Addendum No. 2 Assessment of Corrective Measures Landfill and Surface Impoundment

Lansing Generating Station Lansing, Iowa

Prepared for:

SCS ENGINEERS

25220082.00 | June 5, 2023

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830

Table of Contents

Sect	ion			Page
Exec	utive	Summa	ry	iii
1.0	Intro	duction	and Purpose	1
	1.1	Assess	sment of Corrective Measures Process	1
	1.2	Site In	formation and Map	2
2.0	Back	ground		3
	2.1	Regior	nal Geologic Information	3
	2.2	Site Ge	eologic and Hydrogeologic Information	3
	2.3	CCR R	ule Monitoring System	4
3.0	Natu	re and I	Extent of Groundwater Impacts	4
	3.1	Potent	ial Sources	4
	3.2	Ground	dwater Assessment	5
		3.2.1	Groundwater Depth and Flow Direction	5
		3.2.2	Groundwater Protection Standard Exceedances Identified	5
		3.2.3	Expanding the Groundwater Monitoring Network	5
		3.2.4	State Monitoring Program Arsenic Results	6
	3.3	Update	ed Nature and Extent of Groundwater Impacts	6
		3.3.1	Additional Data Collection	6
		3.3.2	Updated Groundwater Assessment – New and Updated Results	8
		3.3.3	Updated Site Conceptual Model	9
		3.3.4	Potential Receptors and Pathways	9
4.0	Pote	ntial Co	rrective Measures	
	4.1	Identif	ication of Corrective Measures	13
		4.1.1	Source Control	
		4.1.2	Containment	15
		4.1.3	Restoration	
5.0	Corre	ective M	leasure Alternatives	
	5.1	Alterna	ative 1 – No Additional Action	
	5.2		ative 2 – Close and Cap in Place with MNA	
	5.3		ative 3 – Consolidate and Cap with MNA	
	5.4	Alterna	ative 4 – Excavate CCR and Dispose On Site with MNA	
	5.5	Alterna	ative 5 – Excavate CCR and Dispose Off Site with MNA	
	5.6		ative 6 – Consolidate and Cap with Chemical Amendment	
	5.7	Alterna	ative 7 – Consolidate and Cap with Groundwater Collection	
	5.8	Alterna	ative 8 – Consolidate and Cap with Barrier Wall	
6.0			f Corrective Measure Alternatives	
			ative 1 – No Action	
7.0		-	Assessment	
8.0	Refe	rences.		

Tables

- Table 1.Groundwater Monitoring Well Network
- Table 2.
 CCR Rule Groundwater Samples Summary
- Table 3. Water Level Summary
- Table 4A.Groundwater Analytical Results Summary October 2017 through April 2022
- Table 4B.
 Groundwater Analytical Results Summary October 2022
- Table 5. Field Monitoring Data
- Table 6.Horizontal Gradients and Flow Velocity 2022
- Table 7.Vertical Gradients
- Table 8.
 Historical Groundwater Arsenic Results for State Monitoring Wells

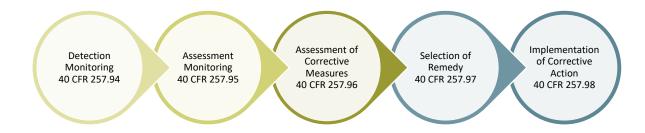
Figures

- Figure 1. Site Location Map
- Figure 2. Site Plan and Monitoring Well Locations
- Figure 3. Water Table Map April 2022
- Figure 4. Potentiometric Surface Map April 2022
- Figure 5. Water Table Map October 2022
- Figure 6. Potentiometric Surface Map October 2022
- Figure 7. Cross Section Location Map
- Figure 8A. Cross Section A-A'
- Figure 8B. Cross Section A-A' Zoomed into MW-302 Area
- Figure 9. Cross Section B-B'

Appendices

- Appendix A Regional Geologic and Hydrogeologic Information
- Appendix B Boring Logs and Well Construction Forms
- Appendix C Arsenic Assessment Update
- Appendix D Analytical Results Total Organic Carbon and Outfall Sample

I:\25220082.00\Deliverables\ACM Add No. 2\230605_LAN_ACM Add 2_Final.docx


EXECUTIVE SUMMARY

Interstate Power and Light Company (IPL), an Alliant Energy company, operates a dry ash landfill and ash pond at the Lansing Generating Station (LAN). The landfill and pond are used to manage coal combustion residuals (CCR) and wastewater from the power plant, which burned coal to generate electricity until December 31, 2022.

IPL samples and tests the groundwater in the area of the landfill and pond to comply with U.S. Environmental Protection Agency (U.S. EPA) standards for the Disposal of CCR from Electric Utilities, or the "CCR Rule" (Rule). Groundwater monitoring is also conducted under an Iowa Department of Natural Resources (IDNR) sanitary disposal project permit for the landfill.

Groundwater samples from one of the wells installed under the Rule to monitor the landfill and pond contain arsenic at levels higher than the Groundwater Protection Standards (GPS) defined in the Rule. Arsenic occurs naturally and can be present in coal and CCR.

IPL prepared an Assessment of Corrective Measures (ACM) Report in September 2019 in response to the groundwater sampling results obtained to comply with the Rule at the LAN facility. The ACM process is one step in a series of steps defined in the Rule and shown below.

To prepare the ACM, IPL worked to understand the following:

- Types of soil and rock deposits in the area of the LAN facility.
- Depth of groundwater.
- Direction that groundwater is moving.
- Potential sources of the arsenic in groundwater.
- The area where arsenic levels are higher than the U.S. EPA standards.
- The people, plants, and animals that may be affected by levels of arsenic in groundwater that are above the GPS.

IPL has identified appropriate options, or Corrective Measures, to bring the levels of arsenic in groundwater below U.S. EPA standards. In addition to stopping landfill disposal of CCR and the discharge of CCR and LAN wastewater to the pond, these corrective measures include:

- No Action
- Cap CCR in Place with Monitored Natural Attenuation (MNA)
- Consolidate CCR and Cap with MNA
- Excavate and Dispose CCR on Site with MNA
- Excavate and Dispose CCR in Off-site Landfill with MNA
- Consolidate and Cap with Chemical Amendment

- Consolidate and Cap with Groundwater Collection •
- Consolidate and Cap with Barrier Wall

Because the time allowed by the Rule to prepare the ACM was limited, IPL has continued work to improve the understanding of the items listed above and issued ACM Addendum No. 1 in November 2020, to update the ACM. The current ACM addendum (Addendum No. 2) has been prepared to further update the ACM for LAN based on the information now available.

Based on continued assessment of the nature and extent of arsenic, current data indicates that the source of the arsenic GPS exceedances is unrelated to the dry ash landfill and ash pond.

Arsenic occurs naturally in air, water, soil, and rock. Arsenic is also commonly present in coal and CCR. The CCR Units do not appear to be the source of the arsenic GPS exceedances. Lines of evidence that indicate the arsenic GPS exceedances are not from the CCR Units are:

- Low arsenic concentrations have repeatedly been reported in laboratory tests of ٠ groundwater samples from a monitoring well nest installed between the CCR Units and the well where arsenic concentrations exceed the GPS.
- The arsenic concentration in a sample collected from the Upper Ash Pond outfall was below the arsenic GPS. The outfall sample included the flow from a groundwater interceptor drain installed between the Upper Ash Pond and the well where arsenic concentrations exceed the GPS.

Lines of evidence that support an alternate source of arsenic GPS exceedances are:

- Anoxic reducing conditions that can result in increased arsenic concentrations are present in a localized area near the well with arsenic GPS exceedances.
- Anoxic conditions, resulting in potential higher arsenic concentrations, may be caused by the organic material described in the boring log of the well with arsenic GPS exceedances. The organic material is absent in other site monitoring wells.

If needed, IPL will continue to provide semiannual updates on its progress in evaluating Corrective Measures to address the groundwater impacts at LAN.

IPL held a public meeting on October 12, 2020, to discuss the contents of the September 2019 ACM with interested and affected parties. IPL held an additional public meeting on January 11, 2022, to discuss the ACM Addendum No. 1. Before a remedy is selected, IPL will hold a public meeting with interested and affected parties to discuss Addendum No. 2.

For more information on Alliant Energy, view our Corporate Responsibility Report at https://poweringwhatsnext.alliantenergy.com/crr/.

1.0 INTRODUCTION AND PURPOSE

An Assessment of Corrective Measures (ACM) at the Interstate Power and Light Company (IPL) Lansing Generating Station (LAN) was prepared to comply with U.S. Environmental Protection Agency (U.S. EPA) regulations regarding the Disposal of Coal Combustion Residuals from Electric Utilities [40 CFR 257.50-107], or the "CCR Rule" (Rule). Specifically, the ACM was initiated and this report was prepared to fulfill the requirements of 40 CFR 257.96, including:

- Prevention of further releases
- Remediation of release
- Restoration of affected areas

An ACM Report was issued in September 2019 to summarize the remedial alternatives for addressing the Groundwater Protection Standard (GPS) exceedances observed in the 2018 sampling events and identified in the Notification of GPS Exceedance dated February 13, 2019. The September 2019 ACM and a subsequent ACM Addendum No. 1 issued in November 2020 identified additional information needed to inform the selection of a corrective measure (remedy) for LAN according to 40 CFR 257.97.

IPL has continued to evaluate the source of the GPS exceedance and has concluded that it is not associated with the coal combustion residual (CCR) Units. ACM Addendum No. 2 has been prepared as an update to the ACM process, although the CCR Units are not the source of the arsenic GPS exceedances that triggered the ACM.

1.1 ASSESSMENT OF CORRECTIVE MEASURES PROCESS

As discussed above, Addendum No. 2 was prepared to update the ACM and previous addendums developed in response to GPS exceedances observed in groundwater samples collected at the LAN facility. The ACM process is one step in a series of steps defined in the CCR Rule and depicted in the graphic below. To date, IPL has implemented a detection monitoring program per 40 CFR 257.94 and completed assessment monitoring at LAN per 40 CFR 257.95. The September 2019 ACM was required based on the groundwater monitoring results obtained through October 2018. With the ACM completed and now updated with new information, IPL is required to select a remedy according to 40 CFR 257.97. The remedy selection process must be completed as soon as feasible, and, once selected, IPL is required to start the corrective action process within 90 days.

The process for developing the ACM is defined in 40 CFR 257.96 and is shown in the graphic below. IPL held a public meeting on October 12, 2020, to discuss the contents of the September 2019 ACM with interested and affected parties. IPL held an additional public meeting on January 11, 2022, to discuss the ACM Addendum No. 1.

Since IPL is required to discuss the ACM results in a public meeting at least 30 days before selecting a remedy, another public meeting will be held to discuss ACM Addendum No. 2. Information about the site, the groundwater monitoring completed, the groundwater impacts as they are currently understood, and the completed assessment activities are discussed in the sections that follow.

Initiate ACM 40 CFR 257.96(a) Continue Groundwater Monitoring 40 CFR 257.96(b) Screen/Evaluate Potential Corrective Measures 40 CFR 257.96(c)

Place ACM in Operating Record 40 CFR 257.96(d) Discuss ACM Results in Public Meeting <u>40</u> CFR 257.96(e)

1.2 SITE INFORMATION AND MAP

LAN is located along the west bank of the Mississippi River, south of the City of Lansing, in Allamakee County, Iowa. The address of the plant is 2320 Power Plant Drive in Lansing, Iowa (**Figure 1**). The coal-fired generating plant at LAN ceased coal-fired electric generating activities at the end of 2022 and is currently being decommissioned. The facility also includes a CCR landfill and a CCR settling pond. The LAN facility was originally constructed in 1948, with additional units added in 1957 and 1976.

The groundwater monitoring system at LAN is a multi-unit system monitoring two existing CCR Units that are contiguous:

- LAN Landfill (existing landfill)
- LAN Upper Ash Pond (existing surface impoundment)

The LAN Landfill is operated under a sanitary disposal project permit (Permit #03-SDP-05-01P) administered by the lowa Department of Natural Resources (IDNR). A separate groundwater monitoring system has been established to monitor the landfill for the state permit. The state operating permit for the LAN Landfill currently expires in October 2023, and IPL will close the landfill when the landfill reaches capacity or when the operating permit expires, whichever comes first. The landfill will be closed by installing a state-permitted final cover that meets the CCR Rule minimum design requirements in 40 CFR 257.102(d)(3).

The LAN Upper Ash Pond is operated with discharges regulated under individual National Pollutant Discharge Elimination System (NPDES) Permit Number IA0300100. The LAN Upper Ash Pond will close in accordance with the CCR Closure Plan to comply with the requirements of 40 CFR 257.101(b)(1) and 103(f)(2). The pond is expected to close by October 17, 2023.

A map showing the CCR Units and all background (or upgradient) and downgradient monitoring wells with identification numbers for the CCR groundwater monitoring program is provided as **Figure 2**. Monitoring wells installed for the state monitoring program for the CCR landfill are also shown on

Figure 2. The monitoring wells and their location and role in the monitoring network are included in **Table 1**. A summary of the monitoring event dates are included in **Table 2**.

2.0 BACKGROUND

2.1 REGIONAL GEOLOGIC INFORMATION

The uppermost geologic formation beneath LAN that meets the definition of the "uppermost aquifer," as defined under 40 CFR 257.53, is the shallow alluvial aquifer in combination with the hydraulically connected lower Cambrian-Ordovician sandstone unit (Jordan sandstone). A summary of the regional hydrogeologic stratigraphy is included in **Appendix A**.

The uppermost bedrock unit in the site area is the Jordan aquifer, which is the lower Cambrian-Ordovician sandstone interbedded with dolostone. The thickness of the Jordan aquifer varies from 50 to more than 120 feet thick in most areas of Allamakee County. Underlying the Cambrian-Ordovician sandstone are the Cambrian confining beds comprised of dolostone, siltstone, and shale. The Cambrian confining beds overly the Dresbach Aquifer, comprised of shaly sandstone. A summary of the regional hydrogeologic stratigraphy is presented in **Appendix A**. A regional bedrock surface hydrogeologic map, hydrogeologic cross sections, and a contour map of the top of the Cambrian-Ordovician sandstone in northeastern Iowa are also included in **Appendix A**. The bedrock surface elevation is highly variable due to erosion.

The Mississippi River and associated alluvial aquifers are a major source of surface water and shallow groundwater in the area. The alluvial aquifer is up to 60 feet thick within the deeply incised valley where LAN is located, but is thin to absent on the surrounding bluffs and hilltops. The lower Cambrian-Ordovician sandstone unit (Jordan sandstone) is the shallowest regional bedrock aquifer. The October 1989 IDNR Water Atlas No. 8 states that the Jordan aquifer is commonly the source of municipal and industrial high-capacity wells in the region. A summary of the regional groundwater units is included in **Appendix A**.

2.2 SITE GEOLOGIC AND HYDROGEOLOGIC INFORMATION

A map showing the regional potentiometric surface in the Jordan sandstone is presented in **Appendix A**. This map shows the potentiometric surface near the site area as sloping to the east-northeast. The flow direction in the shallow unconsolidated aquifer at LAN is generally to the north-northwest, and the groundwater flow direction and water levels fluctuate seasonally due to the proximity to the river. The flow direction of the Mississippi River is from northwest to southeast.

Monitoring wells MW-301 through MW-309, and MW-302A, MW-304A, MW-306A, and MW-307A were installed to intersect the surficial alluvium aquifer at the site. The unconsolidated material found at these well locations is generally sand and silt. The total boring depths were between 16 and 56 feet below ground surface (bgs) and bedrock was not encountered in these borings. Upgradient well MW-6 was previously installed for a state groundwater monitoring program, which is required as part of the solid waste permit for the CCR landfill. MW-6 was installed to a total depth of 93.5 feet bgs and intersects the water table, which is in the Jordan sandstone aquifer at this well location. Boring logs for MW-6 and MW-301 through MW-307A are included in **Appendix B**.

Depth to groundwater as measured in the site monitoring wells varies from 3 to 75 feet bgs due to topographic variations across the facility and seasonal variations in water levels and due to the proximity to the river. The flow direction of the Mississippi River is from northwest to southeast. Groundwater elevations and monitoring well screen elevations are included in **Table 3**. Water table

and potentiometric maps for April, August, and October 2021 are shown on **Figures 3** through **6**. Boring logs and well construction reports on included in **Appendix B**.

Shallow groundwater at the site generally flows to the north-northwest. The groundwater flow pattern based on water levels measured in 2022 is shown on **Figures 3** and **5**. The deeper groundwater within the alluvium flows to the north-northeast as shown on **Figures 4** and **6**. The groundwater elevation data for the CCR rule monitoring wells and the state program monitoring wells are provided in **Table 3**.

A geologic cross-section A-A' was prepared along a line through the CCR Units and in alignment with the direction of groundwater flow (**Figure 8A**). The cross-section line runs through the landfill, the Upper Ash Pond, and the coal pile, and also shows upgradient monitoring well MW-6, several borings or monitoring wells near the landfill and pond, and downgradient assessment monitoring well nest MW-306/306A. Sandstone bedrock, unconsolidated geologic material, and estimated water table levels are identified on the cross-section A-A' that is zoomed into the immediate area around monitoring well MW-302 is shown on **Figure 8B**. A cross-section running perpendicular to the valley and through the landfill is shown on **Figure 9**. The cross-section locations are provided on **Figure 7**.

2.3 CCR RULE MONITORING SYSTEM

The original groundwater monitoring system established in accordance with the CCR Rule consists of one upgradient (background) monitoring well and three downgradient (compliance) monitoring wells. The background monitoring well is MW-6. The three initial downgradient monitoring wells are MW-301, MW-302, and MW-303, which were installed in November 2015 (Figure 2). Monitoring well MW-302 was installed as close as practicable on the north side of the Lower Ash Pond (non-CCR Unit) due to utility obstructions between the south side of the Lower Ash Pond and the base of the Upper Ash Pond berm. Three additional downgradient delineation monitoring wells, MW-304, MW-305, and MW-306, were installed in May 2019, and three deeper delineation piezometers MW-302A, MW-304A, and MW-306A were installed in December 2019. Delineation monitoring well nest MW-307/MW-307A and water table observation wells MW-308 and MW-309 were installed in June 2021, in accordance with the requirements of 40 CFR 257.95(g)(1). The MW-307/MW-307A nest was installed at the downgradient edge of the Upper Ash Pond at a location that was unavailable during the installation of the original compliance network. At the time of monitoring well installations in 2016, the berm on the downgradient edge of the Upper Ash Pond was undergoing a structural stability assessment and it was not deemed prudent to install a well in the berm. In the years following completion of the assessment, it was determined that installation of wells in the berm would not compromise the integrity of the berm, so wells MW-307/MW-307A were installed to provide more information regarding groundwater passing the downgradient waste boundary of the Upper Ash Pond. The CCR Rule wells were installed in the upper portion of the uppermost aquifer at LAN. Well depths range from approximately 14.5 to 91 feet bgs.

3.0 NATURE AND EXTENT OF GROUNDWATER IMPACTS

3.1 POTENTIAL SOURCES

The potential sources of the arsenic impacts in groundwater have been under evaluation since the initiation of the ACM that was issued in September 2019. Based on the data obtained to date, the LAN Upper Ash Pond and LAN Landfill are no longer considered the likely source of the statistically significant levels (SSLs) above the GPS for arsenic at monitoring well MW-302. Instead, arsenic impacts in groundwater in the area of MW-302 are likely due to in-situ geochemical processes in organic-rich sediments present near MW-302. These processes and the source of arsenic in

groundwater at MW-302 are described in the updated arsenic evaluation completed by ReSolution Partners, LLC that is provided in **Appendix C**.

3.2 GROUNDWATER ASSESSMENT

3.2.1 Groundwater Depth and Flow Direction

Depth to groundwater as measured in the site CCR monitoring wells varies from 3 to 75 feet bgs due to topographic variations across the facility. Groundwater flow at the site is generally to the north-northwest. The flow in the Jordan sandstone immediately beneath the landfill and ponds is also likely to the north-northwest due to the influence of incoming groundwater from the bluffs flanking the valley with ultimate discharge to the Mississippi River. Horizontal gradients and groundwater flow velocities are included in **Table 6**. Vertical gradients are included in **Table 7**.

3.2.2 Groundwater Protection Standard Exceedances Identified

The ACM process was triggered by the detection of arsenic at SSLs exceeding the GPS in samples from MW-302.

This statistical evaluation of the assessment monitoring results was based on the first three sampling events for the Appendix IV assessment monitoring parameters, including sampling events in April, August, and October 2018. The complete results for these sampling events are summarized in **Tables 4A**, **4B**, and **5**.

GPS exceedances for arsenic at MW-302 have continued to be identified in monitoring since the initiation of the ACM. The arsenic concentrations have remained consistent with no discernable trend. Arsenic has not been detected at SSLs above the GPS in any other wells. Therefore, the ACM and addendums address the following GPS exceedance:

Assessment Monitoring Appendix IV Parameters	Location of GPS Exceedance(s)	Historic Range of Detections at Wells with SSL Above GPS	Groundwater Protection Standard (GPS)
Arsenic (µg/L)	MW-302	30.8 to 53	10

 μ g/L = micrograms per liter

Note: Historic range includes results from assessment monitoring from April 2018 through October 2022.

3.2.3 Expanding the Groundwater Monitoring Network

Delineation monitoring wells MW-304, MW-305, and MW-306 were installed in May 2019 downgradient of the CCR Units to expand the groundwater monitoring network at LAN beyond the edge of the CCR Unit boundaries and to fulfill the requirements of 40 CFR 257.95(g)(1), which requires additional characterization to support a complete and accurate ACM. Three deeper piezometers MW-302A, MW-304A, and MW-306A were installed in December 2019, also in accordance with the requirements of 40 CFR 257.95(g)(1). Groundwater samples were collected following installation of the new monitoring wells. Delineation monitoring well nest MW-307/MW-307A and water table observation wells MW-308 and MW-309 were installed in June 2021, in accordance with the requirements of 40 CFR 257.95(g)(1). The CCR Rule wells were installed in the upper portion of the uppermost aquifer at LAN. Well depths range from approximately 14.5 to 91 feet bgs.

The historical sampling results from MW-302A, MW-304/304A, MW-305, MW-306/306A, and MW-307/307A indicate that there was not a statistically significant exceedance of arsenic in any of these wells. The extent of GPS exceedances is limited to the immediate vicinity of MW-302.

State Monitoring Program Arsenic Results 3.2.4

Arsenic is included in the parameter list for the state monitoring program for the CCR landfill. Monitoring results from the state program, provided in Table 8, provide additional information on the nature and extent of arsenic concentrations at the site.

Arsenic GPS exceedances in the state program results are limited to two monitoring well locations (MW-11/11R and MW-12). The arsenic levels at these two locations adjacent to the landfill are lower than the concentrations in downgradient CCR well MW-302. Per IDNR requirements, metals sampling was changed from filtered to unfiltered in 2016. Arsenic concentrations appear to be stable since that time. Metals like arsenic tend to adsorb to suspended solids that can be introduced into the sample during collection, which are not removed from unfiltered samples. Arsenic results from other wells in the vicinity of or downgradient from these two wells (including MW-12P, MW-14, TW-17, TW-18, TW-19, and MW-20) were below the GPS defining the horizontal and vertical extent of arsenic impacts in this area.

Groundwater assessments were performed in accordance with the state monitoring program during 2013 and 2014 to evaluate the elevated arsenic concentrations. The assessment reports concluded that elevated arsenic concentrations were due in part to localized geochemical conditions in the immediate vicinity of the landfill. IDNR required no further investigation of the arsenic concentrations.

3.3 UPDATED NATURE AND EXTENT OF GROUNDWATER IMPACTS

The ACM process was triggered by the detection of arsenic at an SSL above the GPS in samples from water table monitoring well MW-302. This section provides an update of the nature and extent of arsenic impacts since ACM Addendum No. 1 was completed.

Molybdenum has also been detected at an SSL above the GPS in samples from piezometer MW-304A; however, molybdenum concentrations at this well are attributed to naturally occurring molybdenum in the Cambrian-Ordovician aquifer. The lines of evidence supporting this conclusion were outlined in an Alternative Source Demonstration completed on September 3, 2021. Because the molybdenum GPS exceedance was not due to the CCR Units, molybdenum will not be addressed in this Selection of Remedy.

3.3.1 Additional Data Collection

Since the November 2020 ACM Addendum No. 1, additional data collection activities to support evaluation of the nature and extent of groundwater impacts and potential remedies have included the following:

A groundwater sample was collected from the interceptor trench located between Power Plant Drive and the former Lower Ash Pond in January 2021 to evaluate intercept trench water for constituents detected in the compliance wells. The interceptor trench is shown on Cross-section A-A' (Figure 8B). A discussion of this sample result is included in the Arsenic Assessment Update (Appendix C).

- Additional groundwater samples were collected in February 2021 for analysis of arsenic • at MW-306 and molybdenum at MW-304A.
- The April 2021 groundwater monitoring event was completed for the routine semiannual assessment monitoring program. The wells sampled included the wells in the original monitoring program (MW-6, MW-301, MW-302, and MW-303); the three additional wells (MW-304, MW-305, and MW-306) installed in June 2019; and three additional wells (MW-302A, MW-304A, and MW-306A) installed in December 2019.
- Three additional water table monitoring wells and one piezometer were installed in June 2021. Monitoring wells MW-307 and MW-307A were installed to provide information on horizontal and vertical groundwater flow and the distribution of target groundwater quality parameters. Monitoring wells MW-308 and MW-309 were installed to provide groundwater flow information only, and will be monitored for water levels only (no sample collection). The groundwater elevations in the vicinity of monitoring wells MW-308 and MW-309 (Table 3) show that the local groundwater flow is toward the outfall located between wells MW-308/MW-309 and MW-302. Since the shallow groundwater where wells MW-308 and MW-309 are screened is not downgradient of monitoring well MW-302, they are not sampled for groundwater quality parameters. The localized flow in the area of MW-308. MW-309, and MW-302 is shown on the Figure 8B cross section.
- Groundwater samples were collected in July 2021 for analysis of arsenic at MW-306 and molybdenum at MW-304A, as well as a full analysis of assessment monitoring parameters for the newly installed MW-307 and MW-307A.
- Groundwater samples were collected at MW-307 and MW-307A in August 2021 for a full • analysis of assessment monitoring parameters.
- Site-wide groundwater elevation measurements were collected in September 2021.
- The October 2021 groundwater monitoring event was completed for the routine semiannual assessment monitoring program and included CCR monitoring wells MW-301 through MW-309 and the associated deeper piezometers MW-302A, MW-304A, MW-306A, and MW-307A. No groundwater quality samples were collected from monitoring wells MW-308 and MW-309 because they are designated specifically as water table observation wells (water level monitoring only).
- An additional round of groundwater levels were measured in all federal CCR and state monitoring wells during February 2022.
- An additional surface water sample was collected from the combined Outfall 001 and surface water near well MW-302 in February 2022.
- The April 2022 groundwater monitoring event was completed for the routine semiannual assessment monitoring program and included CCR monitoring wells MW-301 through MW-309 and the associated deeper piezometers MW-302A, MW-304A, MW-306A, and MW-307A.

The October 2022 groundwater monitoring event was completed for the routine • semiannual assessment monitoring program and included CCR monitoring wells MW-301 through MW-309 and the associated deeper piezometers MW-302A, MW-304A, MW-306A, and MW-307A.

A summary of groundwater samples collected since the ACM was issued is provided in Table 2.

Updated Groundwater Assessment – New and Updated 3.3.2 **Results**

Since ACM Addendum No. 1 was completed in November 2020, monitoring wells MW-307 and MW-307A were installed at a location between the Upper Ash Pond and monitoring well MW-302. Specifically, well nest MW-307/MW-307A was installed between the Upper Ash Pond and the former Lower Ash Pond, alongside the Power Plant Drive berm (Figure 2 and 8B). This well location was selected to investigate groundwater quality changes immediately downgradient of the Upper Ash Pond.

Sampling results from new monitoring well nest MW-307/307A and additional sampling from the existing CCR wells indicate:

- No arsenic GPS exceedances have been detected in groundwater samples from • monitoring wells MW-307 or MW-307A. Well nest MW-307/MW-307A is located immediately downgradient from the Upper Ash Pond, on the groundwater flow path from the Upper Ash Pond and Landfill to well MW-302. Well nest MW-307/MW-307A has been sampled three times since it was installed in June 2021. The range of arsenic concentrations from all three sets of groundwater results were from below the detection limit (0.75 micrograms per liter [μ g/L]) to 2.5 μ g/L, which is below the GPS of 10 μ g/L and well below the 30.8 μ g/L to 53 μ g/L range of arsenic concentrations detected in samples from well MW-302.
- Groundwater samples from MW-301 and MW-303, which are also located immediately • downgradient from the Upper Ash Pond, have contained arsenic concentrations that range from 1.2 μ g/L to 3.2 μ g/L. Arsenic concentrations at these wells have been below the GPS in all sampling events since background monitoring began in 2015, consistent with the results for the more recently installed MW-307/MW-307A well nest.
- The sample from the combined groundwater and surface water outfall from the Upper ٠ Ash Pond¹ collected in June 2020 had an arsenic concentration of 2.33 ug/L (Appendix C). This is comparable to the arsenic concentrations for monitoring wells immediately downgradient from the Upper Ash Pond, including MW-301, MW-303, and MW-307.
- Monitoring results for MW-305, located approximately 300 feet downgradient of the Upper Ash Pond, have indicated arsenic concentrations that are below the GPS in all sampling events since sampling began at this well in July 2019.

¹ Eurofins. June 2020. Analytical Report Lansing NPDES Permit Renewal 2020, Project No. 50886, 21 pp.

- There are no arsenic SSLs in the downgradient delineation wells MW-306 and MW-306A. An arsenic result exceeding the GPS was also reported for new downgradient monitoring well MW-306 in the October 2019 event, but was not confirmed in the December 2019 resample.
- Groundwater monitoring results for other parameters are consistent with a transition to anoxic reducing conditions along the flow path from MW-307 to MW-302, including decreased oxidation-reduction potential (ORP), decreased sulfate, and increased iron concentrations.
- The ORP observed at MW-302 is -189 eV to -142 eV, indicating anoxic reducing conditions at the screened interval.
- The soil boring log for MW-302, shown in **Appendix B** indicated black silt at the depth of the well screen. The log for adjacent piezometer MW-302A indicated dark gray silt with roots at the same elevation. The black/dark gray color and roots are likely indications of organic content in the soil and samples taken from 9-25 feet bgs have measured total organic carbon (TOC) of 1.6 to 6.7 wt% (Appendix C). Anoxic reducing conditions are more common in organic soils due to oxygen consumed in degradation of organic materials.
- There are consistent downward gradients at well nests MW-302/MW-302A and MW-307/MW-307A. The consistent downward gradients indicate that water collected from MW-302 is not from a deeper flowpath from the upgradient Upper Ash Pond and Landfill CCR Units.
- Monitoring results from MW-302A, the piezometer adjacent to MW-302, have indicated arsenic concentrations below the method detection limit (< 0.88 μg/L) that have not shown any statistically significant increases above background conditions.

3.3.3 Updated Site Conceptual Model

Based on the additional investigations performed since the November 2020 ACM Addendum No. 1, the LAN Upper Ash Pond and Landfill are not the likely source of the SSLs above the GPS for arsenic at monitoring well MW-302.

Monitoring well MW-302 is the only well in the CCR rule monitoring system where arsenic has been detected at an SSL above the GPS. The monitoring well network includes wells installed both upgradient of MW-302, at the downgradient boundary of the Upper Ash Pond, and downgradient from MW-302, as well as a deeper piezometer installed immediately adjacent to MW-302. The lack of any arsenic concentrations that exceed the GPS, in several rounds of sampling, indicates that high arsenic concentrations found in MW-302 are specific to that location and not representative of a plume originating from the Ash Pond.

Additional discussion and supporting data for the determination that arsenic concentrations exceeding the GPS in samples from MW-302 are due to an alternative source are provided in **Appendix C**.

3.3.4 Potential Receptors and Pathways

As described in **Section 3.3**, ASTM E1689-95 provides a framework for identifying potential receptors (people or other organisms potentially affected by the groundwater impacts at LAN) and pathways

(the ways groundwater impacts might reach receptors). In accordance with ASTM E1689-95, we have considered both potential human and ecological exposures to groundwater impacted by arsenic, as identified in Section 3.2.2. The absence of completed exposure pathways does not alleviate the responsibility of IPL to select a remedy for groundwater impacts or complete an appropriate corrective action as required by 40 CFR 257.97-98 if a CCR Unit subject to the CCR Rule is the source of the impacts. However, an understanding of potential receptors and pathways may be helpful in evaluating and selecting a suitable remedy.

Human Health

In general, human health exposure routes to contaminants in the environment include ingestion, inhalation, and dermal contact with the following environmental media:

- Groundwater •
- Surface Water and Sediments •
- Air
- Soil
- Biota/Food

If people might be exposed to the impacts described in Section 3.0 via one of the environmental media listed above, a potential exposure route exists and is evaluated further. For the groundwater impacts at LAN, the following potential exposure pathways have previously been identified with respect to human health and the discussion of each has been updated based on currently available data:

- Groundwater Ingestion and Dermal Contact. The potential for ingestion of, or dermal contact with, impacted groundwater from LAN exists if water supply wells are present in the area of impacted groundwater and are used as a potable water supply. Based on a review of the IDNR GeoSam well database. and information provided by LAN:
 - No off-site water supply wells have been identified downgradient of the CCR Units.
 - A private supply well located across County Highway X52 from the landfill was sampled by Allamakee County in 2014 at the homeowner's request, and the sample was analyzed for arsenic. Arsenic was not detected in the sample. The Allamakee County Sanitarian stated that the well was 400 feet deep and under artesian pressure. IPL and SCS Engineers (SCS) are not aware of any additional samples from this well.
 - Two on-site water supply wells, Well #2 and Well #4, are currently used as sources of potable water.
 - Well #2 is 235 feet deep and is cased to 78 feet. Well #4 is 240 feet deep and is cased to 143 feet. Both wells are open to the sandstone aguifer.
 - The water supply operation permit for these wells (IDNR public water supply ID 0345181) requires sampling for inorganic constituents every 9 years. Arsenic was not detected in the most recent samples, collected on April 21, 2014.

Both of these water supply wells will be abandoned as part of the plant decommissioning and will no longer be a potential pathway for exposure.

- Surface Water and Sediments Ingestion and Dermal Contact. The potential for ingestion of or dermal contact with impacted surface water and sediments exists if impacted groundwater from the LAN facility has interacted with adjacent surface water and sediments, to the extent that arsenic is present in these media at concentrations that represents a risk to human health.
 - Surface water samples collected from the unnamed creek located downgradient from MW-302 in October 2021 and February 2022 did not contain arsenic above an applicable surface water standard. Furthermore, the arsenic concentrations in the two surface water samples were below the GPS and, in one sample from February 2022, below the detection limit (<0.75 µg/L). The concentration of arsenic in surface water samples collected near MW-302 is similar to background concentrations in groundwater and represents a similarly low risk from exposure. Based on the surface water sampling completed during the ACM process, the risk of exposure through ingestion or dermal contact with surface water is low and this is an unlikely pathway for exposure. The surface water samples and results are discussed in the arsenic assessment provided in **Appendix C**.
- Biota/Food Ingestion. The potential for ingestion of impacted food exists if impacted groundwater from the facility has interacted with elements of the human food chain. Based on discussions with facility staff, no hunting or farming occurs within the current area of known groundwater impacts. Elements of the food chain may also be exposed indirectly through potential groundwater-to-surface water interactions, which are subject to additional assessment.
 - Based on surface water sampling completed during the ACM process, the risk of exposure through ingestion of impacted food is low. This is an unlikely pathway for exposure since the observed arsenic concentrations in surface water are similar to background water quality. Surface water in the area of MW-302 does not contain arsenic above an applicable surface water standard or the GPS. No further assessment was conducted based on the surface water sampling results.

Based on the lack of groundwater exposure and the additional surface water assessment, there is limited risk of exposure to the arsenic in groundwater at MW-302. However, the implementation of potential corrective measures may still introduce secondary exposure pathways that are discussed in **Section 6.0** and will be evaluated further as a corrective measure is selected for LAN.

Ecological Health

In addition to human exposures to impacted groundwater, potential ecological exposures are also considered. If ecological receptors might be exposed to impacted groundwater, the potential exposure routes are evaluated further. Ecological receptors include living organisms, other than humans, the habitat supporting those organisms, or natural resources potentially adversely affected by CCR impacts. This includes:

- Transfer from an environmental media to animal and plant life. This can occur by bioaccumulation, bioconcentration, and biomagnification:
 - Bioaccumulation is the general term describing a process by which chemicals are taken up by a plant or animal either directly from exposure to impacted media (soil, sediment, water) or by eating food containing the chemical.

- Bioconcentration is a process in which chemicals are absorbed by an animal or plant to levels higher than the surrounding environment.
- Biomagnification is a process in which chemical levels in plants or animals increase from transfer through the food web (e.g., predators have greater concentrations of a particular chemical than their prey).
- Benthic invertebrates within adjacent waters.

Based on the information available and presented in September 2019 ACM, both of the ecological exposure routes required additional evaluation at the time.

Since the September 2019 ACM was completed, exposure pathways subject to potential groundwater to surface water interactions have been evaluated further through the following:

- Review of state surface water standards for arsenic.
- Review of application materials and studies conducted by IPL for the renewal of the NPDES permit for LAN.
- Developing a hydrogeochemical conceptual model and a preliminary evaluation of arsenic attenuation (see Section 3.2.5).
- Sampling surface water downgradient of MW-302. •

Based on our evaluation to date, the arsenic impacts to groundwater at LAN are unlikely to impact the river. This preliminary conclusion is based on the following:

- Surface water standards identified in our review are higher than the GPS for arsenic (see 567 Iowa Administrative Code Chapter 61 Water Quality Standards).
- Groundwater near the surface water interface is likely to transition from anaerobic to aerobic, which is expected to precipitate iron oxyhydroxides removing arsenic from solution by adsorption.
- Mussel communities in the channel adjacent to MW-302 and the Mississippi River were • observed in support of the NPDES Permit renewal for LAN. The population of mussels, one of the most sensitive animal groups in the area were "characterized as balanced and indigenous," which is not indicative of chronic or acute impacts (Alliant, 2020).
- Surface water samples collected in October 2021 and February 2022 did not contain ٠ arsenic at concentrations that exceed applicable surface water standards. The surface water samples contained arsenic at concentrations similar to background groundwater quality and below the GPS.

Our assessment indicates that arsenic in groundwater at LAN is unlikely having a negative impact on the Mississippi River or people and biota utilizing the river.

4.0 POTENTIAL CORRECTIVE MEASURES

In this section, we identify potential corrective measures to meet the ACM goals identified in 40 CFR 257.96(a), which are to:

- Prevent further releases
- Remediate releases
- Restore affected areas to original conditions •

The development of corrective measure alternatives is described further in the following sections. Corrective measure alternatives previously developed to address the groundwater impacts at LAN are described in Section 5.0. The discussion of corrective measure alternatives has been updated since the CCR Units are no longer identified as the source of arsenic impacts. The alternatives are qualitatively evaluated in Section 6.0.

As required under 40 CFR 257.96(c), the following sections provide an analysis of the effectiveness of potential corrective measures. This evaluation includes the requirements and objectives identified in 40 CFR 257.97, which includes:

- The performance, reliability, ease of implementation, and potential impacts of appropriate potential remedies, including safety impacts, cross-media impacts, and control of exposure to residual contamination;
- The time required to begin and complete the remedy; and
- The institutional requirements, such as state or local permit requirements or other • environmental or public health requirements that may substantially affect implementation of the remedy.

4.1 IDENTIFICATION OF CORRECTIVE MEASURES

As described in the U.S. EPA Solid Waste Disposal Facility Criteria Technical Manual (U.S. EPA, 1998), corrective measures generally include up to three components, including:

- Source Control •
- Containment •
- Restoration •

Within each component, there are alternative measures that may be used to accomplish the component objectives. The measures from one or more components are then combined to form corrective measure alternatives (discussed in Section 5.0) intended to address the observed groundwater impacts. Potential corrective measures were identified based on site information available during development of the ACM for the purpose of meeting the goals described in Section 4.0.

Each component and associated corrective measures are further identified in subsequent paragraphs. The corrective measures are evaluated for feasibility and combined to create the corrective action alternatives identified in this section, and further evaluated in Section 5.0.

4.1.1 Source Control

The source control component of a corrective measure is intended to identify and locate the source of impacts and provide a mechanism to prevent further releases from the source. For this site, the previously identified sources to be controlled included the CCR materials in the landfill and impoundment, along with plant process water. Each of the source control measures below require closure of the landfill and impoundment, and for waste water to be re-directed from the CCR Units to eliminate the flows that may mobilize constituents from the CCR and transport them to groundwater.

With the updates to the groundwater assessment described in **Section 3.2**, the CCR Units are no longer identified as the source of groundwater impacts at LAN. However, with the cessation of coal-fired electric generating operations at LAN as of December 31, 2022, the CCR Units will be closed. Plant waste water discharges to the LAN Upper Ash Pond will also end in spring 2023 regardless of the corrective action process.

The following potential source control measures were identified in the ACM and subsequent addendums:

- **Cap in place**. Cap the CCR in uncovered areas of the existing landfill and the CCR surface impoundment in place to reduce the infiltration of rainwater into the impoundments, and prevent transport of CCR constituents from unsaturated CCR materials into the groundwater and reduce the potential for CCR to interface with groundwater. The landfill closure will be conducted according to the disposal permit issued by the IDNR.
- **Consolidate and cap.** Consolidate CCR from the surface impoundment into a smaller area adjacent to the landfill to reduce the cap area exposed to infiltration and reduce the potential source footprint. Install a cap over uncovered areas of the existing landfill, and the consolidated CCR from the surface impoundment to prevent transport of CCR constituents from unsaturated CCR materials into the groundwater and minimize the potential for CCR to interface with groundwater. The landfill closure will be conducted according to the disposal permit issued by the IDNR.
- Consolidate and cap with chemical stabilization. Consolidate CCR from the surface impoundment into a smaller area adjacent to the landfill to reduce the cap area exposed to infiltration, reduce the potential source footprint, prevent transport of CCR constituents from unsaturated CCR materials into the groundwater, and minimize the potential for CCR to interface with groundwater. Mix a chemical amendment into CCR in-situ prior to placing additional CCR for consolidation and mix the amendment into CCR as it is excavated and placed for consolidation to reduce the mobility of select CCR constituents in the environment. Chemical stabilization may include the use of one or multiple admixtures that serve to physically and/or chemically stabilize the constituents of concern within the CCR. Physically, this may include solidification with cementitious or polymeric materials. Chemically, this may include precipitation or alteration to render arsenic less mobile in the environment. Evaluation of an appropriate commodity amendment, that may include Calcium Polysulfide, Portland Cement, Calcium Oxide, and/or proprietary chemicals such as FerroBlack-H, MAECTITE, 3Dme, and/or MRC, will occur during the remedy selection process.
- Excavate CCR and create on-site disposal area. Excavate CCR from the landfill and surface impoundment and place CCR in a new lined disposal area on site to prevent further releases from the CCR and isolate the CCR from potential groundwater

interactions. Cap the new disposal area with final cover to prevent the transport of CCR constituents from unsaturated CCR.

• Excavate impounded CCR and dispose at a licensed off-site disposal area. Remove all CCR from the site and haul to a licensed landfill to prevent further releases from the CCR areas.

Water movement through the CCR materials is the mechanism for CCR impacts to groundwater, including surface water that moves vertically through the CCR materials via infiltration of precipitation and surface water runoff.

Based on the currently available information for this site the CCR Units are not the source of groundwater impacts. Thus, source control under the CCR Rule corrective action process is not required.

4.1.2 Containment

The objective of containment is to limit the spread of the groundwater impacts beyond the source. The need for containment depends on the nature and extent of impacts, exposure pathways, and risks to receptors. Containment may also be implemented in combination with restoration as described in **Section 4.1.3**.

Containment may be a recommended element of a corrective measure if needed to:

- Prevent off-site migration of groundwater impacts
- Cease completion of an exposure pathway (e.g., water supply well).

Containment may also be used in lieu of active restoration if an active approach is needed; however, containment with active treatment is not warranted when:

- Water in the affected aquifer is naturally unsuited for human consumption.
- Contaminants present in low concentration with low mobility.
- Low potential for exposure pathways to be completed, and low risk associated with exposure.
- Low transmissivity and low future user demand.

The following containment measures have potential to limit the spread of groundwater impacts at sites in corrective action, if necessary:

- **Gradient Control with Pumping**. Gradient control includes a measure to alter the groundwater velocity and direction to slow or isolate impacts. This can be accomplished with pumping wells and/or a trench/sump collection system. If groundwater pumping is considered for capturing an impacted groundwater plume, the impacted groundwater must be managed in conformance with all applicable Federal and State requirements.
- **Gradient Control with Phytotechnology.** Gradient control with phytotechnology relies on the ability of vegetation to evapotranspire sources of surface water and groundwater. Water interception capacity by the aboveground canopy and subsequent

evapotranspiration through the root system can limit vertical migration of water from the surface downward. The horizontal migration of groundwater can be controlled or contained using deep-rooted species, such as prairie plants and trees, to intercept, take up, and transpire the water. Trees classified as phreatophytes are deep-rooted, high-transpiring, water-loving organisms that send their roots into regions of high moisture and can survive in conditions of temporary saturation.

- Chemical Stabilization. Stabilization refers to processes that involve chemical reactions • that reduce the leachability of arsenic. Stabilization chemically immobilizes impacts or reduces their solubility through a chemical reaction. The desired results of stabilization methods include converting metals into a less soluble, mobile, or toxic form.
- **Containment Walls.** Containment walls can be applied in two ways. First, a wall that creates a physical barrier to the flow of groundwater to limit the movement of constituents of concern in groundwater. Second, a passive barrier installed to intercept the flow of groundwater and constructed with a reactive media designed to adsorb, precipitate, or degrade groundwater constituents to limit their movement in the environment (FRTR, 2020).

Based on the currently available information for this site the CCR Units are not the source of groundwater impacts. Thus, active containment under the CCR Rule corrective action process is not required.

Restoration 4.1.3

Restoration is the process through which groundwater quality is restored to meet GPSs. This can be accomplished by way of Monitored Natural Attention (MNA) or intensively addressed by groundwater treatment with or without extraction.

MNA can be a viable remedy or component of a remedial alternative for groundwater impacted with metals. MNA requires ongoing involvement and potentially intense characterization of the geochemical environment to understand the attenuation processes involved, and to justify reliance on them and regular, long-term monitoring to ensure the attenuation processes are meeting remedial goals.

MNA is not a "do-nothing" alternative; rather it is an effective knowledge-based remedy where a thorough engineering analysis provides the basis for understanding, monitoring, predicting, and documenting natural processes. To properly employ this remedy, there needs to be a strong scientific basis supported by appropriate research and site-specific monitoring implemented in accordance with quality controls. The compelling evidence needed to support proper evaluation of the remedy requires that the processes that lower metal concentrations in groundwater be well understood.

If active treatment is implemented, water may be treated in-situ, on site, or off site. The need for active treatment depends on the nature and extent of impacts, potential exposure pathways, and current and anticipated future risks to receptors. If there are no receptors or if the risks are acceptably low, then MNA is an appropriate option. If existing or future risks require a more rapid restoration of groundwater quality, then active restoration may be needed.

Treated groundwater may be re-injected, sent to a local publicly owned treatment works (POTW), or discharged to a local body of surface water, depending on local, State, and Federal requirements.

Typical on-site treatment practices for metals include coagulation and precipitation, ion exchange, or reverse osmosis. Off-site wastewater treatment may include sending the impacted groundwater that is extracted to a local POTW or to a facility designed to treat the contaminants of concern.

The removal rate of groundwater constituents such as arsenic will depend on the rate of groundwater extraction, the cation exchange capacity of the soil, and partition coefficients of the constituents sorbed to the soil. As the concentration of metals in groundwater is reduced, the rate at which constituents become partitioned from the soil to the aqueous phase may also be reduced. The amount of flushing of the aquifer material required to remove the metals and reduce their concentration in groundwater below the GPS will generally determine the time frame required for restoration. This time frame is site-specific.

In-situ methods may be appropriate, particularly where pump and treat technologies may present adverse effects. In-situ methods may include the introduction of a chemical amendment to adsorb, precipitate, or degrade a contaminant or biological restoration requiring pH control, addition of specific micro-organisms, and/or addition of nutrients and substrate to augment and encourage degradation by indigenous microbial populations. Bioremediation requires laboratory treatability studies and pilot field studies to determine the feasibility and the reliability of full-scale treatment.

Based on the currently available information for this site the CCR Units are not the source of groundwater impacts. Thus, restoration under the CCR Rule corrective action process is not required.

5.0 CORRECTIVE MEASURE ALTERNATIVES

The following corrective measure alternatives for the groundwater impacts at LAN were identified in ACM Addendum No. 1:

- Alternative 1 No Additional Action
- Alternative 2 Close and Cap in Place with MNA
- Alternative 3 Consolidate and Cap with MNA
- Alternative 4 Excavate CCR and Dispose On Site with MNA
- Alternative 5 Excavate CCR and Dispose Off Site with MNA
- Alternative 6 Consolidate and Cap with Chemical Amendment
- Alternative 7 Consolidate and Cap with Groundwater Collection
- Alternative 8 Consolidate and Cap with Barrier Wall

These alternatives were developed by selecting components from the reasonable and appropriate corrective measures components discussed above. Capping areas of the landfill that are currently open is included with all potential source control measures. Each of the corrective measure alternatives meet the requirements in 40 CFR 257.97(b)(1) through (5) based on the information available at the current time and the conclusion that the CCR Units are not the source of groundwater impacts at LAN.

5.1 ALTERNATIVE 1 – NO ADDITIONAL ACTION

IPL is committed to implementing corrective measures as required under the Rule, and the No Additional Action alternative is included in this ACM Addendum No. 2 as a viable alternative based on the data summary provided in **Section 3.0**, which indicates the CCR Units are not the source of groundwater impacts above the GPS at LAN. The consideration of this alternative assumes the closure of the LAN Upper Ash Pond will proceed as described in the Closure Plan for Existing CCR

Surface Impoundment (currently Amendment No. 2 (SCS, 2020)) and in accordance with the requirements of 40 CFR 257.102(d), the LAN Landfill will be closed in accordance with the CCR Rule and existing State of Iowa sanitary disposal project permit, and groundwater monitoring will continue in accordance with 40 CFR 257.94.

5.2 ALTERNATIVE 2 – CLOSE AND CAP IN PLACE WITH MNA

Alternative 2 includes closing the landfill in accordance with the CCR Rule and existing State of Iowa sanitary disposal project permit and closing the CCR impoundment with no further discharge. CCR materials will be capped and vegetation established on the final cover in accordance with the requirements for closure in place in 40 CFR 257.102(d). This measure is consistent with landfill cover systems to prevent infiltration of surface water into the CCR as described in **Section 4.1.1**. The capped areas will be subject to enhanced groundwater monitoring via MNA.

This alternative eliminates CCR sluicing/plant process water discharges and, with the installation of a cap, will reduce infiltration through the CCR. This is expected to address the major contributor to potential groundwater impacts, which is exposure of CCR material to precipitation/surface water infiltration. Leaching of metals and migration within groundwater will be reduced and may be eliminated over time. MNA is included with this alternative to monitor changes in groundwater impacts and the effectiveness of degradation mechanisms on groundwater concentrations over time.

5.3 ALTERNATIVE 3 – CONSOLIDATE AND CAP WITH MNA

Alternative 3 includes closing the landfill in accordance with the CCR Rule and existing State of Iowa sanitary disposal project permit, and closing the CCR impoundment (no further discharge). The impounded CCR will be closed by relocating a portion of the impounded CCR and consolidating it into a smaller footprint within the CCR surface impoundment and/or landfill. The impounded CCR materials and currently open areas of the landfill will be capped in accordance with the requirements for closure in place in 40 CFR 257.102(d). This measure is consistent with landfill cover systems to prevent infiltration of surface water into the CCR as described in **Section 4.1.1**. The capped areas will be subject to enhanced groundwater monitoring via MNA.

This alternative eliminates CCR sluicing/plant process water discharges and, with the consolidation of the CCR footprint and the installation of a cap, will reduce infiltration through the CCR. This is expected to address the major contributor to potential groundwater impacts, which is exposure of CCR material to precipitation/surface water infiltration. Consolidation of CCR into a smaller footprint during closure also reduces the volume of potential source materials that may be in contact with groundwater after closure. Leaching of metals and migration within groundwater will be reduced and may be eliminated over time. MNA is included with this alternative to monitor changes in groundwater impacts and the effectiveness of degradation mechanisms on groundwater concentrations over time.

5.4 ALTERNATIVE 4 – EXCAVATE CCR AND DISPOSE ON SITE WITH MNA

Alternative 4 includes closing the landfill and impoundment (no further disposal or discharge), excavation of CCR from the landfill and surface impoundment, and creation of a new on-site disposal area with a liner and cap system. This alternative will serve to entomb the CCR at the site and allow for the collection and management of liquids generated from the new disposal area. Releases from the CCR will be prevented by the use of engineering controls constructed/installed to meet the

design criteria for new CCR landfills required under 40 CFR 257.70. The capped areas will be subject to enhanced groundwater monitoring via MNA.

This alternative eliminates CCR sluicing/plant process water discharges and, with the consolidation of the CCR footprint and the installation of a new on-site disposal area liner and cap, will reduce infiltration through the CCR. This is expected to address the major contributor to potential groundwater impacts, which is exposure of CCR material to precipitation/surface water infiltration. MNA is included with this alternative to monitor changes in groundwater impacts and the effectiveness of degradation mechanisms on groundwater concentrations over time.

5.5 ALTERNATIVE 5 – EXCAVATE CCR AND DISPOSE OFF SITE WITH MNA

Alternative 5 includes closing the landfill and impoundment (no further disposal or discharge), excavation of all CCR, and transport to an approved off-site landfill. Releases from the CCR sources will be prevented by relocating the source material to another site, which eliminates the potential for leaching of constituents in CCR into groundwater at LAN.

This alternative eliminates CCR sluicing/plant process water discharges and, with the removal of CCR from the site, will reduce infiltration through the CCR. This is expected to address the major contributor to potential groundwater impacts, which is exposure of CCR material to precipitation/surface water infiltration. MNA is included with this alternative to monitor changes in groundwater impacts and the effectiveness of degradation mechanisms on groundwater concentrations over time.

5.6 ALTERNATIVE 6 – CONSOLIDATE AND CAP WITH CHEMICAL AMENDMENT

Alternative 6 includes closing the landfill and impoundment (no further discharge), adding a chemical amendment to in-place CCR and relocated CCR to reduce the mobilization of contaminants prior to relocating and consolidating CCR into a smaller footprint within the CCR Units, covering the CCR materials with a cap, and establishing vegetation in accordance with the requirements for closure in place in 40 CFR 257.102(d). This measure is consistent with landfill cover systems to prevent infiltration of surface water into the CCR and the reduced contaminant mobilization achieved by chemical amendment as described in **Section 4.1.1**.

This alternative eliminates CCR sluicing/plant process water discharges and, with the consolidation of the CCR footprint and the installation of a cap, will reduce infiltration through the CCR. This is expected to address the major contributor to potential groundwater impacts, which is exposure of CCR material to precipitation/surface water infiltration. Consolidation of CCR into a smaller footprint during closure also reduces the volume of potential source materials that may be in contact with groundwater after closure. Leaching of metals and migration within groundwater will be reduced by minimizing the footprint of CCR in contact with groundwater and by fixation using a chemical amendment.

5.7 ALTERNATIVE 7 – CONSOLIDATE AND CAP WITH GROUNDWATER COLLECTION

Alternative 7 includes closing the landfill and impoundment (no further discharge), relocating and consolidating CCR into a smaller footprint within the CCR Units, covering the CCR materials with a

cap, and establishing vegetation in accordance with the requirements for closure in place in 40 CFR 257.102(d). This measure is consistent with landfill cover systems to prevent infiltration of surface water into the CCR as described in **Section 4.1.1**. Impacted groundwater will be collected using pumps and treated prior to discharge according to state and federal requirements as described in Section 4.1.2.

This alternative eliminates CCR sluicing/plant process water discharges and, with the consolidation of the CCR footprint and the installation of a cap, will reduce infiltration through the CCR. This is expected to address the major contributor to potential groundwater impacts, which is exposure of CCR material to precipitation/surface water infiltration. Consolidation of CCR into a smaller footprint during closure also reduces the volume of potential source materials that may be in contact with groundwater after closure. Leaching of metals and migration within groundwater will be reduced and may be eliminated over time as impacted groundwater is collected to contain and restore contaminant concentrations in groundwater to levels below the GPS.

ALTERNATIVE 8 – CONSOLIDATE AND CAP WITH BARRIER WALL 5.8

Alternative 8 includes closing the landfill and impoundment (no further discharge), relocating and consolidating CCR into a smaller footprint within the CCR Units, covering the CCR materials with a cap, and establishing vegetation in accordance with the requirements for closure in place in 40 CFR 257.102(d). This measure is consistent with landfill cover systems to prevent infiltration of surface water into the CCR as described in Section 4.1.1. Impacted groundwater will be intercepted with a barrier wall to minimize the migration of contaminants as described in Section 4.1.2.

This alternative eliminates CCR sluicing/plant process water discharges and, with the consolidation of the CCR footprint and the installation of a cap, will reduce infiltration through the CCR. This is expected to address the major contributor to potential groundwater impacts, which is exposure of CCR material to precipitation/surface water infiltration. Consolidation of CCR into a smaller footprint during closure also reduces the volume of potential source materials that may be in contact with groundwater after closure. Leaching of metals and migration within groundwater will be reduced and may be eliminated over time as impacted groundwater is intercepted with a barrier wall to minimize the spread of potential impacts to groundwater.

