2024 Annual Groundwater Monitoring and Corrective Action Report

Edgewater Generating Station Sheboygan, Wisconsin

Prepared for:

SCS ENGINEERS

25224068.00 | January 31, 2025

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830

OVERVIEW OF CURRENT STATUS

Edgewater Generating Station, Surface Impoundments 2024 Annual Report

In accordance with §257.90(e)(6), this section at the beginning of the annual report provides an overview of the current status of groundwater monitoring and corrective action programs for the coal combustion residual (CCR) units. The groundwater monitoring system at the Edgewater Generating Station is a multiunit system. Supporting information is provided in the text of the annual report.

Category	Rule Requirement	Site Status		
Monitoring Status – Start of Year	(i) At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95;	Detection		
Monitoring Status – End of Year	(ii) At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95;	Assessment		
Statistically Significant Increases (SSIs)	(iii) If it was determined that there was an SSI over background for one or more constituents listed in appendix III to this part pursuant to §257.94(e):			
	(A) Identify those constituents listed in appendix III to this part and the names of the monitoring wells associated with such an increase; and	October 2023 Boron: MW-301, MW-302, MW-303 Fluoride: MW-302 Sulfate: MW-301, MW-302 April 2024 Boron: MW-301, MW-302, MW-303, MW-304 Sulfate: MW-301, MW-304		
	(B) Provide the date when the assessment monitoring program was initiated for the CCR unit.	Alternative Source Demonstration prepared for October 2023 event during 2024. An assessment monitoring program was established on October 28, 2024, with the collection of the initial assessment monitoring samples during the October 2024 sampling event.		

Category	Rule Requirement	Site Status
Statistically Significant Levels (SSL) Above Groundwater	(iv) If it was determined that there was an SSL above the GPS for one or more constituents listed in appendix IV to this part pursuant to §257.95(g) include all of the following:	Not applicable – Evaluation of the initial assessment monitoring results will be completed in 2025
Protection Standard (GPS)	(A) Identify those constituents listed in appendix IV to this part and the names of the monitoring wells associated with such an increase;	
	(B) Provide the date when the assessment of corrective measures (ACM) was initiated for the CCR unit;	
	(C) Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and	
	(D) Provide the date when the assessment of corrective measures was completed for the CCR unit.	
Selection of Remedy	(v) Whether a remedy was selected pursuant to §257.97 during the current annual reporting period, and if so, the date of remedy selection; and	Not applicable – Selection of remedy not required
Corrective Action	(vi) Whether remedial activities were initiated or are ongoing pursuant to §257.98 during the current annual reporting period.	Not applicable – Remedial activities not required

Table of Contents

Sect	ion	Pa	ge
Over	view o	of Current Status	i
1.0	Intro	ductionduction	1
2.0	Back	ground	1
	2.1	Geologic and Hydrogeologic Setting	1
		2.1.1 Regional Information	1
		2.1.2 Site Information	2
	2.2	CCR Monitoring System	3
3.0	§257	7.90(e) Annual Report Requirements	3
	3.1	§257.90(e)(1) Site Map	3
	3.2	§257.90(e)(2) Monitoring System Changes	3
	3.3	§257.90(e)(3) Summary of Sampling Events	4
	3.4	§257.90(e)(4) Monitoring Transition Narrative	4
	3.5	§257.90(e)(5) Other Requirements	
		3.5.1 §257.90(e) General Requirements	5
		3.5.2 §257.94(d) Alternative Detection Monitoring Frequency	
		3.5.3 §257.94(e)(2) Alternative Source Demonstration for Detection Monitoring	6
		3.5.4 §257.95(c) Alternative Assessment Monitoring Frequency	
		3.5.5 §257.95(d)(3) Assessment Monitoring Results and Standards	7
		3.5.6 §257.95(g)(3)(ii) Alternative Source Demonstration for Assessment Monitoring	7
		3.5.7 §257.96(a) Extension of Time for Corrective Measures Assessment	
	3.6	§257.90(e)(6) Overview	
4.0	Refe	rences	8
		Tables	
Table	_	Groundwater Monitoring Well Network	
Table		CCR Rule Groundwater Samples Summary	
Table Table		Groundwater Elevations – State Monitoring Wells Groundwater Elevations – CCR Monitoring Wells	
Table		Horizontal Gradients and Flow Velocity	
Table		Groundwater Analytical Results Summary	
Table	6	Groundwater Field Data Summary	
Table	2 7	Groundwater Analytical Results Summary – MW-304 April, July, and August 2024	
		Background Sampling	
		F :	
		Figures	
Figur		Site Location Map	
Figur		Site Plan and Monitoring Well Locations	
Figur		Water Table Elevation Contour Map – April 2024	
Figur	€ 4	Water Table Map – October 2024	

Appendices

Appendix A	Summary of the Regional Hydrogeologic Stratigraphy
Appendix B	Boring Logs and Well Construction Documentation

Appendix C Laboratory Reports

Appendix D Historical Monitoring Results

Appendix E Alternative Source Demonstration (ASD)

 $I:\25224068.00\Deliverables\2024-Annual\ CCR\ Report\250131_2024\ Annual\ CCR\ GW\ Report_EDG_Final.docx$

1.0 INTRODUCTION

This 2024 Annual Groundwater Monitoring and Corrective Action Report was prepared to support compliance with the groundwater monitoring requirements of the Coal Combustion Residuals (CCR) Rule [40 Code of Federal Regulations (CFR) 257.50-107]. Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.90(e). The applicable sections of the Rule are provided below in italics, followed by applicable information relative to the 2024 Annual Groundwater Monitoring and Corrective Action Report for the CCR Units.

This report covers the period of groundwater monitoring from January 1, 2024, through December 31, 2024.

The groundwater monitoring system at the Edgewater Generating Station (EDG) is a multiunit system. EDG has four closed CCR units, which are contiguous:

- EDG Slag Pond (existing CCR surface impoundment)
- EDG North A-Pond (existing CCR surface impoundment)
- EDG South A-Pond (existing CCR surface impoundment)
- EDG B-Pond (existing surface CCR impoundment)

The system is designed to detect monitored constituents at the waste boundary of the CCR units as required by 40 CFR 257.91(d). The groundwater monitoring system consists of one upgradient and four downgradient monitoring wells (**Table 1**, **Figure 1**, and **Figure 2**).

Closure of the four ponds was completed in 2021. The Notification of Completion of Closure pursuant to 40 CFR 257.102(d) was entered into the EDG CCR Operating Record on August 10, 2021.

2.0 BACKGROUND

To provide context for the required annual report information, the following background information is provided in this section of the report, prior to the required information:

- Geologic and hydrogeologic setting
- CCR Rule monitoring system

2.1 GEOLOGIC AND HYDROGEOLOGIC SETTING

2.1.1 Regional Information

For the purposes of groundwater monitoring, the unconsolidated sand and gravel aquifer is considered to be the uppermost aquifer, as defined under 40 CFR 257.53, at the EDG ponds. A summary of the regional hydrogeologic stratigraphy and a regional geologic cross section are included in **Appendix A**.

The sand and gravel aquifer is present in some parts of Sheboygan County (Skinner and Borman, 1973). Boring logs from monitoring wells at the EDG ponds and for nearby private wells indicate that the unconsolidated material at and near the site contains a significant amount of sand. Private well logs from the surrounding area indicate that the sand and gravel aquifer has been used as a water

source; however, several older sand wells in the area have been replaced with bedrock water supply wells. In a search of area well records, SCS Engineers (SCS) did not find any records indicating that shallow wells are still being used in the area around EDG.

The dolomite aquifer underlies the unconsolidated material at the site. The total thickness of the dolomite aquifer at the site is unknown. The dolomite aquifer is underlain by the Maquoketa shale, which is a confining unit. The Maquoketa shale is underlain by the Cambrian-Ordovician sandstone aquifer. This sequence of sedimentary bedrock units is over 1,500 feet thick in the site vicinity. The sedimentary sequence is underlain by Precambrian crystalline rocks that are not considered an aquifer in eastern Wisconsin.

2.1.2 Site Information

The site consists of four closed CCR surface impoundments that are monitored as a single Closure Area. Closure of the impoundments began in 2020 and was completed in 2021. Adjacent to the surface impoundments is an inactive CCR landfill that was closed prior to 2015 and the area as a whole is regulated by the Wisconsin Department of Natural Resources (Edgewater 1-4 Closed Ash Disposal Facility, License #2524). A groundwater monitoring network of 19 wells was installed at the site to meet state requirements prior to installation of additional monitoring wells to meet CCR Rule requirements. Soils at the site are primarily silt, sand, and some clay to a depth of approximately 80 to 140 feet and overlie dolomite bedrock.

During drilling of CCR wells MW-301, MW-302, MW-303, and MW-304, the unconsolidated materials were identified as consisting primarily of lean clay overlying sandy silt. The boring log for the previously installed background monitoring well 2R-OW shows lean clay as the primary unconsolidated material at this location. The boring logs for Ash Ponds CCR monitoring wells are provided in **Appendix B**. All CCR monitoring wells are screened within the unconsolidated glacial aquifer.

The water table maps shown on **Figures 3** and **4** are based on groundwater levels measured in the unconsolidated deposits during the April 2024 and October 2024 detection monitoring events. A summary of the sampling events that occurred throughout 2024 is shown in **Table 2**. The groundwater elevations are summarized in **Table 3A** (state wells) and **Table 3B** (CCR wells). Horizontal gradients and flow velocities for representative flow paths are provided in **Table 4**.

Shallow groundwater in the area of the EDG site generally flows to the south-southeast. There was a more easterly flow direction in the immediate vicinity of the ponds prior to the impoundment closure and capping. Due to the change in flow direction after the closure activities were completed, a fourth downgradient compliance well, MW-304, was installed on the south side of the closure area on February 5, 2024.

Historically, there was some localized groundwater mounding associated with the now closed EDG ponds. With the closure of the ponds, groundwater mounding has decreased. Water levels measured at three wells installed within the closed CCR landfill were historically interpreted as representing the water table, but under current conditions may not be consistent with groundwater elevations in the soil below the landfill and pond closure area. Water levels for these wells are shown in brackets in the water table maps and contours in the landfill and pond closure area are dashed to reflect uncertainty.

2.2 CCR MONITORING SYSTEM

The groundwater monitoring system established under the CCR Rule consists of one upgradient (background) monitoring well and four downgradient monitoring wells (**Table 1** and **Figure 2**). The upgradient monitoring well is 2R-OW. The downgradient monitoring wells include MW-301, MW-302, MW-303, and MW-304. MW-304 was installed in February 2024 and background monitoring has been in progress since April 2024. MW-304 was also included in the April 2024 detection monitoring event and the October 2024 assessment monitoring event. The monitoring system was recertified on December 31, 2024 to include MW-304 as a downgradient compliance well.

The CCR compliance monitoring wells were installed in the unconsolidated sediments with screens in the uppermost soil layer producing appreciable water, which was a sandy silt unit. Well depths range from approximately 14.5 to 40 feet, measured from the top of the well casing.

3.0 §257.90(E) ANNUAL REPORT REQUIREMENTS

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For CCR management units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31, 2029, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by §257.105(h)(1). At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

3.1 §257.90(E)(1) SITE MAP

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

A map of the site location is provided as **Figure 1**. A map with an aerial image showing the CCR units and all background (or upgradient) and downgradient monitoring wells with identification numbers for the groundwater monitoring program is provided as **Figure 2**.

3.2 §257.90(E)(2) MONITORING SYSTEM CHANGES

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

New monitoring well MW-304 was installed in 2024 and was added to the groundwater monitoring network as a compliance well. No monitoring wells included in the monitoring system were decommissioned in 2024.

3.3 §257.90(E)(3) SUMMARY OF SAMPLING EVENTS

In addition to all the monitoring data obtained under §257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

Two semiannual groundwater sampling events were completed in April and October 2024 for Appendix III constituents. A resampling event was conducted in July 2024 to confirm exceedances observed in the April 2024 monitoring event. A summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection or assessment monitoring programs is included in **Table 2**.

The validation and evaluation of the October 2023 monitoring event data was completed and transmitted to WPL on January 29, 2024. The validation and evaluation of the April 2024 monitoring event data was completed and transmitted to WPL on October 18, 2024. The validation and evaluation of the October 2024 monitoring event data was in progress at the end of 2024 and will be transmitted to WPL in 2025; therefore, the October 2024 monitoring results and analytical report will be included in the 2025 annual report. The October 2024 groundwater elevations are included in this report.

The sampling results for Appendix III parameters in October 2023 and April 2024 are summarized in **Table 5.** Field parameter results for the October 2023 and April 2024 sampling events are provided in **Table 6.** The analytical laboratory reports for October 2023 and April 2024 are provided in **Appendix C.** Historical results for each monitoring well through April 2024 are summarized in **Appendix D.**

Background sampling for new monitoring well MW-304 was performed on an approximate monthly basis in 2024, with background samples collected in April, July, August, October, November and December. Laboratory reports for the April, July, and August results are included in **Appendix C** and the results for those three events are summarized in **Appendix D**. Laboratory results for the October, November, and December background events are still under review and will be included in the 2025 annual report. The April 2024 Appendix IV background monitoring results for MW-304 are not included in the results table (**Table 5**) because the site was in detection monitoring in April. A separate results table including Appendix III and IV background sampling results collected from MW-304 in April, July, and August 2024 is included as **Table 7**.

3.4 §257.90(E)(4) MONITORING TRANSITION NARRATIVE

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels);

The EDG CCR units transitioned to assessment monitoring beginning with the October 2024 monitoring event. The assessment monitoring program was established in accordance with 40 CFR 257.94(e)(3) on October 28, 2024.

In 2024, the monitoring results for the October 2023 and April 2024 monitoring events were evaluated for statistically significant increases (SSIs) in detection monitoring parameters relative to background. The comparison to background was based on a prediction limit approach, comparing

the results to interwell upper prediction limits (UPLs) based on background monitoring results from the upgradient well (2R-OW). The interwell UPLs were updated in July 2023 using the background data from April 2016 through April 2023. The July 2023 UPL update memorandum was included in the 2023 Annual Groundwater Monitoring Report. The Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at Resource Conservation and Recovery Act (RCRA) Facilities (U.S. EPA, 2009; Section 5.3.1) recommends periodic updating of background for both intrawell and interwell analyses. For semiannual monitoring, an update interval of 2 to 3 years is recommended; therefore, the next UPL update is planned for 2026.

For the October 2023 monitoring event, SSIs for boron, fluoride, and sulfate were identified. An alternative source demonstration (ASD) was completed for the October 2023 results demonstrating that a source other than the CCR units was the likely cause of the SSIs. The ASD report is provided in **Appendix E**.

For the April 2024 monitoring event, SSIs for boron and sulfate were identified. An ASD was not prepared and the site transitioned to assessment monitoring beginning with the October 2024 monitoring event.

3.5 §257.90(E)(5) OTHER REQUIREMENTS

Other information required to be included in the annual report as specified in §257.90 through 257.98.

Additional potentially applicable requirements for the annual report, and the location of the requirement within the Rule, are provided in the following sections. For each cited section of the Rule, the portion referencing the annual report requirement is provided below in italics, followed by applicable information relative to the 2024 Annual Groundwater Monitoring and Corrective Action Report for the CCR Units.

3.5.1 §257.90(e) General Requirements

For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year.

Status of Groundwater Monitoring and Corrective Action Program. The groundwater monitoring and corrective action program was in detection monitoring at the beginning of 2024 and transitioned to assessment monitoring in October 2024.

Summary of Key Actions Completed (2024):

- Installation of new monitoring well MW-304 to monitor the closure area on the south side of the Former WPDES Pond Location.
- Statistical evaluation and determination of SSIs for the October 2023 and April 2024 monitoring events.
- ASD report for the SSIs identified from the October 2023 monitoring event.
- Two semiannual groundwater sampling and analysis events (April and October 2024).

- One detection monitoring resampling event for select parameters (July 2024).
- Initiation of assessment monitoring program.
- Recertification of the monitoring system to include new downgradient monitoring well MW-304.

Description of Any Problems Encountered. No problems were encountered in 2024.

Discussion of Actions to Resolve the Problems. Not applicable.

Projection of Key Activities for the Upcoming Year (2025).

- Resample the monitoring wells and analyze for all parameters in Appendix III and for those constituents in Appendix IV that were detected in the October 2024 monitoring event, in accordance with to §257.95(d)(1) (January 2025).
- Establish groundwater protection standards (GPSs) in accordance with §257.95(d)(2) and complete evaluation of October 2024 and January 2025 assessment monitoring results.
- Complete statistical evaluation and determination of any statistically significant levels (SSLs) above the GPSs for the October 2024 and April 2025 monitoring event.
- Complete two semiannual groundwater sampling and analysis events (April and October 2025).
- Conduct supplemental groundwater sampling events, if needed.
- If one or more Appendix IV constituents is detected at an SSL above the GPS, then within 30 days WPL will prepare a notification in accordance with §257.95(g) and within 90 days complete an alternative source demonstration or initiate an assessment of corrective measures (§257.95(g)(3)). WPL will also characterize the release pursuant to §257.95(g)(1) and provide notice pursuant to §257.95(g)(2).

3.5.2 §257.94(d) Alternative Detection Monitoring Frequency

The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer in the annual groundwater monitoring and corrective action report required by §257.90(e).

Not applicable. The EDG CCR units are no longer in detection monitoring.

3.5.3 §257.94(e)(2) Alternative Source Demonstration for Detection Monitoring

The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by §257.90(e), in addition to the certification by a qualified professional engineer.

The ASD report prepared to address the SSIs observed for the October 2023 detection monitoring event is provided in **Appendix E**. The ASD report is certified by a qualified professional engineer. An ASD was not prepared for the April 2024 detection monitoring event.

3.5.4 §257.95(c) Alternative Assessment Monitoring Frequency

The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer in the annual groundwater monitoring and corrective action report required by §257.90(e).

Not applicable. Assessment monitoring has been initiated at the site, but no alternative assessment monitoring frequency is proposed at this time.

3.5.5 §257.95(d)(3) Assessment Monitoring Results and Standards

Include the recorded concentrations required by paragraph (d)(1) of this section, identify the background concentrations established under §257.94(b), and identify the groundwater protection standards established under paragraph (d)(2) of this section in the annual groundwater monitoring and corrective action report required by §257.90(e).

Not applicable. Assessment monitoring was initiated following the sampling events discussed in this report.

3.5.6 §257.95(g)(3)(ii) Alternative Source Demonstration for Assessment Monitoring

The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by §257.90(e), in addition to the certification by a qualified professional engineer.

Not applicable. Assessment monitoring was initiated following the sampling events discussed in this report.

3.5.7 §257.96(a) Extension of Time for Corrective Measures Assessment

The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measure due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by §257.90(e), in addition to the certification by a qualified professional engineer.

Not applicable. Corrective measures assessment has not been initiated.

3.6 §257.90(E)(6) OVERVIEW

A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit.

The specific requirements for the overview under §257.90(e)(6) are listed and the information is provided at the beginning of this report, before the Table of Contents.

4.0 REFERENCES

Skinner, Earl L., and Borman, Ronald G., 1973, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigation Atlas HA-432.

U.S. EPA, 2009, The Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities.

Tables

- 1 Groundwater Monitoring Well Network
- 2 CCR Rule Groundwater Samples Summary
- 3A Groundwater Elevations State Monitoring Wells
- 3B Groundwater Elevations CCR Monitoring Wells
- 4 Horizontal Gradients and Flow Velocity
- 5 Groundwater Analytical Results Summary
- 6 Groundwater Field Data Summary
- 7 Groundwater Analytical Results Summary MW-304 April, July, and August 2024 Background Sampling

Table 1. Groundwater Monitoring Well Network
Edgewater 1-4 Closed Ash Disposal Facility / SCS Engineers Project #25224068.00

Monitoring Well	Location in Monitoring Network	Role in Monitoring Network
2R-OW	Upgradient	Background
MW-301	Downgradient	Compliance
MW-302	Downgradient	Compliance
MW-303	Downgradient	Compliance
MW-304	Downgradient	Compliance

 Last revision by: NLB
 Date: 10/1/2024

 Checked by: LH
 Date: 11/27/2024

Table 2. CCR Rule Groundwater Samples Summary Edgewater 1-4 Closed Ash Disposal Facility / SCS Engineers Project #25224068.00

Sample Dates		Background Well			
	MW-301	MW-302	MW-303	MW-304	2R-OW
April 16, 2024	D	D	D	В	D
July 26, 2024				В	
August 28, 2024				В	
October 3, 2024	Α	Α	Α	Α	Α
November 4, 2024				В	
December 4, 2024				В	
Total Samples	2	2	2	6	2

Abbreviations:

D = Required by Detection Monitoring Program

B = Baseline Detection Monitoring Sample

A = Assessment Monitoring Sample

-- = Not Sampled

 Last revision by:
 RM
 Date: 12/13/2024

 Checked by:
 NLB
 Date: 12/20/2024

Table 3A. Groundwater Elevations - State Monitoring Wells Edgewater 1-4 Closed Ash Disposal Facility / SCS Engineers Project #25224068.00

	Ground Water Elevation in feet above mean sea level (amsl)																					
Well Number	1-OW	2R-OW	3R-OW	4R-OW	5-OW	W-5A	6-AR	6R-OW	7A-OW	7-OW	18-OW	29-OW	29-A	30-OW	31-OW	32-OW	36-OW	37-OW	38R-OW	39R-OW	40-OW	SG-01
Top of Casing (old 1)^									593.7	592.73		589.03							620.98		587.42	
Top of Casing (old 2)^	591.72	612.72	591.32	595.60	600.72	601.84	591.32	590.98	593.41	592.51	586.47	588.86	589.25	590.81	589.00	589.07	614.63	615.02	621.14	614.04	586.05	
Top of Casing Elevation (ft amsl)^	592.18	611.85	591.59	594.68	600.94	600.66	590.78	591.74	593.45	593.19	ABAND	588.72	588.43	591.13	589.22	589.21	ABAND	615.30	620.24	614.27	586.69	ABAND
Total Depth (ft from top of casing)	11.10	17.53	15.82	16.48	10.65	21.51	19.86	10.37	20.21	9.93	14.25	19.96	43.12	14.88	14.98	14.95	21.01	18.55	29.00	22.29	17.3	
Measurement Date																						
October 24, 2012	588.11	607.82	582.64	585.24	595.63	596.69	587.42	587.40	592.00	589.78	583.49	585.33	586.60	586.40	582.58	583.63	599.77	599.42	599.38	598.05		597.60
April 18, 2012					595.89	597.13	587.33	587.35	592.35	589.79		585.32	588.39									
October 24, 2012					595.63	596.69	587.42	587.40	592.00	589.78		585.33	586.60									
April 8, 2013	588.50	609.92	588.37	586.35	596.66	597.65	588.40	587.34	592.79	589.95	583.97	585.78	588.07	588.57	584.35	584.50	600.79	600.24	600.16	598.30	-	597.9
October 22, 2013	584.88	601.15	580.90	584.46	594.23	595.64	582.64	584.83	591.23	587.24	NM ⁽¹⁾	584.70	586.76	582.19	580.40	580.76	599.13	598.22	598.42	596.56	-	598.0
April 22, 2014	588.05	609.22	587.99	586.11	595.18	597.10	587.00	587.37	589.27	589.51	NM ⁽¹⁾	585.38	588.22	587.53	583.75	583.75	NM ⁽¹⁾	599.67	599.38	598.56		597.8
October 28, 2014	586.14	607.27	586.30	585.08	595.33	596.51	587.68	586.99	591.92	589.29	NM ⁽¹⁾	585.00	587.84	585.48	582.88	582.68	600.07	599.81	599.26	598.37	-	595.85
April 7 - 9, 2015	587.90	608.47	587.44	585.52	595.66	596.76	586.99	587.50	591.95	588.50	ABAND	585.44	587.55	586.29	583.21	583.87	599.69	599.21	599.21	597.46	583.77	597.6
October 8, 2015	584.78	604.22	583.34	584.52	594.76	594.47	582.65	585.67	591.23	589.71	ABAND	584.69	587.27	584.26	581.60	582.52	600.29	599.47	599.70	598.09	583.01	
April 4-5, 2016	588.40	610.02	587.72	586.69	596.70	597.81	584.52	585.68	592.41	587.93	ABAND	582.95	587.25	586.91	584.35	584.47	601.05	601.37	601.18	601.13	579.28	599.0
October 17, 2016 (2)	587.50	607.27	586.71	585.15	595.41	596.82	584.34	586.61	592.01	587.65	ABAND	581.25	586.10	586.23	583.02	583.83	600.87	600.70	600.74	599.49	579.42	
April 12-13, 2017	588.23	609.80	587.95	586.31	596.08	597.69	586.77	587.32	592.19	587.06	ABAND	583.74	585.43	585.36	583.68	584.52	602.01	602.11	602.08	601.29	584.02	
October 9, 2017	584.14	600.87	581.00	584.49	594.68	596.04	583.03	583.51	590.50	585.96	ABAND	583.01	584.88	582.76	580.93	581.18	600.18	598.48	599.65	598.07	583.05	
April 2, 2018	587.79	607.87	586.63	586.68	595.73	596.88	586.80	587.44	591.76	589.62	ABAND	585.51	587.11	585.68	582.95	582.85	600.71	600.00	600.04	597.99	583.64	
June 19, 2018	NM	605.70	585.49	585.20	595.41	NM	NM	NM	NM	587.20	ABAND	585.43	585.79	584.96	582.29	NM	NM (1)	600.44	600.68	599.61	583.07	NM
October 1, 2018	585.37	604.61	584.18	584.86	595.24	596.44	586.10	586.86	591.01	588.75	ABAND	585.04	584.94	584.79	582.11	582.81	600.30	600.12	600.27	599.79	583.17	
April 8, 2019	588.57	609.50	588.01	591.93	596.03	597.33	584.61	587.35	591.92	590.06	ABAND	585.76	586.75	587.83	584.18	584.85	600.21	599.60	599.74	598.49	583.75	
October 9-10, 2019	587.85	609.39	587.39	585.99	595.68	596.92	586.42	587.24	591.66	587.53	ABAND	585.14	585.10	587.15	583.63	584.48	599.92	600.25	600.01	599.82	583.08	ļ
April 8-9, 2020	588.03	608.97	587.70	586.05	595.57	596.89	585.74	586.95	591.61	587.76	ABAND	584.98	587.35	587.29	583.70	584.59	599.40	599.52	599.48	599.38	583.01	N 1 N 4
October 14-15, 2020 April 14, 2021	584.62 587.95	604.37 608.50	582.20 587.64	584.54 585.42	593.27 594.87	594.86 596.13	582.71 586.53	583.45 587.29	588.81 591.28	586.53 589.89	ABAND ABAND	583.95 585.16	586.83 587.64	583.83 587.06	582.60 583.46	582.82 584.25	ABAND ABAND	596.87 DRY	NM 596.50	594.72 593.95	583.26 583.08	NM NM
October 27-28, 2021	584.53	603.62	580.74	584.47	593.06	594.70	579.90	584.60	590.45	587.39	ABAND	584.60	586.65	582.89	581.88	582.02	ABAND	DRY	595.49	592.34	582.74	ABAND
February 28, 2022	NM	NM	360.74 NM	NM	373.06 NM	374.70 NM	3/7.70 NM	NM	NM	367.37 NM	ABAND	NM	NM	302.07 NM	NM	NM	ABAND	DRY	595.25	372.34 NM	NM	ABAND
April 13, 2022	588.64	608.63	588.30	585.06	595.72	595.11	586.08	588.15	591.60	590.70	ABAND	584.69	584.82	588.02	584.10	585.09	ABAND	DRY	594.43	DRY	583.09	ABAND
October 6, 2022	584.39	601.93	580.62	583.52	593.16	593.41	582.43	584.86	590.02	587.38	ABAND	583.21	584.18	583.09	581.55	581.98	ABAND	DRY	594.62	593.36	582.60	ABAND
April 25-26, 2023	588.51	607.74	588.00	585.15	595.48	595.22	588.13	588.18	591.90	590.13	ABAND	584.92	586.46	587.94	583.60	584.62	ABAND	597.35	596.81	598.09	583.17	ABAND
October 10-11, 2023	583.99	599.85	579.87	583.26	592.52	592.83	583.52	582.36	588.67	585.67	ABAND	583.46	583.80	582.27	580.47	581.37	ABAND	DRY	595.63	594.40	582.01	ABAND
April 15-17, 2024	588.50	607.70	588.14	584.84	595.52	595.15	588.31	587.93	591.87	590.26	ABAND	584.66	587.07	587.65	583.69	584.49	ABAND	596.81	596.66	596.69	583.19	ABAND
October 3-4, 2024	584.42	602.06	582.67	583.52	593.62	593.74	584.74	584.57	590.38	585.65	ABAND	584.58	585.61	584.02	581.48	582.30	ABAND	DAMAG	596.33	597.05	582.08	ABAND
											<u> </u>				<u> </u>		<u> </u>					
Bottom of Well Elevation (ft)	580.62	595.19	575.50	579.12	590.07	580.33	571.46	580.61	573.20	582.58	572.22	568.90	546.13	575.93	574.02	574.12	593.62	596.47	592.14	591.75	568.75	

Notes:	Created by:_	MDB	Date:	5/6/2013
NM = not measured	Last revision by:	BAS	Date:	10/17/2024
ABAND = abandoned	Checked by:	NLB	Date:	12/2/2024

1: Well broken

^: Monitoring well adjustments and resurveys:

Monitoring well 38R-OW was extended on October 30, 2020 during repairs following well damage by pond closure construction equipment.

