2019 Annual Groundwater Monitoring and Corrective Action Report

Nelson Dewey Generating Station Slag Pond Cassville, Wisconsin

Prepared for:

Alliant Energy

SCS ENGINEERS

25219071.00 | January 31, 2020

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830

Table of Contents

Sect	ion			Page
1.0	Intro	duction		1
2.0	§ 25	7.90(e)	Annual Report Requirements	1
	2.1	§257.	90(e)(1) Site Map	1
	2.2	§257.	90(e)(2) Monitoring System Changes	2
	2.3	§257.	90(e)(3) Summary of Sampling Events	2
	2.4	§ 257	.90(e)(4) Monitoring Transition Narrative	2
	2.5	§ 257	.90(e)(5) Other Requirements	2
		2.5.1	§ 257.90(e) General Requirements	3
		2.5.2	§ 257.94(d) Alternative Detection Monitoring Frequency	3
		2.5.3	§ 257.94(e)(2) Alternative Source Demonstration for Detection Monitoring	4
		2.5.4	§ 257.95(c) Alternative Assessment Monitoring Frequency	4
		2.5.5	§ 257.95(d)(3) Assessment Monitoring Results and Standards	4
		2.5.6	§ 257.95(g)(3)(ii) Alternative Source Demonstration for Assessment Monitor	oring.4
		2.5.7	§ 257.96(a) Extension of Time for Corrective Measures Assessment	4

Tables

Table 1.CCR Rule Groundwater Samples Summary

Figures

- Figure 1. Site Location Map
- Figure 2. Site Plan and Monitoring Well Locations

Appendix A – Laboratory Reports

- A1 April 2019 Detection Monitoring
- A2 October 2019 Detection Monitoring

Appendix B – Alternative Source Demonstration Reports

- B1 Alternative Source Demonstration, October 2018 Detection Monitoring
- B2 Alternative Source Demonstration, April 2019 Detection Monitoring

I:\25219071.00\Deliverables\2019 Federal Annual Report-NED\200131_2019 Annual CCR GW Report_NED.docx

i

[This page left blank intentionally]

1.0 INTRODUCTION

This 2019 Annual Groundwater Monitoring and Corrective Action Report was prepared to support compliance with the groundwater monitoring requirements of the Coal Combustion Residuals (CCR) Rule [40 CFR 257.50-107]. Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.90(e). The applicable sections of the Rule are provided below in *italics*, followed by applicable information relative to the 2019 Annual Groundwater Monitoring and Corrective Action Report for the CCR Unit.

This report covers the period of groundwater monitoring from January 1, 2019, through December 31, 2019.

The system is designed to detect monitored constituents at the waste boundary of the Slag Pond (existing CCR surface impoundment) located at Nelson Dewey Generating Station (NED), as required by 40 CFR 257.91(d). The groundwater monitoring system consists of one upgradient and six downgradient monitoring wells.

During 2017 and early 2018, the Slag Pond CCR unit was closed by leaving the CCR in place and installing a final cover system, in accordance with §257.102(d). Closure certification was completed on January 31, 2018.

2.0 § 257.90(E) ANNUAL REPORT REQUIREMENTS

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1). At a minimum, the annual groundwater monitoring and corrective action report must groundwater monitoring and corrective action program for the core unit, summarize key actions to report has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1). At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

2.1 §257.90(E)(1) SITE MAP

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

A map showing the site location is provided as **Figure 1**. A map showing the CCR unit and all background (or upgradient) and downgradient monitoring wells with identification numbers for the groundwater monitoring program is provided as **Figure 2**. The Slag Pond CCR unit is closed, and the map shows the post-closure conditions.

2.2 §257.90(E)(2) MONITORING SYSTEM CHANGES

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No new monitoring wells were installed and no wells were decommissioned as part of the groundwater monitoring program for the CCR unit in 2019.

2.3 §257.90(E)(3) SUMMARY OF SAMPLING EVENTS

In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

Two groundwater sampling events were completed in 2019 at the NED Slag Pond as part of ongoing detection monitoring.

Groundwater samples collected during the semiannual events, in April and October 2019, were analyzed for the Appendix III constituents. A summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring program is included in **Table 1**. The results of the analytical laboratory analyses are provided in the laboratory reports in **Appendix A1** and **Appendix A2**.

2.4 § 257.90(E)(4) MONITORING TRANSITION NARRATIVE

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels);

There were no transitions between monitoring programs in 2019. The NED Slag Pond remained in the detection monitoring program.

In 2019, the monitoring results for the October 2018 and April 2019 monitoring events were evaluated for statistically significant increases (SSIs) in detection monitoring parameters relative to background. For both events, SSIs for boron, chloride, fluoride, field pH, sulfate, and total dissolved solids (TDS) were identified; however, alternative source demonstrations (ASDs) were completed, demonstrating that a source other than the CCR unit was the likely cause of the observed concentrations. The ASD reports are provided in **Appendix B**.

2.5 § 257.90(E)(5) OTHER REQUIREMENTS

Other information required to be included in the annual report as specified in §§ 257.90 through 257.98.

Additional potentially applicable requirements for the annual report, and the location of the requirement within the Rule, are provided in the following sections. For each cited section of the Rule, the portion referencing the annual report requirement is provided below in italics, followed by applicable information relative to the 2019 Annual Groundwater Monitoring and Corrective Action Report for the NED Slag Pond CCR unit.

2.5.1 § 257.90(e) General Requirements

For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year.

Status of Groundwater Monitoring and Corrective Action Program. The groundwater monitoring and corrective action program is currently in detection monitoring.

Summary of Key Actions Completed.

- Statistical evaluation and determination of SSIs for the October 2018 and April 2019 monitoring events.
- ASD reports for the SSIs identified from the October 2018 and April 2019 monitoring events.
- Two semiannual groundwater sampling and analysis events (April and October 2019), with no resampling events performed.

Description of Any Problems Encountered. No problems were encountered in 2019.

Discussion of Actions to Resolve the Problems. Not applicable.

Projection of Key Activities for the Upcoming Year (2020):

- Statistical evaluation and determination of any SSIs for the October 2019 and April 2020 monitoring events.
- If an SSI is determined, then within 90 days either:
 - Complete alternative source demonstration (if applicable), or
 - Establish an assessment monitoring program.
- Two semiannual groundwater sampling and analysis events (April and October 2020).

2.5.2 § 257.94(d) Alternative Detection Monitoring Frequency

The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer in the annual groundwater monitoring and corrective action report required by § 257.90(e).

Not applicable. No alternative detection monitoring frequency has been proposed.

2.5.3 § 257.94(e)(2) Alternative Source Demonstration for Detection Monitoring

The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

The ASD reports prepared to address the SSIs observed for the October 2018 and April 2019 sampling events are provided in **Appendix B**. The ASD reports are certified by a qualified professional engineer.

2.5.4 § 257.95(c) Alternative Assessment Monitoring Frequency

The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer in the annual groundwater monitoring and corrective action report required by § 257.90(e).

Not applicable. Assessment monitoring has not been initiated.

2.5.5 § 257.95(d)(3) Assessment Monitoring Results and Standards

Include the recorded concentrations required by paragraph (d)(1) of this section, identify the background concentrations established under § 257.94(b), and identify the groundwater protection standards established under paragraph (d)(2) of this section in the annual groundwater monitoring and corrective action report required by § 257.90(e).

Not applicable. Assessment monitoring has not been initiated.

2.5.6 § 257.95(g)(3)(ii) Alternative Source Demonstration for Assessment Monitoring

The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

Not applicable. Assessment monitoring has not been initiated.

2.5.7 § 257.96(a) Extension of Time for Corrective Measures Assessment

The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measure due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

Not applicable. Corrective measures assessment has not been initiated.

Table 1

CCR Rule Groundwater Samples Summary

Table 1. CCR Rule Groundwater Samples SummaryNelson Dewey Generating Station Slag Pond / SCS Engineers Project #25219071.00

Sample Dates			Background Well				
	B-7R	B-11R	B-11A	B-11B	B-31R	B-31A	B-26
4/22-23/2019	D	D	D	D	D	D	D
10/14-15/2019	D	D	D	D	D	D	D
Total Samples	2	2	2	2	2	2	2

Abbreviations:

D = Required by Detection Monitoring Program

D-R = Detection Monitoring Resample for selected parameters only

Created by:	ACW	Date:	11/12/2019
Last revision by:	ACW	Date:	11/12/2019
Checked by:	NDK	Date:	1/3/2019

I:\25219071.00\Deliverables\2019 Federal Annual Report-NED\Tables\[Table 1 - 2019_GW_Samples_Summary_NED.xlsx]GW Summary

Figures

- 1 Site Location Map
- 2 Site Plan and Monitoring Well Locations

9071.00/Drawings/CCR 2019 Annual Report/Site Plan and Monitoring Well Locations.dwg, 1/30/2020 3:49:50

Appendix A

Laboratory Reports

A1 April 2019 Detection Monitoring

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

May 08, 2019

Meghan Blodgett SCS ENGINEERS 2830 Dairy Drive Madison, WI 53718

RE: Project: 25219071 ALLIANT-NELSON DEWEY Pace Project No.: 40186484

Dear Meghan Blodgett:

Enclosed are the analytical results for sample(s) received by the laboratory on April 25, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Day Milent

Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: Tom Karwoski, SCS ENGINEERS Nicole Kron, SCS ENGINEERS Jeff Maxted, ALLIANT ENERGY Marc Morandi, ALLIANT ENERGY

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: 25219071 ALLIANT-NELSON DEWEY

Pace Project No.: 40186484

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 Virginia VELAP ID: 460263 South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: 25219071 ALLIANT-NELSON DEWEY

Pace Project No.: 40186484

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40186484001	B-7R	Water	04/22/19 15:20	04/25/19 08:50
40186484002	B-11R	Water	04/22/19 17:05	04/25/19 08:50
40186484003	B-11A	Water	04/22/19 14:50	04/25/19 08:50
40186484004	B-11B	Water	04/22/19 15:20	04/25/19 08:50
40186484005	B-26	Water	04/23/19 14:00	04/25/19 08:50
40186484006	B-31R	Water	04/22/19 16:30	04/25/19 08:50
40186484007	B-31A	Water	04/22/19 17:30	04/25/19 08:50
40186484008	B-39	Water	04/23/19 10:10	04/25/19 08:50
40186484009	FIELD BLANK	Water	04/23/19 10:10	04/25/19 08:50

SAMPLE ANALYTE COUNT

Project: 25219071 ALLIANT-NELSON DEWEY

Pace Project No.: 40186484

Lab ID	Sample ID	Method	Analysts	Analytes Reported
40186484001	B-7R	EPA 6020	KXS	2
			AXL	7
		SM 2540C	ТМК	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40186484002	B-11R	EPA 6020	KXS	2
			AXL	7
		SM 2540C	ТМК	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40186484003	B-11A	EPA 6020	KXS	2
			AXL	7
		SM 2540C	ТМК	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40186484004	B-11B	EPA 6020	KXS	2
			AXL	7
		SM 2540C	ТМК	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40186484005	B-26	EPA 6020	KXS	2
			AXL	7
		SM 2540C	ТМК	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40186484006	B-31R	EPA 6020	KXS	2
			AXL	7
		SM 2540C	ТМК	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40186484007	B-31A	EPA 6020	KXS	2
			AXL	7
		SM 2540C	ТМК	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40186484008	B-39	EPA 6020	KXS	2
			AXL	7

SAMPLE ANALYTE COUNT

Project:25219071 ALLIANT-NELSON DEWEYPace Project No.:40186484

Lab ID	Sample ID	Method	Analysts	Analytes Reported
		SM 2540C	ТМК	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40186484009	FIELD BLANK	EPA 6020	KXS	2
		SM 2540C	ТМК	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3

Project: 25219071 ALLIANT-NELSON DEWEY

Pace Project No.: 40186484

Sample: B-7R	Lab ID:	40186484001	Collected	04/22/19	9 15:20	Received: 04/	25/19 08:50 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	ation Meth	od: EPA	3010			
Boron Calcium	93.5 59400	ug/L ug/L	11.0 250	3.3 69.8	1 1	04/26/19 07:00 04/26/19 07:00	04/26/19 22:29 04/26/19 22:29	7440-42-8 7440-70-2	
Field Data	Analytical	Method:							
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	6.63 603.7 0.17 -100.9 17.05 615.28 10.5	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1 1		04/22/19 15:20 04/22/19 15:20 04/22/19 15:20 04/22/19 15:20 04/22/19 15:20 04/22/19 15:20 04/22/19 15:20	7782-44-7	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	254	mg/L	20.0	8.7	1		04/29/19 12:22		
9040 pH	Analytical	Method: EPA 9	040						
pH at 25 Degrees C	6.6	Std. Units	0.10	0.010	1		04/29/19 13:40		H6
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride Fluoride Sulfate	10.9 <0.50 <5.0	mg/L mg/L mg/L	10.0 1.5 15.0	2.5 0.50 5.0	5 5 5		04/30/19 17:30 04/30/19 17:30 04/30/19 17:30	16887-00-6 16984-48-8 14808-79-8	D3 D3
Sample: B-11R	Lab ID:	40186484002	Collected	04/22/19	9 17:05	Received: 04/	25/19 08:50 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	ation Meth	od: EPA	3010			
Boron Calcium	1360 82400	ug/L ug/L	11.0 250	3.3 69.8	1 1	04/26/19 07:00 04/26/19 07:00	04/26/19 22:36 04/26/19 22:36	7440-42-8 7440-70-2	
Field Data	Analytical	Method:							
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	6.82 737 0.37 -20.9 8.88 615.28 10.0	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1		04/22/19 17:05 04/22/19 17:05 04/22/19 17:05 04/22/19 17:05 04/22/19 17:05 04/22/19 17:05 04/22/19 17:05	7782-44-7	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	406	mg/L	20.0	8.7	1		04/29/19 12:23		

Project: 25219071 ALLIANT-NELSON DEWEY

Pace Project No.: 40186484

Sample: B-11R	Lab ID:	40186484002	Collected	04/22/19	9 17:05	Received: 04/	25/19 08:50 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
9040 pH	Analytical	Method: EPA 9	040						
pH at 25 Degrees C	6.9	Std. Units	0.10	0.010	1		04/29/19 13:44		H6
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride Fluoride Sulfate	12.6 0.20J 34.6	mg/L mg/L mg/L	2.0 0.30 3.0	0.50 0.10 1.0	1 1 1		04/30/19 17:43 04/30/19 17:43 04/30/19 17:43	16887-00-6 16984-48-8 14808-79-8	
Sample: B-11A	Lab ID:	40186484003	Collected:	: 04/22/19	9 14:50	Received: 04/	25/19 08:50 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	ation Meth	od: EPA	3010			
Boron Calcium	93.9 60400	ug/L ug/L	11.0 250	3.3 69.8	1 1	04/26/19 07:00 04/26/19 07:00	04/26/19 22:43 04/26/19 22:43	7440-42-8 7440-70-2	
Field Data	Analytical	Method:							
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	7.62 721 0.07 218.3 0.00 615.29 13.8	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1		04/22/19 14:50 04/22/19 14:50 04/22/19 14:50 04/22/19 14:50 04/22/19 14:50 04/22/19 14:50 04/22/19 14:50	7782-44-7	
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	386	mg/L	20.0	8.7	1		04/29/19 12:23		
9040 pH	Analytical	Method: EPA 9	040						
pH at 25 Degrees C	7.7	Std. Units	0.10	0.010	1		04/29/19 13:47		H6
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride Fluoride Sulfate	83.6 0.29J 1.9J	mg/L mg/L mg/L	10.0 0.30 3.0	2.5 0.10 1.0	5 1 1		05/01/19 12:11 04/30/19 19:03 04/30/19 19:03	16887-00-6 16984-48-8 14808-79-8	
Sample: B-11B	Lab ID:	40186484004	Collected	: 04/22/19	9 15:20	Received: 04/	25/19 08:50 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	ation Meth	od: EPA	3010			
Boron Calcium	6830 83300	ug/L ug/L	220 250	66.0 69.8	20 1	04/26/19 07:00 04/26/19 07:00	04/30/19 07:28 04/26/19 22:50	7440-42-8 7440-70-2	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 25219071 ALLIANT-NELSON DEWEY

Pace Project No.: 40186484

Sample: B-11B	Lab ID:	40186484004	Collected	1: 04/22/19	9 15:20	Received: 04/	25/19 08:50 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytica	Method:							
Field pH	7.91	Std. Units			1		04/22/19 15:20		
Field Specific Conductance	1129	umhos/cm			1		04/22/19 15:20		
Oxygen, Dissolved	0.09	mg/L			1		04/22/19 15:20	7782-44-7	
REDOX	207.8	mV			1		04/22/19 15:20		
Turbidity	0.00	NTU			1		04/22/19 15:20		
Static Water Level	615.28	feet			1		04/22/19 15:20		
Temperature, Water (C)	13.6	deg C			1		04/22/19 15:20		
2540C Total Dissolved Solids	Analytica	Method: SM 25	40C						
Total Dissolved Solids	742	mg/L	20.0	8.7	1		04/29/19 12:23		
9040 pH	Analytica	Method: EPA 9	040						
pH at 25 Degrees C	7.9	Std. Units	0.10	0.010	1		04/29/19 13:49		H6
300.0 IC Anions 28 Days	Analytica	Method: EPA 3	00.0						
Chloride	28.4	mg/L	2.0	0.50	1		04/30/19 19:16	16887-00-6	
Fluoride	0.64	mg/L	0.30	0.10	1		04/30/19 19:16	16984-48-8	
Sulfate	303	mg/L	30.0	10.0	10		05/01/19 12:24	14808-79-8	
Sample: B-26	Lab ID:	40186484005	Collected	1: 04/23/19	9 14:00	Received: 04/	25/19 08:50 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytica	Method: EPA 6	020 Prepar	ation Meth	od: EPA	3010			
Boron	41.6	ug/L	11.0	3.3	1	04/26/19 07:00	04/30/19 07:35	7440-42-8	
Calcium	75300	ug/L	250	69.8	1	04/26/19 07:00	04/26/19 22:57	7440-70-2	
Field Data	Analytica	Method:							
Field pH	7.10	Std. Units			1		04/23/19 14:00		
Field Specific Conductance	815	umhos/cm			1		04/23/19 14:00		
Oxygen, Dissolved	8.73	mg/L			1		04/23/19 14:00	7782-44-7	
REDOX	259.9	mV			1		04/23/19 14:00		
Turbidity	0.00	NTU			1		04/23/19 14:00		
Static Water Level	615.49	feet			1		04/23/19 14:00		
Temperature, Water (C)	11.4	deg C			1		04/23/19 14:00		
2540C Total Dissolved Solids	Analytica	Method: SM 25	40C						
Total Dissolved Solids	458	mg/L	20.0	8.7	1		04/30/19 16:13		
9040 pH	Analytica	I Method: EPA 9	040						
pH at 25 Degrees C	7.4	Std. Units	0.10	0.010	1		04/29/19 13:51		H6

Project: 25219071 ALLIANT-NELSON DEWEY

Pace Project No.: 40186484

Sample: B-26	Lab ID:	40186484005	Collected	: 04/23/1	9 14:00	Received: 04/	/25/19 08:50 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytica	I Method: EPA 3	00.0						
Chloride Fluoride Sulfate	40.8 <0.10 26.7	mg/L mg/L mg/L	2.0 0.30 3.0	0.50 0.10 1.0	1 1 1		04/30/19 19:29 04/30/19 19:29 04/30/19 19:29	16887-00-6 16984-48-8 14808-79-8	
Sample: B-31R	Lab ID:	40186484006	Collected	: 04/22/1	9 16:30	Received: 04/	/25/19 08:50 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytica	Method: EPA 6	020 Prepara	ation Meth	od: EPA	3010		-	
Boron Calcium	906 105000	ug/L ug/L	55.0 250	16.5 69.8	5 1	04/26/19 07:00 04/26/19 07:00	04/30/19 07:42 04/26/19 23:04	7440-42-8 7440-70-2	
Field Data	Analytica	Method:							
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C) 2540C Total Dissolved Solids Total Dissolved Solids 9040 pH pH at 25 Degrees C	6.62 827 0.10 94.2 0.00 615.01 11.8 Analytica 516 Analytica 6 8	Std. Units umhos/cm mg/L mV NTU feet deg C Method: SM 25 mg/L	540C 20.0 040	8.7	1 1 1 1 1 1		04/22/19 16:30 04/22/19 16:30 04/22/19 16:30 04/22/19 16:30 04/22/19 16:30 04/22/19 16:30 04/22/19 16:30 04/22/19 12:23	7782-44-7	Не
300 0 IC Anions 28 Days	o.o Analytica	Std. Units	0.10	0.010	I		04/29/19 13:53		по
Chloride Fluoride Sulfate	17.8 0.16J 121	mg/L mg/L mg/L	2.0 0.30 15.0	0.50 0.10 5.0	1 1 5		04/30/19 19:42 04/30/19 19:42 05/01/19 12:37	16887-00-6 16984-48-8 14808-79-8	
Sample: B-31A	Lab ID:	40186484007	Collected	: 04/22/1	9 17:30	Received: 04/	/25/19 08:50 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytica	Method: EPA 6	020 Prepara	ation Meth	od: EPA	3010			
Boron Calcium	86.2 48200	ug/L ug/L	11.0 250	3.3 69.8	1 1	04/26/19 07:00 04/26/19 07:00	04/30/19 07:49 04/26/19 23:10	7440-42-8 7440-70-2	
Field Data	Analytica	Method:							
Field pH	7.61	Std. Units			1		04/22/19 17:30		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 25219071 ALLIANT-NELSON DEWEY

Pace Project No.:

t No.: 40186484

Sample: B-31A	Lab ID:	40186484007	Collected	d: 04/22/19	9 17:30	Received: 04/	/25/19 08:50 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytica	Method:							
Field Specific Conductance	517	umhos/cm			1		04/22/19 17:30		
Oxygen, Dissolved	0.13	mg/L			1		04/22/19 17:30	7782-44-7	
REDOX	-4.5	mV			1		04/22/19 17:30		
Turbidity	0.00	NTU			1		04/22/19 17:30		
Static Water Level	615.33	feet			1		04/22/19 17:30		
Temperature, Water (C)	13.9	deg C			1		04/22/19 17:30		
2540C Total Dissolved Solids	Analytica	Method: SM 25	540C						
Total Dissolved Solids	284	mg/L	20.0	8.7	1		04/29/19 12:24		
9040 pH	Analytica	Method: EPA 9	040						
pH at 25 Degrees C	7.6	Std. Units	0.10	0.010	1		04/29/19 13:56		H6
300.0 IC Anions 28 Days	Analytica	Method: EPA 3	00.0						
Chloride	40.8	mg/L	2.0	0.50	1		04/30/19 19:55	16887-00-6	
Fluoride	0.22J	mg/L	0.30	0.10	1		04/30/19 19:55	16984-48-8	
Sulfate	21.6	mg/L	3.0	1.0	1		04/30/19 19:55	14808-79-8	
Sample: B-39	l ah ID:	40186484008	Collecter	+ 04/23/10	9 10.10	Received: 04/	/25/19 08·50 Ma	atrix: Water	
	Lab ID.	40100404000	Conceret	u. 04/20/10	5 10.10	Received. 04/	23/13 00.00 100		
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytica	Method: EPA 6	020 Prepai	ration Meth	od: EPA	3010			
Boron	347	ua/L	22.0	6.6	2	04/26/19 07:00	04/30/19 07:56	7440-42-8	
Calcium	63600	ug/L	250	69.8	1	04/26/19 07:00	04/26/19 23:17	7440-70-2	
Field Data	Analytica	Method:							
Field pH	6.98	Std. Units			1		04/23/19 10:10		
Field Specific Conductance	612.1	umhos/cm			1		04/23/19 10:10		
Oxygen, Dissolved	0.12	mg/L			1		04/23/19 10:10	7782-44-7	
REDOX	110.5	mV			1		04/23/19 10:10		
Turbidity	4.11	NTU			1		04/23/19 10:10		
Static Water Level	615.40	feet			1		04/23/19 10:10		
Temperature, Water (C)	13.5	deg C			1		04/23/19 10:10		
2540C Total Dissolved Solids	Analytica	Method: SM 25	540C						
Total Dissolved Solids	342	mg/L	20.0	8.7	1		04/30/19 16:13		
9040 pH	Analytica	I Method: EPA 9	040						
pH at 25 Degrees C	7.2	Std. Units	0.10	0.010	1		04/29/19 14:02		H6
300.0 IC Anions 28 Days	Analytica	I Method: EPA 3	00.0						
Chloride	0.65J	mg/L	2.0	0.50	1		04/30/19 20:09	16887-00-6	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 25219071 ALLIANT-NELSON DEWEY

Pace Project No.:

40186484

Sample: B-39	Lab ID:	40186484008	Collected:	04/23/19	9 10:10	Received: 04/	25/19 08:50 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Fluoride Sulfate	0.25J 12.9	mg/L mg/L	0.30 3.0	0.10 1.0	1 1		04/30/19 20:09 04/30/19 20:09	16984-48-8 14808-79-8	
Sample: FIELD BLANK	Lab ID:	40186484009	Collected:	04/23/19	9 10:10	Received: 04/	25/19 08:50 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	tion Meth	od: EPA	3010			
Boron Calcium	<3.3 <69.8	ug/L ug/L	11.0 250	3.3 69.8	1 1	04/26/19 07:00 04/26/19 07:00	04/26/19 20:12 04/26/19 20:12	7440-42-8 7440-70-2	
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	<8.7	mg/L	20.0	8.7	1		04/30/19 16:13		
9040 pH	Analytical	Method: EPA 9	040						
pH at 25 Degrees C	7.0	Std. Units	0.10	0.010	1		04/29/19 14:06		H6
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride Fluoride Sulfate	<0.50 <0.10 <1.0	mg/L mg/L mg/L	2.0 0.30 3.0	0.50 0.10 1.0	1 1 1		04/30/19 20:22 04/30/19 20:22 04/30/19 20:22	16887-00-6 16984-48-8 14808-79-8	

Project:	252190	71 ALLIAN	-NELSON DEW	EY									
Pace Project No.:	401864	84											
QC Batch:	31954	6		Anal	ysis Metho	d:	EPA 6020						
QC Batch Method:	EPA 3	010		Anal	ysis Descr	iption:	6020 MET						
Associated Lab Sat	mples:	401864840 401864840	001, 4018648400 008, 4018648400	12, 4018648 19	34003, 401	86484004,	401864840	05, 401864	484006, 40	186484007	7,		
METHOD BLANK:	185674	3			Matrix: W	/ater							
Associated Lab Sat	mples:	401864840 401864840	001, 4018648400 008, 4018648400	2, 4018648 9	34003, 401	86484004,	401864840	005, 401864	484006, 40	186484007	7,		
Para	meter		Units	Bla Res	nk sult	Reporting Limit	Anal	yzed	Qualifier	s			
Boron			ua/L		<3.3	11.	0 04/26/1	9 19:58					
Calcium			ug/L		<69.8	25	0 04/26/1	9 19:58					
			4050744										
LABORATORY CO	NIROLS	SAMPLE:	1856744	Sniko	10	22	105	% P	00				
Para	meter		Units	Conc.	Re	sult	% Rec	Lim	its	Qualifiers			
Boron			ua/L	5(00	451	g	0	80-120		_		
Calcium			ug/L	500	00	4970	g	9	80-120				
MATRIX SPIKE & M	MATRIX S		LICATE: 1856	745		1856746	;						
			40186447001	MS Spiko	MSD Spiko	MS	MSD	MS	MSD	% Poc		Max	
Paramete	r	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron		ug/L	39.3	500	500	483	482	89	88	75-125	0	20	
Calcium		ug/L	77400	5000	5000	87000	84200	192	137	75-125	3	20	P6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	25219071 ALLIAN	IT-NELSON DEWE	Y				
Pace Project No.:	40186484						
QC Batch:	319740		Analysis Me	ethod:	SM 2540C		
QC Batch Method:	SM 2540C		Analysis De	escription: 2	2540C Total Di	issolved Solids	
Associated Lab Sam	ples: 40186484	001, 40186484002,	40186484003,	40186484004,	40186484006,	40186484007	
METHOD BLANK:	1858057		Matrix	: Water			
Associated Lab Sam	ples: 40186484	001, 40186484002,	40186484003, Blank	40186484004, Reporting	40186484006,	40186484007	
Param	neter	Units	Result	Limit	Analyze	ed Quali	fiers
Total Dissolved Solid	ls	mg/L	<8.7	20.	0 04/29/19 1	2:21	
LABORATORY CON	ITROL SAMPLE:	1858058					
Param	neter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Total Dissolved Solid	ds	mg/L	577	564	98	80-120	
SAMPLE DUPLICAT	E: 1858060						
			40186484001	Dup		Max	
Param	neter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Solid	ls	mg/L	254	24	8	2	10
SAMPLE DUPLICAT	E: 1858061						
_			40186338001	Dup		Max	
Param	neter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Solid	ds	mg/L	702	69	8	1	10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	25219071 ALLIAN	T-NELSON DEWI	EY				
Pace Project No .:	40186484						
QC Batch:	319950		Analysis Me	ethod: S	SM 2540C		
QC Batch Method:	SM 2540C		Analysis De	escription: 2	2540C Total Di	ssolved Solids	
Associated Lab San	nples: 40186484	1005, 4018648400	8, 40186484009				
METHOD BLANK:	1858780		Matrix	: Water			
Associated Lab San	nples: 40186484	1005, 4018648400	8, 40186484009				
			Blank	Reporting			
Paran	neter	Units	Result	Limit	Analyze	d Quali	fiers
Total Dissolved Solie	ds	mg/L	<8.7	20.0	0 04/30/19 1	6:12	
LABORATORY COM	NTROL SAMPLE:	1858781					
			Spike	LCS	LCS	% Rec	
Paran	neter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Total Dissolved Solie	ds	mg/L	577	578	100	80-120	
	TE: 1858782						
	12. 1000702		40186448004	Dup		Max	
Paran	neter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Solie	ds	mg/L	408	414	4	1	10
SAMPLE DUPLICA	TE: 1858783						
			40186454001	Dup		Max	
Paran	neter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Solie	ds	mg/L	304	288	8	5	10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	25219071 ALLIANT	-NELSON DEWE	Y					
Pace Project No.:	40186484							
QC Batch:	319709		Analysis Meth	nod:	EPA 9040			
QC Batch Method:	EPA 9040		Analysis Desc	cription:	9040 pH			
Associated Lab San	nples: 401864840 401864840	01, 40186484002 08, 40186484009	2, 40186484003, 40)	0186484004,	40186484005,	4018648400	6, 40186484007,	
SAMPLE DUPLICA	TE: 1857968							
			40186273004	Dup		Max		
Paran	neter	Units	Result	Result	RPD	RPE	Qualifiers	
pH at 25 Degrees C		Std. Units	7.2	7.	2	0	20 H6	
SAMPLE DUPLICA	TE: 1857969							
			40186329001	Dup		Max		
Paran	neter	Units	Result	Result	RPD	RPE	Qualifiers	
pH at 25 Degrees C		Std. Units	7.6	7.	6	0	20 H6	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	25219071 ALLI 40186484	ANT-NELSON DEV	VEY									
QC Batch:	319630		Anal	ysis Metho	d: E	EPA 300.0						
QC Batch Method:	EPA 300.0		Anal	ysis Descri	ption: 3	300.0 IC An	ions					
Associated Lab Sar	mples: 401864 401864	84001, 401864840 84008, 401864840	02, 4018648 09	84003, 401	86484004, 4	401864840	05, 401864	84006, 40 ²	186484007	,		
METHOD BLANK:	1857280			Matrix: W	ater							
Associated Lab Sar	mples: 401864 401864	84001, 401864840 84008, 401864840	02, 4018648 09	84003, 401	86484004, 4	401864840	05, 401864	84006, 40 ²	186484007	7 ,		
Parar	neter	Units	Res	nk sult	Limit	Anal	vzed	Qualifiers	6			
Chloride		ma/L		<0.50	2.0	0 04/30/1	,					
Fluoride		mg/L		<0.10	0.30	0 04/30/1	9 10:00					
Sulfate		mg/L		<1.0	3.0	04/30/1	9 10:00					
LABORATORY CO	NTROL SAMPLE	: 1857281										
Parar	neter	Units	Spike Conc.	Res	:S sult	LCS % Rec	% R Limi	ec ts (Qualifiers			
Chloride		mg/L		20	19.9	10	0 9	90-110		_		
Fluoride		mg/L		2	2.0	9	9 9	90-110				
Sulfate		mg/L	:	20	20.0	10	0 9	90-110				
MATRIX SPIKE & N	ATRIX SPIKE D	UPLICATE: 185	7282		1857283							
			MS	MSD								
Paramete	r Ur	40186384003 hits Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride		g/L 90.8	100	100	192	190	101	99	90-110	1	15	
Fluoride	m	g/L ND	10	10	9.8	9.9	94	96	90-110	2	15	
Sulfate	m	g/L ND	100	100	111	113	97	99	90-110	2	15	
MATRIX SPIKE & N	ATRIX SPIKE D	UPLICATE: 185	7284		1857285							
			MS	MSD								
Paramete	r Ur	40186484002 hits Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride		g/L 12.6	20	20	33.5	33.6	104	105	90-110	0	15	
Fluoride	m	g/L 0.20J	2	2	2.2	2.2	101	101	90-110	0	15	
Sulfate	m	g/L 34.6	20	20	55.1	55.1	103	103	90-110	0	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALIFIERS

Project: 25219071 ALLIANT-NELSON DEWEY

Pace Project No.: 40186484

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
- H6 Analysis initiated outside of the 15 minute EPA required holding time.
- P6 Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 25219071 ALLIANT-NELSON DEWEY