EVALUATION OF CORRECTIVE MEASURE ALTERNATIVES 6.0

As required by 40 CFR 257.96(c), an evaluation of the effectiveness of corrective measure alternatives in meeting the requirements and objectives outlined in 40 CFR 257.97 was previously provided in the November 2020 ACM Addendum No. 1. Based on the data available at the time, the evaluation addressed the requirements and objectives identified in 40 CFR 257.96(c)(1) through (3), which include:

- The performance, reliability, ease of implementation, and potential impacts of • appropriate potential remedies, including safety impacts, cross-media impacts, and control of exposure to residual contamination;
- The time required to begin and complete the remedy; and
- The institutional requirements, such as state or local permit requirements or other • environmental or public health requirements that may substantially affect implementation of the remedy.

Based on the updated nature and extent of the groundwater impacts at LAN and the conclusion that the CCR Units are not the source of arsenic in groundwater at concentrations exceeding the GPS in samples from MW-302, an assessment of these factors is no longer a matter of CCR Rule compliance and will be addressed with state regulators, as such, the evaluation of corrective measure alternatives has not been updated for ACM Addendum No. 2 with the exception of Alternative 1 – No Action.

6.1 ALTERNATIVE 1 – NO ACTION

As described in **Section 5.1**, the No Action alternative is included because data obtained to complete ACM Addendum No. 2 indicates the CCR Units are not the source of groundwater impacts above the GPS at LAN. As such, the five criteria in 40 CFR 257.97(b)(1) through (5), do not apply. For completeness only, Alternative 1 is evaluated with regard to the criteria in 40 FR 257.96(c) below:

- Performance, Reliability, Implementation, and Impacts.
 - <u>Performance</u> The ability to attain the GPS for arsenic is no longer subject to the CCR Rule and will be addressed with state regulators.
 - <u>Reliability</u> Alternative 1 does not provide any reduction in existing risk.
 - Implementation Nothing is required to implement Alternative 1.
 - <u>Impacts</u> No additional safety or cross-media impacts are expected with Alternative 1.
- **Timing.** No time is required to begin.
- **Institutional Requirements**. No institutional requirements beyond maintaining current regulatory approvals exist for Alternative 1.

7.0 SUMMARY OF ASSESSMENT

Based on the currently available information for this site the CCR Units are not the source of groundwater impacts. Thus, corrective action will be addressed with state regulators.

8.0 REFERENCES

- Alliant Energy, (2020), Interstate Power and Light Company Lansing Generating Station, NPDES Renewal Application (NPDES Permit No.: 0300100), September 3, 2020.
- Federal Remediation Technologies Roundtable (FRTR), (2020), Technology Screening Matrix <u>https://frtr.gov/matrix/default.cfm</u>, Accessed November 17-19, 2020.
- Hard Hat Services (HHS), (2016), History of Construction, Lansing Generating Station, Interstate Power and Light Company, September 2016.
- HHS, (2019), CCR Surface Impoundment Annual Inspection Report, Lansing Generating Station, Interstate Power and Light Company, December 2019.
- SCS Engineers, (2015), "Completed Soil Boring Through Waste," Lansing Generating Station, Lansing, Iowa, Existing Landfill Permit #03-SDP-05-01P, August 11, 2015.
- W.A. Gebert, David J. Graczyk, and William R. Krug (1987), Average Annual Runoff in the United States, 1951-80, USGS Hydrologic Atlas 710.
- United States Environmental Protection Agency (U.S. EPA), (1998), "Solid Waste Disposal Facility Criteria Technical Manual (EPA530-R-93-017), Revised April 13, 1998." Solid Waste and Emergency Response.
- U.S. EPA (2007), "Monitored Natural Attenuation of Inorganic Contaminants in Groundwater, Volume 1 – Technical Basis for Assessment, (EPA600-R-07-139). Office of Research and Development, National Risk Management Laboratory, Ada, Oklahoma.

Tables

- 1 Groundwater Monitoring Well Network
- 2 CCR Rule Groundwater Samples Summary
- 3 Water Level Summary
- 4A Groundwater Analytical Results Summary October 2017 through April 2022
- 4B Groundwater Analytical Results Summary October 2022
- 5 Field Monitoring Data
- 6 Horizontal Gradients and Flow Velocity 2022
- 7 Vertical Gradients
- 8 Historical Groundwater Arsenic Results for State Monitoring Wells

Table 1. Groundwater Monitoring Well NetworkLansing Generating Station / SCS Engineers Project #25220082.00

Monitoring Well	Location in Monitoring Network	Role in Monitoring Network
MW-6	Upgradient	Background
MW-301	Downgradient	Compliance
MW-302	Downgradient	Compliance
MW-302A	Downgradient, deeper	Delineation
MW-303	Downgradient	Compliance
MW-304	Downgradient	Delineation
MW-304A	Downgradient, deeper	Delineation
MW-305	Downgradient	Delineation
MW-306	Downgradient	Delineation
MW-306A	Downgradient, deeper	Delineation
MW-307	Downgradient	Delineation
MW-307A	Downgradient, deeper	Delineation
MW-308	Downgradient	Groundwater Elevation Only
MW-309	Downgradient	Groundwater Elevation Only

Created by:	RM	Date:	12/14/2020
Last revision by:	RM	Date:	6/24/2022
Checked by:	NDK	Date:	9/26/2022

I:\25220082.00\Deliverables\ACM Add No. 2\Tables\ Table 1 - GW Monitoring Well Network

Table 2. CCR Rule Groundwater Samples Summary Lansing Generating Station / SCS Engineers

Sample Dates	Downgradient Wells														
	MW-301	MW-302	MW-302A	MW-303	MW-304	MW-304A	MW-305	MW-306	MW-306A	MW-307	MW-307A	MW-6			
12/10/2015	В	В	NI	В	NI	NI	NI	NI	NI	NI	NI	В			
4/29/2016	В	В	NI	В	NI	NI	NI	NI	NI	NI	NI	В			
7/20/2016	В	В	NI	В	NI	NI	NI	NI	NI	NI	NI	В			
10/26-27/2016	В	В	NI	В	NI	NI	NI	NI	NI	NI	NI	В			
1/17-18/2017	В	В	NI	В	NI	NI	NI	NI	NI	NI	NI	В			
4/19/2017	В	В	NI	В	NI	NI	NI	NI	NI	NI	NI	В			
6/19-20/2017	В	В	NI	В	NI	NI	NI	NI	NI	NI	NI	В			
8/15/2017	В	В	NI	В	NI	NI	NI	NI	NI	NI	NI	В			
10/16/2017	D	D	NI	D	NI	NI	NI	NI	NI	NI	NI	D			
4/16/2018	A	A	NI	A	NI	NI	NI	NI	NI	NI	NI	A			
4/26/2018			NI		NI	NI	NI	NI	NI	NI	NI	A-R			
6/4/2018	A-R	A-R	NI	A-R	NI	NI	NI	NI	NI	NI	NI				
8/7/2018	A	A	NI	A	NI	NI	NI	NI	NI	NI	NI	A			
10/8/2018	A	A	NI	A	NI	NI	NI	NI	NI	NI	NI	A			
4/15/2019	A	A	NI	A	NI	NI	NI	NI	NI	NI	NI	A			
6/20/2019			NI		A	NI	A	A	NI	NI	NI				
10/2/2019	A	A	NI	A	A	NI	A	A	NI	NI	NI	A			
12/5/2019			NI			NI		A-R	NI	NI	NI				
2/5/2020			NI			NI		A-R	NI	NI	NI	A			
5/19-20/2020	A	A	A	A	A	A	A	A	A	NI	NI	A			
7/6/2020			A	A		A			A	NI	NI				
8/18-19/2020	A-R	A-R	A-R	A-R	A-R	A-R	A-R	A-R	A-R	NI	NI	A-R			
10/19/2020	A	A	A	A	A	A	A	A	A	NI	NI	A			
2/23/2021						A-S		A-S		NI	NI				
4/7-9/2021	А	А	А	А	А	A	А	А	A	NI	NI	А			
7/12-13/2021						A-S		A-S		A-S	A-S				
8/13/2021										A-S	A-S				
10/25-27/2021	А	A	A	А	А	А	А	А	A	А	А	А			
4/4-6/2022	А	А	А	А	А	А	А	А	А	А	А	А			
10/17-19/2022	А	А	А	А	А	А	А	А	А	А	А	А			

Abbreviations:

B = Background Sample Event

D = Detection Monitoring Program Event

-- = Not Applicable

Created by:	NDK	Date: 1/8/2018
Last revision by:	RM	Date: 3/22/2023
Checked by:	NLB	Date: 3/22/2023

A = Assessment Monitoring Sample Event A-R = Assessment Monitoring Resample Event NI = Not Installed

A-S = Assessment Monitoring Supplemental Event

I:\25220082.00\Deliverables\ACM Add No. 2\Tables\[Table 2 - GW_Samples_Summary_Table_LAN.xlsx]GW Summary

Г	1	1	1				<u> </u>			1	1	[1	r –	1	1	1	1	1	r –	<u> </u>	<u>т</u>	1	1	1	-	1	I		1	r		1	1		
Well Number	MW1 ⁽⁴⁾	MW2	MW3 (⁽³⁾ MW4	MV	N5 MV	V6 I	MW11	MW11R	MW12	MW12P	MW13	MW14	MW15	TW17	TW18	TW19	MW-16	MW-18	MW-19	MW-22	MW-22	P MW20	MW301	MW302	MW302A	MW303	MW304	MW304A	MW305	MW306	MW306A	MW307	MW-307A	MW308	MW309
Top of Casing Elevation (feet amsl)	636.67	657.36	656.7	8 698.17	698	.46 741	.33 6	686.19	686.42	691.40	691.58	658.38	646.06	656.82	659.59	659.15	659.05	700.26	771.09	716.07	702.55	702.17	7 662.29	641.61	638.40	638.93	656.27	636.43	638.60	633.87	637.48	639.56	643.06	642.96	637.89	638.27
Screen Length (ft)	20	10	10	10	1(0 10	0	10	10	15	5	15	15	15	15	15	15	15	15	15	15	5	10	10	10	5	10	10	5	10	10	5	10	5	10	10
Top of Well Screen Elevation (ft)	626.50	620.50	600.0	0 650.00	630	.00 656	.00 6	657.96	646.94	657.70	627.98	649.48	636.96	640.82	649.39	650.55	648.95	662.18	669.23	651.69	665.27	625.14	4 648.79	624.01	626.90	594.93	637.97	630.43	593.60	627.87	621.48	589.56	633.06	597.96	627.89	626.27
Measurement Date					_																														<u> </u>	
May 11, 2001	632.77	628.53	629.2	9 653.61				NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
March 8, 2002	627.95	620.21						653.60	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI							
February 19, 2004	NM	NM	NM					648.03	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI							
May 26, 2004	NM	NM	NM	652.89	_			652.09	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI							
August 23, 2004 November 18, 2004	NM NM	NM NM	NM NM	652.15	, 000			650.04	NI	NI NI	NI	NI	NI NI	NI	NI	NI	NI NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI NI	NI NI	NI NI	NI	NI	NI	NI NI	NI	NI	NI
May 5, 2005	NM	NM	NM	650.42				648.18 647.77	NI NI	NI	NI NI	NI NI	NI	NI NI	NI	NI	NI	NI NI	NI	NI NI	NI	NI	NI	NI	NI NI	NI	NI	NI	NI	NI NI	NI NI	NI	NI	NI	NI NI	NI NI
May 19, 2006	NM	NM	NM	650.42				047.77 DRY	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI							
May 30, 2007	NM	NM	NM	650.21				DRY	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI							
April 16, 2008	NM	NM	NM	653.99	_			DRY	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI							
April 3, 2009	NM	NM	NM					DRY	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI							
April 21, 2010	NM	NM	NM					DRY	646.41	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI						
May 4, 2011	NM	NM	NM	653.51	_			DRY	646.58	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI						
April 25, 2012	NM	NM	NM	651.77	653			DRY	646.53	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI						
October 17, 2012	627.33	620.03	NM ⁽²⁾) 650.73	_			AB	646.16	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI						
February 19-20, 2013	627.03	620.03	_		_			AB	645.42	650.31	NI	643.72	641.93	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
April 1, 2013	627.80	620.68	_					AB	646.21	651.71	NI	644.61	641.36	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
July 1, 2013	631.57	625.88	626.6	8 661.13	662	.31 673	.12	AB	648.73	653.66	NI	648.43	642.43	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
April 29, 2014	629.84	NM	NM	654.17	' 655	.43 664	.86	AB	646.96	651.62	651.33	645.97	641.95	633.83	648.74	647.26	648.08	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
May 29, 2014	629.75	624.37	624.5	0 653.53			.30	AB		651.05		645.39		633.61	010111	646.55	646.96	_	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
April 20, 2015	628.16	620.09	620.7					AB		650.32		643.73	642.02	633.85	647.79	646.35		NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
December 10, 2015	NM	NM	NM	NM	N			AB	NM	NM	NI	NI	NI	NI	NI	648.27	623.54	627.88	NI	638.79	NI	NI	NI	NI	NI	NI	NI	NI	NI							
April 28, 2016	627.50	620.26	_				.80	AB	645.96	650.05	650.00	643.56	641.56	634.71	647.78	NM ⁽⁵⁾	646.80	NI	NI	NI	NI	NI	648.61	623.45	627.24	NI	638.15	NI	NI	NI	NI	NI	NI	NI	NI	NI
July 20, 2016	NM	NM	NM		N			AB	NM	NM	NM	NM	NM	NM	NM	649.86		628.60	NI	639.33	NI	NI	NI	NI	NI	NI	NI	NI	NI							
October 27, 2016	NM NM	NM NM	NM NM		N			AB	NM	NM	NM	NM	NM NM	NM	NM NM	NM	NM	NM	NM	NM	NM	NM			628.35	NI NI	638.65	NI	NI	NI	NI	NI	NI	NI	NI	NI NI
January 18, 2017 April 19-21, 2017	629.39	622.04	_		_					653.68	NM 653.40	647.61	643.01		649.87	NM 649.03			669.88		668.38		650.18 5 651.71		1		638.10		NI NI	NI NI	NI NI	NI	NI NI	NI	NI	
June 19-20, 2017	029.39 NM	022.04 NM	022.0		NN			AB	NM		NM	NM	NM	NM		049.03 NM	NM	NM		NM	NM	_	650.22	_			638.77		NI	NI	NI	NI	NI	NI	NI	NI
August 15, 2017	NM	NM	NM	_	N			AB	NM		NM	NM	NM	NM	_	NM	NM	NM	NM	NM	NM	NM		624.09			637.86		NI	NI	NI	NI	NI	NI	NI	NI
October 16, 2017	NM	NM	NM		N			AB	NM	NM	NM	NM	NM	NM	NM		625.70			638.79		NI	NI	NI	NI	NI	NI	NI	NI							
April 16-17, 2018	628.63	620.82			A			AB		652.25	651.90	646.36	642.61		648.77	648.49	_	NM	NM	NM	NM	NM	650.77	_			638.62		NI	NI	NI	NI	NI	NI	NI	NI
April 26, 2018	628.67		_	_	A			AB				646.38			648.99	_		_	_		666.28			_		NI	638.57		NI	NI	NI	NI	NI	NI	NI	NI
June 4, 2018	NM	NM	NM	AB	A	B NM	M	AB	NM	NM	NM	NM	NM	NM		NM	NM	NM	NM	NM	NM	NM		_	628.27	NI	638.81	NI	NI	NI	NI	NI	NI	NI	NI	NI
October 8, 2018	NM	NM	NM	AB	A	B 664	.71	AB	NM	NM	NM	NM	NM	NM	NM	NM	625.73	628.59	NI	637.32	NI	NI	NI	NI	NI	NI	NI	NI	NI							
April 15-16, 2019	630.95	632.16	628.4	0 AB	A	B 672	.78	AB	648.69	654.35	653.99	649.45	643.08	633.71	649.73	648.47	648.10	NM	672.64	654.55	671.05	669.22	652.57	629.19	629.99	NI	638.22	NI	NI	NI	NI	NI	NI	NI	NI	NI
June 20, 2019	NM	NM	NM	AB	A	B NN	M	AB	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NI	NM	623.61	NI	629.12	623.05	NI	NI	NI	NI	NI							
October 2, 2019	NM	NM	NM		A			AB	NM		NM	NM	NM	NM	_	NM	NM	NM	NM	NM	NM	NM		626.54		NI	638.03		NI		622.47	NI	NI	NI	NI	NI
December 5, 2019	NM	NM	NM		A			AB	NM	NM	NM	NM	NM	NM		NM	NM	NM	NM	NM	NM	NM	_	NM	NM	NI	NM	NM	NI	NM	620.60	NI	NI	NI	NI	NI
February 5, 2020	NM	NM	NM		A			AB	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NI	NM	NM	NI	NM	620.83	NI	NI	NI	NI	NI							
May 20-21, 2020	629.38	620.61			A			AB		654.45	654.04	647.94	643.23	633.80	_	648.86	649.40	_			672.16	670.46	_	_		623.19		621.57	624.88	627.24	620.43	620.40	NI	NI	NI	NI
July 6, 2020	NM	NM	NM		A			AB	NM	NM	NM	NM	NM	NM	NM		NM	NM 407.52	624.20		NM	625.76	NM	NM	621.66	NI	NI	NI	NI							
August 19-21, 2020 October 19-20, 2020	NM 628.69	NM	621.2		A			AB	NM		NM 653.57	NM 647.50	NM 642.96	NM		648.76	NM	NM	_	NM	NM	NM				623.52 623.03			NM	626.98		620.63	NI	NI	NI	NI
February 23, 2021	628.69 NM	620.38 NM	621.2 NM		A			AB AB	647.71 NM	653.94 NM	653.57 NM	647.50 NM	642.96 NM	633.44 NM	649.67 NM	648.76 NM	648.14 NM	660.42 NM	673.35 NM	654.95 NM	671.21 NM	669.55 NM		624.42 NM	627.14 NM	623.03 NM	636.96 NM	621.40 NM	624.41	626.54 NM	619.92 619.76	620.17 NM	NI NI		NI NI	NI NI
April 7-9, 2021	628.84		_		A					652.31		647.39			649.58	_			_		_	_	4 650.79	_			638.07		625.04			620.14	NI	NI	NI	NI
July 12-13, 2021	020.04 NM	NM		-	N			NM	NM		032.92 NM	NM	042.92 NM	034.30 NM	_	040.00 NM	_	059.59 NM	_		009.02 NM	NM				622.77							630.95	625.27	621.00	
August 13, 2021	627.92		621.5		N						652.31								_							623.12						620.82	630.01	625.48	621.44	
September 23, 2021	627.54		621.3		A						652.12				649.12	_			_		_	_	650.46			_			623.74			620.28	631.74	625.28	621.09	
October 25-27, 2021	627.51		621.1		A							645.58	642.68		649.00		647.90	_			666.48		7 649.34					621.29	623.87	626.41	619.91	620.17	634.90	626.25	620.90	
February 18, 2022	627.18	_	620.6		A										_	_	_	_				_				623.09							638.27	626.12	620.66	
April 4-7, 2022	627.65	620.66	621.3	6 AB	A		.14									_							650.86						619.00	-		620.61	639.74	626.72	621.44	
June 2, 2022	NM	NM	NM	NM	N	M NI	M				651.37				NM	648.61		NM	NM	NM	NM	NM	_	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
October 17-19 2022	627.05	620.12	620.9	1 AB	A	B 665	.34	AB	646.34	651.12	650.79	643.88	642.34	639.04	648.57	648.39	647.63	656.97	664.97	647.72	663.92	663.06	6 AB	630.79	629.51	622.97	639.39	621.21	623.56	626.36	619.79	620.05	639.23	625.77	621.78	621.96
																																			[_]	
Bottom of Well Elevation (ft)	606.50	610.50	590.0	0 640.47	620	.36 646	.03 6	647.59	636.94	642.70	622.98	634.48	621.96	625.82	634.39	635.55	633.95	647.18	654.23	636.69	650.27	620.14	4 638.79	614.01	616.90	589.93	627.97	620.43	588.60	617.87	611.48	584.56	623.06	592.96	617.89	616.27

Notes:

NM = not measured

NI = not installed

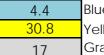
AB = abandoned

1. The groundwater elevations recorded for MW11 on 2/19/04, 11/18/04, and 5/05/05 are not considered reliable due to a minimal quantity of water observed in the well. The actual water table elevation could be lower than the reported value. 2. MW3 could not be located during the October 2012 sampling event.

3. Repairs were completed at MW3 in July 2013. Elevations calculated for February, April, and July 2013 are estimates based on the old top of casing elevation (657.36 feet amsl). MW3 was re-surveyed on June 3, 2014.

4. MW1 was repaired in April 2013. Groundwater elevations measured before this date are calculated using the old top of casing elevation (637.60 ft amsl).

5. TW18 was damaged and could not be accessed for a water level measurement in April 2016. The well was repaired in July 2016.


Created by: MDB	Date: 8/9/2013
Last revision by: EMS	Date: 10/21/2022
Checked by: NDK	Date: 10/21/2022

I:\25220082.00\Deliverables\ACM Add No. 2\Tables\[Table 2 - GW_Samples_Summary_Table_LAN.xlsx]GW Summary

Table 3. Water Level Summary Interstate Power & Light - Lansing, Iowa / SCS Engineers Project #25220082.00

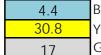
Table 4A. Groundwater Analytical Results Summary - October 2017 through April 2022 Lansing Generating Station / SCS Engineers Project #25220082.00

				Background Well MW-6													
								•	. N	/W-6				•			
Parameter Name	UPL Method	UPL	GPS	10/16/2017	4/16/2018, 4/26/2018 [^]	8/7/2018	10/8/2018	4/15/2019	10/2/2019	5/19/2020	8/19/2020	10/20/2020	4/7/2021	10/26/2021	4/6/2022		
Appendix III									•		•						
Boron, ug/L	P*	100		41.2 J	29.8 J	42.9 J	40.2 J	<110	<110	<73	NA	<80	<58	64 J	<58		
Calcium, mg/L	Р	73.9		66.9	72.7	66.5	69.6	67	70	72	76	69	71	72	71		
Chloride, mg/L	Р	8.52		6.5	6.5	7.3	6.6	6.7	6.9	7.7	6.8	5.6	7.0	6.8	5.3		
Fluoride, mg/L	P*	0.2		0.14 J	0.084 J	0.12 J	<0.19	0.63	<0.23	<0.23	NA	<0.23	0.34 J	<0.28	<0.22		
Field pH, Std. Units	Р	7.9		7.03	7.34	7.18	7.06	7.59	7.46	7.34	7.98	7.42	7.39	7.70	7.32		
Sulfate, mg/L	Р	29.4		25.8	26.4	24.8	25.5	26	24	27	25	25	23	25	25		
Total Dissolved Solids, mg/L	Р	386.7		318	343	351	319	340	280	580	NA	300	290	240	280		
Appendix IV		UPL	GPS														
Antimony, ug/L	NP*	0.037	6	NA	<0.026	<0.15	<0.078	<0.53	NA	<0.58	NA	NA	<1.1	<1.1	<0.69		
Arsenic, ug/L	P*	0.37	10	NA	0.23 J	0.26 J	0.24 J	<0.75	<0.75	<0.88	NA	<0.88	<0.75	<0.75	<0.75		
Barium, ug/L	Р	48.5	2,000	NA	44.1	43.1	43	43	46	46	NA	45	49 B	47	48		
Beryllium, ug/L	DQ	DQ	4	NA	<0.012	<0.12	<0.089	<0.27	NA	<0.27	NA	NA	<0.27	<0.27	<0.27		
Cadmium, ug/L	DQ	DQ	5	NA	<0.018	NA	<0.033	<0.077	NA	< 0.039	NA	< 0.049	<0.051	<0.051	<0.055		
Chromium, ug/L	Р	1.20	100	NA	0.66 J	0.97 J	0.73 J	<0.98	<0.98	<1.1	NA	<1.1	<1.1	<1.1	<1.1		
Cobalt, ug/L	NP*	0.34	6	NA	< 0.014	<0.15	<0.062	<0.091	<0.091	<0.091	NA	<0.091	<0.091	<0.19	<0.19		
Fluoride, mg/L	P*	0.2	4	NA	0.084 J	0.12 J	<0.19	0.63	<0.23	<0.23	NA	<0.23	0.34 J	<0.28	<0.22		
Lead, ug/L	NP*	0.13	15	NA	< 0.033	<0.12	<0.13	<0.27	<0.27	<0.27	NA	<0.11	<0.21	<0.21	<0.24		
Lithium, ug/L	NP*	3	40	NA	<4.6	NA	<4.6	<2.7	<2.7	<2.3	NA	<2.5	<2.5	<2.5	<2.5		
Mercury, ug/L	DQ	DQ	2	NA	<0.090	<0.090	<0.090	<0.10	NA	<0.10	NA	NA	<0.15	<0.15	<0.11		
Molybdenum, ug/L	P*	0.37	100	NA	0.26 J	0.28 J	<0.57	<1.1	<1.1	<1.1	<1.1	<1.1	<1.3	<1.3	<1.2		
Selenium, ug/L	P*	0.72	50	NA	0.47 J	0.5 J	0.46 J	<1.0	NA	<1.0	NA	<1.0	<0.96	<0.96	<0.96		
Thallium, ug/L	NP*	0.29	2	NA	<0.036	NA	<0.099	<0.27	NA	<0.26	NA	NA	<0.26	<0.26	<0.26		
Radium 226/228 Combined, pCi/L	Р	1.88	5	NA	1.35	0.974	1.37	0.255	0.495	0.504	NA	0.644	0.359	0.779	0.0823		
Additional Parameters - Selectio	n of Remedy							•	•			•		•			
Arsenic, dissolved [#] , ug/L				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.75	NA		
Calcium, ug/L	1			NA	NA	NA	NA	NA	NA	NA	NA	74,000	NA		NA		
Iron, dissolved, [#] ug/L	1			NA	NA	NA	NA	NA	NA	NA	<50.0	<50.0	49 J	<36	<36		
Iron, ug/L	1			NA	NA	NA	NA	NA	NA	NA	<50.0	<50.0	<36	<36	<36		
Magnesium, ug/L	-			NA	NA	NA	NA	NA	NA	NA	38,000	37,000	36,000	35,000	35,000		
Manganese, dissolved, ug/L [#]	-			NA	NA	NA	NA	NA	NA	NA	6.6 J	25	5.1 J	<4.4	14		
Manganese, ug/L	UPL or GP	S not and	nlicable	NA	NA	NA	NA	NA	NA	NA	0.0 J	<4.0	<4.4	<4.4	<3.6		
		o not app	plicable	NA	NA	NA	NA	NA	NA	NA	4 NA	NA	NA	NA	×3.0 NA		
Molybdenum, dissolved,ug/L [#]	-			NA	NA	NA	NA	NA	NA	NA	1.2	1,100	1,100	1,100	1,100		
Potassium, ug/L	-																
Sodium, ug/L	-			NA	NA	NA	NA	NA	NA	NA	5,000	4,500	4,600	4,500	4,500		
Total Alkalinity, mg/L	_			NA	NA	NA	NA	NA	NA	NA	290	300	310	380	330		
Carbonate Alkalinity, mg/L	-			NA	NA	NA	NA	NA	NA	NA	<3.8	<3.8	<4.4	<4.6	<4.6		
Bicarbonate Alkalinity, mg/L				NA	NA	NA	NA	NA	NA	NA	290	300	310	380	330		

4.4 Blue highlighted cell indicates the compliance well result exceeds the UPL (background) and the LOQ. 30.8 Yellow highlighted cell indicates the compliance well result exceeds the GPS. 17 Grayscale indicates Additional Parameters sampled for selection of remedy and evaluation of MNA.

									Cor	mpliance Wel	S				
								MW-30			-				
Parameter Name	UPL Method	UPL	GPS	10/16/2017	4/16/2018, 6/4/2018 [^]	8/7/2018	10/8/2018	4/15/2019	10/2/2019	5/19/2020	8/18/2020	10/19/2020	4/8/2021	10/26/2021	4/5/2022
Appendix III										•					
Boron, ug/L	P*	100		436	198.0	279	357	250	360	150	NA	260	160	260	220
Calcium, mg/L	Р	73.9		65.9	64.5	65.1	72.5	73	68	56	65	57	58	68	69
Chloride, mg/L	Р	8.52		17.3	20.2	17.7	15.9	17	14	17	15	15	18	17	22
Fluoride, mg/L	P*	0.2		0.24	0.24	0.23	0.27	0.9	0.23 J	0.56	NA	<0.23	0.38 J, F1	<0.28	<0.22
Field pH, Std. Units	Р	7.9		7.66	8.4	8.08	8.16	8.47	8.11	7.85	8.33	8.06	8.04	8.11	8.30
Sulfate, mg/L	Р	29.4		52.7	49.3	53.2	64.4	51	56	34	44	48	27 F1	49	86
Total Dissolved Solids, mg/L	Р	386.7		289	300.0	326	320	350	310	480	NA	280	240	210	260
Appendix IV		UPL	GPS												
Antimony, ug/L	NP*	0.037	6	NA	0.071 J	0.16 J	0.085 J	<0.53	NA	<0.58	NA	NA	<1.1	<1.1	<0.69
Arsenic, ug/L	P*	0.37	10	NA	3.9	4.4	5.4	5.4	5.6	3.8	NA	6	5.0	7.1	4.9
Barium, ug/L	Р	48.5	2,000	NA	163	156	155	160	180	140	NA	150	140 B	160	130
Beryllium, ug/L	DQ	DQ	4	NA	<0.012	<0.12	<0.089	<0.27	NA	<0.27	NA	NA	<0.27	<0.27	<0.27
Cadmium, ug/L	DQ	DQ	5	NA	<0.018	NA	< 0.033	<0.077	NA	<0.039	NA	< 0.049	0.060 J	<0.051	<0.055
Chromium, ug/L	Р	1.20	100	NA	1.1	<0.19	0.09 J	<0.98	<0.98	<1.1	NA	<1.1	<1.1	<1.1	<1.1
Cobalt, ug/L	NP*	0.34	6	NA	0.086 J	0.16 J	0.11 J	0.11 J	0.11 J	0.11 J	NA	0.11 J	0.11 J	0.23 J	<0.19
Fluoride, mg/L	P*	0.2	4	NA	0.24	0.23	0.27	0.90	0.23 J	0.56	NA	<0.23	0.38 J, F1	<0.28	<0.22
Lead, ug/L	NP*	0.13	15	NA	0.037 J	<0.12	<0.13	<0.27	<0.27	<0.27	NA	<0.11	<0.21	0.37 J	<0.24
Lithium, ug/L	NP*	3	40	NA	<4.6	NA	9.1 J	8.7 J	8.0 J	7.0 J	NA	7.9 J	7.1 J	6.7 J	7.3
Mercury, ug/L	DQ	DQ	2	NA	0.31	< 0.090	< 0.090	<0.10	NA	<0.10	NA	NA	<0.15	<0.15	<0.11
Molybdenum, ug/L	P*	0.37	100	NA	4.4	5.6	10.3	11	10	8.1	5.8	7.5	6.8	6.2	7.6
Selenium, ug/L	P*	0.72	50	NA	<0.086	0.22 J	0.18 J	<1.0	NA	<1.0	NA	<1.0	<0.96	<0.96	<0.96
Thallium, ug/L	NP*	0.29	2	NA	< 0.036	NA	< 0.099	<0.27	NA	<0.26	NA	NA	<0.26	<0.26	<0.26
Radium 226/228 Combined, pCi/L	Р	1.88	5	NA	0.689	1.66	0.556	0.232	0.488	0.200	NA	0.889	0.244	0.814	0.103
Additional Parameters - Selection	n of Remedy	/		•						•					
Arsenic, dissolved [#] , ug/L				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	6.8	NA
Calcium, ug/L				NA	NA	NA	NA	NA	NA	NA	NA	62,000	NA	NA	NA
Iron, dissolved, [#] ug/L				NA	NA	NA	NA	NA	NA	NA	330	110	320	430	280
Iron, ug/L	1			NA	NA	NA	NA	NA	NA	NA	680	500	740	640	620
Magnesium, ug/L	1			NA	NA	NA	NA	NA	NA	NA	19,000	18,000	19,000	18,000	21,000
Manganese, dissolved, ug/L [#]	1			NA	NA	NA	NA	NA	NA	NA	810	530	650	530	570
Manganese, ug/L	UPL or GP	S not ap	olicable	NA	NA	NA	NA	NA	NA	NA	800	560	670	530	590
Molybdenum, dissolved, $ug/L^{\#}$				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium, ug/L				NA	NA	NA	NA	NA	NA	NA	3,200	3,600	2,600	3,700	3,000
				NA	NA	NA	NA	NA	NA	NA	13,000		13,000	13,000	16,000
Sodium, ug/L	-											11,000			
Total Alkalinity, mg/L	-			NA	NA	NA	NA	NA	NA	NA	200	160	220	260	200
Carbonate Alkalinity, mg/L	-			NA	NA	NA	NA	NA	NA	NA	<3.8	<3.8	<4.6	<4.6	<4.6
Bicarbonate Alkalinity, mg/L				NA	NA	NA	NA	NA	NA	NA	200	160	220	260	200

4.4 Blue highlighted cell indicates the compliance well result exceeds the UPL (background) and the LOQ. 30.8 Yellow highlighted cell indicates the compliance well result exceeds the GPS. 17 Grayscale indicates Additional Parameters sampled for selection of remedy and evaluation of MNA.


									Compliar						
					r	r		r	MW-	302			1	-	
Parameter Name	UPL Method	UPL	GPS	10/16/2017	4/16/2018, 6/4/2018 [^]	8/7/2018	10/8/2018	4/15/2019	10/2/2019	5/20/2020	8/19/2020	10/19/2020	4/9/2021	10/27/2021	4/5/2022
Appendix III															<u>. </u>
Boron, ug/L	P*	100		708	489	648	694	690	690	480	NA	640	460	630	540
Calcium, mg/L	Р	73.9		116	120	116	122	130	130	120	130	110	120	120	120
Chloride, mg/L	Р	8.52		13.9	13.0	13.9	13.5	13	12	14	12	11	11	14	12
Fluoride, mg/L	P*	0.2		0.28	0.24	0.23	0.27	0.79	0.24 J	0.25 J	0.27 J	<0.23	0.31 J	1.3	<0.22
Field pH, Std. Units	Р	7.9		7.1	7.26	6.92	6.93	7.66	7.15	6.93	7.18	7.06	7.08	6.89	6.92
Sulfate, mg/L	Р	29.4		<0.5	<0.24	<0.24	<0.24	<1.8	<1.8	<3.6	<3.6	<3.6	<2.5	<2.5	<2.0
Total Dissolved Solids, mg/L	Р	386.7		507	543	562	518	450	480	710	NA	490	470	450	490
Appendix IV		UPL	GPS												
Antimony, ug/L	NP*	0.037	6	NA	0.035 J	<0.15	<0.078	<0.53	NA	<0.58	NA	NA	<1.1	<1.1	<0.69
Arsenic, ug/L	P*	0.37	10	NA	30.8	47.6	50.4	37	53	33	NA	48	33	51	40
Barium, ug/L	Р	48.5	2,000	NA	789	661	603	690	740	610	NA	630	630 B	680	690
Beryllium, ug/L	DQ	DQ	4	NA	<0.012	<0.12	<0.089	<0.27	NA	<0.27	NA	NA	<0.27	<0.27	<0.27
Cadmium, ug/L	DQ	DQ	5	NA	<0.018	NA	< 0.033	<0.077	NA	< 0.039	NA	<0.049	0.060 J	0.076 J	<0.055
Chromium, ug/L	Р	1.20	100	NA	0.35 J	0.49 J	0.39 J	<0.98	<0.98	<1.1	NA	<1.1	<1.1	<1.1	<1.1
Cobalt, ug/L	NP*	0.34	6	NA	1.1	1.1	1.1	1.5	1.3	1.0	NA	0.86	1.00	1.1	1.5
Fluoride, mg/L	P*	0.2	4	NA	0.24	0.23	0.27	0.79	0.24 J	0.25 J	NA	<0.23	0.31 J	1.3	<0.22
Lead, ug/L	NP*	0.13	15	NA	0.084 J	0.23 J	<0.13	<0.27	<0.27	<0.27	NA	<0.11	<0.21	1.0	<0.24
Lithium, ug/L	NP*	3	40	NA	<4.6	NA	<4.6	<2.7	<2.7	<2.3	NA	<2.5	<2.5	<2.5	<2.5
Mercury, ug/L	DQ	DQ	2	NA	0.35	<0.090	<0.090	<0.10	NA	<0.10	NA	NA	<0.15	<0.15	<0.11
Molybdenum, ug/L	P*	0.37	100	NA	0.91 J	1.2	1.5	<1.1	1.4 J	<1.1	<1.1	<1.1	1.7 J	1.4 J	<1.2
Selenium, ug/L	P*	0.72	50	NA	<0.086	0.3 J	0.26 J	<1.0	NA	<1.0	NA	<1.0	1.2 J	<0.96	<0.96
Thallium, ug/L	NP*	0.29	2	NA	<0.036	NA	<0.099	<0.27	NA	<0.26	NA	NA	2.5 B	0.31 J	<0.26
Radium 226/228 Combined, pCi/L	Р	1.88	5	NA	1.96	2.09	3.52	0.146	1.48	1.54	NA	1.41	1.57	1.59	1.35
Additional Parameters - Selection	of Remedy						-		_	-					-
Arsenic, dissolved [#] , ug/L				NA	NA	NA	NA	NA	NA	NA	46	44	33	48	38
Calcium, ug/L				NA	NA	NA	NA	NA	NA	NA	NA	130,000	NA		
Iron, dissolved, [#] ug/L				NA	NA	NA	NA	NA	NA	NA	32,000	30,000	33,000	33,000	44,000
Iron, ug/L				NA	NA	NA	NA	NA	NA	NA	33,000	33,000	36,000	35,000	45,000
Magnesium, ug/L				NA	NA	NA	NA	NA	NA	NA	43,000	42,000	41,000	39,000	49,000
Manganese, dissolved, ug/L [#]				NA	NA	NA	NA	NA	NA	NA	2,800	2,500	2,400	2,600	3,000
Manganese, ug/L	UPL or GPS	S not app	olicable	NA	NA	NA	NA	NA	NA	NA	2,800	2,700	2,500	2,700	3,000
Molybdenum, dissolved,ug/L [#]				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium, ug/L				NA	NA	NA	NA	NA	NA	NA	4,700	4,300	3,200	4,300	3,900
Sodium, ug/L				NA	NA	NA	NA	NA	NA	NA	17,000	17,000	16,000	18,000	21,000
Total Alkalinity, mg/L				NA	NA	NA	NA	NA	NA	NA	530	540	540	550	620
Carbonate Alkalinity, mg/L				NA	NA	NA	NA	NA	NA	NA	<7.6	<3.8	<4.6	<4.6	<4.6
Bicarbonate Alkalinity, mg/L				NA	NA	NA	NA	NA	NA	NA	< 7.0 530	< 3.0 540	<4.0 540	<4.0 550	620

4.4 Blue highlighted cell indicates the compliance well result exceeds the UPL (background) and the LOQ. 30.8 Yellow highlighted cell indicates the compliance well result exceeds the GPS. 17 Grayscale indicates Additional Parameters sampled for selection of remedy and evaluation of MNA.

Table 4A. Groundwater Analytical Results Summary - October 2017 through April 2022 Lansing Generating Station / SCS Engineers Project #25220082.00

						De	elineation Well									Complia	ance Well					
							MW-302A										/-303					
Parameter Name	UPL Method	UPL	GPS	5/20/2020	7/6/2020	8/19/2020	10/19/2020	4/8/2021	10/27/2021	4/5/2022	10/16/2017	4/16/2018, 6/4/2018 [^]	8/7/2018	10/8/2018	4/15/2019	10/2/2019	5/19/2020	8/18/2020	10/19/2020	4/9/2021	10/26/2021	4/5/2022
Appendix III													•	•	•	•	•	•	•			
Boron, ug/L	P*	100		190	250	NA	160	170	140	170	592	144	675	474	150 J	520	150	NA	370	120	170	110
Calcium, mg/L	Р	73.9		79	78	81	72	75	75	73	84.7	54.6	46.0	35.3	49	46	54	58	34	47	49	48
Chloride, mg/L	Р	8.52		7.8	6.9	7.1	6	6.7	6.9	5.6	17.2	24.1	14.6	16.3	18	16	15	16	15	21	25	23
Fluoride, mg/L	P*	0.2		<0.23	<0.23	NA	<0.23	<0.28	<0.28	<0.22	0.25	0.32	0.47	0.72	1.0	0.42 J	0.38 J	NA	<0.23	0.52	<0.28	0.33 J
Field pH, Std. Units	Р	7.9		7.27	7.22	7.41	7.33	7.25	7.15	7.34	7.20	8.00	7.66	7.91	7.95	7.83	7.67	7.65	7.77	8.00	7.45	8.07
Sulfate, mg/L	Р	29.4		53	47	49	47	45	50	52	69.9	43.5	52.5	29.1	35	39	42	33	20	25	28	54
Total Dissolved Solids, mg/L	Р	386.7		520	350	NA	350	330	280	300	379	296	262	181	280	210	450	NA	180	210	150	180
Appendix IV		UPL	GPS											-	1	1	r	I	•			·
Antimony, ug/L	NP*	0.037	6	<0.58	<0.51	NA	NA	<1.1	<1.1	<0.69	NA	0.16 J	0.34 J	0.19 J	<0.53	NA	<0.58	NA	NA	<1.1	<1.1	<0.69
Arsenic, ug/L	P*	0.37	10	< 0.88	< 0.88	NA	<0.88	<0.75	< 0.75	< 0.75	NA	1.2	2.3	2.3	1.4 J	2.5	1.4 J	NA	3.2	1.5 J	2.2	1.3 J
Barium, ug/L	Р	48.5	2,000	51	47	NA	46	51 B	48	49	NA	173	194	121	160	220	210	NA	190.0	170 B	240	200
Beryllium, ug/L	DQ	DQ	4	< 0.27	< 0.27	NA	NA	< 0.27	< 0.27	<0.27	NA	0.046 J	<0.12	< 0.089	< 0.27	NA	<0.27	NA	NA	< 0.27	< 0.27	< 0.27
Cadmium, ug/L	DQ	DQ	5	< 0.039	< 0.049	NA	< 0.049	< 0.051	< 0.051	< 0.055	NA	< 0.018	NA	< 0.033	< 0.077	NA	< 0.039	NA	< 0.049	< 0.051	< 0.051	< 0.055
Chromium, ug/L	P	1.20	100	<1.1	<1.1	NA	1.2 J	<1.1	<1.1	<1.1	NA	0.51 J	0.44 J	0.089 J	< 0.98	< 0.98	<1.1	NA	<1.1	<1.1	<1.1	<1.1
Cobalt, ug/L	NP*	0.34	6	0.41 J	0.098 J	NA	< 0.091	< 0.091	< 0.19	0.45 J	NA	0.14 J	0.36 J	0.21 J	< 0.091	0.12 J	< 0.091	NA	0.098 J	< 0.091	< 0.19	< 0.19
Fluoride, mg/L	1	0.2	4	< 0.23	< 0.23	NA	< 0.23	< 0.28	< 0.28	< 0.22	NA	0.32	0.47	0.72	1.0	0.42 J	0.38 J	NA	< 0.23	0.52	< 0.28	0.33 J
Lead, ug/L	NP*	0.13	15	0.48 J <2.3	0.14 J <2.5	NA	<0.11 <2.5	<0.21	0.22 J <2.5	<0.24	NA	< 0.033	0.24 J	<0.13	<0.27 3.3 J	<0.27	< 0.27	NA	<0.11	<0.21	<0.21 11	< 0.24
Lithium, ug/L Mercury, ug/L	DQ	3 DQ	40	<2.3 <0.10	<2.5 <0.10	NA NA	<2.5 NA	<2.5 <0.15	<2.5 <0.15	<2.5 <0.11	NA NA	<4.6 <0.090	NA <0.090	8.1 J <0.090	<0.10	9.1 J NA	4.2 J <0.10	NA NA	9.5 J NA	3.5 J <0.15	<0.15	5.4 J <0.11
Molybdenum, ug/L	DQ P*	0.37	2 100	<0.10	< 1.1	NA <1.1	<1.1	<0.15	<0.15	<0.11	NA	7.3	21.6	12	<0.10	9.8	3.1	23	10	<0.15 4.8	<0.15 7.1	<0.11 9.2
Selenium, ug/L	P D*	0.37	50	1.3 J	<1.1 1.1 J	NA	<1.0	1.2 J	<1.5 1.0 J	1.3 J	NA	3.3	0.38 J	0.39 J	<1.0	9.6 NA	3.1 1.4 J	NA	<1.0	4.0 1.1 J	<0.96	<0.96
Thallium, ug/L	NP*	0.72	2	< 0.62	< 0.26	NA	NA	<0.26	<0.26	<0.26	NA	<0.036	NA 0.30	<0.099	<0.27	NA	<0.26	NA	NA	<0.26	<0.26	<0.26
Radium 226/228 Combined, pCi/L	P	1.88	5	0.24	0.0963	NA	0.732	0.714	1.01	0.402	NA	0.787	0.929	1.87	0.543	0.463	0.131	NA	0.270	0.243	0.359	0.533
Additional Parameters - Selection	n of Remedy	/						I				1		1	1	I	I		•			
Arsenic, dissolved [#] , ug/L	1	-		NA	NA	NA	NA	NA	<0.75	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.2	NA
Calcium, ug/L	1			NA	NA	NA	81,000	NA			NA	NA	NA	NA	NA	NA	NA	NA	35,000	NA		
Iron, dissolved, [#] ug/L	1			NA	NA	330	56 J	440	38 J	<36	NA	NA	NA	NA	NA	NA	NA	<50	<50	320	69 J	<36
Iron, ug/L	1			NA	NA	230	<50	47 J	41 J	<36	NA	NA	NA	NA	NA	NA	NA	<50	<50	<36	38 J	<36
Magnesium, ug/L				NA	NA	39, 000	38,000	37,000	35,000	37,000	NA	NA	NA	NA	NA	NA	NA	19,000	13,000	18,000	16,000	20,000
Manganese, dissolved, ug/L [#]	1			NA	NA	38	10	59	<4.4	8.3 J	NA	NA	NA	NA	NA	NA	NA	120	160	66	38	60
Manganese, ug/L	UPL or GP	UPL or GPS not applicable			NA	19	<4.0	4.5 J	<4.4	<3.6	NA	NA	NA	NA	NA	NA	NA	120	180	30	39	89
Molybdenum, dissolved,ug/L [#]				NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium, ug/L				NA	NA	1,200	1,000	1,000	1,000	1,100	NA	NA	NA	NA	NA	NA	NA	5,600	2,200	1,500	2,800	1,900
Sodium, ug/L				NA	NA	7,500	6,700	7,000		7,400	NA	NA	NA	NA	NA	NA	NA	13,000	12,000	13,000	15,000	16,000
Total Alkalinity, mg/L				NA	NA	290	300	300	300	330	NA	NA	NA	NA	NA	NA	NA	190	120	170	220	210
Carbonate Alkalinity, mg/L				NA	NA	<3.8	<3.8	<4.2	<4.6	<4.6	NA	NA	NA	NA	NA	NA	NA	<3.8	<3.8	<3.8	<4.6	<4.6
Bicarbonate Alkalinity, mg/L				NA	NA	290	300	300	300	330	NA	NA	NA	NA	NA	NA	NA	190	120	170	220	210
Licarbonato / intaininty, mg/L				1471	1.0.1	270	000	000	000	000		101		1.17	1.47 \		1.47.1	170	120	170	220	210

4.4 Blue highlighted cell indicates the compliance well result exceeds the UPL (background) and the LOQ. 30.8 Yellow highlighted cell indicates the compliance well result exceeds the GPS.

17 Grayscale indicates Additional Parameters sampled for selection of remedy and evaluation of MNA.

				Delineation Wells																
Parameter Name	UPL Method	UPL	GPS	MW-304								MW-304A								
				6/20/2019	10/2/2019	5/20/2020	8/19/2020	10/19/2020	4/9/2021	10/26/2021	4/5/2022	5/20/2020	7/6/2020	8/19/2020	10/19/2020	2/23/2021	4/9/2021	7/12/2021	10/26/2021	4/5/2022
Appendix III															1					
Boron, ug/L	P*	100		<110	<110	<73	NA	<80	64 J	<58	71 J	1,800	1,700	NA	1700	NA	1,400	NA	1,300	1,500
Calcium, mg/L	Р	73.9		82	72	70	77	66	69	71	70	54	41	50	35	NA	43	NA	35	38
Chloride, mg/L	Р	8.52		5.9	7.0	6.2	7.7	6.2	6.5	6.9	5.3	15	13	13	12	NA	13	NA	15	16
Fluoride, mg/L	P*	0.2		<0.23	<0.23	<0.23	NA	<0.23	<0.28	<0.28	<0.22	0.57	0.42 J	NA	<0.23	NA	0.53	NA	<0.28	0.32 J
Field pH, Std. Units	Р	7.9		7.01	7.16	7.32	7.55	7.16	7.27	7.29	7.25	8.04	7.90	8.48	7.89	8.01	7.78	8.09	7.94	7.97
Sulfate, mg/L	Р	29.4		20	17	17	15	16	15	18	20	83	77	76	76	NA	77	NA	91	87
Total Dissolved Solids, mg/L	Р	386.7		350	300	470	NA	270	290	200	240	680	330	NA	310	NA	300	NA	240	270
Appendix IV		UPL	GPS																	
Antimony, ug/L	NP*	0.037	6	<0.53	NA	<0.58	NA	NA	<1.1	<1.1	<0.69	<0.58	<0.51	NA	NA	NA	<1.1	NA	<1.1	<0.69
Arsenic, ug/L	P*	0.37	10	<0.75	<0.75	<0.88	NA	<0.88	<0.75	<0.75	<0.75	1.3 J	<0.88	NA	<0.88	NA	0.78 J	NA	<0.75	<0.75
Barium, ug/L	Р	48.5	2,000	54	47	42.0	NA	42.0	43 B	44	42	67.0	34.0	NA	28.0	NA	36.0 B	NA	26	30
Beryllium, ug/L	DQ	DQ	4	<0.27	NA	<0.27	NA	NA	<0.27	<0.27	<0.27	<0.27	<0.27	NA	NA	NA	<0.27	NA	<0.27	<0.27
Cadmium, ug/L	DQ	DQ	5	<0.077	NA	<0.039	NA	<0.049	<0.051	<0.051	<0.055	0.19	0.098 J	NA	0.07 J	NA	0.096 J	NA	<0.051	0.074 J
Chromium, ug/L	Р	1.20	100	1.6 J	1.0 J	8.2	NA	<1.1	<1.1	<1.1	<1.1	2.2 J	1.1 J	NA	<1.1	NA	1.6 J	NA	<1.1	<1.1
Cobalt, ug/L	NP*	0.34	6	1.1	0.19 J	0.22 J	NA	<0.091	<0.091	0.22 J	<0.19	3.2	0.83	NA	0.43 J	NA	0.88	NA	<0.19	0.48 J
Fluoride, mg/L	P*	0.2	4	<0.23	<0.23	<0.23	NA	<0.23	<0.28	<0.28	<0.22	0.57	0.42 J	NA	<0.23	NA	0.53	NA	<0.28	0.32 J
Lead, ug/L	NP*	0.13	15	1.2	0.35 J	<0.27	NA	<0.11	<0.21	0.23 J	<0.24	4.3	1.2	NA	0.48 J	NA	1.1	NA	0.37 J	0.81
Lithium, ug/L	NP*	3	40	<2.7	<2.7	<2.3	NA	<2.5	<2.5	<2.5	<2.5	2.7 J	<2.5	NA	<2.5	NA	<2.5	NA	<2.5	<2.5
Mercury, ug/L	DQ	DQ	2	<0.10	NA	<0.10	NA	NA	<0.15	<0.15	<0.11	<0.10	<0.10	NA	NA	NA	<0.15	NA	<0.15	<0.11
Molybdenum, ug/L	P*	0.37	100	<1.1	<1.1	<1.1	1.2 J	<1.1	<1.3	<1.3	2.7	110	140	140	130	120	110	100	120	120
Selenium, ug/L	P*	0.72	50	<1.0	NA	<1.0	NA	<1.0	<0.96	<0.96	<0.96	<1.0	<1.0	NA	<1.0	NA	<0.96	NA	<0.96	<0.96
Thallium, ug/L	NP*	0.29	2	<0.27	NA	<0.26	NA	NA	<0.26	<0.26	<0.26	<0.26	<0.26	NA	NA	NA	<0.26	NA	<0.26	<0.26
Radium 226/228 Combined, pCi/L	Р	1.88	5	0.0356	0.900	0.0689	NA	0.139	0.497	0.870	0.143	0.630	0.573	NA	0.157	NA	0.468	NA	0.698	0.510
Additional Parameters - Selection	n of Remedy	1			•	•	1	•	1	1			•	•	1	•	1	1	•	
Arsenic, dissolved [#] , ug/L				NA	NA	NA	NA	NA	NA	<0.75	NA	NA	NA	NA	NA	NA	NA	NA	<0.75	NA
Calcium, ug/L				NA	NA	NA	NA	75,000	NA			NA	NA	NA	35,000	NA	NA	NA	NA	NA
Iron, dissolved, [#] ug/L	UPL or GPS not applicable			NA	NA	NA	<50.0	<50.0	<36	67 J	<36	NA	NA	<50	55 J	NA	<36	NA	<36	<36
Iron, ug/L				NA	NA	NA	51 J	<50.0	37 J	<36	<36	NA	NA	940	270	NA	580	NA	<36	240
Magnesium, ug/L				NA	NA	NA	36,000	35,000	33,000	32,000	33,000	NA	NA	21,000	16,000	NA	18,000	NA	15000	16,000
Manganese, dissolved, ug/L [#]				NA	NA	NA	6.9 J	4.1 J	10	<4.4	<3.6	NA	NA	16	7.3 J	NA	6.2 J	NA	<4.4	6.8 J
Manganese, ug/L					NA	NA	11	6.0 J	5.9 J	<4.4	<3.6	NA	NA	99	26	NA	54	NA	<4.4	25
Molybdenum, dissolved,ug/L [#]				NA	NA	NA	NA	NA J	NA J	NA NA	NA	NA	NA	NA	140	140	120	NA	120	130
Potassium, ug/L				NA	NA	NA	1,500	1,300	1,200	1,300	1,300	NA	NA	830	680	NA	710	NA	650	740
Sodium, ug/L				NA	NA	NA	5,600	6,100	4,900	4,000	5,900	NA	NA	69,000	63,000	NA	58,000	NA	55000	58,000
	-														1	-				
Total Alkalinity, mg/L	-			NA	NA	NA	300	310	300	370	320	NA	NA	190	190	NA	180	NA	210	210
Carbonate Alkalinity, mg/L	-			NA	NA	NA	<3.8	<3.8	<4.2	<4.6	<4.6	NA	NA	<7.6	<3.8	NA	<4.6	NA	<4.6	<4.6
Bicarbonate Alkalinity, mg/L				NA	NA	NA	300	310	300	370	320	NA	NA	190	190	NA	180	NA	210	210

4.4 Blue highlighted cell indicates the compliance well result exceeds the UPL (background) and the LOQ. 30.8 Yellow highlighted cell indicates the compliance well result exceeds the GPS. 17 Grayscale indicates Additional Parameters sampled for selection of remedy and evaluation of MNA.