Monitoring Well 40-OW cut down to have a top of casing elevation of 586.05 famsl on December 3, 2021.

All active monitoring wells were resurveyed in January 2023. These elevations are retroactively applied to 2022 monitoring events. Total well depth, top of well screen elevation, and bottom of well elevation were not updated unless the well casing was extended or cut down.

I:\25224068.00\Deliverables\2024 - Annual CCR Report\Tables\[Table 3A - EDG wlstat GW Elevation Summary.xls]levels

^{2:} Well casings at 7-OW, 7A, and 29-OW were cut down to allow the protective covers to close on October 17, 2016. 7-OW was cut down by 0.22 ft, 7A was cut down by 0.29 ft, and 29-OW was cut down by 0.17 ft. Top of casing elevations in this table were adjusted accordingly.

^{*:} Well was frozen

Table 3B. Groundwater Elevations - CCR Monitoring Wells WPL - Edgewater 1-4 (Closed) Ash Disposal Facility / SCS Engineers Project #25224068.00

	Depth to Water in feet below top of well casing							
Raw Data	MW-301	MW-302	MW-303	MW-304	2R-OW			
Measurement Date								
April 8, 2016	4.67	18.96	22.95	NI	3.04			
June 20, 2016	6.12	19.47	24.77	NI	6.02			
August 9, 2016	6.42	19.62	24.27	NI	6.98			
October 20, 2016	5.92	19.69	23.62	NI	5.45			
January 23-24, 2017	7.32	18.85	23.15	NI	3.08			
April 6, 2017	4.38	21.58	22.95	NI	3.00			
October 24, 2017	5.65	19.29	23.55	NI	5.09			
August 1, 2017	7.02	19.93	24.63	NI	8.13			
October 24, 2017	7.22	19.90	24.02	NI	10.98			
April 2, 2018	5.88	19.44	23.22	NI	4.85			
October 1, 2018	6.82	19.87	23.82	NI	8.11			
April 8, 2019	5.50	19.47	23.11	NI	3.22			
October 7, 2019	4.86	19.57	23.22	NI	3.33			
June 26, 2020	6.53	NM	NM	NI	NM			
October 15, 2020	9.32	16.59	18.80	NI	8.45			
April 14, 2021	9.25	14.59	16.98	NI	4.22			
October 26, 2021	13.74	15.33	17.92	NI	8.68			
April 13, 2022	9.53	14.65	16.79	NI	3.22			
October 6, 2022	14.21	15.74	18.36	NI	9.92			
April 25-26, 2023	9.13	14.07	16.79	NI	4.11			
October 10, 2023	14.39	15.69	18.99	NI	11.47			
April 16, 2024	9.52	14.18	16.90	15.40	4.15			
July 26, 2024				15.81				
August 28, 2024				15.53				
October 3, 2024	12.66	14.69	18.08	16.08	9.22			
November 4, 2024				16.11				
December 4, 2024				16.42				

Ground Water Elevation in feet above mean sea level (amsl)										
Well Number	MW-301	MW-302	MW-303	MW-304	2R-OW					
Top of Casing Elevation - Old ⁽¹⁾	604.42	615.15	611.99	-	612.72					
Top of Casing - 11/2020 Survey - Old ⁽¹⁾	606.06	606.77	603.87	-	NM					
Top of Casing Elevation (feet AMSL) ^(1,2,3,4)	606.90	607.70	604.78	609.24	611.85					
Screen Length (ft)	5.00	5.00	5.00	10.00	10.00					
Total Depth (ff from top of casing)	29.95	32.55	26.05	37.80	13.63					
Top of Well Screen Elevation (ft)	581.95	580.15	579.60	581.44	608.22					
Measurement Date										
April 8, 2016	599.75	596.19	589.04	NI	609.68					
June 20, 2016	598.30	595.68	587.22	NI	606.70					
August 9, 2016	598.00	595.53	587.72	NI	605.74					
October 20, 2016	598,50	595.46	588.37	NI	607.27					
January 23-24, 2017	597.10	596.30	588.84	NI	609.64					
April 6, 2017	600.04	593.57	589.04	NI	609.72					
October 24, 2017	598.77	595.86	588.44	NI	607.63					
August 1, 2017	597.40	595.22	587.36	NI	604.59					
October 24, 2017	597.20	595.25	587.97	NI	601.74					
April 2, 2018	598.54	595.71	588.77	NI	607.87					
October 1, 2018	597.60	595.28	588.17	NI	604.61					
April 8, 2019	598.92	595.68	588.88	NI	609.50					
October 7, 2019	599.56	595.58	588.77	NI	609.39					
June 26, 2020	597.89	NM	NM	NI	NM					
October 15, 2020	595.10	590.18	585.07	NI	604.27					
April 14, 2021	596.81	592.18	586.89	NI	608.50					
October 26, 2021	592.32	591.44	585.95	NI	604.04					
April 13, 2022	597.37	593.05	587.99	NI	608.63					
October 6, 2022	592.69	591.96	586.42	NI	601.93					
April 25-26, 2023	597.77	593.63	587.99	NI	607.74					
October 10, 2023	592.51	592.01	585.79	NI	600.38					
April 16, 2024	597.38	593.52	587.88	593.84	607.70					
July 26, 2024				593.43						
August 28, 2024				593.71	-					
October 3, 2024	594.24	593.01	586.70	593.16	602.63					
November 4, 2024				593.13						
December 4, 2024				592.82						
Bottom of Well Elevation (ft)	576.95	575.15	578.73	571.44	598.22					

NM = not measured

M1 = not installed
(1): MW-302 and MW-303 were shortened in September 2020 due to site regrading during pond closure. The wells were resurveyed in November 2020.

(2): MW-301 was extended in November 2020 due to site regrading during pond closure. The well was

(3): All site wells were re-surveyed in January 2023, and elevations were tied to NGS benchmark PID #DE7593.

(4): Current TOC elevation and total well depth shown in table. Groundwater elevations prior to the most recent survey were calculated with the previous TOC elevations unless otherwise noted.

Created by:	MDB	Date:	6/27/2016
Last rev. by:	EMS	Date:	11/4/2024
Checked by:	RM	Date:	11/8/2024
Scientist QA/QC:	TK	Date:	1/5/2025

Table 4. Horizontal Gradients and Flow Velocity - CCR Monitoring Wells

Edgewater 1-4 Closed Ash Disposal Facility / SCS Engineers Project #25224068.00

January - December 2024

	Flow Path A - South									
Sampling Dates	h1 (ft)	h2 (ft)	ΔI (ft)	Δh/Δl (ft/ft)	V (ff/d)					
4/15-17/2024	590.00	587.88	210	0.01	0.01					

	Flow Path B1 - Southeast							
Sampling Dates	h1 (ft)	h2 (ft)	ΔI (ft)	Δh/Δl (ft/ft)	V (ff/d)			
	593.01	585.65	200	0.04	0.03			
10/3/2024		Flo	w Path B2 - Sc	outh				
	590.00	586.70	255	0.01	0.01			

	K Value	
Wells	(cm/sec)	K Value (ft/d)
MW-301	2.1E-05	0.060
MW-302	4.0E-04	1.139
MW-303	1.1E-04	0.304
Geometric		
Mean	9.7E-05	0.274

Assumed Porosity, n

Groundwater flow velocity equation: $V = [K^*(\Delta h/\Delta I)] / n$

ft = feet

ft/d = feet per day

K = hydraulic conductivity

n = effective porosity

V = groundwater flow velocity

h1, h2 = point interpreted groundwater

elevation at locations 1 and 2

 ΔI = distance between location 1 and 2

 $\Delta h/\Delta l$ = hydraulic gradient

Note:

1. See Figures 3 and 4 for velocity calculation flow path locations.

Last revision by: NLB Date: 1/7/2025
Checked by: BLR Date: 1/8/2024

Table 5. Groundwater Analytical Results Summary - October 2023 and April 2024 Edgewater 1-4 Closed Ash Disposal Facility / SCS Engineers Project #25224068.00

		Ва	ckgrou	und Well		Compliance Wells									
			2R-0	ow		М	W-301	MV	V-302	MW	1-303	-303 MW-304			
Parameter Name	UPL	10/10/20)23	4/16/2	2024	10/10/2023	4/16/2024	10/10/2023	4/16/2024	10/10/2023	4/16/2024	4/16/2	024	7/27/2	024
Groundwater Elevation, ft amsl		600.38		607.7		592.51	597.38	592.01	593.52	585.79	587.88	593.84		593.43	
Appendix III												-		-	
Boron, µg/L	78.4	33.5		36.7		6,600	6,490	1,400	1,610	4,160	5,100	4,780	P6		
Calcium, µg/L	201,000	156,000	P6	109,000		98,500	93,900	59,400	48,600	134,000	148,000	278,000	P6	83,800	P6
Chloride, mg/L	456	420		67.4		18.3	18.8	22.0	<3.0 D3	19.9	22.9	22.1			
Fluoride, mg/L	0.200	< 0.95	D3	0.14	J, M0	0.20 J	0.27 J	0.85	<0.48 D3	<0.095	<0.095	0.80	J, D3		
Field pH, Std. Units	8.57	7.06		6.99		7.66	7.34	7.89	7.58	6.99	6.64	7.40		7.68	
Sulfate, mg/L	36.7	28.7		9.0	M0	185	191	57.5	6.0 J, D3	<0.44	<0.44	99.5			
Total Dissolved Solids, mg/L	1,220	1,080		566		560	572	308	348	600	724	474			

4.4

Blue shaded cell indicates the compliance well result exceeds the UPL (background) and the Limit of Quantitation (LOQ).

Abbreviations:

UPL = Upper Prediction Limit

LOD = Limit of Detection LOQ = Limit of Quantitation mg/L = milligrams per liter µg/L = micrograms per liter

Lab Notes:

D3 = Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

J = Estimated concentration at or above the LOD and below the LOQ.

P6 = Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.

M0 = Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

Notes:

1. An individual result above the UPL does not constitute an SSI above background. See the accompanying report text for identification of statistically significant results.

2. Interwell UPLs calculated based on results from background well 2R-OW. Interwell UPLs based on

1-of-2 retesting approach. The interwell UPLs were updated in July 2023 using data from April 2016 through April 2023.

 Last revision by:
 RM
 Date:
 1/17/2025

 Checked by:
 LH
 Date:
 1/17/2025

 Scientist/PM QA/QC:
 Date:

Table 6. Groundwater Field Data Summary Edgewater 1-4 Closed Ash Disposal Facility / SCS Engineers Project #25224068.00

Well	Sample Date	Groundwater Elevation (ft amsl)	Field Temperature (deg C)	Field pH (Std. Units)	Oxygen, Dissolved (mg/L)	Field Specific Conductance (umhos/cm)	Field Oxidation Potential (mV)	Turbidity (NTU)
MW-301	10/10/2023	592.51	10.4	7.66	4.85	339	548	
10100-301	4/16/2024	597.38	9.7	7.34	4.32	785	132.1	33.5
NAVA 200	10/10/2023	592.01	11.7	7.89	1.40	465	310.8	4.8
MW-302	4/16/2024	593.52	10.6	7.58	1.77	481	-51.9	10.2
MW-303	10/10/2023	585.79	11.4	6.99	3.49	1030	311.5	
1/1/1/-303	4/16/2024	587.88	10.5	6.64	4.65	1155	-61.6	50.8
	4/16/2024	593.84	9.8	7.40	2.79	563	225.7	
MW-304	7/26/2024	593.43	11.0	7.68	0.09	573	-2.6	63.4
	8/28/2024	593.71	11.1	7.70	0.11	572	-26.5	30.2
	10/10/2023	600.38	12.7	7.06	1.22	1,902	544.4	3.8
2R-OW	4/16/2024	607.70	8.6	6.99	0.70	952	133.4	3.6

Abbreviations:

mg/L = milligrams per liter ft amsl = feet above mean sea level NTU = Nephelometric Turbidity Unit μmhos/cm = micromhos per centimeter deg C = Degrees Celsius mV = millivolts -- = Not analyzed

Created by: NDK

Last revision by: RM

Checked by: LH

Date: 9/19/2022

Date: 1/17/2025

Date: 1/17/2025

Table 7. Groundwater Analytical Results Summary - April, July, and August 2024 Edgewater 1-4 Closed Ash Disposal Facility / SCS Engineers Project #25224068.00

				MW-304				
Parameter Name	UPL		4/16/2024		7/26/2024		8/28/2024	
Groundwater Elevation, ft amsl			593.84		593.43		593.71	
Appendix III		-						
Boron, µg/L	78.4		4,780	P6			4230	
Calcium, µg/L	201,000		278,000	P6	83,800	P6	82,700	
Chloride, mg/L	456		22.1				25	
Fluoride, mg/L	0.200		0.80	J, D3			0.83	
Field pH, Std. Units	8.57		7.40		7.68		7.70	
Sulfate, mg/L	36.7		99.5				94.5	
Total Dissolved Solids, mg/L	1,220		474				404	
Appendix IV	UPL	GPS						
Antimony, µg/L	NA	6	< 0.30	D3			< 0.15	
Arsenic, µg/L	NA	10	6.9				1.4	
Barium, µg/L	NA	2,000	293				69.1	
Beryllium, µg/L	NA	4	1.3	J, D3			< 0.25	
Cadmium, µg/L	NA	5	< 0.30	D3			< 0.15	
Chromium, µg/L	NA	100	42.5				1.6	J
Cobalt, µg/L	NA	6	13.7				0.72	J
Fluoride, mg/L	NA	4	0.8	J, D3			0.83	
Lead, µg/L	NA	15	12				0.47	J
Lithium, µg/L	NA	40	82.8				57.9	
Mercury, µg/L	NA	2	<0.066				<0.066	
Molybdenum, µg/L	NA	100	2,630				1950	
Selenium, µg/L	NA	50	0.95	J, D3			<0.32	
Thallium, µg/L	NA	2	0.32	J, D3			< 0.14	
Radium 226/228 Combined, pCi/L	NA	5	1.92				0.672	

Blue shaded cell indicates the compliance well result exceeds the UPL
(background) and the Limit of Quantitation (LOQ).
Yellow highlighted cell indicates the compliance well result exceeds the GPS.

Abbreviations:

UPL = Upper Prediction Limit

LOD = Limit of Detection

mg/L = milligrams per liter

GPS = Groundwater Protection Standard

LOQ = Limit of Quantitation

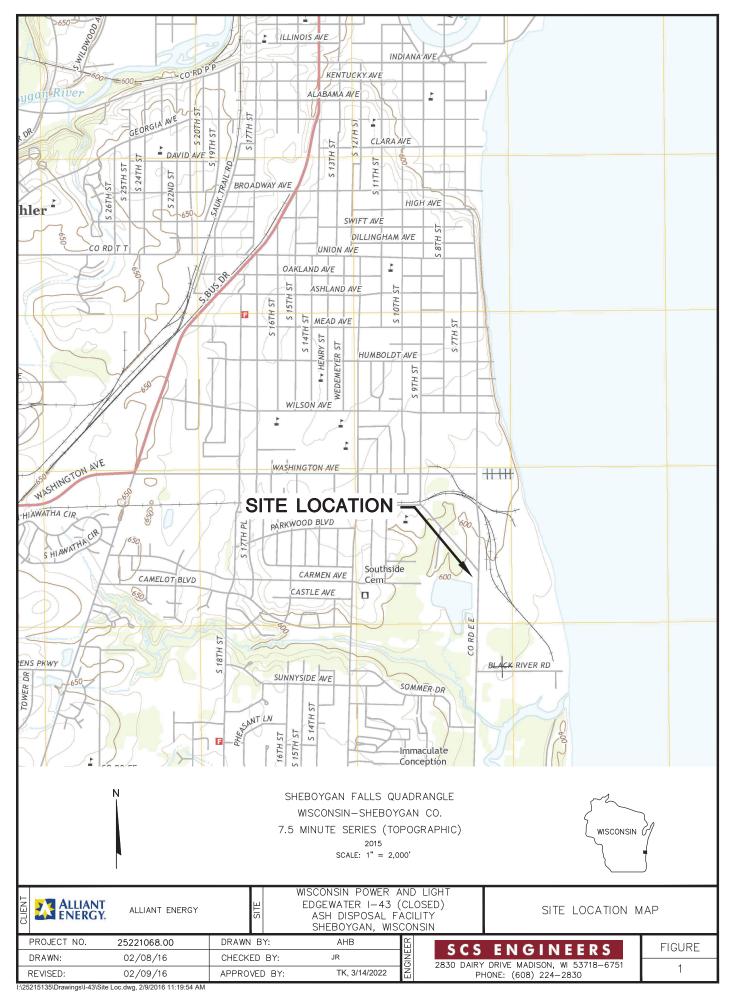
μg/L = micrograms per liter

Lab Notes:

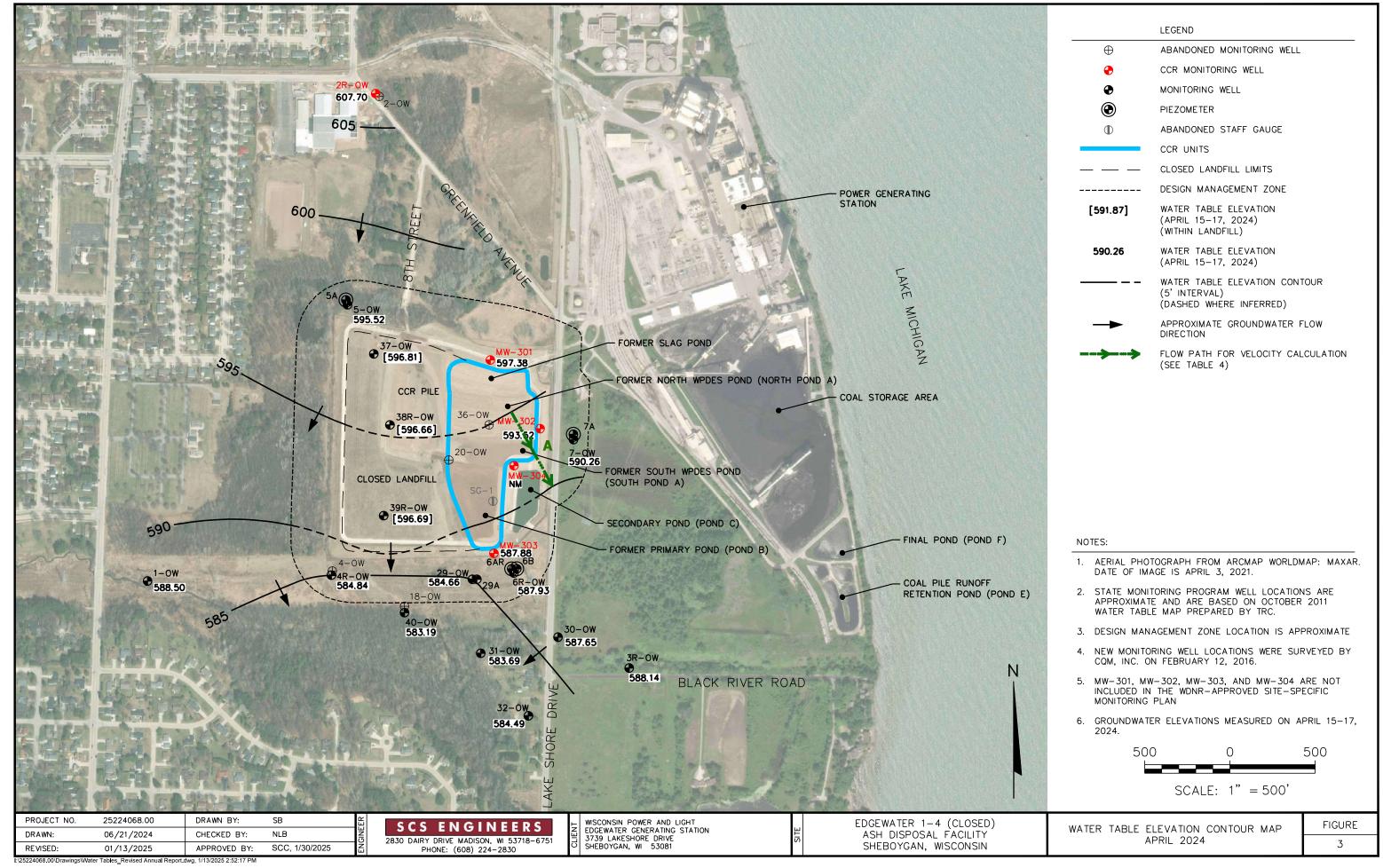
D3 = Sample was diluted due to the presence of high levels

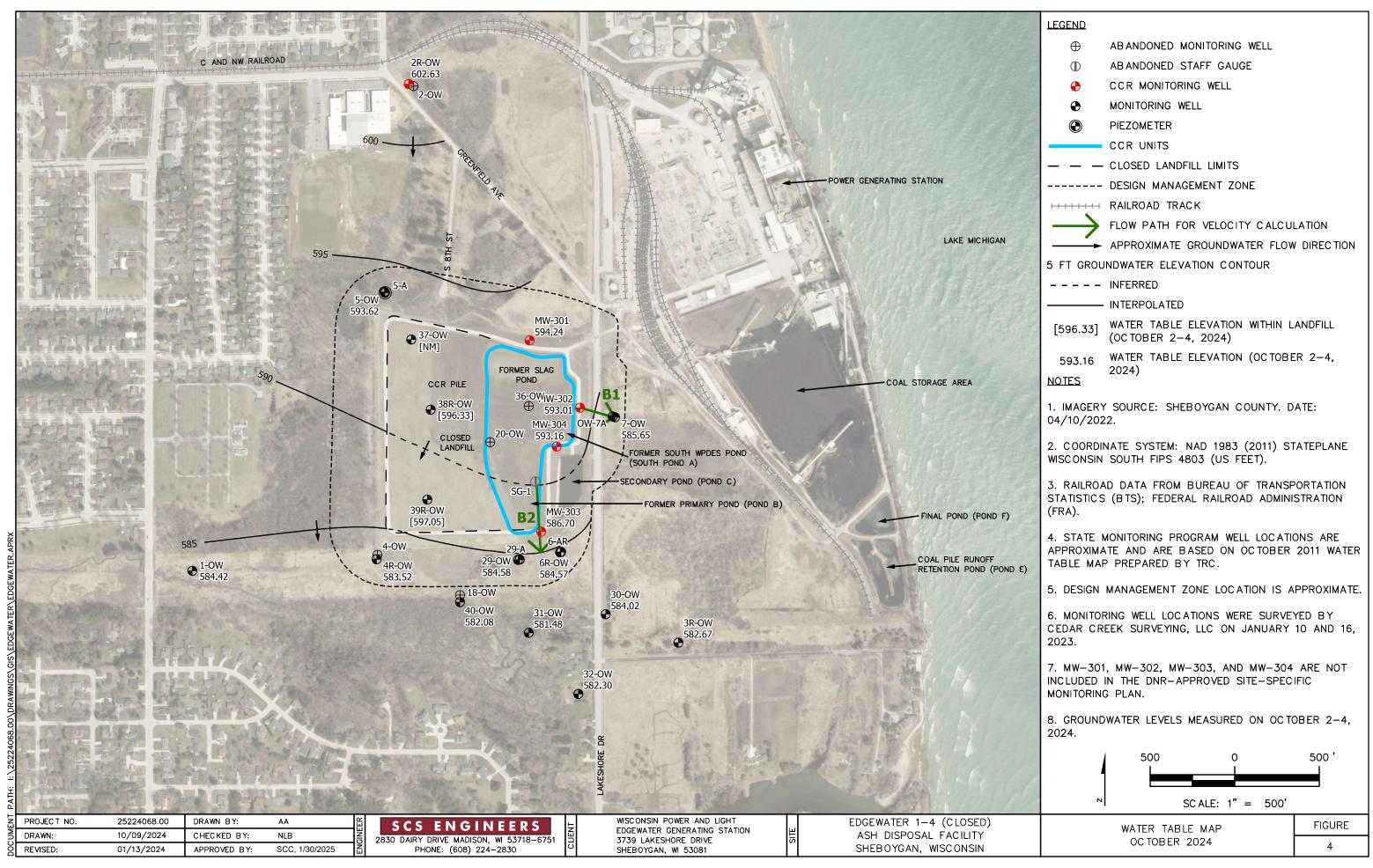
J = Estimated concentration at or above the LOD and below the LOQ.