Pace Project No.: 40186484

Analytical Lab ID **QC Batch Method** QC Batch Sample ID **Analytical Method** Batch 40186484001 B-7R EPA 3010 319546 EPA 6020 319610 40186484002 **B-11R** EPA 3010 319546 EPA 6020 319610 40186484003 B-11A EPA 3010 319546 EPA 6020 319610 40186484004 B-11B EPA 3010 319546 EPA 6020 319610 319546 40186484005 B-26 EPA 3010 EPA 6020 319610 40186484006 B-31R EPA 3010 319546 EPA 6020 319610 40186484007 B-31A EPA 3010 319546 EPA 6020 319610 40186484008 B-39 EPA 3010 319546 EPA 6020 319610 40186484009 FIELD BLANK EPA 3010 319546 EPA 6020 319610 40186484001 B-7R 40186484002 **B-11R** 40186484003 **B-11A** 40186484004 B-11B 40186484005 B-26 40186484006 B-31R 40186484007 B-31A 40186484008 B-39 40186484001 B-7R SM 2540C 319740 40186484002 **B-11R** SM 2540C 319740 40186484003 **B-11A** SM 2540C 319740 40186484004 B-11B SM 2540C 319740 40186484005 SM 2540C B-26 319950 40186484006 B-31R SM 2540C 319740 40186484007 B-31A SM 2540C 319740 40186484008 SM 2540C 319950 B-39 40186484009 FIELD BLANK SM 2540C 319950 40186484001 B-7R EPA 9040 319709 40186484002 **B-11R** EPA 9040 319709 40186484003 **B-11A** EPA 9040 319709 B-11B 40186484004 EPA 9040 319709 40186484005 B-26 EPA 9040 319709 40186484006 B-31R EPA 9040 319709 B-31A EPA 9040 319709 40186484007 40186484008 **B-39** EPA 9040 319709 40186484009 FIELD BLANK EPA 9040 319709 40186484001 B-7R 319630 EPA 300.0 40186484002 **B-11R** EPA 300.0 319630 40186484003 B-11A EPA 300.0 319630 40186484004 B-11B EPA 300.0 319630 40186484005 B-26 EPA 300.0 319630 40186484006 B-31R EPA 300.0 319630 40186484007 B-31A EPA 300.0 319630 319630 40186484008 B-39 EPA 300.0 40186484009 FIELD BLANK 319630 EPA 300.0

special pricing and relea	ax:	elephone:	mall #2:	mail #1:	Transmit Prelim Rush Results by	(Rush TAT subject to a	Rush Turnaround Time			Dod Signa B	008 18-39	007 B-314	006 B-314	92-8 COR	004 B-118	003 /3 - 1/A	002 B-11R	001 B-YR	PACE LAB # CLIEN	EPA Level IV		Data Package Options (billable)	PO #:	Sampled By (Sign):	Sampled By (Print): Pa	Project State:	Project Name: AU	Project Number: 2.5	Phone:	Project Contact: Mu	Branch/Location:	Company Name: U 20
subject to Rease of Itability		Re		Re	y (complete what you want):	approval/surcharge)	Requested - Prelims			lonk 1/23	4/23		4/23	4/33	×.			4/22		your sample SI = Sludge	(billable) C = Charcoal		Regulato Progran		ul Grover	WI	iant-Nelson D	100016		eg Blodgett	nadisorh	-S Engineer
linquished By:		linquished By:		linquished By:	Strand C Long Standaum	Van A. S. North	iinquished By	>		10/01/01 N	M/BID V	17:30	1/1/6:30	22: HI BJ	/5:20	IH:ST .	124X/	MISINGW >		SW = Surface Water WW = Waste Water WP = Wine NP = Wine	DW = Drinking Water SGW = Ground Water	W= Water Requ	estec	1	PRESERVATION Pick (CODE)* Letter	/ FILTERED? Y/N /	CMCY H=Sodium Bisulfate Solution	A=None B=HCL C=H28	CHA		Aace /	
Date/Time:		Date/Time:		Date/Time:	U U/US/10 DDD	40:51 11/18/19	//Date/Mime:			VVV								XXX	13. TL 		-a , Pi	<u>۲</u> ,5	50 _{4,}	F,	O A A	Vo No No 1	I=Sodium Thiosulfate J=Oth	*Preservation Codes SO4 D=HNO3 E=DI Water F=Me	IN OF CUST		unalytical"	
Received By:		Received By:		Received By:	Received By:		Received By:																=	In			ēr	sthanol G=NaOH	ODY		C	MM: 612-607-1700 WI:
Date/Time:		Date/Time:		DatoTimo:	Pav WILLING DS(Date/Time:										Ma	10	COMMENTS (La		nvoice To Phone:	Mare en esta	voice To Address:	voice To Company:	voice To Contact:		Mail To Address:	Mail To Company:	Mail To Contact:	Quote #:	E	: 920-469-2436
Present / Not In Intact / Not In Version 6.0 06/14/06	Cooler Custo	6/ Adjust	Sample Receir	Receipt Temp = 3		L Lis in	PACE Project										me Pr. 4/2	Tilled in 6	ib Use Only)	COMMENTS			na shekara na								NN ~ (NIO	

C019a(27Jun2006)

ORIGINAL

Table 2. Sampling Points and Parameters - CCR Rule Sampling Program Detection Monitoring Groundwater Monitoring - Nelson Dewey Generating Station / SCS Engineers Project #25219071

(anna an		100 M					hannan	L	-	V	
	Parameter	B7R	B11R	B11A	B11B	B26	B31R	B31A	B39	Field Blank	TOTAL
	Boron	x	x	x	x	×	x	x	x	x	9
1 = 2	Calcium	x	x	x	x	x	x	x	×	x	9
lix ete	Chloride	x	x	x	x	×	×	x	x	x	9
	Fluoride	x	x	x	~ x	x	x	x	x	x	9
pp	рН	x	x	х	x	x	x	x	x	x	9
Ad	Sulfate	x	x	x	x	×	x	x	x	×	9
	TDS	x	x	x	x	×	x	x	x	x	9
	Antimony						1	[0
	Arsenic						1		1		0
	Barium							1	1	1	0
Sis	Beryllium										0
ete	Cadmium						1				0
am	Chromium						[1		0
ar	Cobalt							[0
2	Fluoride								1		0
ix	Lead										0
pu	Lithium										0
be	Mercury									1	0
ΑF	Molybdenum										0
	Selenium										0
	Thallium										0
	Radium										0
											-
	Groundwater										
	Elevation		x	x	×	x	x	x	×		8
	Well Depth	x	x	x	x	x	x	x	x		8
S	pH (field)	x	x	x	x	x	x	x	x		8
ete	Specific	,									
Ĕ	Conductance	^	×	×	×	×	x	x	x		8
ara	Dissolved	x	x	v	v	v					
Ъ Р	Oxygen					×	X	x	x		8
iel	ORP	×	x	x	x	x	x	x	x		8
LL	Temperature	×	×	x	x	x	x	x	x		8
	Turbidity	x	x	x	x	x	x	x	x		8
	Color	×	x	x	x	x	x	x	x		8
	Odor	x	x	x	x	x	x	x	x		8

Notes:

I:\25219071.00\Data and Calculations\Field Work Requests\[WPL_ND_CCR_Rule_Sampling_Detection Monitorir

Pace Container Order #488428

40186484

					فالتبعيلية والمراطعين مقاربه			
Order	By :		Ship 1	Го :			Retur	ı To:
Company	SCS ENGIN	NEERS	Company	SCS ENGINEERS	Pace An	alytical	Company	Pace Analytical Green Bay
Contact	Blodgett, M	eghan	Contact	Paul Grover			Contact	Milewsky, Dan
Email	mblodgett@	scsengineers.com	Email	pgrover@scsengine	ers.com		Email	dan.milewsky@pacelabs.com
Address	2830 Dairy	Drive	Address	2830 Dairy Drive			Address	1241 Bellevue Street
Address 2			Address 2				Address 2	Suite 9
City	Madison		City	Madison			City	Green Bay
State	WI	Zip 53718	State	WI Zip 537	18		State	WI Zip 54302
Phone	608-216-73	62	Phone	608-216-7362			Phone	(920)469-2436
								/
Project	Name (252	Rule Alliant Nelson Dewey	Due Date	04/18/2019	Profil	e _x		Quote
P	roject Mile	wsky Dan	Return		Carrie	Most	Economical	Locatio
- Trip Bl	lanks —			- Bottle			\neg	
[] In	nclude Trip Bl	lanks) (Blank				Boxed Cases
				Pre-Printed I	No Samp	le IDs		Individually Wrapped
				X Pre-Printed	Nith Sam	ple IDs	X	Grouped By Sample
)
- Retur	n Shipping]		– Misc ––––				
N	o Shipper			Sampling Ins	structions			Extra Bubble Wrap
	/ith Shipper			Custody Sea	1			Short Hold/Rush
<u> </u>	Ontiona			Temp. Blank	s			X DI 1 Liter(s)
	Options -			X Coolers				USDA Regulated Soils
	umber of Bla	inks 1		Syringes				
	re-Finteu	L						
# of Sample	s Matrix	Test	Containe	r	Total	# of	Lot #	Notes
9	WT	Metals	250mL plas	tic w/HNO3	9	0	M-9-004-04BB	Boron/Calcium
9	wr	TDS, CI, F, SO4	250ml plast	ic unpreserved	9	0	M-9-080-03BB	
9	wr	рН	250mL Plas	tic Unpreserved	9	0	M-9-080-03BB	

Hazard Shipping Placard In Place : NA

*Sample receiving hours are Monday through Friday 8:00 am to 6:00 pm and Saturday from 9:00 am to 12:00 pm unless special arrangements are made with your project manager.

*Pace Analytical reserves the right to return hazardous, toxic, or radioactive samples to you.

*Pace Analytical reserves the right to charge for unused bottles, as well as cost associated with sample storage and disposal.

*Payment term are net 30 days.

*Please include the proposal number on the chain of custody to insure proper billing.

Sample

ALL SAMPLES UNFILTERED

Ship Date : 04/17/2019 Prepared Mai Yer Her

Verified By:

F-ALL-C-009-rev.00, 19Dec2016

Page 21 of 23

340 1 350 1 G2S 5 G30 2	G4S 1	AG1H 1	1113	Excepti	020	019	018	017	016	015	014	013	012	011	010	600	800	007	006	005	8 04	003	002	<u>8</u>	Pace _ab #		I ≥	Clier
20 ml	25 ml	liter	litor	ons to																		51.5 			AGIU		l cont	nt N
_ amb _ amb _ amb	- amb	ambei		prese																							ainers	ame
ergla ergla ergla	er gla:	glass	alace	ervatio																						ଣ୍ଟ	need	
ss unp ss H2: ss H2:	ss H2	HCL		n che																					AG4U	SSE	ing pr	
ores ores SO4 es	604			ck: Vi																					AGOU	N=TONI - CONTRACT	eserva	<
				OA, C																					AG2S		ation f	C
			-	oliforn																					BD111		have b	_
BP3U BP3C BP3N BP3S	BP2Z	BP2N	RD11	n, TO												<u> </u>									BP10		een c	Ĩ
25 25 25	50	50	-	C, TO																					BD27		hecke La	11
			tor n	X, TO												م	ر	2	2	2	2	ه	2	2	BP311	Plas	ed and b Lot#	100
plastic plastic plastic	plastic	olastic	actic r	H, 0&		┢																			BP3C	stic	t of pH	
c unpi c NaO c HNO c HNO	NaO	HNO	Innre	.G, WI		┝										-	1	_	1		1	ļ			BD3N		1 belov 1 pape	I
Ο _Δ Η es	H, Zna	ωv	î	DRO																	-				BD36	L.,	91:10 10:21	
	ţţ			, Phe																			net se				s on رد کر	7
			┥	nolics		-																			DCOT	al-obtaining and	S and	oje
VG9N VG9N		DG9T		, Othe		<u> </u>								_												_		: CT #
40	3 4 5	40 2	40											\vdash											VG9U	/ials	ab Sto	
	mLo	mLa	E N			<u> </u>												<u> </u>							VGOM	gan y anna an a	I #ID	
lear vi lear vi lear vi	ear vi	mber	mher	۲. ۲		-																					of pres	
al Me	alun	Na Th	ascor	adspa										<u> </u>		-		<u> </u>								[servat	C
Ŭ Ĥ	ores	5 g	5 n	ace in				-								<u> </u>									WGEU	Ja	ion (if	6
				VOA		-																			WOIU	S	pH ac	l c
			┥	Vials (-				╞							ODET		ljuster	6
SP5T ZPLC	WPFL	WGFL	ā	(>6mn										-		-										Gene	[¥]	
ž 1.	4	4	4	n) : u)								 				-										ral		
20 mL ploc b	oz pla	oz cle	07 AM	res ⊔N																					UOA Viale	(>6mm) *	4	
plastic	ıstic jaı	arjar u	her iar	do 🖈																						<2	4	
Na T	unpr	Inpres	unn	IA *If)				-				┢		-		\square		┢								A at -11 > 0		
hiosu	es	°' (P	yes la						┝─		┝─		┝				-							NaOH+ZN	ACI PH 29	nplete	
lfate				ok in										F									\		NaOH pH i	≥12		
				head												$\[\] \]$			X	\sim	×	\square		Γ	HNO3 pH :	≤2 	7	ŧ
				space																					pH after ac	ljusted	Date/ Time:	
				column	2.5/5/10	2.5 / 5 / 10	2.5/5/10	2.5/5/10	2.5/5/10	2.5/5/10	2.5/5/10	2.5/5/10	2.5/5/10	2.5/5/10	2.5 / 5 / 10	2.5 / 5 / 10	2.5/5/10	2.5 / 5 / 10	2.5/5/10	2.5/5/10	2.5/5/10	2.5/5/10	2.5/5/10	2.5/5/10	(mL)	Volume		

-GB-C-046-Rev.02 (29Mar2018) Sample Preservation Receipt Form

1135
Pace Analytical"	Doc Sample Condit	ument Name: ion Upon Receipt (SCUR)	Document Revised:	25Apr2018					
1241 Bellevue Street, Green Bay, WI 54302	Do F-GB	cument No.: - C-031-Rev.07	Issuing Author Pace Green Bay Qu	ority: Jality Office					
			<u>1. 400 0.000. 20, 0</u>						
Sample Condition Upon Receipt Form (SCUR)									
Client Name: SCS Engin	eers	Project # WC)#:40186	484					
Client Pace Other:		Waltco 4018	36484						
Tracking #: 2693042419		······································							
Custody Seal on Cooler/Box Present: ves	no Seals intac	t: □yes □ no							
Packing Material: Rubble Wrap C Bubble	le Bags CNO	ne Other							
Thermometer Used SR - 38	Type of Ice: We	t Blue Dry None	Samples on ice, cooling r	process has begun					
Cooler Temperature Uncorr: 3 /Corr: 3	,								
Temp Blank Present: 🔽 yes 🗹 no	Biological	Tissue is Frozen: Tye	s no Person e	xamining contents:					
Temp should be above freezing to 6°C. Biota Samples may be received at ≤ 0°C.			Date: Initials:	<u>472519</u> 24					
Chain of Custody Present:	Yes No N/	A 1.7CC		4/25/19 JK					
Chain of Custody Filled Out:		A 2. NO COMPANY Num	e, projest state, ma	: Vinvoice, por# 4/25/19					
Chain of Custody Relinquished:		4 3.		<i>//</i>					
Sampler Name & Signature on COC:		A 4.							
Samples Arrived within Hold Time:	ØYes □No	5.							
- VOA Samples frozen upon receipt	Yes No	Date/Time:							
Short Hold Time Analysis (<72hr):	Myes INO /25/10)	^H 6.							
Rush Turn Around Time Requested:		7.							
Sufficient Volume:		8.							
For Analysis: Vyes DNo MS/MSD:		A							
Correct Containers Used:	∰Yes □No	9.							
-Pace Containers Used:	ØYes □No □N/A	A							
-Pace IR Containers Used:		4							
Containers Intact:	KYes □No	10.							
Filtered volume received for Dissolved tests		A 11.		······					
Sample Labels match COC:		12. 008 1 BP3V	no vote time 00	29-BP3U no time					
-Includes date/time/ID/Analysis Matrix:	<u></u>			MILIAPK					
Trip Blank Present:	□Yes □No ₽N/A	13.							
Trip Blank Custody Seals Present		\							
Pace Trip Blank Lot # (if purchased):	Terrana	If checke	d see attached form for as						
Person Contacted: Comments/ Resolution:	Date	/Time:							
				······································					
Project Manager Review:	for m	\wedge	Date: 4/25	19					
·				Page 23 of 23					

Page 23 of 23 Page 2 of A2 October 2019 Detection Monitoring

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

November 05, 2019

Meghan Blodgett SCS ENGINEERS 2830 Dairy Drive Madison, WI 53718

RE: Project: 25219071.00 NELSON DEWEY CCR Pace Project No.: 40197444

Dear Meghan Blodgett:

Enclosed are the analytical results for sample(s) received by the laboratory on October 17, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Day Milent

Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: Tom Karwoski, SCS ENGINEERS Nicole Kron, SCS ENGINEERS Jeff Maxted, ALLIANT ENERGY Marc Morandi, ALLIANT ENERGY

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: 25219071.00 NELSON DEWEY CCR

Pace Project No.: 40197444

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 Virginia VELAP ID: 460263 South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: 25219071.00 NELSON DEWEY CCR

Pace Project No.: 40197444

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40197444001	B-7R	Water	10/14/19 13:20	10/17/19 08:25
40197444002	B-11A	Water	10/14/19 14:30	10/17/19 08:25
40197444003	B-11B	Water	10/14/19 14:55	10/17/19 08:25
40197444004	B-11R	Water	10/14/19 14:45	10/17/19 08:25
40197444005	B-31R	Water	10/14/19 17:55	10/17/19 08:25
40197444006	B-31A	Water	10/14/19 18:30	10/17/19 08:25
40197444007	B-39	Water	10/15/19 08:55	10/17/19 08:25
40197444008	B-26	Water	10/15/19 10:15	10/17/19 08:25
40197444009	FIELD BLANK	Water	10/15/19 08:55	10/17/19 08:25

SAMPLE ANALYTE COUNT

Project: 25219071.00 NELSON DEWEY CCR

Pace Project No.: 40197444

Lab ID	Sample ID	Method	Analysts	Analytes Reported
40197444001	B-7R	EPA 6020	KXS	2
			HMG	7
		SM 2540C	ТМК	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40197444002	B-11A	EPA 6020	KXS	2
			HMG	7
		SM 2540C	ТМК	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40197444003	B-11B	EPA 6020	KXS	2
			HMG	7
		SM 2540C	ТМК	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40197444004	B-11R	EPA 6020	KXS	2
			HMG	7
		SM 2540C	ТМК	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40197444005	B-31R	EPA 6020	KXS	2
			HMG	7
		SM 2540C	ТМК	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40197444006	B-31A	EPA 6020	KXS	2
			HMG	7
		SM 2540C	ТМК	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40197444007	B-39	EPA 6020	KXS	2
			HMG	7
		SM 2540C	ТМК	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40197444008	B-26	EPA 6020	KXS	2
			HMG	7

SAMPLE ANALYTE COUNT

Project:25219071.00 NELSON DEWEY CCRPace Project No.:40197444

Lab ID	Sample ID	Method	Analysts	Analytes Reported
		SM 2540C	ТМК	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40197444009	FIELD BLANK	EPA 6020	KXS	2
		SM 2540C	ТМК	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3

Project: 25219071.00 NELSON DEWEY CCR

Pace Project No.: 40

10 ·	10107111	
IU	40197444	

Sample: B-7R	Lab ID:	40197444001	Collected	10/14/19 13:20		Received: 10/	17/19 08:25 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	ation Meth	od: EPA	3010			
Boron Calcium	139 57700	ug/L ug/l	10.0 254	3.0 76.2	1 1	10/22/19 06:36	10/24/19 13:28 10/24/19 13:28	7440-42-8 7440-70-2	
Field Data	Analytical	Method:	201		•				
Field nH	6 62	Std Units			1		10/14/19 13:20		
Field Specific Conductance	576.6	umhos/cm			1		10/14/19 13:20		
Oxvgen. Dissolved	0.11	ma/L			1		10/14/19 13:20	7782-44-7	
REDOX	-132.2	mV			1		10/14/19 13:20		
Turbidity	4.25	NTU			1		10/14/19 13:20		
Static Water Level	613.43	feet			1		10/14/19 13:20		
Temperature, Water (C)	15.2	deg C			1		10/14/19 13:20		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	208	mg/L	20.0	8.7	1		10/21/19 18:13		
9040 pH	Analytical	Method: EPA 9	040						
pH at 25 Degrees C	6.9	Std. Units	0.10	0.010	1		10/28/19 11:02		H6
300.0 IC Anions	Analytical	Method: EPA 3	00.0						
Chloride	11.5	mg/L	10.0	2.5	5		10/26/19 14:32	16887-00-6	
Fluoride	<0.50	mg/L	1.5	0.50	5		10/26/19 14:32	16984-48-8	D3
Sulfate	<5.0	mg/L	15.0	5.0	5		10/26/19 14:32	14808-79-8	D3
Sample: B-11A	Lab ID:	40197444002	Collected	: 10/14/19	9 14:30	Received: 10/	17/19 08:25 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	ation Meth	od: EPA	3010			
Boron	80.7	ua/l	10.0	3.0	1	10/22/19 06:36	10/24/19 13:42	7440-42-8	
Calcium	56600	ug/L	254	76.2	1	10/22/19 06:36	10/24/19 13:42	7440-70-2	
Field Data	Analytical	Method:							
Field pH	7.66	Std. Units			1		10/14/19 14:30		
Field Specific Conductance	708	umhos/cm			1		10/14/19 14:30		
Oxygen, Dissolved	0.14	mg/L			1		10/14/19 14:30	7782-44-7	
REDOX	-59	mV			1		10/14/19 14:30		
Turbidity	2.58	NTU			1		10/14/19 14:30		
Static Water Level	613.29	feet			1		10/14/19 14:30		
Temperature, Water (C)	14.3	deg C			1		10/14/19 14:30		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	348	mg/L	20.0	8.7	1		10/21/19 18:14		

Project: 25219071.00 NELSON DEWEY CCR

Pace Project No.: 40197444

Sample: B-11A	Lab ID: 4	40197444002	Collected:	10/14/19	9 14:30	Received: 10/	17/19 08:25 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
9040 pH	Analytical N	/lethod: EPA 9	040						
pH at 25 Degrees C	7.8	Std. Units	0.10	0.010	1		10/28/19 11:06		H6
300.0 IC Anions	Analytical M	/lethod: EPA 3	00.0						
Chloride Fluoride Sulfate	96.6 0.26J <1.0	mg/L mg/L mg/L	10.0 0.30 3.0	2.5 0.10 1.0	5 1 1		10/28/19 14:25 10/26/19 14:46 10/26/19 14:46	16887-00-6 16984-48-8 14808-79-8	
Sample: B-11B	Lab ID: 4	40197444003	Collected:	10/14/19	9 14:55	Received: 10/	17/19 08:25 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical N	/lethod: EPA 6	020 Prepara	ation Meth	od: EPA	3010			
Boron Calcium	4630 91400	ug/L ug/L	10.0 254	3.0 76.2	1 1	10/22/19 06:36 10/22/19 06:36	10/24/19 13:48 10/24/19 13:48	7440-42-8 7440-70-2	
Field Data	Analytical M	lethod:							
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	7.92 1132 0.19 -48.9 1.50 613.18 14.3	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1		10/14/19 14:55 10/14/19 14:55 10/14/19 14:55 10/14/19 14:55 10/14/19 14:55 10/14/19 14:55 10/14/19 14:55	7782-44-7	
2540C Total Dissolved Solids	Analytical N	/lethod: SM 25	40C						
Total Dissolved Solids	728	mg/L	20.0	8.7	1		10/21/19 18:14		
9040 pH	Analytical M	/lethod: EPA 9	040						
pH at 25 Degrees C	7.8	Std. Units	0.10	0.010	1		10/28/19 11:12		H6
300.0 IC Anions	Analytical N	Nethod: EPA 3	00.0						
Chloride Fluoride Sulfate	32.3 0.62 339	mg/L mg/L mg/L	2.0 0.30 30.0	0.50 0.10 10.0	1 1 10		10/26/19 14:59 10/26/19 14:59 10/28/19 14:39	16887-00-6 16984-48-8 14808-79-8	
Sample: B-11R	Lab ID: 4	40197444004	Collected:	: 10/14/19	9 14:45	Received: 10/	17/19 08:25 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical N	Nethod: EPA 6	020 Prepara	ation Meth	od: EPA	3010			
Boron Calcium	1440 66000	ug/L ug/L	10.0 254	3.0 76.2	1 1	10/22/19 06:36 10/22/19 06:36	10/24/19 13:55 10/24/19 13:55	7440-42-8 7440-70-2	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 25219071.00 NELSON DEWEY CCR

1 10,000

Pace Project No.: 40197444

Sample: B-11R	Lab ID:	40197444004	Collected:	10/14/19	9 14:45	Received: 10/	17/19 08:25 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
Field pH	6.83	Std. Units			1		10/14/19 14:45		
Field Specific Conductance	612	umhos/cm			1		10/14/19 14:45		
Oxygen, Dissolved	0.10	mg/L			1		10/14/19 14:45	7782-44-7	
REDOX	-4.7	mV			1		10/14/19 14:45		
Turbidity	7.50	NTU			1		10/14/19 14:45		
Static Water Level	613.06	feet			1		10/14/19 14:45		
Temperature, Water (C)	14.5	deg C			1		10/14/19 14:45		
2540C Total Dissolved Solids	Analytical	Method: SM 25	640C						
Total Dissolved Solids	310	mg/L	20.0	8.7	1		10/21/19 18:14		
9040 pH	Analytical	Method: EPA 9	040						
pH at 25 Degrees C	7.0	Std. Units	0.10	0.010	1		10/28/19 11:14		H6
300.0 IC Anions	Analytical	Method: EPA 3	00.0						
Chloride	13.1	mg/L	2.0	0.50	1		10/26/19 15:13	16887-00-6	
Fluoride	0.26J	mg/L	0.30	0.10	1		10/26/19 15:13	16984-48-8	
Sulfate	40.7	mg/L	3.0	1.0	1		10/26/19 15:13	14808-79-8	
Sample: B-31R	Lab ID:	40197444005	Collected:	10/14/19	9 17:55	Received: 10/	17/19 08:25 Ma	atrix: Water	
Demonstration	Desults	L La Sta	1.00		DE	Decembra	A		Qual
Parameters				LOD		Prepared	Analyzed	CAS NO.	- Quai
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	ation Meth	od: EPA	3010			
Boron	915	ug/L	10.0	3.0	1	10/22/19 06:36	10/24/19 14:02	7440-42-8	
Calcium	110000	ug/L	254	76.2	1	10/22/19 06:36	10/24/19 14:02	7440-70-2	
Field Data	Analytical	Method:							
Field pH	6.72	Std. Units			1		10/14/19 17:55		
Field Specific Conductance	837	umhos/cm			1		10/14/19 17:55		
Oxygen, Dissolved	0.10	mg/L			1		10/14/19 17:55	7782-44-7	
REDOX	20.7	mV			1		10/14/19 17:55		
Turbidity	2.81	NTU			1		10/14/19 17:55		
Static Water Level	612.5	feet			1		10/14/19 17:55		
Temperature, Water (C)	14.2	deg C			1		10/14/19 17:55		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	480	mg/L	20.0	8.7	1		10/21/19 18:14		
9040 pH	Analytical	Method: EPA 9	040						
pH at 25 Degrees C	7.0	Std. Units	0.10	0.010	1		10/28/19 11:15		H6

Project: 25219071.00 NELSON DEWEY CCR

Pace Project No.:

ct No.: 40197444

Sample: B-31R	Lab ID:	40197444005	Collected	: 10/14/1	9 17:55	Received: 10/	(17/19 08:25 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions	Analytical	Method: EPA 3	00.0						
Chloride Fluoride Sulfate	26.0 0.25J 146	mg/L mg/L mg/L	2.0 0.30 30.0	0.50 0.10 10.0	1 1 10		10/26/19 15:27 10/26/19 15:27 10/28/19 14:53	16887-00-6 16984-48-8 14808-79-8	
Sample: B-31A	Lab ID:	40197444006	Collected	: 10/14/1	9 18:30	Received: 10/	/17/19 08:25 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	ation Meth	od: EPA	3010			
Boron Calcium	98.5 52200	ug/L ug/L	10.0 254	3.0 76.2	1 1	10/22/19 06:36 10/22/19 06:36	10/24/19 14:22 10/24/19 14:22	7440-42-8 7440-70-2	
Field Data	Analytical	Method:							
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C) 2540C Total Dissolved Solids Total Dissolved Solids	7.69 514 0.12 -60.5 2.66 613.2 14.2 Analytical 272	Std. Units umhos/cm mg/L mV NTU feet deg C I Method: SM 25 mg/L	540C 20.0	8.7	1 1 1 1 1 1		10/14/19 18:30 10/14/19 18:30 10/14/19 18:30 10/14/19 18:30 10/14/19 18:30 10/14/19 18:30 10/14/19 18:30 10/14/19 18:30	7782-44-7	
9040 pH	Analytical	Method: EPA 9	040						
pH at 25 Degrees C	7.7	Std. Units	0.10	0.010	1		10/28/19 11:18		H6
300.0 IC Anions Chloride Fluoride Sulfate	Analytical 47.1 0.22J 22.3	I Method: EPA 3 mg/L mg/L mg/L	00.0 2.0 0.30 3.0	0.50 0.10 1.0	1 1 1		10/26/19 15:41 10/26/19 15:41 10/26/19 15:41	16887-00-6 16984-48-8 14808-79-8	
Sample: B-39	Lab ID:	40197444007	Collected	: 10/15/1	9 08:55	Received: 10/	/17/19 08:25 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	ation Meth	iod: EPA	3010			
Boron Calcium	203 60900	ug/L ug/L	10.0 254	3.0 76.2	1 1	10/22/19 06:36 10/22/19 06:36	10/24/19 14:29 10/24/19 14:29	7440-42-8 7440-70-2	
Field Data	Analytical	Method:							
Field pH	6.41	Std. Units			1		10/15/19 08:55		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 25219071.00 NELSON DEWEY CCR

Pace Project No.: 40197444

Sample: B-39	Lab ID: 40197444007		Collected: 10/15/19 08:55			Received: 10/17/19 08:25 Matrix: Water			
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytica	I Method:							
Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	428 0.16 202 0.49 613.35 15	umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1		10/15/19 08:55 10/15/19 08:55 10/15/19 08:55 10/15/19 08:55 10/15/19 08:55 10/15/19 08:55	7782-44-7	
2540C Total Dissolved Solids	Analytica	I Method: SM 25	540C						
Total Dissolved Solids	206	mg/L	20.0	8.7	1		10/21/19 18:14		
9040 pH	Analytica	I Method: EPA 9	040						
pH at 25 Degrees C	6.7	Std. Units	0.10	0.010	1		10/28/19 11:20		H6
300.0 IC Anions	Analytica	I Method: EPA 3	00.0						
Chloride Fluoride Sulfate	0.78J 0.26J 2.0J	mg/L mg/L mg/L	2.0 0.30 3.0	0.50 0.10 1.0	1 1 1		10/26/19 15:55 10/26/19 15:55 10/26/19 15:55	16887-00-6 16984-48-8 14808-79-8	
Sample: B-26	Lab ID:	40197444008	Collected	: 10/15/19	9 10:15	Received: 10/	(17/19 08:25 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytica	I Method: EPA 6	020 Prepara	ation Meth	od: EPA	3010			
Boron Calcium	<3.0 <76.2	ug/L ug/L	10.0 254	3.0 76.2	1 1	10/22/19 06:36 10/22/19 06:36	10/24/19 14:36 10/24/19 14:36	7440-42-8 7440-70-2	
Field Data	Analytica	I Method:							
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	7.24 753 12.17 175.8 1.5 613.10 11.6	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1		10/15/19 10:15 10/15/19 10:15 10/15/19 10:15 10/15/19 10:15 10/15/19 10:15 10/15/19 10:15 10/15/19 10:15	7782-44-7	
2540C Total Dissolved Solids	Analytica	I Method: SM 25	540C						
Total Dissolved Solids	404	mg/L	20.0	8.7	1		10/21/19 18:15		
9040 pH	Analytica	I Method: EPA 9	040						
pH at 25 Degrees C	7.4	Std. Units	0.10	0.010	1		10/29/19 11:03		H6
300.0 IC Anions	Analytica	I Method: EPA 3	00.0						
Chloride	30.5	mg/L	2.0	0.50	1		10/26/19 16:09	16887-00-6	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 25219071.00 NELSON DEWEY CCR

Pace Project No.: 40197444

ο.	40197444	

Sample: B-26	Lab ID:	40197444008	Collected:	10/15/1	9 10:15	Received: 10/	17/19 08:25 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions	Analytical	Method: EPA 3	00.0						
Fluoride	<0.10	mg/L	0.30	0.10	1		10/26/19 16:09	16984-48-8	
Sulfate	36.0	mg/L	3.0	1.0	1		10/26/19 16:09	14808-79-8	
Sample: FIELD BLANK	Lab ID:	40197444009	Collected:	10/15/1	9 08:55	Received: 10/	17/19 08:25 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Analytical Method: EPA 6020 Preparation Method: EPA 3010							
Boron	41.2	ug/L	10.0	3.0	1	10/22/19 06:36	10/24/19 11:59	7440-42-8	
Calcium	72000	ug/L	254	76.2	1	10/22/19 06:36	10/24/19 11:59	7440-70-2	
2540C Total Dissolved Solids	Analytical	Method: SM 25	640C						
Total Dissolved Solids	<8.7	mg/L	20.0	8.7	1		10/21/19 18:15		
9040 pH	Analytical	Method: EPA 9	040						
pH at 25 Degrees C	6.3	Std. Units	0.10	0.010	1		10/29/19 11:10		H6
300.0 IC Anions	Analytical	Method: EPA 3	00.0						
Chloride	<0.50	mg/L	2.0	0.50	1		10/26/19 16:23	16887-00-6	
Fluoride	<0.10	mg/L	0.30	0.10	1		10/26/19 16:23	16984-48-8	
Sulfate	<1.0	mg/L	3.0	1.0	1		10/26/19 16:23	14808-79-8	