														Delineation V	Vells								
							MW-3	305					•					MW-306					
Parameter Name	UPL Method	UPL	GPS	6/20/2019	10/2/2019	5/19/2020	8/18/2020	10/20/2020	4/9/2021	10/27/2021	4/4/2022	6/20/2019	10/2/2019	12/5/2019	2/5/2020	5/19/2020	8/18/2020	10/20/2020	2/23/2021	4/9/2021	7/12/2021	10/27/2021	4/4/2022
Appendix III														1 1						L.			
Boron, ug/L	P*	100		180 J	190 J	210	NA	220	140	200	110	860	660	NA	NA	720	NA	720	NA	650	NA	580	550
Calcium, mg/L	Р	73.9		92	97	82	90	76	79	79	78	240	260	NA	NA	340	290	260	NA	290	NA	210	200
Chloride, mg/L	Р	8.52		6.8	3.2 J	7.5	6.9	6	4.8 J	6.6	3.5 J	24	40	NA	NA	32	28	27	NA	33	NA	34	41
Fluoride, mg/L	P*	0.2		<0.23	<0.23	0.23 J	NA	<0.23	<0.28	<0.28	<0.22	<0.23	<0.23	NA	NA	<0.23	NA	<0.23	NA	<0.28	NA	<0.28	<0.22
Field pH, Std. Units	Р	7.9		7.19	7.03	6.90	7.23	7.24	7.17	7.29	6.94	6.87	9.00	6.76	6.95	6.66	7.12	6.88	6.87	6.85	7.51	6.86	6.86
Sulfate, mg/L	Р	29.4		24	26	<3.6	<3.6	<3.6	29	14	42	280	140	NA	NA	430	260	220	NA	240	NA	95	100
Total Dissolved Solids, mg/L	Р	386.7		440	380	540	NA	320	300	260	270	1,200	1,300	NA	NA	3,400	NA	1,100	NA	1,300	NA	960	1,100
Appendix IV		UPL	GPS					-		1	•						1		T	1	1	1	′
Antimony, ug/L	NP*	0.037	6	<0.53	NA	<0.58	NA	NA	<1.1	<1.1	<0.69	<0.53	NA	NA	NA	<0.58	NA	NA	NA	<1.1	NA	<1.1	<0.69
Arsenic, ug/L	P*	0.37	10	2.2	3.4	3.6	NA	5.6	1.7 J	3.9	0.89 J	8.6	12	9.3	9.4	8.5	NA	10	9	8.0	8.2	8.6	7.7
Barium, ug/L	Р	48.5	2,000	170	190	220	NA	200.0	150 B	200	97	280	540	NA	NA	260	NA	250	NA	280 B	NA	320	350
Beryllium, ug/L	DQ	DQ	4	<0.27	NA	<0.27	NA	NA	<0.27	<0.27	<0.27	<0.27	NA	NA	NA	<0.27	NA	NA	NA	<0.27	NA	<0.27	<0.27
Cadmium, ug/L	DQ	DQ	5	<0.077	NA	<0.039	NA	<0.049	<0.051	<0.051	<0.055	<0.077	NA	NA	NA	< 0.039	NA	<0.049	NA	<0.051	NA	<0.051	<0.055
Chromium, ug/L	Р	1.20	100	<0.98	<0.98	<1.1	NA	<1.1	<1.1	<1.1	<1.1	<0.98	<0.98	NA	NA	<1.1	NA	<1.1	NA	1.3 J	NA	<1.1	<1.1
Cobalt, ug/L	NP*	0.34	6	0.52	0.27 J	0.32 J	NA	0.12 J	0.29 J	<0.19	<0.19	1.0	0.98	NA	NA	0.53	NA	0.2 J	NA	0.35 J	NA	0.30 J	0.49 J
Fluoride, mg/L	P*	0.2	4	<0.23	<0.23	0.23 J	NA	<0.23	<0.28	<0.28	<0.22	<0.23	<0.23	NA	NA	<0.23	NA	<0.23	NA	<0.28	NA	<0.28	<0.22
Lead, ug/L	NP*	0.13	15	<0.27	<0.27	<0.27	NA	<0.11	<0.21	0.29 J	<0.24	0.52	<0.27	NA	NA	<0.27	NA	<0.11	NA	<0.21	NA	1.1	<0.24
Lithium, ug/L	NP*	3	40	3.4 J	4.6 J	<2.3	NA	<2.5	<2.5	<2.5	2.6 J	19	25	NA	NA	25	NA	26	NA	24	NA	22	23
Mercury, ug/L	DQ	DQ	2	<0.10	NA	<0.10	NA	NA	<0.15	<0.15	<0.11	<0.10	NA	NA	NA	<0.10	NA	NA	NA	<0.15	NA	<0.15	<0.11
Molybdenum, ug/L	P*	0.37	100	1.7 J	1.6 J	<1.1	1.8 J	<1.1	<1.3	<1.3	<1.2	<1.1	<1.1	NA	NA	<1.1	<1.1	<1.1	NA	<1.3	NA	<1.3	<1.2
Selenium, ug/L	P*	0.72	50	<1.0	NA	<1.0	NA	<1.0	1.4 J	<0.96	1.7 J	<1.0	NA	NA	NA	<1.0	NA	<1.0	NA	<0.96	NA	<0.96	<0.96
Thallium, ug/L	NP*	0.29	2	<0.27	NA	<0.26	NA	NA	<0.26	<0.26	<0.26	<0.27	NA	NA	NA	<0.26	NA	NA	NA	<0.26	NA	<0.26	<0.26
Radium 226/228 Combined, pCi/L	Р	1.88	5	0.553	0.557	0.837	NA	0.377	0.474	1.43	0.249	0.897	1.79	NA	NA	1.05	NA	1.16	NA	1.09	NA	2.10	0.757
Additional Parameters - Selection	of Remedy												•				•				-		
Arsenic, dissolved [#] , ug/L				NA	NA	NA	NA	NA	NA	3.7	NA	NA	NA	NA	NA	NA	NA	NA	8.8	7.8	NA	8.4	7.8
Calcium, ug/L				NA	NA	NA	NA	87,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	280,000	NA	NA	NA		
Iron, dissolved, [#] ug/L	1			NA	NA	NA	11,000	10,000	3,700	6,900	830	NA	NA	NA	NA	NA	44,000	39,000	NA	41,000	NA	33,000	32,000
lron, ug/L	-			NA	NA	NA	13,000	12,000	5,900	7,300	1,500	NA	NA	NA	NA	NA	43,000	40,000	NA	44,000	NA	33,000	33,000
Magnesium, ug/L	-			NA	NA	NA	32,000	32,000	25,000	30,000	23,000	NA	NA	NA	NA	NA	54,000	46,000	NA	50,000	NA	36,000	41,000
Manganese, dissolved, ug/L [#]	1			NA	NA	NA	2,000	1,800	1,100	1,400	520	NA	NA	NA	NA	NA	5,100	4,800	NA	5,300	NA	4,100	4,500
Manganese, ug/L	UPL or GP	S not app	olicable	NA	NA	NA	2,000	1,800	1,200	1,500	560	NA	NA	NA	NA	NA	5,200	4,800	NA	5,500	NA	4,100	4,400
Molybdenum, dissolved,ug/L [#]				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium, ug/L				NA	NA	NA	2,200	1,800	1,300	1,600	1,500	NA	NA	NA	NA	NA	8,200	7,100	NA	6,100	NA	6200	7,000
Sodium, ug/L				NA	NA	NA	8,900	7,700	5,900	6,700	5,500	NA	NA	NA	NA	NA	110,000	110,000	NA	98,000	NA	140000	160,000
Total Alkalinity, mg/L				NA	NA	NA	340	340	280	330	290	NA	NA	NA	NA	NA	850	800	NA	880	NA	880	940
Carbonate Alkalinity, mg/L				NA	NA	NA	<7.6	<3.8	<4.6	<2.3	<4.6	NA	NA	NA	NA	NA	<7.6	<3.8	NA	<4.6	NA	<4.6	<4.6
Bicarbonate Alkalinity, mg/L				NA	NA	NA	340	340	280	330	290	NA	NA	NA	NA	NA	850	800	NA	880	NA	880	940
bicarbonate Aikaiinity, My/L				NA	NA	MA	540	540	200	330	270	NA	INA	NA	INA	NA	000	000	NA	000	NA	000	740

4.4 Blue highlighted cell indicates the compliance well result exceeds the UPL (background) and the LOQ.

30.8 Yellow highlighted cell indicates the compliance well result exceeds the GPS. 17 Grayscale indicates Additional Parameters sampled for selection of remedy and evaluation of MNA.

See Page 8 for abbreviations and notes.

				Delineation Wells														
							MW-306A						W-307		MW-307A			
Parameter Name	UPL Method	UPL	GPS	5/19/2020	7/6/2020	8/18/2020	10/20/2020	4/9/2021	10/27/2021	4/4/2022	7/12/2021	8/13/2021	10/27/2021	4/5/2022	7/12/2021	8/13/2021	10/27/2021	4/5/2022
Appendix III					1		•		•			•	1	•			•	
Boron, ug/L	P*	100		290	340	NA	280	280	240	260	220	250	280	400	370	380	300	430
Calcium, mg/L	Р	73.9		83	82	86	76	78	80	78	55	47	38	50	67	62	70	58
Chloride, mg/L	Р	8.52		7.8	7.1	7.4	7.2	7.2	7.7	6.3	15.0	16	17.0	22	6.8	7.2	8.1	13
Fluoride, mg/L	P*	0.2		<0.23	<0.23	NA	<0.23	<0.28	<0.28	<0.22	<0.28	<0.28 F1	<0.28	<0.22	<0.28	<0.28	<0.28	<0.22
Field pH, Std. Units	Р	7.9		6.99	7.04	7.38	7.18	7.21	7.34	7.19	8.25	7.86	8.11	8.34	7.83	7.35	7.29	7.48
Sulfate, mg/L	Р	29.4		44	40	41	41	39	42	43	44	42 F1	70	76	30	32	33	28
Total Dissolved Solids, mg/L	Р	386.7		610	360	NA	350	350	280	330	210	230	130	210	280	290	230	250
Appendix IV		UPL	GPS															
Antimony, ug/L	NP*	0.037	6	<0.58	<0.51	NA	NA	<1.1	<1.1	<0.69	<1.1	<1.1	<1.1	<0.69	<1.1	<1.1	<1.1	<0.69
Arsenic, ug/L	P*	0.37	10	<0.88	<0.88	NA	<0.88	<0.75	<0.75	<0.75	2.1	2.4	2.5	1.8 J	<0.75	0.76 J	1.3 J	2.1
Barium, ug/L	Р	48.5	2,000	61.0	58.0	NA	58.0	62.0 B	59	61	310	300	240	290	120	120	130	110
Beryllium, ug/L	DQ	DQ	4	<0.27	<0.27	NA	NA	<0.27	<0.27	<0.27	<0.27	<0.27	<0.27	<0.27	<0.27	<0.27	<0.27	<0.27
Cadmium, ug/L	DQ	DQ	5	< 0.039	<0.049	NA	<0.049	<0.051	<0.051	< 0.055	<0.051	<0.051	<0.051	<0.055	<0.051	<0.051	<0.051	<0.055
Chromium, ug/L	Р	1.20	100	<1.1	<1.1	NA	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1
Cobalt, ug/L	NP*	0.34	6	0.33 J	0.18 J	NA	0.22 J	0.17 J	0.21 J	0.19 J	0.15 J	0.15 J	<0.19	<0.19	0.54	0.57	0.77	0.68
Fluoride, mg/L	P*	0.2	4	<0.23	<0.23	NA	<0.23	<0.28	<0.28	<0.22	<0.28	<0.28 F1	<0.28	<0.22	<0.28	<0.28	<0.28	<0.22
Lead, ug/L	NP*	0.13	15	<0.27	<0.11	NA	<0.11	<0.21	0.32 J	<0.24	<0.21	<0.21	<0.21	<0.24	<0.21	<0.21	0.21 J	<0.24
Lithium, ug/L	NP*	3	40	<2.3	<2.5	NA	<2.5	<2.5	<2.5	<2.5	13	13	12	10	<2.5	<2.5	<2.5	<2.5
Mercury, ug/L	DQ	DQ	2	<0.10	<0.10	NA	NA	<0.15	<0.15	<0.11	<0.15	<0.15	<0.15	<0.11	<0.15	<0.15	<0.15	<0.11
Molybdenum, ug/L	P*	0.37	100	<1.1	<1.1	<1.1	<1.1	<1.3	<1.3	<1.2	5.5	7.2	12	16	6.8	6.6	6.3	5.7
Selenium, ug/L	P*	0.72	50	<1.0	<1.0	NA	<1.0	<0.96	0.99 J	<0.96	<0.96	<0.96	<0.96	<0.96	<0.96	<0.96	<0.96	<0.96
Thallium, ug/L	NP*	0.29	2	<0.26	<0.26	NA	NA	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26
Radium 226/228 Combined, pCi/L	Р	1.88	5	1.12	0.525	NA	0.124	0.408	0.682	0.198	0.499	1.91	0.743	0.183	0.509	0.258	0.957	0.0954
Additional Parameters - Selection	on of Remedy	/			•	•	•	•	•	•			•	•			•	•
Arsenic, dissolved [#] , ug/L				NA	NA	NA	NA	NA	<0.75	NA	2.0	NA	2.6	NA	<0.75	NA	1.4 J	NA
Calcium, ug/L				NA	NA	NA	85,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron, dissolved, [#] ug/L				NA	NA	1,900	1,600	1,600	1,500	1,500	110	NA	110	87 J	<36	NA	170	280
Iron, ug/L	-			NA	NA	2,100	1,900	1,800	1,800	1,700	140	NA	95 J	78 J	<36	NA	160	370
Magnesium, ug/L	-			NA	NA	38,000	37,000	35,000	33,000	36,000	17,000	NA	12,000	17,000	33,000	NA	33,000	27,000
Manganese, dissolved, ug/L [#]	_			NA	NA	1,200	1,100	1,100	1,000	1,000	300	NA	240	560	600	NA	720	700
Manganese, ug/L	UPL or GP	S not an	olicable	NA	NA	1,200	1,100	1,100	1,000	1,000	310	NA	230	590	620	NA	720	710
		Shotap	JICADIC	NA	NA	NA	NA	NA	NA	NA	5.2	NA	NA	NA	7.3	NA	NA	NA
Molybdenum, dissolved,ug/L [#]	-									1							-	
Potassium, ug/L	-			NA	NA	1,400	1,200	1,200	1,200	1,300	3,600	NA	2,600	2,400	3,000	NA	2,500	2,100
Sodium, ug/L	-			NA	NA	12,000	11,000	10,000	9,800	10,000	13,000	NA	11,000	16,000	16,000	NA	14,000	22,000
Total Alkalinity, mg/L	_			NA	NA	330	320	320	330	350	170	NA	86	130	310	NA	310	330
Carbonate Alkalinity, mg/L	_			NA	NA	<7.6	<1.9	<4.6	<4.6	<4.6	<4.1	NA	<2.3	<4.6	<4.2	NA	<4.6	<4.6
Bicarbonate Alkalinity, mg/L				NA	NA	330	320	320	330	350	170	NA	86	130	310	NA	310	330

4.4 Blue highlighted cell indicates the compliance well result exceeds the UPL (background) and the LOQ. 30.8 Yellow highlighted cell indicates the compliance well result exceeds the GPS. 17 Grayscale indicates Additional Parameters sampled for selection of remedy and evaluation of MNA.

See Page 8 for abbreviations and notes.

Table 4A. Groundwater Analytical Results Summary - October 2017 through April 2022 Lansing Generating Station / SCS Engineers Project #25220082.00

Abbreviations:

UPL = Upper Prediction Limit NA = Not Analyzed $\mu g/L = micrograms per liter$ mg/L = milligrams per liter

LOD = Limit of Detection LOQ = Limit of Quantitation DQ = Double Quantification Rule (not detected in background) NP = Nonparametric UPL (highest background value) P = Parametric UPL with 1-of-2 retesting GPS = Groundwater Protection Standard

J = Estimated concentration at or above the LOD and below the LOQ.

- F1 = MS and/or MSD recovery exceeds control limits.
- B = Compound was found in the blank and sample.

[#] = Dissolved parameter samples collected for MNA data review

Notes:

- 1. An individual result above the UPL or GPS does not constitute a statistically significant increase (SSI) above background or statistically significant level above the GPS. The arsenic GPS exceedances at MW-302 have been determined to be statistically significant. The arsenic GPS exceedance at MW-306 has been determined not to be statistically significant. The molybdenum GPS exceedance has either been determined not to be statistically significant or the determination is ongoing. See the accompanying report text for additional information regarding determinations of statistical significance.
- 2. GPS is the United States Environmental Protection Agency (US EPA) Maximum Contamination Level (MCL), if established; otherwise, the value from 40 CFR 257.95(h)(2) is used.
- 3. Interwell UPLs calculated based on results from background well MW-6.

Created by: NDK	Date: 5/1/2018
Last revision by: RM	Date: 3/21/2023
Checked by: NLB	Date: 3/22/2023
Proj Mgr QA/QC: TK	Date: 5/28/2023

Table 4B. Groundwater Analytical Results Summary - October 2022Lansing Generating Station / SCS Engineers Project #25220082.00

				Background Well	Complia	nce Wells	Delineation Well	Compliance Well			0	Delineation Wells	s		
				MW-6	MW-301	MW-302	MW-302A	MW-303	MW-304	MW-304A	MW-305	MW-306	MW-306A	MW-307	MW-307A
Parameter Name	UPL Method	UPL	GPS	10/18/2022	10/17/2022	10/19/2022	10/17/2022	10/17/2022	10/17/2022	10/17/2022	10/18/2022	10/19/2022	10/19/2022	10/18/2022	10/18/2022
Appendix III	•					•								•	
Boron, ug/L	NP	110		<58	260	780	190	590	78 J	1,600	240	600	290	1100	680
Calcium, mg/L	Р	73.7		70	67	110	74	42	79	37	80	280	77	39	52
Chloride, mg/L	Р	8.13		5.1	15	11	5.2	17	8.6	16	5.5	32	5.8	18	11
Fluoride, mg/L	Р	0.304		<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22
Field pH, Std. Units	Р	7.98		7.40	8.10	6.87	7.28	7.66	7.17	7.81	7.32	6.8	7.25	8.44	7.59
Sulfate, mg/L	Р	28.0		21	63	<2.0	44	58	14	69	3.6 J	500	34	120	27
Total Dissolved Solids, mg/L	NP	580		250	280	520	310	200	290	270	300	1,500	350	900	270
Appendix IV	UTL Method	UTL	GPS			1						•			
Antimony, ug/L	NP	1.1	6	<0.69	<0.69	<0.69	<0.69	<0.69	<0.69	<0.69	<0.69	<0.69	<0.69	<0.69	<0.69
Arsenic, ug/L	NP	4.5	10	<0.75	5.0	51	<0.75	1.9 J	<0.75	<0.75	4.7	7.1	<0.75	2.7	1.9 J
Barium, ug/L	Р	50.2	2,000	49	160	790	50	230	49	29	230	390	62	280	100
Beryllium, ug/L	DQ	DQ	4	<0.27	<0.27	<0.27	<0.27	<0.27	<0.27	<0.27	<0.27	<0.27	<0.27	<0.27	<0.27
Cadmium, ug/L	DQ	DQ	5	<0.055	<0.055	<0.055	< 0.055	< 0.055	< 0.055	0.076 J	< 0.055	< 0.055	< 0.055	<0.055	< 0.055
Chromium, ug/L	Р	1.10	100	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1
Cobalt, ug/L	NP	0.50	6	<0.19	<0.19	1.2	<0.19	<0.19	<0.19	0.88	<0.19	0.30 J	<0.19	0.19 J	0.65
Fluoride, mg/L	NP	0.63	4	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22
Lead, ug/L	NP	1.9	15	<0.24	<0.24	0.39 J	<0.24	<0.24	<0.24	1.1	<0.24	< 0.24	<0.24	<0.24	< 0.24
Lithium, ug/L	NP	4.9	40	<2.5	8.7 J	<2.5	<2.5	10	<2.5	<2.5	<2.5	27	<2.5	13	<2.5
Mercury, ug/L	DQ	DQ	2												
Molybdenum, ug/L	NP	1.5	100	<1.2	12	1.2 J	<1.2	22	2.1	130	<1.2	<1.2	<1.2	25	6.6
Selenium, ug/L	NP	5.8	50	<0.96	<0.96	<0.96	<0.96	<0.96	<0.96	<0.96	<0.96	<0.96	<0.96	< 0.96	< 0.96
Thallium, ug/L	NP	0.50	2	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26
Radium 226/228 Combined, pCi/L	Р	1.29	5	1.29	0.830	4.33	0.371	0.512	0.0692	0.296	1.20	0.693	1.18	1.51	0.683
Additional Parameters - Selection of Re	medy	·	·												
Arsenic, dissolved [#] , ug/L	_					50						7			
Iron, dissolved, [#] ug/L Iron, ug/L	-			<36 <36	410 F1 620	40,000 43,000	55 J <36	46 J <36	<36 <36	<36 380	7,400 8,500	41,000 42,000	1,400	90 J 110	300 330
Magnesium, ug/L	-			32,000	18,000	43,000	32,000	<30	< 30	14,000	30,000	42,000	32,000	11,000	24,000
Manganese, dissolved, ug/L [#]				<3.6	590	2,500	5.4 J	110	<3.6	<3.6	1,400	7,000	1,000	450	640
Manganese, ug/L	UPL or GP	s not and	licable	<3.6	640	2,300	<3.6	220	<3.6	31	1,300	5,500	940	430	610
Molybdenum, dissolved,ug/L [#]	UPL OF GP	shotapp	Jicable	930						140					
Potassium, ug/L					3,200	3,900	900	3,100	1,400	540	1,500	8,300	1,000	2,900	2,000
Sodium, ug/L		2			14,000	19,000	6,800	15,000	6,300	49,000	7,000	140,000	9,100	24,000	28,000
Total Alkalinity, mg/L	-			300 <4.6	230 <4.6	540 <4.6	290 <4.6	120 <4.6	330 <4.6	180 <4.6	360 <4.6	800 <4.6	350 <4.6	100 <4.6	270 <4.6
Carbonate Alkalinity, mg/L Bicarbonate Alkalinity, mg/L	-			<4.6	<4.6	<4.6 540	<4.6 290	<4.6	<4.6 330	<4.6 180	<4.6 360	<4.6 800	<4.6 350	<4.6 100	<4.6 270

See Page 2 for abbreviations and notes.

Table 4B. Groundwater Analytical Results Summary - October 2022Lansing Generating Station / SCS Engineers Project #25220082.00

4.4 Blue highlighted cell indicates the compliance well result exceeds the UPL (background) and the LOQ.
30.8 Yellow highlighted cell indicates the compliance well result exceeds the GPS.
17.0 Grayscale indicates additional parameters sampled for selection of remedy and evaluation of MNA.

Abbreviations:

UPL = Upper Prediction Limit	LOD = Limit of Detection	NP = Nonparametric
UTL = Upper Tolerance Limit	LOQ = Limit of Quantitation	GPS = Groundwater Protection Standard
µg/L = micrograms per liter	P = Parametric	= Not Analyzed
mg/L = milligrams per liter	DQ = Double Quantification Rule (not detected	in background)

J = Estimated concentration at or above the LOD and below the LOQ.

Notes:

- 1. An individual result above the UPL or GPS does not constitute a statistically significant increase (SSI) above background or statistically significant increase above the GPS. See the accompanying letter text for identification of statistically significant results.
- 2. GPS is the United States Environmental Protection Agency (US EPA) Maximum Contamination Level (MCL), if established; otherwise, the value from 40 CFR 257.95(h)(2) is used.
- 3. Interwell UPLs and UTLs calculated based on results from background well MW-6.

Created by: <u>NDK</u>	Date: 4/10/2021
Last revision by: SCC	Date: 1/1/2023
Checked by: RM	Date: 1/3/2022
Sci QA/QC: TK	Date: 2/3/2023

Well	Parameter	Field pH (Std. Units)	Field Oxidation Potential (mV)	Field Specific Conductance (umhos/cm)	Field Temperature (deg C)	Groundwater Elevation (feet)	Oxygen, Dissolved (mg/L)	Turbidity (NTU)
MW-6	10/16/2017	7.03	282.0	591	10.2	669.58	8.80	0.00
-	4/26/2018	7.34	34.6	569	11.1	667.96	3.46	0.81
F	8/7/2018	7.18	233.0	609	10.5	668.13	7.40	1.77
-	10/8/2018	7.06	119.0	587	11.5	664.71	9.10	0.01
-	4/15/2019	7.59	274.0	618	10.0	672.78	8.70	0.75
-	10/2/2019	7.46	88.9	590	10.0	675.54	10.29	0.70
	5/20/2020	7.34	119.6	597	10.0	674.47	9.20	0.01
	8/19/2020	7.98	113.9	597	9.8	674.64	9.45	0.00
-	10/20/2020	7.42	68.5	576	9.7	673.37	8.23	0.00
-	4/7/2021	7.39	186.2	599	10.0	671.08	9.06	0.00
	10/26/2021	7.70	136.2	601	9.9	668.14	9.34	0.00
	4/6/2022	7.32	197.7	599	8.9	667.14	8.92	0.00
-	10/18/2022	7.40	47.3	552.6	9.7	665.34	8.16	0.60
MW-301	10/16/2017	7.66	-221.0	497	17.0	625.70	0.00	0.05
	4/16/2018	8.39	-40.0	505	9.5	624.29	1.00	8.31
	6/4/2018	8.10	-145.5	507	12.2	624.62	0.89	2.72
	8/7/2018	8.08	-149.0	524	14.6	624.51	0.20	5.50
	10/8/2018	8.16	-180.0	545	17.4	625.73	0.30	9.19
	4/15/2019	8.47	-171.0	539	11.3	629.19	0.20	9.33
	10/2/2019	8.11	-156.8	502	15.6	626.54	0.13	1.36
	5/19/2020	7.85	-77.6	474	11.3	624.46	0.75	1.39
	8/18/2020	8.33	-115.3	476	15.0	625.02	0.16	1.65
	10/19/2020	8.06	-97.0	489	14.7	624.42	0.42	0.75
	4/8/2021	8.04	-10.1	461	11.5	624.02	0.27	0.00
	10/26/2021	8.11	-159.7	534	16.1	627.00	0.10	0.81
	4/5/2022	8.30	200.0	554	8.7	630.67	0.15	0.00
	10/17/2022	8.10	-185.1	526.0	12.5	630.79	0.08	1.31

Well	Parameter	Field pH (Std. Units)	Field Oxidation Potential (mV)	Field Specific Conductance (umhos/cm)	Field Temperature	Groundwater Elevation (feet)	Oxygen, Dissolved	Turbidity (NTU)
MW-302	10/16/2017	7.10	-179.0	1045	(deg C) 16.2	628.75	(mg/L) 0.00	3.96
10100-302					6.0			5.25
-	4/16/2018	7.26	-152.0	1098		628.98	0.80	
-	6/4/2018	6.97	-179.3	1068	10.8	628.27	0.12	1.46
	8/7/2018	6.92	-164.0	1095	15.3	627.62	0.10	11.23
_	10/8/2018	6.93	-43.9	1039	17.0	628.59	0.48	5.92
_	4/15/2019	7.66	-159.0	1089	7.1	629.99	0.20	18.39
	10/2/2019	7.15	-160.0	1049	15.9	630.04	0.11	4.71
	5/20/2020	6.93	-161.5	1070	8.7	627.68	0.19	4.16
	8/19/2020	7.18	-173.0	1039	16.2	627.53	0.05	4.00
	10/19/2020	7.06	-182.5	1074	14.4	627.14	0.10	2.96
	4/9/2021	7.08	-171.2	1043	7.5	627.87	0.03	3.15
	10/27/2021	6.89	-128.1	1075	15.7	628.86	1.07	3.35
	4/5/2022	6.92	202.8	1151	6.3	623.29	0.13	3.21
	10/19/2022	6.87	-186.2	1045.0	14.5	629.51	0.03	23.33
MW-302A	5/20/2020	7.27	126.9	644	11.7	623.19	6.55	11.90
	7/6/2020	7.22	47.0	641	11.7	624.20	6.60	4.68
	8/19/2020	7.41	74.1	638	11.8	623.52	6.23	0.19
	10/19/2020	7.33	125.4	650	11.4	623.03	6.46	0.58
	4/9/2021	7.25	104.7	597	11.1	623.12	7.88	0.86
[10/27/2021	7.15	159.1	627	12.0	623.10	7.27	0.00
	4/5/2022	7.34	199.7	630.0	10.2	623.71	6.49	0.00
	10/17/2022	7.28	105.7	619.9	11.6	622.97	6.27	1.39

Well	Parameter	Field pH	Field Oxidation Potential	Field Specific Conductance	Field Temperature	Groundwater Elevation	Oxygen, Dissolved	Turbidity
		(Std. Units)	(mV)	(umhos/cm)	(deg C)	(feet)	(mg/L)	(NTU)
MW-303	10/16/2017	7.20	49.0	687	25.2	638.79	1.90	0.00
	4/16/2018	8.00	53.0	552	4.1	638.62	3.50	0.40
	6/4/2018	7.59	68.0	431	17.0	638.81	0.36	1.08
	8/7/2018	7.66	-71.0	425	31.5	637.85	0.40	4.51
	10/8/2018	7.91	139.0	328	28.5	637.32	0.40	2.62
	4/15/2019	7.95	-76.0	448	4.2	638.22	1.40	6.60
	10/2/2019	7.83	156.0	409	25.2	638.03	0.27	0.58
	5/19/2020	7.67	28.9	464	6.3	637.98	1.29	0.00
	8/18/2020	7.65	25.8	468	30.4	638.22	0.15	1.62
	10/19/2020	7.77	38.4	340	23.5	636.96	0.58	0.00
	4/8/2021	8.00	78.4	425	3.7	638.07	2.03	0.00
	10/26/2021	7.45	125.8	452	24.8	638.68	0.17	0.65
	4/5/2022	8.07	202.1	452.4	4.6	641.69	1.17	0.00
	10/17/2022	7.66	25.5	397.1	23.1	639.39	0.11	2.07

Well	Parameter	Field pH	Field Oxidation Potential	Field Specific Conductance	Field Temperature	Groundwater Elevation	Oxygen, Dissolved	Turbidity
		(Std. Units)	(mV)	(umhos/cm)	(deg C)	(feet)	(mg/L)	(NTU)
MW-304	6/20/2019	7.01	41.0	593	10.6	623.61	6.20	104.00
	10/2/2019	7.16	107.3	578	12.4	623.79	7.51	3.51
	5/20/2020	7.32	104.9	574	9.0	621.57	7.78	3.72
	8/19/2020	7.55	109.6	583	11.8	621.75	6.76	1.06
	10/19/2020	7.16	155.6	602	11.8	621.40	6.84	0.42
	4/9/2021	7.27	160.3	520	8.8	621.46	8.69	0.00
	10/26/2021	7.29	171.3	562.3	12.1	621.29	8.32	0.00
	4/5/2022	7.25	201.4	571.8	8.2	621.72	7.20	0.00
	10/17/2022	7.17	169.2	643.3	11.9	621.21	6.97	0.01
MW-304A	5/20/2020	8.04	61.8	529	12.6	624.88	0.48	585.90
	7/6/2020	7.90	-15.8	541	19.1	625.76	0.30	181.90
_	8/19/2020	8.48	50.5	533	14.0		0.27	236.20
	10/19/2020	7.89	162.7	547	10.1	624.41	0.78	90.29
	2/23/2021	8.01	44.9	534	9.1	625.04	0.39	116.60
	4/9/2021	7.78	151.6	533	10.1	624.31	0.41	165.20
	7/12/2021	8.09	80.3	543.1	13.8	623.87	0.48	36.09
	10/26/2021	7.94	157.1	526.8	13.4	623.87	2.53	2.78
	4/5/2022	7.97	198.1	520.9	9.4	619.00	0.19	42.65
	10/17/2022	7.81	-24.7	480.6	10.6	623.56	0.13	77.88

Well	Parameter	Field pH	Field Oxidation Potential	Field Specific Conductance	Field Temperature	Groundwater Elevation	Oxygen, Dissolved	Turbidity
		(Std. Units)	(mV)	(umhos/cm)	(deg C)	(feet)	(mg/L)	(NTU)
MW-305	6/20/2019	7.19	27.0	638	15.5	629.12	0.20	9.60
	10/2/2019	7.03	-105.6	635	19.0	629.77	0.21	8.87
	5/19/2020	6.90	-138.0	684	9.8	627.24	0.48	20.44
	8/18/2020	7.23	-162.9	654	19.0	626.98	0.07	27.27
	10/20/2020	7.24	-145.4	634	15.6	626.54	0.22	3.65
	4/9/2021	7.17	-25.8	574	7.1	627.02	2.10	14.88
	10/27/2021	7.29	-128.5	643	16.3	626.41	0.08	0.27
	4/4/2022	6.94	198.9	545.0	4.4	627.17	4.06	4.57
	10/18/2022	7.32	-186.6	607.2	15.7	626.36	0.06	8.17
MW-306	6/20/2019	6.87	22.0	1632	13.8	623.05	1.00	25.90
	10/2/2019	9.00	-1205.0	1998	16.3	622.47	0.27	3.67
	12/5/2019	6.76	-127.0	2196	16.3	620.60	0.90	10.26
	2/5/2020	6.95	-127.7	2477	13.7	620.83	0.23	4.43
	5/19/2020	6.66	-137.0	2332	12.7	620.43	0.30	2.63
	8/18/2020	7.12	-139.1	1,911	15.0	620.37	0.10	0.16
	10/20/2020	6.88	-142.3	1,832	16.2	619.92	0.26	3.08
	2/23/2021	6.87	-127.2	2,055	13.6	619.76	0.12	3.11
	4/9/2021	6.85	-134.2	1,994	12.6	620.03	0.05	0.09
	7/12/2021	7.51	-128.3	2,006	14.4	619.83	0.37	0.13
	10/27/2021	6.86	-126.3	1,778	16.6	619.91	0.11	2.72
	4/4/2022	6.86	196.3	1839	12.0	620.42	0.26	0.00
	10/19/2022	6.80	-173.1	2120.0	15.4	619.79	0.07	0.98

Well	Parameter	Field pH	Field Oxidation Potential	Field Specific Conductance	Field Temperature	Groundwater Elevation	Oxygen, Dissolved	Turbidity
		(Std. Units)	(mV)	(umhos/cm)	(deg C)	(feet)	(mg/L)	(NTU)
MW-306A	5/19/2020	6.99	-21.7	697	14.6	620.40	1.18	4.15
-	7/6/2020	7.04	-55.8	683	15.3	621.66	1.24	1.40
-	8/18/2020	7.38	21.2	654	15.5	620.63	1.16	2.71
	10/20/2020	7.18	-38.5	681	14.4	620.17	1.30	1.56
	4/9/2021	7.21	-8.5	669	14.2	620.14	1.68	0.01
	10/27/2021	7.34	78.8	663	14.6	620.17	1.23	0.59
	4/4/2022	7.19	192.7	669	13.0	620.61	1.13	0.00
	10/19/2022	7.25	-91.1	624.3	14.0	620.05	1.30	3.21
MW-307	7/12/2021	8.25	-40.6	449.6	15.2	630.95	0.47	0.00
	8/12/2021	7.86	-17.5	437	17.4	630.01	0.17	0.00
	10/27/2021	8.11	-123.4	361.2	16.4	634.90	0.93	0.00
	4/5/2022	8.34	198.2	460	6.9	639.74	0.08	0.00
	10/18/2022	8.44	-175.6	399.6	15.7	639.23	0.16	4.34
MW-307A	7/12/2021	7.83	73.1	615.6	13.2	625.27	0.27	0.00
	8/12/2021	7.35	54.3	612.3	12.5	625.48	0.17	0.00
	10/27/2021	7.29	47.7	625.4	12.9	626.25	1.39	0.00
[[4/5/2022	7.48	199.8	563	10.8	626.72	0.09	0.00
	10/18/2022	7.59	-99.4	518.7	11.4	625.77	0.10	2.57

Created by: RM 3/21/2023 Last revision by: RM 3/21/2023 Checked by: NLB 3/22/2023

Table 6. Horizontal Gradients and Flow Velocity Lansing Generating Station SCS Engineers Project #25220082.00

	Flow Path A - North-Northwest							
Sampling Dates	h1 (ft) h2 (ft) ΔI (ft) Δh/ΔI (ft/ft) V (ft/d)							
April 4-7, 2022: Shallow	646.61	640	928	0.007	0.5			
October 17-19, 2022: Shallow	643.88	640	856	0.005	0.3			
October 17-19, 2022: Deep	625.77	622	504	0.007	0.57			

	Flow Path B - Northwest					
Sampling Dates	h1 (ft) h2 (ft) Δl (ft) Δh/Δl (ft/ft) V (ft/c					
April 4-7, 2022: Deep	626.72	620	364	0.018	1.40	

	K Values	K Values
Well	(cm/sec)	(ft/d)
MW-6	N/A	N/A
MW-301	1.75E-03	5.0
MW-302	3.50E-03	9.9
MW-302A	2.03E-02	57
MW-303	2.19E-02	62
MW-304	1.68E-02	48
MW-304A	2.55E-03	7.2
MW-305	3.38E-03	9.6
MW-306	4.46E-02	126
MW-306A	3.04E-02	86
MW-307	4.03E-02	114
MW-307A	9.66E-03	27
Geometric		
Mean	1.1E-02	30

Assumed
Porosity, n
0.40

Groundwater flow velocity equation: V = [K*($\Delta h/\Delta I$)] / n

ft = feet ft/d = feet per day K = hydraulic conductivity n = effective porosity V = groundwater flow velocity h1, h2 = point interpreted groundwater elevation at locations 1 and 2 ΔI = distance between location 1 and 2 $\Delta h/\Delta I$ = hydraulic gradient

Note:

1.See Figures 3, 4, 5, and 6 for velocity calculation flow path locations.

Created by:	NDK	Date: 9/26/2022
Last revision by:	RM	Date: 1/13/2023
Checked by:	MDB	Date: 1/16/2023

Table 7. Vertical GradientsLansing Generating Station / SCS Engineers Project #25220082.00January - December 2022

	MW302/M	W302A	MW304/M	W304A	MW306/M	IW306A	MW307/M	W307A
Vertical Hydraulic Gradients								
Shallow Well	MW302		MW304		MW306		MW307	
Screen midpoint ⁽²⁾ (feet amsl)	621.90		625.43		616.48		628.06	
Deep Well	MW302A		MW304A		MW306A		MW307A	
Screen midpoint (feet amsl)	592.43		591.10		587.06		595.46	
Measurement Date	Distance between midpoints ⁽²⁾ (ft)	Vertical Gradient (ft/ft)						
February 23, 2021	NM	NM	NM	NM	NM	NM	NI	NI
April 7-9, 2021	29.5	-0.161	29.8	0.095	28.7	0.004	NI	NI
July 12-13, 2021	29.5	-0.174	29.7	0.089	28.6	0.006	31.5	-0.180
August 13, 2021	29.5	-0.181	29.9	0.085	28.9	0.015	31.1	-0.146
September 23, 2021	29.5	-0.163	29.7	0.085	28.7	0.012	31.9	-0.202
October 25-27, 2021	29.5	-0.195	29.8	0.087	28.6	0.009	33.5	-0.258
April 4-7, 2022	29.5	-0.223	30.0	-0.091	28.9	0.007	32.6	-0.399
October 17-19, 2022	29.5	-0.222	29.7	0.079	28.6	0.009	32.6	-0.413

Notes:

1: A positive vertical gradient indicates upward groundwater flow. A negative gradient indicates downward flow.

2: MW-304 and MW-306 are water table wells, and their screens were not fully submerged during all 2022 sampling events. The effective screen midpoint for a water table well is calculated for each sampling event as the midpoint between the water table elevation and the screen bottom elevation, and this value is used to calculate Distance Between Midpoints.

NI: Not Installed

NM: Not Measured

Created by:	ТК	Date:	10/23/2020
Last revision by:	RM	Date:	1/16/2023
Checked by:	MDB	Date:	1/16/2023

Table 8. Historical Groundwater Arsenic Results for State Monitoring Wells Alliant-Lansing CCR Landfill (Results are in $\mu g/L$, unless otherwise noted)

Sample	Date	Arsenic (µg/L)
VW3	5/11/2001	<1.8
VIW4	5/11/2001	<1.8
	3/8/2002	<0.88
	2/19/2004	<3.5
	5/26/2004	3.3
	8/23/2004	<0.79
	11/18/2004	<0.79
	5/5/2005	<0.79
	5/19/2006	2.9
	5/30/2007	<1
	4/16/2008	<0.43
	4/3/2009	0.27 J
	4/21/2010	<1.0
	5/4/2011	<1.0
	5/4/2011 (Dup)	<2.0 RL
	4/25/2012	<1.0
	4/2/2013	<1.0
	7/2/2013	<1.0
	4/29/2014	0.62 J
	5/29/2014	<0.18
	4/21/2015	<0.25
	4/28/2016	0.30 J
	4/20/2017	0.33 J
WW5	3/8/2002	<0.88
	2/19/2004	<3.5
	5/26/2004	4.7
	8/23/2004	0.92
	11/18/2004	<0.79
	5/5/2005	<0.79
	5/19/2006	<0.79
	5/30/2007	<1
	4/16/2008	<0.43
	04/16/08 (Dup)	<0.43
	4/3/2009	0.22 J
	4/21/2010 4/21/2010 (Dup)	<1.0
	5/4/2011	<1.0
	4/25/2012	<1.0
	4/2/2013	<1.0
	7/2/2013	<1.0
	4/29/2014	0.65 J
	5/29/2014	1.3
	4/21/2015	<0.25
	4/28/2016	0.26 J
	4/20/2017	0.26 J

Table 8. Historical Groundwater Arsenic Results for State Monitoring Wells Alliant-Lansing CCR Landfill (Results are in $\mu g/L$, unless otherwise noted)

Sample	Date	Arsenic (µg/L)
WW6	5/11/2001	<1.8
	3/8/2002	<0.88
	2/19/2004	<3.5
	5/26/2004	3.9
	8/23/2004	<0.79
	11/18/2004	<0.79
	5/5/2005	<0.79
	5/19/2006	0.93 J
	5/30/2007	<1.0
	4/16/2008	<0.43
	4/3/2009 (Dup)	0.29 J
	4/3/2009	0.29 J
	4/21/2010	<1.0
	5/4/2011	<1.0
	4/25/2012	<1.0
	4/2/2013	<1.0
	7/2/2013	<1.0
	4/29/2014	0.55 J
	4/20/2015	<0.25
	4/29/2016	0.26 J
	4/19/2017	0.27 J
	4/16/2018	0.19 J
	4/15/2019	<0.75
	5/20/2020	<0.88
	4/7/2021	<0.75
	4/6/2022	<0.75
W11	3/8/2002	<u>23</u>
	5/26/2004	<u>16</u>
	8/23/2004	3.8
W11R	4/21/2010	2.44
	5/4/2011	<u>11.6</u>
	4/25/2012	<u>13.6</u>
	4/25/2012 (Dup)	<u>15.7</u>
	4/2/2013	<u>25</u>
	7/2/2013	23
	4/30/2014	27
	5/29/2014	27
	4/21/2015	23
	4/28/2016	33.4
	4/20/2017	30.4
	4/17/2018	28.5
	4/16/2019	28
	5/21/2020	33
	4/7/2021	33
	4/7/2022	29

Table 8. Historical Groundwater Arsenic Results for State Monitoring Wells Alliant-Lansing CCR Landfill (Results are in $\mu g/L$, unless otherwise noted)

Sample	Date	Arsenic (µg/L)
MW12	4/2/2013	<u>16</u>
	7/2/2013	17
	4/30/2014	16
	5/29/2014	<u>14</u>
	4/21/2015	<u>13</u>
	4/28/2016	<u>24.2</u>
	4/20/2017	<u>19.4</u>
	4/17/2018	20.6
	4/16/2019	<u>20</u>
	5/21/2020	<u>21</u>
	4/6/2021	<u>21</u>
	4/6/2022	23
MW12P	4/30/2014	1.0
	5/29/2014	0.45 J
	4/21/2015	0.34 J
	4/28/2016	0.44 J
	4/20/2017	0.88 J
	4/17/2018	0.51 J
	4/16/2019	<0.75
	5/21/2020	<0.88
	4/6/2021	<0.75
	4/6/2022	<0.75
MW13	4/2/2013	1.1
	7/2/2013	<1.0
	7/2/2013 (Dup)	<1.0
	4/30/2014	1.6
	5/29/2014	0.65 J
	4/20/2015	1.1
	4/28/2016	3.5
	4/20/2017	1.5
	4/17/2018	0.89 J
	4/16/2019	<0.75
	5/21/2020	<0.88
	4/7/2021	<0.75
	4/7/2022	<0.75
MW14	4/2/2013	<1.0
	7/2/2013	<1.0
	4/30/2014	0.54 J
	5/29/2014	<0.18
	4/20/2015	<0.25
	4/29/2016	0.16 J
	4/20/2017	0.68 J
	4/17/2018	0.16 J
	4/15/2019	<0.75
	5/22/2020	<0.88
	4/7/2021	<0.75
	4/6/2022	<0.75

Table 8. Historical Groundwater Arsenic Results for State Monitoring Wells Alliant-Lansing CCR Landfill

(Results are in µg/L, unless otherwise noted)

Sample	Date	Arsenic (µg/L)
MW15	4/30/2014	0.95 J
	5/29/2014	0.82 J
	4/20/2015	0.79 J
	4/29/2016	0.39 J
	4/20/2017	0.42 J
	4/17/2018	0.14 J
	4/16/2019	<0.75
	5/22/2020	<0.88
	4/7/2021	<0.75
	4/7/2022	<0.75
TW17	4/30/2014	0.87 J
	5/29/2014	0.25 J
TW18	4/30/2014	1.40
	5/29/2014	<0.18
	4/20/2015	0.47 J
	4/20/2017	1.2
	4/17/2018	2.1
	4/16/2019	<0.75
	5/22/2020	<0.88
	4/7/2021	<0.75
	4/6/2022	<0.75
TW19	4/30/2014	4.6
	5/29/2014	0.59 J
	3/8/2002	0.88
Rinsate Blank	5/26/2004	3.3
	8/23/2004	0.79
	11/18/2004	0.79
	4/16/2008	0.43
	4/3/2009	2.0
Groundwater Protection St	andard (GPS)	10

Abbreviations:

µg/L = micrograms per liter

Notes:

Bold+underlined values meet or exceed GPS. <u>Italic+underlined</u> values meet or exceed USEPA SMCL.

Laboratory Notes/Qualifiers:

B = Analyte was detected in the associated Method Blank.

CL = The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low. D = Diluted for analysis.

D9 = Dissolved result is greater than the total. Data is within laboratory control limits.

H1 = Analysis conducted outside the EPA method holding time.

J = Estimated value. Analyte detected at a level less than the reporting limit and

greater than or equal to the Method Detection Limit. The user of this data should

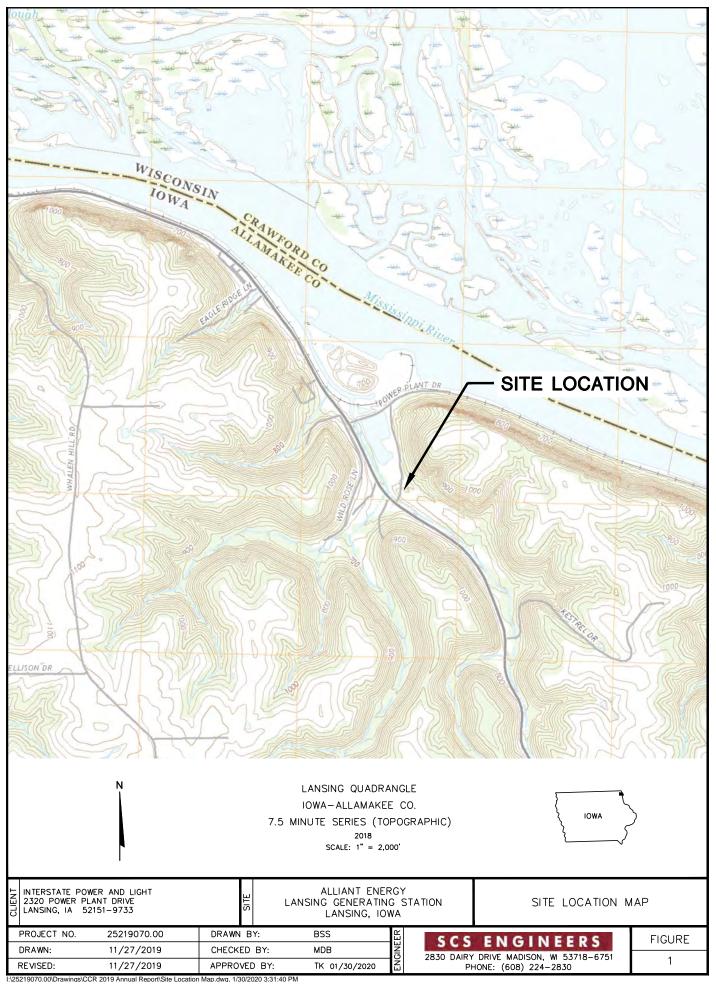
be aware that this data is of unknown quality.

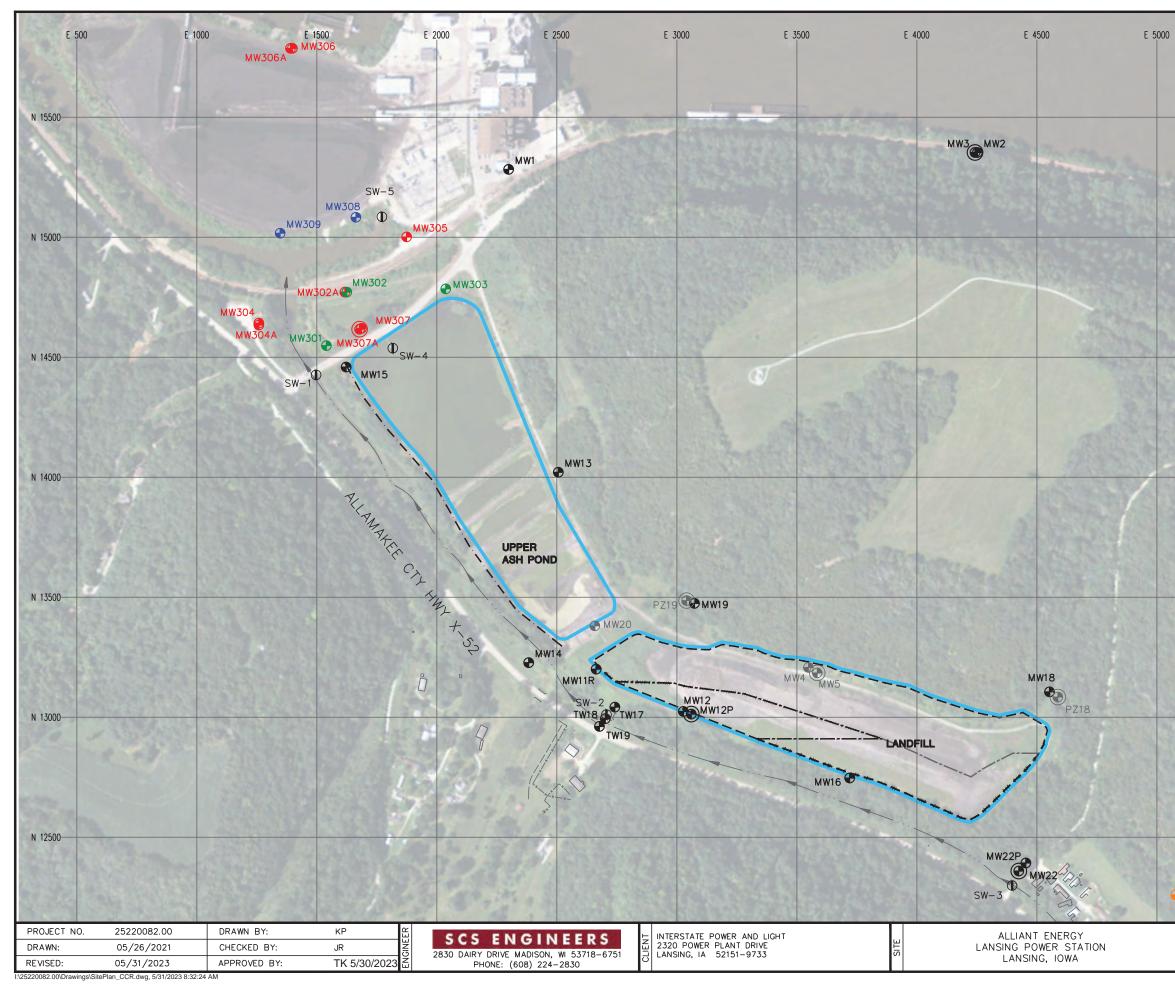
M1 = Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery

N2 = The lab does not hold TNI accreditation for this parameter.

RL = Reporting limit raised due to sample matrix effects.