P6 = Matrix spike recovery was outside laboratory control limits due to a parent


Notes:

- 1. An individual result above the UPL does not constitute an SSI above background. See the accompanying report text for
- 2. Interwell UPLs calculated based on results from background well 2R-OW. Appendix III interwell UPLs based on
- 1-of-2 retesting approach. The interwell UPLs were updated in July 2023 using data from April 2016 through April 2023.
- 3. UPLs for Appendix IV parameters will be calculated once the minimum of four assessment monitoring sampling events have been completed.


Last revision by:	RM	Date:	1/17/2025
Checked by:	LH	Date:	1/17/2025


Figures

- 1 Site Location Map
- 2 Site Plan and Monitoring Well Locations
- 3 Water Table Elevation Contour Map April 2024
- 4 Water Table Map October 2024

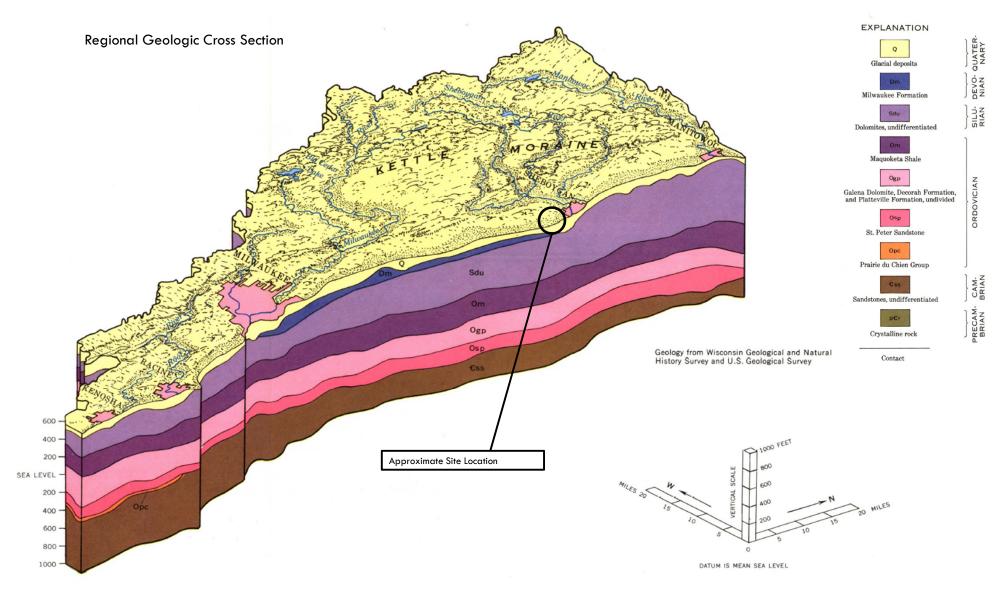
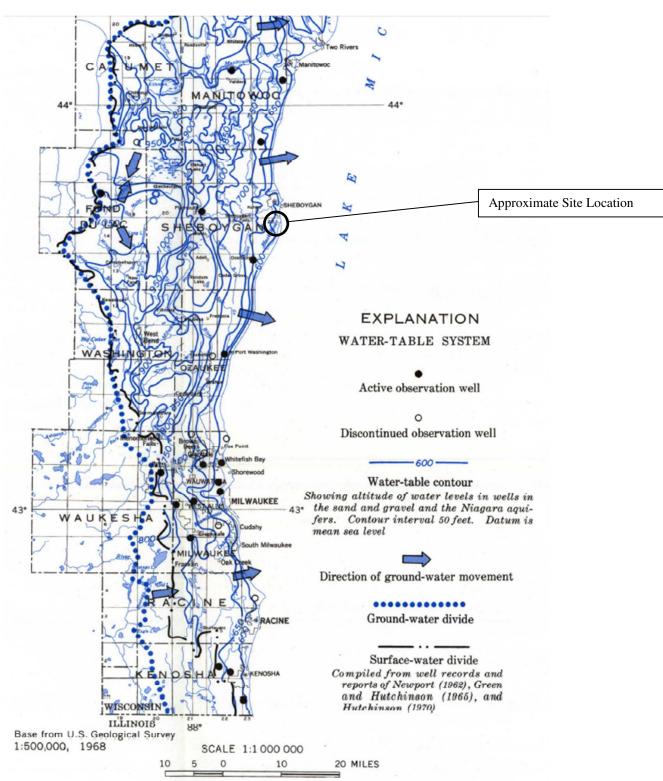

Appendix A Summary of the Regional Hydrogeologic Stratigraphy

Table EGS-3. Regional Hydrogeologic Stratigraphy Edgewater Generating Station / SCS Engineers Project #25215053

Age	Hydrogeologic Unit	General Thickness (feet)	Name of Rock Unit*	Predominant Lithology
Quaternary	Sand and Gravel	0 to 235	Surface sand and gravel	Sand and Gravel
	Aquifer	0 to 300	Buried sand and gravel	
Devonian	Niagara Dolomite	0 to 750	Dolomite	Dolomite
Silurian	Aquifer	010730	(undifferentiated)	Dolonine
	Confining Unit	0 to 400	Maquoketa Shale	Shale and dolomite
Ordovician		100 to 340	Galena Decorah Platteville	Dolomite
		0 to 330	St. Peter	Sandstone
	Sandstone Aquifer	0 to 140	Prairie du Chien	Dolomite
Cambrian		0 to 3,500?	Trempeleau Franconia Galesville Eau Claire Mt. Simon	Sandstone, some Dolomite and Shale
Precambrian	Not an Aquifer	Unknown	Crystalline Rocks	lgneous and metamorphic rocks


Source:

Skinner, Earl L. and Ronald G. Borman, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigations Atlas HA-432, 1973.

Source: Skinner, Earl L. and Ronald G. Borman, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigations Atlas HA-432, 1973.

Regional Groundwater Flow Map – Uppermost Aquifer

Source: Skinner, Earl L. and Ronald G. Borman, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigations Atlas HA-432, 1973.

Appendix B Boring Logs and Well Construction Documentation

State of Wisconsin Route to: Solid Waste	Haz. Waste Wastewater	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 4-90
Desertment of Natural Resources Env Perronce & Renai	Underground Tanks O Other O	Well Name
	nd Location of Well	Well Name 2 A - D(1)
WITH Engewater Site 1111	89 ft. 05. 1599.69 ft DE	21100
Facility License, Permit or Monitoring Number Grid Ori	gin Location	Wis Unique Well Number DNR Well Number
Facility License, Farini or installed	Long or	
		Date Well Installed 4, 79, 90
Type of Well Water Table Observation Well 211 St. Plan		1/2/1/8
Discounter D2 Carrier	Location of Waste/Source	mm dd y v
Distance Well Is From Waste/Source Boundary Wan14	of NE 1/4 of Sec. 2, T. 14 N. R. 23	Well Installed By: (Person's Name and Firm)
ft. Leaving	01/16 1/4 01 3 ct 11 111 111 111.	Mike Mc Arole
	n of Well Relative to Waste/Source Joggradient 5 Sidegradient	
		MIK Environmental
	Downgradient n 🗆 Not Known	
A. Protective pipe, top elevation _612.80 ft. MSL-	1. Cap and lock	· · · · · · · · · · · · · · · · · · ·
		ver pipe:
P. Well casing, top elevation _6/2.72 ft MSL	Inside diam	neter: in.
D. With the sign of	1111/	ft.
C. Lard surface elevation _610.3 ft. MSL	b. Length:	
C. Danter	C Maignail	Steel 🔼 04
D. Surface seal, bottom ft. MSL or 1.0 ft.	 	Other 🛚 🧮
	d Additional	protection? Yes 🖂 No
12 USCS classification of soil near screen:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ជាbe:
GP GM GC GW G SW G SP G		
SM SC ML MH CL CH	3. Surface seal:	
Betrock 🗆		Concrete 🔼 01
13. Sieve analysis attached?		Other 🗖 🎆
1		veen well casing and protective piper
14. Drilling method used: Rotary 50	4. Maletal Cell	Bentonite 🖾 30
Hollow Stem Auger 🖾 4.1		20
Other []		Armular space seal 🔲 💯
		Other 🔲 🚉
. W. E.O. 4: E.O.		ce seal: a. Granular Bentonite 🖾 33
15. Drilling fluid used: Water 0 02 Air 0 01	5. Armular space	te seal: Replantite-sand shirty 3 5
Drilling Mud [] 03 None [2 99	bLbs/	gai iiidd weight
	Lbs.	gal mud weight Bentonite slurry 3 1
16. Drilling additives used? Yes No	96 B	entonite Bentonite-cement grout \(\Pi \) 50
10. Diming	5. Armulæ space bLbs/ cLbs/ d % B e f. How instead	Ft 3 volume added for any of the above
	c	
Describe	£ How inst	alled: Tremie 💆 01
17. Source of water (attach analysis):		Tremie pumped 🛛 02
		Gravity 🛛 03
		al: a Bentonite granules 🔀 33
	6. Benionite se	
E. Bentonite seal, top fr. MSL or	16 29 22 / 5, 417-1	n. \$\alpha 3/8 in. \$\Bar\tag{1}/2 in. Bentonite pellets \$\Bar\tag{3} 2\$
E Bentonite seat, up		Other 🔲 🚉
6 NG - 2 S	ft. 7. Fine sand m	aterial: Manufacturer, product name & mesh size
F. Fine sand, top ft. MSL or	" Received	Mine 65-75
G. Filter pack, top ft. MSL or _ 3 3	it. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ೂರರಣೆ ಗ್ ^೨
•	3 Filter pack	material: Manufacturer, product name and mesh size
H. Screen joint, top ft. MSL or _ 4.5		er Mine 65-75
H. Screen joint, top R. MSL or Z.	- Lary	<u></u>
	b. Volume	
I. Well bottom ft. MSL or _ 14.5	ft. 9. Well casing	: Flush threaded PVC schedule 40 🖸 23
1. Well bottom		Flush threaded PVC schedule 80 24
. vo. : , U 5		Other 🗖 🦉
J. Filter pack, bottom ft. MSL or _ 14.5		
	10. Screen mau	
K. Borehole, bottom ft. MSL or	fL. Screen t	ype: Factory cut 🔯 11
K. Borehole, bottom n. MSL or		Continuous slot 0 1
		Other 🛛 🥷
L. Borchole, diameter _ & O in.		Park Ta
	b. Manufac	turer Beolock Ino.
V 00 Warding 238 =	c. Slot size	: 0.075 m
M. O.D. well casing 2.38 in.	d Sloned	length:ft.
_	`	
N. I.D. well casing 200 in.	11. Backful ma	terial (below filter pack): None 💢 14
I hereby certify that the information on this form	is true and correct to the best of m	y knowledge.
	Firm	/ . /. /
Signature	Firm Miller Fraince	els + Scientists
the full		rm as required by chs. 144, 147 and 160, Wis. Stats.
		mi as recomed by Cas. 144, 147 and 100, 17 is office.

Please complete both sides of this form and return to the appropriate DNR office listed at the top of this form as required by chs. 144, 147 and 160, Wis. Stats and ch. NR 141, Wis. Ad. Code. In accordance with ch. 144, Wis Stats, failure to file this form may result in a forfeiture of not less than \$10, nor more than and ch. NR 141, Wis. Ad. Code. In accordance with ch. 147, Wis. Stats, failure to file this form may result in a forfeiture of not more than \$10,000 for each of the complete of the completed form should be sent.

On the complete state of this form as required by chs. 144, 147 and 160, Wis. Stats and ch. NR 141, Wis. Ad. Code. In accordance with ch. 147, Wis. Stats, failure to file this form may result in a forfeiture of not more than \$10,000 for each of the complete of the

	Watershed/Wastewater Remediation/Redevelopm	Waste Mar	nagemen	MONITORING WELL Form 4400-113A	L CONSTRUCTION Rev. 7-98
Facility/Project Name WPL-Edgewater Generating Station	Local Grid Location of V		ft. E.	Well Name MW-301	
Facility License, Permit or Monitoring No. 02524	Local Grid Origin (r Well Location	Wis. Unique Well No. VV862	DNR Well ID No.
Facility ID 460021980	St. Plane 632740.8	8 ft. N,25734	128.5 ft. E. S/C/N	Date Well Installed	/_15/2016
Type of Well Well Code 12 / PZ	Section Location of Was	of Sec. 02.T1	4 N, R. 23 E	Well Installed By: Na Kevin Durst	
Distance from Waste/ Enf. Stds.	u Upgradient	s Sidegradier	Gov. Lot Number	Badger State Dri	lling
A. Protective pipe, top elevation 60.		n Not Known	1. Cap and lock?		X Yes No
B. Well casing, top elevation 60	04 _42 ft. MSL	#A P	2. Protective cover a. Inside diamete		$\frac{6.0}{2}$ in.
C. Land surface elevation60	0195 ft. MSL		b. Length: c. Material:		$ \begin{array}{c c} $
D. Surface seal, bottom _ 601. 45 ft. MS					Other 🔲 📖
	n: SW SP CL CH CH		d. Additional pro If yes, describ	otection? e: Steel Posts -3	Yes No Bentonite X 30
Bedrock 🗆			3. Surface scal:		Concrete 0 1
	Yes No tary 50	``	4. Material between	well casing and protect	Other
Hollow Stem At	uger X 4 1		Oh	io #5 Sand	Bentonite 30
			5. Annular space se	a. Granular/Chipp	ped Bentonite 3 3
15. Drilling fluid used: Water 0 2 Drilling Mud 0 3	Air			nud weight Bentonit nud weight Ben	
16. Drilling additives used?	Yes No		d % Benton	nite Bentonite-	cement grout 50
Describe			f. How installed		Tremie 0 1 mie pumped 0 2
17. Source of water (attach analysis, if required None	uired):		C Down to see I		Gravity 08
			6. Bentonite seal: b. /4 in. X		entonite chips 🗸 32
E. Bentonite seal, top601.45 ft. MS			с		Other 🔲 🊃
F. Fine sand, top585.95 ft. MS	SL or 16 ft.		7. Fine sand materi	al: Manufacturer, produ Ohio #7	act name & mesh size
G. Filter pack, top583.95 ft. MS	SL or 18 ft.		b. Volume adde		
H. Screen joint, top581.95 ft. MS	SL or 20 ft.		8. Filter pack mater	rial: Manufacturer, prod Ohio #5	
I. Well bottom 576.95 ft. MS	SL or 25 ft.		b. Volume adde9. Well casing:	d 2 f Flush threaded PVC s	ft ³ schedule 40 🔀 23
J. Filter pack, bottom 573.95 ft. MS	SL or 28 ft.			Flush threaded PVC s	Other 24
K. Borehole, bottomft. MS			 Screen material: a. Screen type: 	2" dia PVC S	ch 40 Sectory cut X 11
L. Borehole, diameter 8.5 in.				Con	ntinuous slot 0 1
M. O.D. well casing2.04 in.			b. Manufacturerc. Slot size:		0. <u>010</u> in.
N. I.D. well casing $-\frac{2.0}{10.00}$ in.		\		(below filter pack):	5_0 ft. None
I hereby certify that the information on this	s form is true and correct	to the best of my kn		Bentonite Chips	Other 🗶 🚉
Signature 1 4	Firm			Madison WI 52749	6751
mindle for Kyle	Kramer SC	S ENGINEERS,	∠osu Dairy Drive,	Madison, WI 53718	-0101

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

	Vatershed/Wastewater Remediation/Redevelopment	Waste Mana	gemen	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Facility/Project Name WPL-Edgewater Generating Station	Local Grid Location of Well-	□N.	ft. E.	Well Name MW-302
Facility License, Permit or Monitoring No. 02524	Local Grid Origin (estin	nated:) or Long.	Well Location X	Wis. Unique Well No. DNR Well ID No. VV861
Facility ID 460021980	St. Plane 632342.6 ft. 1	N, <u>257372</u>	6.3 ft. E. S/C/N	Date Well Installed
Type of Well	Section Location of Waste/So SE _{1/4} of NW 1/4 of Sec		N. R. 23 ⊠E	Well Installed By: Name (first, last) and First
Well Code	Location of Well Relative to		Gov. Lot Number	Kevin Durst
Distance from Waste/ Sourceft. Apply	u Upgradient s d X Downgradient n	Sidegradient Not Known		Badger State Drilling
A. Protective pipe, top elevation 61.	5 _ 35 ft. MSL	The second secon	. Cap and lock?	X Yes X No
B. Well casing, top elevation $-\frac{61}{}$	515 ft. MSL		 Protective cover p a. Inside diameter 	_ 6.0 in.
C. Land surface elevation61	2. 65 ft. MSL		b. Length:	_ <u>5.0</u> ft.
D. Surface seal, bottom _ 61215 ft. MS	SL or 0.5 ft.		c. Material:	Steel 🔀 04
12. USCS classification of soil near screen		1.00	d. Additional pro	
GP GM GC GW S	SW SP		If yes, describ	
SM SC MLX MH C	ст 🗆 Сн 🔲 🖊	₩ \ `3	, Surface scal:	Bentonite X 30 Concrete 01
13. Sieve analysis performed?	Yes 🔀 No			Other
14. Drilling method used: Ro	tary 🗍 5 0	4	. Material between	well casing and protective pipe:
Hollow Stem Au			Oh	Bentonite 30 io #5 Sand Other C
	ther		i. Annular space se	
15. Drilling fluid used: Water 0 2	Air 0 1	DAM	bLbs/gal r	and weight Bentonite-sand slurry 35
Drilling Mud 0 3 1	None 299			nud weight Bentonite slurry 31
16. Drilling additives used?	Yes ⊠No			ite Bentonite-cement grout 5 (
D7-			f. How installed	Tremie 🔀 0
Describe	uired):			Tremie pumped 0 2
None			6. Bentonite seal:	Gravity 0 8 a. Bentonite granules 3 3
			b	3/8 in. 1/2 in. Bentonite chips . 3 2
E. Bentonite seal, top612.15 ft. MS	\ <u>\</u>		с	Other Discount Other
F. Fine sand, top ft. MS	SL or 28.5 ft.		a.	al: Manufacturer, product name & mesh size Ohio #7 sand
G. Filter pack, top582.15 ft. MS	SL or 30.5 ft.		b. Volume added	
H. Screen joint, top 580.15 ft. MS	SL or 32.5 ft.		 Filter pack mater 	ial: Manufacturer, product name & mesh siz Ohio #5 sand
			b. Volume adde	
I. Well bottom	SL or 37.5 ft.). Well casing:	Flush threaded PVC schedule 40 \(\subseteq 2.1 \) Flush threaded PVC schedule 80 \(\subseteq 2.4 \)
J. Filter pack, bottom 572.65 ft. MS	SL or40 ft.			Other
K. Borehole, bottom 572.65 ft. MS	SL or40 ft.	10	Screen material: a. Screen type:	Factory cut X 1 1
L. Borehole, diameter 8.5 in.			2" (Continuous slot 0 1
24.			b. Manufacturerc. Slot size:	Monoflex 0010 in
M. O.D. well casing -2.4 in.			d. Slotted length	
N. I.D. well casing $-\frac{2.0}{1.0}$ in.		1	l, Backfill material	(below filter pack): None X 14 Other S
I hereby certify that the information on this	form is true and correct to the	e best of my kno	wledge.	344
Signature ~ / A	Firm			Marking 101 50740 0754
Min By for Hyle	Krame SCS E	:NGINEERS, 2	830 Dairy Drive,	Madison, WI 53718-6751

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

	Watershed/Wastewater Remediation/Redevelopment	Waste Managemen Other	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
	Local Grid Location of Wellft.	□N. □I	Well Name MV-303
Facility License, Permit or Monitoring No. 02524	Local Grid Origin (estim		
Facility ID 460021980	St. Plane631609.4 ft. N	N, <u>2573496.7</u> ft. E . S/ 0	
Type of Well	Section Location of Waste/So SE _{1/4} of NW 1/4 of Sec		Well Installed By: Name (first, last) and Firm
Well Code 12 / PZ Distance from Waste/ Enf. Stds.	Location of Well Relative to	Waste/Source Gov. Lot Numb	Kevin Durst
Distance from Waste/ Enf. Stds. Sourceft. Apply	u Upgradient s d X Downgradient n	Sidegradient Not Known	Badger State Drilling
	219 ft. MSL ———	1. Cap and lock 2. Protective co	
B. Well casing, top elevation61	199 ft. MSL	a. Inside dian	• •
C. Land surface elevation60	0973 ft. MSL	b. Length:	ft. Steel X 0 4
D. Surface seal, bottom60923 ft. MS	SL or 0.5 ft.	c. Material:	Other
12. USCS classification of soil near scree		d. Additiona	
	SW SP CL CH		Bentonite X 30
Bedrock 🗆		3, Surface scal:	Concrete U
	Yes No tary 50	4 Material bety	Other Other ween well casing and protective pipe:
Hollow Stem At	1000		Bentonite 3 0
	Other		Ohio #5 sand Other 3 3 3
15. Drilling fluid used: Water 0 2	Air 0 1	5. Annular space	gal mud weight Bentonite-sand slurry 35
Drilling Mud 0 3	None S 99	cLbs/	gal mud weight Bentonite slurry 🔲 3 1
16. Drilling additives used?	Yes 🛛 No	d % Be	ntonite Bentonite-cement grout 50 Ft 3 volume added for any of the above
Describe		f. How insta	
17. Source of water (attach analysis, if req	uired):		Tremie pumped 0 2 Gravity 0 8
None		6. Bentonite se	al: a. Bentonite granules 3 3
E. Bentonite seal, top609.23 ft. MS	SL or 0.5 ft.	b/4 in	3/8 in. 1/2 in. Bentonite chips 7 3 2 Other 7
F. Fine sand, top587.73 ft. MS	SL or 22 ft.	7. Fine sand m	aterial: Manufacturer, product name & mesh size Ohio #7 sand
G. Filter pack, top 585.73 ft. MS	SL or 24 ft.	b. Volume a	dded 0.5 ft ³
H. Screen joint, top 583.73 ft. MS	SL or 26 ft.	8. Filter pack n	naterial: Manufacturer, product name & mesh size Ohio #5
	SL or 31 ft.	b. Volume	
I. Well bottom	\ [3]	9. Well casing:	Flush threaded PVC schedule 40 2 3 Flush threaded PVC schedule 80 2 4
J. Filter pack, bottom 576.73 ft. MS	SL or 33 ft.		Other Other
K. Borehole, bottom ft. MS	SL or 33 ft.	10. Screen mate a. Screen ty	_
L. Borehole, diameter 8.5 in.			Continuous slot 0 1
2.04		\ ~ .	urer Monoflex
M. O.D. well casing $-\frac{2.04}{}$ in.		c. Slot size:	
N. I.D. well casing $\frac{2.0}{1.00}$ in.		11. Backfill mat	crial (below filter pack): None X 1 4 Other
I hereby certify that the information on this	s form is true and correct to the	best of my knowledge.	
Signature 2/0 For 16	yle Krame SCS E	NGINEERS, 2830 Dairy Dr	rive, Madison, WI 53718-6751
1 1/1/	1.0	, ===== ==, ==	

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10\$ and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