Project:	25219071.0	0 NELS	SON DEWEY CC	R									
Pace Project No.:	40197444												
QC Batch:	338250			Anal	ysis Metho	d:	EPA 6020						
QC Batch Method:	EPA 3010			Anal	ysis Descri	ption:	6020 MET						
Associated Lab Sa	mples: 401 401	974440 974440	01, 4019744400 08, 4019744400	2, 4019744 9	14003, 401	97444004,	401974440	05, 401974	444006, 40	197444007	7,		
METHOD BLANK:	1964527				Matrix: W	/ater							
Associated Lab Sa	mples: 401 401	974440 974440	01, 4019744400 08, 4019744400	2, 4019744 9	44003, 401	97444004,	401974440	05, 401974	444006, 40	197444007	7,		
_				Bla	nk	Reporting			0 110				
Para	meter		Units	Res	ult	Limit	Anal	yzed	Qualifier	S			
Boron			ug/L		<3.0	10.	0 10/24/1	9 11:53					
Calcium			ug/L		6.2</th <th>25</th> <th>4 10/24/1</th> <th>9 11:53</th> <th></th> <th></th> <th></th> <th></th> <th></th>	25	4 10/24/1	9 11:53					
LABORATORY CO	NTROL SAMI	PLE:	1964532										
				Spike	LC	S	LCS	% R	ec				
Para	meter		Units	Conc.	Res	sult	% Rec	Lim	its	Qualifiers			
Boron			ug/L	50	00	461	9	2	80-120				
Calcium			ug/L	500	00	4970	9	9	80-120				
MATRIX SPIKE & M	MATRIX SPIK	E DUPI	LICATE: 1964	533		1964534	ŀ						
			40407070000	MS	MSD	MC	MCD	MC	MCD	0/ Dec		Max	
Paramete	r	Units	Result	Spike Conc.	Spike Conc.	Result	Result	% Rec	% Rec	% Rec Limits	RPD	RPD	Qual
Boron		ug/L		500	500	471	483	93	95	75-125	3	20	
Calcium		ug/L	9090	5000	5000	14200	14700	101	112	75-125	4	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	252190	71.00 NEL	SON DEWEY CCR	l								
Pace Project No.:	401974	44										
QC Batch:	33823	2		Analysis M	ethod:	SI	VI 2540C					
QC Batch Method:	SM 25	540C		Analysis D	escription:	25	540C Total Dis	solved Sc	olids			
Associated Lab Sar	nples:	40197444 40197444	001, 40197444002 008, 40197444009	, 40197444003,	, 4019744400)4, 4(0197444005,	40197444	006, 4	10197	7444007,	
METHOD BLANK:	196444	7		Matri	x: Water							
Associated Lab Sar	nples:	40197444 40197444	001, 40197444002 008, 40197444009	, 40197444003	, 4019744400	04, 40	0197444005,	40197444	006, 4	10197	7444007,	
				Blank	Reportin	g						
Paran	neter		Units	Result	Limit		Analyzeo	d (Qualifi	ers	_	
Total Dissolved Soli	ds		mg/L	<8.	7 2	20.0	10/21/19 18	3:11				
LABORATORY COI	NTROL S	AMPLE:	1964448									
				Spike	LCS		LCS	% Rec				
Parar	neter		Units	Conc.	Result	0	% Rec	Limits		Qua	alifiers	
Total Dissolved Soli	ds		mg/L	600	526		88	80-	120			
SAMPLE DUPLICA	TE: 196	64449										
				40197371001	Dup			Ν	Лах			
Parar	neter		Units	Result	Result		RPD	R	RPD		Qualifiers	
Total Dissolved Soli	ds		mg/L	57	8	580		0		10		
SAMPLE DUPLICA	TE: 196	64450										
5	(11.5%	40197444001	Dup		000	N	/lax		0	
Paran	neter		Units	Result	Result		RPD	K	PD		Qualifiers	
Total Dissolved Soli	ds		mg/L	200	В	224		7		10		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	25219071.00 NELS	SON DEWEY CC	R					
Pace Project No.:	40197444							
QC Batch:	338857		Analysis Meth	iod: E	EPA 9040			
QC Batch Method:	EPA 9040		Analysis Desc	cription: 9	9040 pH			
Associated Lab Sar	nples: 401974440	001, 4019744400	2, 40197444003, 40)197444004, 4	40197444005, 4	40197444006,	40197444007	
SAMPLE DUPLICA	TE: 1968480							
			40197444001	Dup		Max		
Paran	neter	Units	Result	Result	RPD	RPD	Qualifiers	
pH at 25 Degrees C	;	Std. Units	6.9	6.9	9	1	20 H6	
SAMPLE DUPLICA	TE: 1968481							
			40197624003	Dup		Max		
Paran	neter	Units	Result	Result	RPD	RPD	Qualifiers	
pH at 25 Degrees C	;	Std. Units	7.8	7.8	3	1	20 H6	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	25219071.00 NELS	ON DEWEY CCR							
Pace Project No.:	40197444								
QC Batch:	338999		Analysis Meth	od:	EPA 9040				
QC Batch Method:	EPA 9040		Analysis Desc	ription:	9040 pH				
Associated Lab Sar	nples: 401974440	08, 40197444009							
SAMPLE DUPLICA	TE: 1968936								
			40197444008	Dup			Max		
Parar	neter	Units	Result	Result	RPD		RPD	Qualifiers	
pH at 25 Degrees C	;	Std. Units	7.4		7.4	0		20 H6	
SAMPLE DUPLICA	TE: 1968937								
			40197979009	Dup			Max		
Parar	neter	Units	Result	Result	RPD		RPD	Qualifiers	
pH at 25 Degrees C	;	Std. Units	8.4		8.4	0		20 H6	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	25219	071.00 NELS	SON DEWEY CCI	Я									
Pace Project No.:	40197	444											
QC Batch:	3386	45		Anal	ysis Method	d: E	PA 300.0						
QC Batch Method:	EPA	300.0		Anal	ysis Descrij	otion: 3	00.0 IC An	ions					
Associated Lab Sar	nples:	401974440 401974440	001, 40197444002 008, 40197444009	2, 4019744 9	44003, 4019	97444004, 4	01974440	05, 401974	44006, 401	197444007	,		
METHOD BLANK:	19668	63			Matrix: W	ater							
Associated Lab Sar	nples:	401974440 401974440	001, 40197444002 008, 40197444009	2, 4019744 Ə	44003, 4019	97444004, 4	01974440	05, 401974	44006, 401	197444007	,		
Parar	neter		Units	Bla Res	nk l ult	Reporting Limit	Analy	vzed	Qualifiers				
Chloride			ma/l		<0.50	20	10/26/1	9 11:32					
Fluoride			mg/L		<0.10	0.30) 10/26/1	9 11:32					
Sulfate			mg/L		<1.0	3.0	10/26/1	9 11:32					
LABORATORY CO	NTROL	SAMPLE:	1966864										
Paran	neter		Units	Spike Conc.	LC Res	S ult	LCS % Rec	% Re Limit	ec ts C	Qualifiers			
Chloride			mg/L	2	20	19.5	9	7 9	90-110		_		
Fluoride			mg/L		2	2.0	9	9 9	90-110				
Sulfate			mg/L	2	20	19.7	9	9 9	90-110				
MATRIX SPIKE & M	IATRIX	SPIKE DUPI	LICATE: 19668	365		1966866							
			40407400004	MS	MSD		MOD		MOD	0/ D			
Parameter	r	Units	40197409001 Result	Spike Conc.	Spike Conc.	Result	Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride		mg/L		1000	1000	1140	1170	96	99	90-110	3	15	
Fluoride		mg/L	12.9J	100	100	125	127	112	115	90-110	2	15	MO
Sulfate		mg/L	73.8J	1000	1000	1040	1080	97	101	90-110	4	15	
MATRIX SPIKE & M	IATRIX	SPIKE DUPI	LICATE: 19668	867		1966868							
			40407407004	MS	MSD	MO	MOD	MO	MOD			N.4	
Parameter	r	Units	40197427001 Result	Spike Conc.	Spike Conc.	Result	Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride		mg/L	14900	20000	20000	36000	36300	106	107	90-110	1	15	
Fluoride		mg/L	686	2000	2000	3060	3080	119	120	90-110	1	15	MO
Sulfate		mg/L	ND	20000	20000	21400	21600	103	104	90-110	1	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALIFIERS

Project: 25219071.00 NELSON DEWEY CCR

Pace Project No.: 40197444

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
- H6 Analysis initiated outside of the 15 minute EPA required holding time.
- M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 25219071.00 NELSON DEWEY CCR

Pace Project No.: 40197444

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40197444001	 B-7R	EPA 3010	338250	EPA 6020	338340
40197444002	B-11A	EPA 3010	338250	EPA 6020	338340
40197444003	B-11B	EPA 3010	338250	EPA 6020	338340
40197444004	B-11R	EPA 3010	338250	EPA 6020	338340
40197444005	B-31R	EPA 3010	338250	EPA 6020	338340
40197444006	B-31A	EPA 3010	338250	EPA 6020	338340
40197444007	B-39	EPA 3010	338250	EPA 6020	338340
40197444008	B-26	EPA 3010	338250	EPA 6020	338340
40197444009	FIELD BLANK	EPA 3010	338250	EPA 6020	338340
40197444001	B-7R				
40197444002	B-11A				
40197444003	B-11B				
40197444004	B-11R				
40197444005	B-31R				
40197444006	B-31A				
40197444007	B-39				
40197444008	B-26				
40197444001	B-7R	SM 2540C	338232		
40197444002	B-11A	SM 2540C	338232		
40197444003	B-11B	SM 2540C	338232		
40197444004	B-11R	SM 2540C	338232		
40197444005	B-31R	SM 2540C	338232		
40197444006	B-31A	SM 2540C	338232		
40197444007	B-39	SM 2540C	338232		
40197444008	B-26	SM 2540C	338232		
40197444009	FIELD BLANK	SM 2540C	338232		
40197444001	B-7R	EPA 9040	338857		
40197444002	B-11A	EPA 9040	338857		
40197444003	B-11B	EPA 9040	338857		
40197444004	B-11R	EPA 9040	338857		
40197444005	B-31R	EPA 9040	338857		
40197444006	B-31A	EPA 9040	338857		
40197444007	B-39	EPA 9040	338857		
40197444008	B-26	EPA 9040	338999		
40197444009	FIELD BLANK	EPA 9040	338999		
40197444001	B-7R	EPA 300.0	338645		
40197444002	B-11A	EPA 300.0	338645		
40197444003	B-11B	EPA 300.0	338645		
40197444004	B-11R	EPA 300.0	338645		
40197444005	B-31R	EPA 300.0	338645		
40197444006	B-31A	EPA 300.0	338645		
40197444007	B-39	EPA 300.0	338645		
40197444008	B-26	EPA 300.0	338645		
40197444009	FIELD BLANK	EPA 300.0	338645		

C019a(27Jun2006)

Samp ⁱ special	ax:	Email #2: Telephone:	Email #1:	Transmit Prelim F		Rush Turnai		<i>0</i> 0 9	æ 8	00 J	006	025	400	5 00	2 20	001	PACE LAB #		Data Package (billable) EPA L(PO #	Sampled By (Sig	Sampled By (Pri	Project State:	Project Name:	Project Number:	Phone:	Project Contact:	Branch/Locatior	Company Name
les on HOLD are subject to				tush Results by (complete what you wa	ate Needed:	round Time Requested - Prelim		Field blank	B-26	B-39	13-31A	B-31R	D-HR	B-118	B-11A	B-7R	CLIENT FIELD ID	Wel IV VOT needed on your sample	Options MS/MSD avel III On your sample (billable) (billable)			nt): Adam Wat	Wis consin	Nelson Deur	00,12021252	608-224-2	Tom Kawo	" Madison WI	SCS Emined
Relinc		Relinc	Reline	ant):	Relin	IS Relin		4	-	Indis	4				_	1914	DATE	S = Soil S = Sludge	V = Air 3 = Biota 5 = Charcoal	Program:		Sev.	1	ier		328	ski m	•	<i>,</i>
juished By:		quished By:	Juished By: J	S Logis	quished By:	juished By:		518	1015	355	1830	177	1445	1455	1430	1320	ECTION MATRI	WW = Waste Water WP = Wipe	TIX Codes W = Water DW = Drinking Water GW = Ground Water GW = Surface Water			PRESERVATION (CODE)*	FILTERED? (YES/NO)	H=Sodium Bi	A=None [-	Lhan (Blad	<u> </u>	
				Des 1	:												2	Analy	/ses Req	 ueste	d ^e	2 Letter	NIA	isulfate Soluti	B=HCL C=	CHY	eff.	Pace	J
				5				X	X	×'	×	×	X	×	X	×	ßc	×Ci	n, Cal	<u>Ciur</u>	~	σ	ح	3	:H2SQ4 []	NIN (WWW.peu	Anal	
Date/Tin		Date/Tir	Date/Tin	STICTIC	Date/Tir	Date/Tir			X	X	X	X	X	×.	X	X	T	<u>)</u>	CI,F,	SOL	1	R	5	-Sodium Th)=HNO3 [elabs.com	ytical	ł
ne:		me:	ne:	52Ro 1		ne:											P	<u>'H</u>				*	5	iosulfate J=Othe	<u>1 Codes</u> E=DI Water F=Me	CUST	1)
Received		Received	Received	$\overline{\mathbf{V}}$	Received	Received																		¥r	thanol G=N	YOO			MN: 0
By:		By:	å	P	By:	/ ₈																			te OH				312-607-1
			•	No Pro		Č,											8		INO	Invoic	Invoic	Invoj		Mai	Mail	Mai	2		700 WI: 92
Date/Time;		Date/Time:	Date/Time:	10/17/1-	Date/Time:	Date/Time:											MMENTS	CLIENT	ice To Phone:	e To Address:	e To Company:	ce To Contact:		To Address:	To Company:	I To Contact:	Hote#:		0-469-2436
				2080													(Lab	LAB						mblo	SC	(q)	Meg	ہے ل	,)
Present Au	Cooler Cus	OK Ma	Sample R	Receipt Temp = /	ROW												Use Only)	COMMENTS					C	duetto s	V TENSIN	3 Karr	han Bh	PLANA	4097
ot Present	stody Seal	Justed	Aceint pH	2														Profile						servit	ieers	Jas k.	odget	われ	t t

AG4U12 AG5U10 AG2S 50 BG3U25	AG1U11 AG1H11 AG4S12	Excep	020	019	810	017	016	015	014	013	012	011	010	600	800	007	900	005	004	003	002	100	Lab #		Chei
0 mL amber glass unpi 0 mL amber glass unpi 0 mL amber glass H2S 0 mL clear glass unpre	liter amber glass iter amber glass HCL 5 mL amber glass H2S	tions to preservation chec					ł						ſ										AG1H AG4S AG4U	All containers nee	nt Name: Sc
res BP res BP 04 BP BP	04 BP BP	sk: VOA, Coliform, T						Ŧ	5	1907													AG5U AG2S BG3U BP1U	ding preservation hav	'S Enai
 3U 250 mL plastic un 3B 250 mL plastic Na 3N 250 mL plastic HN 3N 250 mL plastic HN 	I liter plastic unpr 2N 500 mL plastic HP 2Z 500 mL plastic Na	OC, TOX, TOH, O&G, WI												N	2		\ <i>≮</i> _	OR ZI	JN2 21	13-21		Ē.	BP2N BP2Z BP3U BP3B	e been checked and noted b Lab Lot# of pH [Neers
eo1 100 100 100 100 100 100 100 100 100 1	es NO3 IOH, Znact	DRO, Phenolics, Oth				>		2							-	λ		·	-			-	BP3N BP3S DG9A	nelow: ∯Yes ⊡No ⊡ Daper: \ <u>\o</u> US OS	Proje
VG9H 40 mL clear VG9M 40 mL clear VG9D 40 mL clear	OG9A 40 mL ambe OG9T 40 mL ambe VG9U 40 mL clear	er:																					DG9T VG9U ≦ VG9H VG9M	VIA 1911 Lab Sid #ID	ct #
vial HCL vial MeOH vial DI	er ascorbic er Na Thio · vial unpres	Headspace in VOA																					VG9D JGFU WGFU	of preservation (if pH z	MOLAN
SPST ZPLC	JGFU WGFU WPFU	Vials (>6mm) :					-																SP5T	ndjusted)	
120 mL plasti ziploc bag	4 oz amber ja 4 oz clear jar 4 oz plastic ja	aYes aNo 🖬																					GN)*	
ic Na Thiosuli	r unpres unpres r unpres	ųA *If yes loo			_	/																	H2SO4 pH ≤2 NaOH+Zn Act pH	Initial wh complete	
fate		k in headspace		/	/									×	*	×	X	۲	x	×	×	×	NaOH pH≥12 HNO3 pH ≤2		;
		column	2.5/5/10	2.5 / 5 / 10	2.5/5/10	2.5 / 5 / 10	2.5/5/10	2.5 / 5 / 10	2.5/5/10	2.5/5/10	2.5 / 5 / 10	2.5 / 5 / 10	2.5/5/10	2.5 / 5 / 10	2.5/5/10	2.5/5/10	2.5/5/10	2.5 / 5 / 10	2.5/5/10	2.5 / 5 / 10	2.5 / 5 / 10	2.5 / 5 / 10		ne:	Ell Day, wi vive

F-GB-C-046-Rev.02 (29Mar2018) Sample Preservation Receipt Form

Page $\underline{1}$ of $\underline{2}$

Boog Analisticat"	Samala C-	Jocument Name	Docun	nent Revised: 25Apr2018
	Sample Co	Document No		Issuing Authority
1241 Bellevue Street, Green Bay, WI 543	02	-GB-C-031-Rev.0	7 Pace	Green Bay Quality Office
Sample	Condition	Upon Receip	t Form (SCUR)	
		Pro	ject #:	
lient Name: SCS ENIA We	er2			
ourier: 💽 CS Logistics 🗔 Fed Ex 🔲 Spee	dee 🗖 UPS	T Waltco	WO#	:4019/444
Client 🗖 Pace Other:				18 11 18 11 1
racking #: <u>Zo 42-101619</u>	ana an Anna an Anna an Anna an Anna an Anna an Anna an			
ustody Seal on Cooler/Box Present: 🥅 yes	🔍 no Seals	intact: 🔽 yes 厂	no 4019/4-	•••
ustody Seal on Samples Present: 🗋 yes 🖡	K no Seals	intact: Г yes Г	no	
acking Material: 🕅 Bubble Wrap 🗌 Bu	bble Bags	None 🕅 Othe	er ziplack f	Plastic bans
ooler Temperature Uncorr Dat /Corr		Wet Blue Dry I	None X Sample	s on ice, cooling process has begun
emp Blank Present: Ves N no	Biolog	lical Tissue is Fr	ozen: 🗖 ves 🗖 no	Person examining content
emp should be above freezing to 6°C. ota Samples may be received at ≤ 0°C.			•••••15	Date: <u>D((7)19</u> Initials: <u>D</u>
hain of Custody Present:	INo □No	□n/a 1.		
hain of Custody Filled Out:	🗆 Yes 🔂 No	□N/A 2. → ~ D	NO PAY #	documento 10/17/19
hain of Custody Relinquished:	□Yes S No	□N/A 3. CUSTO	MER NOT Relive	4AD 10/17/19 20
ampler Name & Signature on COC:	Yes 🗆 No	□N/A 4.)
amples Arrived within Hold Time:	∰Yes □No	5.		
- VOA Samples frozen upon receipt	□Yes □No	Date/Time:		
hort Hold Time Analysis (<72hr):	Kyes □No	6.		
ush Turn Around Time Requested:	∐Yes Max No	7.		
uffici <mark>ent Volume:</mark>		8.		
For Analysis: ₩yes □No MS/MS	D: 🛛 Yes 🖾 Mo			
orrect Containers Used:	BoxYes ⊡No	9.		
-Pace Containers Used:	No ⊡No			
-Pace IR Containers Used:	□Yes □No			
ontainers Intact:	Ves 🗆 No	10.		
Itered volume received for Dissolved tests	□Yes □No	D ¥•N/A 11.		
ample Labels match COC:	XYes 🗆 No	□N/A 12.		
-Includes date/time/ID/Analysis Matrix:	W			
ip Blank Present:	□Yes □No	X N/A 13.		
ip Blank Custody Seals Present	□Yes □No	MN/A	and a second second Second second	
ace Trip Blank Lot # (if purchased):				
Person Contacted:		Date/Time:	If checked, see att	tached form for additional comments
Comments/ Resolution:				
	en de la companya de Referencia de la companya de la comp Referencia de la companya de la comp		<u>an an an an an Arthrean</u> An Anna an Anna	one an
		~		

P	aq	e 7	Pate	2	f 21	
	Ŭ		<u>a</u> uge			

Appendix B

Alternative Source Demonstrations

B1 Alternative Source Demonstration, October 2018 Detection Monitoring

Alternative Source Demonstration October 2018 Detection Monitoring

Nelson Dewey Generating Station Slag Pond Cassville, Wisconsin

Prepared for:

25216071.18 | April 15, 2019

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830

Table of Contents

Sect	ion		Page	Э
PE Ce	ertifica	ation	i	ii
1.0	Intro	duction		1
	1.1	§257.94(I	E)(2) Alternative Source Demonstration Requirements	1
	1.2	Site Inform	nation and Map	1
	1.3	Statistical	ly Significant Increases Identified	2
	1.4	Overview of	of ASD Approach	2
2.0	Back	ground		2
	2.1	Geologic a	and Hydrogeologic Setting	3
		2.1.1 Re	egional Information	3
		2.1.2 Sit	te Information	3
	2.2	CCR Rule	Monitoring System	3
	2.3	Other Mor	nitoring Wells	3
3.0	Meth	odology an	nd Analysis Review	4
	3.1	Sampling	and Field Analysis Review	4
	3.2	Laborator	y Analysis Review	4
	3.3	Statistical	Evaluation Review	ō
	3.4	Summary	of Methodology and Analysis Review Findings	ō
4.0	Alteri	native Sour	rces	ō
	4.1	Potential (Causes of SSI	ō
		4.1.1 Na	atural Variation	ō
		4.1.2 Ma	an-Made Alternative Sources	ō
	4.2	Lines of Ev	vidence	6
		4.2.1 Gr	ant County Fluoride Data	6
		4.2.2 Pr	evious CCR Pond and Landfill Study	6
		4.2.3 Sla	ag Pond Closure Sampling Results	7
		4.2.4 Sta	ate Program Groundwater Monitoring Results	3
5.0	ASD	Conclusion	S	3
6.0	Site (Groundwate	er Monitoring Recommendations	3
7.0	Refe	rences		3

Tables

Table 1.	Groundwater Analytical Results Summary – CCR Program – Detection Monitoring –
	October 2017 through November 2018
Table 2.	Analytical Results – Appendix III Constituents with SSIs
Table 3.	Groundwater Elevations – State and CCR Monitoring Wells

Figures

- Figure 1.Site Location Map
- Figure 2. Aerial View
- Figure 3. Monitoring Well Location Map
- Figure 4. Water Table Flow Map October 2018

Appendices

- Appendix A CCR Well Trend Plots
- Appendix B 1994 RMT Environmental Contamination Assessment Information
- Appendix C 2016 Low-Hazard Waste Exemption Leaching Test Results Slag and Ash

I:\25216071.00\Deliverables\2019 ASD Report 1810- No. 3\190415_ASD_NED_1810_FINAL.docx

PE CERTIFICATION

Sherren C,	I, Sherren Clark, hereby certify that that the information in this alternate source demonstration is accurate and meets the requirements of 40 CFR 257.94(e)(2). This certification is based on my review of the groundwater data and related site information available for the Nelson Dewey Generating Station Slag Pond facility. I am a duly licensed Professional Engineer under the laws of the State of Wisconsin.
E-29863	(signature) (date)
Madison, Wis,	Sherren Clark
SSIONAL ENGLISH	(printed or typed name)
and an and a start of the start	License number <u>E-29863</u>
	My license renewal date is July 31, 2020.
	Pages or sheets covered by this seal:
	Alternative Source Demonstration,
	all pages

[This page left blank intentionally]

1.0 INTRODUCTION

This Alternative Source Demonstration (ASD) was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" published by the U.S. Environmental Protection Agency (USEPA) in the *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule,* dated April 17, 2015 (USEPA, 2015), and subsequent amendments. Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.94(e)(2). The applicable sections of the Rule are provided below in *italics*.

1.1 §257.94(E)(2) ALTERNATIVE SOURCE DEMONSTRATION REQUIREMENTS

The owner and operator may demonstrate that a source other than the CCR Unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels.

An ASD is completed when there are exceedances of one or more benchmarks established within the groundwater monitoring program. The ASD is completed to determine if any other sources are likely causes of the identified exceedance(s) of established benchmark(s) at the site. This ASD was performed in response to results indicating a statistically significant increase (SSI) over background levels during detection monitoring under the CCR Rule.

This ASD report is evaluating the SSIs observed in the statistical evaluation of the October 2018 detection monitoring event at the Nelson Dewey Generating Station (NED). Previously, two ASDs were prepared for this facility evaluating the SSIs observed in the statistical evaluation of the October 2017 and for the April 2018 detection monitoring event (SCS Engineers [SCS], 2018b and 2018c). The October 2017 ASD (dated April 2018) and the April 2018 ASD (dated October 2018) concluded that several lines of evidence demonstrated that SSIs reported for boron, calcium, fluoride, field pH, sulfate, and total dissolved solids (TDS) concentrations in the downgradient monitoring wells were likely due to man-made sources and/or naturally occurring constituents in the alluvial aquifer.

As discussed in more detail in **Section 4.2** of this ASD, the findings for the October 2018 monitoring event were generally consistent with those for the previous event.

1.2 SITE INFORMATION AND MAP

The NED site is located along the east bank of the Mississippi River, north of the Village of Cassville, in Grant County, Wisconsin (**Figure 1**). The facility includes a decommissioned coal fired generating plant, a CCR landfill that was closed in 2001, a closed slag pond, and a closed wastewater treatment pond. The layout of the site on an aerial photograph base is shown on **Figure 2**. The closed landfill at the NED facility was permitted under Wisconsin Department of Natural Resources (WDNR) License #02525.

The existing CCR unit evaluated for this ASD is:

• Slag Pond (former existing CCR surface impoundment)

A map showing the CCR unit and all background (or upgradient) and downgradient monitoring wells with identification numbers for the CCR groundwater monitoring program and the state monitoring program is provided as **Figure 3**.

Operations at the facility began in the late 1950s, and a CCR impoundment that included what is now the Slag Pond closure area was commissioned at that time. The CCR landfill was initially licensed in 1976 and received fly ash from NED until it was closed in phases between 1996 and 2001. The CCR landfill was initially operated as a fly ash sluice basin, then transitioned to dry ash placement prior to closure. The wastewater ponds, now closed, were constructed in 1976 for the purpose of settling CCR from the NED process wastewater streams and sediment from storm water runoff prior to discharge. Both NED generating units were retired on December 31, 2015, and have since been decommissioned. The generating station was demolished in 2017.

1.3 STATISTICALLY SIGNIFICANT INCREASES IDENTIFIED

SSIs were identified for boron, fluoride, sulfate, and TDS at one or more wells in the October 2018 monitoring event. Sulfate and TDS SSIs were confirmed from the November 2018 sampling event. A summary of the October 2018 constituent concentrations and the established benchmark concentrations are provided in **Table 1**. The October 2017, April 2018, and November 2018 resampling results are also included for comparison. The constituent concentrations with SSIs above the background concentrations are highlighted in the table.

The SSIs for the October 2018 event were generally consistent with the October 2017 and April 2018 SSIs, with a few changes. New SSIs were identified for sulfate at B-31R and for TDS at B-11B and B-31R. There were no SSIs for field pH.

1.4 OVERVIEW OF ASD APPROACH

This ASD report includes:

- Background information (Section 2.0)
- Evaluation of potential that SSIs are due to methodology or analysis (Section 3.0)
- Evaluation of potential that SSIs are due to natural sources or man-made sources other than the CCR Units (Section 4.0)
- ASD conclusions (Section 5.0)
- Monitoring recommendations (Section 6.0)

The CCR Rule constituent results from background and compliance sampling for the parameter with SSIs are provided in **Table 2**. Complete laboratory reports for the background monitoring events and the October 2017 detection monitoring event were included in the 2017 Annual Groundwater Monitoring and Corrective Action Report for the NED Slag Pond (SCS, 2018a). The laboratory reports for the April 2018 and October 2018 events were included in the 2018 Annual Groundwater Monitoring and Corrective Action Report.

2.0 BACKGROUND

To provide context for the ASD evaluation, the following background information is provided in this section of the report, prior to the ASD evaluation sections:

- Geologic and hydrogeologic setting
- CCR Rule monitoring system
- Other monitoring wells

A more detailed discussion of the background information for the site is provided in the ASD for the October 2017 event (SCS, 2018b).

2.1 GEOLOGIC AND HYDROGEOLOGIC SETTING

2.1.1 Regional Information

The uppermost geologic formation beneath the NED plant is the surficial alluvial aquifer. The alluvial aquifer consists of Mississippi River valley sand and gravel deposits, and is the uppermost aquifer as defined in section 257.53 of the CCR Rule. This deposit is prevalent along the edges of the entire Mississippi River valley in southwestern Wisconsin.

The alluvial aquifer is underlain by dolomitic bedrock of the Prairie du Chien Group. The dolomite bedrock is also an aquifer and is likely hydraulically connected to the alluvial aquifer above.

Regionally, groundwater flow is generally to the southwest and discharges to the Mississippi River.

Additional details on the regional geology were provided in the October 2017 ASD (SCS, 2018b).

2.1.2 Site Information

The thickness of the alluvium in the immediate vicinity of the plant is over 125 feet, as evidenced by local water supply well logs (SCS, 2018b). These logs are also evidence that the alluvial aquifer yields useable quantities of groundwater for supply wells in the area. Soil boring logs for monitoring wells installed at the site also generally indicate sand and gravel soils within the monitored depths.

The groundwater flow direction in the vicinity of the plant is generally southwest toward the Mississippi River. Historically, infiltration at the former slag pond, former fly ash basin, and the former Wisconsin Pollutant Discharge Elimination System (WPDES) ponds caused groundwater mounding to be present around these features; however, these ponds have now all been closed and are no longer sources of infiltration.

Site water level measurements generally indicate that groundwater flow is to the southwest, discharging to the Mississippi River. However, during periods of high river water levels, the flow temporarily reverses and the river discharges to the shallow sand and gravel aquifer. The groundwater flow direction during the October 2018 detection monitoring event was toward the Mississippi River with flow moving south to southwest (**Figure 4**). The groundwater elevations are provided in **Table 3**.

2.2 CCR RULE MONITORING SYSTEM

The groundwater monitoring system established in accordance with the CCR Rule consists of one upgradient (background) monitoring well and six downgradient monitoring wells. The background well is B-26. The downgradient wells include B-7R, B-11A, B-11B, B-11R, B-31A, and B-31R. The CCR Rule wells are installed within the surficial alluvium aquifer. Well depths range from approximately 23 to 114 feet, measured from the top of the well casing.

2.3 OTHER MONITORING WELLS

There are 19 groundwater monitoring wells at the NED facility that are part of the monitoring system developed for the state monitoring program. All of the wells included in the CCR monitoring well network were already in use for the state monitoring program. The well locations are shown on

Figure 3. These 19 monitoring wells and two private wells are used to monitor groundwater conditions at the site under WDNR License Number 2525, which includes the closed CCR landfill (former fly ash settling basin) and the closed Slag Pond. Monitoring wells for the state monitoring program are installed in the surficial sand and gravel aquifer which is the uppermost aquifer as defined under 40 CFR 257.53.

3.0 METHODOLOGY AND ANALYSIS REVIEW

To evaluate the potential that an SSI is due to a source other than the regulated CCR unit, SCS Engineers (SCS) used a two-step evaluation process. First, the sample collection, field and laboratory analysis, and statistical evaluation were reviewed to identify any potential error or analysis that led to an exceedance of the benchmark. Second, potential alternative sources, including natural variation and man-made sources other than the CCR unit, were evaluated. This section of the report provides the findings of the methodology and analysis review. **Section 4.0** of the report addresses the potential alternative sources.

3.1 SAMPLING AND FIELD ANALYSIS REVIEW

Field notes and sampling results were reviewed to determine if any sampling error may have caused or contributed to the observed SSIs. Potential field sampling errors or issues could include mislabeling of samples, improper sample handling, missed holding times, cross contamination during sampling, or other field error. Field blank sample results were also reviewed for any indication of potential contamination from sampling equipment or containers. Based on the review of the field notes and results, SCS did not identify any indication that the SSIs were due to a sampling error.

SCS did not identify any issues with the field pH analysis based on review of the data and field notes. Because boron, fluoride, TDS, and sulfate are laboratory parameters, there is little potential for a field analysis error to contribute to an SSI.

3.2 LABORATORY ANALYSIS REVIEW

The laboratory reports for the October 2018 and November 2018 resample detection monitoring events were reviewed to determine if any laboratory analysis error or issue may have caused or contributed to the observed SSIs. The laboratory report review included reviewing the laboratory quality control flags and narrative, verifying that correct methods were used and desired detection limits were achieved, and checking the field and laboratory blank sample results. Laboratory reports for the background monitoring and the October 2017 detection monitoring event were included in the 2017 Annual Groundwater Monitoring and Corrective Action Report for the facility and were reviewed as part of the ASD preparation for the October 2017 detection monitoring event.

Based on the review of the laboratory reports, SCS did not identify any indication that any SSI was due to a laboratory analysis error. There were no laboratory quality control flags or issues identified in the laboratory reports that affect the usability of the data for detection monitoring. TDS was detected in the field blank during the November 2018 resampling event, but this detection was determined not to affect the usability of the data because the reported TDS concentration was below the limit of quantitation and was an order of magnitude less than the concentrations detected in the monitoring wells.