Created by:	1
Last rovision by:	1

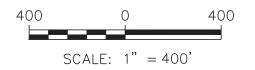

Checked by:


	TLC	Date:	8/20/2013
by:	RM	Date:	3/21/2023
	NLB	Date:	3/22/2023

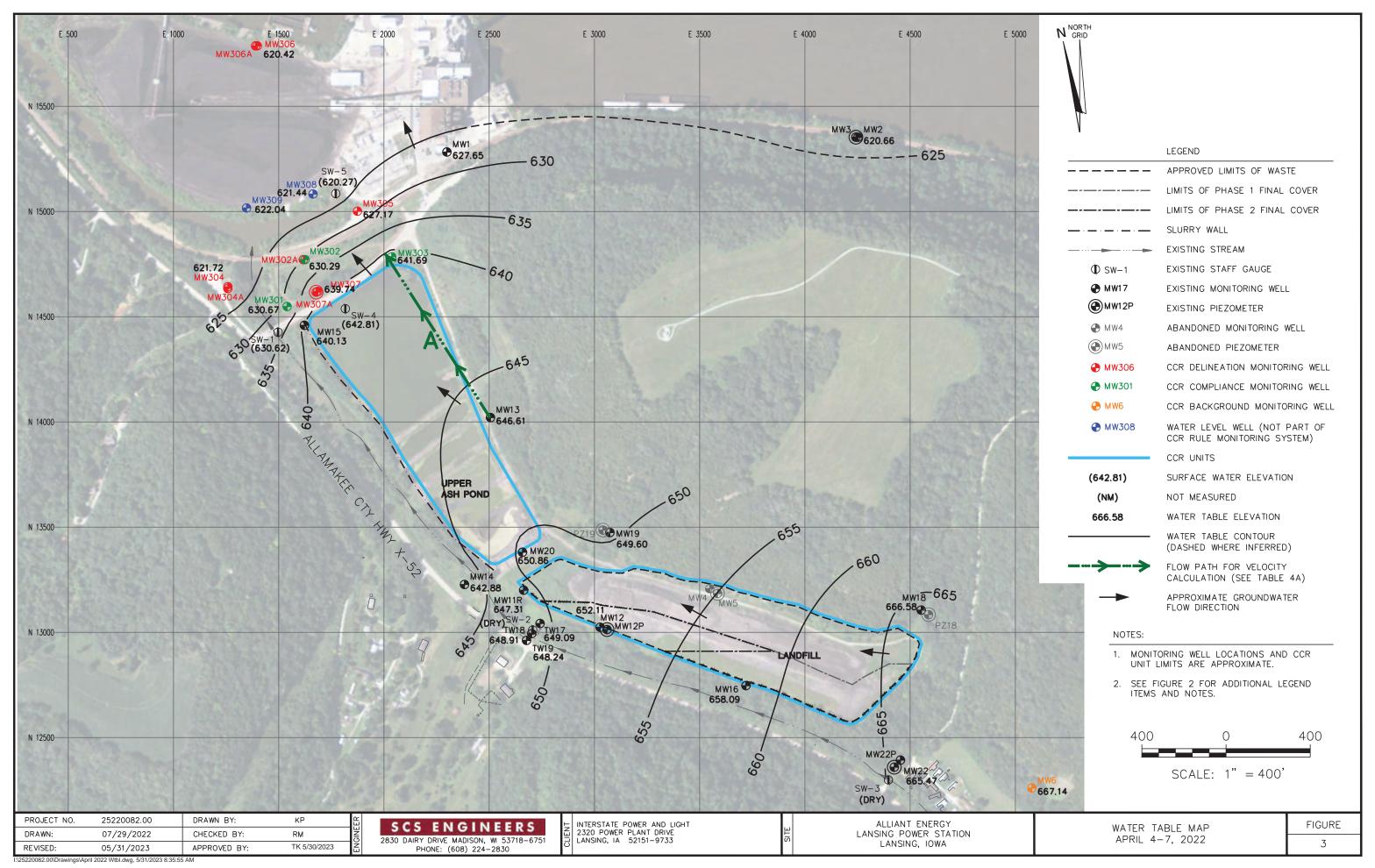
I:\25220082.00\Deliverables\ACM Add No. 2\Tables\[Table 8 - Historical State GW Arsenic.xlsx]Notes

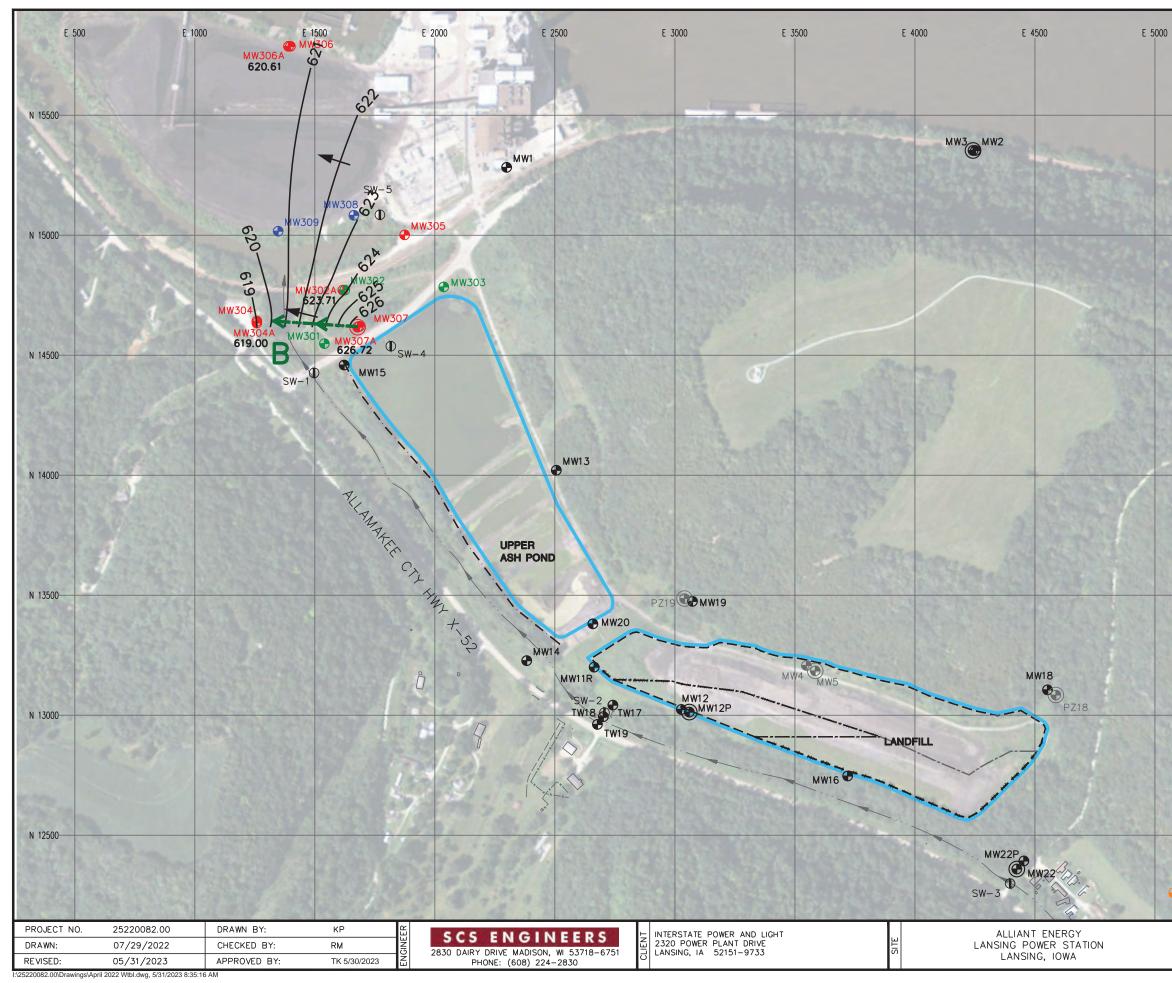
Figures

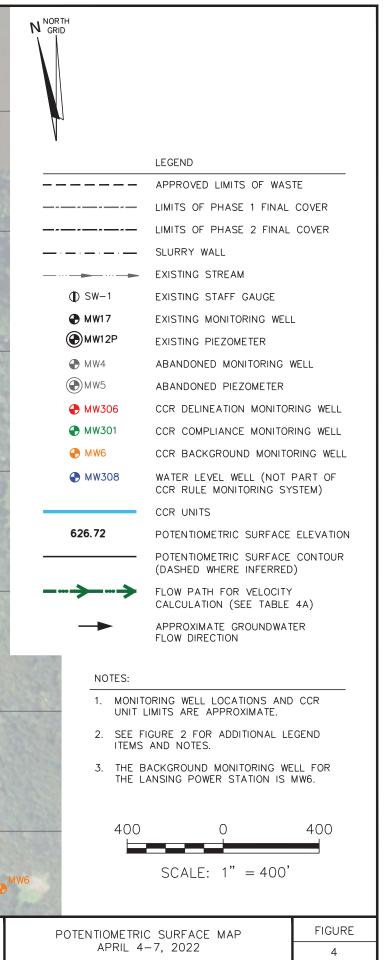
- 1 Site Location Map
- 2 Site Plan and Monitoring Well Locations
- 3 Water Table Map April 2022
- 4 Potentiometric Surface Map April 2022
- 5 Water Table Map October 2022
- 6 Potentiometric Surface Map October 2022
- 7 Cross Section Location Map
- 8A Cross Section A-A'
- 8B Cross Section A-A' Zoomed into MW-302 Area
- 9 Cross Section B-B'

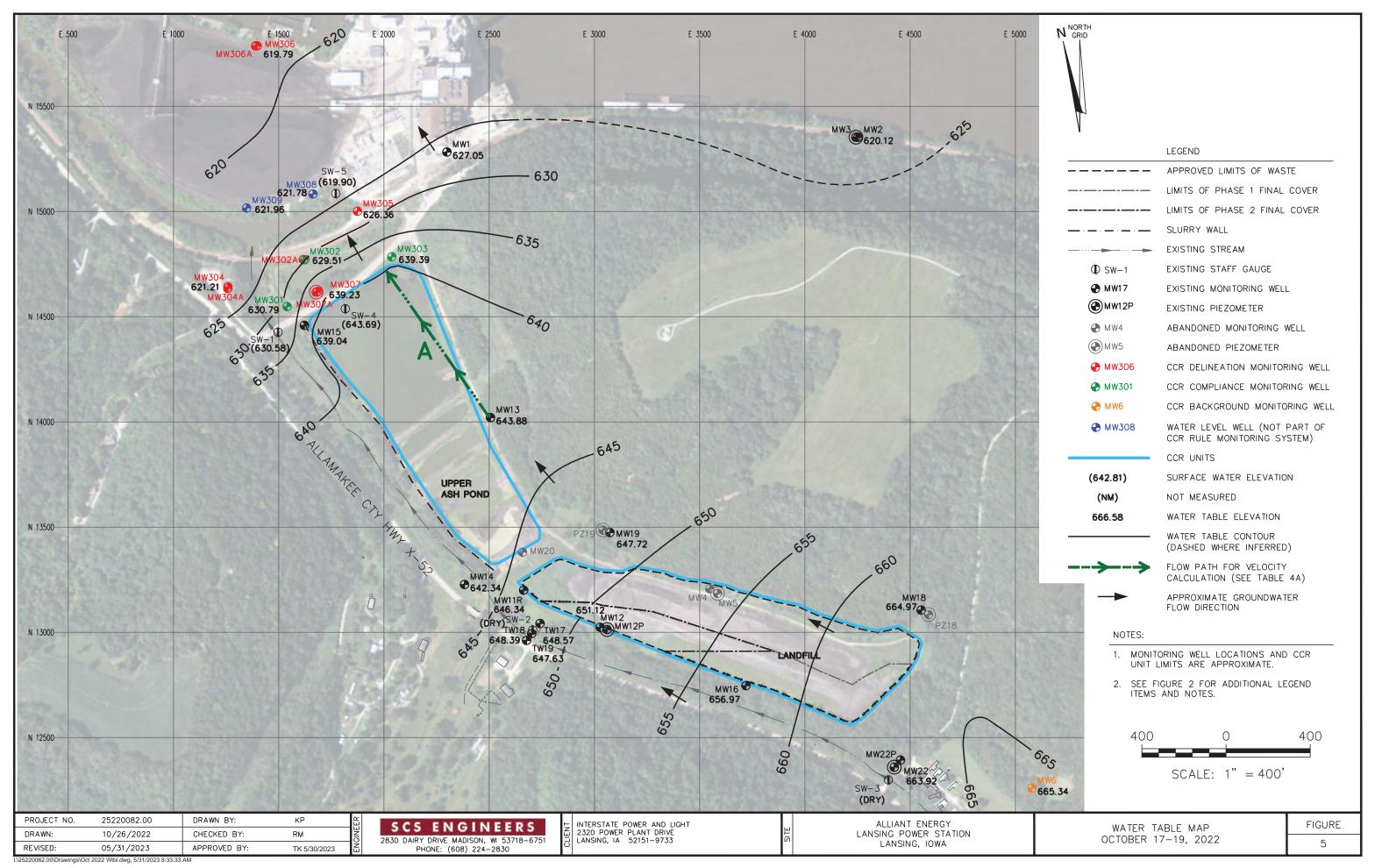


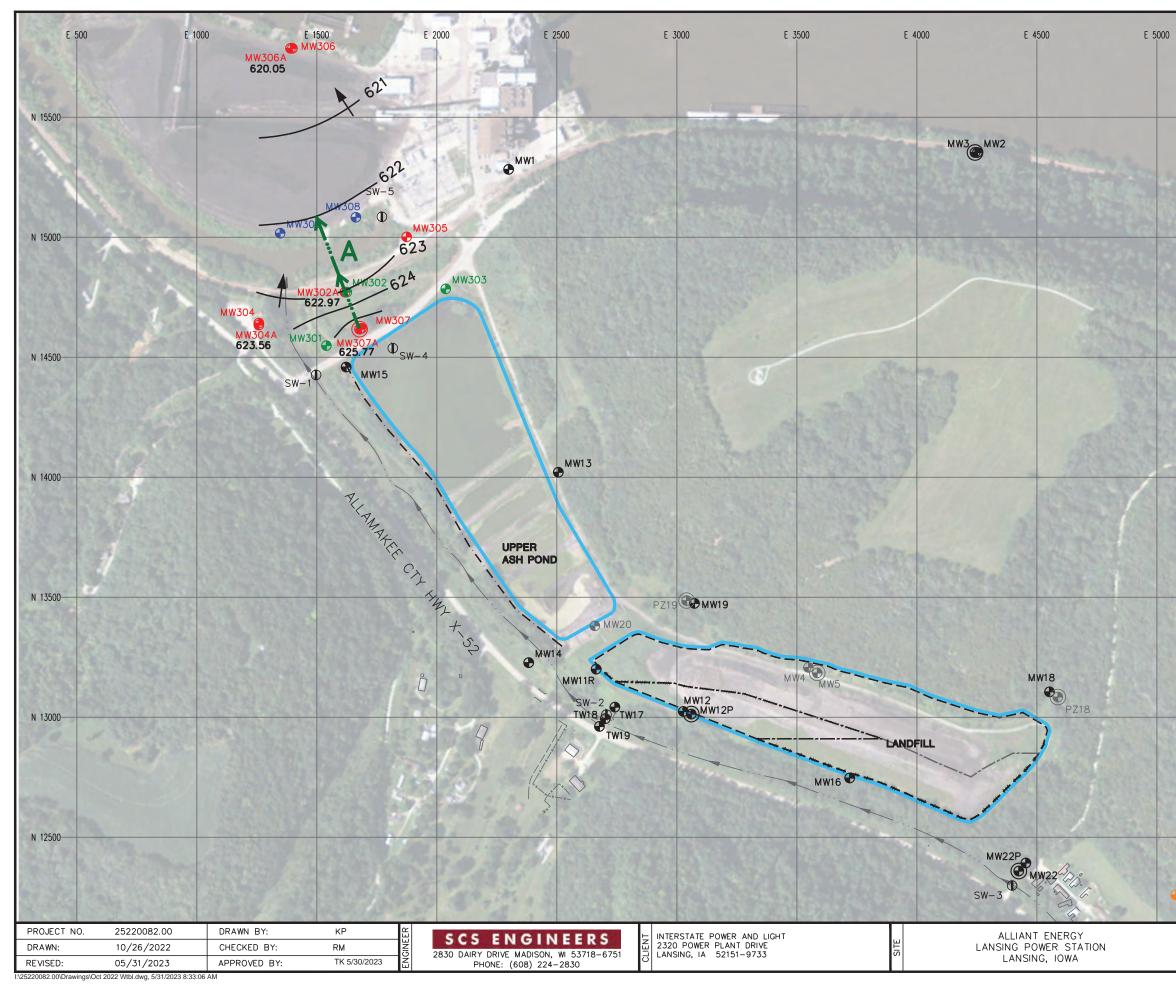
LEGEND

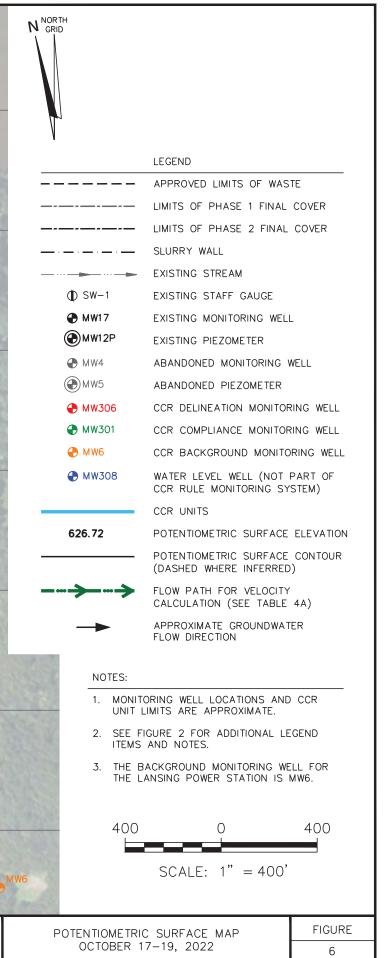

	APPROVED LIMITS OF WASTE
	LIMITS OF PHASE 1 FINAL COVER
	LIMITS OF PHASE 2 FINAL COVER
	CCR LIMITS
	SLURRY WALL
	EXISTING STREAM
⊕ sw−1	EXISTING STAFF GAUGE
	EXISTING MONITORING WELL
MW12P	EXISTING PIEZOMETER
• MW4	ABANDONED MONITORING WELL
MW5	ABANDONED PIEZOMETER
⊕ M₩306	CCR DELINEATION MONITORING WELL
➔ MW301	CCR COMPLIANCE MONITORING WELL
€ M₩6	CCR BACKGROUND MONITORING WELL
	WATER LEVEL WELL (NOT PART OF CCR RULE MONITORING SYSTEM)

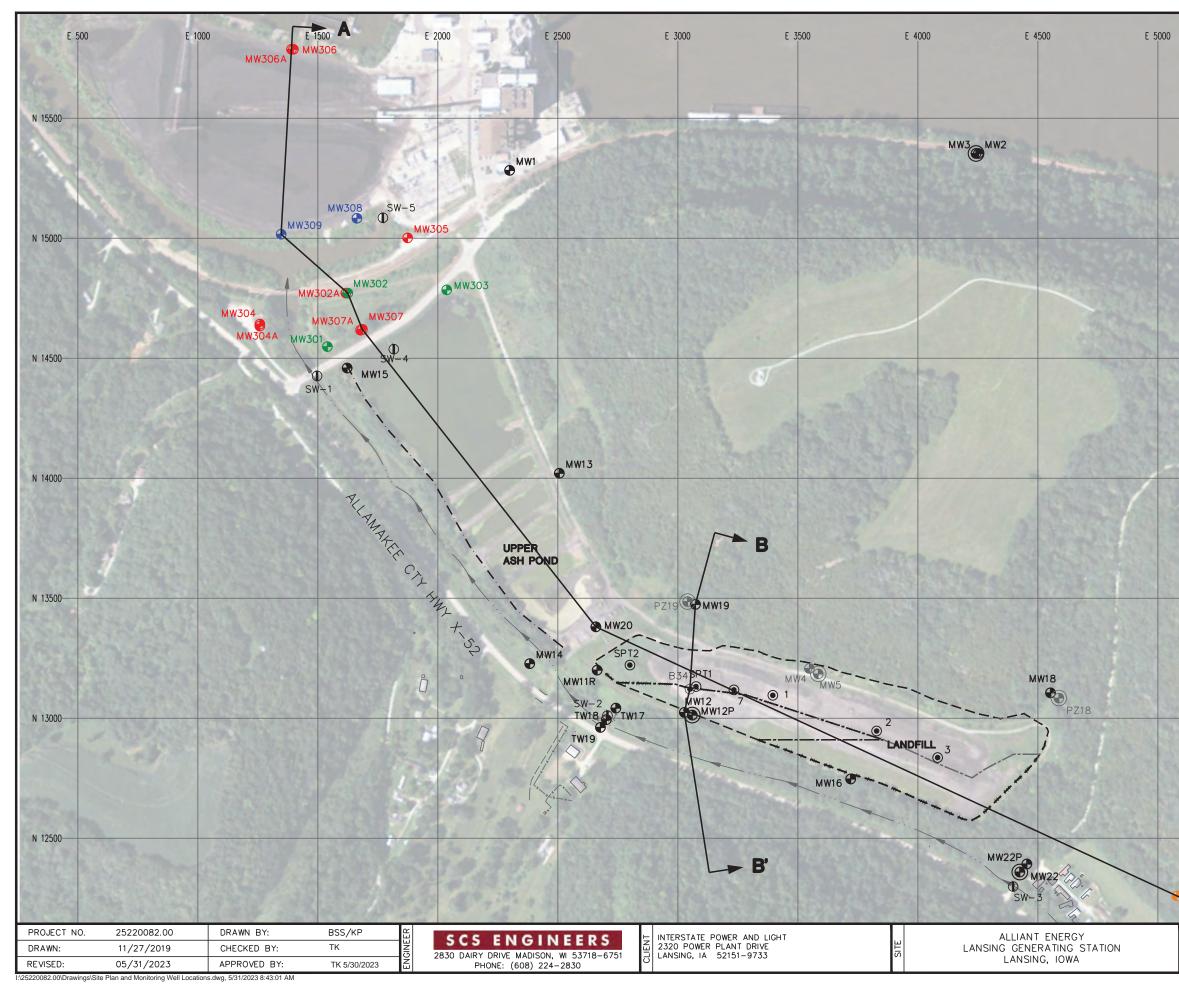


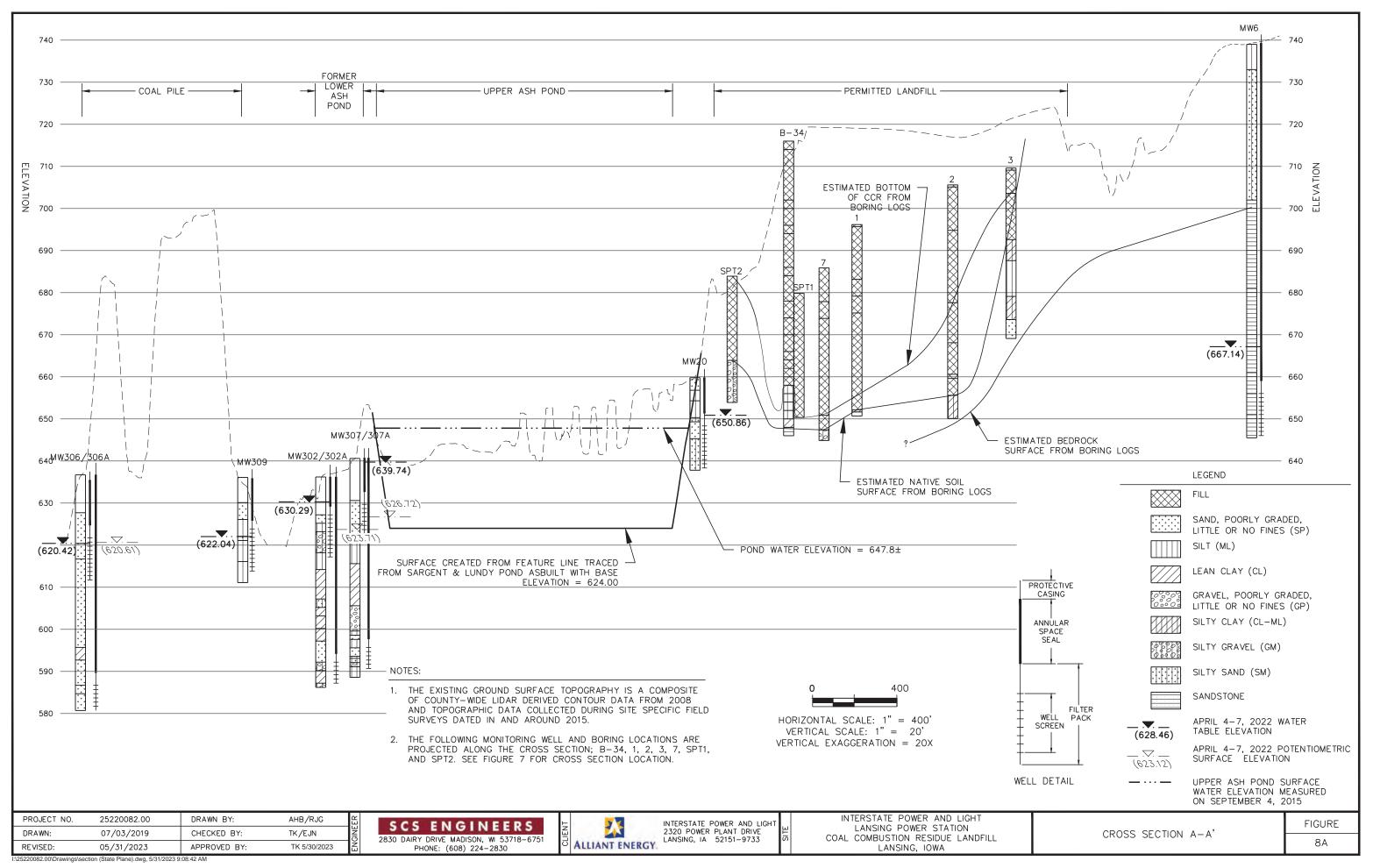

- 1. MONITORING WELL LOCATIONS AND CCR UNIT LIMITS ARE APPROXIMATE.
- 2. MONITORING WELL MW20 WAS ABANDONED ON MAY 5, 2022..

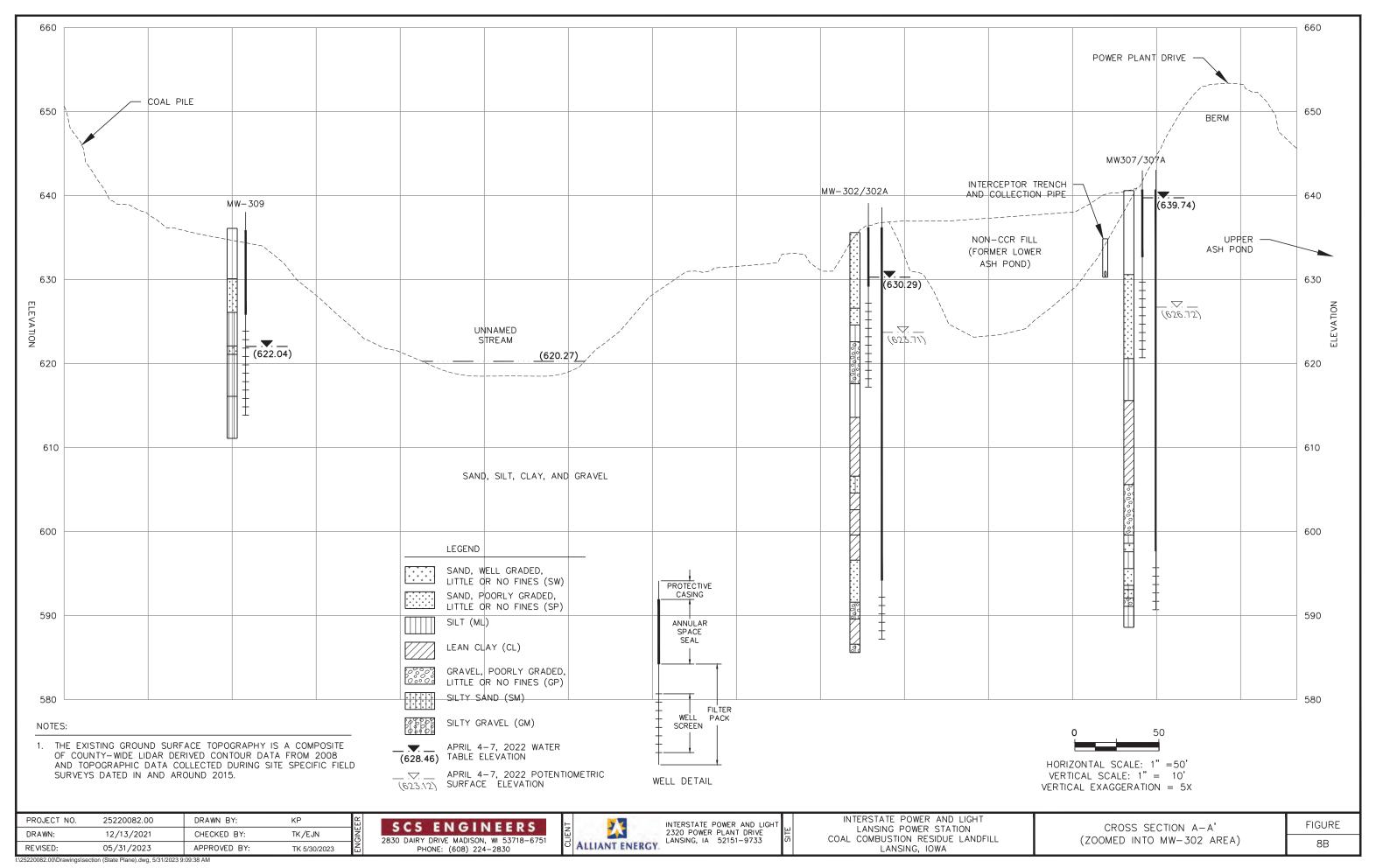


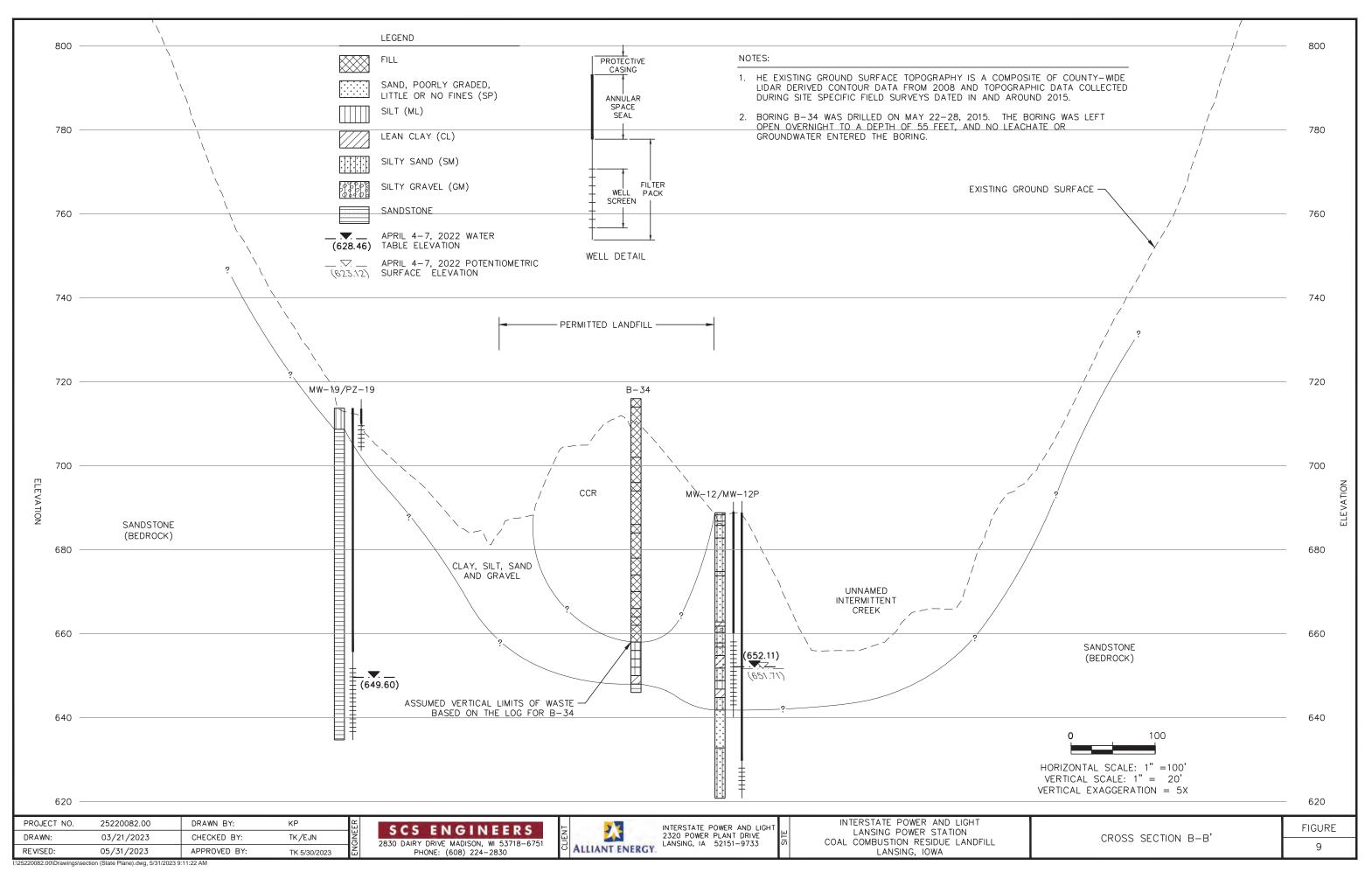

SITE PLAN AND MONITORING WELL LOCATIONS











	400	0	400		
		SCALE: 1" = 400'			
V		LEGEND			
		APPROVED LIMITS OF WA			
		LIMITS OF PHASE 1 FINA			
		LIMITS OF PHASE 2 FINAL COVER			
		SLURRY WALL			
		EXISTING STREAM			
	⊕ SW-1	EXISTING STAFF GAUGE			
		EXISTING MONITORING WELL			
	MW12P	EXISTING PIEZOMETER			
5	€ MW4	ABANDONED MONITORING	WELL		
	MW5	ABANDONED PIEZOMETER	?		
1		CCR DELINEATION MONIT	ORING WELL		
		CCR COMPLIANCE MONIT	ORING WELL		
1	€ M₩6	CCR BACKGROUND MONITORING WELL			
		WATER LEVEL WELL (NOT PART OF CCR RULE MONITORING SYSTEM)			
	۲	SOIL BORING			
I ↑	•	CROSS SECTION LOCATION	N		
	NOTES:				
1000		ERIAL PHOTOGRAPH FROM RIAL PHOTOGRAPHY FIELD			
No.		RING WELL LOCATIONS AN ARE APPROXIMATE.	ND CCR UNIT		
33	AND M	RING WELLS MW20, MW30 W303 WERE INSTALLED B G IN NOVEMBER 2015.			
199	4. MONITO MW306	RING WELLS MW304, MW3 WERE INSTALLED BY ROE NMENTAL DRILLING IN MA	BERTS		
AL A	MW306/	RING WELLS MW302A, MW A WERE INSTALLED BY CA G IN DECEMBER 2019.			
22	AND M	RING WELLS MW307, MW3 W309 WERE INSTALLED B` G IN JUNE 2021.			
A1		BORINGS USED FOR GEOLO N A-A' ARE SHOWN.	OGIC CROSS		
MW6		SAMPLED UNDER BOTH CR RULE MONITORING PRO			
		ACKGROUND MONITORING N NSING POWER STATION IS			
CROSS SECTION LOCATION MAP					
			7		

Appendix A

Regional Geological and Hydrogeological Information

Table LAN-3 Regional Hydrogeologic Stratigraphy Lansing Generating Station / SCS Engineers Project #25215053

Strategic Unit		Hydrogeologic Units	Type of Rock	Hydrologic Conditions	Thickness Range (ft)	Age of Rocks*	
Quaternary		Recent and Pleistocene deposits	Surficial aquifers- Alluvium, Drift, Buried-channel	Sand and gravel interbedded with silt and clay	Mostly unconfined local aquifers, some artesian, small-to-large yields	0 – 305	0 – 2.8 million years (m.y.)
Devonian	Yellow Spring Group (Gp)	Lime Creek Formation (Fm)	Confining layers	Shale, some dolostone	Non-aquifer	0 – 50	365 - 405 m.y.
	Cedar Valley Gp	Lithograph City Fm Coralville Fm Little Cedar Fm	Silurian-Devonian aquifer	Limestone and dolostone, thin shales	Major aquifer, mostly artesian, — moderate-to-large yields	0 – 400	
	Wapsipinicon Gp	Pinicon Ridge Fm Spillville Fm		Dolostone and limestone			
Silurian		Scotch Grove Fm Hopkinton Fm Blanding Fm Tete des Morts Fm	uquirei	Dolostone, locally with much chert, local shale as cavern fillings			405 - 425 m.y.
Ordovician	Maquoketa Fm	Brainard Member Fort Atkinson Member Clermont Member Elgin Member	Maquoketa Fm, confining beds Fort Atkinson – Elgin aquifer	Shale and dolostone, some chert	Non-aquifer to local aquifer, small- to-moderate yields	0 – 300	425 – 455 m.y.
	Galena Gp	Dubuque Fm Wise Lake Fm Dunleith Fm Decorah Fm	Galena aquifer	Limestone and dolostone, minor chert, shale at base and locally in upper part	Local aquifer, confined and unconfined, small-to-moderate yields	0 – 240	455 – 460
		Platteville Fm Glenwood Fm	Decorah- Platteville- Glenwood confining beds	Limestone and shale	Non-aquifer	0 – 50	m.y.
		St. Peter Sandstone	Cambrian-	Sandstone		1	460 – 500
		Prairie du Chien Gr	Ordovician aquifer Dolostone, minor sandstone and chert large yields		Major aquifer, mostly artesian, large yields	0 – 580	m.y. 500 - 503
Cambrian		Jordan Sandstone		Sandstone, dolomitic			m.y.
		St. Lawrence Fm Lone Rock (Franconia) Fm	Cambrian confining beds	Dolostone, silty Fine, sandstone, siltstone, shale, and minor dolostone	Non-aquifer	0 – 400	503 — 508 m.y.
		Wenowoc (incl Ironton-Galesville sandstone) Fm	Dresbach aquifer	Sandstone	Artesian aquifer, large yields	0 – 1,950	508 – 515
		Eau Claire Fm		Fine sandstone, siltstone, and shale	1		m.y.
		Mt. Simon Sandstone		Sandstone			570
Pre-C		Undifferentiated crystalline rocks	Unknown	Igneous and metamorphic rocks	Unknown	Unknown	570 m.y. – > 2 billion years

*Age determinations as used on COSUNA charts published by AAPG-USGS Source: "Water Resources of Southeast Iowa," <u>Iowa Geologic Survey Water Atlas No. 4</u>.

I:\25215053\Data\Tables\Table 2_Regional Hydrogeologic Stratigraphy.doc

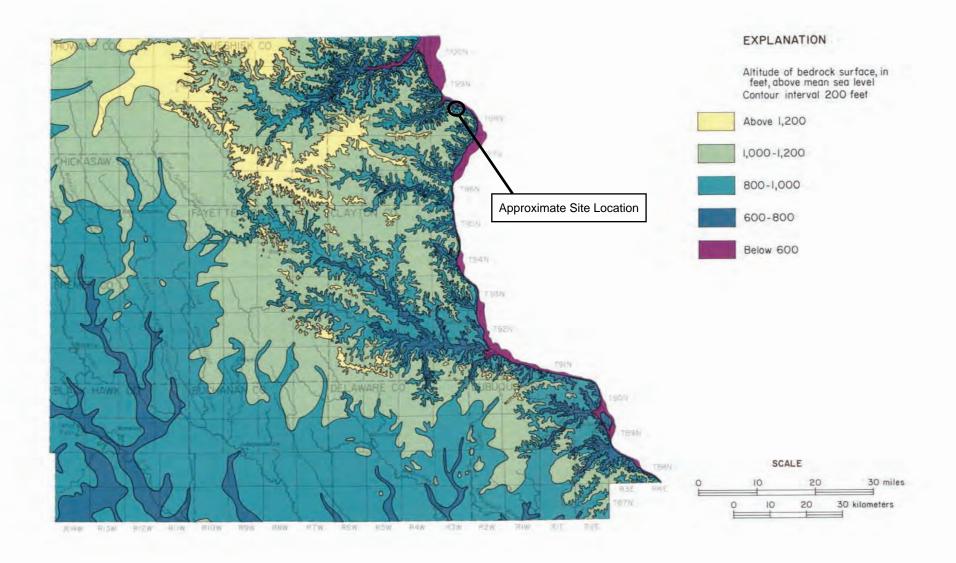


Figure 30. Altitude and configuration of the bedrock surface

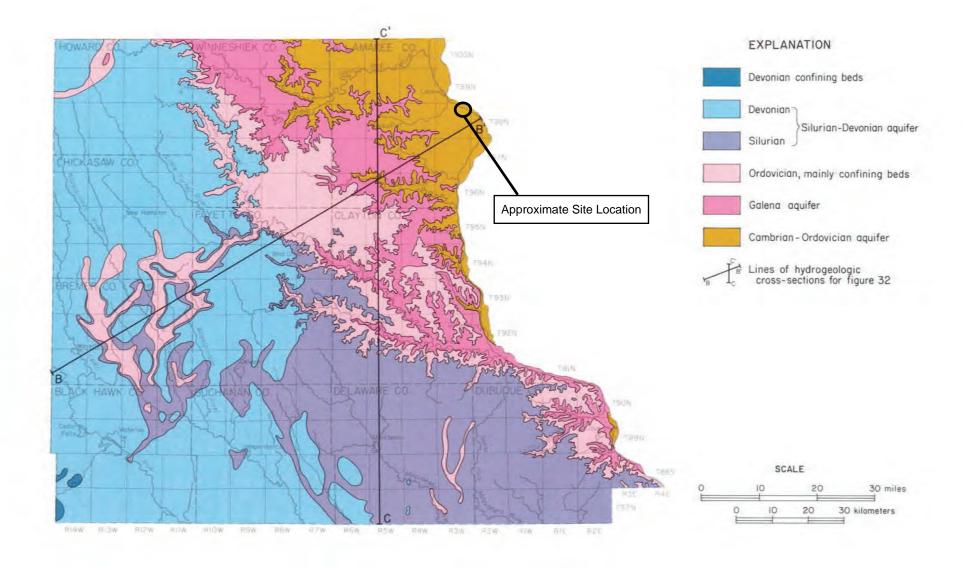


Figure 31. Bedrock hydrogeologic map

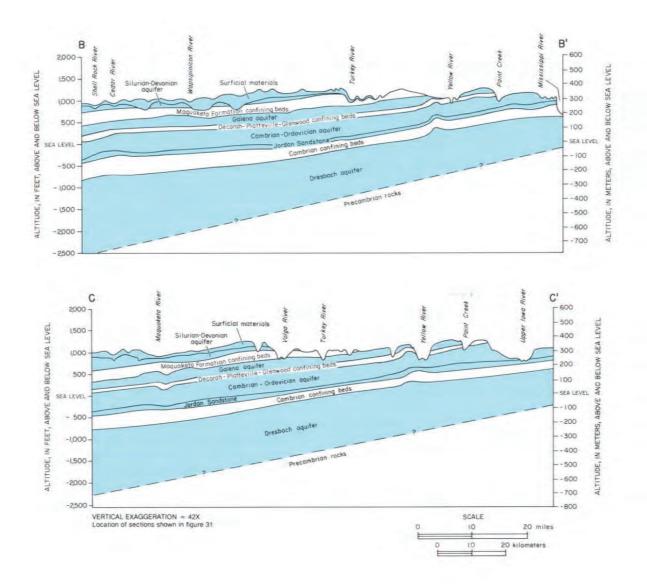


Figure 32. Hydrogeologic cross-sections

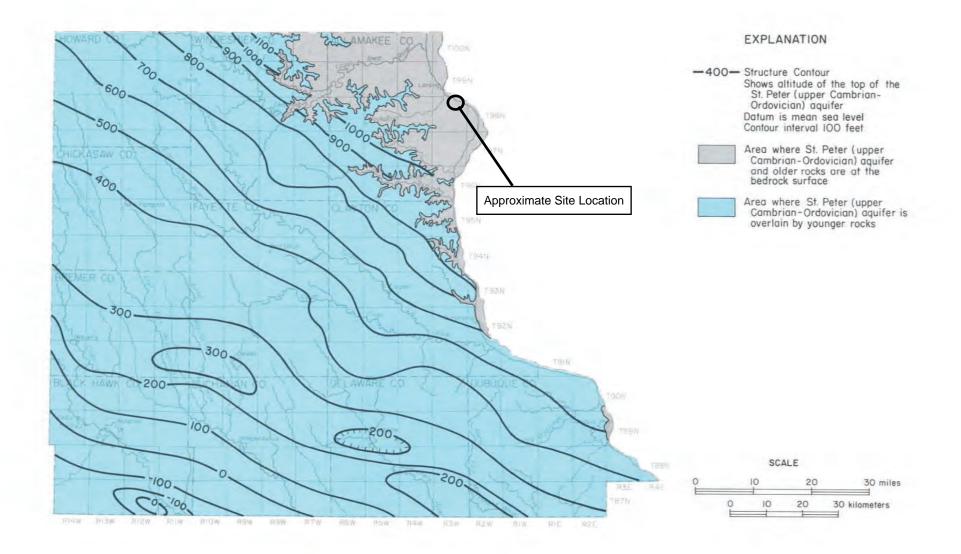


Figure 38. Altitude of the top of the St. Peter (upper Cambrian-Ordovician) aquifer

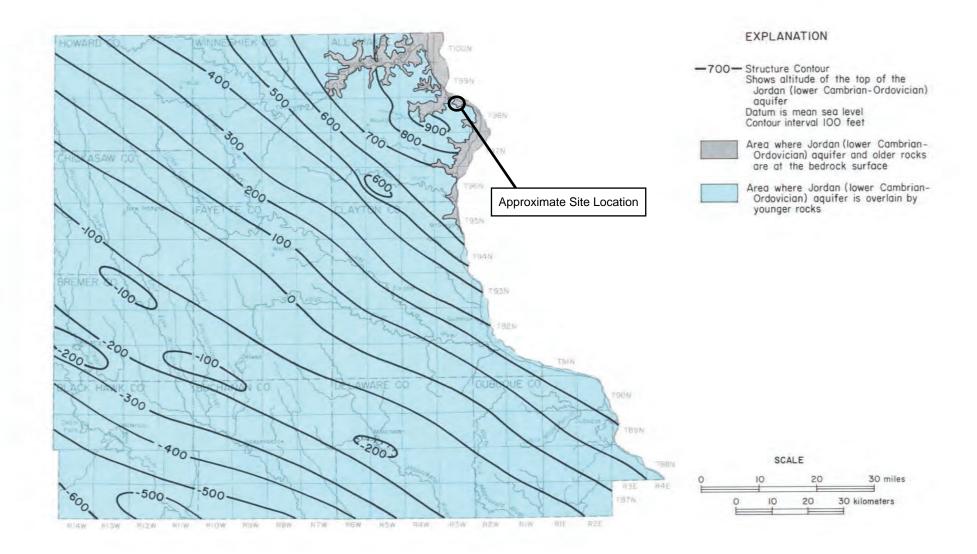


Figure 39. Altitude of the top of the Jordan (lower Cambrian-Ordovician) aquifer

Source: Horick, Paul J., Water Resources of Northeast Iowa, Iowa Department of Natural Resources Water Atlas Number 8, October

64

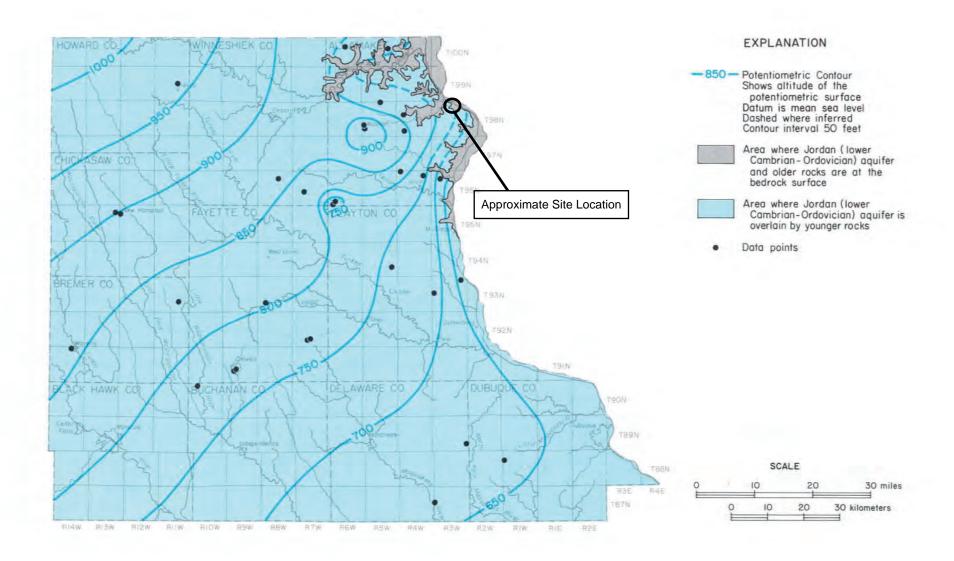
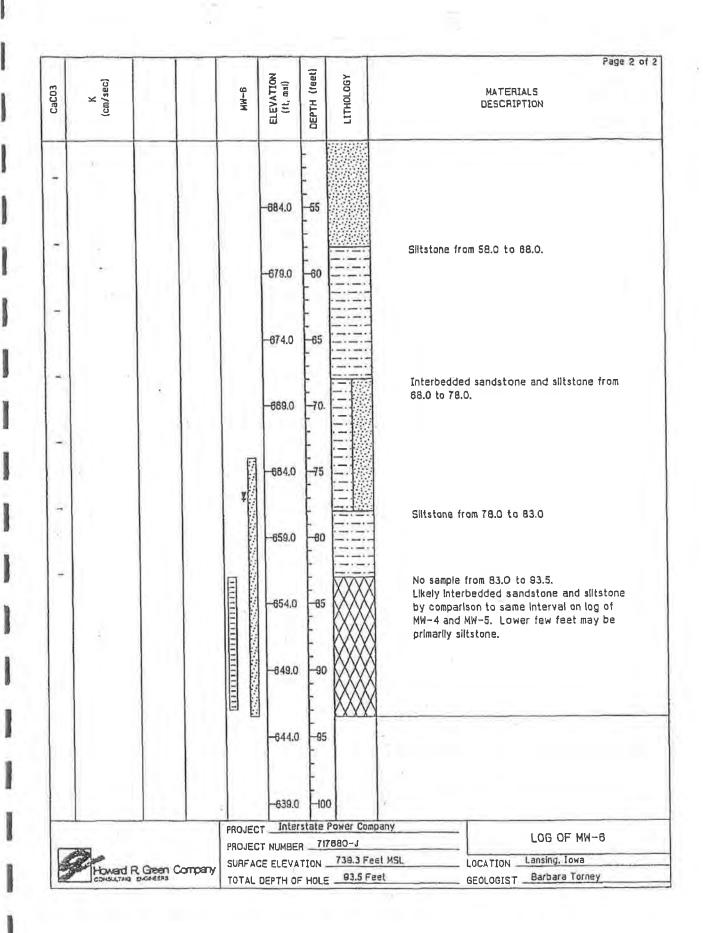



Figure 56. Potentiometric surface of the Jordan (lower Cambrian-Ordovician) aquifer

Appendix B

Boring Logs and Well Construction Forms

Cacos	K (cm/sec)	MW-B	ELEVATION (ft, msl)	DEPTH (leel)	A 90 TOH TI	Page 1 of MATERIALS DESCRIPTION
-			-734.0			0.0 to 6.0 SILT Topsoli developed in silt from 0.0 to 1.5. Topsoli is dark brown. Clayey silt, trace sand is loess or colluvium (slopewash) derived from loess. Medium brown, changing gradually to yellow brown below 5.0.
			-729.0	-10	T T	6.0 to 37.0 TALUS Light brown sandy silt with dolomite chunks.
-			-724.0			
		1	-719.0	-20		
-			-714.0	-25		
-			-709.0	-30		
-			-704.0	- 		
-			-699.0	40		37.0 to 93.5 INTERBEDDED SANDSTONE AND SILTSTONE Sandstone is fine-grained, with quartz silt matrix, glauconitic. Siltsone contains minor amount of very fine quartz sand and glauconite
-			-694.0	-45		Sandstone is laminated light greenish gray with creamy color. Siltstone is light greenish gray. Sandstone from 37.0 to 58.0.
-			689.0	-50	1.	
and the second s	2			717		LOG OF MW-6
	Howard		E ELEVAT			

06/06/2023 - Classification: Internal - ECRM13085590

SOIL BORING LOG INFORMATION

Environmental Consultants and Contractors

Route To: Watershed/Wastewater

Remediation/Redevelopment

Waste Management

Other

Facilit	v/Proi/	ect Nam	10			It icomea	/Damait/	Mani	taulu a	Maria	nhar		Davias	Pa		of	2
				ating Station	SCS#: 25215135.70	License	/rennit/	woni	toring	Nur	noer	- 2	Boring	Numb	er B-:	301	
				of crew chief (first, last)		Date Dr	illing St	arted	1	-	Da	te Drilli	ing Cor	npleted			ling Method
	ce Mu					150					11						ollow stem
Uniqu		Drilli	ng	DNR Well ID No.	Common Well Name	Final St	11/2.			Ic	urfac	e Eleva	11/2/2	2015	ID.		Iger
Oniqu	e wen	140.		DIVIC WEIT ID INO.	MW-301	Fillar St	Fee		vei	S	urrac		.4 Fee	et	BC		Diameter 8.0 in
Local		rigin		stimated: 🗋) or Be	oring Location	Ĩ.		0				Local (_		
State				,744 N, 5,541,108		L											Ε
NW Facilit		f of S	W	County	T 98 N, R 3 W	Lon		Civil	Taura	10%		Village	Feel				Feet 🗌 W
, acan	,			Allamakee					sing		y/ Ot	vinage					
San	nple									Т	-	1	Soil	Prop	erties		1
	& (ii		5	Soil/	Rock Description							1	1				1
U	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		Geologic Origin For							_ 5		11.2			Its
Number and Type	Length Att. Recovered (Ŭ	th Ir	Ea	ach Major Unit		CS	Graphic		Diagram	PID/FID	Standard Penetration	Moisture Content	it id	Plasticity Index	0	RQD/ Comments
Nur and	Len Rec	Blo	Dep				ns	Gra	Well	Diag	PID	Stan	Moisture Content	Liquid	Plastic Index	P 200	Corr
			Ĩ.	POORLY GRADED SA brown (10YR 3/2).	AND, medium grained, very o	dark gray											
			-1	010 m (101 K 3/2).													
1.0			1											1			
П	η.		-2				SP										
C1	23	10 31	Ea														
S1	23	38 48	E										M				
U			-4														
П			F .	POORLY GRADED SA	ND WITH SILT, medium g	rained,	100		T								
S2	24	32 47	-5	dark yellowish brown (1	10YR 3/4)												
32	24	50	-6				SP-SM	1					M				
U	-		E														
П	11.1		-7		ND WITH SILT AND GRA		1		Ħ.								
S 3	22	18 33	E.s	medium grained sand, la brown (10YR 3/6).	arge grained gravel, dark yell	owish											
55	22	18 33 47 43	Ē				SP-SM	1					M				
ų			-9					1.1									
П	6		Ē.		ND WITH SILT, medium g	rained,	-		Ħ								
64	24	36 46	-10	dark yellowish brown (1	0YR 3/6).												
S4	24	36 46 50	E-11										S				Water @ 10 ft bgs
Ц			Ē														Ū
П			-12				SP-SM										
S 5	22	13.9	E 13										-				
S5	22	13 9 7 10	-13										S				
Ц			-14														
П			E														
		C. 41	-15				<u> </u>		1					_		-	
Signatu		ty that t	ine info	rmation on this form is	Firm and			ge.	_	_	_		_	_	_		
Signatt	1	4,6	2 /	her		Engine Dairy Dri		lison	WT S	3719	2					Tel:	608-224-2830 Fax:
		-	-		2030	Judy DI	inidi	aroun	**1 5	5710		_					гах

San	ple	1									Soil	Prope	erties		
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic	Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
6	20	32 4	16	SILT, black (10YR 3/1).	ML						S				
7	24	2 2 2 2	17	SILT WITH SAND, black (10YR 3/1).							s				
U			19	POORLY GRADED SAND WITH SILT, black (10YR 3/1).	ML										
8	24	22 4	20		SP-SM						S				
9	24	29 1214	2	SILT, dark olive gray (5Y 3/2).							s				
			-24		ML										
			-26	End of Boring at 26 ft bgs											

Environmental Consultants and Contractors

SOIL BORING LOG INFORMATION

Route To: Watershed/Wastewater

Waste Management

Remediation/Redevelopment Page 1 of 2 Facility/Project Name License/Permit/Monitoring Number Boring Number **B-302 IPL-Lansing Generating Station** SCS#: 25215135.70 Boring Drilled By: Name of crew chief (first, last) and Firm Date Drilling Started Date Drilling Completed Drilling Method Mike Mueller hollow stem **Cascade Drilling** 11/4/2015 11/4/2015 auger DNR Well ID No. Unique Well No. Common Well Name Final Static Water Level Surface Elevation Borehole Diameter **MW-302** Feet 635.9 Feet 8.0 in Local Grid Origin (estimated:) or Boring Location Local Grid Location 1 0 .. 3,957,929 N, 5,541,179 E Lat S/C/N State Plane Ε 🗆 N o. . .. Feet 🗌 W NW 1/4 of SW 1/4 of Section 2, T 98 N, R 3 W Feet 🗌 S Long Facility ID County Civil Town/City/ or Village Allamakee Lansing Soil Properties Sample Length Att. & Recovered (in) Soil/Rock Description Depth In Feet Blow Counts And Geologic Origin For Penetration Comments Number and Type Standard Diagram PID/FID Moisture Plasticity SCS Graphic Content Liquid Each Major Unit P 200 Index RQD/ Well Log POORLY GRADED SAND, medium grained, dark grayish brown (10YR 4/2). - 1 2 SP 6 14 17 19 -3 S124 M •4 - 5 26 45 **S**2 24 Μ SANDY SILT, trace small gravel, black (10YR 3/1). 50 6 7 12 13 **S**3 24 - 8 Μ 108 9 10 ML 911 **S**4 11 S Saturation 13 12 @ 11 ft bgs -11 Large gravel 12 32 23 - 13 30 36 -8 S5 S Large gravel 14 I hereby certify that the information on this form is true and correct to the best of my knowledge. Signature Firm SCS Engineers Tel: 608-224-2830 2830 Dairy Drive Madison, WI 53718 Fax:

_	g Numb nple		B-3			1	1		T			Soil	Prope	erties	of 2	1
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic	Log	Well	Diagram	PID/FID	Standard Penetration	Moisture Content		ity	P 200	RQD/
56	24	55 68	16	SANDY SILT, trace small gravel, black (10YR 3/1). (continued)	ML							S				
57	18		18	Silt, Black (10YR 3/1).	ML							s				
			-20	End of Boring at 20 ft bgs.			1									

Environmental Consultants and Contractors

Route To:

Watershed/Wastewater

Remediation/Redevelopment

Waste Management

Other

													Pag		of	3
Facilit IPL				ating Station	SCS#: 25218221.00	License/I	Permit/	Monito	oring N	umber		Boring	Numbe		W-3()2A
		0		Crew chief (first, last) a		Date Dri	lling St	tarted		Da	ate Drilli	ng Con	npleted	111		ing Method
	l Dick						10/14	())11	h		1	1)/1 <i>7/</i>	2010		п	otosonic
	cade I		ıg	DNR Well ID No.	Common Well Name	Final Sta		5/2019 ter Lev		Surfa	e Eleva	2/17/ tion	2019	Bo		Diameter
omqu				Divite wear in 10.			.01 F			Surra		.2 Fee	et		, enoie	6 in
				timated: 🗌) or Bo				0	,		Local (Grid Loo	cation			
				3 N, 5541186.04 E			t		,			-				
S Facilit		ot f	NW 1/4	of Section 02 , County	T 98 N, R 03 W	Long	g	 Civil T	`own/C	tity/ or	 Village	Feet	S			Feet 🗌 W
1	, 12			Allamakee				Lans		10)/ 01	, mage					
San	nple											Soil	Prope	erties		
	& (in)	ß	et	Soil/I	Rock Description											
л S	Att. red (ount	n Fe	And G	eologic Origin For			0	2		d	8 7		Ę,		ents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Ea	ch Major Unit		SCS	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	00	RQD/ Comments
Nu	Ler Ree	Blc	Dej				n	Grap Log	Well	IId	Sta Per	C ₀	Liquid Limit	Plastic Index	P 200	Co RQ
			Ē	Hydrovac to 9' to ch	eck for utilities.											
			-1													
			\mathbb{E}_2													
			-3													
			E, I													
			<u>4</u>													
			-5													
			$\begin{bmatrix} -6 \end{bmatrix}$													
			-7													
			E													
			E-8													
_			E_9													
S1	46"			POORLY GRADED SA dark gray.	ND with silt, clay and trace	gravel,						W				
	10		-10				SP									
			-11													
				SILT, gray, trace gravel.												
			-12				ML									
			E13													
				SILTY GRAVEL WITH	H SAND, gray, sand is fine vel is subangular to angular.			0								
			-14	të mearani granea, gra	or is subungular to angular			Pale								
S2	39"						GM	0				W				
52	37		-15 E					PLE				vv				
			-16					PXF								
I hereb	y certif	y that	the infor	mation on this form is t	true and correct to the bes	st of my kr	nowled	ge.								
Signat	ure		?	A	Firm SCS	S Engine	ers									Tel:

Fax:

L

Boring	g Numb	er	MW	V-302A											Paş		of	3
San	nple												Soi	Ī	Prop	erties		
	& (ii)	ts	set	Soil/Rock Description														
ьr	Att. red	oun	n Fe	And Geologic Origin For	s	0			я		p.	tion	е –			t7		ents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each Major Unit	S C S	Graphic	50	II	Diagram	PID/FID	Standard	letra	Moisture	:	Liquid Limit	Plasticity Index	00	RQD/ Comments
Nu	Le ₁ Re	Blc	De		n s	Gr	Log	Well	Di	Πd	Sta	Per	N C),),	Li.	Pla Ind	P 200	Co KO
			E E	SILTY GRAVEL WITH SAND, gray, sand is fine to medium grained, gravel is subangular to angular.														
			- 17	(continued)	GM	6	6											
			E-18			ι												
			Ę	SILT, dark gray, trace roots.														
			E-19															
_			-20		ML													
			E															
S3	48"		-21										W					
			-22				77777											
			E	LEAN CLAY, dark gray, roots.														
			-23															
			E-24															
			È															
П			E-25		CL													
			-26	Same but dark brown.														
S4	40"		E an	Same out dark brown.									W					
			-27 E															
			-28															
			-29															
				SILTY SAND, gray to dark gray, fine to medium grained.														
Г			= 30		SM													
			-31															
S5	48"		F	LEAN CLAY, tan with yellow to brown mottling and gray layers, trace silt.									W					
			-32		CL													
Ц			-33	LEAN CLAY, reddish brown, massive, very dense.														
			- 	LEAN CLAT, requisit brown, massive, very dense.														
			-34		CL													
Г			-35															
			E															
			<u>-</u> 36	LEAN CLAY, gray.														
S6	48"		-37										W					
			-38		CL													
L																		
			=-39	POORLY GRADED SAND, brown, fine to medium grain,														
_			E 	trace gravel.														
			E-41		SP													
S7	48"		E-42										W					
			Ē	Same with trace shells														

	g Numł	ber	MW	V-302A		1	1				<u> </u>	.1 -		ge 3	of	3
San	nple										Soi	II I	Prope	erties		
	& (ii)	ts	set	Soil/Rock Description												
e	Att.	unc	1 Fe	And Geologic Origin For				_	~	ion	o			2		nts
Typ	gth ,	Ŭ	th Ir	Each Major Unit	C S	ohic		ran	ΉĽ	dare	stur		ii. Ei	ticit	0) / me
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		USC	Graphic Log	Well	Diagram	PID/FID	Standard Penetration	Moisture	5	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
T			-43	POORLY GRADED SAND, brown, fine to medium grained, trace gravel. (continued)					-	01 H		-				
			Ē	grained, trace gravel. (continued)	SP											
			-44	SILTY GRAVEL, light brown, subangular.		641										
			È	SILTT GREATEL, Ight brown, subungular.		60°]									
			E-45		GM	[b]										
			-46			660										
			E	LEAN CLAY, mostly light brown, trace gray, trace silt.												
;	48"		-47								W					
´			E		CL											
			E-48													
			E-49													
			È 77	SILTY GRAVEL WITH SAND, light brown, gravel is subangular.	GM	0										
			E-50	End of boring at 50 feet.		p_M/S										
				End of borning at 50 reet.												
				 ernal - ECRM13085590		1										

Environmental Consultants and Contractors

SOIL BORING LOG INFORMATION

Route To: W

Watershed/Wastewater
Remediation/Redevelopment

Waste Management
Other

		ct Nam		ting Station	SCS#: 25215135.70	License/Pe	ermit/	Mor	nitor	ring N	umber		Boring	Pag Numb	er	of 303	2
Boring Mil Cas	g Drille ke Mu kcade	d By: 1 Ieller Drillii	Name o	f crew chief (first, last)	and Firm		11/2	/20	15		D	ate Drill	ing Cor 11/2/2			Dril ho au	ling Method ollow stem iger
Uniqu	e Well	No.		DNR Well ID No.	Common Well Name MW-303	Final Station	c Wa Fe		eve	ł	Surfa	e Eleva 653	tion .9 Fee	et	Bo	orchole	Diameter 3.0 in
State NW			3,957	stimated:) or Bo ,857 N, 5,541,622 /4 of Section 2,	oring Location 🛛 2 E S/C/N T 98 N, R 3 W	Lat Long	-	0	_			Local C		cation	1		E Feet D W
Facilit	уD			County Allamakee				Civi			City/ or	Village					
Sar	nple								1			-	Soil	Prop	erties	-	-
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	And C	Rock Description Geologic Origin For ach Major Unit		USCS	Graphic	Log	Well	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
			-1	SILTY SAND, very dar	k gray (5Y 3/1)		SM										
S1	24	5 16 17 24	-3	POORLY GRADED SA brown (10 YR 4/2).	AND, medium grained, dark	grayish							M				
S2	24	11 8 10	-5				SP						M				
S3	24	11 38 50	-7 -8 -9	POORLY GRADED SA brown (2.5Y 5/2)	AND , medium grained, gray	rish							M				
S4	18	16 35 50	-11				SP						м				
S5	16	27 50 50	-12 -13 -14										М				
I hereb	by certi	fy that t	-15 the info	rmation on this form is	true and correct to the best	st of my kno	wled	ge.				_	-				

Signature 174	le m	SCS Engineers	Tel: 608-224-2830
17	~ Jun	2830 Dairy Drive Madison, WI 53718	Fax:

an	nple	1.0.1			1		1			Soil	Prope	rties		
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
6	0			POORLY GRADED SAND, medium grained, grayish brown (2,5Y 5/2). (continued)	(D)					М				Rock in Spoon
	18	17 25 40 47	18		SP					S				Saturation @17 ft bgs.
	17	37 48 44	-20 -21	POORLY GRADED SAND, medium grained, very dark gray (5Y 3/1).						S				
9	18	11 24 26 27	22 23 24		SP					S				
10	24	37 50	25							s				
				End of Boring at 27 ft bgs.										