·	Vatershed/Wastewater Remediation/Redevelopment	Other .	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Facility/Project Name	Local Grid Location of Well	Nft	Well Name
Facility License, Permit or Monitoring No.	Local Grid Origin (estimate	ed: 🗆) or Well Location 🗆	Wis. Unique Well No. DNR Well ID No.
Facility ID	St. Planeft. N,	ft. E. S/C/N	Date Well Installed
Type of Well	Section Location of Waste/Source		Well Installed By: Name (first, last) and Firm
Well Code/	1/4 of 1/4 of Sec,	, T N, R 🗖 🗓	The same of the same same same same same same same sam
Distance from Waste/ Enf. Stds.	Location of Well Relative to Wa u ☐ Upgradient s ☐	ste/Source Gov. Lot Number Sidegradient	
~ 1	d Downgradient n	·-·	
		1. Cap and lock?	☐ Yes ☐ No
A. Protective pipe, top elevation		2. Protective cover	
B. Well casing, top elevation = = =	ft. MSL	a. Inside diameter	
	06.78 ft. MSL	b. Length:	ft.
	- 1 1 Table 1	c. Material:	Steel
D. Surface seal, bottom $_{-}$ $\underline{604.78}$ ft. MS	SL or ft.	C. Material.	Other 🗆 🧱
12. USCS classification of soil near screen	#25000 A*F	d. Additional pro	9770.007
	SW 🗆 SP 🗆	1146 1	ecuon:
SM SC ML MH		II yes, describe	
Bedrock		3. Surface scal:	Bentonite 🔲 30
	Yes □ No		Concrete 0 1
	188	× -	Other 🗆
	tary 🛚 50	33 4. Material between	well casing and protective pipe:
Hollow Stem A			Bentonite 🗆 30
o	ther 🗆 🎎		Other 🗆 🏬
		5. Annular space se	
3	Air 01	bLbs/gal n	ud weight Bentonite-sand slurry □ 35
Drilling Mud □ 0 3	None 🗆 99 🞇	cLbs/gal n	nud weight Bentonite slurry 🗖 31
14.5 70.701 1.701 10	V N	d % Benton	ite Bentonite-cement grout 5 0
16. Drilling additives used?	Yes ∐ No	∭ eFt	volume added for any of the above
		f. How installed:	Tremie 🗆 0 1
Describe			Tremie pumped 🗆 02
17. Source of water (attach analysis, if requ	ıired):	※	Gravity 🗆 08
		6. Bentonite seal:	a. Bentonite granules 33
		№ b. □1/4 in. □	3/8 in. □ 1/2 in. Bentonite chips □ 3 2
E. Bentonite seal, top _ 604.78_ft. MS	L or ft. 💢	₩ / c	Other 🗆 🧼
· · · · · · · · · · · · · · · · · · ·	→ ₩		· · · · · · · · · · · · · · · · · · ·
F. Fine sand, top 5/8.28 _ ft. MS	L or ft.	7. Fine sand materia	d: Manufacturer, product name & mesh size
·	\	a	
G. Filter pack, top 577.78 ft. MS	Lorft.	b. Volume added	ft ³
576.78			ial: Manufacturer, product name & mesh size
H. Screen joint, top ft. MS	Lor ft.		
• • •		a b. Volume added	
571.78 I. Well bottom ft. MS	Lorft.\	9. Well casing:	Flush threaded PVC schedule 40 2 3
			Flush threaded PVC schedule 80 24
J. Filter pack, bottom ft. MS	lor ft 1		Other 🗆
	222	10 Farmer materials	
V. Barriela hattarr 570.78 ft MS	L or ft.	10. Screen material:	
K. Borehole, bottom ft. MS	201	a. Screen type:	Factory cut 11 Continuous slot 01
T. T		2 (
L. Borehole, diameter in.		\	Other 🗆
		1	o in
M. O.D. well casing in.		c. Slot size:	0 in.
		d. Slotted length	
N. I.D. well casing in.		11. Backfill material	
			Other 🗆
I hereby certify that the information on this		est of my knowledge.	
Signature	Firm		

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be

Route to: Solid	l Waste □ Haz. Wa & Repair □ Under	ste Wastewater Oth	=	
	County Name		Well Name ZB-C	ow
WPIL Engewater Site	31060	vgan		Il Number
Facility License, Permit or Monitoring Number 2521	County Code	Wis Unique Well No	imber DNK 48	E Number
1. Can this well be purged dry?	Yes 🗆 No	D. J. Word	Before Development	After Development
2. Well development method surged with bailer and bailed surged with block and bailed surged with block and bailed surged with block and pumped surged with block, bailed and pumped compressed air bailed only pumped only pumped slowly Other	61 42 62 70 20 10 51	1	2.5.57ft. b_3/02/28 m m d d y y c_2/:050 pm.	<u> 5,08,98</u> mm d d y y
4. Dopa. 01 110 (110 11)	16.5tr 2.0_in		15	
	gal. 3gal.		is were used and well is a	
8. Volume of water added (if any)	<u>O</u> .Ogal.	14. Total suspended solids	· !!!Y!	
9. Source of water added		15. COD	mg/l	mg/l
10. Analysis performed on water added?	Yes Mr No			
16. Additional comments on development Well were Developed Volume of water re the three Development	noveo 13 ents.			
Well developed by: Person's Name and Firm		of my knowledge.		rue and correct to the best
Name: Brian Leicham Firm: Miller Engineers +	Lientists	Print Initials:		rs pseintists

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/Wastev	vater	Waste Management			
Remediation/Rede	velopment	Other X			
Facility/Project Name	County Name		Well Name	***************************************	
WPL-Edgewater Generating Station		eyboygan			MW-301
Facility License, Permit or Monitoring Number	County Code	Wis. Unique Well Nu	mber		ell ID Number
FID 460021980, License #02524	<u>59</u>				
1. Can this well be purged dry? 2. Well development method surged with bailer and bailed surged with block and bailed surged with block and bailed surged with block and pumped surged with block, bailed and pumped surged with block, bailed and pumped	s	11. Depth to Water (from top of well casing) Date	Before Dev a. $\frac{5}{m m} / \frac{1}{d c}$ c. $\frac{12}{00}$ Clear $\boxed{1}$	23 ft. 5 /3a.minches	After Development $ \begin{array}{cccccccccccccccccccccccccccccccccc$
	60 min.		Turbid 1 (Describe)	5	Turbid 🔀 2 5 (Describe)
4. Depth of well (from top of well casisng) $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$					
5. Inside diameter of well2	0 in.				
6. Volume of water in filter pack and well casing	5 gal.				at solid waste facility:
8. Volume of water added (if any) 9. Source of water added NA	. — gai.	solids 15. COD		mg/l	mg/l
		0		6/1	
-		16. Well developed by	: Name (first, l	ast) and Firn	1
10. Analysis performed on water added? Yes (If yes, attach results)	No No	First Name: Kyle Firm: SCS ENGIN	NEERS	Last Nam	_{e:} Kramer
17. Additional comments on development:				er en de des administrativos de desarros anos	
Name and Address of Facility Court (C)	Davis				
Name and Address of Facility Contact /Owner/Responsible First Name: Last Name: Jim Name: Jakubiak	Party	I hereby certify that of my knowledge.	the above inf	ormation i	s true and correct to the best
Facility/Firm: Wisconsin Power and Light		Signature:	m Hy	2	
Street: 3739 Lakeshore Drive	and the second s	Print Name:	ghan Bl	odgett	for Kyle Kramer
City/State/Zip: Sheyboygan,WI 53081		Firm: SCS EN	GINEERS	<u>, , , , , , , , , , , , , , , , , , , </u>	The desired

NOTE: See instructions for more information including a list of county codes and well type codes.

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/Wastev	water	Waste Management
Remediation/Rede	evelopment	Other
Facility/Project Name	County Name	Well Name
WPL-Edgewater Generating Station	She	eyboygan MW-302
Facility License, Permit or Monitoring Number	County Code	Wis. Unique Well Number DNR Well ID Number
FID 460021980, License #02524	59	<u></u>
surged with bailer and pumped surged with block and bailed surged with block and pumped surged with block, bailed and pumped compressed air bailed only	1 1 2 2 2 0 0	Before Development After Development
- · · · · · · ·		12. Sediment in well inches inches
Other	0 = 50 _{min} .	13. Water clarity Clear 10 Clear 20 Turbid 15 Turbid 25 (Describe) (Describe)
4. Depth of well (from top of well casisng) 36		
5. Inside diameter of well2	<u>0</u> in.	
6. Volume of water in filter pack and well casing 9	6 gal.	
7. Volume of water removed from well135	0 gal.	Fill in if drilling fluids were used and well is at solid waste facility:
8. Volume of water added (if any)	gal.	14. Total suspended mg/l mg/l solids
9. Source of water addedNA		15. CODmg/lmg/l
		16. Well developed by: Name (first, last) and Firm
10. Analysis performed on water added? Yes (If yes, attach results)	s 🔲 No	First Name: Kyle Last Name: Kramer
17. Additional comments on development:		Firm: SCS ENGINEERS
TATASTIONE COMMONS ON GOVERNMENT.		
Name and Address of Facility Contact /Owner/Responsible First Name: Last Name: Jakubiak	Party	I hereby certify that the above information is true and correct to the best of my knowledge.
Facility/Firm: Wisconsin Power and Light		Signature: Mr. R. P.
Street: 3739 Lakeshore Drive		Print Name: Meghan Blodget For Kyle Kraner
City/State/Zip: Sheyboygan,WI 53081		Firm: SCS ENGINEERS

NOTE: See instructions for more information including a list of county codes and well type codes.

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/Waster	water	Waste Management			
Remediation/Rede	evelopment	Other			
Facility/Project Name	County Name		Well Name		
WPL-Edgewater Generating Station		eyboygan		1	MVV-303
Facility License, Permit or Monitoring Number	County Code	Wis. Unique Well Nu	mber	DNR Wel	l ID Number
FID 460021980, License #02524	<u>59</u>	<u>VV860</u>			
1. Can this well be purged dry? 2. Well development method The state of the last of the		11. Depth to Water (from top of well casing)			After Development
surged with bailer and pumped surged with block and bailed surged with block and pumped surged with block, bailed and pumped compressed air bailed only pumped only	1 1 2 2 0 0 0 1	Date 1	c1:00_	a.m. x p.m. inches	016 m m / d / y y y y _ 10 : 15 p.m. _ inches Clear 2 0 Turbid ★ 2 5
3. Time spent developing well	70 min.		(Describe)		(Describe)
4. Depth of well (from top of well casisng) <u>33</u>	. <u>15</u> ft.				
5. Inside diameter of well $\frac{2}{2}$.	_ <u>0</u> in.				
6. Volume of water in filter pack and well casing8 7. Volume of water removed from well23 8. Volume of water added (if any)	0 gal.	Fill in if drilling fluids 14. Total suspended solids			solid waste facility:
9. Source of water addedNA		15. COD		mg/l	mg/l
10. Analysis performed on water added? Yes (If yes, attach results)	₃ □ No	16. Well developed by First Name: Kyle Firm: SCS ENGIN		ast) and Firm Last Name	
17. Additional comments on development:					
Name and Address of Facility Contact /Owner/Responsible	Party	I homolou contifu that	sha shawa isa		
First Jim Last Name: Jakubiak		of my knowledge.	above infe	ormation is	true and correct to the best
Facility/Firm: Wisconsin Power and Light		Signature: 79/0	L BOB		
Street: 3739 Lakeshore Drive		Print Name: Med	hen Blo	dgett	for Kyle Krane
City/State/Zip: Sheyboygan,WI 53081		Firm: SCS EN	GINEERS		

NOTE: See instructions for more information including a list of county codes and well type codes.

SCS ENGINEERS, 2830 Dairy Drive, Madison, WI 53718

State of Wisconsin Department of Natural Resources			NITORING V 14400-113B	VELL DEVELOPMENT Rev. 7-98
Route to: Watershed/Wastewater	Waste M	anagement X		
Remediation/Redevelop	oment Other		_	
• •	nty Name	Well I	Vame	
WPL - Edgewater Gen. Station	Sheboygan			MW-304
		que Well Number	DNR We	ell ID Number
Facility ID: 460021980, Permit: #02524	59	<u> WF299</u>	_	
1. Can this well be purged dry? 2. Well development method surged with bailer and bailed X 4 1		h to Water top of a	_	
surged with bailer and pumped	Date Time		-	$ \frac{2024}{\mathbf{y}} \frac{03}{\mathbf{m}} / \frac{27}{\mathbf{d}} / \frac{2024}{\mathbf{y}} = \frac{2024}{\mathbf{y}} $ $ \underline{12} : 00 \boxed{\mathbf{x}} \text{ p.m.} $
compressed air bailed only pumped only pumped slowly Other 20 10 51 50 50 10 50 50 50 50 50 50 50 5		ent in well clarity Clear	inches1 0 d 🔀 1 5	
3. Time spent developing well100_r	nin.	(Descr		(Describe)
4. Depth of well (from top of well casisng) $\underline{} \underline{} \underline{} \frac{37.8}{}$	ft.	Dark b	rown, opaque	Dark brown, opaque
5. Inside diameter of well $\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$	in.			
6. Volume of water in filter pack and well casing8_7_ 7. Volume of water removed from well75_0_ 8. Volume of water added (if any)0_0_	gal. Fill in if o	_		at solid waste facility: <u>4620</u> . <u>0</u> mg/l
9. Source of water addedN/A	15. COD		<u></u> mg/l	mg/l
10. Analysis performed on water added? Yes [(If yes, attach results)	□ No First Na	leveloped by: Name me: Ryan CS ENGINEERS,	Last Nan	m ne: Matzuk ive, Madison, WI 53718
17. Additional comments on development:				
2/5/2024 - Surged and purged with bailer for 60 minute 2/9/2024 - Additional 10 gallons removed via bailer. 3/27/2024 - Used pump to remove additional 25 gallor	_	lons. Still very turt	bid with a lot of	sediment.
Name and Address of Facility Contact /Owner/Responsible Part First Last Name: Name:	of my k	nowledge.	ove information	is true and correct to the best
Facility/Firm: Alliant Energy	Signature	/ 		
Street: 4902 Biltmore Lane	Print Nar	_{ne:} Ryan Matzuk		

Firm:

City/State/Zip: Madison, WI 53718

4. 9				Route	To							S	oil Bor	ing L	og Inf	orma	
State of Departs	Wiscon	isin Natura	l Resou		lid Waste	□н	az. W	aste				F	rm 440	0-122			7-91
Depart				☐ Er	nergency Response	_	-	round '									
				□ w	astewater			Resourc	es		-			Page	1	of	1
								nse/Per	mit/Mor	nitoring l	Vumbe	r	Boring 1	Number			
Facility	Project	Name	N Y .4.	Hadiom			025						2R-0)W			
Mon	itoring	Wel	IInsta	allation and name of crew c	hief)		·		g Starte	d	Date	Drilling	Comple	eted	Drillin	g Metl	od
Boring !	Drilled I	By (Fir	m name	Drilling. Chief	Driller Michae	el			29/98			04/2	9/98		HSA		
McC	ardle.	иош	центал	Dilling. Care													
DNR F			. W	Unique Well No.	Common Well	Name	Fina	l Static	Water I	_evel	1	ce Elev		- 1	rehole		
DIVINI				•				607	.2 Feet	MSL			Feet MS				Inches
Boring	Location	n					1	Lat	0 111		Loca	Gna L	ocation		icaoie)		⊠Е
				_			ı		0 , 11		17	72 Fee			600	Feet	□ w
NW	1/4 c	f NE	1/4	of Section 2	T 14 N.R 2	DNR Cou		ong 'ode		own/City							
County	DOM	7 A NT				60	inty C	.ouc		BOYG							
	BOY	JAIN	T +-	T									Soil	Proper	ties		_
Sam		ú	Feet									E		',			
	(in) ed	Counts		I.	Rock Description				١.,	اے	0	p #	a +		<u>.</u> .		† \$
,	רם פרם	ပ္ပ	片	1	eologic Origin	For		ຣິວ	ان <mark>د</mark>	la l	Ħ	ta t	t e	<u>P</u> +	++	8	, E
þei	ength ecove		1 +	Eac	ch Major Unit			S	Graphic Log	Well Diagram	PIO/FID	Standard Penetrati	Moisture Content	Liquid Limit	Plast Limit	200	RQD/ Comments
Number	Length (i Recovered	Blow	Depth					n	Gra	H C	P	P.S.	<u>₹ ८</u>	تت	<u>a</u> _	<u>a</u>	<u> % 0</u>
				TOPSOIL			\	TS	****	88					<u> </u>		
			1 2 2	LEAN CLAY	- moist, stiff, y	ellowish		CL									
			E_2	brown (10YR	5/6), silty sand	seams.											
, ,	18	12	E.							Y		12	23.6				
1	10	12	3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							ស្រីស		1					ŀ
L			=4														.
			E_5	very stiff.						*目:		22	16.6				
2	18	22	<u>E</u> 6	very still.						[:目:							
Ľ	1		E														
		į	F7							注目:1		46	16.8			1	
3	18	46	<u>=</u> 8	hard.						(注:							
	•		وے									1]			1
			E							4:目:1		1 00	19.7		ł	98.	<u>.</u>
4	18	26	E 10	wet, very st	iff, dark brown	1 (10YR						26	19.7			10.	~
1	1		E11	4/3), occasion	ai sand seams.			'							 		-
	1		E 12					1		#目:							
5	18	15	E 12	moist.								15	22.8				
-	\		13							# 目:							
L	1		F-14					-									
				NOTES:	14 5 feet												
				1) End of bor	ing at 14.5 feet Well 2R-OW	construct	ed										
				at completion													
																1	
Ihere	by certif	fy that	the info	rmation on this form	is true and correct	to the best	of my	know	edge.								
Signa							Firm	n	Mille	r Engi	neers	& Sci	entists				
٠.٥.س			M	h					5308.5	South 12 920)458-	th Stre	et, Shet	oygan,	WI 53 1360	081		
		Z,					<u></u>		161: (2		Den 1	alan F		less th	an \$10	nor m	ore

This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$5,000 for each violation. Fined not less than \$10 or more than \$100 or imprisoned not less than 30 days, or both for each violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06, Wis. Stats.

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Re	oute To:	Watershed/V	Wastewater \square		Waste I	Manag	ement								
					Remediation	/Redevelopment		Other										
															Pag	ge 1	of	2
Facilit	y/Proje	ect Nan	ne				П	License/I	Permit/	Monito	ring Ni	ımber		Boring		er		
				rating Sta		SCS#: 25215135.10											V-3 0	
-		-	Name o	of crew chi	ief (first, last) a	and Firm		Date Dri	lling St	arted		Da	te Drilli	ing Con	npleted			ing Method
	in Du								1/1/	12016				1 /1 4 /0	016			ollow stem
	lger S lique V			DNR V	Well ID No.	Common Well Name	Α .	Final Sta		/2016		Surfac	e Eleva	1/14/2	2010	Ro		ger Diameter
WI OI	-	V862	,.	Divic v	ven ib ivo.	MW-301			13.7		'	Surrac		95 Fe	et			.5 in.
Local	Grid O					ring Location 🛛		ı			,	.,		Grid Loc				
State	Plane		632	,741 N,	2,573,429	E S/C/N		La	t					Feet	\square N	ſ		Feet 🗌 E
NE		of N	W	1/4 of Sect		T 14 N, R 23 E		Long			<u>'</u>				\Box s			□ w
Facilit	y ID				County		- 1	ounty Co	de	Civil To		-	Village					
				1	Shawano		5	9		Sheb	oygan	l.		G 11	D.			T
San	nple	-											-	Soil	Prope	erties		
	% (ii)	ıts	eet			Rock Description							_					
r pe	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			eologic Origin For			S	ပ	8	Q	Standard Penetration	re		ity		RQD/ Comments
Number and Type	ngth) %	pth		Ea	ch Major Unit			SC	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200)Q
N S	Le ₁ Re	BIG	De						Ď	Grap Log	Well Diagr	PII	Sta Per	გ ვ	Li	Pla Ind	P 2	S, S
			E	Boring	already cleared	d to 8' bgs by hydrovac												
			-1															
			<u>-</u> 2															
			Ē ~															
_			_3	Standin	og water at 3' ir	n existing hydrovac hol	e an	nd										Standing water at
			E	boring a	at toe of berm.	rexisting nydrovae nor	c ai	iu l										Standing water at 3 ft bgs in existing hole and
			-4	_														boring at toe of berm.
			_ 5															
			E ₃															
			<u>-</u> 6															
			E															
			- 7															
			Ē.															
П			- 8	SILTY	CLAY, brown	(7.5YR 4/6).												
c.	22	57	_9										2.5	M				ton @ 11 0 A
S1	22	9 13	E ´										3.5	M				water @ 11.9 ft bgs after sitting an hour with
Ц			-10															augers at 20 ft bgs.
			E															1 0 0 0
			 11						CL-ML									
			- 13															
			-12															
			_ _13															
			E															
S2	20	7 13 23 21	-14	SANDY	Y SILT, grev h	rown (10YR 4/2).				euseniillii			2.75	w				
		43 41		5.11.15		(10111 "2).			ML									
			<u>-15</u>							111								
		y that t	the info	rmation or	1 this form is tr	rue and correct to the b				ge.			************		popular mentangan and			
ignati	ire	an.		3 -		Firm SC	CS I	Enginee	ers								Tel: (6	08) 224-2830

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

2830 Dairy Drive Madison, WI 53718

Borin	g Num	ber	MV	V-301 Use only as an attachment to Form 4400	-122.										e 2	of	2
San	nple							T				Sc	il	Prope	rties		
	% (ii)	ıts	eet	Soil/Rock Description													
er Tpe	Att	Coun	In F	And Geologic Origin For	S		2		Ε.	le	urd atior	ıre	ıτ		ity		ents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each Major Unit	USC	Growbio	I og I	202	Well	PID/FID	Standard Penetration	Moisture	Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
Z æ	J X	B	Ā		<u> </u>	10			≥ <u> </u>	E E	St	Σ	<u> </u>		Pl In	Ь	20
			Ė,														
			- 16	SANDY SILT, grey brown.													
			17														
			E -18			П											4
			E														
S3	20	5 7 18 13	-19									W					
		1015	E -20														
			= 20	Same as above, except brown (7.5 YR 4/6).					Ħ								
			-21														
			E 22		-				Ħ								
			E														
П			23						Ħ								
S4	22	2 2 3 4	_24									w	.				
34	22	3 4	E						Ħ			"					
Н			25		ML												
S5	20	3 3 4 9		,								W	.				screen 20-25 ft
05	20	4 9	E									"					bgs.
			27 														le .
п								27	40	,							
- 11			E	4													
S6	24	2 2 2 2	- 29					200				W					
Н			E -30							y a							
			Ē					200		\$							
S7	24	2 2 4 8	-31					E ST	25			W					
Н			32					200		9			1				
		2.2	E														
S8	16	2 3 4 5	33									W					
Н			34					200		3							
		2.2	_ 35					2	SS								
S9	24	2 2 2 2	E 33	CLAN (Z SVD A/A)		Ц	Ш		38	2	1.0	M					water at 16.8 ft bgs with augers at 34 ft bgs.
Ц			-36	CLAY, grey (7.5YR 4/6). End of boring at 36 ft bgs.	CL	-		K	960					ľ			a. S. H. Ogo.
														Ÿ			
															-		
														1			

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Ro	oute 10:		Redevelopment \square	Other	_	gement	Ш							
					Kemediation/	redevelopment 🗀	Other									C	2
Facilit	y/Proje	ect Nan	ne				License	/Permit	/Monito	ring N	umber		Boring	Pag		of	
WP	L-Edg	ewate	r Gener	rating Sta		SCS#: 25215135.10										V-30	
		•	Name of	f crew chi	ef (first, last) ar	nd Firm	Date D	rilling S	tarted		Da	te Drilli	ing Con	npleted			ing Method
	vin Du lger S							1/15	5/2016				1/15/2	2016			ollow stem ger
	nique V).	DNR W	/ell ID No.	Common Well Name	Final St		iter Leve		Surfac	e Eleva			Во	rehole	Diameter
		V861				MW-302		Fe	eet				65 Fe			8.	.5 in.
Local State	Grid O Plane	rigin			2,573,726	ng Location ⊠ E S/C/N	L	at	o	<u> </u>		Local (cation		T	Feet 🗌 E
SE		of N		/4 of Secti		T 14 N, R 23 E	Lor	ıg	o 		"		reet			J	W □ W
Facilit				C	County		County C		Civil T		-	Village					
		1		5	Shawano		59 .		Sheb	oygar	1		G '1	D.			
San	nple											-	Soil	Prope	erties		
	t. & 1 (in)	nts	reet			ock Description						=					s
ype	h At	Cou	l In I			ologic Origin For n Major Unit		S)ic	am	Ë	ard	ure	p	city	_	/ nent
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		Laci	r wajor Onit		USC	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	200	RQD/ Comments
<u> </u>	II M	Н Н	- 1	Boring a	already cleared	to 8' bgs by hydrovac.		+-		<u> </u>		N E	20		H	Ъ	
			E 1														
			E 1														
			_2														
			$\begin{bmatrix} -3 \end{bmatrix}$														
			E 1														
			-4														
			E _														
			<u>-5</u>														
			_6														
			E														
			F ⁷														
П			E-8	CANIDA	CIAVin	(G11)											
			E	SANDI	CLAY, variou	is colors (IIII).						8					
S1	16	6 8 11 10	F9									2.5/1.75	М				
Ц			-10														
			E														
			-11														
			- -12					CL									
			=														
П			13														
<u> </u>	1.0	5 6	E 14									7.5	M				
S2	16	11 19	17									3.5	M				
Ш			-15						1 1 1 1 1 1 1								
hereb	y certif	y that	the infor	mation on	this form is tru	e and correct to the be	est of my k	nowled	ge.								