Time series plots of the SSI constituent analytical data were also reviewed for any anomalous results that might indicate a possible sampling or laboratory error (e.g., dilution error or incorrect sample labeling). The time series plots are provided in **Appendix A**. The October and November 2018 results for the downgradient wells are generally consistent with the historical data. The increasing boron

concentrations at B-11B are consistent with an increase in boron concentrations observed at this well since 2010 under the state monitoring program. Boron concentrations at B-11B remain below those observed prior to the CCR landfill closure. The sulfate concentrations detected at B-31R in October and November 2018 are the highest detected at this well in several years, but remain below the highest concentrations observed prior to the CCR landfill closure.

3.3 STATISTICAL EVALUATION REVIEW

The review of the statistical results and methods included a quality control check of the following:

- Input analytical data vs. laboratory analytical reports
- Review of statistical method and outlier concentration lists for each monitoring well/CCR
 unit

Based on the review of the statistical evaluation, SCS did not identify any errors or issues in the statistical evaluation that caused or contributed to the determination of interwell SSIs for boron, fluoride, pH, sulfate, and TDS at the downgradient monitoring wells.

3.4 SUMMARY OF METHODOLOGY AND ANALYSIS REVIEW FINDINGS

In summary, there were no changes to the SSI determinations for the October 2018 and the November 2018 resampling detection monitoring events based on the methodology and analysis review, and no errors or issues causing or contributing to the reported SSIs were identified.

4.0 ALTERNATIVE SOURCES

This section of the report discusses the potential alternative sources for the SSI constituents at the downgradient wells, identifies the most likely alternative source(s), and presents the lines of evidence indicating that an alternative source is the most likely cause of the observed SSIs.

4.1 POTENTIAL CAUSES OF SSI

4.1.1 Natural Variation

The statistical analysis was completed using an interwell approach, comparing the October 2018 and the November 2018 resampling detection monitoring results to the upper prediction limits (UPLs) calculated based on sampling of the background well (B-26). If concentrations of a constituent that is naturally present in the aquifer vary spatially, then the potential exists that the downgradient concentrations may be higher than upgradient concentrations due to natural variation.

Although natural variation is present in the shallow aquifer, it does not appear likely that natural variation is the primary source causing the boron, and sulfate SSIs. These parameters were detected at higher concentrations than would likely be present naturally.

Based on fluoride data for wells in the Grant County, natural variation may also have caused or contributed to the SSI for fluoride at B-11B.

4.1.2 Man-Made Alternative Sources

Man-made alternative sources that could potentially contribute to the boron, fluoride, pH, sulfate, and TDS SSIs could include the closed CCR landfill, the coal storage area, or other plant operations.

Based the groundwater flow directions and on previous investigations at the site, the closed landfill appears to be the most likely cause of the SSIs for the downgradient wells B-7R, B-11A, B-11B, B-11R, B-31A, and B-31R.

4.2 LINES OF EVIDENCE

Lines of evidence indicating that natural variation may also have caused or contributed to the fluoride SSIs include:

1. Although fluoride was not detected in background well B-26, publicly available data from the WDNR's Groundwater Retrieval Network (GRN) database indicates it is commonly detected in Grant County.

The lines of evidence indicating that the SSIs for boron, fluoride, pH, sulfate, and TDS in one or more compliance wells relative to the background well are more likely due to the closed landfill and prior fly ash sluicing than to the slag pond including:

- 1. A previous Environmental Contamination Assessment completed for the ash disposal facility indicated that the fly ash sluicing and landfill were the primary source of the groundwater impacts in the area, based on multiple lines of evidence.
- 2. Sampling performed in preparation for the slag pond closure indicated that the slag and the slag pond sediment had little potential to cause the SSIs for boron, fluoride, and sulfate.
- 3. Past and current groundwater monitoring performed under the state monitoring program shows that groundwater quality has improved since the 1990s in response to termination of fly ash sluicing and closure, and capping of the ash landfill.

Each of these lines of evidence and the supporting data were discussed in detail in the ASD for the October 2017 detection monitoring event (SCS, 2018b), with the exception of the TDS SSI concentrations. The lines of evidence are discussed briefly below, focusing on any updated information collected since the previous ASD, with references to the previous ASD for additional details.

4.2.1 Grant County Fluoride Data

Natural variation may have caused or contributed to the SSI for fluoride at B-11B. Although fluoride was not detected in background well B-26, publicly available data from the WDNR's GRN database indicates it is commonly detected in Grant County. Out of a total of 423 fluoride analysis results in the GRN database for water supply wells in Grant County, 88 percent had fluoride detected. The average concentration of fluoride in Grant County well samples with fluoride detections was 0.39 milligrams per liter (mg/L). The fluoride concentration reported for B-11B for October 2018, 0.61 mg/L, is in the range of concentrations in the GRN database for Grant County. As discussed below, there is also a potential that fluoride concentrations in B-11B are associated with impacts from the closed CCR landfill.

4.2.2 Previous CCR Pond and Landfill Study

A previous investigation titled *Environmental Contamination* Assessment: Nelson Dewey Generating Station Ash Disposal Facility, completed by RMT in 1994, found that groundwater impacts were associated with disposal of fly ash in the now-closed CCR landfill located immediately north of the slag pond (**Figure 3**). The purpose of the 1994 Environmental Contamination Assessment (ECA) was
to investigate the impacts to groundwater at the NED landfill. The ECA was used to evaluate feasibility of possible remedial alternatives. The remedial alternative that was ultimately selected was to convert the plant to dry fly ash handling.

The primary lines of evidence from the 1994 report that support the current ASD for boron, fluoride, pH, sulfate, and TDS include:

- Water leaching tests for ash and slag indicated that boron and sulfate concentrations in the slag leachate were orders of magnitude lower than in the ash leachate (Appendix B, Table 5).
- Surface water samples from the active ash sluice pond and the slag pond indicated that boron and sulfate concentrations in the slag pond were one or more orders of magnitude lower than in the ash sluice pond. Surface water boron and sulfate concentrations in the slag pond were higher than leach test results, which was attributed to infiltration of ash sluice pond water through the berm between the ponds into the slag pond (Appendix B, Table 6).
- Groundwater sampling at monitoring wells B-38 and B-38A (now abandoned), which were installed through and screened below the ash disposal area (now closed landfill), indicated that groundwater affected by ash sluicing was characterized by high pH and elevated concentrations of boron, fluoride, sulfate, and TDS (**Appendix B**, **Table 8**).

The results of the 1994 ECA were reported to WDNR on November 1994. The ECA investigation was then used for a feasibility study to determine appropriate ash disposal operation on site. Following the ECA, the plant converted to a dry ash handling system. Dry ash was placed in the CCR landfill through the 1990s, and the landfill was capped and closed in phases in 1996 through 2001. After that time, fly ash was not disposed of at the facility.

4.2.3 Slag Pond Closure Sampling Results

Results of leaching test analysis performed for slag, ash, soil, and sediment were submitted as part of a Low Hazard Exemption Request to the WDNR in March 2017 (SCS, 2017). The Exemption Request was submitted as part of the Closure Plan for the site and requested WDNR approval to consolidate materials from decommissioning activities in the Slag Pond and Slag Handling Area, which would then be capped with a composite final cover system. The sediment and soil samples were collected to characterize the materials that would remain on site under the Closure Plan. Leaching tests were performed using ASTM water leach test methods. The leaching test analytical results for parameters with SSIs that were included in the leaching test program (boron, fluoride, and sulfate) are summarized in **Appendix C**.

The sampling results in the Exemption Request indicated that the materials to be consolidated and capped were not likely to cause groundwater standard exceedances for boron, fluoride, or sulfate. The leach test results for slag, slag pond sediment, and soil in the slag handling area were below the state groundwater standards for these three parameters. The results were also below the concentrations of boron, fluoride, and sulfate in the downgradient CCR wells with SSIs, and well below the historic results for former well B-38, which was located within the CCR landfill area, upgradient from the slag pond.

The Low Hazard Exemption was granted by the WDNR based on the sampling results and other information presented.

4.2.4 State Program Groundwater Monitoring Results

Past and current groundwater monitoring performed under the state monitoring program shows that groundwater quality has improved substantially since the 1990s in response to termination of fly ash sluicing, and closure and capping of the ash landfill (SCS, 2018b). The long-term trends show that concentrations of boron and sulfate in groundwater have decreased since termination of fly ash sluicing and closure of the landfill, in some cases by an order of magnitude or more. The results suggest that current boron and sulfate concentrations are likely residual contamination from historic ash disposal in the CCR landfill area. Increasing boron concentrations at B-11B and sulfate concentrations at B-31R appear to be attributable to the closed CCR landfill and to changes in groundwater flow at the site, related to a decrease in the volume of water discharged to the slag pond and subsequent closure of the slag pond.

5.0 ASD CONCLUSIONS

The lines of evidence discussed above regarding the SSIs reported for boron, fluoride, field pH, sulfate, and TDS concentrations in downgradient monitoring wells demonstrate that the SSIs are likely primarily due to historic ash disposal in the closed landfill, which is not subject to the requirements of 40 CFR 257.50-107. The landfill is regulated by the WDNR under the solid waste program (License 02525). The SSIs for fluoride and field pH at B-11A, B-11B, B-11R, and B-31A may also be at least partially due to natural variability.

6.0 SITE GROUNDWATER MONITORING RECOMMENDATIONS

In accordance with section 257.94(e)(2) of the CCR Rule, the NED slag pond site may continue with detection monitoring based on this ASD. The ASD report will be included in the 2019 Annual Report due January 31, 2019.

7.0 REFERENCES

RMT, 1994, Environmental Contamination Assessment: Nelson Dewey Generating Station Ash Disposal Facility, November 1994.

SCS Engineers, 2019, 2018 Annual Groundwater Monitoring and Corrective Action Report – Nelson Dewey Generating Station, January 2019.

SCS Engineers, 2018a, 2017 Annual Groundwater Monitoring and Corrective Action Report – Nelson Dewey Generating Station, January 2018.

SCS Engineers, 2018b, 2017 Alternative Source Demonstration, October 2017 Monitoring Event, Nelson Dewey Generating Station, April 2018.

SCS Engineers, 2018c, 2018 Alternative Source Demonstration, April 2018 Monitoring Event, Nelson Dewey Generating Station, October 2018.

SCS Engineers, 2017, Low Hazard Exemption Request, Nelson Dewey Generating Station, Cassville, WI, March 2017.

USEPA, 2009, Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, EPA 530-R-09-007, March 2009.

Tables

- 1 Groundwater Analytical Results Summary CCR Program – Detection Monitoring – October 2017 through November 2018
- 2 Analytical Results Appendix III Constituents with SSIs
- 3 Groundwater Elevations State and CCR Monitoring Wells

Table 1. Groundwater Analytical Results Summary - CCR Program - Detection Monitoring Nelson Dewey Slag Pond, Cassville, WI / SCS Engineers Project #25216071.18

				Background We	ell	Ī									Com	pliance Wells									
			B-26			B-7R			B-11A B-1							B-11R			B-31A		B-31R				
Parameter Name	UPL		10/19/2017	4/2/2018	10/8/2018	10/19/2017	4/2/2018	10/9/2018	10/19/2017	4/2/2018	10/9/2018	10/19/2017	4/2/2018	10/9/2018	11/12/2018	10/19/2017	4/2/2018	10/9/2018	10/19/2017	4/2/2018	10/9/2018	10/19/2017	4/2/2018	10/9/2018	11/12/2018
Appendix III																									
Boron, ug/L	66.5		47.4	48.0	53.4	159	121	73	116	91.0	94.2	1,500	2,020	3,620	NA	3,120	3,180	576	63.9	74.8	71.8	645	540	1,430	NA
Calcium, ug/L	155155		102,000	88,100	78,700	56,200 P6	49,200	38,500	55000	53300	48,600	52,400	59,000	66,300	NA	117,000	124,000	49,900	49,600	49,300	46,600	75,700	72,900	125,000	NA
Chloride, mg/L	65.4		79.3	54.4	33.2	12.0	10.1	1.9 J	49.9	54.7 M	57.8	36.1	31.3	21.9	NA	38.8	36.8	5.9	40.8	42.7	40.2	29	32.6	19.7	NA
Fluoride, mg/L	LOQ (varies by well)	only	<0.10	<0.10	<0.1	<0.50 D3	<0.50 D3	<0.1	0.32	0.24 J,M	0 0.29 J	0.59	0.65	0.61	NA	<0.50 D3	<0.50 D3,M 0	0.1 <i>5</i> J	0.16 J	0.13 J	0.17 J	0.14 J	<0.10	<0.1	NA
Field pH, Std. Units	7.81		7.5	7.64	7.20	6.88	6.57	6.23	7.96	8.04	7.43	7.77	8.42	7.74	8.05	7.22	7.14	6.55	7.92	8.00	7.48	7.19	6.76	6.41	6.59
Sulfate, mg/L	44.8		25.3	19.1	25.1	<5.0 D3	<5.0 D3	3.2	5.1	12.3 M	6	175	200	197	NA	97.7	88.1	15.1	26.1	27.4	24.8	19.2	22.0	186.0	162.0
Total Dissolved Solids, mg/L	594		542	464	450	242	220	186	322	336	332	510	550	602	594	586	638	266	290	282	278	358	374	668	596

Highlighted cell indicates the compliance well result is an SSI. UPLs are based on a 1-of-2 retesting approach; tehrefore, for the October 2018 semiannual event an SSI is indicated only if both the original result and the November 2018 retest are above the UPL and the LOQ.

Abbreviations:

UPL = Upper Prediction Limit LOQ = Limit of Quantification NA = Not Available ug/L = micrograms per liter LOD = Limit of Detectionmg/L = milligrams per liter

Notes:

D3 = Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

J = Estimated concentration at or above the LOD and below the LOQ.

MO = Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

P6 = Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.

Created by:	NDK	Date: 5/1/2018
Last revision by:	AJR	Date: 11/28/2018
Checked by:	NDK	Date: 12/3/2018

I:\25216071.00\Data and Calculations\Tables\[CCR GW Screening Summary_NED.xlsx]Table

Table 2. Analytical Results - Appendix III Constituents with SSIs

Nelson Dewey Generating Station Cassville, Wisconsin

Well Group	Well	Collection Date	Boron (μg/L)	Field pH (St. Units)	Fluoride (mg/L)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)
		12/9/2015	29.6	7.35	<0.2 U	37.1	424
		4/12/2016	33.7	7.43	<0.2 U	38	456
		7/19/2016	28.6	7.14	<0.2 U	36.2	504
q		10/20/2016	33	7.19	0.13 J	35	466
und		1/12/2017	35.2	7.57	<0.1 U	35	446
grc	B-26	4/17/2017	50.1	7.54	<0.1 U	32.4	468
ack		6/7/2017	45.8	7.22	<0.1 U	31	538
ш		8/2/2017	54.6	7.21	<0.1 U	28.5	496
		10/19/2017	47.4	7.5	<0.1 U	25.3	542
		4/2/2018	48.0	7.64	<0.1 U	19.1	464
		10/8/2018	53.4	7.2	<0.1	25.1	450
		12/9/2015	124	7.7	0.3 J	3.2 J	338
		4/13/2016	116	7.75	0.38 J	3.8 J	362
		7/19/2016	104	7.42	0.35 J	2.7 J	336
		10/19/2016	112	7.47	0.36	3 J	340
		1/12/2017	106	7.89	0.43	2.3 J	322
	B-11A	4/17/2017	100	7.38	0.36	<1 U	326
		6/8/2017	102	7.78	0.37	1.4 J	338
		8/1/2017	105	7.67	0.37	2.4 J	326
		10/19/2017	116	7.96	0.32	5.1	322
е		4/2/2018	91	8.04	0.24 J	12.3	336
anc		10/9/2018	94.2	7.43	0.29 J	6	332
ildr		12/9/2015	1140	8.06	0.44	134	494
Con		4/13/2016	1360	8.14	0.49	148	512
Ŭ		7/19/2016	1210	7.77	0.45	165	520
		10/20/2016	1460	7.91	0.53	178	496
		1/12/2017	1540	8.18	0.52	182	488
	B-11B	4/17/2017	1760	7.83	0.58	181	502
	0 110	6/8/2017	1880	8.07	0.59	191	516
		8/1/2017	1800	7.77	0.6	179	498
		10/19/2017	1500	7.77	0.59	175	510
		4/2/2018	2020	8.42	0.65	200	550
		10/9/2018	3620	7.74	0.61	197	602
		11/12/2018	NA	8.05	NA	NA	594

Table 2. Analytical Results - Appendix III Constituents with SSIs

Nelson Dewey Generating Station Cassville, Wisconsin

Well Group	Well	Collection Date	Boron (μg/L)	Field pH (St. Units)	Fluoride (mg/L)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)
		12/9/2015	4170	7.07	<1 U	75.4	616
		4/13/2016	3410	6.78	<0.2 U	18.4	682
		7/19/2016	3530	6.69	0.22 J	115	698
		10/20/2016	4120	6.77	<0.5 U	118	660
		1/12/2017	3530	6.98	<0.5 U	108	616
	B-11R	4/17/2017	3520	7.11	<0.5 U	108	620
		6/7/2017	3420	6.8	<0.5 U	98.2	630
		8/1/2017	2040	6.7	0.25 J	126	738
		10/19/2017	3120	7.22	<0.5 U	97.7	586
		4/2/2018	3180	7.14	<0.5 U	88.1	638
		10/9/2018	576	6.55	0.15 J	15.1	266
		12/9/2015	59	7.65	<0.2 U	26.2	274
		4/13/2016	79.2	7.63	0.22 J	22.6	302
		7/19/2016	67.2	7.25	<0.2 U	24.2	280
		10/20/2016	63.7	7.54	0.18 J	27.2	292
JCe		1/12/2017	76.4	7.82	0.22 J	29.8	284
liar	B-31A	4/17/2017	69.9	7.83	0.19 J	31	318
dm		6/8/2017	58.5	7.74	0.18 J	31.2	296
C		8/1/2017	56.3	7.56	0.2 J	26.6	284
		10/19/2017	63.9	7.92	0.16 J	26.1	290
		4/2/2018	74.8	8.0	0.13 J	27.4	282
		10/9/2018	71.8	7.48	0.17 J	24.8	278
		12/9/2015	851	6.79	<0.2 U	28.8	374
		4/13/2016	838	6.76	<0.2 U	34.1	404
		7/19/2016	641	6.44	<0.2 U	38.5	406
		10/20/2016	1020	6.53	0.17 J	49.7	452
		1/12/2017	749	6.8	0.26 J	34.9	380
	B-31 R	4/17/2017	929	6.8	0.12 J	43	416
	0.011	6/8/2017	895	6.67	0.13 J	41.1	426
		8/1/2017	1550	6.56	0.16 J	55.6	432
		10/19/2017	645	7.19	0.14 J	19.2	358
		4/2/2018	540	6.76	<0.1U	22	374
		10/9/2018	1430	6.76	<0.1	186.0	668
		11/12/2018	NA	6.41	NA	162.0	596

Table 2. Analytical Results - Appendix III Constituents with SSIs

Well Group	Well	Collection Date	Boron (μg/L)	Field pH (St. Units)	Fluoride (mg/L)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)
		12/9/2015	110	6.74	<1 U	17 J	198
		4/13/2016	115	6.8	<0.2 U	2.5 J	218
		7/18/2016	164	6.29	<0.2 U	2.4 J	220
۵ د		10/19/2016	154	6.55	<0.5 U	<5 U	288
anc		1/12/2017	159	7.43	<0.5 U	<5 U	240
plia	B-7R	4/17/2017	129	6.6	<0.5 U	<5 U	278
Com		6/7/2017	110	6.65	<0.5 U	<5 U	240
		8/1/2017	129	6.28	<0.1 U	3.7	220
		10/19/2017	159	6.88	<0.5 U	<5 U	242
		4/2/2018	121	6.57	<0.5 U	<5 U	220
		10/9/2018	73	6.23	<0.1	3.2	186

Nelson Dewey Generating Station Cassville, Wisconsin

Abbreviations:

 $\mu g/L$ = micrograms per liter or parts per billion (ppb)

mg/L = milligrams per liter or parts per million (ppm)

Flags:

U = Not detected.

 $\mathsf{J}=\mathsf{Estimated}$ concentration at or above the LOD and below the LOQ.

Created by:	NDK	Date:	3/8/2018
Last revision by:	NAS	Date:	3/6/2019
Checked by:	MDB	Date:	3/27/2019

I:\25216071.00\Deliverables\2019 ASD Report 1810- No. 3\Tables\[Tables-NED-1,2, and 3.xlsx]2. Analytical Results

Table 3. Groundwater Elevations - State and CCR Monitoring Wells

Nelson Dewey Generating Station

Cassville, Wisconsin

	Ground Water Elevation in feet above mean sea level (amsl)																			
Well Number	B-7R	B-8R	B-11R	B-11A	B-11B	B-21R	B-26	B-26A	B-28	B-30R	B-30AR	B-31R	B-31A	B-32	B-32A	B-35	B-35A	B-37	B-37A	B-39
Top of Casing Elevation (feet amsl)	623.35	627.51	622.62	622.12	621.89	621.03	626.40	626.40	616.81	621.81	622.4	622.42	622.69	614.18	614.4	620.78	621.2	614.85	614.85	626.48
Screen Length (ft)	10	10	10	5	5	10	10	5	10	10	5	10	5	10	5	10	5	10	5	10
Total Depth (ft from top of casing)	23.05	27.25	24.15	52.00	113.90	20.50	31.67	45.78	16.70	22.20	46.90	22.82	35.52	14.79	52.00	16.60	47.00	19.95	48.20	26.90
Top of Well Screen Elevation (ft)	610.30	610.26	608.47	575.12	512.99	610.53	604.73	585.62	610.11	609.61	580.50	609.60	592.17	609.39	567.40	614.18	579.20	604.90	571.65	609.58
Measurement Date																				
December 8, 2015	606.69	NM	606.71	606.30	606.26	NM	606.80	NM	NM	NM	NM	607.40	606.39	NM	NM	NM	NM	NM	NM	607.54
April 12, 2016	609.32	609.36	609.32	608.71	608.68	NM	609.81	609.72	NM	NM	NM	609.34	609.01	NM	NM	609.73	609.65	608.79	608.79	610.23
July 18-19, 2016	606.54	NM	606.14	606.76	606.74	NM	606.09	NM	NM	NM	NM	606.55	606.73	NM	NM	NM	NM	NM	NM	606.28
October 19-20, 2016	608.59	608.46	608.35	608.21	608.19	608.37	608.84	608.76	608.63	608.45	608.46	608.51	608.20	608.69	608.73	608.78	608.74	608.20	608.18	609.09
January 11-12, 2017	608.02	NM	607.96	607.83	607.78	NM	608.56	NM	NM	NM	NM	607.90	607.84	NM	NM	NM	NM	NM	NM	608.92
April 17, 2017	609.08	608.82	608.34	609.05	608.99	NM	608.59	608.54	609.94	608.57	608.64	607.20	608.98	608.96	608.98	609.00	609.02	609.02	609.02	610.23
June 8, 2017	610.74	NM	610.42	609.81	610.08	NM	611.25	NM	NM	NM	NM	609.63	610.50	NM	NM	NM	NM	NM	NM	611.53
August 1-2, 2017	607.02	NM	606.73	605.57	605.50	NM	607.39	NM	NM	NM	NM	606.84	605.69	NM	NM	NM	NM	NM	NM	608.71
October 9-10, 2017	606.93	606.51	606.25	607.01	606.94	NM	606.22	606.13	606.33	606.44	606.45	606.68	606.93	606.57	606.61	606.65	606.71	NM	NM	NM
October 20, 2017	609.60	NM	609.42	609.58	609.65	NM	608.84	NM	NM	NM	NM	609.47	609.43	NM	NM	NM	NM	609.40	609.40	608.55
April 2-3, 2018	604.82	606.61	606.27	606.63	606.55	606.52	606.49	606.37	NM	NM	NM	604.44	606.46	NM	NM	606.68	606.70	606.77	606.83	NM
October 8-10, 2018	610.76	610.68	610.67	610.28	610.24	NM	610.34	610.28	610.83	610.09	610.05	610.39	610.27	611.05	610.94	610.72	610.54	NM	NM	611.44
November 12, 2018	NM	NM	NM	NM	609.14	NM	NM	NM	NM	NM	NM	609.11	NM							
Bottom of Well Elevation (ft)	600.30	600.26	598.47	570.12	507.99	600.53	594.73	580.62	600.11	599.61	575.50	599.60	587.17	599.39	562.40	604.18	574.20	594.90	566.65	599.58

Notes: NM = not measured Created by: NDK Last revision by: NDK Checked by: MDB Date: <u>3/9/2018</u> Date: <u>9/17/2018</u> Date: <u>3/27/2019</u>

I:\25216071.00\Deliverables\2019 ASD Report 1810- No. 3\Tables\[Tables-NED-1,2, and 3.xlsx]3.GW Elevation

Figures

- 1 Site Location Map
- 2 Aerial View
- 3 Monitoring Well Location Map
- 4 Water Table Flow Map October 2018

:\25216071.00\Drawings\Site Location.dwg, 1/23/2018 12:15:55 PM

25216071.00\Drawings\Nelson Dewey Alternative Source Demonstration Report\Site Aerial.dwg, 4/16/2018 3:58:28 PM

----- SECTION LINE

- B-35

- Ð

- LEGEND PROPERTY LINE
- PLATTED LINE ----- RIGHT-OF-WAY LINE ----- EASEMENT LINE EXISTING PAVED ROAD EXISTING UNPAVED ROAD +++++++++++++++++++++++ RAILROAD TRACKS ----- EDGE OF WATER ----- EDGE OF DELINEATED WETLAND ------ EXISTING GRADE (1' CONTOUR) ------ DESIGN GRADE (1' CONTOUR) TREELINE/TREE

B-37A

● B-37

- ____ DESIGN MANAGEMENT ZONE ● B-38 ABANDONED MONITORING WELL MONITORING WELL B-35A PIEZOMETER
- SG-6 STAFF GAUGE
- □ BL-2 BASIN LYSIMETER (ABANDONED AUGUST 11, 2014)
- PW WATER SUPPLY WELL
- \oplus BND-68 SOIL BORING CCR MONITORING WELL

NOTES

STONEFIELD VILLAGE WELL

- 1. SITE FEATURES AND CONTOURS BASED ON DRAWINGS PREPARED BY JSD PROFESSIONAL SERVICES, INC. (JSD). CONTOUR DATA UPDATED BY JSD ON MARCH 7 AND 8, 2016. CONTOUR DATA UPDATED BY JSD ON MARCH 7 AND 8, 2016. SUPPLEMENTAL SITE FEATURES BASED ON JANUARY 23, 2017 SCS ENGINEERS GROUND SURVEY. CONTOURS IN FORMER SLAG POND AREA AND FORMER COAL YARD REPRESENT DESIGN GRADES. THESE AREAS UNDERWENT CLOSURE IN 2017, AND FINAL CLOSURE ACTIVITIES ARE ONGOING IN 2018. FINAL AS-BUILT TOPOGRAPHY WILL BE DOCUMENTED IN 2018.
- 2. BEARINGS FOR THIS SURVEY AND MAP ARE REFERENCED TO WISCONSIN STATE PLANE SOUTH ZONE, WISCONSIN COUNTY COORDINATE SYSTEM (WCCS), GRANT COUNTY.
- VERTICAL DATUM IS REFERENCED TO USGS MEAN SEA LEVEL (MSL). TOPOGRAPHIC CONTOUR INTERVAL IS ONE FOOT.
- 4. THE LOCATION OF THE DESIGN MANAGEMENT ZONE DEMARCATION LINE IS APPROXIMATE. THE SOURCE OF THIS LINE IS THE 2012 BIENNIAL REPORT.

	RE	
	FIGU	3
	MONITORING WELL LOCATION MAP	
	WISCONSIN POWER AND LIGHT	CASSVILLE, WISCONSIN
	MISCONSIN POWER AND LIGHT CO. Z NELSON DEWEY GENERATING STATION 11999 COUNTY HIGHWAY VV	CASSVILLE, WI 53806
VOGT WELL	S C S E N G I N E E R S	2030 UAIR UNIVE MARIJOUN, WI 30710-0731 PHONE: (608) 224-2830
	KP/BJM NK	SCC 4/16/18
	DRAWN BY: CHECKED BY:	APPROVED BY:
	25216071.17 01/13/14	03/14/18
	PROJECT NO. DRAWN:	REVISED:

4/9/2019 10:21:09 AM
Oct 2018.dwg,
Table Flow Map_
1.00\Drawings\Water 7

	SECTION LINE
	EASEMENT LINE
	EXISTING PAVED ROAD
=======================================	EXISTING UNPAVED ROAD
+++++++++++++++++++++++++++++++++++++++	RAILROAD TRACKS
	EDGE OF WATER
oo o	EDGE OF DELINEATED WETLAND
630	EXISTING GRADE (5' CONTOUR)
	EXISTING GRADE (1' CONTOUR)
620	DESIGN GRADE (5' CONTOUR)
	DESIGN GRADE (1' CONTOUR)
— x — x — x — x —	FENCE LINE
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	TREELINE/TREE
	DESIGN MANAGEMENT ZONE
● B-38	ABANDONED MONITORING WELL
● B-35	MONITORING WELL
● B-35A	PIEZOMETER
● SG-6	ABANDONED STAFF GAUGE
☐ BL-2	BASIN LYSIMETER (ABANDONED AUGUST 11, 2014)
PW	WATER SUPPLY WELL
PW	ABANDONED WATER SUPPLY WELL
⊕ BND-68	SOIL BORING
•	CCR MONITORING WELL
610.68	WATER TABLE ELEVATION MEASURED OCTOBER, 2018
611 ———	WATER TABLE CONTOUR
-	APPROXIMATE GROUNDWATER FLOW DIRECTION

LEGEND

----- PROPERTY LINE ----- PLATTED LINE

----- RIGHT-OF-WAY LINE

- SITE FEATURES AND CONTOURS BASED ON DRAWINGS PREPARED BY JSD PROFESSIONAL SERVICES, INC. (JSD). CONTOUR DATA UPDATED BY JSD ON MARCH 7 AND 8, 2016. SUPPLEMENTAL SITE FEATURES BASED ON JANUARY 23, 2017 SCS ENGINEERS GROUND SURVEY. CONTOURS IN FORMER SLAG POND AREA AND FORMER COAL YARD REPRESENT DESIGN GRADES. THESE AREAS UNDERWENT CLOSURE IN 2017, AND FINAL CLOSURE ACTIVITIES ARE ONGOING IN 2018. FINAL AS-BUILT TOPOGRAPHY WILL BE DOCUMENTED IN 2018.
- NOTES
- (610.28) B-11B (610:24) B-11R 640.67

B-37A ®_{B-37}

- STONEFIELD VILLAGE WELL

610.39



	FIGURE	4	
	WATFR TABLE FLOW MAP	OCTOBER 2018	
	WISCONSIN POWER AND LIGHT	Delson Dewey Generating Station           Cassville, Wisconsin	
	WISCONSIN POWER AND LIGHT CO.	EI NELSON DEWET GENERATING STATION	
VOGT WELL	SCS ENGINEERS	2830 DAIRY DRIVE MADISON, WI 53718-6751	MUNE: (DUD) 224-2030
	KP/BSS	NK 1 VI /VO /10	IN U4/U3/13 1-
	DRAWN BY:	CHECKED BY:	
	25216071.18	03/14/19	ei 102 100
	PROJECT NO.	DRAWN: DEVICED.	הב או אבע:

Appendix A CCR Well Trend Plots





WPL - Nelson Dewey



WPL - Nelson Dewey



Appendix B

1994 RMT Environmental Contamination Assessment Information



11111111

= h- 33/2 2000 wiknow... = P./WSPC/2767035666 2000 = Fr1 0ct 2108:28600 2000

ž

Desi Plot

**FIGURE 4** 

	TAB	ILE 5	
	SUMMARY OF LEAC	HING TEST RESULTS	
	Fly	Ash	Slag
Year	1983	1990 to 1992	1987 to 1992
Coal Type	Eastern (and Western)	Western (and Eastern)	Western (and Eastern) ¹
Water:Solid Ratio	2:1	4:1	4:1
Extraction Time	24 hours	48 hours	48 hours
Number of Samples	1	3	6
Arsenic (mg/L)	< 0.001	0.05 to 2.02	< 0.002 to 0.081
Selenium (mg/L)	NA	0.42 to 160	< 0.002 to 0.045
Boron (mg/L)	420	4.63 to 37.34	< 0.010 to 1.05
Iron (mg/L)	NA	NA	< 0.02 to 0.98
Sulfate (mg/L)	13,070	2,000 to 16,700	2.0 to < 5.0
pH (SU)	6.6	10.3 to 12.5	5.6 to 9.9
NOTES:		, ,	

1983 fly ash leaching data from RMT (1984); remaining leaching data provided by WP&L. NA = Not Analyzed.

1.