Environmental Consultants and Contractors

SOIL BORING LOG INFORMATION

Route To: Wa

Watershed/Wastewater

Waste Management
Other

	y/Projec					License/I	Permit	Mon	itor	ing Nu	mber		Boring	Pag Numb	er		
IPL	Lans	ing C	ienera	ting Station	SCS#: 25218221.00	Decision			_		1.0					W30	
	g Drilled		Name o	of crew chief (first, last)	and Firm	Date Dri	lling S	tartec	1		Da	te Drilli	ing Cor	npleted		Dril	ling Method
Rot	perts E	Inviro	nmen	tal Drilling, Inc.			5/15	/20	19				5/15/2	2019		4.	25" HSA
Uniqu	e Well I	No.		DNR Well ID No.	Common Well Name	Final Sta	tic Wa	ter L	eve			e Eleva	tion		B	orchole	Diameter
	0.110		-		MW304	6	523.6	1 Fe	eet	MSI		535.5			_	8	3.5 in
State	Grid Or Plane	ıgın	3.957	stimated: 🗌) or Bo (,893 N, 5,540,876	E S/C/N	La	t	0	_	•		Local C	ind Lo				
SE		of N		1/4 of Section 3,		Long		0		•			Feel		4		□ E Feet □ W
Facilit	y ID			County							ty/ or	Village					
0		_	-	Allamakee			_	La	nsi	ng						_	
San	nple											-	Soil	Prope	erties	-	-
	Length Att. & Recovered (in)	nts	feet		Rock Description				1								
Number and Type	h Al vere	Cou	Ē		eologic Origin For ch Major Unit		S			am	A	ard ratio	ure nt		city		nent
Ind T Dr	engt tecor	Blow Counts	Depth In Feet				I S C	Graphic	Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
7.0			E		/2), some black coal looking	5		H	+	> 1		N P	20		P 7		~ ~ 0
			E,	material													
							ML										
	12	36 33	-2										М				
		33	E .														
1			=3	LEAN CLAY, (10YR 4	(3), soft, some organic mater	rial		1									
	18	12 21	E-4				CL						w	1			
		21	1														
			=5	SILT, (10YR 2/2), unifo	rm, trace fine sand and clay			TT	Т								
	12	2 2 3 2	=6										M				
		32	E														
			-7				ML										
	18	11	-8					Ш					w				
		11 32	-8					111					"				
			-9		ND, fine to coarse, (10YR :	3/4),	-	1	1.								
	18	12	-10	(Alluvial)									187	P		1	
-44	10	11	2			= 0							W				
-			=11														
	10	00	-12				SP										
	12	11	E 12				эг						W				
-			-13			1											
		0.0	E.														
	12	0011	-14										W				
L			-15														
hereb	y certify	y that t	he info	rmation on this form is t	rue and correct to the bes	st of mv kn	owled	ge.							-		

	ole							- 1		-	2011	Prope	ernes		
and Type Length Att. &	Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well	Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
		00111 2566	16 17 18 19 20	POORLY GRADED SAND, fine to coarse, (10YR 3/4), (Alluvial). (continued) Same as above but more coarse, (2.5YR 5/4), trace silt. End of Boring at 20 feet.	SP						w				

Environmental Consultants and Contractors

SOIL BORING LOG INFORMATION

Route To: Watershed/Wastewater Remediation/Redevelopment Waste Management

Other

														Pag		of	3
	y/Projec			eting Station		License/I	Permit/	Monite	oring l	Numb	ber		Boring	Numbe		\mathbf{w}	
				rating Station f crew chief (first, last) at	SCS#: 25218221.00	Date Dri	lling St	arted			Dat	e Drilli	ng Con	nleted	IVI	W-3(ing Method
-	l Dick	•		erew emer (mst, last) a		Dute Dill	ning St	urteu			Dui	e Diim	ng con	ipietea			ing wethod
Cas	cade I	Drilli					12/18						2/19/2	2019			otosonic
Uniqu	e Well]	No.		DNR Well ID No.	Common Well Name	Final Sta		er Lev	rel	Sur	face	e Elevat			Bo	orehole	Diameter
Least	<u></u>			timated: 🗌) or Bor	ing Location X	10.7 1	Feet					635 Local C	.6 Fee				6 in
				N, $5540876.5 E$	S/C/N	La	t	°	'		"	Local	ma Loc	ation			Ε
				4 of Section 03 ,	T 98 N, R 03 W	Long	2	0	'		"		Feet				Feet 🗌 W
Facilit		1/101		County	,					City/	or V	/illage					
				Allamakee				Lans	sing								
San	nple												Soil	Prope	rties		-
	& (ii)	ts	set	Soil/R	ock Description												
r pe	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		ologic Origin For		s	0		я I с		Standard Penetration	8 T		ty		RQD/ Comments
Number and Type	ngth sove	N N	oth I	Eac	h Major Unit		S C S	Graphic Log		Diagram		ndaı ıetra	Moisture Content	Liquid Limit	Plasticity Index	00	D/
Nu and	Ler Re(Blc	Dej				n S	Grap Loo	Well	D18		Sta Per	Col Mo	Liquid Limit	Plastic Index	P 200	Col RQ
			E	Hydrovac to 9' to che	eck for utilities.												
			-1														
			$\begin{bmatrix} -2 \\ \end{bmatrix}$														
			-3														
			E														
			E_5														
			Ē														
			E-6														
			E_7														
			E' I														
			-8														
			E,														
Г			-10	SILT, grayish brown, too			<u> </u>	+									
			E	SIL1, grayish brown, too	is and sucks.		ML										
			E ⁻¹¹	POORLY GRADED SA	ND WITH SILT AND												
			E_12	GRAVEL, fine to mediu	m grained, reddish brown.												
S1	49"		Ē				SP-SM						w				
			-13														
			E 14														
				POORLY GRADED SA medium grained.	ND, reddish brown, fine to												
⊢			-15	6			SP										
			E														
		<u> </u>	-16	4:6 ::		4 . f 1		<u> </u>	.]								
1 neret	y certii	y that	une infoi	rmation on this form is tr	ue and correct to the bes	ı oi my kn	iowledg	ze.									

Signature	a A	Firm SCS Engineers	Tel: Fax:

Borin	g Numb	er	MW	V-304A										Pa	nge	2	of	3
-	nple											Soi	1 F	Prop				
	(ii) &	S	et	Soil/Rock Description														
, e	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	And Geologic Origin For				_		ц. ц.		e .				~		nts
Tyr Tyr	gth ove	S S	th L	Each Major Unit	SCS	Graphic Log		Well Diagram	PID/FID	ndar	CUR	Moisture		Liquid	Plasticity	Xa	00	RQD/ Comments
Number and Type	Len Rec	Blo	Dep		n s	Grap		Well Diagr	PID	Standard		^o M	5	Liquic	Pla	Index	P 200	RQD/ Comm
				POORLY GRADED SAND, reddish brown, fine to medium grained. (continued)														
			-17															
S2	21"		-18									W						
			- 19															
			E-20		SP													
			= 20	Same but light brown, mostly fine grained.														
			-21															
			E 															
S3	59"		=									W						
			-23	SANDY SILT, brown, fine grained.														
			-24															
			Ē															
			E-25															
			E-26															
					ML													
64	24"		-27 F									117						
S4	24**		-28									W						
			E-29 E															
_			-30	SILTY SAND, light brown, fine grained.														
			-31															
			-32															
S5	30"		-33		SM							W						
			Ē		5111													
			E-34															
	-		-35															
			= 36	POORLY GRADED SAND, light brown, fine to medium grained.														
			-37	medium grained.														
S 6	57"		Ē									W						
			E-38		SP													
			=		Sr													
			Ē															
F			E-40															
			-41	DOORLY CRADED SAND														
			F	POORLY GRADED SAND, orange, fine grained.	SP													
			-42 	SANDY SILT WITH GRAVEL, sand is fine grained.	ML	ΠŤ	-											
1 06/2023	 - Class	ificati	Con. Int	ernal - ECRM13085590		' ' '												

Borin	g Numł	ber	MW	V-304A											Pa	ge 3	of	3
	nple												So	oil		erties		
		~	*	Soil/Rock Description														
o	Att. 4 ed (j	ounts	l Fee	And Geologic Origin For							_	L u				>		ıts
Type	gth ∕ over	د د C	th In	Each Major Unit	CS	1.4				Lam	ΈD	darc	sture	tent	it. Ed	ticity	0	D/
A Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		USC	5	Log	2	Well	Diagram	PID/FID	Standard Penetration	Moisture	Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
57	54"		- 42	SANDY SILT WITH GRAVEL, sand is fine grained.(continued)									V	V				
			Ē	grained.(continuea)	ML													
			-44		IVIL													
L	-		E-45		_	Ļ	ļļ											
S 8	9"		Ē	POORLY GRADED SAND, light brown, fine grain, trace coarse grained.	SP								v	v				
			-46	SANDY SILT WITH GRAVEL, light brown with trace yellow, fine grained.		Ť.	ΪŤ											
			-47	trace yellow, fine grained.														
			Ē															
			E-48															
S9	48"		-49		ML								V	V				
			Ē															
			E-50															
L	-		43 44 45 46 47 48 49 50 51															
				End of boring at 51 feet.														
06/2022		ificati		ernal - ECRM13085590														

Environmental Consultants and Contractors

SOIL BORING LOG INFORMATION

Route To:

Watershed/Wastewater Remediation/Redevelopment Waste Management
Other

	ct Nan		ting Station	0/2014 050 10001 00	License/Pe	rmit/	Monito	ring Nu	umber	- 7	Boring	Numb		N305	
			f crew chief (first, last) a	SCS#: 25218221.00	Date Drilli	ng St	arted	-	Da	te Drilli	ng Cor	npleted			ing Metho
Eric Wet	zel					-						200		1.00	
		onmen	tal Drilling, Inc.				/2019				5/16/.	2019	1.0		25" HSA
nique Well	No		DNR Well ID No	Common Well Name MW305	Final Statio			MSI		e Elevat 631.8]		ICT	Bo		Diameter .5 in
ocal Grid O	rigin	[] (es	stimated: 🗌) or Bo		1 02	.9.12	-	11134		Local C				0	.3 m
tate Plane			,109 N, 5,541,533	E S/C/N	Lat	-	0						1		ΠE
	of N	W 1	1/4 of Section 2,	T 98 N, R 3 W	Long	_	0				Fee	t 🗆 S		1	Feet 🗌 V
cility ID			County Allamakee				Civil T Lans	own/Ci	ty/ or '	Village					
Sample	-	1	Anamakee		-	-	Lans	Ing	1	1	Soil	Prop	erties	-	
			Soil/E	Rock Description					1.1	-				-	
ed (in)	unts	Fee		eologic Origin For						5					ន
Type gth A	C C	th In		ch Major Unit		СS	ohic	ram	ED	dard	sture	t g	icity x	0)/ men
and Type Length Att. & Recovered (in)	Blow Counts	Depth In Feet		-		n s i	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid	Plasticity Index	P 200	RQD/ Comments
		F	Hydrovaced to 9.5 feet.		1		1	88						1	
		-1					13								
		E						00							
		<u>-</u> 2						1							1.1
		E_3													
		Ē					1.2								
		-4							1.1						
		Ē,						E							0
		5													
		-6						E							
		E						TT							
		E7						E							
		Ē-8						E							
		Ê						E							
		-9					1 7	E							
2		Ē.	FAT CLAY, dark greeni	sh gray, (GLEY 13/10Y), s	oft, trace			目							
П		=10	red sand, wood pieces an	d roots				E							
24	11 11	E-11						E			w				
	11							E							
H		=12				СН									
	0.0	=13						E							
24	00002	E						E			W				
		-14	Sand seams at 13.5 and 1	4 5 feet				E							
-		1 c	Sand Seams at 15 5 and	IT.J 1001.				E							
-		-15													

San	ple						1.1		_	Soil	Prope	erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/
				FAT CLAY, dark greenish gray, (GLEY 13/10Y), soft, trace red sand, wood pieces and roots. (continued)	СН					W				1
			-16	End of Boring at 16 feet.										

Environmental Consultants and Contractors

SOIL BORING LOG INFORMATION

Route To:

Watershed/Wastewater
Remediation/Redevelopment

Waste Management
Other

Facilit	y/Projec	et Nan	ne			License/Pe	ermit/	Monito	ring No	mber	1	Boring	Numbe		of	4
IPL	Lans	ing (Genera	ting Station	SCS#: 25218221.00									Μ	W30	
			Name o	f crew chief (first, last)	and Firm	Date Drill	ing St	arted		Da	te Drilli	ng Con	npleted		Dril	ing Method
	erts E		onmen	tal Drilling, Inc.			5/16	/2019				5/16/2	2019		4	25" HSA
	e Well]		- milell	DNR Well ID No.	Common Well Name	Final Stati				Surfac	e Eleva			B		Diameter
	1.1.		_		MW306	62	23.0	5 Fee	t MSI	. (536.7				8	.5 in
Local State	Grid Or Plane	igin	(es	stimated: 🗌) or Bo ,977 N, 5,541,203	oring Location 🖾 BE S/C/N	Lat		0		'n.	Local (ind Lo				_
NE		of N		/4 of Section 2,	T 98 N, R 3 W	Long		0		Ĥ		Feef				□ E Feet □ W
Facilit				County	1 70 1,110 1	Early		Civil T	own/C	ity/ or	Village	100				
1	N. 6.			Allamakee				Lans	ing		-					
Sar	nple								1		-	Soil	Prope	erties	1	
	Length Att. & Recovered (in)	ots	eet		Rock Description											
er /pe	Length Att. & Recovered (in	Blow Counts	Depth In Feet		Beologic Origin For		S	.e	E		Standard Penetration	a te		ity		RQD/ Comments
Number and Type	engtl	ow (epth	E	ach Major Unit		SC	Graphic Log	Well Diagram	PID/FID	anda	Moisture Content	Liquid Limit	Plasticity Index	P 200	DD/
A La	Ъ.Ж.	B	Ā	Hydrovaced to 12 feet			D	L D	≯ ïΩ	Id	Pe	ΣŬ	EE	P d	4	<u> žŭ</u>
			E	injulovaced to 12 lett												
			-1	1												
			E-2											i .		
			E													
			=3													6
			E4													
			E													
			-5												1	
			1													
			-6													
			E7													
			-7													
			-8													
			-8													
			F 9													
			E-10													
			1.1.1													
			E11													
			En													
			-12 E	POORLY GRADED SA color, (10YR 4/6), trace	AND, medium to coarse, rus fine silt.	ty in										
	12	12 43	-13	60101, (10111 1/0), uuco	into site.							w				
		43	1				SP									
h			-14													
			=15					1.2								
I hereb	v certif	v that	1	unation on this form is	true and correct to the be	st of my kno	wlad	1	1	1	d			-		l
Signat		y uiat		manon on this form is	Int	S Enginee		Б с.					10			
n	1 1	16	° L.	- Each white	2830	Dairy Driv	715 7e. Ma	adison.	WI 53	718						Te Fa

-	y Numb	11 5		/306			T			1	Soil	Pag Prope		of 2	1.1
and I ype	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	201	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
	18	12 24	-16	POORLY GRADED SAND, medium to coarse, rusty in color, (10YR 4/6), trace fine silt <i>(continued)</i>		-					W				
	18	11 22	17	Same as above but gray, (10YR 4/2).							w				
	18		-19 -20								w				
	18		21		SP						w				
	18	3 1 2 2	23			ŀ					w				
E -	18	2 1 3 2	-25	End of Boring at 26 feet.			1				w				

Environmental Consultants and Contractors

Route To: Watershed/Wastewater

Remediation/Redevelopment

Waste Management
Other

Facility Project Name Electrone Promit Monitoring Number Boring Number Plat Lansing Generating, Station SCSE-25218221.00 Data Drilling Completed Drilling Method Paul Dickinson Data Drilling Completed Drilling Method Data Drilling Completed Drilling Method Character Dirich DNR Well ID No. Common Well Name Final Static Water Level Surface Elevation Boring Number Boring Number Local Grid Origin (estimatef:) or Berng Location K Local Grid Character Station Boring Number Boring Number Boring Number NE 14 of NW 14 of Section 02, T 98 N, R 03 W Long Colump Colump Colump Colump Colump Ensisting Soil Propertics Sample: Allamakee Lansing Soil Propertics Soil Propertics Soil Propertics Soil Propertics Sample: Soil Propertics Soil Propertics Soil Propertics Soil Propertics Soil Propertics Sample: Soil Propertics Soil Propertics Soil Propertics Soil Propertics Soil Propertics Sample: Soil Propertics Soil Propertics Soil Propertics Soil Propertics Soil Propertics Sample: Soil Propertics Soil Propertics Soil Propertics Soil Propertics <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Pag</th><th></th><th>of</th><th>3</th></td<>														Pag		of	3
Bering Duiled By: Name of crew chief (first, last) and Firm Date Drilling Started Date Drilling Completed Drilling Method Paul Dickinson 12/17/2019 12/18/2019 Rotosonic Cascade Drilling DNR Well ID No. Common Well Name Final State Wate Level Sufface Elevation Borelade Damater Cascade Drilling (estimated:]) or Boring Location [S] Is 7 eet Sufface Elevation Borelade Damater Cascade Drilling (estimated:]) or Boring Location [S] Lat					ating Station	0.001 25219221 00	License/F	Permit/	Monite	oring 1	Numbe	r	Boring	Numbe		W 20)6 A
Paul Dickinson 12/17/2019 12/17/2019 12/18/2019 Rotosonic Cascade Drilling Onque Well No. DNR Well DD No. Common Well Name Final Static Water Level Surface Elevation Borchole Diameter 63.67 Feet 6 in Local Grid Origin (estimated:) or Boring Location K2 Lat							Date Dril	ling St	tarted		Γ	Date Drill	ing Con	npleted	IVI		
Unique Well No. DNR Well ID No. Common Well Name Final Static Water Level Sufface Elevation Borehole Dameter Local Grid Origin (estimated:) or Boring Location & Itat 0 16.3 Feet 636.7 Feet 6in State Plane 3958980.99 N, 5541196.46 E S / C/N Lat 0 1 1 1 Facility ID NW 1/4 of Section 0.2, T 98 N.8 0.3 W Long 0 1 1 Facility ID County And Geologic Origin For Lat 0 1 1 Sample Soil/Rock Description And Geologic Origin For Soil/Rock for utilities. 1 1 1 Image: Section 1.2 Soil/Rock to reveal to	Pau	l Dick	cinsor	1				-					-	-			-
Lead Grid Origin () Ostimute() O B State Plane 3958980.99 N, 5541196.46 E S/C/N Lat Output () Cocal Grid Origin () Coc				ng		Comment Well Norma								2019	D -		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Uniqu	e weil l	INO.		DNK Well ID No.	Common well Name			ter Lev	ei	Suria			et	ВС		
State Plane 3958980.09 N. 5541190.46 E S / C/N Lat							1		0	,							0
NR 174 of NW 174 of Section 02, 198 N, R 05 W Long Civil TownCity' or Vilage Sample Soil/Rock Description And Geologic Origin For Soil/Rock Description Soil/Rock Description 9 9 9 10 9 10 10 10 9 10 10 10 10 10 10 10 9 10 10 10 10 10 10 10 51 52" 10 10 10 10 10 10 11 12 11 12 10 10 10 10 52 11 12 13 10 10 10 10 11 12 13 14 14 14 14 14 12 11 12 13 14 14 14 14 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14												-	_				
SolitRock DescriptionAnd Geologic Origin For Each Major UnitSolitRock Descriptionadd (red) up to the second or second o			of	NW 1/		T 98 N, R 03 W	Long			Town/		-	Feet	⊔ s]	Feet 📙 W
with the second secon	I defin	уш									eny o	i v muge					
understand and Geologic Origin For Each Major Unit s s and geologic Origin For Each Major Unit s and geologic Origin For Each Major Origeologic Origeologic Origin For Each Major Origin For	Sar	nple											Soil	Prope	erties		
S1 52" POORLY GRADED SAND, reddish brown, trace SP W S1 52" 13 55 6		& (ii)	ts	tet	Soil/R	Rock Description											
S1 52" POORLY GRADED SAND, reddish brown, trace SP W S1 52" 13 55 6	r pe	Att.	Coun	In Fe				S	ى د			rd	t e		ity		ents
S1 52" POORLY GRADED SAND, reddish brown, trace SP W S1 52" 13 55 6	d Ty	ngth cove	o Mo	pth]	Eac	ch Major Unit		sc	aphi	ell	agra D/FI	andai netra	oistu	quid	astici lex	200	D/
S1 52" 52" SP W	an Ŋ	Le Re	Bl	<u> </u>				D	5 -	≥ ï		St Pe	Σŭ	ĒĒ	Pl In	P	ŭ <u>K</u>
S1 52" 52" -13 SP W				Ē,	Hydrovac to 9' to che	eck for utilities.											
S1 52" 52" -13 SP W																	
S1 52" S2" 13 S1 52"				-2													
S1 52" S2" 13 S1 52"				E ₃													
S1 52" 52" SP W I 13 SP W				E													
S1 52" 52" SP W				E-4													
S1 52" 52" SP W				E_5													
S1 52" S2" -13 -14 -15 -16				Ē													
S1 52" F W S1 52" F W				-6													
S1 52" F W S1 52" F W																	
S1 52" -10 POORLY GRADED SAND, reddish brown, trace shells, medium grained. S1 52" -11 -12 -13 -14 -14 -16 -16				Ę́													
S1 52" POORLY GRADED SAND, reddish brown, trace shells, medium grained. S2" -13 -14 -15 -16				E-8													
S1 52" -11 -12 -13 -14 -15 -16 SP				E_9													
S1 52" -11 -12 -13 -14 -15 -16 SP				Ē													
S1 52" SP W W	Γ			E ⁻¹⁰	POORLY GRADED SA	ND, reddish brown, trace											
S1 52" 52" SP SP W W				E_11	shells, medium grained.												
S1 52" 52" SP SP W W				E													
SP S	~ 1			= 12													
	SI	52"		E-13				SP					W				
				E													
				$\begin{bmatrix} 14 \end{bmatrix}$													
	\vdash			-15													
	I herel	W certif	fy that		mation on this form is to	rue and correct to the bes	t of my kn	owled	ne								

 Signature
 Firm
 SCS Engineers
 Tel: Fax:

SOIL BORING LOG INFORMATION

Borin	g Numb	er	MW	V-306A									Ра	ige 2	of	3
	nple										Ś	Soil		erties	1	
	Length Att. & Recovered (in)	ţ	et	Soil/Rock Description												
ຼ່ອ	Att. red (Blow Counts	Depth In Feet	And Geologic Origin For				ц		Standard Penetration		D .		£.		ints
Tyr	igth over	M M	oth L	Each Major Unit	SCS	Graphic Log		Diagram	PID/FID	ndar etra		Content	Liquid	Plasticity Index	00	D/ nme
Number and Type	Len Rec	Blo	Dep		N S	Grap Log	Well	Dia	PID	Star Pen		Cor	Liquid	Plastic Index	P 200	RQD/ Comments
			F	POORLY GRADED SAND, reddish brown, trace shells, medium grained. <i>(continued)</i>												
			- 17													
S2	56"				SP							W				
			18		51											
			- 19													
			F													
			<u>-20</u>	POORLY GRADED SAND, gray, fine to medium grained, trace coarse grained and shells.												
			-21	g												
			-22													
S3	57"		E									W				
55	57		-23									••				
			-24													
			- 24													
-			-25	Same, mostly medium grained with fine grained.												
			24 25 26													
			E 20													
			-27													
S4	54"		-28									W				
			28													
			-29													
			E-30													
			F	Same, fine to medium grained with trace coarse grained.	SP											
			-31													
			E-32													
S5	58"											W				
			-33													
			-34													
			Ē													
-			-35	Same with shell fragments.												
			-36													
			F													
			-37													
S6	53"		-38									W				
			F													
			E-39													
Ļ			E-40													
			Ē													
			E-41	LEAN CLAY, dark gray, massive, very dense with roots and		······	-									
			-42	sticks.	CL											
			Ē													
06/2023	- Class	ificati	on Int	ernal - ECRM13085590	1	'	1			1	1			1	1	

Borin	g Numb	ver	ММ	V-306A							F	age 3	of	3
	nple									Soi	l Pro	perties	01	
S Number and Type	t. & (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diaoram	PID/FID	Standard Penetration			LT LT	P 200	RQD/ Comments
S7	58"		-43	LEAN CLAY, dark gray, massive, very dense with roots and sticks. <i>(continued)</i>						W				
	_		44	POORLY GRADED SAND, gray to dark gray, fine grained, trace coarse grain with shell fragments.	CL									
S8	52"		47		SP					w				
			50	POORLY GRADED SAND, light gray, fine to medium grained.	SP									
S9	58"		52 53 54 55	POORLY GRADED SAND, reddish tan, fine to medium grained with shell fragments.	SP					W				
06/2023	- Class	ificati	− 56	End of boring at 56 feet.										

SOIL BORING LOG INFORMATION

Route To:	Watershed/Wastewater	
	Remediation/Redevelopment	

Waste Management Other \Box

																Page	1 of 2
	y/Projec			, -			License/I	Permit/	Monito	ring Nu	umbe	r		Numb			
			ing Stat	tion f crew chief (first, last) a		221161.00	Date Dri	lling St	arted		Г	Date Dril		MW-		Drill	ing Method
	l Dick	•		erew enter (mst, tast) a	ild I illii		Dute Dill	ining St	unca				ing coi	npieteu			ing method
	cade I							6/22	/2021				6/22/2	2021		Ro	oto-Sonic
			-	DNR Well ID No.	Common	Well Name	Final Sta			el	Surfa	ace Eleva			Bo		Diameter
T 1	0.10	· ·					6	528.5	Feet				0.70 Fe			6	.0 in.
	Grid Oı Plane			timated:) or Bor 777 N, 5,541,269		n <u>x</u> C/N	La	t <u>43</u>	<u>° 20</u>)'	2.56'		Grid Lo		r		Faat 🗖 T
SW		of N		$\frac{1}{4} \text{ of Section} \qquad 2,$	т98 N		Feet								Feet 🗌 E		
Facilit		01 11		County		County Code Civil Town/City/ or Village											
				Allamakee		Lansing, Iowa											
Sar	nple											Soil	Prope	erties	1	-	
	ii) &	ts	gt	Soil/R	otion												
г S	Att. red (uno	n Fe	And Ge	eologic Orig	in For						tion d			ţ		ents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Eac	nit		CS	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	00	D/	
Nur and	Ler Rec	Blo	Del				U S	Grap Log	Well Diagi	PID	Stai Pen	C No	Liquid Limit	Plastic Index	P 200	RQD/ Comments	
Γ	1		E I	Hydrovaced to 12' belo	ow ground s	surface with s	some										
			E_1	cave-in to about 10'.						\mathbb{X}	Ì						
			Ē														
			-2														
			E							$\langle \rangle \rangle$	X						
			$\begin{bmatrix} -3 \end{bmatrix}$														
			-4							\mathbb{K}	Š						
			-5														
			EI														
			<u>–</u> 6														
			E, I														
			-7														
			E-8							•• ••							
			E								:						
			-9														
											:						
			-10	POORLY GRADED S	AND, med	ium grained,				計	.]						
				yellowish brown (10Y sand (10YR 5/1), shell	R 5/4) with ls and subro	4" layer of g oundd gravel.	ray										
				(),		8											
			-12								:						
S1	60		E I					SP					W				
			-13								:						
			Ē, I														
			E ⁻¹⁴							ŀ.∃.							
			-15							計目の							
I here	by certif	fy that	10	rmation on this form is t	rue and cor	rect to the be	st of my k	nowled	lge.	•						•	
Signa	-	-		Alt		D '	Engine		-								Tel:
			/	1 At			Dairy Dri		adison,	WI 53	718						Fax:

SOIL BORING LOG INFORMATION SUPPLEMENT

Borin	g Numł	ber	MW	V-307									Page	2 of 2
	nple									Soil	Prop			
	& in)	s	et	Soil/Rock Description										
e	Att. ed (ount	I Fe	And Geologic Origin For			_		Lion	0		2		nts
Typ	gth /	۲ ۲	th Ir	Each Major Unit	CS	hic	ram	FID	darc	sture	it d	ticit.	0	mei
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		U S	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
<u> </u>				Same as above, shells still present with more gray	+-									
			Ē	sand.			[:目:							
			<u>16</u>		SP		目							
			E-17				日							
S2	60		E '	SILT, dark gray to black (5Y 2.5/2), with trace very fine grained sand and gravel/cobbles.					0.75	W/M				
52			-18	The granted balla and graves coores.			:目:		0.75					
			F				l:≣:							
			E-19		ML									
			E											
			-20	Same as above but gray (5Y 4/1).										
S3	12		-21							W/M				
				End of boring at 21' below ground surface.										
				Well placed from 20' with 10' screen at 20 to 10'.										
				l	I	1		I	I	I				

SOIL BORING LOG INFORMATION

Route To:	Watershed/Wastewater	
	Remediation/Redevelopment	

Waste Management
Other

															Page	1 of 3
	y/Projec					License/F	Permit/	Monito	oring Nu	umber		Boring				
			ing Stat	ton crew chief (first, last) a	SCS#: 25221161.00	Date Dril	ling St	orted		De	te Drilli			3074		ing Method
	l Dick	•		crew chief (first, fast) a		Date Dill	inig Si	ancu				ing Con	ipicicu		Dim	ing method
	cade I						6/22	/2021				6/22/2	2021		Ro	oto-Sonic
			<u> </u>	DNR Well ID No.	Common Well Name	Final Stat			/el	Surfac	e Elevat			Bo		Diameter
	~ ~					622.8 Feet 640.60 Feet								6.	.0 in.	
	Grid Oı Plane	rigin		timated: 🗌) or Bor 775 N, 5,541,261		Lat $\underline{43^{\circ}}$ $\underline{20'}$ $\underline{2.54''}$ Local Grid Local										
State		of N		775 IN, $5,541,2014 of Section 2,$	T 98 N, R 3 W	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								Feet 🗌 E		
Facilit		01 10	vv 1/	County		County Code Civil Town/City/ or Village										
				Allamakee		Lansing, Iowa										
Sample												Soil	Prope	erties		
	& in)	s	G	Soil/R	ock Description											
e	Att ed (j	Blow Counts	Depth In Feet	And Ge	eologic Origin For							0		2		ats
Typ	gth /	v Č	th Ir	Eac	ch Major Unit		CS	ohic	l	E	darc	sture	ii d	ticit. x	0)/
Number and Type	Length Att. & Recovered (in)	Blov	Dep				U S	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
			Ē	Hydrovaced to 12' belo	ow ground surface with	some										
				cave-in to about 10'.						X						
			-2													
			E													
			-3													
			E_4													
			-5													
			Ē													
			-6													
			Ē													
			-7													
			-8													
			Ē													
			-9													
	1		E ⁻¹⁰	POORLY GRADED S	SAND, medium grained,											
				yellowish brown (10Y sand (10YR 5/1) with	R 5/4) with 8" layer of g trace shells and sub-rou	gray nded										
				gravel.												
			-12													
S1	60		E				SP					M/W				
			-13													
			E,													
			E_15													
Ihora	by cortif	fir that	the infor	mation on this form is t	rue and correct to the be	et of my k	nowled	laa								

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature	AA	Firm SCS Engineers 2830 Dairy Drive, Madison, WI 53718	Tel: Fax:
-			

SOIL BORING LOG INFORMATION SUPPLEMENT

Borin	g Numb	ber	MW	/-307A								Page	2 of 3
San	nple								Soil	Prope	rties		
. 9	Length Att. & Recovered (in)	ounts	Depth In Feet	Soil/Rock Description And Geologic Origin For			0	d ion	9		y		nts
Number and Type	ength . ecovei	Blow Counts	epth Iı	Each Major Unit	USCS	Graphic Log Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
ar <u>X</u>	Ц Ж Г	B	D				Id	Pe St	ΣŬ	ΠΠ	Pl In	Ч	R Ú
			-16										
			17										
S2	48		-18		SP				W				
			-19										
			-20	SILT, dark gray, dark gray to black, (5Y 2.5/2) with fine grained sand and trace gravel.									
			-21										
~			-22		ML								
S3	60		-23		ML			1.5- 2.5	М				
			-24										
	-		-25	LEAN CLAY, black (5Y 2.5/1), soft.									
			-26	LEAN CLAT, black (51 2.5/1), solt.									
			-27										
S4	60		Ē					0.75	W				
			-28										
			-29 										
				Same as above but very soft with trace fine to medium grained sand.	CL								
			-31	g									
~ •			-32										
S5	60		-33					0.0	M/W				
			-34										
	-		-35	POORLY GRADED GRAVEL WITH SAND, fine to									
			-36	coarse gravel, sub-rounded to sub-angular, sand is fine to coarse grained, dark brownish gray $(2.5Y 4/2)$ with									
			-37	trace silt.		\circ							
S 6	24		E		GP			0.0	w				
			-38										
			-39 										
L			-40										

SOIL BORING LOG INFORMATION SUPPLEMENT

Borin	g Numb	er	MW	/-307A									Page	3 of 3
San	nple									Soil	Prope			
	(II) &	S	et	Soil/Rock Description										
. e	Att. red (Blow Counts	Depth In Feet	And Geologic Origin For					d	9		y		nts
nbeı Typ	gth over	Ŭ 8	th I	Each Major Unit	CS	phic		FII /FII	ndar	stur tent	it it	ticit x	0) June
Number and Type	Length Att. & Recovered (in)	Blov	Dep		U S	Graphic Loo	Well	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
			E			b V (
			-41		GP	000	\leq							
				SILT, dark gray (5Y 3/1), with trace sand, gravel and cobbles.	ML									
			-42	WELL GRADED SAND, fine to medium grained,			•							
S 7	56			yellow (2.Y 7/6) with gravel and pieces of shell.	SW				0.0	W				
			-43	SILT, dark gray (5Y $4/1$) and transitions to olive		ŤŤŤ	÷							
			E-44	brown $(2.5 \breve{Y} 4/4)$, very soft.	ML									
-			-45	POORLY GRADED SAND, fine to medium grained,			i E							
			Ē	light olive brown $(2.5Y 5/4)$ with trace silt.	CD.		:FE							
			-46		SP		I E							
			-47	SANDY SILT, light olive brown (2.5Y 5/3), very soft,			4 E							
			E	\sand is fine to medium grained.	ML		Ë							
			-48 	SILTY SAND, fine to coarse grained, olive yellow $(2.5Y 6/8)$.	SM		SE.							
S8	70		-49	POORLY GRADED GRAVEL WITH SAND AND	GP-GM	0	ÐE		0.0	W				
				SILT, coarse gravel, sand and silt are light olive brown $(2.5Y 5/4)$, sand is fine to coarse grained.		Pata	4:E							
			-50	SANDY SILT WITH GRAVEL, gray to dark gray			Ë							
			È	(2.5Y 4/1), sand is fine to coarse grained, gravel is coarse, sub-rounded with trace cobbles, very soft.	ML									
			51											
			- 52					<u></u>						
				End of boring at 52' below ground surface.										
	I		I	I	I	1	I	I	I	I	I			I

SOIL BORING LOG INFORMATION

Route To:	Watershed/Wastewater	
	Remediation/Redevelopment	

Waste Management Other

																Page	1 of 2
	y/Proje			.•			License/I	Permit/	Monito	ring Nı	umber	r		Numbo			
			ing Sta	tion f crew chief (first, last) a	SCS#: 25221	161.00	Date Dri	ling St	arted			ate Drill		MW-		Drill	ing Method
	l Dick	-		erew enter (mst, last) a	ind I iiiii		Date Dill	ining 50	artea				ing con	npieteu			ing wiethod
	cade I							6/22	/2021				6/22/2	2021		Ro	oto-Sonic
-				DNR Well ID No.	Common We	ll Name	Final Sta			el	Surfa	ce Eleva			B		Diameter
T 1	0.10					(T)	6	518.8	Feet				70 Fe			6	.0 in.
	Grid Oı Plane	•		timated:) or Bon ,236 N, 5,541,333			Lat <u>43°</u> <u>20'</u> <u>7.07"</u> Loca							r		East 🔲 E	
SW		of N		$/4 ext{ of Section } 2,$	T 98 N, R		Long	, -91	° 10)' 8	8.94 '	,	гее	: 🗌 N 🗌 S			Feet 🗌 E
Facili		01 11		County	1 70 1,11		Long -91° 10' 8.94" Image: Second seco										
				Allamakee			Lansing, Iowa										
Saı	nple	-											Soil	Prope	erties		-
अ 🗐 👔 🙀 Soil/Rock Description																	
ь г	Att. red	Joun	n Fe	And Ge	For		s	0	я		Standard Penetration	t e		ty		ents	
Number and Type Soil/Rock Description And Geologic Origin Fo Fach Major Unit Each Major Unit								SCS	Graphic Log	Well Diagram	PID/FID	ndaı netra	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
and	Re Le	Ble	De				ñ	Grap Log	Well Diagr	L L L	Sta Pei	ž ĉ	Lii Ei	Pla	P 2	Co RC	
			E	Hydrovaced to 8 feet b drilled the from 8 to 1	below ground si 0'	urface and	l blind										
			-1								<pre></pre>						
			E														
			-3														
			E														
			-4														
			E														
			5														
			-6														
			E														
			-7														
			E														
F	1		E-8														
			E'														Blind drilled 2 ft of slough from
-	-		-10	WELL SORTED SAN	ND finate and		. 4		*****								8 to 10' bgs.
			F I	very dark grayish bro	wn $(10YR 3/2)$).	.a,	SW									
			-11	SILT, gray to dark gra and trace sand through	y (2.5Y 3/2) w	vith sticks,	roots,										
				and trace sand through	iout, very soft.												
G1			-12 								·						
S1	60		E-13					ML				0.0	W				
											·						
			-14														
			E 														
 I here	1 hv.certit	fv that		rmation on this form is t	rue and correct	t to the bea	st of my k	nowlea	loe		1		1	1		1	I
Signa	-	iy mat	ine into.		Fir		Engine										Tel:
									adison,	WI 53	718						Tel: Fax:

SOIL BORING LOG INFORMATION SUPPLEMENT

Boring	g Numł	ber	MW	V-308										Page	2 of 2
San	nple						T				Soil	Prop	erties		
	Length Att. & Recovered (in)	unts	Feet	Soil/Rock Description And Geologic Origin For						ч					ţţ
Number and Type	gth A overe	Blow Counts	Depth In Feet	Each Major Unit	CS	ohic		Well Diagram	PID/FID	Standard Penetration	Moisture Content	ii d	Plasticity Index	0)/ Imeni
Nun and	Leng Reco	Blov	Depi		U S	Graphic	Log	Well Diagr	PID	Stan Pene	Moisture Content	Liquid Limit	Plastic Index	P 200	RQD/ Comments
			Ē	Same as above but with trace roots, no sticks, and											
			16	pockets of sand, very sort.											
			-17												
S2	60		-18		ML					0.0	W				
			F		WIL										
			-19 -												
-			-20	Same as above but very trace roots.											
83	40		-21							0.0	w				slough in hole,
55	70		Ē	SANDY SILT, gray to dark gray, (2.5Y 3/2), no visible roots, very soft.	ML					0.0					actual recovery was ~2"
			-22	End of boring at 22' below ground surface.											
				l	I										

SOIL BORING LOG INFORMATION

Route To:	Watershed/Wastewater	
	Remediation/Redevelopment	

Waste Management
Other

															Page	1 of 2
	ty/Projec					License/	Permit/	Monito	oring N	umber		Boring				
			ing Stat	fion forew chief (first, last) ar	SCS#: 25221161.00	Date Dri	lling St	arted		D	ate Drilli		MW-		Drill	ing Method
	ıl Dick	•		erew enter (mst, iast) ar		Date DI	ning 5t	arteu				ing Con	npieteu			ing wethou
	scade I						6/23	/2021	l			6/23/2	2021		R	oto-Sonic
			0	DNR Well ID No.	Common Well Name	Final Sta			/el	Surfa	ce Eleva			Bo		Diameter
	~					(519.4	Feet				10 Fe			6	.0 in.
	Grid Oı Plane	rigin		timated:) or Born 229 N, 5,541,010		La	t43	° 2	0'	7.10"	Local C	Grid Lo				
State		of N			T 98 N, R 3 W		g -91		0' 1	3.31"		Feet	∷ □ N □ S			Feet 🗌 E
Facili		01 14	•• 1/	County		County Co					Village					
	-			Allamakee					sing, Io		0					
Sar	nple			·								Soil	Prope	erties		
	k in)	s	<u>स</u>	Soil/Re	ock Description											
e	Att. ed (ount	1 Fe	And Ge	ologic Origin For						ion	0		~		nts
aber Typ	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Eac	h Major Unit		CS	phic	l	FID	dard	Moisture Content	ii t	ticit	0	D/
Number and Type	Length Att. & Recovered (in	Blov	Dep				U S	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
			Ē	Hydrovaced to 8' below	ground surface.					\$						
				Hole collapsed to 6' bg	5.					X						
			-2							Š						
			Εl													
			=3													
										Š						
			F ⁴													
			E_5													
			F I													
ŀ	-		<u>–</u> 6	WELL GRADED SAN	D, fine to coarse graine	ed,			2							
			E, I	grayish brown to brow (slough).	rn (10YR 4/3) with trac	ce coal										
			<u>-7</u>	(slough).												
S1	20		E-8				SP									Slough from 6 to
51	20		E													10 feet.
			-9													
			E,													
F	1			SILT, dark gray to blac	\overline{k} (5Y 2.5/1) with trace	e roots,										
			E_11	4" layer of black organ sticks.	ic soil with trace gravel	and										
			E													
			-12				ML-OL									
S2	60		È							:						
			$\begin{bmatrix} -13 \end{bmatrix}$													
			E-14													
			È.,	SILTY SAND WITH C grained, gray to dark g		e	SM									
	-		-15		, (), g.u. er is	-										
	-	fy that	the info	rmation on this form is tr		-		lge.								
Signa	ture			Ca H	Firm SCS	- Engine	0.00									T-1

 Signature
 Firm
 SCS Engineers
 Tel:

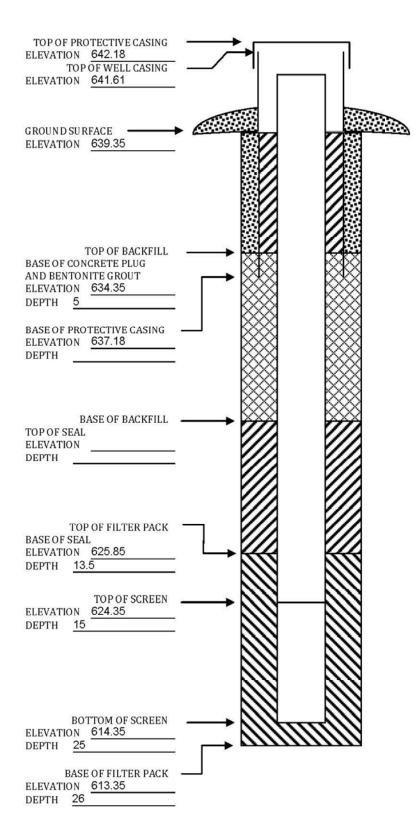
 2830 Dairy Drive, Madison, WI 53718
 Fax:

SOIL BORING LOG INFORMATION SUPPLEMENT

Boring	g Numł	ber	MW	V-309										Page	2 of 2
San	nple										Soil	Prop	erties		
	Length Att. & Recovered (in)	ts	set	Soil/Rock Description											
r pe	Att. sred	Blow Counts	Depth In Feet	And Geologic Origin For	\mathbf{v}	5		в		Standard Penetration	e t		ty		RQD/ Comments
Number and Type	ngth cove	M C	pth]	Each Major Unit	sC	Graphic	50 =	Well Diagram	PID/FID	Standard Penetrati	Moisture Content	Liquid	Plasticity Index	P 200)Q
Nu	Leı Re	Blc	De		U S	Ë,	Log	Di ⁸	IId	Sta Per	CN	Liquid Limit	Pla Ind	P 2	CorkQ
			Ē	\sub-rounded.				:≣∷							
			E-16	SILT, dark gray (5Y 3/1), with roots and trace sticks, very soft.				· E							
			F					·E:							
			-17					·E							
S3	60		E 		ML			·E							
			E					·E							
			-19					·E:							
			E ⁻²⁰	SANDY SILT, very dark gray (5Y 3/1) with roots, trace gravel and peices of limestone at bottom of			Ħ.								
			-21	trace gravel and perces of limestone at bottom of sample, sand is fine to medium grain.				· E							
			Ē												
			-22					F							
S4	60		E 		ML										
			E 23												
			-24												
			E ar												
			-25	End of boring at 25' below ground surface.				•1_1_•							
				Well placed from 22' with 10' screen at 22 to 12'.											
	I		I	I		I			I	I		I	I	I	I

IOWA DEPARTMENT OF NATURAL RESOURCES

MONITORING WELL/PIEZOMETER CONSTRUCTION DOCUMENTATION FORM


Disposal Site Name: IPL-Lans Well or Piezometer No: MW- Dates Started: 11/2/15		Date Completed: 11/2/15							
A. SURVEYED LOCATIONS AN	ND ELEVATIONS	B. SOIL BORING INFORMATION							
Locations (± 0.5 ft): Specify corner of site:NW		Name & Address of Construction Company: Cascade Drilling							
Distance & direction along bo	undary: 540' SE	301 Alderson St.							
Distance & direction from bou		Schofield, WI 54476							
Elevations (± 0.01 ft MSL):	and a second sec	Name of Driller: Mike Mueller							
Ground Surface: 639.35		Drilling Method: HSA							
Top of protective casing: 642.	18	Drilling Fluid: None							
Top of well casing:		Bore Hole Diameter: 8"							
Benchmark elevation: 622.86	NAVD 1988 datum	Soil Sampling Method: Spoon							
Benchmark description: CP 3		Depth of Boring: 26							
C. MONITORING WELL INST	ALLATION								
Casing material:	PVC	Placement method: Gravity							
ength of casing:		Volume:							
Outside casing diameter:		Backfill (if different from seal):							
nside casing diameter:	2"	Material:							
Casing joint type:	threaded	Placement method:							
Casing/screen joint type:		Volume:							
Screen material:	PVC	Surface seal design:							
Screen opening size:	.010	Material of protective casing: Steel 6"							
Screen length:	10 ft	Material of grout between protective casing and well casing: sand							
Depth of well:	25 ft	Protective cap:							
ilter Pack:		Material: steel							
Material:	Red Flint	Vented: Yes No Locking: Yes No							
Grain size:	#40	Well Cap:							
/olume:	300 lbs	Material: PVC							
Seal (minimum 3 ft length abo Material: 3/8" bentonite chip		Vented: Yes INo							
D. GROUNDWATER MEASUR	MENT (± 0.01 it below top o								
Water level: 17.63		Stabilization Time: 2 hrs.							
Nell development method: S	urged and pumped. Turbidit ft.	ty reduced but not eliminated.							

Attachments: Driller's log. Pipe schedules and grouting schedules. 8 ½x11 inch map showing locations of all monitoring wells and piezometers.

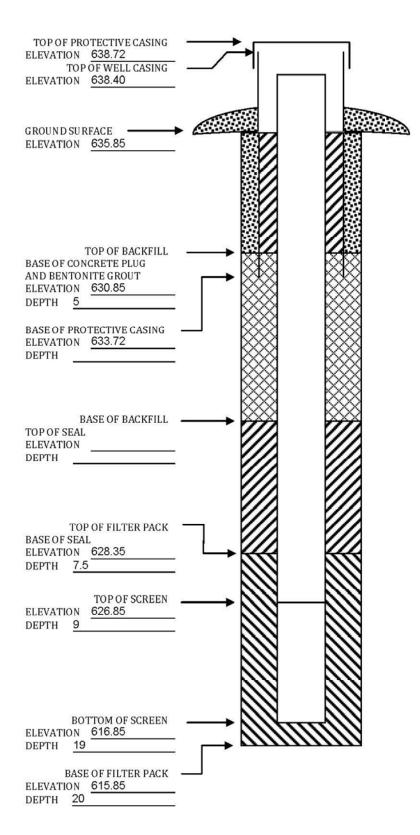
Please mail completed for to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E 9th St, Des Moines IA 50319-0034.

Questions? Call or Email: Nina Koger, Environmental Engineer Sr., 515-281-8986, Nina.Koger@dnr.iowa.gov

ELEVATIONS: ± 0.01 ft MSL DEPTHS: ± 0.1 ft FROM GROUND SURFACE

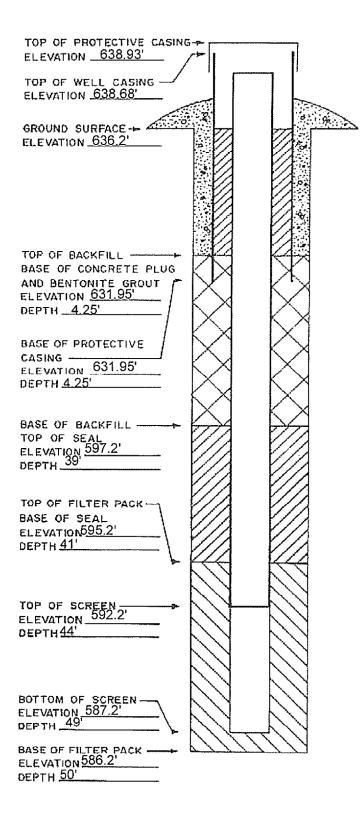
IOWA DEPARTMENT OF NATURAL RESOURCES

MONITORING WELL/PIEZOMETER CONSTRUCTION DOCUMENTATION FORM


Well or Piezometer No: MW-3 Dates Started: 11/4/15	302	Date Completed: 11/4/15						
A. SURVEYED LOCATIONS AN	D ELEVATIONS	B. SOIL BORING INFORMATION						
Locations (± 0.5 ft): Specify corner of site: NW		Name & Address of Construction Company: Cascade Drilling						
Distance & direction along bou	ndary: 465' SE	301 Alderson St.						
Distance & direction from bour		Schofield, WI 54476						
Elevations (± 0.01 ft MSL):		Name of Driller: Mike Mueller						
Ground Surface: 635.85		Drilling Method: HSA						
Top of protective casing: 638.7	2	Drilling Fluid: None						
Top of well casing:	Carteria d'Arteria	Bore Hole Diameter: 8"						
Benchmark elevation: 633.86,		Soil Sampling Method: Spoon						
Benchmark description: CP 30		Depth of Boring: 20 ft						
C. MONITORING WELL INSTA	LLATION							
Casing material:	PVC	Placement method: Gravity						
Length of casing:	9'	Volume:						
Outside casing diameter:	2.40"	Backfill (if different from seal):						
nside casing diameter:	2"	Material:						
Casing joint type:	Threaded	Placement method:						
Casing/screen joint type:	Threaded	Volume:						
Screen material:	PVC	Surface seal design:						
Screen opening size:	.01"	Material of protective casing: Steel 6"						
Screen length:	10'	Material of grout between protective casing and well casing: sand						
Depth of well:	19'	Protective cap:						
Filter Pack:		Material: steel						
Material:	Red Flint	Vented: Yes No Locking: Yes No						
Grain size:	#40	Well Cap:						
Volume:	120 lbs	Material: PVC						
Seal (minimum 3 ft length abov Material: 3/8" hole plug	/e filter pack):	Vented: Yes INO						
D. GROUNDWATER MEASURI Water level: 9.95		Stabilization Time: 2 hrs.						
Well development method: St Average depth of frostline: 4		y reduced but not removed.						

Attachments: Driller's log. Pipe schedules and grouting schedules. 8 ½x11 inch map showing locations of all monitoring wells and piezometers.

Please mail completed for to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E 9th St, Des Moines IA 50319-0034.


Questions? Call or Email: Nina Koger, Environmental Engineer Sr., 515-281-8986, Nina.Koger@dnr.iowa.gov

ELEVATIONS: ± 0.01 ft MSL DEPTHS: ± 0.1 ft FROM GROUND SURFACE

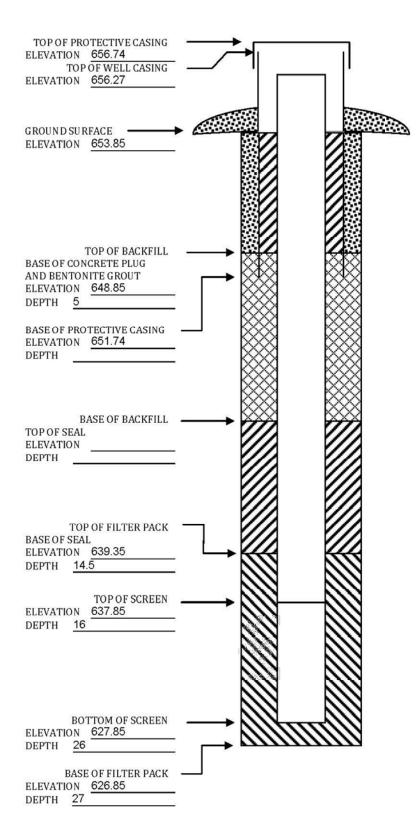
MONITORING WELL / PIEZOME				IFORM
Disposal Site Name IPL - Lansing Generating Station			Permit No.	
Well or Piezometer No. MW-302A Dat	tes Started	12/16/2019	Date Completed	12/19/2019
A. SURVEYED LOCATION AND ELEVATION OF POIN	NT (+0.5 ft.)			
Specify corner of site NW	• •	nd direction along	boundary 375 E	
Distance and direction from boundary to surface m		-		
Elevation (+0.01 ft. MSL)				
Ground Surface 636.2'	······································	Top of protective c	asing 638.93'	
Top of well casing 638.68'		Benchmark elevati	•	
Benchmark description Brass cap in PCC walkway to				
· · · · · · · · · · · · · · · · · · ·				
B. SOIL BORING INFORMATION				
Construction Company Name Cascade Drilling				<u>.</u>
Address 301 Alderson St.		City, State, Zip Co	ode Schofield, WI. 54	476
Name of driller Paul Dickinson				MAISA
Drilling method Rotosonic Drilling flu	uid Water	E	Bore Hole diameter	6"
Soil sampling method Sample bag			Depth of boring	50'
C. MONITORING WELL INSTALLATION				
Casing material Sch. 40 PVC		Placement method	Poured	Mit
Length of casing 52.45'		/olume 2 cu. ft.		
Outside casing diameter 2.4"		Backfill (if different fro	am cooll+	
Inside casing diameter 2.04"		Material Benton		
Casing joint type Threaded		Placement metho		
Casing/screen joint type Threaded		Volume 60 gal.		
Screen material PVC		Surface seal design	· Proton	
Screen opening size 0.01'	•	Material of prote	·····	
		Material of grout		
Screen length 5'	r	-	nd well casing: Sand	
Depth of Well 49'		Protective cap: 6'		
Filter Pack:		Material Alumin		
Material Filter Sand			N Locking	?: XY N
Grain Size #40 red flint, topped with #7	······ \	Well cap:		
Volume 2 cu. ft.		······	and rubber	
Seal (minimum 3 ft. length above filter pack):			X N	***************************************
Material Bentonite Chips				
· · · · · · · · · · · · · · · · · · ·				
D. GROUNDWATER MEASUREMENT (±0.01 foot be	•			
Water level 15.88'		Stabilization time	< 1 minute	44.86444
Well development method Surged and pumped				
Average depth of frost line 4 ft				
DRI	LLER'S CER	TIFICATION		
I certify under penalty of law I believe the			is true, accurate, and	l complete.
Signature		Certification #		Date 12-19-2019
Attachments: Driller's log. Pipe schedules and grouting s and piezometers.	chedules. 8	½ inch x 11 inch map	showing locations of a	II monitoring wells

Please mail completed form to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Booker Environmental Engineer Sr., 515-725-8309, <u>nina.booker@dnr.iowa.gov</u> ELEVATIONS: ± 0.01 FT. MSL DEPTHS: ± 0.1 FT. FROM GROUND SERFACE SPACE TO ATTACH ENTIRE SOIL BORING LOG (SHOW SCREENED INTERVAL AND FILTER PACK INTERVAL).

