED BY GARDEN & ASSOCIATES, OSKALOOSA, IOWA, DATED DECEMBER 20, 1988.
- 3. PROPERTY LINE NORTH OF 130TH STREET FROM PLAT OF SURVEY MAP PREPARED BY SCS ENGINEERS, MADISON, WISCONSIN, DATED FEBRUARY 20, 2013.
- 4. EXISTING LIMITS OF WASTE ARE APPROXIMATE.

4	0	0

POTENTIOMETRIC	SURFACE	MAP
APRIL	2018	

Appendix A

CCR Well Trend Plot – Chloride