PROJECT NUMBER: 1831.28 BEGINNING DATE: 01-JUN-93 ENDING DATE: 07-SEP-93

#### TABLE 6

#### SLAG AND ASH BASIN CHEMISTRY

PARAMETER	UNITS	FLY 07- 330	ASH BASI SEP-93 2-011	N	SLA 07- 330	G BASIN SEP-9 <b>3</b> 12-010	
COLOR, FIELD			CLEAR	<u></u> ,		CLEAR	
CONDUCTANCE, SPECIFIC ODOR, FIELD	UMHOS/CN	4	NONE			400 None	
PH, FIELD	SU		8.1			7.4	
TEMPERATURE	DEG C		17			18	
TURBIDITY, FIELD			SLIGHT			SLIGHT	
ALKALINITY AS CACO3	MG/L		230			160	
HARDNESS AS CACO3	MG/L		930			200	
SOLIDS, TOTAL DISSOLVED	MG/L		410			300	
SULFATE	MG/L		3300			50	
ARSENIC, TOTAL	UG/L		60			8.0	
BARIUM, TOTAL	UG/L		270			150	
BORON, TOTAL	UG/L		2300			210	
CADMIUM, TOTAL	UG/L		5.4		<	0.30	
CHROMIUM, TOTAL	UG/L		11		<	10	
IRON, TOTAL	UG/L		1600			2000	
LEAD, TOTAL	UG/L	<	3.0		<	3.0	
MERCURY, TOTAL	UG/L	<	0.20		<	0.20	
SELENIUM, TOTAL	UG/L		36	I		2.1	L
SILVER, TOTAL	UG/L	<	1.0		<	1.0	

wpvalid:SWI.BJC

PAGE 1

PROJECT NUMBER: 1831.28 REGINNING DATE: 01-JUN-93				ß		BLE 8 R CHEMIS	TRY								
ENDING DATE: 29-OCT-93				-											
		B-04	В-(	)4	B-(	)7 ND		B-(	07 ND		в-	08		B-(	08R
		01-JUN-93	07-	SEP-93	01-	JUN-93		07-	SEP-93		01	-JUN-93		07	-SEP-93
PARAMETER	UNITS	1670-015	329	73-010	167	70-020		33(	02-004		16	70-001		32	93-009
COLOR, FIELD		CLEAR	~~ ·	CLEAR		CLEAR			CLEAR			CLEAR			CLEAR
CONDUCTANCE, SPECIFIC	UMHOS/C	M 1160		1240		460			550			670			1160
DEPTH TO WATER	FEET	9.90		12.75		12.83			16.12			5.68			20.13
ODOR, FIELD		NONE		NONE		NONE			NONE			NONE			NONE
PH, FIELD	SU	7.3		7.5		7.0			6.9			7.1			6.8
TEMPERATURE	DEG C	15		10		14			12			15			7
TURBIDITY, FIELD		NONE		SLIGHT		NONE			SLIGHT			NONE			MODERATE
WATER ELEVATION	FEET	610.68		607.83		610.97			607.68			610.51			
ALKALINITY AS CACO3	MG/L	72		92 /		160			190			220			440
CHLORIDE	MG/L	18		23		17			15			9.4			2.8
COD	MG/L														
FLUORIDE	MG/L	Q.58		5.5		0.26			0.32		<	0.10			0.12
HARDNESS AS CACO3	MG/L	220		120		210			250			370			620
NITROGEN, NITRATE + NITRITE	MG/L	0.15		0.33	<	0.050		<	0.050		<	0.050			4.2
SOLIDS, TOTAL DISSOLVED	MG/L	900		940		300			360			460			770
SULFATE	MG/L	500		560		74			100			180			180
ARSENIC, DISSOLVED	UG/L	< 3.0	<	3.0	<	3.0		<	3.0		<	3.0		<	3.0
BARIUM, DISSOLVED	UG/L	68	<	50		61			73			63			50
BORON, DISSOLVED	UG/L	1900		4200		230		<	200			2200			9400
CADMIUM, DISSOLVED	UG/L	< 0.30	<	0.30	<	0.30		<	0.30		<	0.30			0.38
CHROMIUM, DISSOLVED	UG/L	< 10	<	10	<	10		<	10		<	10		<	10
COPPER, DISSOLVED	UG/L	< 20	<	20	<	20		<	20		<	20		<	20
IRON, DISSOLVED	UG/L	720		890		2800			4100		<	100		<	100
LEAD, DISSOLVED	UG/L	< 3.0	<	3.0	<	3.0		<	3.0		<	3.0		<	3.0
MANGANESE, DISSOLVED	UG/L	1200		720		970			1500			17			3400
MERCURY, DISSOLVED	UG/L	< 0.20	<	0.20	<	0.20		<	0.20		<	0.20		<	0.20
SELENIUM, DISSOLVED	UG/L	6.9		3.2	<	1.0	L	<	1.0	L	<	1.0	L		34
SILVER, DISSOLVED	UG/L	< 1.0	<	1.0	<	1.0		<	1.0		<	1.0		<	1.0
ZINC, DISSOLVED	UG/L	1000		100		22		<	20			220		<	20

i viene kanten in eine kanten Eine kanten in eine kanten Eine kanten in eine kant

PROJECT NUMBER: 1831.28 BEGINNING DATE: 01-JUN-93					GROUND	TABLE 8 WATER CHEMISTRY										
ENDING DATE: 29-OCT-93	UNITS	B-11 07-SEP-93 X0001	B-1 29- 348	1 -0CT-93 35-001		B-20 07-SEP-93 X0002	в-2 01 16	26 - Jun-93 70-022		B-2 07 33(	26 - SEP - <b>93</b> 02 - 005		B-2 01- 167	26A - JUN-93 70-023		
COLOR, FIELD					<u></u>			CLEAR			CLEAR			CLEAR		ı
CONDUCTANCE, SPECIFIC	UMHOS/C	M 1500				310		610			670			660		
DEPTH TO WATER	FEET	15.91				10.81		16.22			18.85			16.20		
ODOR, FIELD								NONE			NONE			NONE		
PH, FIELD	SU							7.1			7.2			7.0		
TEMPERATURE	DEG C	13		13		14		14			11			15		
TURBIDITY, FIELD								NONE			SLIGHT			NONE		
WATER ELEVATION	FEET							610.18			607.55			610.19		
ALKALINITY AS CACO3	MG/L			470				320			300			340		
CHLORIDE	MG/L							21			43			33		
COD	MG/L															
FLUORIDE	MG/L						<	0.10			0.15		<	0.10		
HARDNESS AS CACO3	MG/L			810				390			410			400		
NITROGEN, NITRATE + NITRITE	MG/L							2.6			4.9			2.0		
SOLIDS, TOTAL DISSOLVED	MG/L			520				440			450			450		
SULFATE	MG/L			360				34			34			33		
ARSENIC, DISSOLVED	UG/L			8.4			<	3.0		<	3.0		<	3.0		
BARIUM, DISSOLVED	UG/L			100				62			68			96		
BORON, DISSOLVED	UG/L			5100			<	200		<	200		<	200		
CADMIUM, DISSOLVED	UG/L		<	0.30			<	0.30		<	0.30		<	0.30		
CHROMIUM, DISSOLVED	UG/L		<	10			<	10		<	10		<	10		
COPPER, DISSOLVED	UG/L						<	20		<	20		<	20		
IRON, DISSOLVED	UG/L			55000			<	100		<	100		<	100		
LEAD, DISSOLVED	UG/L		<	3.0			<	3.0		<	3.0		<	3.0		
MANGANESE, DISSOLVED	UG/L						<	5.0		<	5.0		<	5.0		
MERCURY, DISSOLVED	UG/L		<	0.20			<	0.20		<	0.20		<	0.20		
SELENIUM, DISSOLVED	UG/L		<	1.0	LNP		<	1.0	L	<	1.0	L	<	1.0	L	
SILVER, DISSOLVED	UG/L		<	10			<	1.0		<	1.0	-	<	1.0		
ZINC, DISSOLVED	UG/L						<	20		<	20		<	20		

PROJECT NUMBER: 1831.28						TAB	LE 8								
BEGINNING DATE: 01-JUN-93					GROUND	WATE	R CHEMISTR	Y							
ENDING DATE: 29-OCT-93		B-26A 07-SEP-	93	B-27R 07-SEP	9-93	B-2 01-	8 JUN-93		B-2 07-	8 SEP-93		B-29 07-SEP-93	B-3 01-	50ar - Jun-93	
PARAMETER	UNITS	3302-00	0	X0003		10/	0-014		220	2-003		XUUU4	10/	0-015	
COLOR, FIELD		CLE	AR		·····		CLEAR			CLEAR				CLEAR	,`,`,`,`,`
CONDUCTANCE, SPECIFIC	UMHOS/C	M 440	I	37	0		190			230		360		220	
DEPTH TO WATER	FEET	18.	84	14	.67		6.40			9.08		9.57		12.33	
ODOR, FIELD		NON	E				NONE			NONE				NONE	
PH, FIELD	SU	7.2	!				6.1			6.0				7.2	
TEMPERATURE	DEG C	11		14	•		17			15		15		17	
TURBIDITY, FIELD		NON	E				SLIGHT			MODERATE				NONE	
WATER ELEVATION	FEET	607	.55				610.46			607.74		607.26		610.11	
ALKALINITY AS CACO3	MG/L	340	)				26			54				200	
CHLORIDE	MG/L	25					4.6			11				13	
COD	MG/L													7.3	
FLUORIDE	MG/L	0.1	5			<	0.10		<	0.10				0.10	
HARDNESS AS CACO3	MG/L	410	)				82			110				220	
NITROGEN, NITRATE + NITRITE	MG/L	1.8	5				2.7			0.60			<	0.050	
SOLIDS, TOTAL DISSOLVED	MG/L	440	)				140			160				280	
SULFATE	MG/L	38					45			42				27	
ARSENIC, DISSOLVED	UG/L	< 3.0	)			<	3.0		<	3.0			<	3.0	
BARIUM, DISSOLVED	UG/L	86				<	50			52			<	50	
BORON, DISSOLVED	UG/L	< 200	)			<	200		<	200			<	200	
CADMIUM, DISSOLVED	UG/L	< 0.3	0			<	0.30		<	0.30			<	0.30	
CHROMIUM, DISSOLVED	UG/L	< 10				<	10		<	10			<	10	
COPPER, DISSOLVED	UG/L	< 20				<	20		<	20			<	20	
IRON, DISSOLVED	UG/L	< 100	)				210		<	100			<	100	
LEAD, DISSOLVED	UG/L	< 3.0	)			<	3.0		<	3.0			<	3.0	
MANGANESE, DISSOLVED	UG/L	< 5.0	)				8.6		<	5.0			<	5.0	
MERCURY, DISSOLVED	UG/L	< 0.2	20			<	0.20		<	0.20			<	0.20	
SELENIUM, DISSOLVED	UG/L	< 1.0	) LI	i		<	1.0	L	<	1.0	L		<	1.0	L
SILVER, DISSOLVED	UG/L	< 1.0	)			<	1.0		<	1.0			<	1.0	
ZINC, DISSOLVED	UG/L	< 20				<	20		<	20			<	20	

PROJECT NUMBER: 1831.28 BEGINNING DATE: 01-JUN-93							GROUN	TAE DWATE	BLE 8 Er Chemistry										
PARAMETER	UNITS	8-3 07- 330	50AR SEP-93 12-002		в-3 01- 167	ior Jun-93 70-012		в-3 07- 330	50R • SEP-93 02-001	в-3 01- 167	51A JUN-93 70-019		в-3 07- 329	51A SEP-93 93-011		в-3 01- 167	i1r Jun-93 '0-018		
COLOR, FIELD	<b></b>	<u></u>	CLEAR			CLEAR	••••••		CLEAR		CLEAR			CLEAR			CLEAR		-,
CONDUCTANCE, SPECIFIC	UMHOS/C	H.	410			420			360		700			800			640		
DEPTH TO WATER	FEET		15.37			12.25			15.17		12.21			15.93			11.56		
ODOR, FIELD			NONE			NONE			NONE		NONE			NONE			NONE		
PH, FIELD	SU		7.3			7.0			6.8		6.9			7.3			6.8		
TEMPERATURE	DEG C		12			16			14		17			14			17		
TURBIDITY, FIELD			NONE			MODERAT	Έ		MODERATE		NONE			SLIGHT			SLIGHT		
WATER ELEVATION	FEET		607.07			610.10			607.18		610.46			606.74			610.85		
ALKALINITY AS CACO3	MG/L		190			160			140		170			160			240		
CHLORIDE	MG/L		14			13			6.6		16			17			11		
COD	MG/L					9.7													
FLUORIDE	MG/L		0.16		<	0.10		<	0.10		0.39			0.43		<	0.10		
HARDNESS AS CACO3	MG/L		230			210			210		120			160			330		
NITROGEN, NITRATE + NITRITE	MG/L	<	0.050			8.5			8.8	<	0.050		<	0.050		<	0.050		
SOLIDS, TOTAL DISSOLVED	MG/L		280			280			230		510			570			510		
SULFATE	MG/L		25			25			26		250			250			150		
ARSENIC, DISSOLVED	UG/L	<	3.0		<	3.0		<	3.0	<	3.0		<	3.0		<	3.0		
BARIUM, DISSOLVED	UG/L	<	50		<	50		<	50		54			66			110		
BORON, DISSOLVED	UG/L	<	200		<	200		<	200		2900			2100			2900		
CADMIUM, DISSOLVED	UG/L	<	0.30		<	0.30		<	0.30	<	0.30		<	0.30			2.7		
CHROMIUM, DISSOLVED	UG/L	<	10		<	10		<	10	<	10		<	10		<	10		
COPPER, DISSOLVED	UG/L	<	20		<	20		<	20	<	20		<	20			110		
IRON, DISSOLVED	UG/L	<	100		<	100		<	100		210			300			450		
LEAD, DISSOLVED	UG/L	<	3.0		<	3.0		<	3.0	<	3.0		<	3.0		<	3.0		
MANGANESE, DISSOLVED	UG/L	<	5.0		<	5.0		<	5.0		4600			6000			440		
MERCURY, DISSOLVED	UG/L	<	0.20		<	0.20		<	0.20	<	0.20		<	0.20		<	0.20		
SELENIUM, DISSOLVED	UG/L	<	1.0	L		1.3	L		3.2	<	1.0	L	<	1.0	L		1.2	L	
SILVER, DISSOLVED	UG/L	<	1.0		<	1.0		<	1.0	<	1.0		<	1.0		<	1.0		•
ZINC, DISSOLVED	UG/L	<	20		<	20		<	20	<	20		<	20			27		

anar S second for a second of

PROJECT NUMBER: 1831.28 BEGINNING DATE: 01-JUN-93							GROUN	TAE DWATE	BLE 8 R CHEMIS	TRY									
ENDING DATE: 29-OCT-93 PARAMETER	UNITS	B-3 07- 329	31R - SEP - 93 93 - 012		B-3 01- 167	52 - JUN - 93 70 - 002		8-3 07- 329	52 •SEP-93 93-016		B-3 01- 167	32A - JUN - 93 70 - 003		в-3 07 329	32A - SEP - 93 93 - 017		в-: 01 16	35 - JUN-93 70-004	
COLOR, FIELD			CLEAR			CLEAR			CLEAR			CLEAR			CLEAR		····	L YLW/B	in i
CONDUCTANCE, SPECIFIC	UMHOS/0	M	480			300			330			610			1320			1070	
DEPTH TO WATER	FEET		14.44			3.37			6.22			3.59			6.46			10.10	
ODOR, FIELD			NONE			NONE			NONE			NONE			NONE			NONE	
PH, FIELD	SU		7.0			6.3			5.6			7.0			6.8			6.3	
TEMPERATURE	DEG C		15			13			14			13			14			12	
TURBIDITY, FIELD			MODERATE			SLIGHT			MODERAT	E		NONE			SLIGHT			SLIGHT	
WATER ELEVATION	FEET		607.97			610.80			607.95			610.81			607.94			610.66	
ALKALINITY AS CACO3	MG/L		190			140			140			330			320			190	
CHLORIDE	MG/L		11			6.7			6.9			7.0			7.6			110	
COD	MG/L																		
FLUORIDE	MG/L		0.18		<	0.10			0.12			0.12			0.19		<	0.10	
HARDNESS AS CACO3	MG/L		240			160			180			350			390			260	
NITROGEN, NITRATE + NITRITE	MG/L	<	0.050			0.68			1.2	•		1.1			1.3			36	
SOLIDS, TOTAL DISSOLVED	MG/L		340			200			240			380			420			800	
SULFATE	MG/L		71			11			16			29			30			35	
ARSENIC, DISSOLVED	UG/L	<	3.0		<	3.0		<	3.0		<	3.0		<	3.0			7.4	
BARIUM, DISSOLVED	UG/L		81			100			120			98			91			100	
BORON, DISSOLVED	UG/L		1100		<	200		<	200		<	200		<	200			210	
CADMIUM, DISSOLVED	UG/L		1.1		<	0.30			0.38		<	0.30			0.35		<	0.30	
CHROMIUM, DISSOLVED	UG/L	<	10		<	10		<	10		<	10		<	10		<	10	
COPPER, DISSOLVED	UG/L	<	20		<	20		<	20		<	20		<	20			21	
IRON, DISSOLVED	UG/L		210		<	100		<	100		<	100		<	100		<	100	
LEAD, DISSOLVED	UG/L	<	3.0		<	3.0		<	3.0		<	3.0		<	3.0		` <b>&lt;</b>	3.0	
MANGANESE, DISSOLVED	UG/L		360		<	5.0			280			6.9			33		<	5.0	
MERCURY, DISSOLVED	UG/L	<	0.20		<	0.20		<	0.20		<	0.20		<	0.20		<	0.20	
SELENIUM, DISSOLVED	UG/L	<	1.0	L	<	1.0	L	<	1.0	L	<	1.0	L	<	1.0	L	<	1.0	L
SILVER, DISSOLVED	UG/L	<	1.0		<	1.0		<	1.0		<	1.0		<	1.0		<	1.0	
ZINC, DISSOLVED	UG/L	<	20		<	20		<	20		<	20		<	20		<	20	

Willing a District and where

AND THE PARTY OF THE PARTY OF

generative sector sector.

· ·

and the second s

eter Alexandra San gig

Sector and a sector secto

PROJECT NUMBER: 1831.28 BEGINNING DATE: 01-JUN-93 ENDING DATE: 29-001-93							GROL	TA JNDWAT	BLE 8 Er Chemi:	STRY										
PARAMETER	UNITS	B-3 07- 329	5 SEP-93 3-002		в-3 01- 167	5A JUN-93 0-005		В- 07 32	35A - SEP - 93 93 - 003		B-3 01- 167	36 - JUN - 93 70 - 007		8-3 07- 329	36 - SEP - 93 93 - 004		B-3 01- 167	56a - Jun - 93 70 - 006		
COLOR, FIELD	·		YELLOW			CLEAR			CLEAR			CLEAR			CLEAR		·	CLEAR		•
CONDUCTANCE, SPECIFIC	UMHOS/CI	M	1050			620			680			430			500			620		
DEPTH TO WATER	FEET		13.13			10.55			13.57			10.86			13.97			11.11		
ODOR, FIELD			NONE			NONE			NONE			NONE			NONE			NONE		
PH, FIELD	SU		6.8			7.0			7.1			6.3			7.0			7.1		
TEMPERATURE	DEG C		14			13			12			12			13			13		
TURBIDITY, FIELD			SLIGHT			NONE			NONE			SLIGHT			MODERAT	Ε		NONE		
WATER ELEVATION	FEET		607.63			610.63			607.61			610.60			607.49			610.35		
ALKALINITY AS CACO3	MG/L		210			330			320			230			210			330		
CHLORIDE	MG/L		80			26			24			4.4			25			12		
COD	MG/L																			
FLUORIDE	MG/L		0.19		<	0.10			0.13		<	0.10			0.14		<	0.10		
HARDNESS AS CACO3	MG/L		290			380			400			240			280			350		
NITROGEN, NITRATE + NITRITE	MG/L		39			1.7			2.0		<	0.050			1.4			0.83		
SOLIDS, TOTAL DISSOLVED	MG/L		770			480			460			280			350			400		
SULFATE	MG/L		43			33			37			15			18			36		
ARSENIC, DISSOLVED	UG/L		3.6		<	3.0		<	3.0		<	3.0		<	3.0		<	3.0		
BARIUM, DISSOLVED	UG/L		120		<	50			54			110			120			68		
BORON, DISSOLVED	UG/L		220		<	200		<	200		<	200		<	200		<	200		
CADMIUM, DISSOLVED	UG/L	<	0.30		<	0.30		<	0.30		<	0.30		<	0.30		<	0.30		
CHROMIUM, DISSOLVED	UG/L	<	10		<	10		<	10		<	10		<	10		<	10		
COPPER, DISSOLVED	UG/L		24		<	20		<	20		<	20		<	20		<	20		
IRON, DISSOLVED	UG/L	<	100		<	100		<	<b>1</b> 00		<	100		<	100		<	100		
LEAD, DISSOLVED	UG/L	<	3.0		<	3.0		<	3.0		<	3.0		<	3.0		<	3.0		
MANGANESE, DISSOLVED	UG/L	<	5.0		<	5.0		<	5.0		<	5.0			55		<	5.0		
MERCURY, DISSOLVED	UG/L	<	0.20		<	0.20		<	0.20		<	0.20		<	0.20		<	0.20		
SELENIUM, DISSOLVED	UG/L	<	1.0	L	<	1.0	L	<	1.0	L		1.0	L		2.6	L	<	1.0	L	
SILVER, DISSOLVED	UG/L	<	1.0		<	1.0		<	1.0		<	1.0		<	1.0		<	1.0		
ZINC, DISSOLVED	UG/L	<	20		<	20		<	20		<	20		<	20		<	20		

Summing any approximation of the second secon

PROJECT NUMBER: 1831.28 BEGINNING DATE: 01-JUN-93 ENDING DATE: 29-001-93							GROUND	TAE	ILE 8 R CHEMIS	TRY							
PARAMETER	UNITS	в-3 07- 329	66A SEP-93 93-005		в-3 07- 330	57 SEP-93 02-007		в-3 07- 330	57A SEP-93 12-008		в-3 01- 167	58 • JUN-93 70-016	в- 07 32	38 - SEP-93 93-006	B- 01 16	38A - JUN-93 70-017	
COLOR, FIELD CONDUCTANCE, SPECIFIC	umhos/c		CLEAR 620			CLEAR 510		·	CLEAR 770			CLEAR 3630		CLEAR 2830		CLEAR 2760	· ,
DEPTH TO WATER	FEET		14.18			8.13			8.14			18.53		20.19		24.87	
ODOR, FIELD			NONE			NONE			NONE			NONE		NONE		NONE	
PH, FIELD	SU		7.1			7.3			7.3			8.3		9.9		7.7	
TEMPERATURE	DEG C		11			13			11			20		20		15	
TURBIDITY, FIELD			NONE			SLIGHT			NONE			NONE		SLIGHT		NONE	
WATER ELEVATION	FEET		607.51			606.69			606.69			617.29		615.63		610.96	
ALKALINITY AS CACO3	MG/L		330			200			190			100		420		80	
CHLORIDE	MG/L		13			6.8			11			26		24		23	
COD	MG/L																
FLUORIDE	MG/L		0.14		<	0.10		<	0.10			1.8		2.6		1.1	
HARDNESS AS CACO3	MG/L		390			290			410			620		21		500	
NITROGEN, NITRATE + NITRITE	MG/L		0.85			1.2		<	0.050			1.7		0.29		1.6	
SOLIDS, TOTAL DISSOLVED	MG/L		420			380			590			3000		2200		2300	
SULFATE	MG/L		36			100			240			2600		1200		2000	
ARSENIC, DISSOLVED	UG/L	<	3.0		<	3.0		<	3.0			180		90		38	
BARIUM, DISSOLVED	UG/L		68		<	50		<	50			110	<	50		58	
BORON, DISSOLVED	UG/L	<	200			3100			7400			2500		2600		2200	
CADMIUM, DISSOLVED	UG/L	<	0.30		<	0.30		<	0.30		<	0.30	<	0.30	<	0.30	
CHROMIUM, DISSOLVED	UG/L	<	10		<	10		<	10			68	<	10		52	
COPPER, DISSOLVED	UG/L	<	20		<	20		<	20		<	20	<	20	<	20	
IRON, DISSOLVED	UG/L	<	100		<	100		<	100		<	100	<	100	<	100	
LEAD, DISSOLVED	UG/L	<	3.0		<	3.0		<	3.0	•	<	3.0	<	3.0	<	3.0	
MANGANESE, DISSOLVED	UG/L	<	5.0		<	5.0			55		<	5.0	<	5.0	<	5.0	
MERCURY, DISSOLVED	UG/L	<	0.20		<	0.20		<	0.20		<	0.20	<	0.20	<	0.20	
SELENIUM, DISSOLVED	UG/L	<	1.0	Ł	<	1.0	L	<	1.0	L		57		320		22	
SILVER, DISSOLVED	UG/L	<	1.0		<	1.0		<	1.0		<	1.0	<	1.0	<	1.0	
ZINC, DISSOLVED	UG/L	<	20		<	20		< .	20		<	20	<	20	<	20	

e e e e e e e

PROJECT NUMBER:	1831.28			
BEGINNING DATE:	01-JUN-93			
ENDING DATE:	29-0CT-93			
			<b>B-</b> 3	38A
			07	SEP-93
PARAMETER		UNITS	329	3-007
COLOR, FIELD				CLEAR
CONDUCTANCE, SPE	CIFIC	UMHOS/0	CM	3280
DEPTH TO WATER		FEET		27.59
ODOR, FIELD				NONE
PH, FIELD		SU		9.0
TEMPERATURE		DEG C		16
TURBIDITY, FIELD				NONE
WATER ELEVATION		FEET		608.24
ALKALINITY AS CA	CO3	MG/L		90
CHLORIDE		MG/L		21
COD		MG/L		
FLUORIDE		MG/L		3.4
HARDNESS AS CACO	3	MG/L		390
NITROGEN, NITRAT	E + NITRITE	MG/L		0.59
SOLIDS, TOTAL DI	SSOLVED	MG/L		2600
SULFATE		MG/L		1800
ARSENIC, DISSOLV	ED	UG/L		51
BARIUM, DISSOLVE	D	UG/L		54
BORON, DISSOLVED	I	UG/L		3300
CADMIUM, DISSOLV	ED	UG/L	<	0.30
CHROMIUM, DISSOL	VED	UG/L		11
COPPER, DISSOLVE	D	UG/L	<	20
IRON, DISSOLVED		UG/L	<	100
LEAD, DISSOLVED		UG/L	<	3.0
MANGANESE, DISSO	LVED	UG/L	<	5.0
MERCURY, DISSOLV	ED	UG/L	<	0.20
SELENIUM, DISSOL	VED	UG/L		57
SILVER, DISSOLVE	D	UG/L	<	1.0
ZINC, DISSOLVED		UG/L	<	20

## TABLE 8

#### GROUNDWATER CHEMISTRY

-------s, /

ŧ

# Appendix C

# 2016 Low-Hazard Waste Exemption Leaching Test Results – Slag and Ash

#### Sediment and Soil Analytical Results - Water Leach Test Results WPL Nelson Dewey

Sample	Date	Depth (feet)	Material Type	Lab Notes	Boron (ug/L)	Calcium (ug/L)	Fluoride (mg/L)	Sulfate (mg/L)
WPDES POND								
SED-1	8/3/2016	0-1.3	Fly Ash		240	6,100	<1.0	4.4
SED-2	8/3/2016	0-1.0	Fly Ash		200	5,900	<1.0	11.5
QC-3 (SED-2)	8/3/2016	0-1	Fly Ash		240	5,900 J	<1.0	6.1
SED-3	7/20/2016	0-4.5	Slag		130	2,200	<1.0	5
	7/20/2016	4.5-5.5	SP		<50	<500	<0.20	<2.0
SED-4	7/19/2016	0-4.8	ML		510	4,100	<10.0	11.9 J
	7/19/2016	4.8-5.5			74 J	NA	NA	NA
GP-19	8/4/2016	8-12	SM		62 J	<500	<1.0	2 J
SLAG POND						<b>L</b>		
SED-5	7/20/2016	0-1.6	ML-OL		54 J	18,200	<1.0	33.3
SED-6	7/20/2016	0-1.0	ML		L 06	17,500	0.36 J	59.1
SED-7	8/4/2016	0-3.0	Fly Ash		88 J	11,300	<1.0	10.5
SED-8	8/4/2016	1.0-1.5	Fly Ash		82 J	11,400	<1.0	12.1
COAL YARD	1		1			1		1
TP-CY-1	7/19/2016	0-0.5	Coal		140	<500	<2.0	<20.0
	7/19/2016	3.0-3.5	SM		100 J	<500	<1.0	<2.0
TP-CY-3	7/20/2016	1.9-2.1	GM		<50	7,600	<0.20	2.8 J
	7/20/2016	4.8-5.5	SM		NA	NA	NA	NA
TP-CY-4	7/19/2016	0-2.8	Coal		190	<500	<2.0	<20.0
	7/19/2016	2.8-3.2	GP & SM		<50	4,500	<1.0	<10.0
	7/19/2016	3.6-4.8	Slag		<50	<500	<2.0	<20.0
	7/19/2016	4.8-5.0			NA	NA	NA	NA
TP-CY-6	7/19/2016	0-0.5	Coal		190	<500	<2.0	<20.0
	7/19/2016	0.7-1.0	SP		<50	2,600	<0.20	2.3 J
TP-CY-10	7/19/2016	0-0.5	Coal		120	<25	<1.0	11.6
	7/19/2016	1.0-2.0	SM		<50	2,000	<1.0	2.3 J
	7/19/2016	6.5-7.0	SP		NA	NA	NA	NA
TP-CY-12	7/20/2016	0-0.3	Coal		160	<500	<2.0	<20.0
	7/20/2016	0.3-2.0	SP		<50	2,600	<0.20	2.2 J
	7/20/2016	2.0-2.7	SP		<50	700 J	<0.20	27.5
QC-1 (TP-CY-12)	7/20/2016	0.3-2.0	SP		<50	11,000	<0.20	2.5 J
SLAG HANDLING AREA								
GP-5	8/3/2016	12.5-15	Fly Ash		100	3,000	<1.0	3.0 J
	8/3/2016	18-24	ML & SM		99 J	2,300	<1.0	<2.0
GP-7	8/3/2016	7.5-18	Slag		<50	720 J	<1.0	<2.0
QC-2 (GP-7)	8/3/2016	7.5-18	Slag		<50	710 J	<1.0	<2.0
GP-14	8/4/2016	12.5-15	Fly Ash		120	25,200	<1.0	13.4

#### Sediment and Soil Analytical Results - Water Leach Test Results WPL Nelson Dewey

		Depth						
Sample	Date	(feet)	Material Type	Lab Notes	Boron (ug/L)	Calcium (ug/L)	Fluoride (mg/L)	Sulfate (mg/L)
SLAG SAMPLES ¹								
Slag 01 ²	6/3/2013		Slag		NA	NA	NA	NA
Slag 01	12/23/2013		Slag		12.5 A B	1,240	NA	0.218
NED Slag Composite 2014	7/1/2014		Slag		11.7 AB*^	879 A	NA	0.457 B
Slag Sample	4/14/2015		Slag		< 1020 A	1,140 A	NA	0.427
FLY ASH SAMPLES ¹			•					•
NED Flyash Composite ²	2/14/2014		Fly Ash		NA	NA	NA	6,530 B
Week of 062815 ²	7/3/2015		Fly Ash		NA	NA	NA	6,260
Week of 010916	1/4/2016		Fly Ash		NA	NA	NA	NA
NR 140 Preventive Action Limits (PA	ALs)				200	NE	0.8	125
NR 140 Enforcement Standards (ES	s)				1,000	NE	4	250
40 CFR Part 141.62 Maximum Con	taminant Levels ( <i>N</i>	ACL)			NE	NE	4	NE
NR 538 Table 1A Standards					190	NE	0.8	125
NR 538 Table 2A Standards					1,900	NE	8	1,250

Abbreviations:

ug/L = micrograms per liter mg/L = milligrams per liter NE = No Standard Established ML-CL = Silty Clay

SM = Silty Sand ML = Silt

Notes:

1. Slag and Fly Ash samples were collected by the plant as part of permit requirements.

2. Sample was analyzed using the SPLP Leach Method rather than the ASTM Water Leach Method for tested parameters except for Sulfate.

NR 140 ESs - Wisconsin Administrative Code (WAC), Chapter NR 140.10 Table 1 - Public Health Groundwater Quality Standards from July 2015 and WAC, Chapter NR 140.12 Table 2 - Public Welfare Groundwater Quality Standards from July 2015.

NR 140 PALs - WAC, Chapter NR 140.10 Table 1 - Public Health Groundwater Quality Standards from July 2015 and WAC, Chapter NR 140.12 Table 2 - Public Welfare Groundwater Quality Standards from July 2015.

Laboratory Notes/Qualifiers:

J = Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

A = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

B = Compound was found in the blank and sample.

F1 = MS and/or MSD Recovery is outside acceptance limits.

H = Sample was prepped or analyzed beyond the specified holding time.

^A = ICV, CCV, ICB, CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.

 $\ast$  = LCS or LCSD is outside acceptance limits.

Created by:	RJG	Date: 3/14/2016
Last revision by:	RJG	Date: 10/24/2016
Checked by:	BSS	Date: 10/24/2016

Original table prepared for Slag Pond Closure Low Hazard Waste Exemption Request (SCS Project #25216054.00).

Reformatted for the Alternative Source Demonstration to include only the parameters with SSIs that were included in the leach testing by SCC, 4/13/18.