IOWA DEPARTMENT OF NATURAL RESOURCES

MONITORING WELL/PIEZOMETER CONSTRUCTION DOCUMENTATION FORM

Well or Piezometer No: MW-30 Dates Started: 11/3/15	13	Date Completed: 11/4/15
A. SURVEYED LOCATIONS AND	ELEVATIONS	B. SOIL BORING INFORMATION
Locations (± 0.5 ft): Specify corner of site: NW Distance & direction along boun		Name & Address of Construction Company: Cascade Drilling 301 Alderson St
Distance & direction from bound		Schofield, WI 54476
Elevations (± 0.01 ft MSL):		Name of Driller: Mike Mueller
Ground Surface: 653.85		Drilling Method: HSA
Top of protective casing: 656.74	2 e	Drilling Fluid: None
Top of well casing:		Bore Hole Diameter: 8"
Benchmark elevation: 633.86, N	AVD 1988 datum	Soil Sampling Method: Spoon
Benchmark description: CP 300		Depth of Boring: 27 feet
C. MONITORING WELL INSTAL	LATION	
Casing material:		Placement method: Gravity
Length of casing:	16	Volume:
Outside casing diameter:	2.40"	Backfill (if different from seal):
Inside casing diameter:	2"	Material:
Casing joint type:	threaded	Placement method:
Casing/screen joint type:		Volume:
Screen material:	PVC	Surface seal design:
Screen opening size:	.01"	Material of protective casing: Steel 6"
Screen length:	10' 26'	Material of grout between protective casing and well casing: sand
Depth of wel <u>l:</u>	20	Protective cap:
Filter Pack:	Ded Elist	Material: steel
	Red Flint #40	Vented: Yes No Locking: Yes No
Grain size:		Well Cap:
Volume:	250 lbs	Material: PVC
Seal (minimum 3 ft length above Material: 3/8" bentonite chips	filter pack]:	Vented: Yes No
D. GROUNDWATER MEASURM Water level: 16.35		Stabilization Time: < 1 hr.
Well development method: $\frac{Sur}{4'}$	ged and pumped to reduc	e turbidity

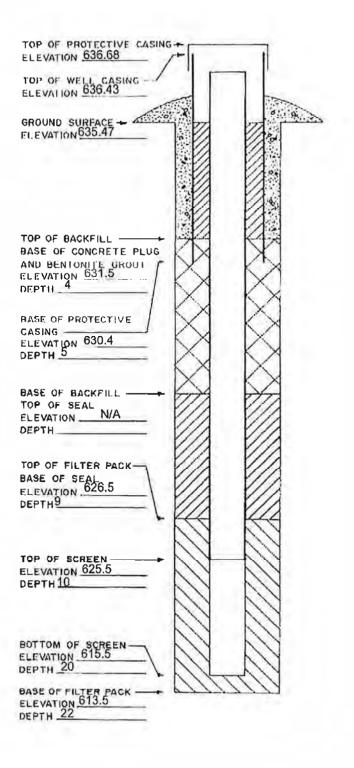

Attachments: Driller's log. Pipe schedules and grouting schedules. 8 ½x11 inch map showing locations of all monitoring wells and piezometers.

Please mail completed for to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E 9th St, Des Moines IA 50319-0034.

Questions? Call or Email: Nina Koger, Environmental Engineer Sr., 515-281-8986, Nina.Koger@dnr.iowa.gov

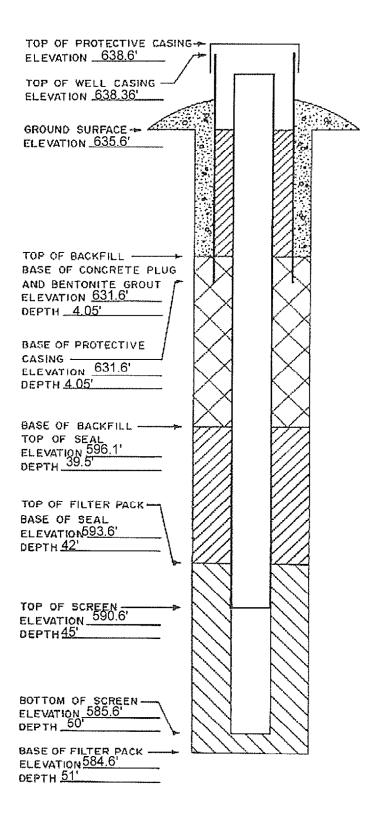
DAR

ELEVATIONS: ± 0.01 ft MSL DEPTHS: ± 0.1 ft FROM GROUND SURFACE

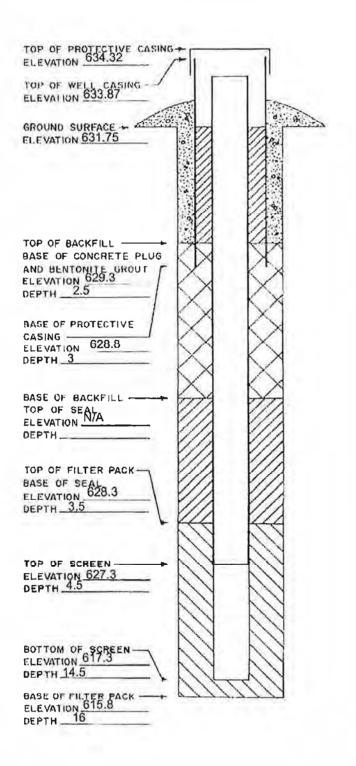


Well or Piezometer No. MW304	Dates Started	5/15/2019	Date Completed 5/15/2019
A. SURVEYED LOCATION AND ELEVA			
and the second second second second	and the second se	nd direction alon	g boundary 1,340 S
Distance and direction from boundar			g boundary 1,340 3
Elevation (+0.01 ft. MSL)	y to surface monitoring w		
Ground Surface 635.47		Top of protective	casing 636.68
Top of well casing 636.43		Benchmark eleva	
Benchmark description Brass cap in			
B. SOIL BORING INFORMATION			
Construction Company Name Robe	erts Environmental Drilling Ir	NC.	
Address 1107 South Mulberry Stree	et	City, State, Zip	Code Millstadt, IL, 62260
Name of driller Eric Wetzel			
Drilling method 4 1/4" HSA	Drilling fluid None		Bore Hole diameter 8.5"
Soil sampling method Split Spoon			Depth of boring 22'
C. MONITORING WELL INSTALLATIO	N		
Casing material PVC		lacement metho	d Gravity
Length of casing 20.26'		olume	
Outside casing diameter 2.4"		ackfill (if different	from seal):
Inside casing diameter 2.0"		Material	
Casing joint type Threaded		Placement meth	nod
Casing/screen joint type Threaded		Volume	
Screen material PVC	S	urface seal desig	n: Concrete
Screen opening size 0.01'		Material of prot	
		Material of grou	ut between
Screen length 10'	p	rotective casing	and well casing: Bentonite chips
Depth of Well 20'	P	rotective cap:	
Filter Pack:		Material Steel	
Material Filter Sand			Y 🗌 N Locking?: 🗙 Y 🗌
Grain Size	V	Vell cap:	
Volume 19.4 cubic feet		Material Plasti	
Seal (minimum 3 ft. length above filter pack)	:	Vented?: 🔀	Y 🛄 N
Material Bentonite			
D. GROUNDWATER MEASUREMENT	(+0.01 foot below top of in	ner well casing)	
Water level 13.21'		tabilization time	<1 hour
Well development method Surged &			
Average depth of frost line 4			
	DRILLER'S CERT	reported above	e is true, accurate, and complete.
Signature and Day		Certification	# 11509 Date 8/8/2019
Attachments: Driller's log. Pipe schedules and piezometers.	and grouting schedules, 8 ½	inch x 11 inch ma	p showing locations of all monitoring wel

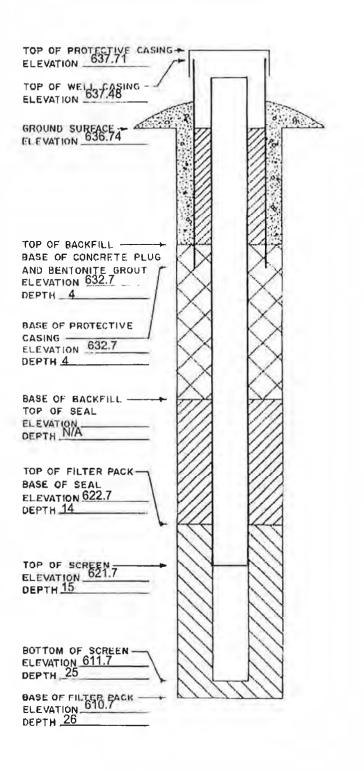
.


Please mail completed form to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Booker Envlronmental Engineer Sr., 515-725-8309, <u>nina.booker@dnr.iowa.gov</u> 09/2017 cmc DNR Form 542-1277 ELEVATIONS: ± 0.01 FT. MSL DEPTHS: ± 0.1 FT. FROM GROUND SERFACE SPACE TO ATTACH ENTIRE SOLL BORING LOG (SHOW SCREENED INTERVAL AND FILTER PACK INTERVAL).

-	TER CONSTRUCTION DOCUMENTATION FORM
Disposal Site Name IPL - Lansing Generating Station Well or Piezometer No. MW-304A Dat	es Started 12/18/2019 Date Completed 12/19/2019
	es Started <u>12/18/2019</u> Date Completed <u>12/19/2019</u>
A. SURVEYED LOCATION AND ELEVATION OF POIN	T (+0.5 ft.)
Specify corner of site NW	Distance and direction along boundary 1340 S
Distance and direction from boundary to surface me	onitoring well 10 E
Elevation (+0.01 ft. MSL)	
Ground Surface 635.6	Top of protective casing 638.6
Top of well casing 638.36	Benchmark elevation 653.26
Benchmark description Brass cap in PCC walkway to	weir structure on north side of entrance road
B. SOIL BORING INFORMATION	
Construction Company Name Cascade Drilling	
Address 301 Alderson St.	City, State, Zip Code Schofield, WI. 54476
Name of driller Paul Dickinson	
Drilling method Rotosonic Drilling flu	id Water Bore Hole diameter 6"
Soil sampling method Sample bag	Depth of boring 51'
C. MONITORING WELL INSTALLATION	
Casing material Sch. 80 PVC	Placement method Poured
Length of casing 52.45'	Volume 2 cu. ft.
Outside casing diameter 2.4"	Backfill (if different from seal):
Inside casing diameter 1.939"	Material Bentonite grout
Casing joint type Threaded	Placement method Pumped
Casing/screen joint type Threaded	
Screen material PVC	Surface seal design: Protop
Screen opening size 0.01'	Material of protective casing: Steel
	Material of grout between
Screen length 5'	protective casing and well casing: Sand
Depth of Well 50'	Protective cap: <u>6" Royer cap</u>
Filter Pack:	Material <u>Aluminum</u>
Material Filter Sand	Vented?: 🛛 Y 🔄 N 🛛 Locking?: 🔀 Y 🔄 N
Grain Size #40 red flint, topped with #7	Well cap:
Volume 1.5cu. ft.	Material Plastic and rubber
Seal (minimum 3 ft. length above filter pack):	Vented?:
Material Bentonite Chips	
D. GROUNDWATER MEASUREMENT (±0.01 foot be	low top of inner well casing)
Water level 13.35'	Stabilization time >1hr
Well development method Surged and pumped	
Average depth of frost line 4 ft	
DRI	LLER'S CERTIFICATION
I certify under penalty of law I believe the	information reported above is true, accurate, and complete.
Signature	Certification # 7361 Date 12-19-2019
Attachments: Driller's log. Pine schedules and grouting st	chedules. 8 ½ inch x 11 inch map showing locations of all monitoring wells
and piezometers.	streamest of station is at men map showing locations of an monitoring wens

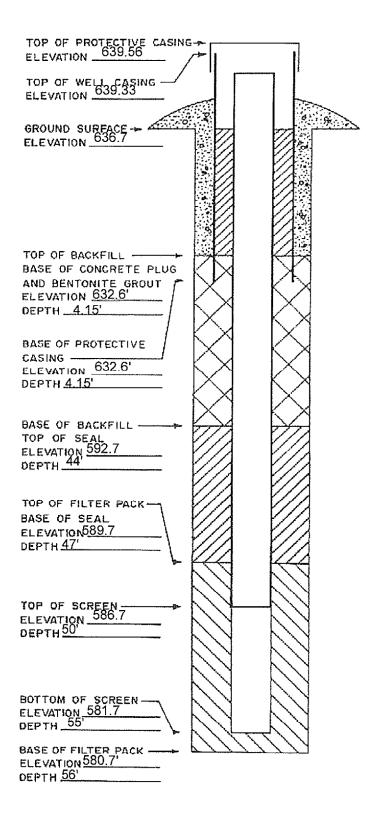

Please mail completed form to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Booker Environmental Engineer Sr., 515-725-8309, <u>nina.booker@dnr.iowa.gov</u> ELEVATIONS: ± 0.01 FT. MSL DEPTHS: ± 0.1 FT. FROM GROUND SERFACE SPACE TO ATTACH ENTIRE SOIL SORING LOG (SHOW SCREENED INTERVAL AND FILTER PACK INTERVAL).

Well or Piezometer No. MW305	Dates Started 5/16/2019 Date Completed 5/16/2019
A. SURVEYED LOCATION AND ELEVATION	QE POINT (+0.5 ft.)
Specify corner of site NW	Distance and direction along boundary 1,125 S
Distance and direction from boundary to s	
Elevation (+0.01 ft, MSL)	
Ground Surface 631.75	Top of protective casing 634.32
Top of well casing 633.87	Benchmark elevation 653.26
3	alkway to weir structure on north side of entrance road
B. SOIL BORING INFORMATION	
	nvironmental Drilling Inc.
Address 1107 South Mulberry Street	City, State, Zip Code Millstadt, IL, 62260
Name of driller Eric Wetzel	
· · · · · · · · · · · · · · · · · · ·	Drilling fluid Bore Hole diameter 8.5"
Soil sampling method Split Spoon	Depth of boring 16'
son sumpling meeting	
C. MONITORING WELL INSTALLATION	
Casing material PVC	Placement method Gravity
Length of casing 5'	Volume 2.7 cubic ft
Outside casing diameter 2.4"	Backfill (if different from seal):
Inside casing diameter 2.0"	Material
Casing joint type Threaded	Placement method
Casing/screen joint type Threaded	Volume
Screen material PVC	Surface seal design: Concrete
Screen opening size 0.01'	Material of protective casing; Steel
	Material of grout between
Screen length 10'	protective casing and well casing: Bentonite chips
Depth of Well 14.5'	Protective cap:
Filter Pack:	Material steel
Material Filter Sand	Vented?: X Y N Locking?: X Y N
Grain Size	Well cap:
Volume 23 bags	Material Plastic
Seal (minimum 3 ft. length above filter pack):	Vented?: 🔀 Y 🛄 N
Material Bentonite	
D. GROUNDWATER MEASUREMENT (+0.0	1 foot below top of inner well casing)
Water level 12.13'	Stabilization time < 1 hr
Well development method Surged and pu	Imped to remove turbidity
Average depth of frost line 4 ft	
	DRILLER'S CERTIFICATION
I certify under penalty of law I bel	ieve the information reported above is true, accurate, and complete.
Signature 41 MVD	Certification # 11509 Date 8/8/2019


Attachments: Driller's log. Pipe schedules and grouting schedules. 8 ½ inch x 11 inch map showing locations of all monitoring wells and piezometers.

Please mail completed form to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Booker Environmental Engineer Sr., 515-725-8309, <u>nina.booker@dnr.iowa.gov</u> 09/2017 cmc DNR Form 542-1277 ELEVATIONS: ± 0.01 FT. MSL DEPTHS: ± 0.1 FT. FROM GROUND SERFACE SPACE TO ATTACH ENTIRE SOIL BORING LOG (SHOW SCREENED INTERVAL AND FILTER PACK INTERVAL).

Disposal Site Name IPL - Lansing Generating Station	Permit No.
Well or Piezometer No. MW306 Dates Start	ted 5/16/2019 Date Completed 5/16/2019
A. SURVEYED LOCATION AND ELEVATION OF POINT (+0.5	ft.)
Specify corner of site NW Distance	ce and direction along boundary 420 SE
Distance and direction from boundary to surface monitorin	ng well 60 SW
Elevation (+0.01 ft. MSL)	
Ground Surface 636.74	Top of protective casing 637.71
Top of well casing 637.48	Benchmark elevation 653.26
Benchmark description Brass cap in PCC walkway to weir str	ucture on north side of entrance road
B. SOIL BORING INFORMATION	
Construction Company Name Roberts Environmental Drilli	ng Inc.
Address 1107 South Mulberry Street	City, State, Zip Code Millstadt, IL, 62260
Name of driller Eric Wetzel	
Drilling method 4 1/4" HSA Drilling fluid	Bore Hole diameter 8.5"
Soil sampling method Split Spoon	Depth of boring 26'
C. MONITORING WELL INSTALLATION	
Casing material PVC	Placement method Gravity
Length of casing 26'	Volume
Outside casing diameter 2.4"	Backfill (if different from seal):
Inside casing diameter 2.0"	Material
Casing joint type Threaded	Placement method
Casing/screen joint type Threaded	Volume
Screen material PVC	Surface seal design: Concrete
Screen opening size 0.01'	Material of protective casing: Steel
	Material of grout between
Screen length 10'	protective casing and well casing: Bentonite chips
Depth of Well 25'	Protective cap:
Filter Pack:	Material Steel
Material Filter Sand	Vented?: XY N Locking?: XY N
Grain Size Volume 37 cubic feet	Well cap: Material Plastic
Seal (minimum 3 ft. length above filter pack):	
Material Bentonite	
D. GROUNDWATER MEASUREMENT (+0.01 foot below top Water level 13.11'	Stabilization time <1 hr
Well development method Surged and pumped to reduce to	
Average depth of frost line 4 ft	
	ERTIFICATION ation reported above is true, accurate, and complete.
Signature and the	Certification # 11509 Date 8/8/2019
10	
ttachments: Driller's log. Pipe schedules and grouting schedules	, 8 ½ inch x 11 inch map showing locations of all monitoring wells


Please mail completed form to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Booker Environmental Engineer Sr., 515-725-8309, <u>nina.booker@dnr.iowa.gov</u> 09/2017 cmc DNR Form 542-1277 ELEVATIONS: ± 0.01 FT. MSL DEPTHS: ± 0.1 FT. FROM GROUND SERFACE SPACE TO ATTACH ENTIRE SOIL BORING LOG (SHOW SCREENED INTERVAL AND FILTER PACK (NTERVAL)

MONITORING WELL / PIEZOMETER CO	NSTRUCTION DOCUMENTATION FORM
Disposal Site Name IPL - Lansing Generating Station	Permit No.
Well or Piezometer No. MW-306A Dates Starte	d 5/17/2019 Date Completed 12/19/2019
A. SURVEYED LOCATION AND ELEVATION OF POINT (+0.5 f	t.)
	e and direction along boundary 420 SE
Distance and direction from boundary to surface monitoring	
Elevation (+0.01 ft. MSL)	
Ground Surface 636.7	- Top of protective casing 639.56
Top of well casing 639.33	Benchmark elevation 653.26
Benchmark description Brass cap in PCC walkway to weir stru	cture on north side of entrance road
B. SOIL BORING INFORMATION	
Construction Company Name Cascade Drilling	4
Address 301 Alderson St.	City, State, Zip Code Schofleld, WI. 54476
Name of driller Paul Dickinson	
Drilling method Rotosonic Drilling fluid Wat	er Bore Hole diameter 6"
Soil sampling method Sample bag	Depth of boring 56'
C. MONITORING WELL INSTALLATION	
Casing material Sch. 80 PVC	Placement method Poured
Length of casing 58.06'	
Outside casing diameter 2.4"	Volume 2 cu. ft.
Inside casing diameter 1.939"	Backfill (if different from seal):
Casing joint type Threaded	Material Bentonite grout
Casing/screen joint type Threaded	Placement method Pumped
Screen material PVC	Volume <u>60 gal.</u> Surface seal design: Protop
Screen opening size 0.01'	9.1 To 1 To
	Material of protective casing: <u>Steel</u> Material of grout between
Screen length 5'	protective casing and well casing: Sand
Depth of Well 55'	Protective cap: 6" Royer cap
Filter Pack:	Material Aluminum
Material Filter Sand	Vented?: XYN Locking?: XYN
Grain Size #40 red flint, topped with #7	Well cap:
Volume 1.5cu. ft.	Material Plastic and rubber
Seal (minimum 3 ft. length above filter pack):	Vented?: YXN
Material Bentonite Chips	
D. GROUNDWATER MEASUREMENT (+0.01 foot below top c	f inner well casing)
Water level 19.56'	Stabilization time < 1 minute
Well development method Surged and pumped	
Average depth of frost line 4 ft	
	RTIFICATION ion reported above is true, accurate, and complete.
Signature	Certification # <u>7367</u> Date <u>12-19-2019</u>
Attachments: Driller's log. Pipe schedules and grouting schedules. and piezometers.	8 ½ inch x 11 inch map showing locations of all monitoring wells

Please mail completed form to: Iowa Department of Natural Resources, Land Quality Bureau, 502 E. 9th St, Des Moines, IA 50319. Questions? Call or Email: Nina Booker Environmental Engineer Sr., 515-725-8309, <u>nina.booker@dnr.iowa.gov</u>

ELEVATIONS: ± 0.01 FT. MSL DEPTHS: ± 0.1 FT. FROM GROUND SERFACE SPACE TO ATTACH ENTIRE SOIL BORING LOG (SHOW SCREENED INTERVAL AND FILTER PACK INTERVAL).

SOIL BORING LOG INFORMATION

Route To:	Watershed/Wastewater	
	Remediation/Redevelopment	

Waste Management Other \Box

																Page	1 of 2
	y/Projec			, -			License/Permit/Monitoring Number MW-307										
			ing Stat	tion f crew chief (first, last) a		221161.00	Date Drilling Started Date Drilling Com						Drill	ing Method			
Paul Dickinson							Dute Dill	ining St	unted				ing coi	npieteu			ing method
Cascade Drilling								6/22	/2021				6/22/2	2021		Ro	oto-Sonic
DNR Well ID No. Common Well Name							Final Sta			el	Surfa	ace Eleva			Bo		Diameter
T 1	0.10	· ·					6	528.5	Feet				0.70 Fe			6	.0 in.
	Grid Oı Plane			timated:) or Bor 777 N, 5,541,269		n <u>x</u> C/N	La	t <u>43</u>	<u>° 20</u>)'	2.56'		Grid Lo		r		Faat 🗖 T
SW		of N		$\frac{1}{4} \text{ of Section} \qquad 2,$	т98 N			<u>g91</u>	° 10)' 9	9.97'	,	ree				Feet 🗌 E
Facilit		01 11		County	1 70 11		County Co	de	Civil T	own/Ci	ity/ or	· Village					
				Allamakee					Lans	ing, Io	owa						
Sar	nple												Soil	Prope	erties	1	-
	ii) &	ts	gt	Soil/R	ock Descrip	otion											
г S	Att. red (uno	n Fe	And Ge	eologic Orig	in For						tion d			ţ		ents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Eac	ch Major Ur	nit		CS	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	00	D/
Nur and	Ler Rec	Blo	Del					U S	Grap Log	Well Diagi	PID	Stai Pen	C No	Liquid Limit	Plastic Index	P 200	RQD/ Comments
Γ	1		E I	Hydrovaced to 12' belo	ow ground s	surface with s	some										
			E_1	cave-in to about 10'.						\mathbb{X}	Ì						
			Ē														
			-2														
			E							$\langle \rangle \rangle$							
			$\begin{bmatrix} -3 \end{bmatrix}$														
			-4							\mathbb{K}	Š						
			-5														
			EI														
			<u>–</u> 6														
			E, I														
			-7														
			E-8							•• ••							
			E								:						
			-9														
											:						
			-10	POORLY GRADED S	AND, med	ium grained,				計	.]						
			-11	yellowish brown (10Y sand (10YR 5/1), shell	R 5/4) with ls and subro	4" layer of g oundd gravel.	ray										
				(),		8											
			-12								:						
S1	60		E I					SP					W				
			-13								:						
			Ē, I														
			E ⁻¹⁴							ŀ∃:							
			-15							計目の							
I here	by certif	fy that	10	rmation on this form is t	rue and cor	rect to the be	st of my k	nowled	lge.	•						•	
Signa	-	-		Alt		D '	Engine		-								Tel:
			/	1 At			Dairy Dri		adison,	WI 53	718						Fax:

SOIL BORING LOG INFORMATION SUPPLEMENT

Borin	g Numł	ber	MW	V-307									Page	2 of 2
	nple									Soil	Prop			
	& in)	s	et	Soil/Rock Description										
e	Att. ed (ount	I Fe	And Geologic Origin For			_		Lion	0		2		nts
Typ	gth /	۲ ۲	th Ir	Each Major Unit	CS	hic	ram	FID	darc	sture	it d	ticit.	0	mei
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		U S	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
<u> </u>				Same as above, shells still present with more gray	+-									
			Ē	sand.			「目:							
			<u>16</u>		SP		目							
			E-17				日							
S2	60		E '	SILT, dark gray to black (5Y 2.5/2), with trace very fine grained sand and gravel/cobbles.					0.75	W/M				
52			-18	The granted balla and graves coores.			:目:		0.75					
			F				l:≣:							
			E-19		ML									
			E											
			-20	Same as above but gray (5Y 4/1).										
S3	12		-21							W/M				
				End of boring at 21' below ground surface.										
				Well placed from 20' with 10' screen at 20 to 10'.										
				l	I	1		I	1	I				

SOIL BORING LOG INFORMATION

Route To:	Watershed/Wastewater	
	Remediation/Redevelopment	

Waste Management
Other

															Page	1 of 3
	y/Projec					License/Permit/Monitoring Number Boring Number MW-307A										
			ing Stat	ton crew chief (first, last) a	SCS#: 25221161.00	Date Drilling Started Date Drilling Completed					ing Method					
Paul Dickinson							inig Si	ancu				ing Con	ipicicu		Dim	ing method
Cascade Drilling							6/22	/2021				6/22/2	2021		Ro	oto-Sonic
			<u> </u>	DNR Well ID No.	Common Well Name	Final Stat			/el	Surfac	e Elevat			Bo		Diameter
	~ ~					6	522.8	Feet				60 Fe			6.	.0 in.
	Grid Oı Plane	rigin		timated:) or Bor 775 N, 5,541,261		Lat	t <u>43</u>	° 2	0' 2	2.54 "	Local C					
State		of N		775 IN, $5,541,2014 of Section 2,$	T 98 N, R 3 W		g91			0.08 "		Feet	□ N □ S			Feet E E W
Facilit		01 10	vv 1/	County		County Co	de	Civil 7	own/Ci		Village					
				Allamakee		2			ing, Io	-	e					
Sar	nple			l l								Soil	Prope	erties		
	& in)	s	G	Soil/R	ock Description											
e	Att ed (j	Blow Counts	Depth In Feet	And Ge	eologic Origin For							0		2		ats
Typ	gth /	v Č	th Ir	Eac	ch Major Unit		CS	ohic	l	E	darc	sture	ii d	ticit. x	0)/
Number and Type	Length Att. & Recovered (in)	Blov	Dep				U S	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
			Ē	Hydrovaced to 12' belo	ow ground surface with	some										
				cave-in to about 10'.						X						
			-2													
			E													
			-3													
			E_4													
			-5													
			Ē													
			-6													
			Ē													
			-7													
			-8													
			Ē													
			-9													
	1		E ⁻¹⁰	POORLY GRADED S	SAND, medium grained,											
				yellowish brown (10Y sand (10YR 5/1) with	R 5/4) with 8" layer of g trace shells and sub-rou	gray nded										
				gravel.												
			-12													
S1	60		E				SP					M/W				
			-13													
			E,													
			E_15													
Ihora	by cortif	fir that	the infor	mation on this form is t	rue and correct to the be	et of my k	nowled	lao								

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature	AA	Firm SCS Engineers 2830 Dairy Drive, Madison, WI 53718	Tel: Fax:
-			

SOIL BORING LOG INFORMATION SUPPLEMENT

Borin	<u>g Numb</u>	er	MW	/-307A								Page	2 of 3
San	nple								Soil	Prope	rties		
. 9	Length Att. & Recovered (in)	ounts	1 Feet	Soil/Rock Description And Geologic Origin For			~	d ion	9		y		nts
Number and Type	ecovei	Blow Counts	Depth In Feet	Each Major Unit	USCS	Graphic Log Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
ar <u>x</u>	л Ж Г	B					Id	Pe St	ΣŬ	ΠΠ	Pl In	Ч	R Ú
			-16										
			17										
S2	48		-18		SP				W				
			-19										
			-20	SILT, dark gray, dark gray to black, (5Y 2.5/2) with fine grained sand and trace gravel.									
			-21										
~	60		-22		ML								
S3	60		-23		ML			1.5- 2.5	М				
			-24										
			-25	LEAN CLAY, black (5Y 2.5/1), soft.									
			-26	LEAN CLAT, black (51 2.5/1), solt.									
			-27										
S4	60		Ē					0.75	W				
			-28										
			-29 										
				Same as above but very soft with trace fine to medium grained sand.	CL								
			-31	6									
	60		-32										
S5	60		-33					0.0	M/W				
			-34										
			35	POORLY GRADED GRAVEL WITH SAND, fine to									
			-36	coarse gravel, sub-rounded to sub-angular, sand is fine to coarse grained, dark brownish gray (2.5Y 4/2) with									
			-37	trace silt.		00°							
S 6	24		-38		GP			0.0	W				
			F										
L			-40										

SOIL BORING LOG INFORMATION SUPPLEMENT

Borin	g Numb	er	MW	/-307A									Page	3 of 3
San	nple									Soil	Prope			
	(II) &	S	et	Soil/Rock Description										
. e	Att. red (Blow Counts	Depth In Feet	And Geologic Origin For					d	9		y		nts
nbeı Typ	gth over	Ŭ 8	th I	Each Major Unit	CS	phic		FII /FII	ndar	stur tent	it it	ticit x	0) June
Number and Type	Length Att. & Recovered (in)	Blov	Dep		U S	Graphic Loo	Well	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
			E			b V (
			-41		GP	000	\leq							
				SILT, dark gray (5Y 3/1), with trace sand, gravel and cobbles.	ML									
			-42	WELL GRADED SAND, fine to medium grained,			•							
S 7	56		E .a	yellow (2.Y 7/6) with gravel and pieces of shell.	SW				0.0	W				
			-43	SILT, dark gray (5Y $4/1$) and transitions to olive		ŤŤŤ	÷							
			E-44	brown (2.5¥ 4/4), very soft.	ML									
-			-45	POORLY GRADED SAND, fine to medium grained,			i E							
			Ē	light olive brown $(2.5Y 5/4)$ with trace silt.	CD.		:FE							
			-46		SP		I E							
			-47	SANDY SILT, light olive brown (2.5Y 5/3), very soft,			4 E							
			E	\sand is fine to medium grained.	ML		Ë							
			-48 	SILTY SAND, fine to coarse grained, olive yellow $(2.5Y 6/8)$.	SM		SE.							
S8	70		-49	POORLY GRADED GRAVEL WITH SAND AND	GP-GM	0	ÐE		0.0	W				
				SILT, coarse gravel, sand and silt are light olive brown $(2.5Y 5/4)$, sand is fine to coarse grained.		Pata	4:E							
			-50	SANDY SILT WITH GRAVEL, gray to dark gray			Ë							
			È	(2.5Y 4/1), sand is fine to coarse grained, gravel is coarse, sub-rounded with trace cobbles, very soft.	ML									
			51											
			- 52				÷	<u></u>						
				End of boring at 52' below ground surface.										
	I		I	I	I	1	I	I	I	I	I			I

SOIL BORING LOG INFORMATION

Route To:	Watershed/Wastewater	
	Remediation/Redevelopment	

Waste Management Other

																Page	1 of 2	
	y/Proje			.•			License/I	Permit/	Monito	ring Nı	umber	r	-	Numbo				
			ing Sta	tion f crew chief (first, last) a	SCS#: 25221	161.00	Date Dri	ling St	arted			ate Drill		MW-		Drill	ing Method	
	l Dick	-		erew enter (mst, last) a	ind I iiiii		Date Dill	ining 50	artea				ing con	npieteu			ing wiethou	
	cade I							6/22	/2021				6/22/2	2021		Ro	oto-Sonic	
-				DNR Well ID No.	Common We	ll Name	Final Sta			el	Surfa	ce Eleva			B	Borehole Diameter		
T 1	0.10					(T)	6	518.8	Feet				70 Fe			6	.0 in.	
	Grid Oı Plane	•		timated:) or Bon ,236 N, 5,541,333			La	t <u>43</u>	<u>°</u> 20)'	7.07'		Grid Lo		r		Faat 🗖 E	
SW		of N		$/4 ext{ of Section } 2,$	T 98 N, R		Long	g <u>-91</u>	° 10)' 8	8.94 '	,	гее	: 🗌 N 🗌 S			Feet 🗌 E	
Facili		01 11		County	1 90 10,10		County Co	de	Civil T		ity/ or	Village						
				Allamakee					Lans	ing, Io	owa							
Saı	nple	-											Soil	Prope	erties		-	
	lij &	ts	set	Soil/R	lock Descriptio	n												
ь г	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		eologic Origin H	For		s	0	я		Standard Penetration	t e		ť		ents	
Number and Type	ngth	MO MO	pth]	Eac	ch Major Unit			SCS	Graphic Log	Well Diagram	PID/FID	ndaı netra	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments	
and	Re Le	Ble	De					ñ	Grap Log	Well Diagr	L L L	Sta Pei	ž ĉ	Lii Ei	Pla	P 2	C R	
			E	Hydrovaced to 8 feet b drilled the from 8 to 1	below ground si 0'	urface and	l blind											
			-1								<pre>X</pre>							
			E															
			\mathbb{E}^2															
			-3															
			E															
			-4															
			E															
			5															
			-6															
			E															
			-7															
			E															
F	1		E-8															
			E'														Blind drilled 2 ft of slough from	
-	-		-10	WELL SORTED SAN	ND finate and		. 4		*****								8 to 10' bgs.	
			F I	very dark grayish bro	wn $(10YR 3/2)$).	.a,	SW										
			-11	SILT, gray to dark gra and trace sand through	y (2.5Y 3/2) w	vith sticks,	roots,											
				and trace sand through	iout, very soft.													
G1			-12 															
S1	60		E-13					ML				0.0	W					
											·							
			-14															
			E 															
 I here	1 hv.certit	fv that		rmation on this form is t	rue and correct	t to the bea	st of my k	nowlea	loe		1		1	1		1	<u> </u>	
Signa	-	iy mat	ine into.		Fir		Engine		•50.								Tel:	
0			/	/LA		505	Dairy Dri		adison,	WI 53	718						Tel: Fax:	

SOIL BORING LOG INFORMATION SUPPLEMENT

Boring	g Numł	ber	MW	V-308										Page	2 of 2
San	nple						T				Soil	Prop	erties		
	Length Att. & Recovered (in)	unts	Feet	Soil/Rock Description And Geologic Origin For						ч					ţţ
Number and Type	gth A overe	Blow Counts	Depth In Feet	Each Major Unit	CS	ohic		Well Diagram	PID/FID	Standard Penetration	Moisture Content	ii d	Plasticity Index	0)/ Imeni
Nun and	Leng Reco	Blov	Depi		U S	Graphic	Log	Well Diagr	PID	Stan Pene	Moisture Content	Liquid Limit	Plastic Index	P 200	RQD/ Comments
			Ē	Same as above but with trace roots, no sticks, and											
			16	pockets of sand, very sort.											
			-17												
S2	60		Ē							0.0	W				
			-18 		ML			· []							
			- 19												
			-20	Same as above but very trace roots.											
			Ē												
S3	40		-21	SANDY SILT, gray to dark gray, (2.5Y 3/2), no visible roots, very soft.	ML					0.0	W				slough in hole, actual recovery was ~2"
			-22	End of boring at 22' below ground surface.				<u> </u>							

SOIL BORING LOG INFORMATION

Route To:	Watershed/Wastewater	
	Remediation/Redevelopment	

Waste Management
Other

															Page	1 of 2
	ty/Projec					License/	Permit/	Monito	oring N	umber		Boring				
			ing Stat	fion forew chief (first, last) ar	SCS#: 25221161.00	Date Dri	lling St	arted		D	ate Drilli		MW-		Drill	ing Method
	ıl Dick	•		erew enter (mst, iast) ar		Date DI	ning 5t	arteu				ing Con	npieteu			ing wethou
	scade I						6/23	/2021	l			6/23/2	2021		R	oto-Sonic
			0	DNR Well ID No.	Common Well Name	Final Sta			/el	Surfa	ce Eleva			Bo		Diameter
	~					(519.4	Feet				10 Fe			6	.0 in.
	Grid Oı Plane	rigin		timated:) or Born 229 N, 5,541,010		La	t43	° 2	0'	7.10"	Local C	Grid Lo				
State		of N			T 98 N, R 3 W		g -91		0' 1	3.31"		Feet	∷ □ N □ S			Feet 🗌 E
Facili		01 14	•• 1/	County		County Co					Village					
	-			Allamakee					sing, Io		0					
Sar	nple			·								Soil	Prope	rties		
	& (ii)	s	5	Soil/Re	ock Description											
e	Att. ed (ount	1 Fe	And Ge	ologic Origin For						ion	0		>		nts
aber Typ	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Eac	h Major Unit		CS	phic	l	FID	dard	Moisture Content	ii t	ticit	0	D/
Number and Type	Length Att. & Recovered (in	Blov	Dep				U S	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
			Ē	Hydrovaced to 8' below	ground surface.					\$						
				Hole collapsed to 6' bg	5.					X						
			-2							Š						
			Εl													
			=3													
										Š						
			F ⁴													
			E_5													
			F I													
ŀ	-		<u>–</u> 6	WELL GRADED SAN	D, fine to coarse graine	ed,			2							
			E, I	grayish brown to brow (slough).	rn (10YR 4/3) with trac	ce coal										
			<u>-7</u>	(slough).												
S1	20		E-8				SP									Slough from 6 to
51	20		E													10 feet.
			-9													
			E,													
F	1			SILT, dark gray to blac	\overline{k} (5Y 2.5/1) with trace	e roots,										
			E_11	4" layer of black organ sticks.	ic soil with trace gravel	and										
			E													
			-12				ML-OL									
S2	60		È							:						
			$\begin{bmatrix} -13 \end{bmatrix}$													
			E-14					<u> </u>		:						
			È.,	SILTY SAND WITH C grained, gray to dark g		e	SM									
	-		-15		, (), g.u. er is	-										
	-	fy that	the info	rmation on this form is tr		-		lge.								
Signa	ture			Ca H	Firm SCS	- Engine	0.00									T-1

 Signature
 Firm
 SCS Engineers
 Tel:

 2830 Dairy Drive, Madison, WI 53718
 Fax:

SOIL BORING LOG INFORMATION SUPPLEMENT

Borin	g Numł	er	MW	V-309										Page	2 of 2
San	nple										Soil	Prop	erties		
	Length Att. & Recovered (in)	ts	set	Soil/Rock Description											
r pe	Att. sred	Blow Counts	Depth In Feet	And Geologic Origin For	\mathbf{v}	5		в	D	Standard Penetration	e t		ty		RQD/ Comments
Number and Type	ngth cove	D W C	pth]	Each Major Unit	SC	Graphic	50 =	Well Diagram	PID/FID	Standard Penetrati	Moisture Content	Liquid	Plasticity Index	P 200)Q
Nu	Leı Re	Blc	De		U S	Ë,	Log	Di ⁸	IId	Sta Per	CN	Liquid Limit	Pla Ind	P 2	Col RQ
			Ē	\sub-rounded.				:≣∷							
			E-16	SILT, dark gray (5Y 3/1), with roots and trace sticks, very soft.				· E							
			F					·E:							
			-17					:目:							
S3	60				ML			·E:							
								:目:i							
			E-19					:目::							
			E					¦₿;							
-			20	SANDY SILT, very dark gray (5Y 3/1) with roots, trace gravel and peices of limestone at bottom of			ť	·E							
			-21	trace gravel and peices of limestone at bottom of sample, sand is fine to medium grain.				· E. ·							
				1, 5											
			-22												
S4	60		È		ML										
			23												
			E-24												
			Ē					· · ·							
			-25	End of boring at 25' below ground surface.			-	. .							
				Well placed from 22' with 10' screen at 22 to 12'.											
				won placed nom 22 with 10 select at 22 to 12.											
	'						•								

Appendix C

Arsenic Assessment Update

Final

Subject: Assessment of Arsenic in Groundwater at the Interstate Power and Light, Lansing Generating Station

From:	Bernd W. Rehm	Date: 31 May 2023	Revision 3
Project:	SCS – Alliant Lansing GS CCR Evalua	ations	158-002a

Key Findings

Hydrogeologic and geochemical data show that the coal combustion residue (CCR) in the Upper Ash Pond is not the source of arsenic exceedances of the Groundwater Protection Standard at Monitoring well MW-302. Sampling results and hydrogeologic conditions indicate that arsenic in groundwater is due to released arsenic co-precipitated with existing iron minerals in soil adjacent to and below the former Lower Ash Pond. Low upgradient arsenic concentrations between the Lower Pond area and the Upper Pond, a lack of response in arsenic concentrations to CCR removal from the Former Lower Ash Pond, and observed organic soils that support the production of microbially reducing conditions suggest the groundwater arsenic concentrations above the GPS are due to release from soil adjacent to and below the former Lower Ash Pond.

Hydrogeology

Borings and monitoring wells were completed in surficial sediments in the area of the former Upper and Lower Ash Ponds overlying bedrock to depths on the order of 50 feet below ground surface. The sediments generally consist of interbedded clay, silt, sand and gravel units that show little lateral continuity. Shallow soil adjacent to and immediately below the Former Lower Ash Pond is commonly described as brown of black silt or clay with plant material (e.g. MW-302 boring and CCR Confirmation Core Logs¹). Three soil samples collected from below the water table at MW-302A (11 to 25 feet below ground surface) had total organic carbon contents of 1.6 to 6.7 percent with an average of 3.4 percent².

¹ Hard Hat Services. 2016. Lower Ash Pond Closure Construction Completion Report. Interstate Power & Light Company, Lansing Generating Station, Lansing, Iowa, 487 pp.

² Eurofins. 2020. Analytical Report, IPL-Lansing-25220082, 21 pp.

The Former Lower Ash Pond was removed in 2015^1 . Approximately 6 feet of CCR between 618 and 624 feet elevation was dredged and placed in the Upper Ash Pond. Following confirmation of CCR removal by elevation survey and soil borings, the pond area was filled with dolomite quarry spall to an elevation of ~627 feet and general soil fill to an elevation of ~637 feet. Topsoil and seed were placed over the fill.

When the Lower Ash Pond was closed in 2015, a gravel-filled interceptor trench and drain were also constructed immediately along the north side of the Upper Ash Pond at an elevation of ~630 feet³. The trench and drain intercept the shallow groundwater discharge from the Upper Ash Pond. The intercepted groundwater is routed to a weir box that combines the groundwater with the surface water from the Upper Ash Pond before it is discharged to the unnamed creek to the west of the Upper Ash Pond through State-permitted Outfall 002. In November 2021, Outfall 002 was sealed off from the Upper Pond surface water and replaced with Outfall 010 to the Mississippi River and the groundwater collection pipe in the base of the interceptor trench was also filled with concrete⁴. The gravel-filled trench was not changed, therefore shallow groundwater flow was allowed to resume from the Upper Ash Pond through the dolomite quarry spall of the Former Lower Ash Pond.

A cutoff wall was also constructed along the west side of the Upper Ash Pond⁵. The wall is at least 30 inches thick and was made of a mixture of blast furnace slag, Portland cement, bentonite, Polymax additive and water with a design permeability of $< 1 \times 10^{-7}$ cm/s. The wall extended to elevations of ~615 feet on the north and to 640 feet on the south to be keyed into a layer of silt. At the north end of the cutoff wall the base of the wall is on the order of 10 to 15 feet below the elevation of the unnamed creek to the west. The wall precludes shallow Upper Ash Pond seepage and groundwater flow to the unnamed creek.

Shallow groundwater flow from the Upper Ash Pond that is not captured by the inceptor trench flows northward through the backfilled Former Lower Ash Pond and past MW-302 to discharge at an elevation of ~620 feet in the outflow channel that separates the coal pile from the CCR ponds (Figure 1 and 2). The conceptual flow cross-section on

³ Hard Hat Services. 2016. Lower Ash Pond Closure Construction Completion Report. Interstate Power & Light Company, Lansing Generating Station, Lansing, Iowa, 487 pp.

⁴ Tony Morse, Alliant Energy, e-mail to Thomas Karwoski, 10 February 2022.

⁵ Hard Hat Services. February 2016. Interstate Power and Light (IPL) Company, Lansing Generating Station Project, Seepage Control Cut-off Wall As-built Drawings. 13 pp.

Final

Figure 2 suggests that groundwater also flows downward from the Upper Ash Pond and then flows horizontally to discharge to the outfall channel.

Monitoring wells MW-306 and MW-306A are located to the north of the coal pile. The data suggest that there is a mound in the water table below the pile that forms a hydrologic divide between these wells and the Ash Ponds. The results from these wells will therefore not be addressed further.

The unnamed stream to the west of the of the Former Lower and Upper Ponds has an elevation of 630.61 feet before passing beneath the road. The stream elevation appears to fall rapidly until just upstream of the railroad crossing where it joins the larger outfall waterbody at an of elevation 620.54 feet. The combined stream and outfall flow to the north and west. Shallow groundwater also flows northwestward past MW-301 to discharge into the unnamed creek to the west of the CCR ponds.

Monitoring wells MW-304 is installed in the shallow groundwater flow system to the west and upgradient of the unnamed stream that divides groundwater flow between the monitoring wells and the Upper Ash Pond and Former Lower Ash Pond. Even though the well is not hydraulically upgradient of the Upper Ash Pond, it provides a measure of background groundwater quality in the surficial sediment groundwater.

Geochemistry

The data used in the preparation of the following evaluation are summarized in Attachment 1^6 .

Arsenic concentrations have been measured in groundwater from the surficial sediment over variable time periods between December 2015 and October 2021. Table 1 summarizes several key averaged geochemical parameters used in the following assessment of the CCR management units.

<u>Arsenic and Oxidation Reduction Potential (ORP).</u> Arsenic concentrations as a function of ORP are provided on Figure 3. Background arsenic concentrations as defined on Figure 3 for MW-304 shallow groundwater average less than 1 μ g/L arsenic. The groundwater is slightly alkaline and suboxic (range of 87 to 135 mV). The iron

 $^{^{6}}$ The data were found in the Alliant Energy, Lansing Generating Station Draft Annual Report, Appendix D. -3 –

concentration in both shallow and deep groundwater is generally below the laboratory reporting limit. The sulfate concentration in the deeper well (MW-304A) is on the order of 5 times higher than in the shallower well (MW-304) which reflects an alternate source of groundwater for the deeper flow system⁷.

The negative logarithm of the hydrogen ion activity (pH) of the groundwater shows little variability across the site with values that are slightly alkaline (pH 7 to 8 SU). The dissolved solids as measured by specific electrical conductivity (SEC) are comparable to the MW-304 background except for MW-302 where the SEC is approximately doubled. The wells generally produce samples with low suspended solids as indicated by average field turbidity measures of \leq 12 nephelometric turbidity units (NTUs). Arsenic, sulfate and iron are addressed in the following paragraphs.

Shallow monitoring wells MW-301, MW-303 and MW-307 are located immediately downgradient of the Upper Ash Pond and upgradient of the Former Lower Ash Pond. As illustrated on Figure 3:

- The average arsenic concentration at MW-301 of 4.2 μ g/L is higher than the <1 μ g/L background but below the 10 μ g/L Groundwater Protection Standard (GPS) and the ORP is highly variable and more than 200 mV less than background.
- MW-303 has an ORP comparable to background with arsenic concentrations on the order of 1 to 3 μ g/L, higher than background but below the GPS.
- MW-307 arsenic concentrations are on the order of 1 to 3 μ g/L, higher than background but below the GPS and the variable ORP averages -61 mV, well below the background condition.

The combined groundwater and surface water outfall from the Upper Ash Pond⁸ collected in June 2020 had an arsenic concentration of 2.33 μ g/L, comparable to concentrations at these three monitoring wells (1.4 to 2.3 μ g/L).

Arsenic concentrations that range from about 1 to 5 μ g/L of arsenic suggest releases from the Upper Ash Pond that are higher than the background but below the 10 μ g/L Groundwater Protection Standard (GPS).

⁷ SCS Sept. 2021. Alternate source demonstration. February, April and July 2021, Lansing Generating Station. Project No. 25221070.00. 153 pp.

⁸ Eurofins. June 2020. Analytical Report Lansing NPDES Permit Renewal 2020, Project No. 50886, 21 pp.

MW-305 is located downgradient of MW-303, nearer to the groundwater discharge boundary formed by the unnamed creek flowing from Outfall 001. The ORP and arsenic concentrations at MW-305 are comparable to MW-303.

MW-302 (Figure 3), downgradient of the Former Lower Ash Pond area, has a significantly lower ORP than the background of -165 mV, and much higher arsenic concentrations ranging from 33 to 53 μ g/L (mean of 42 μ g/L, n=17). The CCR was removed from the Lower Ash Pond in 2015. Since then, the arsenic concentrations at MW-302 located immediately adjacent to the Former Lower Ash Pond have remained relatively constant between approximately 30 and 50 μ g/L from 2015 to 2022 (Figure 4). This suggests that the presence of the CCR in the Lower Ash Pond did not contribute to the arsenic in groundwater at MW-302. Given the low upgradient arsenic concentrations between the Lower Pond area and the Upper Pond and the lack of response in arsenic concentrations to the CCR removal, the arsenic concentrations above the GPS and the very low ORP in MW-302 appear to originate from the sources other than the Upper or Former Lower Ash Ponds.

Arsenic and ORP results from the deeper monitoring wells MW-302A and MW-307A are comparable to the MW-304 background. This is consistent with the conceptual groundwater flow paths illustrated on Figure 2.

<u>Arsenic and Sulfate.</u> The correlations between sulfate concentrations and ORP, and between sulfate and arsenic concentrations are illustrated on Figure 5. Sulfate concentrations in the shallow monitoring wells between the upper and lower ponds are generally above background concentrations, while ORP is lower. There is a significant decrease in sulfate at the low ORP values observed at MW-302. The decrease reflects sulfate reduction to sulfide; even though reduction of sulfate to sulfide at a near neutral pH would be expected to occur when the ORP is less than about -50 mV. A limited number of sulfide measurements made in the field reported no detectable sulfide⁹. The low ORP and low sulfate concentrations are only observed at MW-302, downgradient of the Former Lower Ash Pond area and supports the conclusion that the geochemical changes associated with the occurrence of arsenic are focused in non-CCR materials below and downgradient of the Former Lower Ash Pond .

⁹ The lack of sulfide may reflect the reaction of sulfide with other elements resulting in mineral precipitation (e.g. amorphous FeS). The lack of sulfide detection may also be a function of the 'screening level' accuracy provided by the use of Hach field measurement kits.

The monitoring wells near the Upper Ash Pond with 1 to 5 μ g/L of arsenic contain on the order of 30 to 60 mg/L of sulfate, or about 2 to 3 times the shallow background levels; indicating some sulfate release from the Upper Ash Pond. This is consistent with sulfate concentrations of the combined surface and groundwater interceptor trench outfall at 22 to 52 mg/L. With flow to the north, the groundwater at MW-302 becomes reducing as a result of the organic-rich sediment encountered near and likely below the former Lower Ash Pond combined with iron- and sulfate-reducing bacteria use of the organic substrate as a carbon source for growth. The sulfate concentrations decrease as the reducing cause the sulfate to form sulfide and the arsenic concentrations increase as the reducing conditions dissolve iron minerals that include adsorbed or coprecipitated arsenic.

<u>Arsenic and Iron.</u> Iron concentrations are summarized on Figure 6. Iron concentrations as a function of ORP show a clearer correlation than sulfate concentrations; with low iron background at oxic ORP, moderate iron concentrations at oxic ORP immediately downgradient of the Upper Ash Pond, and very high iron and anoxic ORP at MW-302 downgradient of the Former Lower Ash Pond. As the dissolved iron concentration increases, the arsenic concentration increases.

Groundwater Discharge to Surface Water. Groundwater from MW-302 discharges to surface water in the outfall channel. Samples of surface water from the outfall channel collected by SCS in October 2021¹⁰ and February 2022¹¹ had the following chemistry:

Sample	pН	ORP	DO	SEC	Т	Turbidity	Arsenic
Date	(SU)	(mV)	(mg/L)	(µS/cm)	(°C)	(NTU)	$(\mu g/L)$
Oct 2021	8.38	139	9.12	422	16.9	8	1.1
Feb 2022	7.48			441	8.6		< 0.75

The surface water is oxic and dissolved iron would be expected to rapidly precipitate with concurrent coprecipitation and adsorption of arsenic. This process appears to be borne out with low arsenic concentrations of $\leq 1.1 \ \mu g/L$.

¹⁰ Eurofins. November 2021. Analytical Report, Alliant Lansing – 25220070.00, 17 pp.

¹¹ Eurofins. February 2022. Analytical Report, Alliant Lansing – 25220082.00, 17 pp.

Conceptual Model Summary

- Groundwater flows from the Upper Ash Pond to the north and west. Flow to the west discharges into the unnamed stream to the west. The shallow groundwater flow to the north that is not collected by the interceptor trench passes through the Former Lower Ash Pond area quarry spall before passing MW-302 and discharging to outfall channel surface water.
- Monitoring well MW-304, while not upgradient of the Ash Ponds, provides the best available background geochemistry for the site because it is hydraulically separated from ash ponds by the unnamed creek.
- Arsenic concentrations are low in background and the deeper monitoring wells downgradient of the Upper Ash Pond. The groundwater is also oxic, with 10-20 mg/L sulfate, < 0.01 mg/L iron in background shallow groundwater, and 32-91 mg/L sulfate, < 0.5 mg/L iron in deeper wells.
- Shallow groundwater immediately downgradient of the Upper Ash Pond contains on the order of 1 to 5 μ g/L of arsenic, higher than background but below the GPS, approximately 20 to 50 mg/L of sulfate and 0.10 to 4 mg/L of iron.
- MW-302, which is the only monitoring well downgradient of the Former Lower • Ash Pond area, has geochemistry that is unique to the site with an average of 42 μ g/L of arsenic, sulfate \leq 2.5 mg/L, 33 mg/L of iron and low ORP at -165 mV. The arsenic is not coming from the upgradient groundwater and the Upper Ash Pond. The arsenic is also not originating with the Former Lower Ash Pond. The release of the arsenic likely results from in situ processes in the organic-rich sediments present below the Former Lower Ash Pond area. The organic-rich sediments observed at MW-302 and the CCR closure borings support the creation of microbially-produced anoxic conditions that chemically and /or microbially reduce sulfate in the groundwater and chemically and/or microbially dissolve iron minerals such as iron oxyhydroxides, releasing iron to the groundwater and releasing arsenic that was coprecipitated with or adsorbed to the iron minerals that are in the sediment. The high iron concentration and the lack of sulfide detection in the groundwater suggests that there may be some formation of iron sulfide minerals (e.g. FeS). Iron sulfide can potentially adsorb/coprecipitate arsenic, but

Final

Final

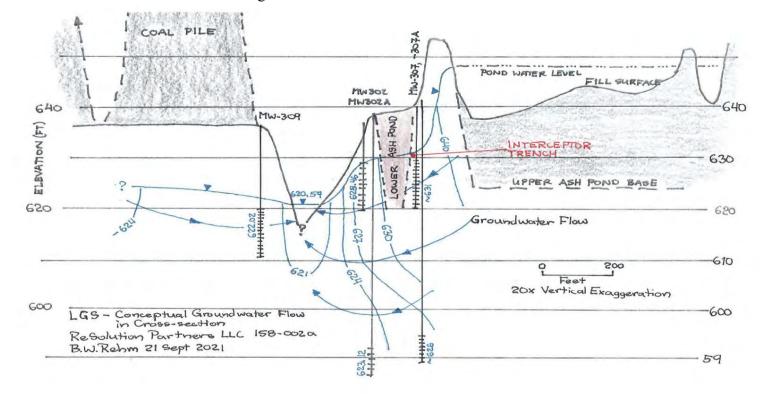
there may not be enough formed to adsorb all the arsenic released from the iron mineral dissolution.

• Groundwater from MW-302 discharges to surface water in the outfall 001 channel The surface water is oxic and dissolved iron rapidly oxidizes and precipitates with concurrent coprecipitation and adsorption of arsenic.

MW1 0 627.92 624 621.44 W308 G22.02 MW309 SW-5 W305 624,44 20.54 621 624 25 621 628. 636.67 621.57 W304 623.98 MW15 631.59 R SW-1 630.6 Upper Ash Pond LGS Water Table Surface August 2021 250 Resolution Partners 158 00Za Feet B.W. Rehm 21 Sept. 21 646.79 MW-13 C

Figure 1. Site map and horizontal groundwater flow.

Notes: 1.) MW-302 yield groundwater with arsenic concentration above 10 $\mu g/L$ GPS.


2.) MW-304 and -304A provide background groundwater geochemistry.