Firm Signature **SCS** Engineers Tel: (608) 224-2830 for Joe Lason 2830 Dairy Drive Madison, WI 53718

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

Borir	ng Num	ber	MV	V-302 Use only as an attachment to Form 4400)-122.						Pa		of	2
Saı	mple								-	Soil	Propo	erties		_
	t. &	nts	eet	Soil/Rock Description										10
er ype	h At rered	Con	In F	And Geologic Origin For Each Major Unit	S	ic		E E	ard	ure	73	city		nents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each Major Offic	USC	Graphic	Well	Diagram PID/FID	Standard Penetration	Moisture Content	Liquid	Plasticity Index	P 200	RQD/ Comments
			 				Í		0, 1	20		H		H 0
			E-16	SANDY CLAY, (fill).										
			Ē	SANDI CLAI, (IIII).										
			<u>-17</u>		CL									
Г			-18				ı							
S3	16	67	- -19						3.25	M				
33	10	67 912	E	CLAY, dark brown, some gravel and fill (topsoil).					3.23	IVI				
L	1		= 20	g (
			E_21		CL									
			E 22											
			22 	LEAN CLAY, brown (7.5YR 4/6).										
Г			23											
S4	24	4 7 10 13	_ 24						2.75	M				
	2.	10 13	E						2.75					
			25		CL									
			26											
			E -27											
			= 2'											
П			<u>-</u> 28											
S5	24	6 6 7 8	_ 29	SANDY SILT, brown (7.5YR 4/6).		-			1.5	W				
		/ 8	= 20											
			$\frac{-30}{2}$											
S6	12	5 7 8 8	=31											
Н			= 32											
			E _									URI		
S7	22	2 2 4 9	-33											
Н			_34		ML									
S8	24	2 2	-35 -35											
36	24	2 2 4 7		6 inch sandier zone at 35-35.5 ft bgs, soil less cohesive, more water.										
H			- 36											
S9	24	2 2 2 4	_ 37							W				
		24						i						
			_38											
S10	24	2 2 4 6	39											water at 17.8 ft bgs after well installation.
Ц			- ₄₀	End of boring at 40 ft bgs.				_						installation.
İ	ı l		, , ,		1	l,	I	1	I	1		1	-	

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			<u>R</u>		/Wastewater on/Redevelopment	Waste I Other	-	ement								
						T							Pag		of	2
	y/Proje			rating Station	SCS#: 25215135.10	License/I	Permit/	Monito	ring Nu	ımber		Boring	Numbe		W-30	13
				of crew chief (first, last		Date Dri	lling St	tarted		D	ate Drilli	ng Con	npleted	141		ing Method
	in Du															ollow stem
	lger S			DND W II ID N	IC WITH	F' 1 C		2016	1	C C	T1	2/4/2	016	lp.		ger Diameter
WI Ui	nique V	veli No V860).	DNR Well ID No.	Common Well Name MW-303	Final Sta	tic Wa Fe		21	Surta	ce Eleva	tion 73 Fe	et	Bo		.5 in.
Local	Grid O		(e	stimated:		1	10	· ·			Local C					.5 111.
State				,609 N, 2,573,49		La	t	_	<u>-</u>			Feet	\square N			Feet \square E
SE		of N	1W	1/4 of Section 2,	T 14 N, R 23 E	Long		0	<u> </u>				\Box s			□ W
Facilit	y ID			County Shawano		County Co 59	de		own/Cı oygan		Village					
San	nple	Τ	1	Silawalio		<i>J9</i>		Sileo	oygan	Ī	T	Soil	Prope	erties		
San	_	1		Soil	/Rock Description							Jon	Порс	lics		
	tt. & d (in	ınts	Feet		Geologic Origin For						l E					S.
ber ype	th A	S	l In		Each Major Unit		CS	hic	am	Ð	lard	ture	ъ.,	city		/ meni
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		aci major ome		n s c	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
~ 8	пи	Н Н	E	Boring already clear	ed to 8' bgs by hydrovac.				V K	-	107 11	20	пп	H	<u> </u>	H 0
S1 S2	15	5 9 9 12			AY, yellowish brown (10Y		CL				3.0 >4.5	W				
hereb	y certif	y that	the info	rmation on this form is	true and correct to the bes	t of my kno	owledg	ge.								

Signature

Ref Firm SCS Engineers
2830 Dairy Drive Madison, WI 53718

Tel: (608) 224-2830 Fax:

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

Borin	ıg Num	ber	MV	V-303 Use only as an attachment to Form 4400-	122.							ge 2	of	2
Sar	nple									Soil	Prope	erties		
	t. & I (in)	nts	eet	Soil/Rock Description										
ber ype	h At	Cou	In I	And Geologic Origin For Each Major Unit	S	iic	25		ard ratio	ure	-	city		nents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Lacti Major Offic	USC	Graphic Log	Well	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
			F		1				0 1	20	1 1	H I	<u> </u>	<u> </u>
			<u>-</u> 16											
			17											
			E 17											
П			-18	Same as above except, yellowish brown (10YR 5/4).										
S3	20	68	_ 19						2.0	w				
33	20	6 8 13 14			CL				2.0	\ \v				
			20											
			21											
			- -22											
			E											
П			23	Same as above except, very dark grayish brown (10YR										
S4	22	5 8 8 12	24	3/2). SANDY SILT, yellowish brown (10YR 5/4).	-				1.75	W				
		8 12	= 25	SANDT SILT, YEROWISH OROWII (10 TK 5/4).										
			- 25											
S5	16	8 12 14 17	26							W				
Ц			- -27											
S6	24	4 5 3 3	<u>-</u> 28		ML					W				
H			29											
	2.1	3.6	30											
S7	24	3 6 9 14								W				
Ц			31				Н							
			33	End of boring at 33 ft bgs.				1						
	1	,									1			

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			<u>Ro</u>	ute To:	Watershed/V Remediation	Vastewater /Redevelopmen	t 🗆	Waste I Other	_	ement	\boxtimes							
																	Page	1 of 2
	ty/Proje							License/	Permit/ 2524	Monito	ring Nu	ımber			Numb			
WE	PL - Edg	gewat	er Gene	erating	Station hief (first, last) a	SCS#: 25223	3252.00	Date Dri		arted		Da	te Drilli		MW-		Drill	ing Method
	lam Sw	-	ivanic of	. CICW C	mer (mst, iast) a	and I'mm		Date Dil	iiiig St	arteu		Da	ic Dillii	ng Coi	присиси		hollow stem	
Но	rizon (Const	ruction	and I	Exploration	18 ***				2024			774	2/5/2	024		auger Borehole Diameter	
WI U	nique W	/ell No F299	•	DNR	Well ID No.	Common Wel MW-3					Surface 606	e Elevat 78	tion Feet	MSI	Bo		Diameter .25 in.	
Local	Grid O				: []) or Bo	ring Location	\boxtimes			° 42			I 10:11 c					.23 111.
	Plane	- 3.1		-	16 N, 2,573,5			La	ıt <u>43</u> 87	• 42 • 42	$-\frac{41.}{40}$	29 "		Feet	Feet N			Feet 🗌 E
SE Facili	1/4 ity ID	of N	W 1	/4 of Se	ction 2,	T 14 N, R	23 E	Long County Co	g <u>67</u> de	Civil To	own/Ci	tv/ or V	/illage					□ W
460021980 Sheboygan								59		Sheb			8-					
Sa	mple													Soil	Prope	erties		
	(E) &	its	eet			Rock Description												
er 'be	Att ered	Coun	In F			eologic Origin F	For		\sigma	. <u>.</u>	<u> </u>		ırd ation	ıt e		ity		ents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		Ea	ch Major Unit			SC	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
<u>z z</u>	17 5	В		Hydro	ovac to 8.5' belo	w ground surface	e Clay	madium	D	5 7	≶ ∩		N M	Σú		교면	4	× 0
			E	brown		w ground surrac	c. Clay,	mediam										
			1.5															
			3.0															
			E 3.0															
S0	0		4.5						CL					M				
			E															
			6.0															
			7.5															
			E '															
S1	21		9.0	SILT	Y CLAY, mediu	ım brown.												
31			-						CL					M				
			10.5															
			12.0															
S2	60		E 12.0	LEAN	N CLAY, light b	rown.								M				
			13.5															
									CL									
t			15.0															
S3	44		16.5						L					M				
			- 10.3	Same	as above but da	rk brown.												
			18.0						CL									
S4	38													W				Water table at 20' below ground
<u> </u>			19.5	SILT	Y CLAY, mediu	ım brown.			CL									surface
	-	fy that	the info	mation	on this form is t			est of my kr	nowledg	ge.								
Signa	iture	6 1	Math			Fir	m SC	S Engine 0 Dairy Dr	ers	1.	W 52	710						Tel:
		Man.	<u> </u>				283	U Dairy Dr	ive, M	adison,	W1 53	/18						Fax:

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A

Samp	Numb ole	er	101 00	Use only as an attachment to Form 440	00-122.					Soil	Prope	erties	Page	2 of
and Type		Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
	36		21.0		CL					W				
			22.5	Same as above but trace round gravel.	CL									
	37		24.0	SILTY CLAY, medium brown.	CL					W				
			25.5	SILT, medium brown, with very fine sand.	ML									
7 :	35		27.0	SILT, medium brown.	МН					W				
	50		28.5	SANDY SILT, medium brown.						W				
,	60		30.0		ML					W				
	60		33.0 -34.5							W				
Н			36.0	Blind drilled 35'-36' below ground surface.	ML		l U							
				End of boring at 36' below ground surface.										

Appendix C Laboratory Reports

(920)469-2436

October 31, 2023

Meghan Blodgett SCS ENGINEERS 2830 Dairy Drive Madison, WI 53718

RE: Project: 25223068 EDGEWATER CCR

Pace Project No.: 40269463

Dear Meghan Blodgett:

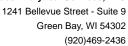
Enclosed are the analytical results for sample(s) received by the laboratory on October 12, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Green Bay

If you have any questions concerning this report, please feel free to contact me.

Sincerely,


Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436

Jan Mileny

Project Manager

Enclosures

cc: Matt Bizjack, Alliant Energy
Natalie Burris, SCS ENGINEERS
Sherren Clark, SCS Engineers
Jenny Coughlin, Alliant Energy
Tom Karwoski, SCS ENGINEERS
Ryan Matzuk, SCS Engineers
Jeff Maxted, ALLIANT ENERGY

CERTIFICATIONS

Project: 25223068 EDGEWATER CCR

Pace Project No.: 40269463

Pace Analytical Services Green Bay

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150

South Carolina Certification #: 83006001 Texas Certification #: T104704529-21-8 Virginia VELAP Certification ID: 11873 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-21-00008 Federal Fish & Wildlife Permit #: 51774A

SAMPLE SUMMARY

Project: 25223068 EDGEWATER CCR

Pace Project No.: 40269463

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40269463001	2R-OW	Water	10/10/23 14:30	10/12/23 09:05
40269463002	MW-301	Water	10/10/23 10:30	10/12/23 09:05
40269463003	MW-302	Water	10/10/23 13:15	10/12/23 09:05
40269463004	MW-303	Water	10/10/23 11:50	10/12/23 09:05
40269463005	FIELD BLANK	Water	10/10/23 14:40	10/12/23 09:05

SAMPLE ANALYTE COUNT

Project: 25223068 EDGEWATER CCR

Pace Project No.: 40269463

Lab ID	Sample ID	Method	Analysts	Analytes Reported
40269463001	2R-OW	EPA 6020B	KXS	2
			AG1	7
		SM 2540C	TMK	1
		EPA 9040	HML	1
		EPA 300.0	HMB	3
40269463002	MW-301	EPA 6020B	KXS	2
			AG1	6
		SM 2540C	TMK	1
		EPA 9040	HML	1
		EPA 300.0	HMB	3
40269463003	MW-302	EPA 6020B	KXS	2
			AG1	7
		SM 2540C	TMK	1
		EPA 9040	HML	1
		EPA 300.0	HMB	3
40269463004	MW-303	EPA 6020B	KXS	2
			AG1	6
		SM 2540C	TMK	1
		EPA 9040	HML	1
		EPA 300.0	HMB	3
40269463005	FIELD BLANK	EPA 6020B	KXS	2
		SM 2540C	TMK	1
		EPA 9040	HML	1
		EPA 300.0	HMB	3

PASI-G = Pace Analytical Services - Green Bay

Project: 25223068 EDGEWATER CCR

Pace Project No.: 40269463

Sample: 2R-OW	Lab ID:	40269463001	Collected	: 10/10/2	3 14:30	Received: 10/	/12/23 09:05 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	•	l Method: EPA 6	•		thod: El	PA 3010A			
Boron	33.5	ug/L	10.0	3.0	1	10/17/23 05:40	10/19/23 21:09	7440 42 9	
Calcium	156000	ug/L	5080	1520	20	10/17/23 05:40			P6
Field Data	Analytica								
	Pace Ana	alytical Services	- Green Bay						
Field pH	7.06	Std. Units			1		10/10/23 14:30		
Field Specific Conductance	1902	umhos/cm			1		10/10/23 14:30		
Oxygen, Dissolved	1.22	mg/L			1		10/10/23 14:30	7782-44-7	
REDOX	544.4	mV			1		10/10/23 14:30		
Turbidity	3.78	NTU			1		10/10/23 14:30		
Static Water Level	600.38	feet			1		10/10/23 14:30		
Temperature, Water (C)	12.7	deg C			1		10/10/23 14:30		
2540C Total Dissolved Solids	Analytica	l Method: SM 25	540C						
	Pace Ana	alytical Services	- Green Bay						
Total Dissolved Solids	1080	mg/L	20.0	8.7	1		10/15/23 21:56		
9040 pH	Analytica	l Method: EPA 9	040						
	Pace Ana	alytical Services	- Green Bay						
pH at 25 Degrees C	7.0	Std. Units	0.10	0.010	1		10/13/23 14:36		H6
300.0 IC Anions	•	l Method: EPA 3 alytical Services							
Chloride	420	mg/L	20.0	5.9	10		10/26/23 01:36	16887-00-6	
Fluoride	<0.95	mg/L	3.2	0.95	10		10/26/23 01:36		D3
Sulfate	28.7	mg/L	20.0	4.4	10		10/26/23 01:36	14808-79-8	
		J							

REPORT OF LABORATORY ANALYSIS

Project: 25223068 EDGEWATER CCR

Pace Project No.: 40269463

Sample: MW-301	Lab ID:	40269463002	Collected:	10/10/23	3 10:30	Received: 10/	12/23 09:05 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	•	Method: EPA 6 lytical Services	•	ration Met	hod: EF	PA 3010A			
Boron Calcium	6600 98500	ug/L ug/L	500 254	152 76.2	50 1	10/17/23 05:40 10/17/23 05:40	10/20/23 13:49 10/19/23 21:45		
Field Data	Analytical Pace Ana	Method: lytical Services	- Green Bay						
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Static Water Level Temperature, Water (C)	7.66 339 4.85 548 592.51 10.4	Std. Units umhos/cm mg/L mV feet deg C			1 1 1 1 1		10/10/23 10:30 10/10/23 10:30 10/10/23 10:30 10/10/23 10:30 10/10/23 10:30 10/10/23 10:30	7782-44-7	
2540C Total Dissolved Solids	•	Method: SM 25 lytical Services							
Total Dissolved Solids	560	mg/L	20.0	8.7	1		10/15/23 21:56		
9040 pH	,	Method: EPA 9 lytical Services							
pH at 25 Degrees C	7.5	Std. Units	0.10	0.010	1		10/13/23 14:40		H6
300.0 IC Anions	,	Method: EPA 3 lytical Services							
Chloride Fluoride Sulfate	18.3 0.20J 185	mg/L mg/L mg/L	2.0 0.32 20.0	0.59 0.095 4.4	1 1 10		10/26/23 01:51 10/26/23 01:51 10/26/23 11:49	16887-00-6 16984-48-8 14808-79-8	

REPORT OF LABORATORY ANALYSIS

Project: 25223068 EDGEWATER CCR

Pace Project No.: 40269463

Sample: MW-302	Lab ID:	40269463003	Collected:	10/10/23	3 13:15	Received: 10/	/12/23 09:05 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytica	l Method: EPA 6	020B Prepa	ration Met	thod: EF	PA 3010A			
	Pace Ana	alytical Services	- Green Bay						
Boron	1400	ug/L	100	30.3	10	10/17/23 05:40	10/20/23 14:03	7440-42-8	
Calcium	59400	ug/L	254	76.2	1	10/17/23 05:40	10/19/23 21:56	7440-70-2	
Field Data	Analytica	l Method:							
	Pace Ana	alytical Services	- Green Bay						
Field pH	7.89	Std. Units			1		10/10/23 13:15		
Field Specific Conductance	465	umhos/cm			1		10/10/23 13:15		
Oxygen, Dissolved	1.40	mg/L			1		10/10/23 13:15	7782-44-7	
REDOX	310.8	mV			1		10/10/23 13:15		
Turbidity	4.82	NTU			1		10/10/23 13:15		
Static Water Level	592.01	feet			1		10/10/23 13:15		
Temperature, Water (C)	11.7	deg C			1		10/10/23 13:15		
2540C Total Dissolved Solids	Analytica	l Method: SM 25	540C						
	Pace Ana	alytical Services	- Green Bay						
Total Dissolved Solids	308	mg/L	20.0	8.7	1		10/15/23 21:57		
9040 pH	Analytica	l Method: EPA 9	040						
	Pace Ana	alytical Services	- Green Bay						
pH at 25 Degrees C	7.8	Std. Units	0.10	0.010	1		10/13/23 14:43		H6
300.0 IC Anions	Analytica	l Method: EPA 3	0.00						
	Pace Ana	alytical Services	- Green Bay						
Chloride	22.0	mg/L	2.0	0.59	1		10/26/23 02:05	16887-00-6	
Fluoride	0.85	mg/L	0.32	0.095	1		10/26/23 02:05		
Sulfate	57.5	mg/L	10.0	2.2	5		10/26/23 12:03		
	-	···• <i>a</i> · –		-	-				

REPORT OF LABORATORY ANALYSIS

Project: 25223068 EDGEWATER CCR

Pace Project No.: 40269463

Sample: MW-303	Lab ID:	40269463004	Collected:	10/10/23	3 11:50	Received: 10/	12/23 09:05 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	•	Method: EPA 6	•	ration Met	hod: EF	PA 3010A			
Boron Calcium	4160 134000	ug/L ug/L	200 254	60.6 76.2	20 1	10/17/23 05:40 10/17/23 05:40	10/20/23 14:11 10/19/23 22:01		
Field Data	Analytical Pace Ana	Method: llytical Services	- Green Bay						
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Static Water Level Temperature, Water (C)	6.99 1030 3.49 311.5 585.79 11.4	Std. Units umhos/cm mg/L mV feet deg C			1 1 1 1 1		10/10/23 11:50 10/10/23 11:50 10/10/23 11:50 10/10/23 11:50 10/10/23 11:50 10/10/23 11:50	7782-44-7	
2540C Total Dissolved Solids	•	Method: SM 25							
Total Dissolved Solids	600	mg/L	20.0	8.7	1		10/15/23 21:57		
9040 pH	,	Method: EPA 9							
pH at 25 Degrees C	6.9	Std. Units	0.10	0.010	1		10/13/23 14:48		H6
300.0 IC Anions	•	Method: EPA 3							
Chloride Fluoride Sulfate	19.9 <0.095 <0.44	mg/L mg/L mg/L	2.0 0.32 2.0	0.59 0.095 0.44	1 1 1		10/26/23 02:19 10/26/23 02:19 10/26/23 02:19	16984-48-8	

REPORT OF LABORATORY ANALYSIS

Project: 25223068 EDGEWATER CCR

Pace Project No.: 40269463

Sample: FIELD BLANK	Lab ID:	40269463005	Collected	d: 10/10/23	3 14:40	Received: 10/	12/23 09:05 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	•	Method: EPA 6	•		hod: El	PA 3010A			
Boron Calcium	<3.0 <76.2	ug/L ug/L	10.0 254	3.0 76.2	1 1	10/17/23 05:40 10/17/23 05:40	10/19/23 21:40 10/19/23 21:40		
2540C Total Dissolved Solids	•	Method: SM 25 ytical Services		y					
Total Dissolved Solids	<8.7	mg/L	20.0	8.7	1		10/15/23 21:59		
9040 pH	-	Method: EPA 9 ytical Services		y					
pH at 25 Degrees C	6.4	Std. Units	0.10	0.010	1		10/13/23 14:57		H6
300.0 IC Anions	•	Method: EPA 3 lytical Services		y					
Chloride Fluoride Sulfate	<0.59 <0.095 <0.44	mg/L mg/L mg/L	2.0 0.32 2.0	0.59 0.095 0.44	1 1 1		10/26/23 02:34 10/26/23 02:34 10/26/23 02:34	16984-48-8	

REPORT OF LABORATORY ANALYSIS

Project: 25223068 EDGEWATER CCR

Pace Project No.: 40269463

Boron

Calcium

QC Batch: 457666 Analysis Method: EPA 6020B
QC Batch Method: EPA 3010A Analysis Description: 6020B MET

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40269463001, 40269463002, 40269463003, 40269463004, 40269463005

METHOD BLANK: 2628354 Matrix: Water

Associated Lab Samples: 40269463001, 40269463002, 40269463003, 40269463004, 40269463005

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed <3.0 10.0 10/19/23 20:38 ug/L <76.2 254 10/19/23 20:38 ug/L

LABORATORY CONTROL SAMPLE: 2628355

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Boron 250 248 99 80-120 ug/L Calcium 10000 10300 103 80-120 ug/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2628356 2628357 MS MSD 40269463001 Spike Spike MS MSD MS MSD % Rec Max Conc. Parameter Units Result Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Boron ug/L 33.5 250 250 288 286 102 101 75-125 1 20 Calcium 156000 10000 10000 181000 164000 252 80 75-125 10 20 P6 ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 25223068 EDGEWATER CCR

Pace Project No.: 40269463

QC Batch: 457507 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40269463001, 40269463002, 40269463003, 40269463004, 40269463005

METHOD BLANK: 2627853 Matrix: Water

Associated Lab Samples: 40269463001, 40269463002, 40269463003, 40269463004, 40269463005

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <8.7 20.0 10/15/23 21:53

LABORATORY CONTROL SAMPLE: 2627854

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 587 580 99 80-120

SAMPLE DUPLICATE: 2627855

40269478001 Dup Max **RPD** Parameter Units Result Result **RPD** Qualifiers 200 **Total Dissolved Solids** mg/L 214 7 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 25223068 EDGEWATER CCR

Pace Project No.: 40269463

QC Batch: 457433 Analysis Method: EPA 9040
QC Batch Method: EPA 9040 Analysis Description: 9040 pH

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40269463001, 40269463002, 40269463003, 40269463004, 40269463005

SAMPLE DUPLICATE: 2626884

40268922001 Dup Max Parameter Units RPD RPD Qualifiers Result Result 7.6 pH at 25 Degrees C Std. Units 7.6 0 20 1q,H6

SAMPLE DUPLICATE: 2626885

		40269463001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
pH at 25 Degrees C	Std. Units	7.0	7.0	0	2	0 H6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 25223068 EDGEWATER CCR

Pace Project No.: 40269463

QC Batch: 458394 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40269463001, 40269463002, 40269463003, 40269463004, 40269463005

METHOD BLANK: 2632613 Matrix: Water

Associated Lab Samples: 40269463001, 40269463002, 40269463003, 40269463004, 40269463005

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed Chloride mg/L < 0.59 2.0 10/25/23 11:36 Fluoride mg/L < 0.095 0.32 10/25/23 11:36 Sulfate mg/L 10/25/23 11:36 < 0.44 2.0

LABORATORY CONTROL SAMPLE: 2632614

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L		19.5	98	90-110	
Fluoride	mg/L	2	1.9	97	90-110	
Sulfate	mg/L	20	19.3	97	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2632	2632616									
			MS	MSD					_			
		40269429001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	530	400	400	939	935	102	101	90-110	0	15	
Fluoride	mg/L	<1.9	40	40	43.5	43.4	109	108	90-110	0	15	
Sulfate	mg/L	281	400	400	702	698	105	104	90-110	1	15	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2632	617	2632618									
			MS	MSD									
		40269478005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual	
Chloride	mg/L	29.6	200	200	242	242	106	106	90-110	0	15		
Fluoride	mg/L	< 0.95	20	20	22.5	22.4	109	108	90-110	0	15		
Sulfate	mg/L	137	200	200	350	347	106	105	90-110	1	15		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

QUALIFIERS

Project: 25223068 EDGEWATER CCR

Pace Project No.: 40269463

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

DL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

1a	Due to the sample matrix, DI water was added to this sample on a one to one basis and the sample was stirred before
•	analysis.

D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

H6 Analysis initiated outside of the 15 minute EPA required holding time.