I:\25216071.00\Reports\2018 ASD Report\Appendix G - 2017 leachate results slag and ash\[Table 4. Sediment_Soil_Water Leach Results_SSIParameters.xlsx]Leach Test - SSI Parameters

B2 Alternative Source Demonstration, April 2019 Detection Monitoring

# Alternative Source Demonstration April 2019 Detection Monitoring

Slag Pond Nelson Dewey Generating Station Cassville, Wisconsin

Prepared for:



# SCS ENGINEERS

25219071.00 | October 14, 2019

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830 Table of Contents

Sect	ion		Pa	ge	
PE C	ertifica	ation		iii	
1.0	) Introduction			1	
	1.1	§257.9	94(e)(2) Alternative Source Demonstration Requirements	1	
	1.2	Site Inf	formation and Map	1	
	1.3	Statisti	ically Significant Increases Identified	2	
	1.4	Overvie	rview of Alternative Source Demonstration Approach		
2.0	Back	3ackground		2	
	2.1	Geologic and Hydrogeologic Setting			
		2.1.1	Regional Information	3	
		2.1.2	Site Information	3	
	2.2	CCR Ru	ule Monitoring System	3	
	2.3	Other N	Nonitoring Wells	4	
3.0	Methodology and Analysis Review			4	
	3.1	Sampli	ing and Field Analysis Review	4	
	3.2	Labora	tory Analysis Review	4	
	3.3	Statisti	ical Evaluation Review	5	
	3.4	Summa	ary of Methodology and Analysis Review Findings	5	
4.0	4.0 Alternative Sources		ources	5	
	4.1	1 Potential Causes of SSI		5	
		4.1.1	Natural Variation	5	
		4.1.2	Man-Made Alternative Sources	5	
	4.2	2 Lines of Evidence		6	
		4.2.1	Grant County Fluoride Data	6	
		4.2.2	Previous CCR Pond and Landfill Study	7	
		4.2.3	Slag Pond Closure Sampling Results	7	
		4.2.4	State Program Groundwater Monitoring Results	8	
		4.2.5	Chloride Lines of Evidence	8	
			Chloride versus CCR Indicator Concentrations	8	
			Slag Pond Sediment vs Groundwater Concentrations	8	
			Historical Groundwater Monitoring	9	
5.0	Alter	native S	ource Demonstration Conclusions	9	
6.0	Site Groundwater Monitoring Recommendations10				
7.0	References10				

## Tables

Table 1.	Detection Monitoring Results Summary – October 2018 through April 2019
Table 2.	Analytical Results – Appendix III Constituents with SSIs
Table 3.	Groundwater Elevations – State and CCR Monitoring Wells

## Figures

- Figure 1. Site Location Map
- Figure 2. Aerial View
- Figure 3. Monitoring Well Location Map
- Figure 4. Water Table Flow Map April 2019

## Appendices

- Appendix A CCR Well Trend Plots
- Appendix B Grant County Fluoride Concentrations
- Appendix C 1994 RMT Environmental Contamination Assessment Information
- Appendix D 2016 Low-Hazard Waste Exemption Leaching Test Results Slag and Ash

I:\25219071.00\Deliverables\2019 April ASD NED\191014_NED_April ASD.docx
#### **PE CERTIFICATION**

Sherren C. Clark Clark Kadison, Wis. On Clark Kadison, Wis. Chark Kadison, Wis. Chark Kadison, Katalan Kadison, Katalan Kadison, Katalan Kadison, Katalan Kadison, Katalan Kadison, Katalan Kadison, Katalan Kadison, Katalan Kadison, Katalan Kadison, Katalan Kadison, Katalan Kadison, Katalan Kadison, Katalan Kadison, Katalan Kadison, Katalan Kadison, Katalan Kadison, Katalan Kadison, Katalan Kadison, Katalan Kadison, Katalan Kadison, Katalan Kadison, Katalan Kadison, Katalan Kadison, Katalan Kadison, Katalan Kadison, Katalan Kadison, Katalan Kadison, Katalan Kadison, Katalan Kadison, Katalan Kadison, Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan Katalan K	I, Sherren Clark, hereby certify that that the information in this alternate source demonstration is accurate and meets the requirements of 40 CFR 257.94(e)(2). This certification is based on my review of the groundwater data and related site information available for the Nelson Dewey Generating Station Slag Pond facility. I am a duly licensed Professional Engineer under the laws of the State of Wisconsin.
	My license renewal date is July 31, 2020.
	Pages or sheets covered by this seal:
	Alternative Source Demonstration, April 2019
	Detection Monitoring – Slag Pond
	Nelson Dewey Generating Station, Cassville

[This page left blank intentionally]

### 1.0 INTRODUCTION

This Alternative Source Demonstration (ASD) was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" published by the U.S. Environmental Protection Agency (USEPA) in the *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule,* dated April 17, 2015 (USEPA, 2015), and subsequent amendments. Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.94(e)(2). The applicable sections of the Rule are provided below in *italics*.

#### 1.1 §257.94(E)(2) ALTERNATIVE SOURCE DEMONSTRATION REQUIREMENTS

The owner and operator may demonstrate that a source other than the CCR Unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels.

An ASD is completed when there are exceedances of one or more benchmarks established within the groundwater monitoring program. The ASD is completed to determine if any other sources are likely causes of the identified exceedance(s) of established benchmark(s) at the site. This ASD was performed in response to results indicating a statistically significant increase (SSI) over background levels during detection monitoring under the CCR Rule.

This ASD report is evaluating the SSIs observed in the statistical evaluation of the April 2019 detection monitoring event at the Nelson Dewey Generating Station (NED). The first ASD was prepared for this facility evaluating the SSIs observed in the statistical evaluation of the October 2017 detection monitoring event (SCS Engineers [SCS], 2018). The October 2017 ASD and subsequent semiannual updates have concluded that several lines of evidence demonstrates that SSIs reported for boron, fluoride, field pH, sulfate, and total dissolved solids (TDS) concentrations in the downgradient monitoring wells were likely due to man-made sources and/or naturally occurring constituents in the alluvial aquifer.

As discussed in more detail in **Section 4.2** of this ASD, the findings for the April 2019 monitoring event were generally consistent with those for the previous event. An SSI for chloride was newly identified at NED in the April 2019 sampling data evaluation and is further discussed later in this report.

#### **1.2** SITE INFORMATION AND MAP

The NED site is located along the east bank of the Mississippi River, north of the Village of Cassville, in Grant County, Wisconsin (**Figure 1**). The facility includes a decommissioned coal fired generating plant, a CCR landfill that was closed in 2001, a closed Slag Pond, and a closed wastewater treatment pond. The layout of the site on an aerial photograph base is shown on **Figure 2**. The closed landfill at NED facility was permitted under Wisconsin Department of Natural Resources (WDNR) License #02525.

The existing CCR unit evaluated for this ASD is:

• Slag Pond (former existing CCR surface impoundment)

A map showing the CCR unit and all background (or upgradient) and downgradient monitoring wells with identification numbers for the CCR groundwater monitoring program and the state monitoring program is provided as **Figure 3**.

Operations at the facility began in the late 1950s, and a CCR impoundment that included what is now the Slag Pond closure area was commissioned at that time. The CCR landfill was initially licensed in 1976 and received fly ash from NED until it was closed in phases between 1996 and 2001. The CCR landfill was initially operated as a fly ash sluice basin, then transitioned to dry ash placement prior to closure. The wastewater ponds, now closed, were constructed in 1976 for the purpose of settling CCR from the NED process wastewater streams and sediment from storm water runoff prior to discharge. Both NED generating units were retired on December 31, 2015, and have since been decommissioned. The generating station was demolished in 2017.

#### **1.3** STATISTICALLY SIGNIFICANT INCREASES IDENTIFIED

SSIs were identified for boron, chloride, fluoride, field pH, sulfate, and TDS at one or more wells in the April 2019 monitoring event. A summary of the April 2019 constituent concentrations and the established benchmark concentrations is provided in **Table 1**. The October 2018 and November 2018 resampling results are also included for comparison. The constituent concentrations with SSIs above the background concentrations are highlighted in the table.

The SSIs for the April 2019 event were generally consistent with the October 2017, April 2018, and October 2018 SSIs, with the following changes. New SSIs were identified for chloride at B-11A and for pH at B-11B. There were no SSIs for calcium.

#### 1.4 OVERVIEW OF ALTERNATIVE SOURCE DEMONSTRATION APPROACH

This ASD report includes:

- Background information (Section 2.0)
- Evaluation of potential that SSIs are due to methodology or analysis (Section 3.0)
- Evaluation of potential that SSIs are due to natural sources or man-made sources other than the CCR Units (Section 4.0)
- ASD conclusions (Section 5.0)
- Monitoring recommendations (Section 6.0)

The CCR Rule constituent results from background and compliance sampling for the parameters with SSIs are provided in **Table 2**. The laboratory report for the April 2019 event will be included in the 2019 Annual Groundwater Monitoring and Corrective Action report due in January 2020. Complete laboratory reports for the background monitoring events and previous detection monitoring events were included in the previous annual groundwater monitoring and corrective action reports.

### 2.0 BACKGROUND

To provide context for the ASD evaluation, the following background information is provided in this section of the report, prior to the ASD evaluation sections:

- Geologic and hydrogeologic setting
- CCR Rule monitoring system
- Other monitoring wells

A more detailed discussion of the background information for the site is provided in the ASD for the October 2017 event (SCS, 2018).

#### 2.1 GEOLOGIC AND HYDROGEOLOGIC SETTING

#### 2.1.1 Regional Information

The uppermost geologic formation beneath the NED plant is the surficial alluvial aquifer. The alluvial aquifer consists of Mississippi River valley sand and gravel deposits, and is the uppermost aquifer as defined in section 257.53 of the CCR Rule. This deposit is prevalent along the edges of the entire Mississippi River valley in southwestern Wisconsin.

The alluvial aquifer is underlain by dolomitic bedrock of the Prairie du Chien Group. The dolomite bedrock is also an aquifer and is likely hydraulically connected to the alluvial aquifer above.

Regionally, groundwater flow is generally to the southwest and discharges to the Mississippi River.

Additional details on the regional geology were provided in the October 2017 ASD (SCS, 2018).

#### 2.1.2 Site Information

The thickness of the alluvium in the immediate vicinity of the plant is over 125 feet, as evidenced by local water supply well logs (SCS, 2018). These logs are also evidence that the alluvial aquifer yields useable quantities of groundwater for supply wells in the area. Soil boring logs for monitoring wells installed at the site also generally indicate sand and gravel soils within the monitored depths.

The groundwater flow direction in the vicinity of the plant is generally southwest toward the Mississippi River. Historically, infiltration at the former Slag Pond, former fly ash basin, and the former Wisconsin Pollutant Discharge Elimination System (WPDES) ponds caused groundwater mounding to be present around these features; however, these ponds have now all been closed and are no longer sources of infiltration.

Site water level measurements generally indicate that groundwater flow is to the southwest, discharging to the Mississippi River. However, during periods of high river water levels, the flow temporarily reverses and the river discharges to the shallow sand and gravel aquifer. The groundwater flow direction during the April 2019 detection monitoring event was toward the Mississippi River with flow moving south to southwest (**Figure 4**). The groundwater elevations are provided in **Table 3**. At the time of the April 2019 detection monitoring event, the Mississippi River and certain areas of the site were flooded from earlier spring rain events.

#### 2.2 CCR RULE MONITORING SYSTEM

The groundwater monitoring system established in accordance with the CCR Rule consists of one upgradient (background) monitoring well and six downgradient monitoring wells. The background well is B-26. The downgradient wells include B-7R, B-11A, B-11B, B-11R, B-31A, and B-31R. The CCR Rule wells are installed within the surficial alluvium aquifer. Well depths range from approximately 23 to 114 feet, measured from the top of the well casing.

#### **2.3** OTHER MONITORING WELLS

There are 19 groundwater monitoring wells at the NED facility that are part of the monitoring system developed for the state monitoring program. All of the wells included in the CCR monitoring well network were already in use for the state monitoring program. The well locations are shown on **Figure 3**. These 19 monitoring wells and two private wells are used to monitor groundwater conditions at the site under WDNR License Number 2525, which includes the closed CCR landfill (former fly ash settling basin) and the closed Slag Pond. Monitoring wells for the state monitoring program are installed in the surficial sand and gravel aquifer which is the uppermost aquifer as defined under 40 CFR 257.53.

### **3.0** METHODOLOGY AND ANALYSIS REVIEW

To evaluate the potential that an SSI is due to a source other than the regulated CCR unit, SCS Engineers (SCS) used a two-step evaluation process. First, the sample collection, field and laboratory analysis, and statistical evaluation were reviewed to identify any potential error or analysis that led to an exceedance of the benchmark. Second, potential alternative sources, including natural variation and man-made sources other than the CCR unit, were evaluated. This section of the report provides the findings of the methodology and analysis review. **Section 4.0** of the report addresses the potential alternative sources.

#### 3.1 SAMPLING AND FIELD ANALYSIS REVIEW

Field notes and sampling results were reviewed to determine if any sampling error may have caused or contributed to the observed SSIs. Potential field sampling errors or issues could include mislabeling of samples, improper sample handling, missed holding times, cross contamination during sampling, or other field error. Field blank sample results were also reviewed for any indication of potential contamination from sampling equipment or containers. Based on the review of the field notes and results, SCS did not identify any indication that the SSIs were due to a sampling error.

SCS did not identify any issues with the field pH analysis based on review of the data and field notes. Because boron, chloride, fluoride, TDS, and sulfate are laboratory parameters, there is little potential for a field analysis error to contribute to an SSI.

#### **3.2** LABORATORY ANALYSIS REVIEW

The laboratory reports for the April 2019 detection monitoring events were reviewed to evaluate whether any laboratory analysis error or issue may have caused or contributed to the observed SSIs. The laboratory report review included reviewing the laboratory quality control flags and narrative, verifying that correct methods were used and desired detection limits were achieved, and checking the field and laboratory blank sample results. Laboratory reports for the background monitoring events were reviewed for the October 2017 ASD. Laboratory reports for subsequent detection monitoring events were reviewed as part of the ASD preparation for each event.

Based on the review of the laboratory reports, SCS did not identify any indication that any SSI was due to a laboratory analysis error. There were no laboratory quality control flags or issues identified in the laboratory reports that affect the usability of the data for detection monitoring.

Time series plots of the SSI constituent analytical data were also reviewed for any anomalous results that might indicate a possible sampling or laboratory error (e.g., dilution error or incorrect sample labeling). The time series plots are provided in **Appendix A**. The April 2019 results for the downgradient wells are generally consistent with the historical data. The increasing boron

concentrations at B-11B are consistent with an increase in boron concentrations observed at this well beginning in 2010 under the state monitoring program. The sulfate concentrations detected at B-31R in October and November 2018 are the highest detected at this well in several years, but remain below the highest concentrations observed prior to the CCR landfill closure. The sulfate concentration in the sample from B-31R in April 2019 was lower than the 2018 results. None of the trend plots appeared to indicate a sampling or laboratory error.

#### **3.3** STATISTICAL EVALUATION REVIEW

The review of the statistical results and methods included a quality control check of the following:

- Input analytical data vs. laboratory analytical reports
- Statistical method and process for each SSI

Based on the review of the statistical evaluation, SCS did not identify any errors or issues in the statistical evaluation that caused or contributed to the determination of interwell SSIs for boron, chloride, fluoride, pH, sulfate, and TDS at the downgradient monitoring wells.

# 3.4 SUMMARY OF METHODOLOGY AND ANALYSIS REVIEW FINDINGS

In summary, there were no changes to the SSI determinations for the April 2019 detection monitoring events based on the methodology and analysis review, and no errors or issues causing or contributing to the reported SSIs were identified.

### 4.0 ALTERNATIVE SOURCES

This section of the report discusses the potential alternative sources for the SSI constituents at the downgradient wells, identifies the most likely alternative source(s), and presents the lines of evidence indicating that an alternative source is the most likely cause of the observed SSIs.

#### 4.1 POTENTIAL CAUSES OF SSI

#### 4.1.1 Natural Variation

The statistical analysis was completed using an interwell approach, comparing the April 2019 detection monitoring results to the upper prediction limits (UPLs) calculated based on sampling of the background well (B-26). If concentrations of a constituent that is naturally present in the aquifer vary spatially, then the potential exists that the downgradient concentrations may be higher than upgradient concentrations due to natural variation.

Although natural variation is present in the shallow aquifer, it does not appear likely that natural variation is the primary source causing the boron, sulfate, chloride, and TDS SSIs. These parameters were detected at higher concentrations than would likely be present naturally.

Based on fluoride data for wells in the Grant County, natural variation may also have caused or contributed to the SSI for fluoride at B-11B.

#### 4.1.2 Man-Made Alternative Sources

Man-made alternative sources that could potentially contribute to the boron, chloride, fluoride, pH, sulfate, and TDS SSIs could include the closed CCR landfill, the coal storage area, or other plant

operations. Based the groundwater flow directions and on previous investigations at the site, the closed landfill appears to be the most likely cause of the SSIs for the downgradient wells B-7R, B-11A, B-11B, B-11A, B-31A, and B-31R. For the chloride SSI at B-11A, another man-made source, such as road salt, appears to be the most likely cause of the SSI.

#### 4.2 LINES OF EVIDENCE

The lines of evidence indicating that natural variation may also have caused or contributed to the fluoride SSIs include:

 Although fluoride was not detected in background well B-26, publicly available data from the WDNR's Groundwater Retrieval Network (GRN) database indicates it is commonly detected in Grant County.

The lines of evidence indicating that the SSIs for boron, fluoride, pH, sulfate, and TDS in one or more compliance wells relative to the background well are more likely due to the closed landfill and prior fly ash sluicing than to the Slag Pond include:

- 1. A previous Environmental Contamination Assessment completed for the ash disposal facility indicated that the fly ash sluicing and landfill were the primary source of the groundwater impacts in the area, based on multiple lines of evidence.
- 2. Sampling performed in preparation for the Slag Pond closure indicated that the slag and the Slag Pond sediment had little potential to cause the SSIs for boron, chloride, fluoride, and sulfate.
- 3. Past and current groundwater monitoring performed under the state monitoring program shows that groundwater quality has improved since the 1990s in response to termination of fly ash sluicing and closure, and capping of the ash landfill.

The lines of evidence indicating that the SSI for Chloride is not due to the closed Slag Pond include:

- 1. The recent increase in chloride at B-11A does not correlate with increases in CCR-related parameters such as boron and sulfate.
- 2. Chloride results for the slag pond sediment and soil leach test samples were much lower than chloride levels in groundwater.
- 3. Historical groundwater monitoring results do not indicate that either the ash sluice pond or the slag pond were significant sources of chloride.

The data supporting these lines of evidence are discussed below. Most of these lines of evidence and the supporting data were discussed in detail in the ASD for the October 2017 detection monitoring event (SCS, 2018), with the exception of the chloride and TDS SSI concentrations. For lines of evidence included in previous ASDs, the discussion focuses on any updated information collected since the previous ASD, with references to the previous ASD for additional details.

#### 4.2.1 Grant County Fluoride Data

Natural variation may have caused or contributed to the SSI for fluoride at B-11B. Although fluoride was not detected in background well B-26, publicly available data from the WDNR's GRN database indicates it is commonly detected in Grant County. Out of a total of 426 fluoride analysis results in

the GRN database for water supply wells in Grant County, as of September 2019, 89 percent had fluoride detected. The average concentration of fluoride in Grant County well samples with fluoride detections was 0.38 milligrams per liter (mg/L). The fluoride concentration reported for B-11B for April 2019, 0.64 mg/L, is in the range of concentrations in the GRN database for Grant County. The Grant County fluoride data are included in **Appendix B**. As discussed below, there is also a potential that fluoride concentrations in B-11B are associated with impacts from the closed CCR landfill.

#### 4.2.2 Previous CCR Pond and Landfill Study

A previous investigation titled *Environmental Contamination* Assessment: Nelson Dewey Generating Station Ash Disposal Facility, completed by RMT in 1994, found that groundwater impacts were associated with disposal of fly ash in the now-closed CCR landfill located immediately north of the Slag Pond (**Figure 3**). The purpose of the 1994 Environmental Contamination Assessment (ECA) was to investigate the impacts to groundwater at the NED landfill. The ECA was used to evaluate feasibility of possible remedial alternatives. The remedial alternative that was ultimately selected was to convert the plant to dry fly ash handling.

The primary lines of evidence from the 1994 report that support the current ASD for boron, fluoride, pH, sulfate, and TDS include:

- Water leaching tests for ash and slag indicated that boron and sulfate concentrations in the slag leachate were orders of magnitude lower than in the ash leachate (**Appendix C**, **Table 5**).
- Surface water samples from the then active ash sluice pond and the Slag Pond indicated that boron and sulfate concentrations in the Slag Pond were one or more orders of magnitude lower than in the ash sluice pond. The surface water pH measurement was also higher in the ash sluice pond. The surface water boron and sulfate concentrations in the Slag Pond were higher than leach test results, which was attributed to infiltration of ash sluice pond water through the berm between the ponds into the Slag Pond (Appendix C, Table 6).
- Groundwater sampling at monitoring wells B-38 and B-38A (now abandoned), which were installed through and screened below the ash disposal area (now closed landfill), indicated that groundwater affected by ash sluicing was characterized by high pH and elevated concentrations of boron, fluoride, sulfate, and TDS (**Appendix C**, **Table 8**).

The results of the 1994 ECA were reported to WDNR on November 1994. The ECA investigation was then used for a feasibility study to determine appropriate ash disposal operation on site. Following the ECA, the plant converted to a dry ash handling system. Dry ash was placed in the CCR landfill through the 1990s, and the landfill was capped and closed in phases in 1996 through 2001. After that time, fly ash was not disposed of at the facility.

#### 4.2.3 Slag Pond Closure Sampling Results

Results of leaching test analysis performed for slag, ash, soil, and sediment were submitted as part of a Low Hazard Exemption Request to the WDNR in March 2017 (SCS, 2017). The Exemption Request was submitted as part of the Closure Plan for the site and requested WDNR approval to consolidate materials from decommissioning activities in the Slag Pond and Slag Handling Area, which would then be capped with a composite final cover system. The sediment and soil samples were collected to characterize the materials that would remain on site under the Closure Plan. Leaching tests were performed using ASTM water leach test methods. The leaching test analytical results for parameters with SSIs that were included in the leaching test program (boron, chloride, fluoride, and sulfate) are summarized in **Appendix D**.

The sampling results in the Exemption Request indicated that the materials to be consolidated and capped were not likely to cause groundwater standard exceedances for boron, chloride, fluoride, or sulfate. The leach test results for slag, Slag Pond sediment, and soil in the Slag Handling Area were below the state groundwater standards for these four parameters. The results were also below the concentrations of boron, chloride, fluoride, and sulfate in the downgradient CCR wells with SSIs, and well below the historic results for former well B-38, which was located within the CCR landfill area, upgradient from the Slag Pond.

The Low Hazard Exemption was granted by the WDNR based on the sampling results and other information presented.

#### 4.2.4 State Program Groundwater Monitoring Results

Past and current groundwater monitoring performed under the state monitoring program shows that groundwater quality has improved substantially since the 1990s in response to termination of fly ash sluicing, and closure and capping of the ash landfill (SCS, 2018). The long-term trends show that concentrations of boron and sulfate in groundwater have decreased since termination of fly ash sluicing and closure of the landfill, in some cases by an order of magnitude or more. The results suggest that current boron, fluoride, sulfate, and TDS concentrations are likely residual contamination from historic ash disposal in the CCR landfill area. Increasing boron and sulfate concentrations at B-11B appear to be attributable to the closed CCR landfill and to changes in groundwater flow at the site, related to a decrease in the volume of water discharged to the Slag Pond and subsequent closure of the Slag Pond.

#### 4.2.5 Chloride Lines of Evidence

As listed above, three primary lines of evidence indicate the chloride SSI at well B-11A is not due to the closed Slag Pond. Unlike the reported SSIs for some other parameters, the increased chloride concentrations are not clearly attributable to historic ash disposal in the closed CCR landfill area. Elevated chloride concentrations are likely related another man-made source, such as road salt. Although the specific source is unknown, the evidence detailed below indicates that the closed Slag Pond is not the source.

#### Chloride versus CCR Indicator Concentrations

The recent increase in chloride at B-11A does not correlate with increases in CCR-related parameters such as boron and sulfate. Although chloride exceeds the interwell UPL, other CCR indicator parameters such as boron and sulfate were not detected at concentrations exceeding background water levels in the sample from B-11A. The time series plots show the boron and sulfate concentrations at B-11A remained stable while the chloride concentration at B-11A has increased gradually since November 2017 and more sharply since October 2018 (**Appendix A**). The absence of other CCR indicator parameters with increasing trends suggests that the chloride SSI is due to some other source.

#### Slag Pond Sediment vs Groundwater Concentrations

Chloride results for slag pond sediment and soil leach test samples were much lower than chloride levels in groundwater. As discussed in **Section 4.2.3**, sediment and soil samples were previously collected in March 2017 to characterize the materials that would remain on site under the Closure

Plan for Low Hazard Exemption Request to the WDNR (SCS, 2017). The water leach testing analytical results show that the chloride leach test concentrations are significantly lower than the groundwater chloride concentrations observed at B-11A. The leach test results for chloride ranged from below the detection limit up to 4 mg/L, while the chloride concentrations in groundwater samples from B-11A ranged from approximately 40 mg/L to 83.6 mg/L (**Table 2**) during background and compliance sampling for the CCR monitoring program.

Chloride groundwater concentrations at background monitoring well B-26 also exceed the water leach test sediment results from the slag pond, ranging from 33.2 mg/L to approximately 80 mg/L. The low chloride concentrations observed from the slag pond sediment leach testing suggest the higher groundwater chloride concentrations observed at B-11A are due to another source and not the slag pond.

#### Historical Groundwater Monitoring

Historical groundwater monitoring results do not indicate that either the ash sluice pond or the slag pond were significant sources of chloride. The previous investigation by RMT in 1994, referenced in **Section 4.2.2**, included an analysis of chloride with its evaluation of groundwater impacts associated with the fly ash disposal from the closed CCR landfill and Slag pond area.

The historical results from the 1994 report that support the current ASD for chloride include:

- Groundwater sampling at monitoring wells B-38 and B-38A (now abandoned), which were
  installed through and screened below the ash disposal area (now closed landfill),
  indicated that groundwater affected by ash sluicing was characterized by lower
  concentrations of chloride observed, ranging from 23 mg/L to 26 mg/L from the June
  and September 1993 sampling events (Appendix C, Table 8). Monitoring wells
  downgradient from the active slag pond had even lower chloride concentrations.
- The background monitoring well, B-26, showed generally higher chloride concentrations, ranging from 21 mg/L to 43 mg/L, which may be associated with road salt use on Highway V (Appendix C, Table 8).
- The highest chloride concentrations were detected in samples from well B-35, which is located off-site on the historic Stonefield Village property. Chloride concentrations at this well ranged from 80 mg/L to 110 mg/L in the 1993 sampling (**Appendix C, Table 8**).

Based on these results, the chloride concentrations observed at B-11A appear to be likely from another source and not from the former ash sluice pond, closed landfill, or the Slag Pond. The historically higher chloride concentrations at B-26 and B-35 suggest the chloride concentrations observed at B-11A may be due to other man-made sources, such as road salt, septic systems, or agriculture.

### **5.0** ALTERNATIVE SOURCE DEMONSTRATION CONCLUSIONS

The lines of evidence discussed above regarding the SSIs reported for boron, chloride, fluoride, field pH, sulfate, and TDS concentrations in downgradient monitoring wells demonstrate that the SSIs are likely primarily due to sources other than the closed Slag Pond. Most of the SSIs appear to be due to historic ash disposal in the closed landfill, which is not subject to the requirements of 40 CFR 257.50-107. The landfill is regulated by the WDNR under the solid waste program (License 02525). The SSIs for fluoride and field pH at B-11A, B-11B, B-11R, and B-31A may also be at least partially due to natural variability.

#### **6.0** SITE GROUNDWATER MONITORING RECOMMENDATIONS

In accordance with section 257.94(e)(2) of the CCR Rule, the NED Slag Pond site may continue with detection monitoring based on this ASD. The ASD report will be included in the 2019 Annual Report due January 31, 2020.

#### 7.0 REFERENCES

RMT, 1994, Environmental Contamination Assessment: Nelson Dewey Generating Station Ash Disposal Facility, November 1994.

SCS Engineers, 2017, Low Hazard Exemption Request, Nelson Dewey Generating Station, Cassville, WI, March 2017.

SCS Engineers, 2018, 2017 Alternative Source Demonstration, October 2017 Monitoring Event, Nelson Dewey Generating Station, April 2018.

U.S. Environmental Protection Agency (USEPA), 2015, Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule, April 2015.

#### Tables

- 1 Detection Monitoring Results Summary October 2018 through April 2019
- 2 Analytical Results Appendix III Constituents with SSIs
- 3 Groundwater Elevations State and CCR Monitoring Wells

#### Table 1. Detection Monitoring Results Summary - October 2018 through April 2019 Nelson Dewey Slag Pond - Cassville, Wisconsin

Parameter Name	Units	nits Interwell Upper Prediction Limit	Backgro	ound Well							Complia	nce Wells						
				-26	B-	-7R	B-1	11A		B-11B		B-'	I 1R	В-3	31A		B-31R	
			10/9/2018	4/22/2019	10/9/2018	4/22/2019	10/9/2018	4/22/2019	10/9/2018	11/12/2018	4/22/2019	10/9/2018	4/22/2019	10/9/2018	4/22/2019	10/9/2018	11/12/2018	4/22/2019
Boron	ug/L	66.5	53.4	41.6	73	93.5	94.2	93.9	3,620	NA	6,830	576	1,360	71.8	86.2	1430	NA	906
Calcium	mg/L	155,155	78,700	75,300	38,500	59,400	48,600	60,400	66,300	NA	83,300	49,900	82,400	46,600	48,200	125,000	NA	105,000
Chloride	mg/L	65.4	33.2	40.8	1.9 J	10.9	57.8	83.6	21.9	NA	28.4	5.9	12.6	40.2	40.8	19.7	NA	17.8
Fluoride	mg/L	LOQ (varies by well)	<0.1	<0.10	<0.1	<0.5 D3	0.29 J	0.29 J	0.61	NA	0.64	0.15 J	0.2 J	0.17 J	0.22 J	<0.1	NA	0.16 J
Field pH	Std. Units	7.81	7.2	7.1	6.23	6.63	7.43	7.62	7.74	8.05	7.91	6.55	6.82	7.48	7.61	6.41	6.59	6.62
Sulfate	mg/L	44.8	25.1	26.7	3.2	<5.0 D3	6	1.9 J	197	NA	303	15.1	34.6	24.8	21.6	186	162	121
Total Dissolved Solids	mg/L	594	450	458	186	254	332	386	602	594	742	266	406	278	284	668	596	516

149 Statistically significant increase at compliance well

Notes:

UPL based on parametric prediction limit based on 1-of-2 resampling methodology for all parameters except fluoride.
 Nonparametric UPL for fluoride is equal to laboratory limit of quantitation. Double quantification rule applies for SSI.

3. UPLs calculated from background well results for December 2015 through October 2017.

4. Optional verification resampling consistent with the selected statistical methods was not performed.

J = Estimated concentration at or above the LOD and below the LOQ.