3.) Interceptor trench was located between MW-307 and the Former Lower Ash Pond and extended from near MW-301 to MW-303.

Figure 2. Groundwater flow cross-section.

Final

100 Shallow groundwater downgradient of Former Lower Ash Pond MW-301 \bullet 10 MW-302 Shallow groundwater downgradient of Upper Ash Pond MW-302A Arsenic (µg/L) b 0 0 Ċ MW-303 Ó \circ b \circ 0 0 0 MW-304 0 \circ ٠ \circ • • 0 0 0 MW-304A C Ó MW-305 1 Background and deep groundwater 0 MW-307 MW-307A * Arsenic GPS 0.1 -200 -150 -100 -50 0 50 100 150 200 ORP (mV)

Figure 3. Arsenic concentrations as a function of oxidation-reduction potential.

Final

- 11 -

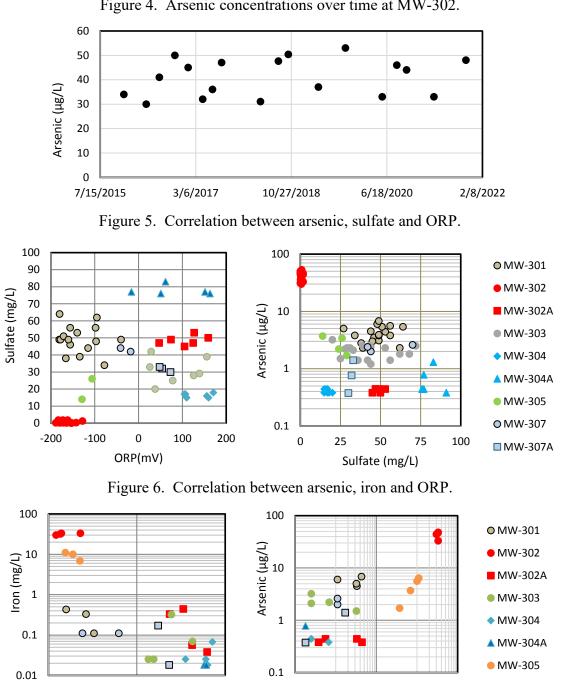


Figure 4. Arsenic concentrations over time at MW-302.

Final

- 12 -

0.01

200

1

Iron (mg/L)

100

OMW-307

-200

0

ORP(mV)

Table 1. Summary of key groundwater geochemical observations. Bold red text	
highlights MW-302 where arsenic concentrations exceed the GPS.	

Location	pН	ORP	SEC	Turbidity	Arsenic	Sulfate	Iron
Location	(SU)	(mV)	(µS/cm)	(NTU)	$(\mu g/L)$	(mg/L)	(mg/L)
MW-301	8.1 (18)	-144 (18)*	480 (19)	3 (119)	4.2 (17)	48 (18)	0.30 (4)
MW-302	7.11 (18)	-165 (18)*	1,027 (19)	4 (17)	42 (17)	0.70 (17)	32 (4)
MW-302A	7.26 (5)	96 (6)	633 (6)	3 (6)	0.42 (6)	49 (6)	0.22 (4)
MW-303	7.81 (18)	78 (16)	479 (19)	1 (18)*	2.0 (17)	44 (18)	0.11 (4)
MW-304	7 22 (6)	125 (6)*	572 (7)	1(6)*	0.41(7)	17(6)	0.024(4)
(Background)	7.23 (6)	135 (6)*	573 (7)	1 (6)*	0.41 (7)	17 (6)	0.034 (4)
MW-304A	7.97 (7)	87 (8)	536 (8)	118 (7)*	0.68 (6)	91 (6)	0.033 (4)
(Background)	1.97 (1)	87 (8)	550 (8)	110(7)	0.08 (0)	91 (0)	0.033 (4)
MW-305	7.13 (6)	-138 (5)*	637 (7)	12 (7)	3.8 (7)	23 (4)*	7.9 (4)
MW-307	8.07 (3)	-61 (3)	416 (3)	0 (3)	2.3 (3)	52 (3)	0.11(2)
MW-307A	7.49 (3)	58 (3)	618 (3)	0 (3)	0.85 (3)	32 (3)	0.10(2)
Values	s in parenthe	ses indicate th	ne number of	analyses.			
• One-h	alf of the rep	orting limit w	as used for n	on-detected	concentratio	ons.	

• Dissolved iron concentrations were used. Dissolved and total arsenic used due to small number of dissolved arsenic results. Inspection of the data suggests the difference between dissolved and total concentrations was small.

*Indicates one or more outliers removed from the average calculation.

Attachment 1

Data Used in the Preparation of the Arsenic Evaluation

- 14 -

Location ID	Collection Date	Field pH	Field SEC	Field Temperature	Oxygen, Dissolved	Turbidity	Field ORP	Arsenic	Sulfate	Iron
	Dute	SU	µmhos/cm	deg C	mg/L	NTU	mV	μg/L	mg/L	mg/L
MW-301	12/10/2015	7.96	431	13.6	1.1		-95	2.3	62	
	4/29/2016	8.23	355	8.9	0.3	2	-134	2.3	39	
	7/20/2016	7.86	377	13.3	0.2	2	-166	2.8	38	
	10/26/2016	8.10	456	15.4	0.0	7	-156	3.5	46	
	1/17/2017	8.37	491	12.3	1.6	4	-98	3.8	56	
	4/19/2017	8.50	471	10.6	0.3	3	-181	3.1	49	
	6/19/2017	8.25	468	12.2	0.0	0	-230	3.0	45	
	8/15/2017	8.19	498	14.7	0.0	5	-178	3.8	49	
	10/16/2017	7.66	497	17.0	0.0	0	-221		53	
	4/16/2018	8.39	505	9.5	1.0	8	-40	3.9	49	
	6/4/2018	8.10	507	12.2	0.9	3	-146			
	8/7/2018	8.08	524	14.6	0.2	6	-140	4.4	53	
	10/8/2018	8.16	545	17.4	0.3	9	-180	5.4	64	
	4/15/2019	8.47	539	11.3	0.2	9	-171	5.4	51	
	10/2/2019	8.11	502	15.6	0.1	1	-156	5.6	56	
	5/19/2020	7.85	474	11.3	0.8	1	-78	3.8	34	
	8/18/2020		476	15.0	0.2	2	-115	4.5	44	0.33
	10/19/2020	8.10	489	14.7	0.4	1	-97	6.0	48	0.11
	4/8/2021	8.04	461	11.5	0.3	0	-10*	5.0	27	0.32
	10/26/2021	8.11	534	16.1	0.1	1	-160	6.8	49	0.43
	Average	8.13	480	13.4	0.4	3	-144	4.2	48	0.30
MW-302	12/10/2015	7.15	918	12.7	0.1		-150	34	10*	
	4/29/2016	7.41	875	7.8	0.1	5	-163	30	0.7	
	7/20/2016	6.86	891	14.2	0.0	3	-142	41	0.3	
	10/26/2016	7.12	1004	15.6	0.0	11	-171	50	0.30	
	1/17/2017	7.25	1036	9.3	0.2	93*	-154	45	0.075	
	4/19/2017	7.25	971	7.6	0.0	3	-172	32	0.25	
	6/19/2017	7.03	1017	11.4	0.0	5	-189	36	0.25	
	8/15/2017	6.96	1053	15.7	0.0	4	-181	47	0.25	
	10/16/2017	7.10	1045	16.2	0.0	4	-179		0.25	
	4/16/2018	7.26	1098	6.0	0.8	5	-152	31	0.12	
	6/4/2018	6.97	1068	10.8	0.1	1	-179			
	8/7/2018	6.92	1095	15.3	0.1	11	-164	48	0.12	
	10/8/2018	6.93	1039	17.0	0.5	6	-44*	50	0.12	
	4/15/2019	7.66	1089	7.1	0.2	18	-159	37	0.90	
	10/2/2019	7.15	1049	15.9	0.1	5	-160	53	0.90	
	5/20/2020	6.93	1070	8.7	0.2	4	-162	33	1.8	

Location ID	Collection Date	Field pH	Field SEC	Field Temperature	Oxygen, Dissolved	Turbidity	Field ORP	Arsenic	Sulfate	Iron
ID	Date	SU	µmhos/cm	deg C	mg/L	NTU	mV	μg/L	mg/L	mg/L
	8/19/2020		1039	16.2	0.1	4	-173	46	1.8	32
	10/19/2020	7.10	1074	14.4	0.1	3	-183	44	1.8	30
	4/9/2021	7.08	1043	7.5	0.0	3	-171	33	1.3	33
	10/27/2021	6.89	1075	15.7	1.1	3	-128	48	1.3	33
	Average	7.11	1027	12.3	0.2	4	-165	41	0.70	32
MW-302A	5/20/2020	7.27	644	11.7	6.6	12	127	0.44	53	
	7/6/2020	7.22	641	11.7	6.6	5	47	0.44	47	
	8/19/2020		638	11.8	6.2	0	74	0.44	49	0.33
	10/19/2020	7.40	650	11.4	6.5	1	125	0.44	47	0.056
	4/9/2021	7.25	597	11.0	7.9	1	105	0.38	45	0.44
	10/27/2021	7.15	627	12.0	7.3	0	159	0.38	50	0.038
	Average	7.26	633	11.6	6.8	3	96	0.42	49	0.22
MW-303	12/10/2015	8.03	375	8.5	2.4	133*	84	2.3	31	
	4/29/2016	8.07	409	6.7	2.6	2		1.4	36	
	7/20/2016	7.12	535	30.4	0.2	0		1.4	56	
	10/26/2016	7.93	776	22.1	8.1	3	10	1.8	62	
	1/17/2017	8.16	614	6.3	3.0	3	221	1.8	68	
	4/19/2017	8.19	520	10.5	1.4	0	81	2.4	44	
	6/20/2017	7.93	567	24.8	0.0	0	9	2.5	72	
	8/15/2017	7.78	423	31.7	0.0	0		2.5	43	
	10/16/2017	7.20	687	25.2	1.9	0	49		70	
	4/16/2018	8.00	552	4.1	3.5	0	53	1.2	44	
	6/4/2018	7.59	431	17.0	0.4	1	68			
	8/7/2018	7.66	425	31.5	0.4	5		2.3	53	
	10/8/2018	7.91	328	28.5	0.4	3	139	2.3	29	
	4/15/2019	7.95	448	4.2	1.4	7		1.4	35	
	10/2/2019	7.83	409	25.2	0.3	1	156	2.5	39	
	5/19/2020	7.67	464	6.3	1.3	0	29	1.4	42	
	8/18/2020		408	30.4	0.2	2	26	2.1	33	0.025
	10/19/2020	7.90	340	23.5	0.6	0	38	3.2	20	0.025
	4/8/2021	8.00	425	3.7	2.0	0	78	1.5	25	0.32
	10/26/2021	7.45	452	24.8	0.2	1	126	2.2	28	0.069
	Average	7.81	479	18.3	1.5	1	78	2.0	44	0.11
MW-304	6/20/2019	7.01	593	10.6	6.2	104*	41*	0.38	20	
	10/2/2019	7.16	578	12.4	7.5	4	107	0.38	17	
	5/20/2020	7.32	574	9.0	7.8	4	105	0.44	17	
	8/19/2020		583	11.8	6.8	1	110	0.44	15	0.025

Location ID	Collection Date	Field pH	Field SEC	Field Temperature	Oxygen, Dissolved	Turbidity	Field ORP	Arsenic	Sulfate	Iron
ID	Date	SU	µmhos/cm	deg C	mg/L	NTU	mV	μg/L	mg/L	mg/L
	10/19/2020	7.30	602	11.8	6.8	0	156	0.44	16	0.025
	4/9/2021	7.27	520	8.8	8.7	0	160	0.38	15	0.018
	10/26/2022	7.29	562	12.1	8.3	0	171	0.38	18	0.067
	Average	7.23	573	10.9	7.4	1	135	0.41	17	0.034
MW-304A	5/20/2020	8.04	529	12.6	0.5	586*	62	1.3	83	
	7/6/2020	7.90	541	19.1	0.3	182	-16	0.44	77	
	8/19/2020		533	14.0	0.3	236	51	0.44	76	0.025
	10/19/2020	8.00	547	10.1	0.8	90	163	0.44	76	0.055
	2/23/2021	8.01	534	9.1	0.4	117	45			
	4/9/2021	7.78	533	10.1	0.4	165	152	0.78	77	0.018
	7/12/2021	8.09	543	13.8	0.5	36	80			
	10/26/2022	7.94	527	13.4	2.5	3	157	0.38	91	0.018
	Average	7.97	536	12.8	0.7	118	87	0.68	80	0.033
MW-305	6/20/2019	7.19	638	15.5	0.2	10	27*	2.2	24	
	10/2/2019	7.03	635	19.0	0.2	9	-106	3.4	26	
	5/19/2020	6.90	684	9.8	0.5	20	-138	3.6	1.8*	
	8/18/2020		654	19.0	0.1	27	-162	6.4	1.8*	11
	10/20/2020	7.20	634	15.6	0.2	4	-145	5.6	1.8*	10
	4/9/2021	7.17	574	7.1	2.1	15	-26*	1.7	29	3.7
	10/27/2021	7.29	643	16.3	0.1	0	-129	3.7	14	6.9
	Average	7.13	637	14.6	0.5	12	-138	3.8	23	7.9
MW-307	7/12/2021	8.25	450	15.2	0.5	0	-41	2.0	44	0.11
	8/12/2021	7.86	437	17.4	0.2	0	-18	2.4	42	
	10/27/2021	8.11	361	16.4	0.9	0	-123	2.6	70	0.11
	Average	8.07	416	16.3	0.5	0	-61	2.3	52	0.11
MW-307A	7/12/2021	7.83	616	13.2	0.3	0	73	0.38	30	0.02
	8/12/2021	7.35	612	12.5	0.2	0	54	0.76	32	
	10/27/2021	7.29	625	12.9	1.4	0	48	1.4	33	0.17
	Average	7.49	618	12.9	0.6	0	58	0.85	32	0.10

NOTES: * not included in average or charts

Italic = dissolved concentration

Appendix D

Analytical Results – Total Organic Carbon and Outfall Sample

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

Laboratory Job ID: 500-189355-1

Client Project/Site: IPL - Lansing - 25220082

For: SCS Engineers 2830 Dairy Drive Madison, Wisconsin 53718

Attn: Mr. Tom Karwoski

ander.

Authorized for release by: 10/22/2020 12:41:16 PM Sandie Fredrick, Project Manager II (920)261-1660 sandra.fredrick@eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

06/06/2023 - Classification: Internal ECRM13085590

LINKS

Review your project results through

Total Access

Have a Question?

Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	4
Method Summary	5
Sample Summary	6
Client Sample Results	7
Definitions	11
QC Association	12
QC Sample Results	13
Chronicle	14
Certification Summary	15
Chain of Custody	16
Receipt Checklists	20

Job ID: 500-189355-1

Laboratory: Eurofins TestAmerica, Chicago

Narrative

Job Narrative 500-189355-1

Case Narrative

Comments

No additional comments.

Receipt

The samples were received on 10/14/2020 10:00 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 14.8° C.

Receipt Exceptions

The following sample(s) was received at the laboratory outside the required temperature criteria. There was no cooling media present in the cooler. Receiving cooler temp: 14.8°C.

The following sample(s) was received outside of holding time for TOC analysis.

General Chemistry

Method Lloyd Kahn: The following samples were analyzed outside of analytical holding time due to the lab receiving the samples after the hold time was expired. LAN MW-302A, 9-11' (500-189355-1), LAN MW-302A, 11-13' (500-189355-2), LAN MW-302A, 18-20' (500-189355-3) and LAN MW-302A, 22-25' (500-189355-4).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: SCS Engineers Project/Site: IPL - Lansing - 25220082

Job ID: 500-189355-1

Client Sample ID: LAN	MW-302A, 9-	11'				Lab Sa	mple ID:	500-189355-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Total Organic Carbon	19000	H H3	1000	670	mg/Kg	1	Lloyd Kahn	Total/NA
Client Sample ID: LAN	MW-302A, 11	-13'				Lab Sa	mple ID:	500-189355-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Ргер Туре
Total Organic Carbon	16000	H H3	1000	670	mg/Kg	1	Lloyd Kahn	Total/NA
Client Sample ID: LAN	MW-302A, 18	8-20'				Lab Sa	mple ID:	500-189355-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Total Organic Carbon	18000	H H3	1000	670	mg/Kg	1	Lloyd Kahn	Total/NA
Client Sample ID: LAN	MW-302A, 22	2-25'				Lab Sa	mple ID:	500-189355-4
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Ргер Туре
Total Organic Carbon	67000	H H3	1000	670	mg/Kg	1	Lloyd Kahn	Total/NA

Method Summary

Client: SCS Engineers Project/Site: IPL - Lansing - 25220082

Method	Method Description	Protocol	Laboratory
Lloyd Kahn	Organic Carbon, Total (TOC)	EPA	TAL BUR

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

TAL BUR = Eurofins TestAmerica, Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

Eurofins TestAmerica, Chicago

Sample Summary

Client: SCS Engineers Project/Site: IPL - Lansing - 25220082

Job ID: 500-189355-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asse
500-189355-1	LAN MW-302A, 9-11'	Solid	12/18/19 00:00	10/14/20 10:00	
500-189355-2	LAN MW-302A, 11-13'	Solid	12/18/19 00:00	10/14/20 10:00	
500-189355-3	LAN MW-302A, 18-20'	Solid	12/18/19 00:00	10/14/20 10:00	
500-189355-4	LAN MW-302A, 22-25'	Solid	12/18/19 00:00	10/14/20 10:00	

Job ID: 500-189355-1

Client Sample ID: LAN		11'			La	b Sample	ID: 500-189		
Date Collected: 12/18/19 00:	00							Matrix	: Solid
Date Received: 10/14/20 10:	00								
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	19000	ннз	1000	670	mg/Kg			10/19/20 17:30	1

Client: SCS Engineers Project/Site: IPL - Lansing - 25220082

Job ID: 500-189355-1

Client Sample ID: LAN MW-302A, 11-13' Date Collected: 12/18/19 00:00							b Sample	ID: 500-189 Matrix	355-2 C: Solid
Date Received: 10/14/20 10:0	00								
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	16000	H H3	1000	670	mg/Kg			10/19/20 17:34	1

Job ID: 500-189355-1

Client Sample ID: LAN Date Collected: 12/18/19 00:			La	b Sample	ID: 500-189 Matrix	355-3 C: Solid			
Date Received: 10/14/20 10:									
 General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	18000	H H3	1000	670	mg/Kg			10/19/20 17:38	1

Job ID: 500-189355-1

Client Sample ID: LAN Date Collected: 12/18/19 00:		2-25'				La	b Sample	ID: 500-189 Matrix	355-4 C: Solid
Date Received: 10/14/20 10:								Mathy	
- Osmanal Ohamiatan									
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	67000	H H3	1000	670	mg/Kg			10/19/20 18:03	1

8

Qualifiers

General Chemistry

Qualifier	Qualifier Description	4
Н	Sample was prepped or analyzed beyond the specified holding time	
H3	Sample was received and analyzed past holding time.	5

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

QC Association Summary

Job ID: 500-189355-1

General Chemistry

Analysis Batch: 160186

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-189355-1	LAN MW-302A, 9-11'	Total/NA	Solid	Lloyd Kahn	
500-189355-2	LAN MW-302A, 11-13'	Total/NA	Solid	Lloyd Kahn	
500-189355-3	LAN MW-302A, 18-20'	Total/NA	Solid	Lloyd Kahn	
500-189355-4	LAN MW-302A, 22-25'	Total/NA	Solid	Lloyd Kahn	
MB 200-160186/5	Method Blank	Total/NA	Solid	Lloyd Kahn	
LCS 200-160186/6	Lab Control Sample	Total/NA	Solid	Lloyd Kahn	

Job ID: 500-189355-1

Method: Lloyd Kahn - Organic Carbon, Total (TOC)

Lab Sample ID: MB 200-160186/5 Matrix: Solid Analysis Batch: 160186									Cli	ent Sam	ple ID: Metho Prep Type: T	
	MB	MB										
Analyte	Result	Qualifier		RL	1	MDL	Unit	I	D P	repared	Analyzed	Dil Fac
Total Organic Carbon	<670			1000		670	mg/Kg				10/19/20 16:46	1
Lab Sample ID: LCS 200-160186/6 Matrix: Solid Analysis Batch: 160186								Clie	nt Sa	mple ID	: Lab Control Prep Type: T	
-			Spike		LCS	LCS					%Rec.	
Analyte			Added		Result	Qua	lifier	Unit	D	%Rec	Limits	
Total Organic Carbon			8300		8960			mg/Kg		108	75 - 125	

Eurofins TestAmerica, Chicago

Client: SCS Engineers
Project/Site: IPL - Lansing - 25220082

Job ID: 500-189355-1

Client Sam	ple ID: LAN	NMW-302A, 9	9-11'				Lab Sa	mple ID:	500-189355-1
ate Collecte	d: 12/18/19 0	0:00							Matrix: Solic
ate Receive	d: 10/14/20 1	0:00							
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Lloyd Kahn		1	160186	10/19/20 17:30	RWM	TAL BUR	
lient Sam	ole ID: LAN	N MW-302A,	11-13'				Lab Sa	ample ID:	500-189355-2
ate Collecte									Matrix: Solic
ate Received									
-	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Lloyd Kahn			160186	10/19/20 17:34	-	TAL BUR	
Client Sam Date Collecter Date Received	d: 12/18/19 0		18-20'				Lab Sa	ample ID:	500-189355-3 Matrix: Solid
-	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Lloyd Kahn			160186	10/19/20 17:38	RWM	TAL BUR	
lient Sam	ole ID: LAN	N MW-302A, 2	22-25'				Lab Sa	ample ID:	500-189355-4
ate Collecte								- 1	Matrix: Solic
Date Received	d: 10/14/20 1	0:00							
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	

Laboratory References:

TAL BUR = Eurofins TestAmerica, Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

Identification Number

L2336

N/A

PH-0751

E87467

2006

VT972

10391

68-00489

LAO00298

P330-17-00272

058448

VT4000

460209

399133350

050-999-436

Expiration Date

02-25-23

09-30-21

05-16-21

06-30-21

12-31-20

12-18-20

06-30-21

04-01-21

04-30-21

12-30-20

07-31-21

08-09-20 *

12-31-20

12-14-20

08-31-21

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Dept. of Defense ELAP

US Federal Programs

US Federal Programs

Program

State

State

NELAP

NELAP

NELAP

NELAP

NELAP

NELAP

State

State

State

NELAP

Client: SCS Engineers Project/Site: IPL - Lansing - 25220082

DE Haz. Subst. Cleanup Act (HSCA)

Authority

Connecticut

ANAB

Florida

Minnesota

New Jersey

Pennsylvania

Rhode Island

US Fish & Wildlife

New York

USDA

Vermont

Virginia

Wisconsin

New Hampshire

Laboratory: Eurofins TestAmerica, Burlington

Job ID: 500-189355-1

5

12 13

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Chain of Custody Record

393604 🐝 eurofins

Environment Testing

Image: Second	Address:			.			_		-												: 1022011401100	
Company Name: CSC:::::::::::::::::::::::::::::::::::	Client Contact		CONTRACTOR OF THE OWNER OWNE				The second s		the second s	Óth	ner:			Dat	e:							3210
Address: 2.050, 2, 2, 2, 2, Analysis Turnaround Time 3, 2015, 2																				;	of COCs	
Christenszer, M.J. 2004, 2014,	Address: 2930 Daire Dr.	-	Analysis T	urnaround	Time	5	Î. T	T	T	- - -		T	l		l T	l	Π		T	1	Sampler:	
LAN MW 302A, 9-11' W8/A G S X I	City/State/Zip: Marchisch LUI 53718		IDAR DAYS	wo	RKING DAY	íS			R												For Lab Use Only:	
LAN MW 302A, 9-11' W8/A G S X I	Phone: therework a sesenances un	TA	T if different f	rom Below] 2		₽.								, , 				Walk-in Client:	
LAN MW 302A, 9-11' W8/A G S X I	Fax:			2 weeks			2>	: N	K.												Lab Sampling:	
LAN MW 302A, 9-11' W8/A G S X I	Project Name: IPL-LANSING #25220082			1 week			Σà	512	3							Ē	QB,	Ĩ.			\$ 	
LAN MW 302A, 9-11' W8/A G S X I	Site: LANSING		i	2 days			MSI (5	\mathcal{D}							G	5.5					6
LAN MW 302A, 9-11' W8/A G S X I	PO# 25220082		-		-		and s	0	T							500-1	18035	5 00	~		500-189355	
LAN MW 302A, 9-11' W8/A G S X I							SPE	ß									.00000	500				7
LAN MW 302A, 9-11' W8/A G S X I	Sample Identification			(C≈Comp,	Matrix	# of Cont.	Filtere	5		ł											Sample Specific Notes:	
Preservation Used: 1= loc, 2= HCI: 3= H2SO4: 4=HNO3: S=NaOH; 6= Other	LAN MW-302A, 9-11	12/18/4		G	S	2					1										2 2 2 2	
Preservation Used: 1= loc, 2= HCI: 3= H2SO4: 4=HNO3: S=NaOH; 6= Other	LAN MW-302A, 11-13'				-		Π	K													99999999999999999999999999999999999999	- 9
Preservation Used: 1= loc, 2= HCI: 3= H2SO4: 4=HNO3: S=NaOH; 6= Other	LAN MW-302A, 12-20'						Π	K														
Preservation Used: 1= loc, 2= HCI: 3= H2SO4: 4=HNO3: S=NaOH; 6= Other	LAN MW-302A, 22-25'				L		Π	X									205					
Preservation Used: 1= toe, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Preservation Used: 1= toe, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Preservation Used: 1= toe, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Preservation Used: 1= toe, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Custody Seals Intact: Preservation Used: 1= toe, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Custody Seals Intact: Preservation Used: 1= toe, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Preservation Used: 1= toe, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Preservation Used: 1= toe, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Preservation Used: 1= toe, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Preservation Used: 1= toe, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Preservation Used: 1= toe, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Preservation Used: 1= toe, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Preservation Used: 1= toe, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Preservation Used: 1= toe, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Custody Seals Intact: Preservation Cleart: Preservation Cleart: Custody Seals Intact: Preservation Cleart: Preservation Cleart: Preservation Cleart: Preservation Cleart: Preservation Cleart: </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Π</td> <td></td> <td></td> <td>1</td> <td></td>							Π			1												
Preservation Used: 1= loe, 2= HCi; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Sample Oisposal (A fee may be assessed if samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if Samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if Samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if Samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if Samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if Samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if Samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if Samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if Samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if							Π														Ý. j	1
Preservation Used: 1= loe, 2= HCi; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Sample Oisposal (A fee may be assessed if samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if Samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if Samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if Samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if Samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if Samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if Samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if Samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if Samples are retained longer than 1 month) Sample Oisposal (A fee may be assessed if																						
Possible Hazard Identification: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample. Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Non-Hazard Hammable Skin Irritant Poison B Unknown Return to Client Disposal by Lab Archive forMonths Special Instructions/QC Requirements & Comments: Yes No Custody Seal No.: Cooler Temp. (°C): Obs'd: Corr'd: Therm ID No.: Relinquished by: Company: Date/Time: No/13/20 Received by: Date/Time: Date/Time: Relinquished by: Company: Date/Time: Received by: Company: Date/Time: Relinquished by: Company: Date/Time: Received by: Company: Date/Time: Relinquished by: Company: Date/Time: Received in Laboratory by: Company: Date/Time:							Ħ	T											1			1
Possible Hazard Identification: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample. Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Non-Hazard Hammable Skin Irritant Poison B Unknown Return to Client Disposal by Lab Archive forMonths Special Instructions/QC Requirements & Comments: Yes No Custody Seal No.: Cooler Temp. (°C): Obs'd: Corr'd: Therm ID No.: Relinquished by: Company: Date/Time: No/13/20 Received by: Date/Time: Date/Time: Relinquished by: Company: Date/Time: Received by: Company: Date/Time: Relinquished by: Company: Date/Time: Received by: Company: Date/Time: Relinquished by: Company: Date/Time: Received in Laboratory by: Company: Date/Time:																						
Possible Hazard Identification: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample. Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Non-Hazard Hammable Skin Irritant Poison B Unknown Return to Client Disposal by Lab Archive forMonths Special Instructions/QC Requirements & Comments: Yes No Custody Seal No.: Cooler Temp. (°C): Obs'd: Corr'd: Therm ID No.: Relinquished by: Company: Date/Time: No/13/20 Received by: Date/Time: Date/Time: Relinquished by: Company: Date/Time: Received by: Company: Date/Time: Relinquished by: Company: Date/Time: Received by: Company: Date/Time: Relinquished by: Company: Date/Time: Received in Laboratory by: Company: Date/Time:										-		1				1						
Possible Hazard Identification: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample. Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Non-Hazard Hammable Skin Irritant Poison B Unknown Return to Client Disposal by Lab Archive forMonths Special Instructions/QC Requirements & Comments: Yes No Custody Seal No.: Cooler Temp. (°C): Obs'd: Corr'd: Therm ID No.: Relinquished by: Company: Date/Time: No/13/20 Received by: Date/Time: Date/Time: Relinquished by: Company: Date/Time: Received by: Company: Date/Time: Relinquished by: Company: Date/Time: Received by: Company: Date/Time: Relinquished by: Company: Date/Time: Received in Laboratory by: Company: Date/Time:								Ť								1						
Possible Hazard Identification: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample. Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Non-Hazard Hammable Skin Irritant Poison B Unknown Return to Client Disposal by Lab Archive forMonths Special Instructions/QC Requirements & Comments: Yes No Custody Seal No.: Cooler Temp. (°C): Obs'd: Corr'd: Therm ID No.: Relinquished by: Company: Date/Time: No/13/20 Received by: Date/Time: Date/Time: Relinquished by: Company: Date/Time: Received by: Company: Date/Time: Relinquished by: Company: Date/Time: Received by: Company: Date/Time: Relinquished by: Company: Date/Time: Received in Laboratory by: Company: Date/Time:							h	\Box								1						
Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample. Non-Hazard Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample. Non-Hazard Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample. Poison B Unknown Return to Client Disposal by Lab Archive for Months Special Instructions/QC Requirements & Comments: Ustody Seals Intact: Yes No Custody Seal No.: Company: Date/Time: IO/13/20 Received by: Company: Date/Time: Received by: Company: Date/Time: Received in Laboratory by: Company: Date/Time: Company: Date/Time: Received in Laboratory by:	Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3;	5=NaOH;	6= Other _					1	H		++	T		$\uparrow \uparrow$			1					
Special Instructions/QC Requirements & Comments: III. 8 Custody Seals Intact: Yes No Custody Seal No.: Cooler Temp. (°C): Obs'd: Corr'd: Therm ID No.: Therm ID No.: Company: Date/Time: Received by: Company: Date/Time: I// 3/20 Date/Time: Company: Date/Time: Date/Time: Date/Time: Company: Date/Time:		e List any E	EPA Waste	Codes for f	the samp	ole in th		ampl	le Dis	posa	I (A 1	fee m	nay b	e ass	essed	l if sa	ample	es are	retai	ined	longer than 1 month)	
III S Custody Seals Intact: Yes No Custody Seal No.: Cooler Temp. (°C): Obs'd: Corr'd: Therm ID No.: Therm ID No.: Relinquished by: Company: Date/Time: Received by: Company: Date/Time: Relinquished by: Company: Date/Time: Received by: Company: Date/Time: Relinquished by: Company: Date/Time: Received by: Company: Date/Time: Relinquished by: Company: Date/Time: Received in Laboratory by: Company: Date/Time:		🗌 Poison	В	Unkno	wn			[] F	Return t	o Clien	nt			Disposa	i by Lal)		🗋 Arc	hive fo	or	Months	
Custody Seals Intact: Yes No Custody Seal No.: Cooler Temp. (°C): Obs'd: Corr'd: Therm ID No.: Relinquished by: Company: Date/Time: Received by: Company: Date/Time: Date/Time: Date/Time: Date/Time: Date/Time: Date/Time: Date/Time: Date/Time: Company: Date/Time: Date/Time: Company: Date/Time: Date/Time: Company: Date/Time: Date/Time: Date/Time: Company: Date/Time: Date/Time: Company: Date/Time: Date/Tim	Special Instructions/QC Requirements & Comments:														14	.8					,	
Relinquished by: Company: Date/Time: Received by: Company: Date/Time: Relinquished by: Company: Date/Time: Received by: Company: Date/Time: Relinquished by: Company: Date/Time: Received by: Company: Date/Time: Relinquished by: Company: Date/Time: Received in Laboratory by: Company: Date/Time: Relinquished by: Company: Date/Time: Received in Laboratory by: Company: Date/Time:	Custody Seals Intact: Ves No	Custody S	eal No.:		u di canana da canana	n de la decimienta de la facto de la facto			Ic	ooler	Tem	p. (°C	C): Ob	os'd:			Corr'd	;		۲	herm ID No.:	
Relinquished by: Company: Date/Time: Received by: Company: Date/Time: Relinquished by: Company: Date/Time: Received in Laboratory by: Company: Date/Time:	Relinquished by	Company:	>	, ,	Date/Tin	ne: 3/2	Re	eceiv	ed by	•					С	ompa	ny:				Date/Time:	
	Relinquished by:							eceiv	ed by						c	ompa	ny:				Date/Time:	
Stephomie Hemomoler TA-CHI 10/14/20 1000	Relinquished by:	Company:			Date/Tir	ne:	Re	eceiv	ed in	Labor	ratory	by:	talaan maana ay ay		c	ompa						_
							18	iter	<u>2ho</u>	mie	2 H	em	<u>1011</u>	ndu	2			A-	CHI		10/14/20 1000	

Environment Testing	500-140933.1	1 of 1	Job #: 500-189355-1	12	A - TOL M- TRAATE B - TOL N - NONE C - Zh Acetate O - ASNAO2 D - Nitric Acid P - Na2O45 E - NaHSO4 Q - Na2SO3	E	}			Special Instructions/Note:									ter chain-of-custody. If the laboratory does not currently accreditation status should be brought to Eurofins	Sample Disposal (A fee may be assessed if samples are relating for longer than 1 month)			Company	Company	1040 Company Sur	
} •	20C No:	Page: Page	Job #: 500-1	Presei		F-Me G-Ar H-As	1- Ice J - DIV	K - EDTA	Other:				44 Jan 1997	All and a		ang taka			der chain-of-cu accreditation (etained Ion Archive For					20	· · · ·
													· · · · · · · · · · · · · · · · · · ·			 		 	ment is forwarded unc ded. Any changes to	mples are i		Shipment:	Date/Time:	Date/Time:	Date/Time	
r Custody		State of Ofigin: Wisconsin	<u></u>	Requested	<u> </u>					. <u></u>				-					This sample shipment is forwarded under chain-of-custody, tions will be provided. Any changes to accreditation status s	assessed if san Disnosal By Lab		Method of Shipment:				marks:
500-189355 Chain of Custody				sis														 	atories. This sa sr instructions wi	se may be as	Special Instructions/QC Requirements:				5	Cooler Temperature(s) °C and Other Remarks:
500-1890		rofinset.com	Accreditations Required (See note): State Program - Wisconsin	Ana												-		 	ibcontract labor boratory or othe TestAmerica.	le Disposal (A fé Petur To Client	tructions/QC		1 by:	1 by:	1 pX:	emperature(s) °
cord	Lab PM: Fredrick, Sandie	fredrick@eui	creditations Rec ate Program			6 1				Lloyd_Kahn/ Or		×	×	×	×			 	nce upon out su TestAmerica lai nce to Eurofins ⁻	Sample Di	Special Inst	Time:	Received by:	Received by:	Received by:	Cooler T
in of Custody Record	Lab PM: Fredricl	E-Mail: sandra.	St 8							Matrix (w=water, s=solid, O=wasteroli, BT=Tissue, A=Ar)		Solid	Solid	Solid	Solid				editation complia k to the Eurofins to said complica				Company	Cómpany	Company	
of Cust										Sample Type (C=comp, G=grab) ₪	10.28						-		, analyte & accre be shipped bac ustody attesting		2		1600			
Chain o				ed:	ays):					Ti Sar	1.10	Central	Central	Central	Central				ship of method, s samples must ned Chain of C		rable Rank: 2	Date:				
	Sampler:	Phone:		Due Date Requested: 10/26/2020	TAT Requested (d	:# Od	#OM	Project #: 50006561	:#MOSS	Sample Date		12/18/19	12/18/19	12/18/19	12/18/19				a places the owner being analyzed, the date, return the sig		Primary Deliverable	`	Date/Time: 19/14/20	Datié/Time:	Date/Time:	
,						0													et to change, Eurofins TestAmeri d above for analysis/tests/matrix sted accreditations are current to		er (specify)					al No.:
2417 Bond Street University Park, IL 60484 Phone: 708-534-5200 Fax: 708-534-5211	Client Information (Sub Contract Lab)	Client Contact: Shipping/Receiving	Company: TestAmerica Laboratories, Inc.	Address: 30 Community Drive, Suite 11,	City: South Burlington State, Zip: VT 064013	Phone: 802-660-1990(Tel) 802-660-1919(Fax)	Email:	Project Name: SCS: General Analyses		imple Identification - Client ID (Lab		LAN MW-302A, 9-11' (500-189355-1)	LAN MW-302A, 11-13' (500-189355-2)	LAN MW-302A, 18-20' (500-189355-3)	LAN MW-302A, 22-25' (500-189355-4)				Note: Since laboratory accreditations are subject to change, Eurofins TestAmerica places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample ship maintain accreditation in the State of Origin listed above for analysis/lests/matrix being analyzed, the samples must be shipped back to the Eurofins TestAmerica laboratory or other instructions will be prov TestAmerica attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica.	Possible Hazard Identification	Deliverable Requested: I, II, III, IV, Other (specify)	Empty Kit Relinquished by:	Reyfolisted by	Relinquished by:		Custody Seals Intact: Custody Seal No.:

Login Sample Receipt Checklist

Client: SCS Engineers

Login Number: 189355 List Number: 1 Creator: Hernandez, Stephanie

Question	Answer	Comment	
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td> <td></td>	True		
The cooler's custody seal, if present, is intact.	True		
Sample custody seals, if present, are intact.	True		
The cooler or samples do not appear to have been compromised or tampered with.	True		ï
Samples were received on ice.	False	Geotech only	
Cooler Temperature is acceptable.	False	Geotech only	
Cooler Temperature is recorded.	True	14.8	
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
Is the Field Sampler's name present on COC?	True		
There are no discrepancies between the containers received and the COC.	True		- 5
Samples are received within Holding Time (excluding tests with immediate HTs)	False	Refer to Job Narrative for details.	-
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified.	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A		
Multiphasic samples are not present.	True		
Samples do not require splitting or compositing.	True		
Residual Chlorine Checked.	N/A		

List Source: Eurofins TestAmerica, Chicago

Client: SCS Engineers

Login Number: 189355 List Number: 2 Creator: Jaffe, Nat S

List Source: Eurofins TestAmerica, Burlington
1 int One ations 40/45/00 00:07 DM

Job Number: 500-189355-1

5

uestion	Answer	Comment
adioactivity wasn't checked or is = background as measured by a survey neter.</td <td>N/A</td> <td>Lab does not accept radioactive samples</td>	N/A	Lab does not accept radioactive samples
he cooler's custody seal, if present, is intact.	True	1346840
ample custody seals, if present, are intact.	True	
he cooler or samples do not appear to have been compromised or ampered with.	True	
amples were received on ice.	True	
ooler Temperature is acceptable.	True	
ooler Temperature is recorded.	True	2.3°C
OC is present.	True	
OC is filled out in ink and legible.	True	
OC is filled out with all pertinent information.	True	
the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
here are no discrepancies between the containers received and the COC.	True	
amples are received within Holding Time (excluding tests with immediate Ts)	True	
ample containers have legible labels.	True	
ontainers are not broken or leaking.	True	
ample collection date/times are provided.	True	
ppropriate sample containers are used.	True	
ample bottles are completely filled.	N/A	
ample Preservation Verified.	True	
here is sufficient vol. for all requested analyses, incl. any requested IS/MSDs	True	
ontainers requiring zero headspace have no headspace or bubble is 6mm (1/4").	True	
lultiphasic samples are not present.	True	
amples do not require splitting or compositing.	True	
esidual Chlorine Checked.	N/A	

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Cedar Falls 3019 Venture Way Cedar Falls, IA 50613 Tel: (319)277-2401

Laboratory Job ID: 310-184204-1

Laboratory Sample Delivery Group: Project #50886 Client Project/Site: Lansing NPDES Permit Renewal 2020

For:

Alliant Energy Corporation 2320 Power Plant Drive Lansing, Iowa 52151

Attn: Glen Thomas

RCHop

Authorized for release by: 6/30/2020 9:06:34 AM

Brian Graettinger, Client Service Manager (319)595-2012 brian.graettinger@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS Review your project results through Total Access

Visit us at:

www.eurofinsus.com/Env 06/06/2023 - Classification: Internal ECRM13085590

Job ID: 310-184204-1

Laboratory: Eurofins TestAmerica, Cedar Falls

Narrative

Job Narrative 310-184204-1

Comments

No additional comments.

Receipt

The samples were received on 6/17/2020 12:45 PM; the samples arrived in on ice on the day of sampling. The temperatures of the 2 coolers at receipt time were 5.5° C and 12.0° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC/MS Semi VOA

Method 625.1: The continuing calibration verification (CCV) associated with batch 310-283009 recovered above the upper control limit for 4-Nitrophenol (134%R). The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Methods 300.0, 9056A: The following samples were diluted due to the nature of the sample matrix: 002 Composite (310-184204-2), 001 Composite (310-184204-4) and Mississippi River Intake (310-184204-5). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Methods 245.1, 245.2, 7470A: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for preparation batch 310-282539 and analytical batch 310-282725 recovered outside control limits for the following analytes. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method 1664A: Constant weight was not achieved after 3 drying cycles for the following sample: (190-23310-A-2-A).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Biology

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 310-184204-1

SDG: Project #50886

Sample Summary

Client: Alliant Energy Corporation Project/Site: Lansing NPDES Permit Renewal 2020

Job ID: 310-184204-1 SDG: Project #50886

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID	
310-184204-1	002 Grab	Wastewater	06/17/20 08:00	06/17/20 12:45		
310-184204-2	002 Composite	Wastewater	06/17/20 08:00	06/17/20 12:45		
310-184204-3	001 Grab	Wastewater	06/17/20 08:00	06/17/20 12:45		
310-184204-4	001 Composite	Wastewater	06/17/20 08:00	06/17/20 12:45		
310-184204-5	Mississippi River Intake	Wastewater	06/17/20 08:00	06/17/20 12:45		

Client: Alliant Energy Corporation Project/Site: Lansing NPDES Permit Renewal 2020

Client Sample ID: 002 Grab Date Collected: 06/17/20 08:00 Date Received: 06/17/20 12:45

Job ID: 310-184204-1
SDG: Project #50886

Lab Sample ID: 310-184204-1 **Matrix: Wastewater**

Analyte		Qualifier	RL		Unit	_ D	Analyzed		Analyst
I,1,1-Trichloroethane	<0.000190		0.00100	0.000190	mg/L		06/22/20 12:48	1	SJN
,1,2,2-Tetrachloroethane	<0.000470		0.00100	0.000470	mg/L		06/23/20 10:41	1	SJN
,1,2-Trichloroethane	<0.000450		0.00100	0.000450	0		06/22/20 12:48		SJN
1-Dichloroethane	<0.000220		0.00100	0.000220	-		06/22/20 12:48		SJN
,1-Dichloroethylene	<0.000560		0.00200	0.000560	mg/L		06/22/20 12:48	1	SJN
,2-Dichloroethane	<0.000390		0.00100	0.000390	mg/L		06/22/20 12:48	1	SJN
,2-Dichloropropane	<0.000270		0.00100	0.000270	mg/L		06/22/20 12:48	1	SJN
,2-trans-Dichloroethylene	<0.000270		0.00100	0.000270	mg/L		06/22/20 12:48	1	SJN
,3-Dichloropropylene	<0.000560		0.00500	0.000560	mg/L		06/22/20 12:48	1	SJN
-Chloroethyl vinyl ether	<0.00170		0.00200	0.00170	mg/L		06/22/20 12:48	1	SJN
crolein	<0.00360		0.0100	0.00360	mg/L		06/22/20 12:48	1	SJN
crylonitrile	<0.00220		0.00500	0.00220	mg/L		06/22/20 12:48	1	SJN
enzene	<0.000220		0.000500	0.000220	mg/L		06/22/20 12:48	1	SJN
romoform	<0.000780		0.00500	0.000780	mg/L		06/22/20 12:48	1	SJN
arbon tetrachloride	<0.000650		0.00200	0.000650	mg/L		06/22/20 12:48	1	SJN
hlorobenzene	<0.000400		0.00100	0.000400	mg/L		06/22/20 12:48		SJN
hlorodibromomethane	<0.000750		0.00500	0.000750	mg/L		06/22/20 12:48	1	SJN
hloroethane	<0.000790		0.00400	0.000790	0		06/22/20 12:48	1	SJN
hloroform	<0.00130		0.00300	0.00130	0		06/22/20 12:48		SJN
ichlorobromomethane	<0.000390		0.00100	0.000390	-		06/22/20 12:48	1	SJN
thylbenzene	<0.000310		0.00100	0.000310	0		06/22/20 12:48	1	SJN
lethyl bromide	< 0.00110		0.00400	0.00110			06/23/20 10:41		SJN
lethyl chloride	< 0.000610		0.00300	0.000610	0		06/22/20 12:48	1	SJN
lethylene Chloride	< 0.00170		0.00500	0.00170	0		06/22/20 12:48	1	SJN
etrachloroethene	< 0.000480		0.00100	0.000480	0		06/22/20 12:48		SJN
oluene	< 0.000430		0.00100	0.000430	-		06/22/20 12:48		SJN
richloroethylene	< 0.000430		0.00100	0.000430	-		06/22/20 12:48	1	
/inyl chloride	<0.000430		0.00100	0.000430			06/22/20 12:48		SJN
urrogate	%Recovery	Qualifiar	Limits		-		Analyzed	Dil Eso	Analyst
Bromofluorobenzene (Surr)		Quaimer	80 - 120				06/22/20 12:48	1	SJN
Bromofluorobenzene (Surr)	98		80 - 120 80 - 120				06/23/20 10:41	1	SJN
ibromofluoromethane (Surr)	103		80 - 120 80 - 120				06/22/20 12:48	1	SJN
ibromofluoromethane (Surr)	97		80 - 120				06/23/20 10:41		
oluene-d8 (Surr)	99		80 - 120 80 - 120				06/22/20 12:48	1	SJN
oluene-d8 (Surr)	99 97		80 - 120 80 - 120				06/23/20 12:48	-	SJN
eneral Chemistry	Posult	Qualifier	RL	МПІ	Unit	D	Analyzed	Dil Eac	Analyst
yanide, Total	<0.00500	Quaimer	0.0100	0.00500			06/19/20 21:02		
henols, Total	<0.00500		0.0100	0.00500	-		06/19/20 21:02		JMH
iochemical Oxygen Demand	<0.0138 5.60		3.00		mg/L		06/18/20 10:30		CJG
nochennical Oxygen Demaña	0.60		5.00	1.41	iiig/L		00/10/20 11.32	1	000
Nethod: 9223B - E. Coli, Mo		l <mark>umber</mark> Qualifier	ы	ים	Unit	D	Analyzed	Dil Esc	Analyst
Analyte E. Coli		Quaimer	RL 1.0		MPN/100mL		Analyzed 06/17/20 13:35		LBB

RL

0.0104

0.0104

0.0104

0.0208

0.0104

0.0104

MDL Unit

0.00125 mg/L

0.00115 mg/L

0.00104 mg/L

0.00594 mg/L

0.00115 mg/L

0.00167 mg/L

Client: Alliant Energy Corporation Project/Site: Lansing NPDES Permit Renewal 2020

Method: 625.1 - Semivolatile Organic Compounds (GC/MS)

Result Qualifier

<0.00125

< 0.00115

< 0.00104

< 0.00594

< 0.00115

< 0.00167

< 0.00260

< 0.00260

< 0.000990

< 0.00240

< 0.00250

%Recovery Qualifier

59

54

33

Client Sample ID: 002 Composite Date Collected: 06/17/20 08:00 Date Received: 06/17/20 12:45

Analyte

2,4,6-Trichlorophenol

2,4-Dichlorophenol

2,4-Dimethylphenol

2,4-Dinitrophenol

4,6-Dinitro-o-cresol

p-Chloro-m-cresol

Pentachlorophenol

2,4,6-Tribromophenol (SUR)

2-Fluorobiphenyl (Surr)

2-Fluorophenol (Surr)

2-Chlorophenol

2-Nitrophenol

4-Nitrophenol

Phenol

Surrogate

Job ID: 310-184204-1 SDG: Project #50886

> Dil Fac Analyst DMD

> > 1 DMD

1 DMD

1 DMD

1 DMD

1 1 DMD

Lab Sample ID: 310-184204-2 **Matrix: Wastewater**

4

0.0104	0.00260	mg/L	06/23/20 18:07	1	DMD
0.0104	0.00260	mg/L	06/23/20 18:07	1	DMD
0.0104	0.000990	mg/L	06/23/20 18:07	1	DMD
0.0104	0.00240	mg/L	06/23/20 18:07	1	DMD
0.0104	0.00250	mg/L	06/23/20 18:07	1	DMD
Limite			Analyzod	Dil Eso	Analyst
Limits			Analyzed	Dil Fac	Analyst
Limits 23 - 110			Analyzed	Dil Fac	Analyst DMD
23 - 110			06/23/20 18:07	1	DMD

D

Analyzed

06/23/20 18:07

06/23/20 18:07

06/23/20 18:07

06/23/20 18:07

06/23/20 18:07

06/23/20 18:07

Method: 300.0 -	Anions, Ion	Chromatography
-----------------	-------------	----------------

Analyte	Result Qualifier	RL	MDL Unit	D Analyzed	Dil Fac Analyst
Bromide	<0.125	0.500	0.125 mg/L	06/18/20 19:45	5 ACJ
Chloride	15.1	5.00	2.00 mg/L	06/18/20 19:45	5 ACJ
Sulfate	52.4	5.00	3.55 mg/L	06/18/20 19:45	5 ACJ

Analyte	Result	Qualifier	RL	MDL	Unit	D	Analyzed	Dil Fac	Analyst
Aluminum	0.393		0.0500	0.0120	mg/L		06/19/20 13:08	1	ACJ
Antimony	<0.000510		0.00100	0.000510	mg/L		06/19/20 13:08	1	ACJ
Arsenic	0.00233		0.00200	0.000880	mg/L		06/19/20 13:08	1	ACJ
Barium	0.159		0.00200	0.000280	mg/L		06/19/20 13:08	1	ACJ
Beryllium	<0.000270		0.00100	0.000270	mg/L		06/19/20 13:08	1	ACJ
Boron	0.167		0.100	0.0800	mg/L		06/19/20 13:08	1	ACJ
Cadmium	<0.0000490		0.000100	0.0000490	mg/L		06/19/20 13:08	1	ACJ
Chromium	0.00318	J	0.00500	0.00110	mg/L		06/19/20 13:08	1	ACJ
Cobalt	0.000177	J	0.000500	0.0000910	mg/L		06/19/20 13:08	1	ACJ
Copper	0.00200	J	0.00500	0.00150	mg/L		06/19/20 13:08	1	ACJ
Iron	0.0582	J	0.100	0.0500	mg/L		06/19/20 13:08	1	ACJ
Lead	0.000185	J	0.000500	0.000110	mg/L		06/19/20 13:08	1	ACJ
Magnesium	21.3		0.500	0.100	mg/L		06/19/20 13:08	1	ACJ
Manganese	0.0256		0.0100	0.00400	mg/L		06/19/20 13:08	1	ACJ
Molybdenum	0.00520		0.00200	0.00110	mg/L		06/19/20 13:08	1	ACJ
Nickel	<0.00190		0.00500	0.00190	mg/L		06/19/20 13:08	1	ACJ
Selenium	0.00240	J	0.00500	0.00100	mg/L		06/19/20 13:08	1	ACJ
Silver	<0.000370		0.00100	0.000370	mg/L		06/19/20 13:08	1	ACJ
Thallium	<0.000260		0.00100	0.000260	mg/L		06/19/20 13:08	1	ACJ
Tin	<0.00240		0.00500	0.00240	mg/L		06/19/20 13:08	1	ACJ
Titanium	0.00517	J	0.0100	0.00170	mg/L		06/19/20 13:08	1	ACJ
Zinc	<0.0100		0.0200	0.0100	mg/L		06/19/20 13:08	1	ACJ

Client: Alliant Energy Corporation Project/Site: Lansing NPDES Permit Renewal 2020

Job ID: 310-184204-1 SDG: Project #50886

Lab Sample ID: 310-184204-2 **Matrix: Wastewater**

Client Sample ID: 002 Composite Date Collected: 06/17/20 08:00 Date Received: 06/17/20 12:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Analyzed	Dil Fac	Analyst
Mercury	<0.000100	*	0.000200	0.000100	mg/L	_	06/19/20 16:25	1	HIS
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Analyzed	Dil Fac	Analyst
Ammonia	<0.200		0.500	0.200	mg/L	_	06/25/20 22:33	1	JMH
Total Kjeldahl Nitrogen	1.33		1.00	0.410	mg/L		06/23/20 19:18	1	JMH
Nitrate Nitrite as N	0.905		0.100	0.0630	mg/L		06/23/20 17:52	1	JMH
Total Phosphorus as P	0.0971	J	0.100	0.0390	mg/L		06/18/20 20:11	1	JMH
TOC Dup	5.37		1.00	0.470	mg/L		06/22/20 03:34	1	JJB
Sulfide	2.18		2.00	1.30	mg/L		06/18/20 10:48	1	LBB
Sulfite	<1.50	HF	3.00	1.50	mg/L		06/17/20 21:53	1	JMH
Chemical Oxygen Demand	60.4		25.0	24.0	mg/L		06/22/20 09:41	5	WJF
Methylene Blue Active	0.0490		0.0250	0.0130	mg/I LAS MW		06/18/20 11:45	1	CSS
Substances					340				
Analyte	Result	Qualifier	RL	RL	Unit	D	Analyzed	Dil Fac	Analyst
Nitrogen, Organic	1.33		1.00	1.00	mg/L	_	06/18/20 12:53	1	LBB

Client Sample ID: 001 Grab Date Collected: 06/17/20 08:00 Date Received: 06/17/20 12:45

Lab Sample ID: 310-184204-3 **Matrix: Wastewater**

Analyte	Result Qualifier	RL	MDL	Unit	D	Analyzed	Dil Fac	Analyst
1,1,1-Trichloroethane	<0.000190	0.00100	0.000190	mg/L		06/22/20 13:16	1	SJN
1,1,2,2-Tetrachloroethane	<0.000470	0.00100	0.000470	mg/L		06/23/20 10:19	1	SJN
1,1,2-Trichloroethane	<0.000450	0.00100	0.000450	mg/L		06/22/20 13:16	1	SJN
1,1-Dichloroethane	<0.000220	0.00100	0.000220	mg/L		06/22/20 13:16	1	SJN
1,1-Dichloroethylene	<0.000560	0.00200	0.000560	mg/L		06/22/20 13:16	1	SJN
1,2-Dichloroethane	<0.000390	0.00100	0.000390	mg/L		06/22/20 13:16	1	SJN
,2-Dichloropropane	<0.000270	0.00100	0.000270	mg/L		06/22/20 13:16	1	SJN
1,2-trans-Dichloroethylene	<0.000270	0.00100	0.000270	mg/L		06/22/20 13:16	1	SJN
1,3-Dichloropropylene	<0.000560	0.00500	0.000560	mg/L		06/22/20 13:16	1	SJN
2-Chloroethyl vinyl ether	<0.00170	0.00200	0.00170	mg/L		06/22/20 13:16	1	SJN
Acrolein	<0.00360	0.0100	0.00360	mg/L		06/22/20 13:16	1	SJN
Acrylonitrile	<0.00220	0.00500	0.00220	mg/L		06/22/20 13:16	1	SJN
Benzene	<0.000220	0.000500	0.000220	mg/L		06/22/20 13:16	1	SJN
Bromoform	<0.000780	0.00500	0.000780	mg/L		06/22/20 13:16	1	SJN
Carbon tetrachloride	<0.000650	0.00200	0.000650	mg/L		06/22/20 13:16	1	SJN
Chlorobenzene	<0.000400	0.00100	0.000400	mg/L		06/22/20 13:16	1	SJN
Chlorodibromomethane	<0.000750	0.00500	0.000750	mg/L		06/22/20 13:16	1	SJN
Chloroethane	<0.000790	0.00400	0.000790	mg/L		06/22/20 13:16	1	SJN
Chloroform	<0.00130	0.00300	0.00130	mg/L		06/22/20 13:16	1	SJN
Dichlorobromomethane	<0.000390	0.00100	0.000390	mg/L		06/22/20 13:16	1	SJN
Ethylbenzene	<0.000310	0.00100	0.000310	mg/L		06/22/20 13:16	1	SJN
Methyl bromide	<0.00110	0.00400	0.00110	mg/L		06/23/20 10:19	1	SJN
Methyl chloride	<0.000610	0.00300	0.000610	mg/L		06/22/20 13:16	1	SJN
lethylene Chloride	<0.00170	0.00500	0.00170	mg/L		06/22/20 13:16	1	SJN
Tetrachloroethene	<0.000480	0.00100	0.000480	mg/L		06/22/20 13:16	1	SJN
Foluene	<0.000430	0.00100	0.000430	mg/L		06/22/20 13:16	1	SJN
Trichloroethylene	<0.000430	0.00100	0.000430	mg/L		06/22/20 13:16	1	SJN

Eurofins TestAmerica, Cedar Falls

Client: Alliant Energy Corporation Project/Site: Lansing NPDES Permit Renewal 2020

Client Sample ID: 001 Grab Date Collected: 06/17/20 08:00 Date Received: 06/17/20 12:45