P6 Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 25223068 EDGEWATER CCR

Pace Project No.: 40269463

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40269463001	2R-OW	EPA 3010A	457666	EPA 6020B	457761
40269463002	MW-301	EPA 3010A	457666	EPA 6020B	457761
40269463003	MW-302	EPA 3010A	457666	EPA 6020B	457761
40269463004	MW-303	EPA 3010A	457666	EPA 6020B	457761
40269463005	FIELD BLANK	EPA 3010A	457666	EPA 6020B	457761
40269463001	2R-OW				
10269463002	MW-301				
40269463003	MW-302				
40269463004	MW-303				
40269463001	2R-OW	SM 2540C	457507		
10269463002	MW-301	SM 2540C	457507		
40269463003	MW-302	SM 2540C	457507		
40269463004	MW-303	SM 2540C	457507		
40269463005	FIELD BLANK	SM 2540C	457507		
40269463001	2R-OW	EPA 9040	457433		
40269463002	MW-301	EPA 9040	457433		
40269463003	MW-302	EPA 9040	457433		
40269463004	MW-303	EPA 9040	457433		
40269463005	FIELD BLANK	EPA 9040	457433		
40269463001	2R-OW	EPA 300.0	458394		
40269463002	MW-301	EPA 300.0	458394		
40269463003	MW-302	EPA 300.0	458394		
40269463004	MW-303	EPA 300.0	458394		
40269463005	FIELD BLANK	EPA 300.0	458394		

REPORT OF LABORATORY ANALYSIS

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed as

						12	3	10	9	8	7	6	5 FIELD BLANK			2 MW-301	1 2R-OW	ITEM#	"		vodace par par	Phone 608-2	Email mblodgett@	Madison, WI 53718		Required Client Information:
			ADDITIONAL COMMENTS								NK					One Character per box. (A-Z, 0-9 /, -) Sample kis must be unique	SAMPLE ID		Standard IAT	16-7362	scsengineers.com	Dairy Drive	SCS ENGINEERS	ormation:		
٠																			Drinking Water DW Water WT Waste Water WW Product P Sol/Solid SL Oil			Project Name	Purcha	copy to	Report	Required F
					<u>۔</u>	_	_	-				_	ΤW	ΨT	WT	WT	ТМ	MATRIX CODE				Project # 25223068	Purchase Order #	١	To Me	١ĕ
			Š		JUN SIL		-	十	\vdash	ļ —		\vdash	-	7	-	-			(G=GRAB C=		1	F 252	#		ghan	t Info
			di		HE 8		İ					İ	4	-			01/0	DAT			1	23068			Meghan Blodgatt	rmatio
$\neg \neg \neg$	SS.		Š	T	RELINQUISHED BY / AFFILIATION	-	-	-	-	-	\vdash	-	E	==	45	=	11 0		START			25223068 Edgewater			Ħ	ä
SIGN	SAMPLER NAME AND SIGNATURE		The	K)	Į Į		<u> </u>	_			_	_	7.12	150	8:55	DS:01				COLLECTED		iter				
SIGNATURE OF SAMPLER: MINA	NAME				•													DATE	m	TED	١			l		
of SA	AND		CUELL,	रेडि	<u> </u>	T	1			 	1						+	TIME	e e							
PE E	Š		8	TO LIGHT	DATE:	<u> </u>	┼	-	+	-	╀-	-	├			-	-	SAMPLE TEMP	AT COLLECTION) N	١			П		
쀠쀠	텵	-				╁	╁	+	+-	┼	╁	╁	1	=	_	-	W	# OF CONTAINE			ŀ) <u>P</u>	3	3 8	Į
Milliam	"		0705	38	ME E	H	\dagger	†	+	+			æ			Т		Pace Profile #:	Pace Quote	Address	Attention	Invoice information:				
	` [1"								N.	1	1	15	30	H2SO4	Pro		Pace Prome #:		율		Ž R	Į,
- 15			· K			<u></u>	<u> </u>	ļ	ļ.,,	<u> </u>	<u> </u>	<u> </u>	5	1			_	HNO3			1	وَّ الْمُ		['	•	atio
3				7	1	-	╀-	_	-	-	-	-	-	┼	ऻ		-	HCI		serva	1	9				=
SQ)		MAN		1	\vdash	╁	+	+	┼	┼	+	╁	+-	├	\vdash		NaOH Na2S2O3		Preservatives	-	g	,		l	
YOMIY			3		Š	 	+	+	+	+	T	1-	\vdash	╁╴	╁	\vdash	├~	Methanol			١	T THE	.	Н		l
124	-		<u> </u>	<u>{</u>	I			†			1							Other		1	╛	WSKY		П		1
_]			1	1	BY/												.,	Analyses	Test	Y/N		pace		Ш	Ì	•
		•			ACCEPTED BY / AFFILIATION		İ			1			×	×	×	 ×	×	Metals, Total (B, Ca)	z		oan miewsky@paceaos com,				
DATE					ğ								×	×	×	×	×	Chlonde, Fluor total	ide, Sulfate,	z	2 P	OM,				l
Signed:			10	β			T	1	1	1	T	1	×	×	×	×	×	TDS			quested	1				
ğ			1			-	+	+	+	1	\vdash	+	×	×	×	×	×	рН		z	ted A	1				
<u></u>									1												Analysis	1				
=			7	<u>ò</u>	Ι.				Ţ							_					8 -	1				ŀ
27			1		A	\vdash	+-	-		+	+-	┼	╀	-	 	╁	╂				Filtered	+	╀	H		J
グ			12	1	╁	╂	+	+	+-	╁	+	+	╁	-	┢	╫	1	 			3			П		
			2	3	TIME	-	+	╁	╫		\dagger	╁╴	1	\dagger		\vdash		 				1		П		
				§	m	 	1	丁		1_	T	\top									ı	١		П		٦
TEMP in C	,		· ·	7	П	L																و	,	R R		Page:
				>	┨	-	_				_			-	т—	1	1	Residual Chlo	rine (Y/N)	4		ر ارقار		ulato		
Received Ice	on		†		A A										l			Ī		1		WI WI		Regulatory Agency		-
(Y/N) Custody		-	\vdash	_	- 5											6	6	1			- [19	1	ency		
Sealed Cooler			R		SAMPLE CONDITIONS								8	$\mathcal{S} _{\mathcal{E}}$	9		12			Ì	1					₽
(Y/N)		\vdash	1		- š					1			1	10	il	1	/				١			$\ \ $		1
Samples						1																				

DC#_Title: ENV-FRM-GBAY-0035 v03_Sample Preservation Receipt Form Effective Date: 8/16/2022 Sample Preservation Receipt Form
Project # 407 (204 Client Name: Initial where Date/ All containers needing preservation have been checked and noted below. Lab Std #ID of preservation (if pH adjusted) Lab Lot# of pH paper 'OA Vials (>6mm) laOH+Zn Act pH ≥9 after adjusted pH <2 **Plastic** Vials ≥12 Glass Jars General Volume HO3 pH JaOH pH (mL) WGFU WPFU /G9M **BG3U** VG9U **H69/** VG9D BG1U AG1H AG5U AG2S BP1U **BP3U BP3B BP3N BP3S** VG9C DG9T JGFU JG9U ZPLC SP5T **12SO4 BP2Z** 7 $\overline{}$ Pace S S S S Lab# 2.5/5 001 2 2.5/5 002 2 2.5/5 003 2.5/5 004 2.5 / 5 005 2.5 / 5 006 2.5/5 007 2.5 / 5 800 2.5 / 5 009 010 ma, g 2.5 / 5 2.5/5 011 2.5 / 5 012 2.5 / 5 013 2.5/5 014 2.5/5 015 2.5 / 5 016 017 2.5/5 2.5/5 018 2.5/5 019 2.5/5 020

AG1U 1 liter amber glass BP1U VG9C 40 mL clear ascorbic w/ HCl **JGFU** 1 liter plastic unpres BG1U 1 liter clear glass BP3U JG9U 250 mL plastic unpres DG9T 40 mL amber Na Thio

4 oz amber jar unpres 9 oz amber jar unpres WGFU VG9U 4 oz clear jar unpres AG1H 1 liter amber glass HCL BP3B 250 mL plastic NaOH 40 mL clear vial unpres 4 oz plastic jar unpres AG4S 125 mL amber glass H2SO4 BP3N 250 mL plastic HNO3 VG9H 40 mL clear vial HCL WPFU AG5U 100 mL amber glass unpres BP3S 250 mL plastic H2SO4 VG9M 40 mL clear vial MeOH SP5T 120 mL plastic Na Thiosulfate AG2S 500 mL amber glass H2SO4 BP2Z 500 mL plastic NaOH + Zn VG9D 40 mL clear vial DI **ZPLC** ziploc bag GN 1 BG3U 250 mL clear glass unpres GN₂

*If yes look in headspace column

Headspace in VOA Vials (>6mm) · □Yes □No □NA

Exceptions to preservation check VOA, Coliform, TOC, TOX, TOH, O&G, WI DRO, Phenolics, Other.

DC#_Title: ENV-FRM-GBAY-0014 v03_SCUR

effective Date: 8/17/2022					
Sample C	ondition	Upo	n Receipt Forn	n (SCUR)	
α		•	Projeçt #:		
Client Name:	The	gin	værs	WO# : 4	40269463
Courier: CS Logistics Fed Ex Speede	e 🗆 UPS	□ w	/altco		
Client Pace Other:					
Tracking #:				40269463	
Custody Seal on Cooler/Box Present: 🏌 yes 📙					
Custody Seal on Samples Present:		•	☐ yes ☐ no		
Packing Material:				P	
	Type of Ice	: ever	Blue Dry None	Meltwater (Person examining contents:
Temp Blank Present: yes 500	-	– ogical 1	Γissue is Frozen: [] yes∏ no	10/12/33 /Initials:
Temp should be above freezing to 6°C. Biota Samples may be received at ≤ 0°C if shipped on Dry	/ Ice.				Labeled By Initials: MH
Chain of Custody Present:	□/es □No	□n/a	1.		•
Chain of Custody Filled Out:	□Yes ☑No	□n/a	2.Inv.		Idutz
Chain of Custody Relinquished:	ZYes □No	□n/a	3.		Sic
Sampler Name & Signature on COC:	ZYes □No	□n/a	4.		
Samples Arrived within Hold Time:	Yes □No		5.		
- DI VOA Samples frozen upon receipt	□Yes □No		Date/Time.	10180	
Short Hold Time Analysis (<72hr):	Zı́Yes □No		6.		
Rush Turn Around Time Requested:	□Yes □No	·	7.	<u> </u>	
Sufficient Volume:			8.		
For Analysis: ☑Yes ☐No MS/MSD:	□Yes ØNo	□n/a			
Correct Containers Used:	☑Yes □No		9.		
Correct Type: Race Green Bay, Pace IR, Non-Pace					
Containers Intact:	ZYes □No		10.		
Filtered volume received for Dissolved tests	□Yes □No	Ø N/A	11.		
Sample Labels match COC:	Yes \ No	□n/a	12.		
-Includes date/time/ID/Analysis Matrix:	<u> </u>				
Trip Blank Present:	□Yes □No	Γ/N/A	13.		
Trip Blank Custody Seals Present	□Yes □No	ZN/A			
Pace Trip Blank Lot # (if purchased):					
Client Notification/ Resolution: Person Contacted:		Date/		hecked, see attacl	ned form for additional comments
Comments/ Resolution:					
• • • • • • • • • • • • • • • • • • • 					

PM Review is documented electronically in LIMs. By releasing the project, the PM acknowledges they have reviewed the sample logic

(920)469-2436

May 09, 2024

Meghan Blodgett SCS ENGINEERS 2830 Dairy Drive Madison, WI 53718

RE: Project: 2522069 EDGEWATER CCR (CLOSED

Pace Project No.: 40276984

Dear Meghan Blodgett:

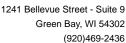
Enclosed are the analytical results for sample(s) received by the laboratory on April 18, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Green Bay
- Pace Analytical Services Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely


Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436

Lan Mileny

Project Manager

Enclosures

cc: Matt Bizjack, Alliant Energy
Natalie Burris, SCS ENGINEERS
Sherren Clark, SCS Engineers
Jenny Coughlin, Alliant Energy
Tom Karwoski, SCS ENGINEERS
Ryan Matzuk, SCS Engineers
Jeff Maxted, ALLIANT ENERGY

CERTIFICATIONS

Project: 2522069 EDGEWATER CCR (CLOSED

Pace Project No.: 40276984

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417 ANABISO/IEC 17025:2017 Rad Cert#: L24170

Alabama Certification #: 41590

Arizona Certification #: AZ0734 Arkansas Certification

California Certification #: 2950 Colorado Certification #: PA01547

Connecticut Certification #: PH-0694

EPA Region 4 DW Rad

Florida/TNI Certification #: E87683

Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification

Illinois Certification

Indiana Certification

Iowa Certification #: 391 Kansas Certification #: E-10358

Kentucky Certification #: KY90133

KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA010

Louisiana DEQ/TNI Certification #: 04086 Maine Certification #: 2023021

Maryland Certification #: 308

Massachusetts Certification #: M-PA1457

Michigan/PADEP Certification #: 9991

Pace Analytical Services Green Bay

Florida/NELAP Certification #: E87948

Illinois Certification #: 200050

Kentucky UST Certification #: 82

Louisiana Certification #: 04168
Minnesota Certification #: 055-999-334

New York Certification #: 12064

North Dakota Certification #: R-150

Missouri Certification #: 235

Montana Certification #: Cert0082

Nebraska Certification #: NE-OS-29-14

Nevada Certification #: PA014572023-03

New Hampshire/TNI Certification #: 297622

New Jersey/TNI Certification #: PA051

New Mexico Certification #: PA01457

New York/TNI Certification #: 10888

North Carolina Certification #: 42706

North Dakota Certification #: R-190

Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-015

Pennsylvania/TNI Certification #: 65-00282

Puerto Rico Certification #: PA01457

Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: TN02867

Texas/TNI Certification #: T104704188-22-18

Utah/TNI Certification #: PA014572223-14

USDA Soil Permit #: 525-23-67-77263

Vermont Dept. of Health: ID# VT-0282

Virgin Island/PADEP Certification

Virginia/VELAP Certification #: 460198

Washington Certification #: C868 West Virginia DEP Certification #: 143

West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad

1241 Bellevue Street, Green Bay, WI 54302 South Carolina Certification #: 83006001

Texas Certification #: T104704529-21-8

Virginia VELAP Certification ID: 11873

Wisconsin Certification #: 405132750

vvisconsin Certification #: 405132750

Wisconsin DATCP Certification #: 105-444

USDA Soil Permit #: P330-21-00008 Federal Fish & Wildlife Permit #: 51774A

SAMPLE SUMMARY

Project: 2522069 EDGEWATER CCR (CLOSED

Pace Project No.: 40276984

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40276984001	MW-301	Water	04/16/24 10:40	04/18/24 08:40
40276984002	MW-302	Water	04/16/24 12:45	04/18/24 08:40
40276984003	MW-303	Water	04/16/24 11:40	04/18/24 08:40
40276984004	MW-304	Water	04/16/24 15:30	04/18/24 08:40
40276984005	2R-OW	Water	04/16/24 14:05	04/18/24 08:40
40276984006	FIELD BLANK	Water	04/16/24 15:35	04/18/24 08:40

SAMPLE ANALYTE COUNT

Project: 2522069 EDGEWATER CCR (CLOSED

Pace Project No.: 40276984

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40276984001	MW-301	EPA 6020B	KXS, TXW	2	PASI-G
			LB	7	PASI-G
		SM 2540C	TXW	1	PASI-G
		EPA 9040	HML	1	PASI-G
		EPA 300.0	HMB	3	PASI-G
0276984002	MW-302	EPA 6020B	TXW	2	PASI-G
			LB	7	PASI-G
		SM 2540C	TXW	1	PASI-G
		EPA 9040	HML	1	PASI-G
		EPA 300.0	НМВ	3	PASI-G
0276984003	MW-303	EPA 6020B	KXS, TXW	2	PASI-G
			LB	7	PASI-G
		SM 2540C	TXW	1	PASI-G
		EPA 9040	HML	1	PASI-G
		EPA 300.0	HMB	3	PASI-G
0276984004	MW-304	EPA 6020B	TXW	14	PASI-G
		EPA 7470	RZA	1	PASI-G
			LB	5	PASI-G
		EPA 903.1	LL1	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		SM 2540C	TXW	1	PASI-G
		EPA 9040	HML	1	PASI-G
		EPA 300.0	HMB	3	PASI-G
0276984005	2R-OW	EPA 6020B	TXW	2	PASI-G
			LB	7	PASI-G
		SM 2540C	TXW	1	PASI-G
		EPA 9040	HML	1	PASI-G
		EPA 300.0	НМВ	3	PASI-G
0276984006	FIELD BLANK	EPA 6020B	TXW	14	PASI-G
		EPA 7470	RZA	1	PASI-G
		EPA 903.1	LL1	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		SM 2540C	TXW	1	PASI-G
		EPA 9040	HML	1	PASI-G
		EPA 300.0	НМВ	3	PASI-G

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

(920)469-2436

SAMPLE ANALYTE COUNT

Project: 2522069 EDGEWATER CCR (CLOSED

Pace Project No.: 40276984

Lab ID Sample ID Method Analysts Reported Laboratory

PASI-G = Pace Analytical Services - Green Bay PASI-PA = Pace Analytical Services - Greensburg

Project: 2522069 EDGEWATER CCR (CLOSED

Pace Project No.: 40276984

Lab ID:	40276984001	Collected	: 04/16/24	1 10:40	Received: 04/	/18/24 08:40 M	atrix: Water	
Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Analytical	Method: EPA 6	020B Prepa	ration Met	hod: EF	PA 3010A			
Pace Ana	lytical Services	- Green Bay						
6490	ug/L	200	60.6	20	04/23/24 07:07	04/30/24 15:41	7440-42-8	
93900	ug/L	254	76.2	1	04/23/24 07:07	04/29/24 02:10	7440-70-2	
Analytical	Method:							
Pace Ana	lytical Services	- Green Bay						
7.34	Std. Units			1		04/16/24 10:40		
785	umhos/cm			1		04/16/24 10:40		
4.32	mg/L			1		04/16/24 10:40	7782-44-7	
132.1	mV			1		04/16/24 10:40		
33.5	NTU			1		04/16/24 10:40		
597.38	feet			1		04/16/24 10:40		
9.7	deg C			1		04/16/24 10:40		
Analytical	Method: SM 25	540C						
Pace Ana	lytical Services	- Green Bay						
572	mg/L	20.0	8.7	1		04/22/24 15:39		
Analytical	Method: EPA 9	040						
Pace Ana	lytical Services	- Green Bay						
8.1	Std. Units	0.10	0.010	1		04/23/24 14:58		H6
Analytical	Method: EPA 3	0.00						
Pace Ana	lytical Services	- Green Bay						
18.8	mg/L	2.0	0.59	1		05/01/24 14:03	16887-00-6	
	ū			1				
191	0	20.0	4.4	10				
	Results Analytical Pace Analy	Analytical Method: EPA 6 Pace Analytical Services 6490 ug/L 93900 ug/L Analytical Method: Pace Analytical Services 7.34 Std. Units 785 umhos/cm 4.32 mg/L 132.1 mV 33.5 NTU 597.38 feet 9.7 deg C Analytical Method: SM 25 Pace Analytical Services 572 mg/L Analytical Method: EPA 9 Pace Analytical Services 8.1 Std. Units Analytical Method: EPA 3 Pace Analytical Services 18.8 mg/L 0.27J mg/L	Analytical Method: EPA 6020B Preparate Analytical Services - Green Bay 6490 ug/L 200 93900 ug/L 254 Analytical Method: Pace Analytical Services - Green Bay 7.34 Std. Units 785 umhos/cm 4.32 mg/L 132.1 mV 33.5 NTU 597.38 feet 9.7 deg C Analytical Method: SM 2540C Pace Analytical Services - Green Bay 572 mg/L 20.0 Analytical Method: EPA 9040 Pace Analytical Services - Green Bay 8.1 Std. Units 0.10 Analytical Method: EPA 300.0 Pace Analytical Services - Green Bay 18.8 mg/L 2.0 0.27J mg/L 2.0	Analytical Method: EPA 6020B Preparation Method: Pace Analytical Services - Green Bay 6490 ug/L 200 60.6 93900 ug/L 254 76.2 Analytical Method: Pace Analytical Services - Green Bay 7.34 Std. Units 785 umhos/cm 4.32 mg/L 132.1 mV 33.5 NTU 597.38 feet 9.7 deg C Analytical Method: SM 2540C Pace Analytical Services - Green Bay 572 mg/L 20.0 8.7 Analytical Method: EPA 9040 Pace Analytical Services - Green Bay 8.1 Std. Units 0.10 0.010 Analytical Method: EPA 300.0 Pace Analytical Services - Green Bay 18.8 mg/L 2.0 0.59 0.27J mg/L 0.32 0.095	Results	Results	Results	Results

REPORT OF LABORATORY ANALYSIS

Project: 2522069 EDGEWATER CCR (CLOSED

Pace Project No.: 40276984

Sample: MW-302	Lab ID:	40276984002	Collected	l: 04/16/2	4 12:45	Received: 04	/18/24 08:40 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	•	Method: EPA 6			thod: El	PA 3010A			
	Pace Ana	llytical Services	- Green Bay	/					
Boron	1610	ug/L	10.0	3.0	1	04/23/24 07:07	04/29/24 02:21	7440-42-8	
Calcium	48600	ug/L	254	76.2	1	04/23/24 07:07	04/29/24 02:21	7440-70-2	
Field Data	Analytica	Method:							
	Pace Ana	lytical Services	- Green Bay	/					
Field pH	7.58	Std. Units			1		04/16/24 12:45		
Field Specific Conductance	481	umhos/cm			1		04/16/24 12:45		
Oxygen, Dissolved	1.77	mg/L			1		04/16/24 12:45	7782-44-7	
REDOX	-51.9	mV			1		04/16/24 12:45		
Turbidity	10.2	NTU			1		04/16/24 12:45		
Static Water Level	593.52	feet			1		04/16/24 12:45		
Temperature, Water (C)	10.6	deg C			1		04/16/24 12:45		
2540C Total Dissolved Solids	Analytica	Method: SM 25	540C						
	Pace Ana	lytical Services	- Green Bay	/					
Total Dissolved Solids	348	mg/L	20.0	8.7	1		04/22/24 15:40		
9040 pH	Analytica	Method: EPA 9	040						
	Pace Ana	lytical Services	- Green Bay	/					
pH at 25 Degrees C	8.3	Std. Units	0.10	0.010	1		04/23/24 15:01		H6
300.0 IC Anions	Analytica	Method: EPA 3	00.0						
	Pace Ana	lytical Services	- Green Bay	/					
Chloride	<3.0	mg/L	10.0	3.0	5		05/01/24 15:43	16887-00-6	D3
Fluoride	<0.48	mg/L	1.6	0.48	5		05/01/24 15:43	16984-48-8	D3
Sulfate	6.0J	mg/L	10.0	2.2	5		05/01/24 15:43	14808-79-8	D3
		Ü							

REPORT OF LABORATORY ANALYSIS

Project: 2522069 EDGEWATER CCR (CLOSED

Pace Project No.: 40276984

Sample: MW-303	Lab ID:	40276984003	Collected	: 04/16/24	11:40	Received: 04/	18/24 08:40 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	l Method: EPA 6	020B Prepa	ration Met	hod: EF	PA 3010A			
	Pace Ana	llytical Services	- Green Bay						
Boron	5100	ug/L	200	60.6	20	04/23/24 07:07	04/30/24 15:52	7440-42-8	
Calcium	148000	ug/L	254	76.2	1	04/23/24 07:07	04/29/24 02:26	7440-70-2	
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Green Bay						
Field pH	6.64	Std. Units			1		04/16/24 11:40		
Field Specific Conductance	1155	umhos/cm			1		04/16/24 11:40		
Oxygen, Dissolved	4.65	mg/L			1		04/16/24 11:40	7782-44-7	
REDOX	-61.6	mV			1		04/16/24 11:40		
Turbidity	50.8	NTU			1		04/16/24 11:40		
Static Water Level	587.88	feet			1		04/16/24 11:40		
Temperature, Water (C)	10.5	deg C			1		04/16/24 11:40		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
	Pace Ana	lytical Services	- Green Bay						
Total Dissolved Solids	724	mg/L	20.0	8.7	1		04/22/24 15:40		
9040 pH	Analytical	Method: EPA 9	040						
•	Pace Ana	lytical Services	- Green Bay						
pH at 25 Degrees C	7.7	Std. Units	0.10	0.010	1		04/23/24 15:03		H6
300.0 IC Anions	Analytical	Method: EPA 3	0.00						
	Pace Ana	lytical Services	- Green Bay						
Chloride	22.9	mg/L	2.0	0.59	1		05/01/24 15:57	16887-00-6	
Fluoride	<0.095	mg/L	0.32	0.095	1		05/01/24 15:57		
Sulfate	<0.44	mg/L	2.0	0.44	1		05/01/24 15:57	14808-79-8	

REPORT OF LABORATORY ANALYSIS

Project: 2522069 EDGEWATER CCR (CLOSED

Pace Project No.: 40276984

Sample: MW-304	Lab ID:	40276984004	Collecte	d: 04/16/24	1 15:30	Received: 04/	18/24 08:40 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3010A			
	-	lytical Services							
Antimony	<0.30	ug/L	2.0	0.30	2	04/23/24 07:07	04/29/24 07:57	7440-36-0	D3
Arsenic	6.9	ug/L	2.0	0.56	2		04/29/24 07:57		
Barium	293	ug/L	4.7	1.4	2		04/29/24 07:57		
Beryllium	1.3J	ug/L	2.0	0.49	2		04/29/24 07:57		D3
Boron	4780	ug/L	100	30.3	10		04/29/24 01:49		P6
Cadmium	<0.30	ug/L	2.0	0.30	2		04/29/24 07:57		D3
Calcium	278000	ug/L	2540	762	10		04/29/24 01:49		P6
Chromium	42.5	ug/L	6.8	2.0	2		04/29/24 07:57		
Cobalt	13.7	ug/L	2.0	0.23	2		04/29/24 07:57		
Lead	12.0	ug/L	2.0	0.47	2		04/29/24 07:57		
Lithium	82.8	ug/L	2.0	0.44	2		04/29/24 07:57		
Molybdenum	2630	ug/L	14.7	4.4	10		04/29/24 01:49		
Selenium	0.95J	ug/L	2.1	0.63	2		04/29/24 07:57		D3
Thallium	0.32J	ug/L	2.0	0.28	2		04/29/24 07:57		D3
7470 Mercury	•	Method: EPA 7	•		od: EPA	A 7470			
	Pace Ana	llytical Services	- Green Ba	y					
Mercury	<0.066	ug/L	0.20	0.066	1	04/30/24 15:10	05/01/24 09:34	7439-97-6	
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Green Ba	y					
Field pH	7.4	Std. Units			1		04/16/24 15:30		
Field Specific Conductance	563	umhos/cm			1		04/16/24 15:30		
Oxygen, Dissolved	2.79	mg/L			1		04/16/24 15:30	7782-44-7	
REDOX	225.7	mV			1		04/16/24 15:30		
Temperature, Water (C)	9.8	deg C			1		04/16/24 15:30		
2540C Total Dissolved Solids	•	Method: SM 25							
	Pace Ana	lytical Services	- Green Ba	у					
Total Dissolved Solids	474	mg/L	20.0	8.7	1		04/22/24 15:40		
9040 pH	Analytical	Method: EPA 9	040						
	Pace Ana	lytical Services	- Green Ba	y					
pH at 25 Degrees C	8.2	Std. Units	0.10	0.010	1		04/23/24 15:07		H6
300.0 IC Anions	Analytical	Method: EPA 3	0.00						
	Pace Ana	lytical Services	- Green Ba	у					
Chloride	22.1	mg/L	10.0	3.0	5		05/01/24 16:26	16887-00-6	
Fluoride	0.80J	mg/L	1.6	0.48	5		05/01/24 16:26		D3
· · · · ·	2.225	mg/L		00	-			0	