Created by:	NDK	Date:	11/15/2018
Last revision by:	NDK	Date:	8/19/2019
Checked by:	AJR	Date:	8/20/2019

I:\25219071.00\Deliverables\2019 April ASD NED\Tables\[Tables-NED-1,2, and 3.xlsx]Table 1

P000         P12         P20016         P204         P353         P353         P323         P324         P321         P444           P17/19/2016         28.6         55.6         7.14         <0.2.U         38.6         P456           P197/2016         33.7         52.8         7.19         0.13.J         35         466           11/12/2017         35.2         54.5         7.57         <0.1 U         32.4         468           6/7/2017         45.8         57.6         7.22         <0.1 U         31         538           6/7/2017         45.8         57.6         7.22         <0.1 U         28.5         446           6/7/2017         45.8         57.6         7.21         <0.1 U         28.5         446           10/19/2017         47.4         79.3         7.5         <0.1 U         28.5         446           10/19/2018         14.80         54.4         7.64         <0.1 U         28.5         446           10/08/2018         53.4         33.2         7.2         <0.1 U         25.7         450           10/08/2019         11.6         40.8         7.1         <0.1 U         25.1         32.2 U         338	Well Group	Well	Collection Date	Boron (µg/L)	Chloride (mg/L)	Field pH (St. Units)	Fluoride (mg/L)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)
PUP         No			12/9/2015	29.6	45.5	7.35	<0.2 U	37.1	424
P000         No         N			4/12/2016	33.7	51.3	7.43	<0.2 U	38	456
Pg         B         10/20/2016         33         52.8         7.19         0.13.J         35         446           11/12/2017         35.2         54.5         7.57         <0.1 U			7/19/2016	28.6	55.6	7.14	<0.2 U	36.2	504
Perform         1/12/2017         35.2         54.5         7.57         <0.1         35         446           4/17/2017         50.1         560         7.54         <0.1			10/20/2016	33	52.8	7.19	0.13 J	35	466
Perform         8-26         4/17/2017         50.1         56.0         7.54         <0.1         32.4         468           6/7/2017         45.8         59.6         7.22         <0.1	pu		1/12/2017	35.2	54.5	7.57	<0.1 U	35	446
Beam         6.7/2017         45.8         59.6         7.22         <0.1 U         31         538           8/2/2017         54.6         52.6         7.21         <0.1 U	no.	<b>D</b> 0 (	4/17/2017	50.1	56.0	7.54	<0.1 U	32.4	468
Perform         8/2/2017         54.6         52.6         7.1         <0.1 U         28.5         446           10/19/2017         47.4         79.3         7.5         <0.1 U	kgi	B-26	6/7/2017	45.8	59.6	7.22	<0.1 U	31	538
Def{normal}         10/19/2017         47.4         79.3         7.5         <0.1 U         25.3         542           4/2/2018         48.0         54.4         7.64         <0.1 U	ac		8/2/2017	54.6	52.6	7.21	<0.1 U	28.5	496
Perform         4/2/2018         48.0         54.4         7.64         <0.1 U         19.1         464           10/8/2018         53.4         33.2         7.2         <0.1 U	В		10/19/2017	47.4	79.3	7.5	<0.1 U	25.3	542
OPE         10/8/2018         53.4         33.2         7.2         <0.1 U         25.1         450           4/22/2019         41.6         40.8         7.1         <0.1 U			4/2/2018	48.0	54.4	7.64	<0.1 U	19.1	464
OPE         4/22/2019         41.6         40.8         7.1         <0.1 U         26.7         458           VER         12/9/2015         124         40.4         7.7         0.3 J         3.2 J         338           4/13/2016         116         43.0         7.75         0.38 J         3.8 J         362           7/19/2016         104         46.6         7.42         0.35 J         2.7 J         336           10/19/2016         112         46.5         7.47         0.36         3 J         340           11/12/2017         100         45.4         7.89         0.43         2.3 J         322           4/17/2017         100         45.4         7.78         0.37         1.4 J         338           8/1/2017         102         46.9         7.78         0.37         1.4 J         332           10/19/2017         116         49.9         7.96         0.32         5.1         322           4/13/2016         91         54.7 J.M0         8.04         0.24 J.M0         12.3 MO         336           10/9/2018         94.2         57.8         7.43         0.29 J         6         332           4/13/2016			10/8/2018	53.4	33.2	7.2	<0.1 U	25.1	450
Perform         12/9/2015         124         40.4         7.7         0.3 J         3.2 J         338           4/13/2016         116         43.0         7.75         0.38 J         3.8 J         362           7/19/2016         104         46.5         7.42         0.35 J         2.7 J         336           10/19/2016         112         46.5         7.47         0.36         3.J         340           11/12/2017         100         45.4         7.38         0.36         -1 U         326           6/8/2017         102         46.9         7.78         0.37         1.4 J         338           8/1/2017         105         46.7         7.67         0.37         2.4 J         326           10/19/2017         116         49.9         7.78         0.32         5.1         322           4/12/2018         91         54.7 J,M0         8.04         0.24 J,M0         12.3 M0         336           10/9/2018         94.2         57.8         7.43         0.29 J         6         332           4/12/2019         93.9         83.6         7.62         0.29 J         1.9 J         386           10/9/2015         1140			4/22/2019	41.6	40.8	7.1	<0.1 U	26.7	458
Perform         4/13/2016         116         43.0         7.75         0.38 J         38 J         362           7/19/2016         104         46.6         7.42         0.35 J         2.7 J         336           10/19/2016         112         46.5         7.47         0.36         3 J         340           11/12/2017         106         46.6         7.89         0.43         2.3 J         322           4/17/2017         100         45.4         7.38         0.36         <1 U			12/9/2015	124	40.4	7.7	0.3 J	3.2 J	338
Perform         7/19/2016         104         46.6         7.42         0.35 J         2.7 J         336           10/19/2016         112         46.5         7.47         0.36         3 J         340           11/12/2017         106         46.5         7.47         0.36         3 J         322           4/17/2017         100         45.4         7.38         0.36         <1U			4/13/2016	116	43.0	7.75	0.38 J	3.8 J	362
OPE         10/19/2016         112         46.5         7.47         0.36         3 J         340           1/12/2017         106         46.6         7.89         0.43         2.3 J         322           4/17/2017         100         45.4         7.38         0.36         <1 U			7/19/2016	104	46.6	7.42	0.35 J	2.7 J	336
POPORT         1/12/2017         106         46.6         7.89         0.43         2.3 J         322           B-11A         4/17/2017         100         45.4         7.38         0.36         <1 U		10/19/2016	112	46.5	7.47	0.36	3 J	340	
B-11A         4/17/2017         100         45.4         7.38         0.36         <1 U         326           B-11A         6/8/2017         102         46.9         7.78         0.37         1.4 J         338           8/1/2017         105         46.7         7.67         0.37         2.4 J         326           10/19/2017         116         49.9         7.66         0.32         5.1         322           4/2/2018         91         54.7 J. M0         8.04         0.24 J. M0         12.3 M0         336           10/9/2018         94.2         57.8         7.43         0.29 J         6         332           4/22/2019         93.9         83.6         7.62         0.29 J         6         332           4/22/2019         93.9         83.6         7.62         0.29 J         1.9 J         386           7/19/2016         1360         32.7         8.14         0.49         148         512           7/19/2016         1210         33.6         7.77         0.45         165         520           10/20/2016         1460         34.3         7.91         0.53         178         496           11/12/2017		1/12/2017	106	46.6	7.89	0.43	2.3 J	322	
B-11A         6/8/2017         102         46.9         7.78         0.37         1.4 J         338           8/1/2017         105         46.7         7.67         0.37         2.4 J         326           10/19/2017         116         49.9         7.96         0.32         5.1         322           4/2/2018         91         54.7 J, M0         8.04         0.24 J, M0         12.3 M0         336           10/9/2018         94.2         57.8         7.43         0.29 J         6         332           4/22/2019         93.9         83.6         7.62         0.29 J         6         332           4/22/2019         93.9         83.6         7.62         0.29 J         6         332           4/22/2019         93.9         83.6         7.62         0.29 J         1.9 J         386           10/9/2015         1140         31.2         8.06         0.44         134         494           4/13/2016         1360         32.7         8.14         0.49         148         512           7/19/2016         1210         33.6         7.77         0.45         165         520           10/20/2016         1460         <		D 444	4/17/2017	100	45.4	7.38	0.36	<1 U	326
Better         8/1/2017         105         46.7         7.67         0.37         2.4 J         326           10/19/2017         116         49.9         7.96         0.32         5.1         322           4/2/2018         91         54.7 J.M0         8.04         0.24 J.M0         12.3 M0         336           10/9/2018         94.2         57.8         7.43         0.29 J         6         332           4/22/2019         93.9         83.6         7.62         0.29 J         1.9 J         386           11/9/2015         1140         31.2         8.06         0.44         134         494           4/13/2016         1360         32.7         8.14         0.49         148         512           7/19/2016         1210         33.6         7.77         0.45         165         520           10/20/2016         1460         34.3         7.91         0.53         178         496           11/12/2017         1540         36.1         8.18         0.52         182         488           4/17/2017         1760         36.3         7.83         0.58         181         502           8/1/2017         1800 <t< td=""><td></td><td>B-11A</td><td>6/8/2017</td><td>102</td><td>46.9</td><td>7.78</td><td>0.37</td><td>1.4 J</td><td>338</td></t<>		B-11A	6/8/2017	102	46.9	7.78	0.37	1.4 J	338
OPE         10/19/2017         116         49.9         7.96         0.32         5.1         322           4/2/2018         91         54.7 J, M0         8.04         0.24 J, M0         12.3 M0         336           10/9/2018         94.2         57.8         7.43         0.29 J         6         332           4/22/2019         93.9         83.6         7.62         0.29 J         1.9 J         386           4/22/2019         93.9         83.6         7.62         0.29 J         1.9 J         386           4/13/2016         1360         32.7         8.14         0.49         148         512           7/19/2016         1210         33.6         7.77         0.45         165         520           10/20/2016         1460         34.3         7.91         0.53         178         496           1/12/2017         1540         36.1         8.18         0.52         182         488           4/17/2017         1760         36.3         7.83         0.58         181         502           8-118         6/8/2017         1880         33.9         8.07         0.59         191         516           8/1/2017			8/1/2017	105	46.7	7.67	0.37	2.4 J	326
OPE         4/2/2018         91         54.7 J. M0         8.04         0.24 J. M0         12.3 M0         336           10/9/2018         94.2         57.8         7.43         0.29 J         6         332           4/22/2019         93.9         83.6         7.62         0.29 J         1.9 J         386           4/22/2019         93.9         83.6         7.62         0.29 J         1.9 J         386           4/21/2015         1140         31.2         8.06         0.44         134         494           4/13/2016         1360         32.7         8.14         0.49         148         512           7/19/2016         1210         33.6         7.77         0.45         165         520           10/20/2016         1460         34.3         7.91         0.53         178         496           1/12/2017         1540         36.1         8.18         0.52         182         488           4/17/2017         1760         36.3         7.83         0.58         181         502           8/12017         1880         33.9         8.07         0.59         191         516           8/1/2017         1800 <t< td=""><td></td><td></td><td>10/19/2017</td><td>116</td><td>49.9</td><td>7.96</td><td>0.32</td><td>5.1</td><td>322</td></t<>			10/19/2017	116	49.9	7.96	0.32	5.1	322
OPE         10/9/2018         94.2         57.8         7.43         0.29 J         6         332           4/22/2019         93.9         83.6         7.62         0.29 J         1.9 J         386           12/9/2015         1140         31.2         8.06         0.44         134         494           4/13/2016         1360         32.7         8.14         0.49         148         512           7/19/2016         1210         33.6         7.77         0.45         165         520           10/20/2016         1460         34.3         7.91         0.53         178         496           1/12/2017         1540         36.1         8.18         0.52         182         488           4/17/2017         1760         36.3         7.83         0.58         181         502           8-118         6/8/2017         1880         33.9         8.07         0.59         191         516           8/1/2017         1800         35.9         7.77         0.6         179         498           10/19/2017         1500         36.1         7.77         0.59         175         510           4/2/2018         2020			4/2/2018	91	54.7 J, MO	8.04	0.24 J, M0	12.3 M0	336
OPEGOD         4/22/2019         93.9         83.6         7.62         0.29 J         1.9 J         386           12/9/2015         1140         31.2         8.06         0.44         134         494           4/13/2016         1360         32.7         8.14         0.49         148         512           7/19/2016         1210         33.6         7.77         0.45         165         520           10/20/2016         1460         34.3         7.91         0.53         178         496           11/12/2017         1540         36.1         8.18         0.52         182         488           4/17/2017         1760         36.3         7.83         0.58         181         502           8/1/2017         1800         35.9         7.77         0.6         179         498           10/19/2017         1500         36.1         7.77         0.59         175         510           4/2/2018         2020         31.3         8.42         0.65         200         550           10/9/2018         3620         21.9         7.74         0.61         197         602           11/1/2/2018         NA         NA	Φ		10/9/2018	94.2	57.8	7.43	0.29 J	6	332
Bestin         12/9/2015         1140         31.2         8.06         0.44         134         494           4/13/2016         1360         32.7         8.14         0.49         148         512           7/19/2016         1210         33.6         7.77         0.45         165         520           10/20/2016         1460         34.3         7.91         0.53         178         496           1/12/2017         1540         36.1         8.18         0.52         182         488           4/17/2017         1760         36.3         7.83         0.58         181         502           8-118         6/8/2017         1880         33.9         8.07         0.59         191         516           8/1/2017         1800         35.9         7.77         0.6         179         498           10/19/2017         1500         36.1         7.77         0.59         175         510           4/2/2018         2020         31.3         8.42         0.65         200         550           10/9/2018         3620         21.9         7.74         0.61         197         602           11/12/2018         NA	anc		4/22/2019	93.9	83.6	7.62	0.29 J	1.9 J	386
B-118         4/13/2016         1360         32.7         8.14         0.49         148         512           No         7/19/2016         1210         33.6         7.77         0.45         165         520           10/20/2016         1460         34.3         7.91         0.53         178         496           1/12/2017         1540         36.1         8.18         0.52         182         488           4/17/2017         1760         36.3         7.83         0.58         181         502           B-118         6/8/2017         1880         33.9         8.07         0.59         191         516           8/1/2017         1800         35.9         7.77         0.6         179         498           10/19/2017         1500         36.1         7.77         0.6         179         498           10/19/2017         1500         36.1         7.77         0.65         200         550           4/22018         2020         31.3         8.42         0.65         200         550           10/9/2018         3620         21.9         7.74         0.61         197         602           11/12/2018	plia		12/9/2015	1140	31.2	8.06	0.44	134	494
Ö         7/19/2016         1210         33.6         7.77         0.45         165         520           10/20/2016         1460         34.3         7.91         0.53         178         496           1/12/2017         1540         36.1         8.18         0.52         182         488           4/17/2017         1760         36.3         7.83         0.58         181         502           6/8/2017         1880         33.9         8.07         0.59         191         516           8/1/2017         1800         35.9         7.77         0.6         179         498           10/19/2017         1500         36.1         7.77         0.65         200         550           4/2/2018         2020         31.3         8.42         0.65         200         550           10/9/2018         3620         21.9         7.74         0.61         197         602           11/12/2018         NA         NA         8.05         NA         NA         594           4/22/2019         6,830         28.4         7.91         0.64         303         742	ш		4/13/2016	1360	32.7	8.14	0.49	148	512
B-11B         10/20/2016         1460         34.3         7.91         0.53         178         496           1/12/2017         1540         36.1         8.18         0.52         182         488           4/17/2017         1760         36.3         7.83         0.58         181         502           6/8/2017         1880         33.9         8.07         0.59         191         516           8/1/2017         1800         35.9         7.77         0.6         179         498           10/19/2017         1500         36.1         7.77         0.59         175         510           4/2/2018         2020         31.3         8.42         0.65         200         550           10/9/2018         3620         21.9         7.74         0.61         197         602           11/12/2018         NA         NA         8.05         NA         NA         594           4/22/2019         6,830         28.4         7.91         0.64         303         742	ŏ		7/19/2016	1210	33.6	7.77	0.45	165	520
B-11B         1/12/2017         1540         36.1         8.18         0.52         182         488           4/17/2017         1760         36.3         7.83         0.58         181         502           6/8/2017         1880         33.9         8.07         0.59         191         516           8/1/2017         1800         35.9         7.77         0.6         179         498           10/19/2017         1500         36.1         7.77         0.59         175         510           4/2/2018         2020         31.3         8.42         0.65         200         550           10/9/2018         3620         21.9         7.74         0.61         197         602           11/12/2018         NA         NA         8.05         NA         NA         594           4/22/2019         6,830         28.4         7.91         0.64         303         742			10/20/2016	1460	34.3	7.91	0.53	178	496
4/17/2017         1760         36.3         7.83         0.58         181         502           6/8/2017         1880         33.9         8.07         0.59         191         516           8/1/2017         1800         35.9         7.77         0.6         179         498           10/19/2017         1500         36.1         7.77         0.59         175         510           4/2/2018         2020         31.3         8.42         0.65         200         550           10/9/2018         3620         21.9         7.74         0.61         197         602           11/12/2018         NA         NA         8.05         NA         NA         594           4/22/2019         6,830         28.4         7.91         0.64         303         742			1/12/2017	1540	36.1	8.18	0.52	182	488
B-11B         6/8/2017         1880         33.9         8.07         0.59         191         516           8/1/2017         1800         35.9         7.77         0.6         179         498           10/19/2017         1500         36.1         7.77         0.59         175         510           4/2/2018         2020         31.3         8.42         0.65         200         550           10/9/2018         3620         21.9         7.74         0.61         197         602           11/12/2018         NA         NA         8.05         NA         NA         594           4/22/2019         6,830         28.4         7.91         0.64         303         742			4/17/2017	1760	36.3	7.83	0.58	181	502
8/1/2017         1800         35.9         7.77         0.6         179         498           10/19/2017         1500         36.1         7.77         0.59         175         510           4/2/2018         2020         31.3         8.42         0.65         200         550           10/9/2018         3620         21.9         7.74         0.61         197         602           11/12/2018         NA         NA         8.05         NA         NA         594           4/22/2019         6,830         28.4         7.91         0.64         303         742		B-11B	6/8/2017	1880	33.9	8.07	0.59	191	516
10/19/2017         1500         36.1         7.77         0.59         175         510           4/2/2018         2020         31.3         8.42         0.65         200         550           10/9/2018         3620         21.9         7.74         0.61         197         602           11/12/2018         NA         NA         8.05         NA         NA         594           4/22/2019         6,830         28.4         7.91         0.64         303         742			8/1/2017	1800	35.9	7.77	0.6	179	498
4/2/2018         2020         31.3         8.42         0.65         200         550           10/9/2018         3620         21.9         7.74         0.61         197         602           11/12/2018         NA         NA         8.05         NA         NA         594           4/22/2019         6,830         28.4         7.91         0.64         303         742			10/19/2017	1500	36.1	7.77	0.59	175	510
10/9/2018362021.97.740.6119760211/12/2018NANA8.05NANA5944/22/20196,83028.47.910.64303742			4/2/2018	2020	31.3	8.42	0.65	200	550
11/12/2018         NA         NA         8.05         NA         NA         594           4/22/2019         6,830         28.4         7.91         0.64         303         742			10/9/2018	3620	21.9	7.74	0.61	197	602
4/22/2019 6,830 28.4 7.91 0.64 303 742			11/12/2018	NA	NA	8.05	NA	NA	594
			4/22/2019	6,830	28.4	7.91	0.64	303	742

## Table 2. Analytical Results - Appendix III Constituents with SSIsNelson Dewey Generating Station - Cassville, Wisconsin / SCS Engineers Project #25219071.00

Well Group	Well	Collection Date	Boron (µg/L)	Chloride (mg/L)	Field pH (St. Units)	Fluoride (mg/L)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)
		12/9/2015	4170	39.2	7.07	<1 U	75.4	616
		4/13/2016	3410	7.0	6.78	<0.2 U	18.4	682
		7/19/2016	3530	38.9	6.69	0.22 J	115	698
		10/20/2016	4120	39.1	6.77	<0.5 U	118	660
		1/12/2017	3530	42.3	6.98	<0.5 U	108	616
		4/17/2017	3520	40.2	7.11	<0.5 U	108	620
	B-11R	6/7/2017	3420	42.0	6.8	<0.5 U	98.2	630
		8/1/2017	2040	24.7	6.7	0.25 J	126	738
		10/19/2017	3120	38.8	7.22	<0.5 U, D3	97.7	586
		4/2/2018	3180	36.8	7.14	<0.5 U, D3, M0	88.1	638
B-3 Compliance		10/9/2018	576	5.9	6.55	0.15 J	15.1	266
		4/22/2019	1,360	12.6	6.82	0.20 J	34.6	406
		12/9/2015	59	35.3	7.65	<0.2 U	26.2	274
		4/13/2016	79.2	35.8	7.63	0.22 J	22.6	302
псе		7/19/2016	67.2	36.4	7.25	<0.2 U	24.2	280
		10/20/2016	63.7	39.0	7.54	0.18 J	27.2	292
		1/12/2017	76.4	39.9	7.82	0.22 J	29.8	284
		4/17/2017	69.9	40.3	7.83	0.19 J	31	318
ollia	B-31A	6/8/2017	58.5	40.9	7.74	0.18 J	31.2	296
Ĕ		8/1/2017	56.3	40.8	7.56	0.2 J	26.6	284
ů		10/19/2017	63.9	40.8	7.92	0.16 J	26.1	290
-		4/2/2018	74.8	42.7	8.0	0.13 J	27.4	282
		10/9/2018	71.8	40.2	7.48	0.17 J	24.8	278
		4/22/2019	86.2	40.8	7.61	0.22 J	21.6	284
		12/9/2015	851	29.9	6.79	<0.2 U	28.8	374
		4/13/2016	838	17.6	6.76	<0.2 U	34.1	404
		7/19/2016	641	30.3	6.44	<0.2 U	38.5	406
		10/20/2016	1020	16.4	6.53	0.17 J	49.7	452
		1/12/2017	749	26.0	6.8	0.26 J	34.9	380
		4/17/2017	929	20.4	6.8	0.12 J	43	416
	B-31R	6/8/2017	895	20.7	6.67	0.13 J	41.1	426
	5 6 111	8/1/2017	1550	3.6	6.56	0.16 J	55.6	432
		10/19/2017	645	29	7.19	0.14 J	19.2	358
		4/2/2018	540	32.6	6.76	<0.1U	22	374
		10/9/2018	1430	19.7	6.41	<0.1 U	186.0	668
		11/12/2018	NA	NA	6.59	NA	162.0	596
		4/22/2019	906	17.8	6.62	0.16 J	121.0	516

## Table 2. Analytical Results - Appendix III Constituents with SSIsNelson Dewey Generating Station - Cassville, Wisconsin / SCS Engineers Project #25219071.00

## Table 2. Analytical Results - Appendix III Constituents with SSIsNelson Dewey Generating Station - Cassville, Wisconsin / SCS Engineers Project #25219071.00

Well Group	Well	Collection Date	Boron (µg/L)	Chloride (mg/L)	Field pH (St. Units)	Fluoride (mg/L)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)
		12/9/2015	110	45.2	6.74	<1 U	17 J	198
		4/13/2016	115	4.6	6.8	<0.2 U	2.5 J	218
		7/18/2016	164	7.1	6.29	<0.2 U	2.4 J	220
		10/19/2016	154	22.0	6.55	<0.5 U	<5 U	288
JCe		1/12/2017	159	19.7	7.43	<0.5 U	<5 U	240
an		4/17/2017	129	13.1	6.6	<0.5 U	<5 U	278
ldr	B-7R	6/7/2017	110	12.8	6.65	<0.5 U	<5 U	240
ло		8/1/2017	129	8.1	6.28	<0.1 U	3.7	220
0		10/19/2017	159	12	6.88	<0.5 U, D3	<5 U, D3	242
		4/2/2018	121	10.1	6.57	<0.5 U, D3	<5 U, D3	220
		10/9/2018	73	1.9 J	6.23	<0.1 U	3.2	186
		4/22/2019	93.5	10.9	6.63	<0.5 U, D3	<0.5 U, D3	254

Abbreviations:

 $\mu$ g/L = micrograms per liter or parts per billion (ppb)

mg/L = milligrams per liter or parts per million (ppm)

Flags:

U = Not detected.

J = Estimated concentration at or above the LOD and below the LOQ.

D3 = Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

M0 = Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

Created by:	NDK	Date:	3/8/2018
Last revision by:	NDK	Date:	8/19/2019
Checked by:	AJR	Date:	8/20/2019

I:\25219071.00\Deliverables\2019 April ASD NED\Tables\[Tables-NED-1,2, and 3.xlsx]2. Analytical Results

						Ground Wa	ater Elevatior	n in feet abo،	ie mean se	a level (an	nsl)						
Well Number	B-7R	B-8R	B-11R	B-11A	B-11B	B-21R	B-26	B-26A	B-28	B-30R	B-30AR	B-31R	B-31A	B-35	B-35A	B-37	B-37A
Top of Casing Elevation (feet amsl)	623.35	627.51	622.62	622.12	621.89	621.03	626.40	626.40	616.81	621.81	622.4	622.42	622.69	620.78	621.2	614.85	614.85
Screen Length (ft)	10	10	10	5	5	10	10	5	10	10	5	10	5	10	5	10	5
Total Depth (ft from top of casing)	23.05	27.25	24.15	52.00	113.90	20.50	31.67	45.78	16.70	22.20	46.90	22.82	35.52	16.60	47.00	19.95	48.20
Top of Well Screen Elevation (ft)	610.30	610.26	608.47	575.12	512.99	610.53	604.73	585.62	610.11	609.61	580.50	609.60	592.17	614.18	579.20	604.90	571.65
Measurement Date																	
December 8, 2015	606.69	NM	606.71	606.30	606.26	NM	606.80	NM	NM	NM	NM	607.40	606.39	NM	NM	NM	NM
April 12, 2016	609.32	609.36	609.32	608.71	608.68	NM	609.81	609.72	NM	NM	NM	609.34	609.01	609.73	609.65	608.79	608.79
July 18-19, 2016	606.54	NM	606.14	606.76	606.74	NM	606.09	NM	NM	NM	NM	606.55	606.73	NM	NM	NM	NM
October 19-20, 2016	608.59	608.46	608.35	608.21	608.19	608.37	608.84	608.76	608.63	608.45	608.46	608.51	608.20	608.78	608.74	608.20	608.18
January 11-12, 2017	608.02	NM	607.96	607.83	607.78	NM	608.56	NM	NM	NM	NM	607.90	607.84	NM	NM	NM	NM
April 17, 2017	609.08	608.82	608.34	609.05	608.99	NM	608.59	608.54	609.94	608.57	608.64	607.20	608.98	609.00	609.02	609.02	609.02
June 8, 2017	610.74	NM	610.42	609.81	610.08	NM	611.25	NM	NM	NM	NM	609.63	610.50	NM	NM	NM	NM
August 1-2, 2017	607.02	NM	606.73	605.57	605.50	NM	607.39	NM	NM	NM	NM	606.84	605.69	NM	NM	NM	NM
October 9-10, 2017	606.93	606.51	606.25	607.01	606.94	NM	606.22	606.13	606.33	606.44	606.45	606.68	606.93	606.65	606.71	NM	NM
October 20, 2017	609.60	NM	609.42	609.58	609.65	NM	608.84	NM	NM	NM	NM	609.47	609.43	NM	NM	609.40	609.40
April 2-3, 2018	604.82	606.61	606.27	606.63	606.55	606.52	606.49	606.37	NM	NM	NM	604.44	606.46	606.68	606.70	606.77	606.83
October 8-10, 2018	610.76	610.68	610.67	610.28	610.24	NM	610.34	610.28	610.83	610.09	610.05	610.39	610.27	610.72	610.54	NM	NM
November 12, 2018	NM	NM	NM	NM	609.14	NM	NM	NM	NM	NM	NM	609.11	NM	NM	NM	NM	NM
April 22-23, 2019	615.28	615.66	615.28	615.29	615.28	614.98	615.49	615.31	615.40	615.36	615.35	615.01	615.33	615.87	615.98		
Bottom of Well Elevation (ft)	600.30	600.26	598.47	570.12	507.99	600.53	594.73	580.62	600.11	599.61	575.50	599.60	587.17	604.18	574.20	594.90	566.65
Notes:		Created by:	NDK	Date:	3/9/2018												
NM = not measured	L	ast revision by:	NDK	Date:	8/19/2019												
		Checked by:	AJR	Date:	8/20/2019												

Table 3. Groundwater Elevations - State and CCR Monitoring WellsNelson Dewey Generating Station - Cassville, Wisconsin / SCS Engineers Project #25219071.00

I:\25219071.00\Deliverables\2019 April ASD NED\Tables\[Tables-NED-1,2, and 3.xlsx]3.GW Elevation

#### Figures

- 1 Site Location Map
- 2 Aerial View
- 3 Monitoring Well Location Map
- 4 Water Table Flow Map April 2019



:\25216071.00\Drawings\Site Location.dwg, 1/23/2018 12:15:55 PM



25216071.00\Drawings\Nelson Dewey Alternative Source Demonstration Report\Site Aerial.dwg, 4/16/2018 3:58:28 PM


----- SECTION LINE

- B-35

- Ð

- LEGEND PROPERTY LINE
- PLATTED LINE ----- RIGHT-OF-WAY LINE ----- EASEMENT LINE EXISTING PAVED ROAD EXISTING UNPAVED ROAD +++++++++++++++++++++++ RAILROAD TRACKS ----- EDGE OF WATER ------ EDGE OF DELINEATED WETLAND ------ EXISTING GRADE (1' CONTOUR) ------ DESIGN GRADE (1' CONTOUR) TREELINE/TREE

B-37A

● B-37

- ____ DESIGN MANAGEMENT ZONE ● B-38 ABANDONED MONITORING WELL MONITORING WELL B-35A PIEZOMETER
- SG-6 STAFF GAUGE
- □ BL-2 BASIN LYSIMETER (ABANDONED AUGUST 11, 2014)
- PW WATER SUPPLY WELL
- $\oplus$  BND-68 SOIL BORING CCR MONITORING WELL

#### NOTES

STONEFIELD VILLAGE WELL

- 1. SITE FEATURES AND CONTOURS BASED ON DRAWINGS PREPARED BY JSD PROFESSIONAL SERVICES, INC. (JSD). CONTOUR DATA UPDATED BY JSD ON MARCH 7 AND 8, 2016. CONTOUR DATA UPDATED BY JSD ON MARCH 7 AND 8, 2016. SUPPLEMENTAL SITE FEATURES BASED ON JANUARY 23, 2017 SCS ENGINEERS GROUND SURVEY. CONTOURS IN FORMER SLAG POND AREA AND FORMER COAL YARD REPRESENT DESIGN GRADES. THESE AREAS UNDERWENT CLOSURE IN 2017, AND FINAL CLOSURE ACTIVITIES ARE ONGOING IN 2018. FINAL AS-BUILT TOPOGRAPHY WILL BE DOCUMENTED IN 2018.
- 2. BEARINGS FOR THIS SURVEY AND MAP ARE REFERENCED TO WISCONSIN STATE PLANE SOUTH ZONE, WISCONSIN COUNTY COORDINATE SYSTEM (WCCS), GRANT COUNTY.
- VERTICAL DATUM IS REFERENCED TO USGS MEAN SEA LEVEL (MSL). TOPOGRAPHIC CONTOUR INTERVAL IS ONE FOOT.
- 4. THE LOCATION OF THE DESIGN MANAGEMENT ZONE DEMARCATION LINE IS APPROXIMATE. THE SOURCE OF THIS LINE IS THE 2012 BIENNIAL REPORT.



	RE	
	FIGU	3
	MONITORING WELL LOCATION MAP	
	WISCONSIN POWER AND LIGHT	CASSVILLE, WISCONSIN
	MISCONSIN POWER AND LIGHT CO. Z NELSON DEWEY GENERATING STATION 11999 COUNTY HIGHWAY VV	CASSVILLE, WI 53806
VOGT WELL	S C S E N G I N E E R S	2030 UAIR UNIVE MARIJOUN, WI 30710-0731 PHONE: (608) 224-2830
	KP/BJM NK	SCC 4/16/18
	DRAWN BY: CHECKED BY:	APPROVED BY:
	25216071.17 01/13/14	03/14/18
	PROJECT NO. DRAWN:	REVISED:

		B-35 615,87 B-35A (615,98)	
	675 SO B-37A NM B-37 NM		
	LEGEND PROPERTY LINE PLATTED LINE RIGHT-OF-WAY LINE SECTION LINE EASEMENT LINE EXISTING PAVED ROAD EXISTING UNPAVED ROAD RAILROAD TRACKS EDGE OF WATER EDGE OF WATER		
<ul> <li>630</li> <li>620</li> <li>-x - x - x - x - x - x - x - x - x - x</li></ul>	EUGE OF DELINEATED WEILAND EXISTING GRADE (5' CONTOUR) EXISTING GRADE (1' CONTOUR) DESIGN GRADE (1' CONTOUR) DESIGN GRADE (1' CONTOUR) FENCE LINE TREELINE/TREE DESIGN MANAGEMENT ZONE ABANDONED MONITORING WELL MONITORING WELL PIEZOMETER ABANDONED STAFF GAUGE BASIN LYSIMETER (ABANDONED AUGUST 11, 2014) WATER SUPPLY WELL ABANDONED WATER SUPPLY WELL SOIL BORING CCR MONITORING WELL WATER TABLE ELEVATION MEASURED APRIL 2019 (NOT USED FOR CONTOURING) NOT MEASURED WATER TABLE CONTOUR (0.25' INTERVAL) APPROXIMATE GROUNDWATER FLOW DIRECTION	<ol> <li>NOTES</li> <li>SITE FEATURES AND PREPARED BY JSD I CONTOUR DATA UPE SUPPLEMENTAL SITE SUPPLEMENTAL SITE</li></ol>	CONTOURS BASED ON DRAWING PROFESSIONAL SERVICES, INC. (J DATED BY JSD ON MARCH 7 AND FEATURES BASED ON JANUARY DUND SURVEY. CONTOURS IN FOF DRMER COAL YARD REPRESENT D REAS UNDERWENT CLOSURE IN 20 IVITIES ARE ONGOING IN 2018. F PHY WILL BE DOCUMENTED IN 20 SURVEY AND MAP ARE REFEREN LANE SOUTH ZONE, WISCONSIN O M (WCCS), GRANT COUNTY. REFERENCED TO USGS MEAN SE C CONTOUR INTERVAL IS ONE FO HE DESIGN MANAGEMENT ZONE IS APPROXIMATE. THE SOURCE O IENNIAL REPORT.

STONEFIELD VILLAGE WELL



	<b>—</b> —	7
	FIGURE	
	WATER TABLE FLOW MAP APRIL 2019	
	WISCONSIN POWER AND LIGHT NELSON DEWEY GENERATING STATION CASSVILLE, WISCONSIN	
	H WISCONSIN POWER AND LIGHT CO. NELSON DEWEY GENERATING STATION 11999 COUNTY HIGHWAY VV CASSVILLE. WI 53806	
615.25	SCSENGINEERS 2830 DAIRY DRIVE MADISON, WI 53718-6751 DUTANE: (EDB) 274-7870	PHUNE: (6U8) 224-2830
	KP/BSS NK 10/10/10	
	DRAWN BY: CHECKED BY: ADDDONED RY:	APPRUVEU DI:
	25216071.18 08/21/19 ^8 /77 /19	N8/21/12
	PROJECT NO. DRAWN: DFVIRED.	KE VISEU:

Appendix A

CCR Well Trend Plots



WPL - Nelson Dewey





4/23/2019

11/11/2017

5/6/2018

10/29/2018



WPL - Nelson Dewey

Appendix B

Grant County Fluoride Concentrations

Fluoride Data in WDNR's Groundwater Retrieval Network (GRN) Database for Water Supply Wells Grant County, Wisconsin Summary of Fluoride Detections

Row Labels	Count of Result amount
FLUORIDE TOTAL	426
DETECT BETWEEN LOD & LOQ	98
NON-DETECT	46
NORMAL QUANTIFIED RESULT	282
(blank)	
(blank)	
Grand Total	426

Percent With Fluoride Detected 89	)%

Data downloaded by SCS on 9/11/19

Appendix C

1994 RMT Environmental Contamination Assessment Information



11111111

= h- 33/2 2000 wiknow... = P./WSPC/2767035666 2000 = Fr1 0ct 2108:28600 2000

ž

Desi Plot

**FIGURE 4** 

TABLE 5											
SUMMARY OF LEACHING TEST RESULTS											
	Slag										
Year	1983	1990 to 1992	1987 to 1992								
Coal Type	Eastern (and Western)	Western (and Eastern)	Western (and Eastern) ¹								
Water:Solid Ratio	2:1	4:1	4:1								
Extraction Time	24 hours	48 hours	48 hours								
Number of Samples	1	3	6								
Arsenic (mg/L)	< 0.001	0.05 to 2.02	< 0.002 to 0.081								
Selenium (mg/L)	NA	0.42 to 160	< 0.002 to 0.045								
Boron (mg/L)	420	4.63 to 37.34	< 0.010 to 1.05								
Iron (mg/L)	NA	NA	< 0.02 to 0.98								
Sulfate (mg/L)	13,070	2,000 to 16,700	2.0 to < 5.0								
pH (SU)	6.6	10.3 to 12.5	5.6 to 9.9								
NOTES:		``````````````````````````````````````									

1983 fly ash leaching data from RMT (1984); remaining leaching data provided by WP&L. NA = Not Analyzed.

1.