Job ID: 310-184204-1 SDG: Project #50886

Lab Sample ID: 310-184204-3 **Matrix: Wastewater**

4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Analyzed	Dil Fac	Analyst
/inyl chloride	<0.000180		0.00100	0.000180	mg/L		06/22/20 13:16	1	SJN
Surrogate	%Recovery	Qualifier	Limits				Analyzed	Dil Fac	Analyst
4-Bromofluorobenzene (Surr)	104		80 - 120				06/22/20 13:16	1	SJN
4-Bromofluorobenzene (Surr)	101		80 - 120				06/23/20 10:19	1	SJN
Dibromofluoromethane (Surr)	98		80 - 120				06/22/20 13:16	1	SJN
Dibromofluoromethane (Surr)	95		80 - 120				06/23/20 10:19	1	SJN
Toluene-d8 (Surr)	98		80 - 120				06/22/20 13:16	1	SJN
Toluene-d8 (Surr)	100		80 - 120				06/23/20 10:19	1	SJN
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Analyzed	Dil Fac	Analyst
HEM (Oil & Grease)	<4.3		4.8	4.3	mg/L	_	06/25/20 15:03	1	JSH
Cyanide, Total	<0.00500		0.0100	0.00500	mg/L		06/19/20 21:02	1	JMH
Phenols, Total	<0.0150		0.0200	0.0150	mg/L		06/18/20 16:35	1	JMH
Total Suspended Solids	21.0		15.0	5.10	mg/L		06/18/20 16:18	1	WJF
Biochemical Oxygen Demand	<1.41		3.00	1.41	mg/L		06/18/20 11:28	1	CJG
Method: 9223B - E. Coli, M	ost Probable N	lumber							
Analyte		Qualifier	RL	RL	Unit	D	Analyzed	Dil Fac	Analyst
E. Coli			1.0	1.0	MPN/100mL	_	06/17/20 13:35	1	LBB

Client Sample ID: 001 Composite Date Collected: 06/17/20 08:00 Date Received: 06/17/20 12:45

Lab Sample ID: 310-184204-4

Matrix: Wastewater

Dil Fac Analyst

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) Analyte Result Qualifier RL 2 4.6-Trichlorophenol <0 00124 0.0103

2,4,6-Trichlorophenol	< 0.00124		0.0103	0.00124	mg/L	06/23/20 18:35	1	DMD
2,4-Dichlorophenol	<0.00113		0.0103	0.00113	mg/L	06/23/20 18:35	1	DMD
2,4-Dimethylphenol	<0.00103		0.0103	0.00103	mg/L	06/23/20 18:35	1	DMD
2,4-Dinitrophenol	<0.00588		0.0206	0.00588	mg/L	06/23/20 18:35	1	DMD
2-Chlorophenol	<0.00113		0.0103	0.00113	mg/L	06/23/20 18:35	1	DMD
2-Nitrophenol	<0.00165		0.0103	0.00165	mg/L	06/23/20 18:35	1	DMD
4,6-Dinitro-o-cresol	<0.00258		0.0103	0.00258	mg/L	06/23/20 18:35	1	DMD
4-Nitrophenol	<0.00258		0.0103	0.00258	mg/L	06/23/20 18:35	1	DMD
p-Chloro-m-cresol	<0.000979		0.0103	0.000979	mg/L	06/23/20 18:35	1	DMD
Pentachlorophenol	<0.00237		0.0103	0.00237	mg/L	06/23/20 18:35	1	DMD
Phenol	<0.00247		0.0103	0.00247	mg/L	06/23/20 18:35	1	DMD
Surrogate	%Recovery	Qualifier	Limits			Analyzed	Dil Fac	Analyst
2,4,6-Tribromophenol (SUR)	61		23 - 110			06/23/20 18:35	1	DMD
2-Fluorobiphenyl (Surr)	62		26 - 110			06/23/20 18:35	1	DMD
2-Fluorophenol (Surr)	33		10 - 110			06/23/20 18:35	1	DMD

MDL Unit

D

Analyzed

Method: 300.0 - Anions, Ion Chromatography								
Analyte	Result Qualifier	RL	MDL	Unit	D	Analyzed	Dil Fac	Analyst
Bromide	<0.125	0.500	0.125	mg/L		06/18/20 20:00	5	ACJ
Chloride	11.1	5.00	2.00	mg/L		06/18/20 20:00	5	ACJ
Sulfate	22.4	5.00	3.55	mg/L		06/18/20 20:00	5	ACJ

Client: Alliant Energy Corporation Project/Site: Lansing NPDES Permit Renewal 2020

Client Sample ID: 001 Composite Date Collected: 06/17/20 08:00 Date Received: 06/17/20 12:45

	5)								
Analyte		Qualifier	RL	MDL	Unit	D	Analyzed	Dil Fac	Analyst
Aluminum	0.302		0.0500	0.0120	mg/L		06/19/20 13:10	1	ACJ
Antimony	<0.000510		0.00100	0.000510	mg/L		06/19/20 13:10	1	ACJ
Arsenic	0.00136	J	0.00200	0.000880	mg/L		06/19/20 13:10	1	ACJ
Barium	0.0439		0.00200	0.000280	mg/L		06/19/20 13:10	1	ACJ
Beryllium	<0.000270		0.00100	0.000270	mg/L		06/19/20 13:10	1	ACJ
Boron	<0.0800		0.100	0.0800	mg/L		06/19/20 13:10	1	ACJ
Cadmium	<0.0000490		0.000100	0.0000490	mg/L		06/19/20 13:10	1	ACJ
Chromium	<0.00110		0.00500	0.00110	mg/L		06/19/20 13:10	1	ACJ
Cobalt	0.000330	J	0.000500	0.0000910	mg/L		06/19/20 13:10	1	ACJ
Copper	0.00239	J	0.00500	0.00150	mg/L		06/19/20 13:10	1	ACJ
Iron	0.521		0.100	0.0500	mg/L		06/19/20 13:10	1	ACJ
Lead	0.000457	J	0.000500	0.000110	mg/L		06/19/20 13:10	1	ACJ
Magnesium	17.0		0.500	0.100	mg/L		06/19/20 13:10	1	ACJ
Manganese	0.0714		0.0100	0.00400	mg/L		06/19/20 13:10	1	ACJ
Molybdenum	<0.00110		0.00200	0.00110	mg/L		06/19/20 13:10	1	ACJ
Nickel	<0.00190		0.00500	0.00190	mg/L		06/19/20 13:10	1	ACJ
Selenium	<0.00100		0.00500	0.00100	mg/L		06/19/20 13:10	1	ACJ
Silver	<0.000370		0.00100	0.000370	mg/L		06/19/20 13:10	1	ACJ
Thallium	<0.000260		0.00100	0.000260	mg/L		06/19/20 13:10	1	ACJ
Tin	<0.00240		0.00500	0.00240	mg/L		06/19/20 13:10	1	ACJ
Titanium	0.00871	J	0.0100	0.00170	mg/L		06/19/20 13:10	1	ACJ
Zinc	<0.0100		0.0200	0.0100	mg/L		06/19/20 13:10	1	ACJ

Method: 245.2 - Mercury (CVAA)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Analyzed	Dil Fac	Analyst
Mercury	<0.000100	*	0.000200	0.000100	mg/L	_	06/19/20 16:27	1	HIS
_ General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Analyzed	Dil Fac	Analyst
Ammonia	<0.200		0.500	0.200	mg/L	_	06/25/20 22:34	1	JMH
Total Kjeldahl Nitrogen	0.809	J	1.00	0.410	mg/L		06/23/20 19:28	1	JMH
Nitrate Nitrite as N	2.25		1.00	0.630	mg/L		06/23/20 17:53	10	JMH
Total Phosphorus as P	0.100		0.100	0.0390	mg/L		06/18/20 20:12	1	JMH
TOC Dup	6.88		1.00	0.470	mg/L		06/22/20 03:51	1	JJB
Sulfide	<1.30		2.00	1.30	mg/L		06/18/20 10:48	1	LBB
Sulfite	<1.50	HF	3.00	1.50	mg/L		06/17/20 21:53	1	JMH
Chemical Oxygen Demand	45.7		25.0	24.0	mg/L		06/22/20 09:41	5	WJF
Methylene Blue Active Substances	0.0250		0.0250	0.0130	mg/I LAS MW 340		06/18/20 11:45	1	CSS
Analyte	Result	Qualifier	RL	RL	Unit	D	Analyzed	Dil Fac	Analyst
Nitrogen, Organic	<1.00		1.00	1.00	mg/L	_	06/18/20 12:53	1	LBB

Client Sample ID: Mississippi River Intake Date Collected: 06/17/20 08:00 Date Received: 06/17/20 12:45

Method: 300.0 - Anions, Ion Chromatography Analyte **Result Qualifier** RL MDL Unit D Analyzed Dil Fac Analyst Bromide <0.125 0.500 0.125 mg/L 06/18/20 20:47 5 ACJ 2.00 mg/L 06/18/20 20:47 Chloride 10.8 5.00 5 ACJ

Job ID: 310-184204-1 SDG: Project #50886

Lab Sample ID: 310-184204-4

Matrix: Wastewater

Eurofins TestAmerica, Cedar Falls

Lab Sample ID: 310-184204-5

Matrix: Wastewater

Client Sample Results

RL

5.00

MDL Unit

3.55 mg/L

Client: Alliant Energy Corporation Project/Site: Lansing NPDES Permit Renewal 2020 Job ID: 310-184204-1 SDG: Project #50886

Dil Fac Analyst

5 ACJ

Lab Sample ID: 310-184204-5 **Matrix: Wastewater**

Analyzed

06/18/20 20:47

D

4

Client Sample ID: Mississippi River Intake Date Collected: 06/17/20 08:00 Date Received: 06/17/20 12:45

Analyte

Sulfate

Method: 300.0 - Anions, Ion Chromatography (Continued)

Result Qualifier

21.9

Analyte	Result	Qualifier	RL	MDL		D	Analyzed		Analyst
Aluminum	0.428		0.0500	0.0120	mg/L	_	06/19/20 13:26	1	ACJ
Antimony	<0.000510		0.00100	0.000510	mg/L		06/19/20 13:26	1	ACJ
Arsenic	0.00143	J	0.00200	0.000880	mg/L		06/19/20 13:26	1	ACJ
Barium	0.0479		0.00200	0.000280	mg/L		06/19/20 13:26	1	ACJ
Beryllium	<0.000270		0.00100	0.000270	mg/L		06/19/20 13:26	1	ACJ
Boron	<0.0800		0.100	0.0800	mg/L		06/19/20 13:26	1	ACJ
Cadmium	<0.0000490		0.000100	0.0000490	mg/L		06/19/20 13:26	1	ACJ
Chromium	<0.00110		0.00500	0.00110	mg/L		06/19/20 13:26	1	ACJ
Cobalt	0.000400	J	0.000500	0.0000910	mg/L		06/19/20 13:26	1	ACJ
Copper	0.00176	J	0.00500	0.00150	mg/L		06/19/20 13:26	1	ACJ
Iron	0.676		0.100	0.0500	mg/L		06/19/20 13:26	1	ACJ
Lead	0.000623		0.000500	0.000110	mg/L		06/19/20 13:26	1	ACJ
Magnesium	17.2		0.500	0.100	mg/L		06/19/20 13:26	1	ACJ
Manganese	0.0907		0.0100	0.00400	mg/L		06/19/20 13:26	1	ACJ
Molybdenum	<0.00110		0.00200	0.00110	mg/L		06/19/20 13:26	1	ACJ
Nickel	<0.00190		0.00500	0.00190	mg/L		06/19/20 13:26	1	ACJ
Selenium	<0.00100		0.00500	0.00100	mg/L		06/19/20 13:26	1	ACJ
Silver	<0.000370		0.00100	0.000370	mg/L		06/19/20 13:26	1	ACJ
Thallium	<0.000260		0.00100	0.000260	mg/L		06/19/20 13:26	1	ACJ
Tin	<0.00240		0.00500	0.00240	mg/L		06/19/20 13:26	1	ACJ
Titanium	0.0118		0.0100	0.00170	mg/L		06/19/20 13:26	1	ACJ
	<0.0100		0.0200	0.0100	mg/L		06/19/20 13:26	1	ACJ
Method: 245.2 - Mercury (C Analyte	VAA) Result	Qualifier	RL	MDL	Unit	D	Analyzed	Dil Fac	Analyst
Method: 245.2 - Mercury (C Analyte	VAA)				Unit	D		Dil Fac	
Method: 245.2 - Mercury (C Analyte ^{Mercury}	VAA) Result		RL	MDL	Unit	D	Analyzed	Dil Fac	Analyst
Method: 245.2 - Mercury (C Analyte ^{Mercury} General Chemistry	VAA) 		RL	MDL 0.000100	Unit	D D	Analyzed	Dil Fac	Analyst
Method: 245.2 - Mercury (C Analyte ^{Mercury} General Chemistry Analyte	VAA) 	*	RL 0.000200	MDL 0.000100	Unit mg/L	_	Analyzed 06/19/20 16:29	Dil Fac	Analyst HIS
Method: 245.2 - Mercury (C Analyte Mercury General Chemistry Analyte Cyanide, Total	VAA) 	*	RL 0.000200	MDL 0.000100 MDL	Unit mg/L	_	Analyzed 06/19/20 16:29 Analyzed	Dil Fac 1 Dil Fac	Analyst HIS Analyst JMH
Method: 245.2 - Mercury (C Analyte Mercury General Chemistry Analyte Cyanide, Total Ammonia	VAA) Result <0.000100 Result <0.00500	*	RL 0.000200 RL 0.0100	MDL 0.000100 MDL 0.00500	Unit mg/L Unit mg/L mg/L	_	Analyzed 06/19/20 16:29 Analyzed 06/19/20 21:03	Dil Fac 1 Dil Fac 1	Analyst HIS Analyst JMH JMH
Method: 245.2 - Mercury (C Analyte Mercury General Chemistry Analyte Cyanide, Total Ammonia Total Kjeldahl Nitrogen	VAA) <u>Result</u> <0.000100 <u>Result</u> <0.00500 <0.200	*	RL 0.000200 RL 0.0100 0.500	MDL 0.000100 MDL 0.00500 0.200	Unit mg/L mg/L mg/L mg/L	_	Analyzed 06/19/20 16:29 Analyzed 06/19/20 21:03 06/25/20 22:10	Dil Fac 1 Dil Fac 1 1 1	Analyst HIS Analyst JMH JMH
Method: 245.2 - Mercury (C Analyte Mercury General Chemistry Analyte Cyanide, Total Ammonia Total Kjeldahl Nitrogen Nitrate Nitrite as N	VAA) <u>Result</u> 	*	RL 0.000200 RL 0.0100 0.500 1.00	MDL 0.000100 MDL 0.00500 0.200 0.410	Unit mg/L Unit mg/L mg/L mg/L mg/L	_	Analyzed 06/19/20 16:29 Analyzed 06/19/20 21:03 06/25/20 22:10 06/23/20 19:46	Dil Fac 1 Dil Fac 1 1 1	Analyst HIS Analyst JMH JMH JMH
Method: 245.2 - Mercury (C Analyte Mercury General Chemistry Analyte Cyanide, Total Ammonia Total Kjeldahl Nitrogen Nitrate Nitrite as N Total Phosphorus as P	VAA) <u>Result</u> <0.000100 <u>Result</u> <0.00500 <0.200 1.12 2.37	*	RL 0.000200 RL 0.0100 0.500 1.00 0.100	MDL 0.000100 MDL 0.00500 0.200 0.410 0.0630	Unit mg/L Unit mg/L mg/L mg/L mg/L mg/L	_	Analyzed 06/19/20 16:29 Analyzed 06/19/20 21:03 06/25/20 22:10 06/23/20 19:46 06/25/20 17:11	Dil Fac 1 Dil Fac 1 1 1 1	Analyst HIS Analyst JMH JMH JMH JMH
Method: 245.2 - Mercury (C Analyte Mercury General Chemistry Analyte Cyanide, Total Ammonia Total Kjeldahl Nitrogen Nitrate Nitrite as N Total Phosphorus as P Phenols, Total	VAA) <u>Result</u> <0.000100 <u>Result</u> <0.00500 <0.200 1.12 2.37 0.118	*	RL 0.000200 RL 0.0100 0.500 1.00 0.100 0.100	MDL 0.000100 MDL 0.00500 0.200 0.410 0.0630 0.0390	Unit mg/L Unit mg/L mg/L mg/L mg/L mg/L mg/L	_	Analyzed 06/19/20 16:29 Analyzed 06/19/20 21:03 06/25/20 22:10 06/23/20 19:46 06/25/20 17:11 06/18/20 20:10	Dil Fac 1 Dil Fac 1 1 1 1 1 1 1	Analyst HIS Analyst JMH JMH JMH JMH
Method: 245.2 - Mercury (C Analyte Mercury General Chemistry Analyte Cyanide, Total Ammonia Total Kjeldahl Nitrogen Nitrate Nitrite as N Total Phosphorus as P Phenols, Total TOC Dup	VAA) <u>Result</u> <0.000100 <u>Result</u> <0.00500 <0.200 1.12 2.37 0.118 <0.0150	*	RL 0.000200 RL 0.0100 0.500 1.00 0.100 0.100 0.0200	MDL 0.000100 MDL 0.00500 0.200 0.410 0.0630 0.0390 0.0150 0.470	Unit mg/L Unit mg/L mg/L mg/L mg/L mg/L mg/L	_	Analyzed 06/19/20 16:29 Analyzed 06/19/20 21:03 06/25/20 22:10 06/23/20 19:46 06/25/20 17:11 06/18/20 20:10 06/18/20 16:33	Dil Fac 1 Dil Fac 1 1 1 1 1 1 1 1	Analyst HIS Analyst JMH JMH JMH JMH JMH
Method: 245.2 - Mercury (C Analyte Mercury General Chemistry Analyte Cyanide, Total Ammonia Total Kjeldahl Nitrogen Nitrate Nitrite as N Total Phosphorus as P Phenols, Total TOC Dup Total Suspended Solids	VAA) Result <0.000100 Result <0.00500 <0.200 1.12 2.37 0.118 <0.0150 6.60	*	RL 0.000200 RL 0.0100 0.500 1.00 0.100 0.100 0.0200 1.00	MDL 0.000100 MDL 0.00500 0.200 0.410 0.0630 0.0390 0.0150 0.470 5.10	Unit mg/L Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L	_	Analyzed 06/19/20 16:29 Analyzed 06/19/20 21:03 06/25/20 22:10 06/23/20 19:46 06/25/20 17:11 06/18/20 20:10 06/18/20 16:33 06/22/20 04:07	Dil Fac 1 Dil Fac 1 1 1 1 1 1 1 1 1	Analyst HIS Analyst JMH JMH JMH JMH JMH JMH JJB
Method: 245.2 - Mercury (C Analyte Mercury General Chemistry Analyte Cyanide, Total Ammonia Total Kjeldahl Nitrogen Nitrate Nitrite as N Total Phosphorus as P Phenols, Total TOC Dup Total Suspended Solids Sulfide	VAA) Result <0.000100 Result <0.00500 <0.200 1.12 2.37 0.118 <0.0150 6.60 20.0	* Qualifier	RL 0.000200 RL 0.0100 0.500 1.00 0.100 0.100 0.0200 1.00 15.0	MDL 0.000100 MDL 0.00500 0.200 0.410 0.0630 0.0390 0.0150 0.470 5.10 1.30	Unit mg/L Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	_	Analyzed 06/19/20 16:29 Analyzed 06/19/20 21:03 06/25/20 22:10 06/23/20 19:46 06/25/20 17:11 06/18/20 20:10 06/18/20 16:33 06/22/20 04:07 06/18/20 16:18	Dil Fac 1 Dil Fac 1 1 1 1 1 1 1 1 1 1	Analyst HIS Analyst JMH JMH JMH JMH JMH JMH JJB WJF
Method: 245.2 - Mercury (C Analyte Mercury General Chemistry Analyte Cyanide, Total Ammonia Total Kjeldahl Nitrogen Nitrate Nitrite as N Total Phosphorus as P Phenols, Total TOC Dup Total Suspended Solids Sulfide Sulfite	VAA) Result <0.000100 Result <0.00500 <0.200 1.12 2.37 0.118 <0.0150 6.60 20.0 <1.30	* Qualifier	RL 0.000200 RL 0.0100 0.500 1.00 0.100 0.100 0.0200 1.00 15.0 2.00	MDL 0.000100 MDL 0.00500 0.200 0.410 0.0630 0.0390 0.0150 0.470 5.10 1.30 1.50	Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	_	Analyzed 06/19/20 16:29 Analyzed 06/19/20 21:03 06/25/20 22:10 06/23/20 19:46 06/25/20 17:11 06/18/20 20:10 06/18/20 16:33 06/22/20 04:07 06/18/20 16:18 06/18/20 10:48	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Analyst HIS Analyst JMH JMH JMH JMH JMH JJB WJF LBB
Method: 245.2 - Mercury (C Analyte Mercury General Chemistry Analyte Cyanide, Total Ammonia Total Kjeldahl Nitrogen Nitrate Nitrite as N Total Phosphorus as P Phenols, Total TOC Dup Total Suspended Solids Sulfide Sulfite Biochemical Oxygen Demand	VAA) Result <0.000100 Result <0.00500 <0.200 1.12 2.37 0.118 <0.0150 6.60 20.0 <1.30 <1.50	* Qualifier	RL 0.000200 RL 0.0100 0.500 1.00 0.100 0.100 0.0200 1.00 15.0 2.00 3.00	MDL 0.000100 MDL 0.00500 0.200 0.410 0.0630 0.0390 0.0150 0.470 5.10 1.30 1.50 1.41	Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	_	Analyzed 06/19/20 16:29 Analyzed 06/19/20 21:03 06/25/20 22:10 06/23/20 19:46 06/25/20 17:11 06/18/20 20:10 06/18/20 16:33 06/22/20 04:07 06/18/20 16:18 06/18/20 10:48 06/18/20 10:48 06/17/20 21:53	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Analyst HIS Analyst JMH JMH JMH JMH JMH JJB WJF LBB JMH
Method: 245.2 - Mercury (C Analyte Mercury General Chemistry Analyte Cyanide, Total Ammonia Total Kjeldahl Nitrogen Nitrate Nitrite as N Total Phosphorus as P Phenols, Total TOC Dup Total Suspended Solids Sulfide Sulfite Biochemical Oxygen Demand Chemical Oxygen Demand Methylene Blue Active	VAA) Result <0.000100 	* Qualifier HF	RL 0.000200 RL 0.0100 0.500 1.00 0.100 0.100 0.0200 1.00 15.0 2.00 3.00 3.00	MDL 0.000100 MDL 0.00500 0.200 0.410 0.0630 0.0390 0.0150 0.470 5.10 1.30 1.50 1.41 24.0	Unit mg/L Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	_	Analyzed 06/19/20 16:29 Analyzed 06/19/20 21:03 06/25/20 22:10 06/23/20 19:46 06/25/20 17:11 06/18/20 20:10 06/18/20 16:33 06/22/20 04:07 06/18/20 10:48 06/18/20 10:48 06/17/20 21:53 06/18/20 11:37	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 5	Analyst HIS JMH JMH JMH JMH JMH JJH JJB WJF LBB JMH CJG
Zinc Method: 245.2 - Mercury (C Analyte Mercury General Chemistry Analyte Cyanide, Total Ammonia Total Kjeldahl Nitrogen Nitrate Nitrite as N Total Phosphorus as P Phenols, Total TOC Dup Total Suspended Solids Sulfide Sulfide Sulfite Biochemical Oxygen Demand Chemical Oxygen Demand Methylene Blue Active Substances Analyte	VAA) Result <0.000100 Result <0.00500 <0.200 1.12 2.37 0.118 <0.0150 6.60 20.0 <1.30 <1.50 <1.41 31.0 0.0197	* Qualifier HF	RL 0.000200 RL 0.0100 0.500 1.00 0.100 0.100 0.0200 1.00 15.0 2.00 3.00 3.00 25.0	MDL 0.000100 MDL 0.00500 0.200 0.410 0.0630 0.0390 0.0150 0.470 5.10 1.30 1.50 1.41 24.0 0.0130	Unit mg/L Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	_	Analyzed 06/19/20 16:29 Analyzed 06/19/20 21:03 06/25/20 22:10 06/23/20 19:46 06/25/20 17:11 06/18/20 20:10 06/18/20 16:33 06/22/20 04:07 06/18/20 10:48 06/17/20 21:53 06/18/20 11:37 06/22/20 09:41	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 5 1	Analyst HIS Analyst JMH JMH JMH JMH JMH JJB WJF LBB JMH CJG WJF

Client Sample Results

1.0

Client: Alliant Energy Corporation
Project/Site: Lansing NPDES Permit Renewal 2020

E. Coli

Job ID: 310-184204-1 SDG: Project #50886

1 LBB

Lab Sample ID: 310-184204-5

06/17/20 13:35

Client Sample ID: Mississippi River Intake Date Collected: 06/17/20 08:00 Date Received: 06/17/20 12:45

41

Date Collected: 06/17/20 08:00 Matrix: Waste						Matrix: Wastewater	
Date Received: 06/17/20 12	:45						Л
	leat Drobable Number						•
Method: 9223B - E. Coli, M	lost Probable Number						
Analyte	Result Qualifier	RL	RL Unit	D	Analyzed	Dil Fac Analyst	5

1.0 MPN/100mL

Accreditation/Certification and Definitions Summary

Client: Alliant Energy Corporation Project/Site: Lansing NPDES Permit Renewal 2020 Job ID: 310-184204-1 SDG: Project #50886

Laboratory: Eurofins TestAmerica, Cedar Falls

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
lowa	State	007	12-01-21

Laboratory: Eurofins TestAmerica, Buffalo

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	88-0686	07-06-20
California	State	2931	04-01-20 *
Connecticut	State	PH-0568	09-30-20
Florida	NELAP	E87672	06-30-20
Georgia	State	10026 (NY)	04-01-21
Georgia	State Program	N/A	03-31-09 *
Georgia (DW)	State	956	04-01-21
llinois	NELAP	200003	09-30-20
owa	State	374	02-28-21
Kansas	NELAP	E-10187	02-01-21
Kentucky (DW)	State	90029	12-31-20
Kentucky (UST)	State	30	04-01-21
Centucky (WW)	State	KY90029	12-31-20
ouisiana	NELAP	02031	06-30-20
laine	State	NY00044	12-04-20
laryland	State	294	04-01-21
lassachusetts	State	M-NY044	06-30-20
ichigan	State	9937	03-31-20 *
ichigan	State Program	9937	04-01-09 *
innesota	NELAP	1524384	12-31-20
ew Hampshire	NELAP	2337	11-18-20
ew Jersey	NELAP	NY455	06-30-20
ew York	NELAP	10026	04-02-21
orth Dakota	State	R-176	03-31-20 *
Oklahoma	State	9421	09-01-20
Dregon	NELAP	NY200003	06-10-20 *
Pennsylvania	NELAP	68-00281	07-31-20
Rhode Island	State	LAO00328	12-30-20
ennessee	State	02970	04-01-21
exas	NELAP	T104704412-18-10	08-01-20
JSDA	US Federal Programs	P330-18-00039	02-06-21
/irginia	NELAP	460185	09-14-20
Vashington	State	C784	02-11-21
Wisconsin	State	998310390	08-31-20

Laboratory: Eurofins TestAmerica, Chicago

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	umber Expiration Date	
California	State	2903	04-30-20 *	
Georgia	State	N/A	04-30-20 *	
Georgia (DW)	State	939	04-30-20 *	
Hawaii	State	NA	04-30-20 *	
Illinois	NELAP	IL00035	04-30-20 *	
Indiana	State	C-IL-02	04-30-20 *	
lowa	State	082	05-01-20 *	

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Accreditation/Certification and Definitions Summary

Client: Alliant Energy Corporation

Project/Site: Lansing NPDES Permit Renewal 2020

Job ID: 310-184204-1 SDG: Project #50886

3 4 5

Laboratory: Eurofins TestAmerica, Chicago (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Kansas	NELAP	E-10161	11-01-20
Kentucky (UST)	State	AI # 108083	04-30-20 *
Kentucky (WW)	State	KY90023	12-31-20
Louisiana	NELAP	02046	06-30-20
Mississippi	State	NA	04-30-20 *
New York	NELAP	12019	04-01-21
North Carolina (WW/SW)	State	291	12-31-20
North Dakota	State	R-194	04-30-20 *
Oklahoma	State	8908	08-31-20
South Carolina	State	77001003	04-30-20 *
USDA	US Federal Programs	P330-18-00018	02-11-21
Wisconsin	State	999580010	08-31-20
Wyoming	State	8TMS-Q	04-30-20 *

Qualifiers

Metals	
Qualifier	Qualifier Description
*	LCS or LCSD is outside acceptance limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
General Ch	nemistry

Qualifier	Qualifier Description
HF	Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
1C	Result is from the primary column on a dual-column method.
2C	Result is from the confirmation column on a dual-column method.
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Accreditation/Certification and Definitions Summary

Client: Alliant Energy Corporation Project/Site: Lansing NPDES Permit Renewal 2020 Job ID: 310-184204-1 SDG: Project #50886

5

Glossary (Continued)

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

TNTC Too Numerous To Count

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

Client: Alliant Energy Corporation Project/Site: Lansing NPDES Permit Renewal 2020

Job ID: 310-184204-1 SDG: Project #50886

5
6

Method	Method Description	Protocol	Laborator
624.1	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL CF
625.1	Semivolatile Organic Compounds (GC/MS)	40CFR136A	TAL CF
300.0	Anions, Ion Chromatography	MCAWW	TAL CF
200.8	Metals (ICP/MS)	EPA	TAL CF
245.2	Mercury (CVAA)	EPA	TAL CF
1664A	HEM and SGT-HEM	1664A	TAL CF
335.4	Cyanide, Total	MCAWW	TAL CF
350.1	Nitrogen, Ammonia	MCAWW	TAL CF
51.2	Nitrogen, Total Kjeldahl	MCAWW	TAL CF
53.2	Nitrogen, Nitrate-Nitrite	MCAWW	TAL CF
65.1	Phosphorus, Total	EPA	TAL CF
20.4	Phenolics, Total Recoverable	MCAWW	TAL CF
9060	Organic Carbon, Total (TOC)	SW846	TAL CHI
-3765-85	Residue, Non-filterable (TSS)	USGS	TAL CF
Nitrogen,Org	Nitrogen, Organic	EPA	TAL CF
SM 4500 S2 F	Sulfide, Total	SM	TAL CF
SM 4500 SO3 B	Sulfite	SM	TAL CF
SM 5210B	BOD, 5-Day	SM	TAL CF
SM 5220D	COD	SM	TAL CF
M 5540C	Methylene Blue Active Substances (MBAS)	SM	TAL BUF
223B	E. Coli, Most Probable Number	SM	TAL CF
664A	HEM and SGT-HEM (Aqueous)	1664A	TAL CF
8.00	Preparation, Total Metals	EPA	TAL CF
45.1	Preparation, Mercury	EPA	TAL CF
51.2	Nitrogen, Total Kjeldahl	MCAWW	TAL CF
65.2/365.3/365	Phosphorus, Total	MCAWW	TAL CF
25	Liquid-Liquid Extraction	40CFR136A	TAL CF
istill/Ammonia	Distillation, Ammonia	None	TAL CF
)istill/CN	Distillation, Cyanide	None	TAL CF
)istill/Phenol	Distillation, Phenolics	None	TAL CF
SM 4500 S2 C	Sulfide, Sample Pretreatment/Concentration	SM	TAL CF

Protocol References:

1664A = EPA-821-98-002

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

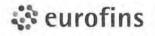
EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.


USGS = "Methods For Analysis Of Water And Fluvial Sediments", USGS, 1989

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL CF = Eurofins TestAmerica, Cedar Falls, 3019 Venture Way, Cedar Falls, IA 50613, TEL (319)277-2401

TAL CHI = Eurofins TestAmerica, Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

Environment Testing TestAmerica

2 3

4

5

6

7

Na

310-184204 Chain of Custody

Cooler/Sample Receipt and Temperature Log Form

Client Information	
Client: Alliant Energy	Lansing
City/State: Cansing Sta	TA Project: NPDES 2020 Permit Pen
Receipt Information	
Date/Time Received: 017120	245 Received By:
Delivery Type: UPS FedEx	FedEx Ground US Mail Spee-Dee
🗌 Lab Courier 🔲 Lab Field S	ervices 🕅 Client Drop-off 🛛 🗌 Other:
Condition of Cooler/Containers	
Sample(s) received in Cooler? Yes	No If yes: Cooler ID:
Multiple Coolers?	No If yes: Cooler # of
Cooler Custody Seals Present? Yes	No If yes: Cooler custody seals intact? Yes No
Sample Custody Seals Present? Yes	No If yes: Sample custody seals intact? Yes No
Trip Blank Present?	No If yes: Which VOA samples are in cooler? 1
	V
Temperature Record	Dry ice Other: NONE
Coolant: Wet ice Blue ice	Dry ice Other: NONE
Thermometer ID:	Correction Factor (°C):
	o blank temperature above criteria, proceed to Sample Container Temperature
Uncorrected Temp (°C): 5.4	Corrected Temp (°C): 5.5
Sample Container Temperature CONTAINER 1	CONTAINER 2
Container(s) used:	
Uncorrected Temp (°C):	
Corrected Temp (°C):	
Exceptions Noted	
 If temperature exceeds criteria, was sample a) If yes: Is there evidence that the chilling 	2월 20일 전 2
(e.g., bulging septa, broken/cracked bottles	
NOTE: If yes, contact PM before proceeding. If Additional Comments	no, proceed with login
	×
Document: CF-LG-WI-002 Revision: 25 Date: 06/17/2019 Eurofins	General temperature criteria is 0 to 6°C TestAmerica, Cedar Falls Bacteria temperature criteria is 0 to 10°C
	D 45 (0)

Page 15 of 21

🔅 eurofins

Environment Testing TestAmerica Place COC scanning label here

Cooler/Sample Receipt and Temperature Log Form **Client Information** AV Client: City/State: Project: 2020 Permit Per **Receipt Information** Received By: \\ Date/Time Received: Spee-Dee US Mail FedEx FedEx Ground Delivery Type: UPS Lab Courier Lab Field Services X Client Drop-off Other: **Condition of Cooler/Containers** 1 No If yes: Cooler ID: Yes Sample(s) received in Cooler? If yes: Cooler # of 1 No X Yes Multiple Coolers? If yes: Cooler custody seals intact? Yes 1 No **Cooler Custody Seals Present?** 7 Yes 1 No 1 No If yes: Sample custody seals intact? Yes X No Sample Custody Seals Present? 1 Yes If yes: Which VOA samples are in cooler? 1 1 Yes No No **Trip Blank Present?** Temperature Record **NONE** Other: Wet ice Blue ice Dry ice Coolant: 7 Correction Factor (°C): Thermometer ID: • Temp Blank Temperature - If no temp blank, or temp blank temperature above criteria, proceed to Sample Container Temperature L Corrected Temp (°C): 2. 0 Uncorrected Temp (°C): Sample Container Temperature **CONTAINER 2** CONTAINER 1 Container(s) used: Uncorrected Temp (°C): Corrected Temp (°C): Exceptions Noted If temperature exceeds criteria, was sample(s) received same day of sampling? Yes No PYes 1 No a) If yes: Is there evidence that the chilling process began? 2) If temperature is <0°C, are there obvious signs that the integrity of sample containers is compromised? 1 No Yes (e.g., bulging septa, broken/cracked bottles, frozen solid?) NOTE: If yes, contact PM before proceeding. If no, proceed with login **Additional Comments**

Document: CF-LG-WI-002 Revision: 25 Date: 06/17/2019

Eurofins TestAmerica, Cedar Falls

General temperature criteria is 0 to 6°C Bacteria temperature criteria is 0 to 10°C

Page 16 of 21

7

				Permit Renewal					Send QC with report									Time		
				ene	<u>9</u> =				E-mail results Fax Results		-	-	-	-		-		-	-	
				it R		mo	E		TAT brabhard	-	-	-		-		-		Date	Ł	
2				ELE		JV.O	8		bsens liss teum) TAT HRUR	-	-		1	-	10			õ		
5	_	-1		O Pe		energ	lergy	Г	prode lies to MI IVI HSIII	-		-		+	4	-		-		
	GENCO0000231118		ert	PDES 2020	886	glenthomas@alliantenergy.com	corycarter@alliantenergy.com										: Please see attached sheets for required analyses			
2425	ENCODO		Zach Bindert	Lansing NPDES	503	enthoma	orycarter	Analyze For									for require	d by		
319 - 277 - 2425	0	1	Project Manager Z	-	10		:23	A								È	sheets	Relinguished by	Shipped Via	
319	:# (To	Man	Nam	Num	ddree			(See Attached Sheets)								ed	Reli	Shic	
Fax	Your PO #:	Invoice To	ect I	Project Name:	Project Number	Email Address.			NPDES Renewal 2020	×	×	×	×	×			tach	Time	Γ	
	You	Invo	Proj	Proj	Proj	Emá			Other Specify	0.4							e at	E.		ents
	1								lioS								se	0		Laboratory Comments
								trix	agbuis								ase	Date		Cor
								Matrix	Drinking Water											tory
									Nastewater	×	×	×	×	×			NOTES			bora
					40			L	Groundwater				-				N			La
					563-538-3140				Other (Specify)											
					538				None (Black & White Label)		1	-				_				
		. 1			33-1			tive	(Isds Label & White Label)		-	-	-	-		÷	ts			
					5		6 H.	eVa	H ₂ SO ₄ Plastic (Yellow & White Labe		-	-	-	-	+++	-	d,		Ľ	eipt
					Fax:			Preservative	VaOH (Orange & White Label)		_	-	-	-		-	le re sse		L	Rec
					щ			1		-	-	-	-	-		-	ceivesse		Ľ	uoo
									HNO ₃ (Red & White Label)	-	-	-	-	-	+	-	o re De a	4	Ľ	e N
								L	jce	-	-	-	-	-	+++	-	E to av I av I	d b	ts	atur
	BL)		Field Filtered		_			-		_	NNC W	eive	ueu	Jper
3	Isi					3	N.W.		Composite		×		×				estAmerica. ADVANCE to receive results harges may be assessed. sample remainders.	Received by:	Corr	Temperature Upon Receipt
Drive A 506	Lar		ive			owno	and a		Grab	×		×		×			at Te in A I cha	e S	č	Time 2'4 S
nture alls, I/	- YE		nt Dr	51		The	7		# of containers shipped	10	10	12	10	12			ceipt fours itiona	Time In Con	2	12.
3019 Venture Drive Cedar Falls, IA 50613	nerg	nas	r Pla	521	43	1	2		balqms2 amiT	08:00	08:00	04:80	08:00	08100		1	T 48 F T 48 F add	100	5	_
30. Ce	Ш	hor	owe	AI,	3-3	Y	02				0	0	0	00		-	time AS ents	ate	6	L'ete
	Alliant	Glen T	2320 Power Plant Drive	Lansing, IA 52151	563-538-3143	616	X		Date Sampled	6-17-20	6-17-2	6-17-20	6-17-20	12-11-9			I from the ide AT LE commitme or TestAm	1-17	0 1/	6/01
HE LEADER IN ENVIRONMENTAL TESTING	Company: Alliant Energy - Lansing	Send Report To: Glen Thomas	Address	City/State/Zip Code:	Telephone Number	Sampled by: (Print Name)	(Signature)		Sample ID	002 Grab	002 Composite	001 Grab	001 Composite	Mississippi River Intake			NOTE: All turn around times are calculated from the time of receipt at TestAmerica NOTICE: Pre-Arrangements must be made AT LEAST 48 Hours in ADVANCE to receive res with RUSH turn around time commitments; additional charges may be assessed NOTE: There may be a charge assessed for TestAmerica disposing of sample remainders.	ished by:	Shipped Via:	Received for TestAmerica by:

Order Completion Information

Brian Graettinger Sent Date: Filled by. Creator

Lansing NPDES Permit Renewal 2020

Bottle Order information

Tracking #: Sent Via:

Lot # Please notify your PM immediately if an error is found in shipment. When returning samples, please return all provided QC samples. Go to http://www.testamericainc.com/customer-support/specialized-instructions-for-field-samplers/ for field sampler instructions. Organic Nitrogen Comments Sample Type Normal Vormal Matrix Water 420.4 - Phenolics, Total Recoverable ш 624.1_PREC - (MOD) Custom VOC 3765_85 - Residue, Non-filterable 300 ORGFM 28D - (MOD) Anions 625.1 PREC - Acids Semivolatiles 624.1_PREC - Custom VOC List Nitrogen, Org - Organic Nitrogen 9223B_MPN - Total Coliforms and 353.2 - Nitrate plus Nitrite as N 351.2 - Nitrogen, Total Kjeldahl 200.8_CWA - (MOD) Metals by 350.1 - Nitrogen, Ammonia 365.1 - Phosphorus, Total SM4500SO3_B - Sulfite 1664A - Oil and Grease SM4500 S2 F - Sulfide 335.4 - Cyanide, Total SM5210B Calc - BOD 245.2 - Mercury 5540C - MBAS 5220D - COD (ali analytes) Methoc 200.8 (TSS) List list Sulfuric Acid Preservative Sulfuric Acid Hydrochloric Sulfuric Acid Zinc Acetate and Sodium Thiosulfate Hydroxide Hydroxide Nitric Acid EDTA None None None Sodium None Sodium None None Acid Amber Glass 1 liter - Sulfuric Acid Amber Glass 1 liter - unpreserved Voa Vial 40ml - Hydrochloric Acid Plastic 250ml - with Sulfuric Acid Plastic 250ml - with Nitric Acid Plastic 500ml - with Zn Acetate Amber Glass 500mL - Sulfuric Plastic 250ml - unpreserved Plastic 1 liter - unpreserved Voa Vial 40ml - unpreserved Plastic 1 liter - unpreserved Plastic 250ml - with Sodium Plastic 250ml - with EDTA Bottle Type Description Sterile w/thio 100 mL No Container and NaOH **Hydroxide** Acid 31012457 2 2 5 20 - 7 1 20 Qty e -0 --Lab Project Number: Bottles/Set N 0 3 0 3 Sets ---Page 18 of 21

Shipping Order ID: 50886

6/11/202011:46:43AM

Printed on

Request From Client: Date Order Posted. Bottle Order # Order Status: Prepared By: Bottle Order 06/06/2023 - Classification: Internal - ECRM13085590

6/15/2020 11:59:00PM

Deliver By Date:

6/11/2020 10:52:17AM

6/11/2020 15557

Ready To Process Brian Graettinger

6/30/2020

Page 2 of 4

Image: construction Constr			and the second sec									Organic Nitrogen			A mental second se		a second se			- many many and a second many many many						- Nitrocen				I QC samples.
1 Plastic Lipter unpreserved in Strain with of 00 mi. Nome Strain with Sulfur Nome Stra Nome Strain with Sulfur					_							Organi								the second second second										all provided
1 Plaatic 1 fiber - unpreserved Nome Sindiam Sindiam <td>Normal</td> <td>Normal</td> <td>Normal</td> <td></td> <td>Normal</td> <td>Normal</td> <td>Normal</td> <td>Normal</td> <td>Normal</td> <td>Normal</td> <td>Normal Normal</td> <td>Normal</td> <td></td> <td>ease return</td>	Normal	Normal	Normal		Normal	Normal	Normal	Normal	Normal	Normal	Normal Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal	Normal		ease return
1 Plastic 1 liter - unpreserved Nome 92/333_MPV - Total Cubitoms and E 3 Voa Vial 40ml - unpreserved Nome 92/33_S_MPV - Total Cubitoms and E 3 Voa Vial 40ml - impreserved Nome 92/33_S_MPV - Total Cubitoms and E 1 Plastic 250ml - with Sodium Sodium 93/5 4 - Opande, Total 1 Amber Class 500ml - With Sodium Suffuric Acid 42/4 - Phenolics, Total Recoverable 1 Amber Class 500ml - with Suffuric Acid Suffuric Acid 33/5 4 - Opande, Total 1 Plastic 250ml - with Suffuric Acid Suffuric Acid 35/4 - Opande, Total 1 Plastic 250ml - with Suffuric Acid Suffuric Acid 35/4 - Opande, Total 1 Plastic 250ml - with Suffuric Acid Suffuric Acid 35/4 - Opande, Total 1 Plastic 250ml - with Suffuric Acid Suffuric Acid 36/0 - Nitrogen 1 Plastic 250ml - with Nitric Acid Suffuric Acid 36/0 - Ottal Suffice 1 Plastic 250ml - with Nitric Acid Suffuric Acid Suffuric Acid Suffice 1 Plastic 250ml - with Suffuric Acid Suffuric Acid Suffuric Acid Suffice 1 Plastic 250ml - with Suffuric Acid Suffuric Acid Suffuric Acid Suffice 1 Plastic 250ml - with Suffuric Acid	Water	Water	Water		Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water		Imples, ple- field-same
1 Plastic 1 liter - unpreserved None 3 Voa Vial 40ml - with Sodium Sodium 1 Plastic 250ml - with Sodium None 1 Plastic 250ml - with Sulfuric Acid Sulfuric Acid 1 Plastic 250ml - with Sulfuric Acid Sulfuric Acid 1 Plastic 250ml - with Sulfuric Acid None 1 Plastic 250ml - with Sulfuric Acid None 1 Plastic 250ml - with Sulfuric Acid None 2 Voa Vial 40ml - with Sulfuric Acid None 1 Plastic 21 liter - unpreserved None 1 Plastic 250ml - with Sulfuric Acid Sulfuric Acid 2 Voa Vial 40ml - with Sulfuric Acid Sulfuric Acid 1 Plastic 250ml - with Sulfuric Acid None 1 Plastic 250ml - with Sulfuric Acid Sulfuric Acid 1	SM6240B Calc BOD	92238_MPN - Total Coliforms and E.	Cali 624.1 PREC - (MOD) Custom VOC	list	624.1_PREC - Custom VOC List	335.4 - Cyanide, Total	420.4 - Phenolics, Total Recoverable	350.1 - Nitrogen, Ammonia	351.2 - Nitrogen, Total Kjeldahl	365.1 - Phosphorus, Total	353.2 - Nitrate plus Nitrite as N 5220D - COD	Nitrogen, Org - Organic Nitrogen	SM4500_S2_F - Sulfide	SM4500SO3_B - Sulfite	245.2 - Mercury 200.8_CWA - (MOD) Metals by 200.8	300_ORGFM_28D - (MOD) Anions (all analytes)	5540C - MBAS	625.1_PREC - Acids Semivolatiles List	9060A - (MOD) TOC Duplicates	SM5210B_Calc - BOD	I_3765_85 - Residue, Non-filterable (TSS)	350.1 - Nitrogen, Ammonia	351.2 - Nitrogen, Total Kjeldahl	365.1 - Phosphorus, Total	5220D - COD 353 2 - Nitrate plue Nitrite ac N	Nitrogen Org - Organic Nitrogen	200.8 CWA - (MOD) Metals by	200.8 245.2 - Mercury		d in shipment. When returning se port/specialized-instructions-for-
1 Plastic 1 liter - unpreserved 3 Voa Vial 40ml - unpreserved 3 Voa Vial 40ml - unpreserved 3 Voa Vial 40ml - unpreserved 1 Plastic 250ml - with Sodium 1 Plastic 250ml - with Sulfuric Acid		Sodium	Thiosulfate None		Hydrochloric Acid	Sodium Hydroxide	Sulfuric Acid	Sulfuric Acid				None	Zinc Acetate and Sodium Hydroxide	EDTA	Nitric Acid	None	None	None	Sulfuric Acid	None		Sulfuric Acid				None	Nitric Acid			error is foun ustomer-sup
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Disctin 1 liter un	Sterile w/thio 100 mL	Voa Vial 40ml - unpreserved		Voa Vial 40ml - Hydrochloric Acid	Plastic 250ml - with Sodium Hydroxide		Plastic 250ml - with Sulfuric Acid				No Container	Plastic 500ml - with Zn Acetate and NaOH	Plastic 250ml - with EDTA	Plastic 250ml - with Nitric Acid	Plastic 250ml - unpreserved	Plastic 1 liter - unpreserved	Amber Glass 1 liter - unpreserved	Voa Vial 40ml - with Sulfuric Acid	Plastic 1 liter - unpreserved	/	Plastic 250ml - with Sulfuric Acid				No Container	Plastic 250ml - with Nitric Acid			tify your PM immediately if an upper state of a provident of the state
			e n		ю ,	-	<u>+</u> j	- /				0		- /	 ,	<u> </u>	1-1-2	2 1	2	- 7		- - -				0			25	Please no Go to htt
	-		~		-	~	~	1				-	-	-	2	-	-	-	-	-		-				-				

- 06/		riastic zbumi - unpreserved	None	300_ORGFM Chloride	300_ORGFM_28D - Bromide, Chloride and Sulfate	Water	Normal	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	Voa Vial 40ml - with Sulfuric Acid	Sulfuric Acid	9060A - (MOL	9060A - (MCD) 1 OC Duplicates -	Water	Normal	
- 2023 -	-	Sterile w/thio 100 mL	Sodium Thiosulfate	9223B_MPN - To	223B_MPN - Total Coliforms and E. Coli	Water	Normal	
- Classifi	2	Plastic 500ml - with Zn Acetate and NaOH	Zinc Acetate and Sodium Hydroxide	SM4500	SM4500_S2_F - Sulfide	Water	Normal	
catio	<u>ر</u> ج	Plastic 250ml - with EDTA	EDTA	SM4500S	SM4500SO3_B - Sulfite	Water	Normal	
	-	Plastic 1 liter - unpreserved	None	5540(	5540C - MBAS	Water	Normal	
Interna	7	Plastic 250ml - with Sodium Hydroxide	Sodium Hydroxide	335.4 - C	335.4 - Cyanide, Total	Water	Normal	
		Amber Glass 500mL - Sulfuric Acid	Sulfuric Acid	420.4 - Phenolic	20.4 - Phenolics, Total Recoverable	Water	Normal	
Notes to Field	Staff: 9	「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」	Health and	Safety Notes:	市時の時代の日本のでいたからい			
308			Preservative		Comment			
102142	Scan QR sampler ir	Scan QR code for field sampler instructions	EDTA		CAUTION! CONTAIN and eye contact. If co	S EDTA. Harr ntact is made	CAUTION! CONTAINS EDTA. Harmful if inhaled. Use adequate ventilation. Avoid skin and eye contact. If contact is made, FLUSH IMMEDIATELY with water.	n. Avoid skin
			Hydrochloric Acid	c Acid	CAUTION! CONTAINS contact is made, FLUS	S 1:1 HYDRO SH IMMEDIAT	CAUTION! CONTAINS 1:1 HYDROCHLORIC ACID. Avoid skin and eye contact. contact is made, FLUSH IMMEDIATELY with water.	ontact. If
-			Nitric Acid		CAUTION! STRONG contact. If contact is r	OXIDIZER! C nade, FLUSH	CAUTION! STRONG OXIDIZER! CONTAINS 1:1 NITRIC ACID. Avoid skin and eye contact. If contact is made, FLUSH IMMEDIATELY with water.	n and eye
Page			Sodium Hydroxide	droxide	CAUTION! STRONG ( skin and eye contact.	CAUSTIC: Co If contact is n	CAUTION! STRONG CAUSTIC! CONTAINS SODIUM HYDROXIDE PELLETS. skin and eye contact. If contact is made, FLUSH IMMEDIATELY with water.	.ETS. Avoid if.
20 of 21			Sodium Thiosulfate	osulfate	CAUTION! CONTAIN ventilation. Avoid skin water.	S 10% SODII and eye contr	CAUTION! CONTAINS 10% SODIUM THIOSULFATE. Harmful if inhaled. Use adequate ventilation. Avoid skin and eye contact. If contact is made, FLUSH IMMEDIATELY with water.	Use adequate IATELY with
			Sulfuric Acid	q	CAUTION! CONTAINS 1:1 SULFURIC AC made, FLUSH IMMEDIATELY with water.	S 1:1 SULFUF	CAUTION! CONTAINS 1:1 SULFURIC ACID. Avoid skin and eye contact. If contact is made, FLUSH IMMEDIATELY with water.	If contact is
			Zinc Acetate Hydroxide	e and Sodium	Contains 2N Zinc Ace IMMEDIATELY with w CAUTION! STRONG skin and eye contact.	tate. Avoid sk rater. CAUSTIC! Co If contact is r	Contains 2N Zinc Acetate. Avoid skin and eye contact. If contact is made, FLUSH IMMEDIATELY with water. CAUTION! STRONG CAUSTIC! CONTAINS SODIUM HYDROXIDE PELLETS. Avoid skin and eye contact. If contact is made, FLUSH IMMEDIATELY with water.	FLUSH LETS. Avoid sr.
Relinquished By		Company Date	Time	Received By	Company	any	Seel## Sole=1##	
Relinquished By		Company Date	te	Received By	Company	any	Veal # Seal # Seal # Seal #	
Please noti Go to http	Please noti Go to <u>http</u>	lease notify your PM immediately if an error is found Go to <u>http://www.testamericainc.com/customer-sup</u> l	error is four customer-su	nd in shipment. <u>pport/specializ</u> e	When returning s	amples, ple	Please notify your PM immediately if an error is found in shipment. When returning samples, please return all provided QC samples. Go to <u>http://www.testamericainc.com/customer-support/specialized-instructions-for-field-samplers/</u> for field sampler instructions.	nples. ons.
020 Shipping Order	· ID: 50886			Page 4 of	4 of 4		Printed on 6/11/20201	6/11/202011:46:43AM
							4 5 6 7	1 2 3

Eurofins TestAmerica, Cedar Falls

Chain of Custody Record



Cedar Fails (14:10010) Phone (519:200:2401) Fax: (519-277-2425)

3019 Vertice May

Client Information (Sub Contract Lab)	Setting				+ ∈∿ raetti	nger	Bris	ar C				C	larne	г Тізс	king fua	0. 41			COC No 310-28040 1	
Client Contant	Phone			E-1	Ma									of Ore	13				Page	
Shipping/Receiving Company	•			br	~ ~ ~			@testar			om	I	owa						Page 1 of 1	
TestAmerica Laboratories Inc								ram - Iov		note)									Job # 310-184204-1	
Address 2417 Bond Street,	ie Date Request 29/2020	ed:							^	Analy	cic I	2001		to d					Preservation Cod	es:
	T Requested (d	ays):					<u> </u>					vequ	Test	T			1		A - HCL B - NaOH	M - Hexane N - None
University Park 310-184204 COC																			C - Zn Acetate	O · AsNaO2
State, Zip IL, 60484																			D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3
Phone	PO #				-														F - MeOH G - Amchlor	R - Na2S2O3 S - H2SO4
708-534-5200(Tel) 708-534-5211(Fax) Email	wo #				-lê														H - Ascorbic Acid 1 - Ice	T - TSP Dodecahydra U - Acetone
					ē													ø	J - DI Water	V - MCAA
Project Name	Project #				٦Ē	or No)											1	iner	K - EDTA L - EDA	W - pH 4-5 Z - other (specify)
Lansing NPDES Permit Renewal 2020	31012457 SSOW#	······				χes	ø											onta	Other:	
					Sam	MS/MSD (Yes	9060/ TOC Duplicates											Total Number of containers		
			Sample	Matrix	Per	N/S/	Dupi											ber		
			Туре	(W=water, S=solid,	Filte	Ē	TOC											μIJΝ		
	Comple Date	Sample	(C=Comp,	O=waste/oil,		Perform	. /090											otal		
Sample Identification - Client ID (Lab ID)	Sample Date	Time	G=grab) Preservat			$\mathbf{k}$	6				-+	-+	-+					F	Special In	structions/Note:
002 Composite (310-184204-2)	6/17/20	08:00		Water	Ĥ	Y	x			+	-+		-+					$\cap$		
· · · · · · · · · · · · · · · · · · ·		Central 08:00																2		
001 Composite (310-184204-4)	6/17/20	Central		Water			X											2		
Mississippi River Intake (310-184204-5)	6/17/20	08:00 Central		Water			X											2		
		Central							1				$\uparrow$							
						+				+										
			ļ																	
									+											
													-+							····
Note Since laboratory accreditations are subject to change, Eurofins TestAmeri	ca places the ownersh	ip of method, a	analyte & accredr	tation compl	l-ance	upon	outsu	ubcontract	t labora	atories	This s	ample	shipr	mentis	s forwa	rded un	der cha	in-of-	-custody If the labora	tory does not currently
maintain accreditation in the State of Origin listed above for analysis/tests/matro TestAmerica attention immediately. If all requested accreditations are current to	being analyzed, the s	amples must b	e shipped back t	the Eurofi	ns Tes	stAme	erica la	aboratory o	or othe	er instru	ctions	will be	provi	ded /	∖ny cha	anges to	accred	litatio	on status should be br	ought to Eurofins
Possible Hazard Identification			,	·						1 600 0	novt			and it					ed longer than 1	
Unconfirmed								eturn To		nt nee n			5855	ol D	sam	pies a		ame	ive For	Months
Deliverable Requested I, II, III, IV, Other (specify)	Primary Deliver	able Rank:	1					Instructio						ai by	Lab			Arch		MONINS
	-	Date:			TT.								- 1	d a the s	-4.04	ipment				
Empty Kit Relinquished by:	DataGrave			Company		me T	Page	ived b	Α_	8	_A_		Ľ	vietno	1 01 50	ipment	<u> </u>			1
	Date(Time 5/72-0	162	50	лапрапу			In ece	Web of	Un	No	X	307	ťЬ		1		120	)	0935	TACH.
Relinquished by	Date/Time			Company			Rece	ived by:		0	· ·		<u> </u>		D	ale/Tine	,			Company
Relinguished by	Date/Time			Company			Reco	ived by							0	ato/T				Compone
(emplushed by	Daternme			ompany			rtece	ived by								ate/Time	9			Company
Custody Seals Intact Custody Seal No :							Coole	er Tempera	ature(s	s) °C an	d Othe	r Rem	arks		3	8				
J Yes J No							I								2	0				