REPORT OF LABORATORY ANALYSIS

Project: 2522069 EDGEWATER CCR (CLOSED

Pace Project No.: 40276984

Sample: 2R-OW	Lab ID:	40276984005	Collected	: 04/16/24	14:05	Received: 04/	/18/24 08:40 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	•	Method: EPA 6	•		hod: Ef	PA 3010A			
	Pace Ana	llytical Services	- Green Bay	,					
Boron	36.7	ug/L	10.0	3.0	1	04/23/24 07:07	04/29/24 02:42	7440-42-8	
Calcium	109000	ug/L	254	76.2	1	04/23/24 07:07	04/29/24 02:42	7440-70-2	
Field Data	Analytica	Method:							
	Pace Ana	lytical Services	- Green Bay	,					
Field pH	6.99	Std. Units			1		04/16/24 14:05		
Field Specific Conductance	952	umhos/cm			1		04/16/24 14:05		
Oxygen, Dissolved	0.70	mg/L			1		04/16/24 14:05	7782-44-7	
REDOX	133.4	mV			1		04/16/24 14:05		
Turbidity	3.61	NTU			1		04/16/24 14:05		
Static Water Level	607.70	feet			1		04/16/24 14:05		
Temperature, Water (C)	8.6	deg C			1		04/16/24 14:05		
2540C Total Dissolved Solids	Analytica	Method: SM 25	40C						
	Pace Ana	lytical Services	- Green Bay	,					
Total Dissolved Solids	566	mg/L	20.0	8.7	1		04/22/24 15:41		
9040 pH	Analytica	Method: EPA 9	040						
•	Pace Ana	lytical Services	- Green Bay	,					
pH at 25 Degrees C	8.0	Std. Units	0.10	0.010	1		04/23/24 15:11		H6
300.0 IC Anions	Analytica	Method: EPA 3	0.00						
	Pace Ana	lytical Services	- Green Bay	•					
Chloride	67.4	mg/L	10.0	3.0	5		05/01/24 17:23	16887-00-6	
Fluoride	0.14J	mg/L	0.32	0.095	1		05/01/24 16:40	16984-48-8	MO
Sulfate	9.0	mg/L	2.0	0.44	1		05/01/24 16:40	14808-79-8	MO

REPORT OF LABORATORY ANALYSIS

Project: 2522069 EDGEWATER CCR (CLOSED

Pace Project No.: 40276984

Sample: FIELD BLANK	Lab ID:	40276984006	Collected	l: 04/16/24	1 15:35	Received: 04/	/18/24 08:40 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Met	hod: El	PA 3010A			
	Pace Anal	tical Services	- Green Bay	/					
Antimony	<0.15	ug/L	1.0	0.15	1	04/23/24 07:07	04/29/24 02:47	7440-36-0	
Arsenic	<0.28	ug/L	1.0	0.28	1	04/23/24 07:07	04/29/24 02:47	7440-38-2	
Barium	<0.70	ug/L	2.3	0.70	1	04/23/24 07:07	04/29/24 02:47	7440-39-3	
Beryllium	<0.25	ug/L	1.0	0.25	1	04/23/24 07:07	04/29/24 02:47	7440-41-7	
Boron	<3.0	ug/L	10.0	3.0	1	04/23/24 07:07	04/29/24 02:47	7440-42-8	
Cadmium	<0.15	ug/L	1.0	0.15	1	04/23/24 07:07	04/29/24 02:47	7440-43-9	
Calcium	<76.2	ug/L	254	76.2	1	04/23/24 07:07	04/29/24 02:47	7440-70-2	
Chromium	1.0J	ug/L	3.4	1.0	1	04/23/24 07:07	04/29/24 02:47	7440-47-3	
Cobalt	<0.12	ug/L	1.0	0.12	1	04/23/24 07:07	04/29/24 02:47	7440-48-4	
Lead	<0.24	ug/L	1.0	0.24	1	04/23/24 07:07	04/29/24 02:47	7439-92-1	
Lithium	<0.22	ug/L	1.0	0.22	1		04/29/24 02:47		
Molybdenum	<0.44	ug/L	1.5	0.44	1	04/23/24 07:07			
Selenium	< 0.32	ug/L	1.1	0.32	1		04/29/24 02:47		
Thallium	<0.14	ug/L	1.0	0.14	1		04/29/24 02:47		
7470 Mercury	Analytical	Method: EPA 7	470 Prepar	ation Meth	od: EP/	A 7470			
•	Pace Anal	tical Services	- Green Bay	/					
Mercury	<0.066	ug/L	0.20	0.066	1	04/30/24 15:10	05/01/24 09:37	7439-97-6	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
	Pace Anal	tical Services	- Green Bay	/					
Total Dissolved Solids	10.0J	mg/L	20.0	8.7	1		04/22/24 15:41		
9040 pH	Analytical	Method: EPA 9	040						
ос . о р	•	tical Services		,					
pH at 25 Degrees C	7.0	Std. Units	0.10	0.010	1		04/23/24 15:39		H6
300.0 IC Anions	Analytical	Method: EPA 3	0.00						
	Pace Anal	tical Services	- Green Bay	/					
Chloride	<0.59	mg/L	2.0	0.59	1		05/01/24 19:18	16887-00-6	
Fluoride	<0.095	mg/L	0.32	0.095	1		05/01/24 19:18		
Sulfate	<0.44	mg/L	2.0	0.44	1		05/01/24 19:18		

REPORT OF LABORATORY ANALYSIS

Project: 2522069 EDGEWATER CCR (CLOSED

Pace Project No.: 40276984

QC Batch: 473092 Analysis Method: EPA 7470
QC Batch Method: EPA 7470 Analysis Description: 7470 Mercury

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40276984004, 40276984006

METHOD BLANK: 2709401 Matrix: Water

Associated Lab Samples: 40276984004, 40276984006

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Mercury ug/L <0.066 0.20 05/01/24 09:18

LABORATORY CONTROL SAMPLE: 2709402

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Mercury ug/L 5.1 101 85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2709403 2709404

MSD MS 40277334002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Result <0.000066 5 4.9 20 Mercury ug/L 5 5.0 98 100 85-115 2 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Page 13 of 27

QUALITY CONTROL DATA

Project: 2522069 EDGEWATER CCR (CLOSED

Pace Project No.: 40276984

QC Batch: 472389 Analysis Method: EPA 6020B
QC Batch Method: EPA 3010A Analysis Description: 6020B MET

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40276984001, 40276984002, 40276984003, 40276984004, 40276984005, 40276984006

METHOD BLANK: 2705531 Matrix: Water

Associated Lab Samples: 40276984001, 40276984002, 40276984003, 40276984004, 40276984005, 40276984006

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Antimony	ug/L		1.0	04/29/24 01:38	
Arsenic	ug/L	<0.28	1.0	04/29/24 01:38	
Barium	ug/L	< 0.70	2.3	04/29/24 01:38	
Beryllium	ug/L	<0.25	1.0	04/29/24 01:38	
Boron	ug/L	<3.0	10.0	04/29/24 01:38	
Cadmium	ug/L	<0.15	1.0	04/29/24 01:38	
Calcium	ug/L	<76.2	254	04/29/24 01:38	
Chromium	ug/L	<1.0	3.4	04/29/24 01:38	
Cobalt	ug/L	< 0.12	1.0	04/29/24 01:38	
Lead	ug/L	<0.24	1.0	04/29/24 01:38	
Lithium	ug/L	<0.22	1.0	04/29/24 01:38	
Molybdenum	ug/L	< 0.44	1.5	04/29/24 01:38	
Selenium	ug/L	< 0.32	1.1	04/29/24 01:38	
Thallium	ug/L	<0.14	1.0	04/29/24 01:38	

LABORATORY CONTROL SAMPLE:	2705532					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	ug/L	250	255	102	80-120	
Arsenic	ug/L	250	257	103	80-120	
Barium	ug/L	250	247	99	80-120	
Beryllium	ug/L	250	255	102	80-120	
Boron	ug/L	250	239	95	80-120	
Cadmium	ug/L	250	259	104	80-120	
Calcium	ug/L	10000	9820	98	80-120	
Chromium	ug/L	250	250	100	80-120	
Cobalt	ug/L	250	254	102	80-120	
Lead	ug/L	250	248	99	80-120	
Lithium	ug/L	250	248	99	80-120	
Molybdenum	ug/L	250	253	101	80-120	
Selenium	ug/L	250	267	107	80-120	
Thallium	ug/L	250	238	95	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2522069 EDGEWATER CCR (CLOSED

Pace Project No.: 40276984

MATRIX SPIKE & MATRIX	SPIKE DUPL	ICATE: 2705		MCD	2705534							
_		40276984004	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	ug/L	<0.30	250	250	255	259	102	103	75-125	1	20	
Arsenic	ug/L	6.9	250	250	266	268	104	105	75-125	1	20	
Barium	ug/L	293	250	250	598	603	122	124	75-125	1	20	
Beryllium	ug/L	1.3J	250	250	255	258	101	103	75-125	1	20	
Boron	ug/L	4780	250	250	4890	4930	44	63	75-125	1	20	P6
Cadmium	ug/L	< 0.30	250	250	255	258	102	103	75-125	1	20	
Calcium	ug/L	278000	10000	10000	282000	286000	32	75	75-125	2	20	P6
Chromium	ug/L	42.5	250	250	294	301	101	103	75-125	2	20	
Cobalt	ug/L	13.7	250	250	250	256	95	97	75-125	2	20	
Lead	ug/L	12.0	250	250	268	275	102	105	75-125	3	20	
Lithium	ug/L	82.8	250	250	336	340	101	103	75-125	1	20	
Molybdenum	ug/L	2630	250	250	2840	2860	82	91	75-125	1	20	
Selenium	ug/L	0.95J	250	250	270	267	108	107	75-125	1	20	
Thallium	ug/L	0.32J	250	250	255	262	102	105	75-125	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 2522069 EDGEWATER CCR (CLOSED

Pace Project No.: 40276984

QC Batch: 472346 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40276984001, 40276984002, 40276984003, 40276984004, 40276984005, 40276984006

METHOD BLANK: 2705404 Matrix: Water

Associated Lab Samples: 40276984001, 40276984002, 40276984003, 40276984004, 40276984005, 40276984006

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <8.7 20.0 04/22/24 15:38

LABORATORY CONTROL SAMPLE: 2705405

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 616 560 91 80-120

SAMPLE DUPLICATE: 2705406

40277010005 Dup Max **RPD** Parameter Units Result Result **RPD** Qualifiers 636 **Total Dissolved Solids** mg/L 0 638 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 2522069 EDGEWATER CCR (CLOSED

Pace Project No.: 40276984

QC Batch: 472428 Analysis Method: EPA 9040
QC Batch Method: EPA 9040 Analysis Description: 9040 pH

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40276984001, 40276984002, 40276984003, 40276984004, 40276984005, 40276984006

SAMPLE DUPLICATE: 2705638

 Parameter
 Units
 40276801001 Result
 Dup Result
 Max RPD
 RPD
 Qualifiers

 pH at 25 Degrees C
 Std. Units
 7.9
 7.8
 1
 20

SAMPLE DUPLICATE: 2705639

		40276911001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
pH at 25 Degrees C	Std. Units	8.4	8.4	1	2	0 H6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 2522069 EDGEWATER CCR (CLOSED

Pace Project No.: 40276984

QC Batch: 473167 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40276984001, 40276984002, 40276984003, 40276984004, 40276984005

METHOD BLANK: 2709990 Matrix: Water

Associated Lab Samples: 40276984001, 40276984002, 40276984003, 40276984004, 40276984005

Blank Reporting Limit Qualifiers Parameter Units Result Analyzed Chloride mg/L < 0.59 2.0 05/01/24 12:08 Fluoride mg/L < 0.095 0.32 05/01/24 12:08 Sulfate mg/L 05/01/24 12:08 < 0.44 2.0

LABORATORY CONTROL SAMPLE: 2709991

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L		20.0	100	90-110	
Fluoride	mg/L	2	2.0	98	90-110	
Sulfate	mg/L	20	20.1	100	90-110	

MATRIX SPIKE & MATRIX SI	PIKE DUPLI	CATE: 2707	760		2707761							
			MS	MSD								
	4	40276984005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	67.4	100	100	177	177	109	109	90-110	0	15	
Fluoride	mg/L	0.14J	2	2	2.3	2.3	110	110	90-110	0	15	
Sulfate	mg/L	9.0	20	20	31.3	31.5	112	112	90-110	0	15	MO

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 2522069 EDGEWATER CCR (CLOSED

Pace Project No.: 40276984

QC Batch: 473184 Analysis Method: QC Batch Method: EPA 300.0 Analysis Descript

Analysis Description: 300.0 IC Anions

EPA 300.0

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40276984006

METHOD BLANK: 2710056 Matrix: Water

Associated Lab Samples: 40276984006

Blank Reporting Units Limit Qualifiers Parameter Result Analyzed Chloride mg/L < 0.59 2.0 05/01/24 18:49 Fluoride mg/L < 0.095 0.32 05/01/24 18:49 Sulfate mg/L 05/01/24 18:49 < 0.44 2.0

LABORATORY CONTROL SAMPLE: 2710057

Doromotor	Units	Spike Conc.	LCS	LCS % Rec	% Rec Limits	Qualifiers
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	20	21.5	108	90-110	
Fluoride	mg/L	2	2.1	105	90-110	
Sulfate	mg/L	20	21.2	106	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2710	058		2710059							
		40277042001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
		40277042001	Spike	Spike	IVIO	MOD	IVIO	MOD	70 Kec		IVIAX	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	3.3	20	20	25.8	25.9	113	113	90-110	1	15	MO
Fluoride	mg/L	0.64	2	2	2.9	2.9	111	112	90-110	0	15	M0
Sulfate	mg/L	11.0	20	20	33.6	33.8	113	114	90-110	1	15	MO

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2710	060		2710061						
			MS	MSD							
		40277084016	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD Qual
Chloride	mg/L	147	200	200	373	369	113	111	90-110	1	15 M0
Fluoride	mg/L	< 0.95	20	20	21.9	21.4	109	107	90-110	2	15
Sulfate	mg/L	92.5	200	200	317	312	112	110	90-110	2	15 M0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 2522069 EDGEWATER CCR (CLOSED

Pace Project No.: 40276984

Sample: MW-304 PWS:	Lab ID: 4027 Site ID:	6984004 Collected: 04/16/24 15:30 Sample Type:	Received:	04/18/24 08:40	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 903.1	0.834 ± 0.527 (1.00) C:NA T:90%	pCi/L	05/06/24 15:09	9 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	1.09 ± 0.557 (1.00) C:82% T:55%	pCi/L	05/02/24 12:26	6 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	1.92 ± 1.08 (2.00)	pCi/L	05/07/24 14:02	2 7440-14-4	

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 2522069 EDGEWATER CCR (CLOSED

Pace Project No.: 40276984

Sample: FIELD BLANK PWS:	Lab ID: 4027 Site ID:	6984006 Collected: 04/16/24 15:35 Sample Type:	Received:	04/18/24 08:40	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg			_	
Radium-226	EPA 903.1	0.000 ± 0.569 (1.00) C:NA T:93%	pCi/L	05/06/24 15:0	9 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	0.130 ± 0.355 (1.00) C:76% T:87%	pCi/L	04/29/24 11:47	7 15262-20-1	1q,B
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.130 ± 0.924 (2.00)	pCi/L	05/07/24 14:0	2 7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project: 2522069 EDGEWATER CCR (CLOSED

Pace Project No.: 40276984

QC Batch: 663571 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 40276984004, 40276984006

METHOD BLANK: 3231432 Matrix: Water

Associated Lab Samples: 40276984004, 40276984006

Parameter	Act ± Unc (MDC) Carr Trac	Units	Analyzed	Qualifiers
Radium-228	0.366 ± 0.362 (0.742) C:78% T:78%	pCi/L	05/02/24 12:26	
Radium-228	1.25 ± 0.487 (0.738) C:78% T:78%	pCi/L	04/29/24 11:47	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: 2522069 EDGEWATER CCR (CLOSED

Pace Project No.: 40276984

QC Batch: 663570 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 40276984004, 40276984006

METHOD BLANK: 3231431 Matrix: Water

Associated Lab Samples: 40276984004, 40276984006

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.317 ± 0.248 (0.291) C:NA T:94%
 pCi/L
 05/06/24 15:09

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 2522069 EDGEWATER CCR (CLOSED

Pace Project No.: 40276984

DEFINITIONS

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval).

Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - The reported result is an estimated value.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

DL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Analyte was not detected and is reported as less than the LOD or as defined by the customer.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

1~	Complex with activity less than the DDI of 1 0 nCi/l are reporte	shla without awalification
IU	Samples with activity less than the RDI of 1.0 pCi/L are reported	able without qualification.

- B Analyte was detected in the associated method blank.
- D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
- H6 Analysis initiated outside of the 15 minute EPA required holding time.
- M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
- P6 Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 2522069 EDGEWATER CCR (CLOSED

Pace Project No.: 40276984

_ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
10276984001	MW-301	EPA 3010A	472389	EPA 6020B	472486
0276984002	MW-302	EPA 3010A	472389	EPA 6020B	472486
0276984003	MW-303	EPA 3010A	472389	EPA 6020B	472486
0276984004	MW-304	EPA 3010A	472389	EPA 6020B	472486
0276984005	2R-OW	EPA 3010A	472389	EPA 6020B	472486
0276984006	FIELD BLANK	EPA 3010A	472389	EPA 6020B	472486
0276984004	MW-304	EPA 7470	473092	EPA 7470	473217
0276984006	FIELD BLANK	EPA 7470	473092	EPA 7470	473217
0276984001	MW-301				
0276984002	MW-302				
0276984003	MW-303				
0276984004	MW-304				
0276984005	2R-OW				
0276984004	MW-304	EPA 903.1	663570		
0276984006	FIELD BLANK	EPA 903.1	663570		
0276984004	MW-304	EPA 904.0	663571		
0276984006	FIELD BLANK	EPA 904.0	663571		
0276984004	MW-304	Total Radium Calculation	667047		
0276984006	FIELD BLANK	Total Radium Calculation	667047		
0276984001	MW-301	SM 2540C	472346		
0276984002	MW-302	SM 2540C	472346		
0276984003	MW-303	SM 2540C	472346		
0276984004	MW-304	SM 2540C	472346		
0276984005	2R-OW	SM 2540C	472346		
0276984006	FIELD BLANK	SM 2540C	472346		
0276984001	MW-301	EPA 9040	472428		
0276984002	MW-302	EPA 9040	472428		
0276984003	MW-303	EPA 9040	472428		
0276984004	MW-304	EPA 9040	472428		
0276984005	2R-OW	EPA 9040	472428		
0276984006	FIELD BLANK	EPA 9040	472428		
0276984001	MW-301	EPA 300.0	473167		
0276984002	MW-302	EPA 300.0	473167		
0276984003	MW-303	EPA 300.0	473167		
0276984004	MW-304	EPA 300.0	473167		
0276984005	2R-OW	EPA 300.0	473167		
0276984006	FIELD BLANK	EPA 300.0	473184		

REPORT OF LABORATORY ANALYSIS

D	Pace® Location Reque		ate):	_												L	AB USE	ONLY-	Affix W	orkorde		in Label Here		
/Pace	Pace Analytical Green Bay 1241 Bellevue Street, Suit Green Bay, WI 54302			-	CHAIN-OF- Chain-of-Co	CUSTOD \ ustody is a LEG		•	•													40276	,986	t
Company Name:	SCS ENGINEERS				Contact/Report	To: Meghai	n Blodg	ett					1	ä	300	留:								
Street Address:	2830 Dairy Drive,				Phone #:	608-21	6-7362						1											
	Madison, WI 53718				E-Mail:	mblodg	gett@sc	sengineer	s.com			7470					Sc	an QR	Code f	or instr	uction	i s		
Customer Project #:					Cc E-Mail:											Specify	Containe	r Size **	•			**Container Size: (1) 1L, (2) 125mL, (5) 100mL, (6) 40mi		
Project Name:	2522069 EDGEWATER	CCR (CLOSED A	SH I-4)		Invoice To:	Accoun	ts Paya	ble					3	\\	i	3						TerraCore, (9) 90mL, (10) O		, (0)
l					Invoice E-Mail:	aradun	zel@scs	sengineers	.com						Ident	Ify Contai	ner Prese	rvative	Гуре***			*** Preservative Types: (1)	None, (2) HNO3,	(3)
Site Collection Info	/Facility ID (as applicable):				Purchase Order	f (if	-						2	2	2	1						H2SO4, (4) HCl, (5) NaOH, (6 NaHSO4, (8) Sod. Thiosulfat	5) Zn Acetate, (7)) udd (10
					applicable):				*		~					Ana	ysis Requ	ested				MeOH, (11) Other	e, (5) /GGS-010-7-	, (20
	·				Quote #:														İ		ıſ	Proj. Mgr:		ē
Time Zone Collecte Data Deliverables:	d: []AK []PT [IMT DE			County / State or			Wiscon] No				-								1	Dan Milewsky AcctNum / Client ID	·	- Jag
Data Deliverables:		Regulatory Pi	rogram (DV	v, rcka, e	tc.) as applicable:	Reportal	DIE [) tes [INO								ľ				il	Acctivatily chemicia	•	Iden
[] Level II []	Level III [] Level IV		Ru	sh (Pre-	approval require	ed):		DW PW	SID # or WW Pe	rmit # a	s applicable		1					-			1	Table #:		rmance identified for
[] EQUIS		[] Same [Day [] 1	Day [] 2	Day [] 3 Day [] Other		-]						6		_					ı l	<u> </u>		- le le
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Date Results					Field F Analys		pplicable): [] Yes	No.		E	Ť	228	CI/F/SO4, pH	ĺ			1 1		Profile / Template:		ğ
Other Matrix Codes (ins	ert in Matrix box below): Dru	Requested:	/). Ground	Water (GV	V). Waste Water (\	WW), Product (Oil (OL), Wipe (WP), T	ssue (TS),	Bioassay	Calcium	list	*5 9	8	-				, [Prelog / Bottle Ord.	ID:	12
	ace Water (SW),Sediment (SE										т—		- ಶ	3	n 22	片		ı				EZ 3090641		Zate L
(Customer Sample ID		Matrix '	Comp / Grab	Composi Date	te Start Time	Colle	octed or Co Date	mposite End Time	# Cont.		Units	Boron	Metals (full list + Hg)	Radium 226 & 228	TDS, C						Sample Con	nment	Preservation nor
MW-301		·-···	WT				4/1	6/24	10:40				Х			Х						00	/	
MW-302	,		WT						12:45				Х			х		_	ļ			00	<u>Z_</u>	
MW-303			wr						11:40	<u> </u>			Х			х						00	<u>3</u>	
MW-304			WT				<u> </u>		15:30					X	Х	X		_	ļ				<u>4</u>	ـ
2R-OW			WT					1	14:05				Х			X		_	ļ					╁
FIELD BLANK			WT				<u> </u>	¥	15:35		ļ <u>.</u>			X	X	Х			-				<u> </u>	_
																		_						╀
																			<u>.</u>					<u> </u>
Additional Instructi	ons from Pace®:		1	1	<u> </u>	Collected By: (Printed Nam	U,	الأنع	m C	\.\w\	well		Custon	ner Ren	narks /	Special Co	nditions	/ Possibl	e Hazard	s:				
						Signature: \		(,,			•		# Cod	olers <i>f</i>		Thermome	ter-LQ -	Corr	ection Fact	or (°C).	Obs T	Temp. (°C) Corrected	remp. (°C)	On Ice:
						Signature.	MIN	m (JWJ					l		/	37	()		08	0 0.0	<u> </u>	<u> </u>
Relinquished by Compa	IN (SUPPLIED / SC)	>		Date/Time:	7/24 17	7.30	Received	d by/Compan	y: (Signature)			_				Date/Time					Tracking f	Number:		
Relinquished by Compa	iny (Sphature)			Date/Time:	2/1/	OUD	Rederve	d by/Compan	(Signature)	1	. ×	Dr. s	0			Date/Time	IRK	1/	hel	10	Delivere	ed by: [] In- Person [] Courier	
Relinquished by/Compa	DO CHOKE			Date Time	724 U	37U	Received	d by/Compan	y. (Signature)	10		UC	<u> </u>			Date/Time	Uld	7	<u>~() </u>	<u></u>			(10sh	
The state of the s	7							•	0													[] FedEX [] UPS	[]Other	
Relinquished by/Compa	iny: (Signature)	*****		Date/Time.			Received	d by/Compan	y" (Signature)							Date/Time.					Page		1	
Submitting a sample	e via this chain of custody cor	estitutes acknow	dedament :	nd accent	ance of the Pace	Terms and Co	nditions	found at h	ttps://www.p	acelab	.com/resc	urce-libra	ary/res	ource/p	ace-ter	ms-and-c	onditions	/			ENV-F	RM-CORQ-001B_yg	2 110123 9	7

DC#_Title: ENV-FRM-GBAY-0035 v03_Sample Preservation Receipt Form Effective Date: 8/16/2022 Sample Preservation Receipt Form Project # Client Name: V 40276984 All containers needing preservation have been checked and noted below: □No Date/ Lab Lot# of pH paper: Lab Std #ID of preservation (if pH adjusted). Time: laOH+Zn Act pH ≥9 pH after adjusted 'OA Vials (>6mm) Glass Plastic Vials 12SO4 pH ≤2 laOH pH ≥12 Jars General Volume 4NO3 pH <2 WGFU (mL) WPFU AG1H VG9M AG10 AG5U AG2S **BG3U** BP1U BP3U **BP3B BP3N** BP3S VG9C DG9T VG9U **ИСЭН** VG9D JGFU **J**G90 ZPLC BP2Z **SP5T** $\boldsymbol{\tau}$ ĠN. GN Lab# 001 2.5/5 002 2.5/5 003 2.5/5 004 2.5/5 005 2.5/5 006 2.5/5 04/18/24/5/1 007 2.5 / 5 008 2.5/5 009 2.5/5 010 2.5/5 2.5/5 011 012 2.5 / 5 013 2.5/5 014 2.5/5 015 2.5/5 016 2.5/5 017 2.5/5 018 2.5/5 019 2.5 / 5 2.5 / 5 I*If yes look in headspace column Exceptions to preservation check. VOA, Coliform, TOC, TOX, TOH, O&G, WI DRO, Phenolics, Other, Headspace in VOA Vials (>6mm): ☐Yes ☐No ZN/A