PROJECT NUMBER: 1831.28 BEGINNING DATE: 01-JUN-93 ENDING DATE: 07-SEP-93

#### TABLE 6

#### SLAG AND ASH BASIN CHEMISTRY

	F O	LY ASH BASIN 7-SEP-93	I SL 07	AG BASIN -SEP-93	
PARAMETER	UNITS 3	302-011	33	02-010	
COLOR, FIELD		CLEAR	···· ··· ··· ···	CLEAR	
CONDUCTANCE, SPECIFIC	UMHOS/CM	5190		400	
ODOR, FIELD		NONE		NONE	
PH, FIELD	SU	8.1		7.4	
TEMPERATURE	DEG C	17		18	
TURBIDITY, FIELD		SLIGHT		SLIGHT	
ALKALINITY AS CACO3	MG/L	230		160	
HARDNESS AS CACO3	MG/L	930		200	
SOLIDS, TOTAL DISSOLVED	MG/L	410		300	
SULFATE	MG/L	3300		50	
ARSENIC, TOTAL	UG/L	60		8.0	
BARIUM, TOTAL	UG/L	270		150	
BORON, TOTAL	UG/L	2300		210	
CADMIUM, TOTAL	UG/L	5.4	<	0.30	
CHROMIUM, TOTAL	UG/L	11	<	10	
IRON, TOTAL	UG/L	1600		2000	
LEAD, TOTAL	UG/L <	3.0	<	3.0	
MERCURY, TOTAL	UG/L <	0.20	<	0.20	
SELENIUM, TOTAL	UG/L	36	I	2.1	L
SILVER, TOTAL	UG/L <	1.0	<	1.0	

PROJECT NUMBER: 1831.28 REGINNING DATE: 01-JUN-93					GR	TAE OUNDWATE	BLE 8 R CHEMIS	TRY								
FNDING DATE: 29-OCT-93					u.											
		B-04		B-0	)4	B-(	7 ND		B-(	)7 ND		в-	08		B-(	)8R
		01-JUN-9	3	07.	SEP-93	01-	JUN-93		07-	SEP-93		01	- JUN - 93		07-	-SEP-93
PARAMETER	UNITS	1670-015		329	73-010	167	0-020		330	02-004		16	70-001		329	93-009
COLOR, FIELD	_ <del></del>	CLEA	R		CLEAR		CLEAR			CLEAR			CLEAR			CLEAR
CONDUCTANCE, SPECIFIC	UMHOS/C	M 1160			1240		460			550			670			1160
DEPTH TO WATER	FEET	9.90			12.75		12.83			16.12			5.68			20.13
ODOR, FIELD		NONE			NONE		NONE			NONE			NONE			NONE
PH, FIELD	SU	7.3			7.5		7.0			6.9			7.1			6.8
TEMPERATURE	DEG C	15			10		14			12			15			7
TURBIDITY, FIELD		NONE			SLIGHT		NONE			SLIGHT			NONE			MODERATE
WATER ELEVATION	FEET	610.	68		607.83		610.97			607.68			610.51			
ALKALINITY AS CACO3	MG/L	72			<b>92</b> ,		160			190			220			440
CHLORIDE	MG/L	18			23		17			15			9.4			2.8
COD	MG/L															
FLUORIDE	MG/L	Q.58			5.5		0.26			0.32		<	0.10			0.12
HARDNESS AS CACO3	MG/L	220			120		210			250			370			620
NITROGEN, NITRATE + NITRITE	MG/L	0.15			0.33	<	0.050		<	0.050		<	0.050			4.2
SOLIDS, TOTAL DISSOLVED	MG/L	900			940		300			360			460			770
SULFATE	MG/L	500			560		74			100			180			180
ARSENIC, DISSOLVED	UG/L	< 3.0		<	3.0	<	3.0		<	3.0		<	3.0		<	3.0
BARIUM, DISSOLVED	UG/L	68		<	50		61			73			63			50
BORON, DISSOLVED	UG/L	1900			4200		230		<	200			2200			9400
CADMIUM, DISSOLVED	UG/L	< 0.30		<	0.30	<	0.30		<	0.30		<	0.30			0.38
CHROMIUM, DISSOLVED	UG/L	< 10		<	10	<	10		<	10		<	10		<	10
COPPER, DISSOLVED	UG/L	< 20		<	20	<	20		<	20		<	20		<	20
IRON, DISSOLVED	UG/L	720			890		2800			4100		<	100		<	100
LEAD, DISSOLVED	UG/L	< 3.0		<	3.0	<	3.0		<	3.0		<	3.0		<	3.0
MANGANESE, DISSOLVED	UG/L	1200			720		970			1500			17			3400
MERCURY, DISSOLVED	UG/L	< 0.20		<	0.20	<	0.20		<	0.20		<	0.20		<	0.20
SELENIUM, DISSOLVED	UG/L	6.9			3.2	<	1.0	L	<	1.0	L	<	1.0	L		34
SILVER, DISSOLVED	UG/L	< 1.0		<	1.0	<	1.0		<	1.0		<	1.0		<	1.0
ZINC, DISSOLVED	UG/L	1000			100		22		<	20			220		<	20

i viene kanten in eine kanten Eine kanten in eine kanten Eine kanten in eine kant

PROJECT NUMBER: 1831.28 BEGINNING DATE: 01-JUN-93					GROUND	TABLE 8 WATER CHEMISTRY										
ENDING DATE: 29-OCT-93	UNITS	B-11 07-SEP-93 X0001	B-1 29- 348	1 •0CT-93 85-001		B-20 07-SEP-93 X0002	в-2 01- 167	26 - JUN-93 70-022		B-2 07- 33(	26 - SEP - 93 02 - 005		B-7 01- 167	26A - JUN-93 70-023		
COLOR, FIELD								CLEAR			CLEAR			CLEAR	ı	ļ
CONDUCTANCE, SPECIFIC	UMHOS/C	M 1500				310		610			670			660		
DEPTH TO WATER	FEET	15.91				10.81		16.22			18.85			16.20		
ODOR, FIELD								NONE			NONE			NONE		
PH, FIELD	SU							7.1			7.2			7.0		
TEMPERATURE	DEG C	13		13		14		14			11			15		
TURBIDITY, FIELD								NONE			SLIGHT			NONE		
WATER ELEVATION	FEET							610.18			607.55			610.19		
ALKALINITY AS CACO3	MG/L			470				320			300			340		
CHLORIDE	MG/L							21			43			33		
COD	MG/L															
FLUORIDE	MG/L						<	0.10			0.15		<	0.10		
HARDNESS AS CACO3	MG/L			810				390			410			400		
NITROGEN, NITRATE + NITRITE	MG/L							2.6			4.9			2.0		
SOLIDS, TOTAL DISSOLVED	MG/L			520				440			450			450		
SULFATE	MG/L			360				34			34			33		
ARSENIC, DISSOLVED	UG/L			8.4			<	3.0		<	3.0		<	3.0		
BARIUM, DISSOLVED	UG/L			100				62			68			96		
BORON, DISSOLVED	UG/L			5100			<	200		<	200		<	200		
CADMIUM, DISSOLVED	UG/L		<	0.30			<	0.30		<	0.30		<	0.30		
CHROMIUM, DISSOLVED	UG/L		<	10			<	10		<	10		<	10		
COPPER, DISSOLVED	UG/L						<	20		<	20		<	20		
IRON, DISSOLVED	UG/L			55000			<	100		<	100		<	100		
LEAD, DISSOLVED	UG/L		<	3.0			<	3.0		<	3.0		<	3.0		
MANGANESE, DISSOLVED	UG/L						<	5.0		<	5.0		<	5.0		
MERCURY, DISSOLVED	UG/L		<	0.20			<	0.20		<	0.20		<	0.20		
SELENIUM, DISSOLVED	UG/L		<	1.0	LNP		<	1.0	L	<	1.0	L	<	1.0	L	
SILVER, DISSOLVED	UG/L		<	10			<	1.0		<	1.0		<	1.0		
ZINC, DISSOLVED	UG/L						<	20		<	20		<	20		

PROJECT NUMBER: 1831.28						TAB	LE 8												
BEGINNING DATE: 01-JUN-93					GROUND	WATE	R CHEMISTR	Y											
ENDING DATE: 29-OCT-93		B-26A 07-SEP-	93	B-27R 07-SEP	9-93	B-2 01-	8 JUN-93		B-2 07-	8 SEP-93		B-29 07-SEP-93	B-3 01-	50ar - Jun-93					
PARAMETER	UNITS	3302-00	0	X0003		10/	0-014		220	2-003		XUUU4	10/	0-015					
COLOR, FIELD		CLE	AR		·····		CLEAR			CLEAR				CLEAR	,`,`,`,`,`				
CONDUCTANCE, SPECIFIC	UMHOS/C	M 440	l	37	0		190			230		360		220					
DEPTH TO WATER	FEET	18.	84	14	.67		6.40			9.08		9.57		12.33					
ODOR, FIELD		NON	E				NONE			NONE				NONE					
PH, FIELD	SU	7.2	!				6.1			6.0				7.2					
TEMPERATURE	DEG C	11		14	•		17			15		15		17					
TURBIDITY, FIELD		NON	E				SLIGHT			MODERATE				NONE					
WATER ELEVATION	FEET	607	.55				610.46			607.74		607.26		610.11					
ALKALINITY AS CACO3	MG/L	340	)				26			54				200					
CHLORIDE	MG/L	25					4.6			11				13					
COD	MG/L													7.3					
FLUORIDE	MG/L	0.1	5			<	0.10		<	0.10				0.10					
HARDNESS AS CACO3	MG/L	410	)				82			110				220					
NITROGEN, NITRATE + NITRITE	MG/L	1.8	5				2.7			0.60			<	0.050					
SOLIDS, TOTAL DISSOLVED	MG/L	440	)				140			160				280					
SULFATE	MG/L	38					45			42				27					
ARSENIC, DISSOLVED	UG/L	< 3.0	)			<	3.0		<	3.0			<	3.0					
BARIUM, DISSOLVED	UG/L	86				<	50			52			<	50					
BORON, DISSOLVED	UG/L	< 200	)			<	200		<	200			<	200					
CADMIUM, DISSOLVED	UG/L	< 0.3	0			<	0.30		<	0.30			<	0.30					
CHROMIUM, DISSOLVED	UG/L	< 10				<	10		<	10			<	10					
COPPER, DISSOLVED	UG/L	< 20				<	20		<	20			<	20					
IRON, DISSOLVED	UG/L	< 100	)				210		<	100			<	100					
LEAD, DISSOLVED	UG/L	< 3.0	)			<	3.0		<	3.0			<	3.0					
MANGANESE, DISSOLVED	UG/L	< 5.0	)				8.6		<	5.0			<	5.0					
MERCURY, DISSOLVED	UG/L	< 0.2	20			<	0.20		<	0.20			<	0.20					
SELENIUM, DISSOLVED	UG/L	< 1.0	) LI	i		<	1.0	L	<	1.0	L		<	1.0	L				
SILVER, DISSOLVED	UG/L	< 1.0	)			<	1.0		<	1.0			<	1.0					
ZINC, DISSOLVED	UG/L	< 20				<	20		<	20			<	20					
PROJECT NUMBER: 1831.28 BEGINNING DATE: 01-JUN-93							GROUN	TAE DWATE	ILE 8 R CHEMISTRY										
------------------------------------------------------	---------	-------------------	--------------------------	---	-------------------	-------------------------	-------	-------------------	-------------------------	-------------------	-----------------------	---	-------------------	-------------------------	---	-------------------	------------------------	---	-----
PARAMETER	UNITS	8-3 07- 330	50AR SEP-93 12-002		в-3 01- 167	ior Jun-93 70-012		в-3 07- 330	60R SEP-93 02-001	в-3 01- 167	1A JUN-93 0-019		в-3 07- 329	51A SEP-93 93-011		в-3 01- 167	1R JUN-93 '0-018		
COLOR, FIELD	<b></b>	<u></u>	CLEAR			CLEAR			CLEAR		CLEAR			CLEAR			CLEAR		- ,
CONDUCTANCE, SPECIFIC	UMHOS/C	M	410			420			360		700			800			640		
DEPTH TO WATER	FEET		15.37			12.25			15.17		12.21			15.93			11.56		
ODOR, FIELD			NONE			NONE			NONE		NONE			NONE			NONE		
PH, FIELD	SU		7.3			7.0			6.8		6.9			7.3			6.8		
TEMPERATURE	DEG C		12			16			14		17			14			17		
TURBIDITY, FIELD			NONE			MODERAT	E		MODERATE		NONE			SLIGHT			SLIGHT		
WATER ELEVATION	FEET		607.07			610.10			607.18		610.46			606.74			610.85		
ALKALINITY AS CACO3	MG/L		190			160			140		170			160			240		
CHLORIDE	MG/L		14			13			6.6		16			17			11		
COD	MG/L					9.7													
FLUORIDE	MG/L		0.16		<	0.10		<	0.10		0.39			0.43		<	0.10		
HARDNESS AS CACO3	MG/L		230			210			210		120			160			330		
NITROGEN, NITRATE + NITRITE	MG/L	<	0.050			8.5			8.8	<	0.050		<	0.050		<	0.050		
SOLIDS, TOTAL DISSOLVED	MG/L		280			280			230		510			570			510		
SULFATE	MG/L		25			25			26		250			250			150		
ARSENIC, DISSOLVED	UG/L	<	3.0		<	3.0		<	3.0	<	3.0		<	3.0		<	3.0		
BARIUM, DISSOLVED	UG/L	<	50		<	50		<	50		54			66			110		
BORON, DISSOLVED	UG/L	<	200		<	200		<	200		2900			2100			2900		
CADMIUM, DISSOLVED	UG/L	<	0.30		<	0.30		<	0.30	<	0.30		<	0.30			2.7		
CHROMIUM, DISSOLVED	UG/L	<	10		<	10		<	10	<	10		<	10		<	10		
COPPER, DISSOLVED	UG/L	<	20		<	20		<	20	<	20		<	20			110		
IRON, DISSOLVED	UG/L	<	100		<	100		<	100		210			300			450		
LEAD, DISSOLVED	UG/L	<	3.0		<	3.0		<	3.0	<	3.0		<	3.0		<	3.0		
MANGANESE, DISSOLVED	UG/L	<	5.0		<	5.0		<	5.0		4600			6000			440		
MERCURY, DISSOLVED	UG/L	<	0.20		<	0.20		<	0.20	<	0.20		<	0.20		<	0.20		
SELENIUM, DISSOLVED	UG/L	<	1.0	L		1.3	L		3.2	<	1.0	L	<	1.0	L		1.2	L	
SILVER, DISSOLVED	UG/L	<	1.0		<	1.0		<	1.0	<	1.0		<	1.0		<	1.0		
ZINC, DISSOLVED	UG/L	<	20		<	20		<	20	<	20		<	20			27		

anar S second for a second of

PROJECT NUMBER: 1831.28 BEGINNING DATE: 01-JUN-93							GROUN	TAE DWATE	BLE 8 R CHEMIS	TRY									
ENDING DATE: 29-OCT-93 PARAMETER	UNITS	B-3 07- 329	31R - SEP - 93 93 - 012		B-3 01- 167	32 - JUN-93 70-002		8-3 07- 329	52 •SEP-93 93-016		B-3 01- 167	32A - JUN - 93 70 - 003		в-3 07 329	32A - SEP - 93 93 - 017		B-3 01 16	35 - JUN-93 70-004	
COLOR, FIELD			CLEAR			CLEAR		<u> </u>	CLEAR			CLEAR			CLEAR	······································	····	L YLW/B	in i
CONDUCTANCE, SPECIFIC	UMHOS/0	M	480			300			330			610			1320			1070	
DEPTH TO WATER	FEET		14.44			3.37			6.22			3.59			6.46			10.10	
ODOR, FIELD			NONE			NONE			NONE			NONE			NONE			NONE	
PH, FIELD	SU		7.0			6.3			5.6			7.0			6.8			6.3	
TEMPERATURE	DEG C		15			13			14			13			14			12	
TURBIDITY, FIELD			MODERATE			SLIGHT			MODERAT	E		NONE			SLIGHT			SLIGHT	
WATER ELEVATION	FEET		607.97			610.80			607.95			610.81			607.94			610.66	
ALKALINITY AS CACO3	MG/L		190			140			140			330			320			190	
CHLORIDE	MG/L		11			6.7			6.9			7.0			7.6			110	
COD	MG/L																		
FLUORIDE	MG/L		0.18		<	0.10			0.12			0.12			0.19		<	0.10	
HARDNESS AS CACO3	MG/L		240			160			180			350			390			260	
NITROGEN, NITRATE + NITRITE	MG/L	<	0.050			0.68			1.2	•		1.1			1.3			36	
SOLIDS, TOTAL DISSOLVED	MG/L		340			200			240			380			420			800	
SULFATE	MG/L		71			11			16			29			30			35	
ARSENIC, DISSOLVED	UG/L	<	3.0		<	3.0		<	3.0		<	3.0		<	3.0			7.4	
BARIUM, DISSOLVED	UG/L		81			100			120			98			91			100	
BORON, DISSOLVED	UG/L		1100		<	200		<	200		<	200		<	200			210	
CADMIUM, DISSOLVED	UG/L		1.1		<	0.30			0.38		<	0.30			0.35		<	0.30	
CHROMIUM, DISSOLVED	UG/L	<	10		<	10		<	10		<	10		<	10		<	10	
COPPER, DISSOLVED	UG/L	<	20		<	20		<	20		<	20		<	20			21	
IRON, DISSOLVED	UG/L		210		<	100		<	100		<	100		<	100		<	100	
LEAD, DISSOLVED	UG/L	<	3.0		<	3.0		<	3.0		<	3.0		<	3.0		` <	3.0	
MANGANESE, DISSOLVED	UG/L		360		<	5.0			280			6.9			33		<	5.0	
MERCURY, DISSOLVED	UG/L	<	0.20		<	0.20		<	0.20		<	0.20		<	0.20		<	0.20	
SELENIUM, DISSOLVED	UG/L	<	1.0	L	<	1.0	L	<	1.0	L	<	1.0	L	<	1.0	L	<	1.0	L
SILVER, DISSOLVED	UG/L	<	1.0		<	1.0		<	1.0		<	1.0		<	1.0		<	1.0	
ZINC, DISSOLVED	UG/L	<	20		<	20		<	20		<	20		<	20		<	20	

Willing a District and where

AND THE PARTY OF THE PARTY OF

generative sector sector.

· ·

and the second s

eter Alexandra San gig

Sector and a sector secto

PROJECT NUMBER: 1831.28 BEGINNING DATE: 01-JUN-93							GRO	I UNDW	TABL	E 8 CHEMIS	TRY										
ENDING DATE: 29-001-95	UNITS	B-3 07- 329	5 SEP-93 3-002		в-3 01- 167	55A JUN-93 70-005		E ( 3	3-35 07-s 3293	A SEP-93 5-003		B-3 01- 163	36 - Jun - 93 70 - 007		8-3 07- 329	36 -SEP-93 93-004		B-3 01- 167	56A - JUN - 93 70 - 006		
COLOR, FIELD			YELLOW			CLEAR				CLEAR			CLEAR			CLEAR			CLEAR		- ,
CONDUCTANCE, SPECIFIC	UMHOS/CI	M	1050			620				680			430			500			620		
DEPTH TO WATER	FEET		13.13			10.55				13.57			10.86			13.97			11.11		
ODOR, FIELD			NONE			NONE				NONE			NONE			NONE			NONE		
PH, FIELD	SU		6.8			7.0				7.1			6.3			7.0			7.1		
TEMPERATURE	DEG C		14			13				12			12			13			13		
TURBIDITY, FIELD			SLIGHT			NONE				NONE			SLIGHT			MODERAT	Έ		NONE		
WATER ELEVATION	FEET		607.63			610.63				607.61			610.60			607.49			610.35		
ALKALINITY AS CACO3	MG/L		210			330				320			230			210			330		
CHLORIDE	MG/L		80			26				24			4.4			25			12		
COD	MG/L																				
FLUORIDE	MG/L		0.19		<	0.10				0.13		<	0.10			0.14		<	0.10		
HARDNESS AS CACO3	MG/L		290			380				400			240			280			350		
NITROGEN, NITRATE + NITRITE	MG/L		39			1.7				2.0		<	0.050			1.4			0.83		
SOLIDS, TOTAL DISSOLVED	MG/L		770			480				460			280			350			400		
SULFATE	MG/L		43			33				37			15			18			36		
ARSENIC, DISSOLVED	UG/L		3.6		<	3.0		•	¢	3.0		<	3.0		<	3.0		<	3.0		
BARIUM, DISSOLVED	UG/L		120		<	50				54			110			120			68		
BORON, DISSOLVED	UG/L		220		<	200		•	<	200		<	200		<	200		<	200		
CADMIUM, DISSOLVED	UG/L	<	0.30		<	0.30		•	¢	0.30		<	0.30		<	0.30		<	0.30		
CHROMIUM, DISSOLVED	UG/L	<	10		<	10		•	<	10		<	10		<	10		<	10		
COPPER, DISSOLVED	UG/L		24		<	20		•	¢	20		<	20		<	20		<	20		
IRON, DISSOLVED	UG/L	<	100		<	100		•	<b>‹</b>	<b>10</b> 8		<	100		<	100		<	100		
LEAD, DISSOLVED	UG/L	<	3.0		<	3.0		•	<	3.0		<	3.0		<	3.0		<	3.0		
MANGANESE, DISSOLVED	UG/L	<	5.0		<	5.0			<	5.0		<	5.0			55		<	5.0		
MERCURY, DISSOLVED	UG/L	<	0.20		<	0.20			<	0.20		<	0.20		<	0.20		<	0.20		
SELENIUM, DISSOLVED	UG/L	<	1.0	L	<	1.0	L		<	1.0	L		1.0	L		2.6	L	<	1.0	L	
SILVER, DISSOLVED	UG/L	<	1.0		<	1.0			<	1.0		<	1.0		<	1.0		<	1.0		
ZINC, DISSOLVED	UG/L	<	20		<	20			<	20		<	20		<	20		<	20		

Summing any approximation of the second secon

PROJECT NUMBER: 1831.28 BEGINNING DATE: 01-JUN-93 ENDING DATE: 29-001-93							GROUND	TAE	ILE 8 R CHEMIS	TRY							
PARAMETER	UNITS	в-3 07- 329	66A SEP-93 93-005		в-3 07- 330	57 SEP-93 02-007		в-3 07- 330	57A SEP-93 12-008		в-3 01- 167	58 • JUN-93 70-016	в- 07 32	38 - SEP-93 93-006	B- 01 16	38A - JUN-93 70-017	
COLOR, FIELD CONDUCTANCE, SPECIFIC	umhos/c		CLEAR 620			CLEAR 510		·	CLEAR 770			CLEAR 3630		CLEAR 2830		CLEAR 2760	· ,
DEPTH TO WATER	FEET		14.18			8.13			8.14			18.53		20.19		24.87	
ODOR, FIELD			NONE			NONE			NONE			NONE		NONE		NONE	
PH, FIELD	SU		7.1			7.3			7.3			8.3		9.9		7.7	
TEMPERATURE	DEG C		11			13			11			20		20		15	
TURBIDITY, FIELD			NONE			SLIGHT			NONE			NONE		SLIGHT		NONE	
WATER ELEVATION	FEET		607.51			606.69			606.69			617.29		615.63		610.96	
ALKALINITY AS CACO3	MG/L		330			200			190			100		420		80	
CHLORIDE	MG/L		13			6.8			11			26		24		23	
COD	MG/L																
FLUORIDE	MG/L		0.14		<	0.10		<	0.10			1.8		2.6		1.1	
HARDNESS AS CACO3	MG/L		390			290			410			620		21		500	
NITROGEN, NITRATE + NITRITE	MG/L		0.85			1.2		<	0.050			1.7		0.29		1.6	
SOLIDS, TOTAL DISSOLVED	MG/L		420			380			590			3000		2200		2300	
SULFATE	MG/L		36			100			240			2600		1200		2000	
ARSENIC, DISSOLVED	UG/L	<	3.0		<	3.0		<	3.0			180		90		38	
BARIUM, DISSOLVED	UG/L		68		<	50		<	50			110	<	50		58	
BORON, DISSOLVED	UG/L	<	200			3100			7400			2500		2600		2200	
CADMIUM, DISSOLVED	UG/L	<	0.30		<	0.30		<	0.30		<	0.30	<	0.30	<	0.30	
CHROMIUM, DISSOLVED	UG/L	<	10		<	10		<	10			68	<	10		52	
COPPER, DISSOLVED	UG/L	<	20		<	20		<	20		<	20	<	20	<	20	
IRON, DISSOLVED	UG/L	<	100		<	100		<	100		<	100	<	100	<	100	
LEAD, DISSOLVED	UG/L	<	3.0		<	3.0		<	3.0	•	<	3.0	<	3.0	<	3.0	
MANGANESE, DISSOLVED	UG/L	<	5.0		<	5.0			55		<	5.0	<	5.0	<	5.0	
MERCURY, DISSOLVED	UG/L	<	0.20		<	0.20		<	0.20		<	0.20	<	0.20	<	0.20	
SELENIUM, DISSOLVED	UG/L	<	1.0	L	<	1.0	L	<	1.0	L		57		320		22	
SILVER, DISSOLVED	UG/L	<	1.0		<	1.0		<	1.0		<	1.0	<	1.0	<	1.0	
ZINC, DISSOLVED	UG/L	<	20		<	20		< .	20		<	20	<	20	<	20	

e e e e e e e

PROJECT NUMBER:	1831.28			
BEGINNING DATE:	01-JUN-93			
ENDING DATE:	29-0CT-93			
			<b>B-</b> 3	38A
			07	SEP-93
PARAMETER		UNITS	329	3-007
COLOR, FIELD				CLEAR
CONDUCTANCE, SPE	CIFIC	UMHOS/0	CM	3280
DEPTH TO WATER		FEET		27.59
ODOR, FIELD				NONE
PH, FIELD		SU		9.0
TEMPERATURE		DEG C		16
TURBIDITY, FIELD				NONE
WATER ELEVATION		FEET		608.24
ALKALINITY AS CA	CO3	MG/L		90
CHLORIDE		MG/L		21
COD		MG/L		
FLUORIDE		MG/L		3.4
HARDNESS AS CACO	3	MG/L		390
NITROGEN, NITRAT	E + NITRITE	MG/L		0.59
SOLIDS, TOTAL DI	SSOLVED	MG/L		2600
SULFATE		MG/L		1800
ARSENIC, DISSOLV	ED	UG/L		51
BARIUM, DISSOLVE	D	UG/L		54
BORON, DISSOLVED	I	UG/L		3300
CADMIUM, DISSOLV	ED	UG/L	<	0.30
CHROMIUM, DISSOL	VED	UG/L		11
COPPER, DISSOLVE	D	UG/L	<	20
IRON, DISSOLVED		UG/L	<	100
LEAD, DISSOLVED		UG/L	<	3.0
MANGANESE, DISSO	LVED	UG/L	<	5.0
MERCURY, DISSOLV	ED	UG/L	<	0.20
SELENIUM, DISSOL	VED	UG/L		57
SILVER, DISSOLVE	D	UG/L	<	1.0
ZINC, DISSOLVED		UG/L	<	20

### TABLE 8

### GROUNDWATER CHEMISTRY

ŧ

# Appendix D

## 2016 Low-Hazard Waste Exemption Leaching Test Results – Slag and Ash

### Sediment and Soil Analytical Results - Water Leach Test Results WPL Nelson Dewey

Sample	Date	Depth (feet)	Material Type	Lab Notes	Boron (ug/L)	Calcium (ua/L)	Fluoride (mg/L)	Sulfate (mg/L)	Chloride (mg/L)
WPDES POND	24.0	, ,			20:0:: (03/2/	Cultioni (0g/1/	: ::::::::::::::::::::::::::::::::::::		ee. (
SED-1	8/3/2016	0-1.3	Fly Ash		240	6,100	<1.0	4.4	4.3
SED-2	8/3/2016	0-1.0	Fly Ash		200	5,900	<1.0	11.5	4.3
QC-3 (SED-2)	8/3/2016	0-1	Fly Ash		240	5,900 J	<1.0	6.1	3.5 J
SED-3	7/20/2016	0-4.5	Slag		130	2,200	<1.0	5	2.7 J
	7/20/2016	4.5-5.5	SP		<50	<500	<0.20	<2.0	2.5 [」]
SED-4	7/19/2016	0-4.8	ML		510	4,100	<10.0	11.9 J	10.5 [」]
	7/19/2016	4.8-5.5			74 J	NA	NA	NA	NA
GP-19	8/4/2016	8-12	SM		62 J	<500	<1.0	2 J	2.4 J
SLAG POND									
SED-5	7/20/2016	0-1.6	ML-OL		54 J	18,200	<1.0	33.3	3.2 J
SED-6	7/20/2016	0-1.0	ML		L 09	17,500	0.36 J	59.1	3.7 [」]
SED-7	8/4/2016	0-3.0	Fly Ash		L 88	11,300	<1.0	10.5	4
SED-8	8/4/2016	1.0-1.5	Fly Ash		82 J	11,400	<1.0	12.1	3.7 J
COAL YARD	1		1						
TP-CY-1	7/19/2016	0-0.5	Coal		140	<500	<2.0	<20.0	<20.0
	7/19/2016	3.0-3.5	SM		100 J	<500	<1.0	<2.0	2.8 [」]
TP-CY-3	7/20/2016	1.9-2.1	GM		<50	7,600	<0.20	2.8 J	3.9 [」]
	7/20/2016	4.8-5.5	SM		NA	NA	NA	NA	NA
TP-CY-4	7/19/2016	0-2.8	Coal		190	<500	<2.0	<20.0	<20.0
	7/19/2016	2.8-3.2	GP & SM		<50	4,500	<1.0	<10.0	<10.0
	7/19/2016	3.6-4.8	Slag		<50	<500	<2.0	<20.0	<20.0
	7/19/2016	4.8-5.0			NA	NA	NA	NA	NA
TP-CY-6	7/19/2016	0-0.5	Coal		190	<500	<2.0	<20.0	<20.0
	7/19/2016	0.7-1.0	SP		<50	2,600	<0.20	2.3 J	2.5 [」]
TP-CY-10	7/19/2016	0-0.5	Coal		120	<25	<1.0	11.6	2.4 [」]
	7/19/2016	1.0-2.0	SM		<50	2,000	<1.0	2.3 J	<b>2.2</b> [」]
	7/19/2016	6.5-7.0	SP		NA	NA	NA	NA	NA
TP-CY-12	7/20/2016	0-0.3	Coal		160	<500	<2.0	<20.0	<20.0
	7/20/2016	0.3-2.0	SP		<50	2,600	<0.20	2.2 J	2.2 [」]
	7/20/2016	2.0-2.7	SP		<50	700 J	<0.20	27.5	2.3 J
QC-1 (TP-CY-12)	7/20/2016	0.3-2.0	SP		<50	11,000	<0.20	2.5 J	2.6 J
SLAG HANDLING AREA									
GP-5	8/3/2016	12.5-15	Fly Ash		100	3,000	<1.0	3.0 J	<2.0
	8/3/2016	18-24	ML & SM		99 J	2,300	<1.0	<2.0	3.3 J
GP-7	8/3/2016	7.5-18	Slag		<50	720 J	<1.0	<2.0	2.2 J
QC-2 (GP-7)	8/3/2016	7.5-18	Slag		<50	710 J	<1.0	<2.0	2.2 J
GP-14	8/4/2016	12.5-15	Fly Ash		120	25,200	<1.0	13.4	<2.0

#### Sediment and Soil Analytical Results - Water Leach Test Results WPL Nelson Dewey

Sample	Date	Depth (feet)	Material Type	Lab Notes	Boron (ug/L)	Calcium (ug/L)	Fluoride (mg/L)	Sulfate (mg/L)	Chloride (mg/L)
SLAG SAMPLES ¹					· •		· · · · · ·		
Slag 01 ²	6/3/2013		Slag		NA	NA	NA	NA	NA
Slag 01	12/23/2013		Slag		12.5 A B	1,240	NA	0.218	0.277 в
NED Slag Composite 2014	7/1/2014		Slag		11.7 AB*^	879 A	NA	0.457 B	< 0.142
Slag Sample	4/14/2015		Slag		< 1020 A	1,140 A	NA	0.427	0.751
FLY ASH SAMPLES ¹									
NED Flyash Composite ²	2/14/2014		Fly Ash		NA	NA	NA	6,530 B	NA
Week of 062815 ²	7/3/2015		Fly Ash		NA	NA	NA	6,260	NA
Week of 010916	1/4/2016		Fly Ash		NA	NA	NA	NA	NA
NR 140 Preventive Action Limits (PA	ALs)				200	NE	0.8	125	125
NR 140 Enforcement Standards (ES	is)				1,000	NE	4	250	250
40 CFR Part 141.62 Maximum Con	taminant Levels ( <i>I</i>	ACL)			NE	NE	4	NE	NE
NR 538 Table 1A Standards					190	NE	0.8	125	125
NR 538 Table 2A Standards					1,900	NE	8	1,250	1,250

Abbreviations:

ug/L = micrograms per liter

mg/L = milligrams per liter

NE = No Standard Established ML-CL = Silty Clay SM = Silty Sand ML = Silt

Notes:

1. Slag and Fly Ash samples were collected by the plant as part of permit requirements.

2. Sample was analyzed using the SPLP Leach Method rather than the ASTM Water Leach Method for tested parameters except for Sulfate.

NR 140 ESs - Wisconsin Administrative Code (WAC), Chapter NR 140.10 Table 1 - Public Health Groundwater Quality Standards from July 2015 and WAC, Chapter NR 140.12 Table 2 - Public Welfare Groundwater Quality Standards from July 2015.

NR 140 PALs - WAC, Chapter NR 140.10 Table 1 - Public Health Groundwater Quality Standards from July 2015 and WAC, Chapter NR 140.12 Table 2 - Public Welfare Groundwater Quality Standards from July 2015.

Laboratory Notes/Qualifiers:

J = Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

A = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

B = Compound was found in the blank and sample.

F1 = MS and/or MSD Recovery is outside acceptance limits.

H = Sample was prepped or analyzed beyond the specified holding time.

^ = ICV, CCV, ICB, CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.

* = LCS or LCSD is outside acceptance limits.

Created by:	RJG	Date: 3/14/2016
Last revision by:	RJG	Date: 10/24/2016
Checked by:	BSS	Date: 10/24/2016

Original table prepared for Slag Pond Closure Low Hazard Waste Exemption Request (SCS Project #25216054.00).

Reformatted for the Alternative Source Demonstration to include only the parameters with SSIs that were included in the leach testing by SCC, 4/13/18.

I:\25219071.00\Deliverables\2019 April ASD NED\Appendix C - 2017 leachate results slag and ash\[Table 4. Sediment_Soil_Water Leach Results_SSIParameters.xlsx]Leach Test - SSI Parameters