				,		•
AG1U 1 liter amber glass	BP1U	1 liter plastic unpres	VG9C	40 mL clear ascorbic w/ HCl	JGFU	4 oz amber jar unpres
BG1U 1 liter clear glass	BP3U	250 mL plastic unpres	DG9T	40 mL amber Na Thio	JG9U	9 oz amber jar unpres
AG1H 1 liter amber glass HCL	BP3B	250 mL plastic NaOH	VG9U	40 mL clear vial unpres	WGFU	4 oz clear jar unpres
AG4S 125 mL amber glass H2SO4	BP3N	250 mL plastic HNO3	VG9H	40 mL clear vial HCL	WPFU	4 oz plastic jar unpres
AG5U 100 mL amber glass unpres	BP3S	250 mL plastic H2SO4	VG9M	40 mL clear vial MeOH	SP5T	120 mL plastic Na Thiosulfate
AG2S 500 mL amber glass H2SO4	BP2Z	500 mL plastic NaOH + Zn	VG9D	40 mL clear vial DI	ZPLC	ziploc bag
BG3U 250 mL clear glass unpres					GN 1	1/LIter 1014 TINUS
					GN 2	<u> </u>

DC#_Title: ENV-FRM-GBAY-0014 v03_SCUR Effective Date: 8/17/2022

Sample	e Condition Up			
Client Name: SCS Logistics Fed Ex Spe	ALLERA sidee [] UPS []	Project #: Waltco	1'	40276984
☐ Client ☐ Pace Other:_			10076004	
Tracking #:			40276984	
Custody Seal on Cooler/Box Present: Tyes		ct: 🗌 yes 📙 no		
Custody Seal on Samples Present: yes		ct: 🗍 yes 🖺 no		
Packing Material: DBubble Wrap B		ne 🗍 Other _ Blue Dry None	Meltwater	Only
Thermometer Used SR - /3/ Cooler Temperature Uncorr: 0.0 /Corr:	Λ Λ ~	blue Dry None	j_i Weitwater	Person examining contents:
Temp Blank Present: Yes Ino		l Tissue is Frozen:	☐ yes ☐ no	Date: Vinitiate: CU
Temp should be above freezing to 6°C. Biota Samples may be received at ≤ 0°C if shipped or	_		•	Labeled By Initials: MH
Chain of Custody Present:	Yes No N	/A 1.		•
Chain of Custody Filled Out:	ØYes □No □N	/A 2.		
Chain of Custody Relinquished:	Yes 🗆 No 🗆 N	/A 3.		
Sampler Name & Signature on COC:	Yes 🗆 No 🗆 N	/A 4.		
Samples Arrived within Hold Time:	Z Yes □No	5.		
- DI VOA Samples frozen upon receipt	☐Yes ☐No	Date/Time		
Short Hold Time Analysis (<72hr):	ZYes □No	6.		
Rush Turn Around Time Requested:	□Yes 🗖No	7.		
Sufficient Volume:		8.		
For Analysis: 🗖 Yes □No MS/M	SD: □Yes 口No □N	/A		
Correct Containers Used:	√Yes □No	9.		
Correct Type: Pace Green Bay Pace IR, Non-P				
Containers Intact:	ZÎYes □No	10.		
Filtered volume received for Dissolved tests	□Yes □No ☑N			
Sample Labels match COC:		12. No Ac	of 4 H	ne all sausle
		12 100 00	40 "	DYLADU
-Includes date/time/ID/Analysis Matrix: Trip Blank Present:	□Yes □No □N	/A 13.	<u></u>	AU SU
Trip Blank Custody Seals Present	□Yes □No ØN	İ		
Pace Trip Blank Lot # (if purchased):				
Client Notification/ Resolution: Person Contacted: Comments/ Resolution:		e/Time:	checked, see atta	ched form for additional comments
DM Designation of the state of	IMa Dandania di	a municat the DRS -	almanula desar 41-	on have reviewed the semale les
PM Review is documented electronically in L	.iivis. by releasing th	e project, the PM a	cknowleages th	
				Page 2 of

(920)469-2436

August 05, 2024

Meghan Blodgett SCS ENGINEERS 2830 Dairy Drive Madison, WI 53718

RE: Project: 25224068 EDGEWATER

Pace Project No.: 40281748

Dear Meghan Blodgett:

Enclosed are the analytical results for sample(s) received by the laboratory on July 27, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

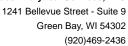
The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Green Bay

Report revised to include the water elevation measurement. This replaces the report from August 1, 2024.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,


Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436

Jan Mileny

Project Manager

Enclosures

cc: Matt Bizjack, Alliant Energy
Natalie Burris, SCS ENGINEERS
Sherren Clark, SCS Engineers
Jenny Coughlin, Alliant Energy
Tom Karwoski, SCS ENGINEERS
Ryan Matzuk, SCS Engineers
Jeff Maxted, ALLIANT ENERGY

CERTIFICATIONS

Project: 25224068 EDGEWATER

Pace Project No.: 40281748

Pace Analytical Services Green Bay

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150

South Carolina Certification #: 83006001 Texas Certification #: T104704529-21-8 Virginia VELAP Certification ID: 11873 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-21-00008 Federal Fish & Wildlife Permit #: 51774A

SAMPLE SUMMARY

Project: 25224068 EDGEWATER

Pace Project No.: 40281748

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
40281748001	MW-304	Water	07/26/24 12:55	07/27/24 08:50	
40281748002	FIELD BLANK	Water	07/26/24 12:55	07/27/24 08:50	

SAMPLE ANALYTE COUNT

Project: 25224068 EDGEWATER

Pace Project No.: 40281748

Analysts Repo
EPA 6020B SIS
AG1
EPA 6020B SIS
<u> </u>

PASI-G = Pace Analytical Services - Green Bay

SUMMARY OF DETECTION

Project: 25224068 EDGEWATER

Pace Project No.: 40281748

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
40281748001	MW-304					
EPA 6020B	Calcium	83800	ug/L	2540	07/29/24 19:36	P6
	Field pH	7.68	Std. Units		07/26/24 12:55	
	Field Specific Conductance	572.9	umhos/cm		07/26/24 12:55	
	Oxygen, Dissolved	0.09	mg/L		07/26/24 12:55	
	REDOX	-2.6	mV		07/26/24 12:55	
	Turbidity	63.37	NTU		07/26/24 12:55	
	Static Water Level	593.43	feet		07/26/24 12:55	
	Temperature, Water (C)	11.0	deg C		07/26/24 12:55	

Project: 25224068 EDGEWATER

Pace Project No.: 40281748

Sample: MW-304	Lab ID:	40281748001	Collected	: 07/26/24	1 12:55	Received: 07/	27/24 08:50 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytica	l Method: EPA 6	020B Prepa	aration Met	hod: EF	PA 3010A			
	Pace Ana	alytical Services	- Green Bay	,					
Calcium	83800	ug/L	2540	762	10	07/29/24 08:25	07/29/24 19:36	7440-70-2	P6
Field Data	Analytica	l Method:							
	Pace Ana	alytical Services	- Green Bay	,					
Field pH	7.68	Std. Units			1		07/26/24 12:55		
Field Specific Conductance	572.9	umhos/cm			1		07/26/24 12:55		
Oxygen, Dissolved	0.09	mg/L			1		07/26/24 12:55	7782-44-7	
REDOX	-2.6	mV			1		07/26/24 12:55		
Turbidity	63.37	NTU			1		07/26/24 12:55		
Static Water Level	593.43	feet			1		07/26/24 12:55		
Temperature, Water (C)	11.0	deg C			1		07/26/24 12:55		

REPORT OF LABORATORY ANALYSIS

Green Bay, WI 54302 (920)469-2436

ANALYTICAL RESULTS

Project: 25224068 EDGEWATER

Pace Project No.: 40281748

Sample: FIELD BLANK Lab ID: 40281748002 Collected: 07/26/24 12:55 Received: 07/27/24 08:50 Matrix: Water **Parameters** Results Units LOQ LOD DF Prepared CAS No. Analyzed Qual **6020B MET ICPMS** Analytical Method: EPA 6020B Preparation Method: EPA 3010A Pace Analytical Services - Green Bay Calcium <76.2 ug/L 254 76.2 07/29/24 08:25 07/29/24 19:28 7440-70-2

Project: 25224068 EDGEWATER

Pace Project No.: 40281748

QC Batch: 480526 Analysis Method: EPA 6020B
QC Batch Method: EPA 3010A Analysis Description: 6020B MET

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40281748001, 40281748002

METHOD BLANK: 2752353 Matrix: Water

Associated Lab Samples: 40281748001, 40281748002

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Calcium ug/L <76.2 254 07/29/24 19:24

LABORATORY CONTROL SAMPLE: 2752354

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Calcium ug/L 10000 9950 100 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2752355 2752356

MS MSD

40281748001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Conc. Limits 93400 20 P6 Calcium ug/L 83800 10000 10000 101000 96 167 75-125

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

QUALIFIERS

Project: 25224068 EDGEWATER

Pace Project No.: 40281748

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - The reported result is an estimated value.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

DL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Analyte was not detected and is reported as less than the LOD or as defined by the customer.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

P6 Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.

REPORT OF LABORATORY ANALYSIS

(920)469-2436

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 25224068 EDGEWATER

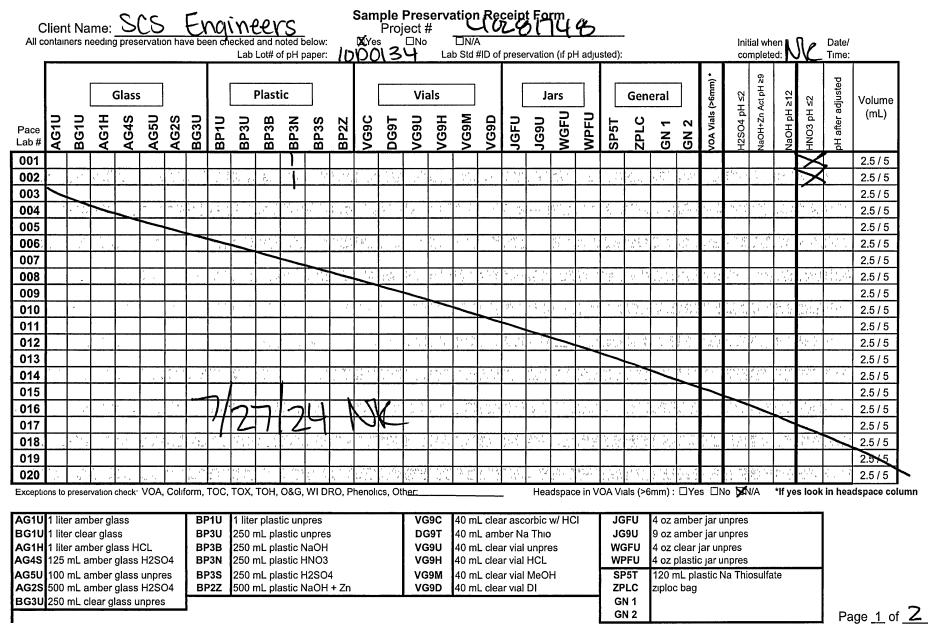
Pace Project No.: 40281748

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40281748001	MW-304	EPA 3010A	480526	EPA 6020B	480614
40281748002	FIELD BLANK	EPA 3010A	480526	EPA 6020B	480614
40281748001	MW-304				

REPORT OF LABORATORY ANALYSIS

02/26/2025 - Classification: Internal - ECRM13462158

CHAIN-OF-CUSTODY / Analytical Request Document


9451348

Page 11 of 13

Madison, WI 53718
Email mblodoettes Company. SCS ENGINEERS
Address. 2830 Dairy Drive Required Client Information: Section A ⇉ 5 ဖ ITEM# 2 œ 7 G w N 6 mblodgett@scsengineers.com 608-216-7362 MW-304 Field Blank One Character per box.
(A-Z, 0-9/, -)
Sample ids must be unique **SAMPLE ID** ADDITIONAL COMMENTS The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately. Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at https://info pacelabs.com/hubfs/pas-standard-terms.pdf. Fax MATRX
Drinking Water
Water
Waste Water
Waste Water
Product
Sol/Solid
Oil
Wipe
Air
Other
Tissue Report To Meghan Blodgett Project Name. Purchase Order #. Copy To. Required Project Information: Section B ₽₽₹₽₽₽₽₽₽₽ S RELINQUISHED BY / AFFILIATION W_I WTG MATRIX CODE (see valid codes to left) SAMPLE TYPE (G=GRAB C=COMP) logistics 7/26 1255 7/26/1255 DATE START SAMPLER NAME AND SIGNATURE TIME COLLECTED SIGNATURE of SAMPLER: PRINT Name of SAMPLER: END TIME 127/24/0850 DATE SAMPLE TEMP AT COLLECTION Attention Company Name Section C 1630 # OF CONTAINERS Pace Profile #. Invoice Information: Pace Project Manager Pace Quote Address THE Unpreserved H2SO4 C $\overline{\times}$ ниоз HCI 5 NaOH Na2S2O3 ACCEPTED BY / AFFILIATION Methanol 000 Other Analyses Test Y/N ۵ 0 Calcium, Total (method DATE Signed. ted Analysis Filtered (Y/N) 0580 hz/LZ/ 26/24 DATE TIME Page: 1.0 Regulatory Agency TEMP in C Residual Chlorine (Y/N) Received on SAMPLE CONDITIONS ice (Y/N) 82 δ Custody Sealed Cooler 잋 (Y/N)

DC#_Title: ENV-FRM-GBAY-0035 v03_Sample Preservation Receipt Form

Effective Date: 8/16/2022

Qualtrax ID: 41307

DC#_Title: ENV-FRM-GBAY-0014 v03_SCUR

Effective Date: 8/17/2022

Sample Condition Upon Receipt Form (SCUR)

			Project #:
Client Name: SCS Engineers		_	₩0#:40281748
Courier: CS Logistics Fed Ex Speedee	☐ UPS	. □ w	altco
☐ Client ☐ Pace Other:			
Tracking #:			40281748
Custody Seal on Cooler/Box Present: 🔯 yes 🗀 no	o Seal	s intact:	iX yes ☐ no
Custody Seal on Samples Present: yes 🔀 no			☐ yes ☐ no
Packing Material: Bubble Wrap Bubble B		_	
		: (Web)	Blue Dry None Meltwater Only Person examining contents:
Cooler Temperature Uncorr. O /Corr: 100			1 -/ 1
Temp Blank Present: ☐ yes 💢 no	Biolo	ogical 1	issue is Frozen: ☐ yes ☐ no Date: 27/24/Initials: DC
Temp should be above freezing to 6°C. Biota Samples may be received at ≤ 0°C if shipped on Dry Ice			Labeled By Initials:
Chain of Custody Present:	∕es □No	□n/a	1.
Chain of Custody Filled Out:	∕es □No	□n/a	2.
Chain of Custody Relinquished:	∕es □No	□n/a	3.
Sampler Name & Signature on COC:	∕es □No	□n/a	4.
Samples Arrived within Hold Time:	∕es □No		5.
- DI VOA Samples frozen upon receipt □\	∕es □No		Date/Time:
Short Hold Time Analysis (<72hr): □	∕es ⊠No		6.
Rush Turn Around Time Requested:	∕es ⊠No		7.
Sufficient Volume:			8.
For Analysis: 🏞 Yes □No MS/MSD: □N	∕es Ş atNo	□n/a	
Correct Containers Used:	∕es □No		9.
Correct Type: Pace Green Bay-Pace IR, Non-Pace			
Containers Intact:	∕es □No		10.
Filtered volume received for Dissolved tests	∕es □No	⊠ N/A	11.
Joanners Laboration and Laboration	∕es □No	□n/A	12.
-Includes date/time/ID/Analysis Matrix:	<u>W</u>		
Trip Blank Present: □\	∕es □No	⊠ N/A	13.
Trip Blank Custody Seals Present	∕es □No	M N/A	
Pace Trip Blank Lot # (if purchased):	·		
Client Notification/ Resolution:		Date/	If checked, see attached form for additional comments
Person Contacted:Comments/ Resolution:		_ Batci	
PM Review is documented electronically in LIMs. By	y releasi	ing the	project, the PM acknowledges they have reviewed the sample logic
			Page 2 of 2

Qualtrax ID: 41292

Pace® Analytical Services, LLC

Page 1 of 2

(920)469-2436

September 23, 2024

Meghan Blodgett SCS ENGINEERS 2830 Dairy Drive Madison, WI 53718

RE: Project: 25224068 EDGEWATER

Pace Project No.: 40283322

Dear Meghan Blodgett:

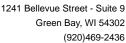
Enclosed are the analytical results for sample(s) received by the laboratory on August 29, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Green Bay
- Pace Analytical Services Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,


Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436

Lan Mileny

Project Manager

Enclosures

cc: Matt Bizjack, Alliant Energy
Natalie Burris, SCS ENGINEERS
Sherren Clark, SCS Engineers
Jenny Coughlin, Alliant Energy
Tom Karwoski, SCS ENGINEERS
Ryan Matzuk, SCS Engineers
Jeff Maxted, ALLIANT ENERGY

CERTIFICATIONS

Project: 25224068 EDGEWATER

Pace Project No.: 40283322

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417 ANABISO/IEC 17025:2017 Rad Cert#: L24170

Alabama Certification #: 41590

Arizona Certification #: AZ0734 Arkansas Certification

California Certification #: 2950 Colorado Certification #: PA01547

Connecticut Certification #: PH-0694

EPA Region 4 DW Rad

Florida/TNI Certification #: E87683

Georgia Certification #: C040

Guam Certification Hawaii Certification

Idaho Certification

Illinois Certification

Indiana Certification
Iowa Certification #: 391

Kansas Certification #: E-10358

Kentucky Certification #: KY90133

KY WW Permit #: KY0098221

KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA010 Louisiana DEQ/TNI Certification #: 04086

Maine Certification #: 2023021

Maryland Certification #: 308

Massachusetts Certification #: M-PA1457

Michigan/PADEP Certification #: 9991

Missouri Certification #: 235

Montana Certification #: Cert0082

Nebraska Certification #: NE-OS-29-14

Nevada Certification #: PA014572023-03

New Hampshire/TNI Certification #: 297622

New Jersey/TNI Certification #: PA051

New Mexico Certification #: PA01457

New York/TNI Certification #: 10888

North Carolina Certification #: 42706

North Dakota Certification #: R-190

Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-015

Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457

Puerto Rico Certification #: PA01457

Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: TN02867

Texas/TNI Certification #: T104704188-22-18

Utah/TNI Certification #: PA014572223-14

Otan/TNI Certification #. PAU14572225-1

USDA Soil Permit #: 525-23-67-77263

Vermont Dept. of Health: ID# VT-0282

Virgin Island/PADEP Certification

Virginia/VELAP Certification #: 460198

Washington Certification #: C868
West Virginia DEP Certification #: 143

West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad

Pace Analytical Services Green Bay

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948

Illinois Certification #: 200050

Kentucky UST Certification #: 82

Louisiana Certification #: 04168
Minnesota Certification #: 055-999-334

New York Certification #: 12064 North Dakota Certification #: R-150 South Carolina Certification #: 83006001

Texas Certification #: T104704529-21-8

Virginia VELAP Certification ID: 11873

Wisconsin Certification #: 405132750

Wisconsin DATCP Certification #: 105-32750

USDA Soil Permit #: P330-21-00008

Federal Fish & Wildlife Permit #: 51774A

SAMPLE SUMMARY

Project: 25224068 EDGEWATER

Pace Project No.: 40283322

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40283322001	MW-304	Water	08/28/24 13:05	08/29/24 09:00
40283322002	FIELD BLANK	Water	08/28/24 13:15	08/29/24 09:00

SAMPLE ANALYTE COUNT

Project: 25224068 EDGEWATER

Pace Project No.: 40283322

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40283322001	MW-304	EPA 6020B	KXS	14	PASI-G
		EPA 7470	AJT	1	PASI-G
			AG1	7	PASI-G
		EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		SM 2540C	LMB	1	PASI-G
		EPA 9040	HML	1	PASI-G
		EPA 300.0	HMB	3	PASI-G
40283322002	FIELD BLANK	EPA 6020B	KXS	14	PASI-G
		EPA 7470	AJT	1	PASI-G
		EPA 903.1	CLM	1	PASI-PA
		EPA 904.0	JJS1	1	PASI-PA
		Total Radium Calculation	JAL	1	PASI-PA
		SM 2540C	LMB	1	PASI-G
		EPA 9040	HML	1	PASI-G
		EPA 300.0	НМВ	3	PASI-G

PASI-G = Pace Analytical Services - Green Bay PASI-PA = Pace Analytical Services - Greensburg

ANALYTICAL RESULTS

Project: 25224068 EDGEWATER

Pace Project No.: 40283322

Parameters Results Units LOQ LOD DF Prepared Analyzed CAS No. Q	Sample: MW-304	Lab ID:	40283322001	Collected	d: 08/28/2	1 13:05	Received: 08/	/29/24 09:00 M	atrix: Water	
Antimony	Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Antimony Antimony Antimony Antimony Aritimony	6020B MET ICPMS	Analytical I	Method: EPA 6	6020B Prep	aration Met	hod: El	PA 3010A			
Arsenic 6.1.4 ug/L 1.0 0.28 1 0.903/24 11:28 09/05/24 14:36 7440-38-2 Barium 69.1 ug/L 2.3 0.70 1 0.903/24 11:28 09/05/24 14:36 7440-38-2 Beryllium 4.0.25 ug/L 1.0 0.25 1 0.903/24 11:28 09/05/24 14:36 7440-177 Boron 4230 ug/L 1.0 0.3.3 10 0.903/24 11:28 09/05/24 14:36 7440-49-9 Calcium 4.0.15 ug/L 1.0 0.15 10.903/24 11:28 09/05/24 14:36 7440-49-9 Calcium 82700 ug/L 2.54 76.2 1 0.903/24 11:28 09/05/24 14:36 7440-70-2 Chromium 1.6.J ug/L 3.4 1.0 0.1 0.12 1 0.903/24 11:28 09/05/24 14:36 7440-70-2 Chromium 5.79 ug/L 1.0 0.12 1 0.903/24 11:28 09/05/24 14:36 7440-70-2 Chromium 5.9 ug/L 1.0 0.12 1 0.903/24 11:28 09/05/24 14:36 7440-47-3 Cobalt 0.72.J ug/L 1.0 0.12 1 0.903/24 11:28 09/05/24 14:36 7440-47-3 Cobalt 0.72.J ug/L 1.0 0.22 1 0.903/24 11:28 09/05/24 14:36 7440-48-4 Lead 0.47.J ug/L 1.0 0.22 1 0.903/24 11:28 09/05/24 14:36 7439-92-1 Ulthium 57.9 ug/L 1.0 0.22 1 0.903/24 11:28 09/05/24 14:36 7439-92-1 Ulthium 57.9 ug/L 1.0 0.22 1 0.903/24 11:28 09/05/24 14:36 7439-92-1 Ulthium 4.0.14 ug/L 1.0 0.32 1 0.903/24 11:28 09/05/24 14:36 7439-92-1 Thallium 4.0.14 ug/L 1.0 0.14 1 0.903/24 11:28 09/05/24 14:36 7439-92-1 Thallium 4.0.14 ug/L 1.0 0.14 1 0.903/24 11:28 09/05/24 14:36 7490-29-2 Thallium 4.0.14 ug/L 1.0 0.014 1 0.903/24 11:28 09/05/24 14:36 7490-29-2 Thallium 4.0.14 ug/L 1.0 0.014 1 0.903/24 11:28 09/05/24 14:36 7490-29-2 Thallium 4.0.14 ug/L 1.0 0.014 1 0.903/24 11:28 09/05/24 14:36 7490-29-2 Thallium 4.0.14 ug/L 1.0 0.014 1 0.903/24 11:28 09/05/24 14:36 7490-29-2 Thallium 4.0.14 ug/L 1.0 0.004 1 0.004/24 07:58 7439-97-6 Thallium 4.0.14 ug/L 1.0 0.004 1 0.004/24 12:30 09/05/24 14:36 7400-28-0 Ulthium 4.004 1 0.004/24 12:30 09/05/24 14:36 7400-28-0 Ulthium 4.004 1 0.004/24 12:30 09/05/24 14:36 7400-28-0 Ulthium 4.004 1 0.004/24 12:30 09/05/24 14:36 7400-28-0 Ulthium 4.004 1 0.004/24 12:30 09/05/24 14:36 7400-28-0 Ulthium 4.004 1 0.004/24 12:30 09/05/24 14:36 7400-28-0 Ulthium 4.004 1 0.004/24 12:30 09/05/24 14:36 7439-97-6 Thallium 4.004 1 0.004/24 12:30 09/05/24 14:36 1 0.004/24 12:30 09/05/24 14:36 1 0.004/		Pace Analy	tical Services	- Green Bay	y					
Arsenic	Antimony	<0.15	ug/L	1.0	0.15	1	09/03/24 11:28	09/05/24 14:36	7440-36-0	
Barium	•		-							
Bezyllium			J			1				
Mary Mary			-							
Cadmium 40.15 ug/L 1.0 0.15 1 09/03/24 11:28 09/05/24 14:36 740-43-9 Calcium 82700 ug/L 254 76.2 1 09/03/24 11:28 09/05/24 14:36 7440-47-3 Cobalt 0.72J ug/L 1.0 0.12 1 09/03/24 11:28 09/05/24 14:36 7440-48-3 Cobalt 0.72J ug/L 1.0 0.12 1 09/03/24 11:28 09/05/24 14:36 7440-48-4 Lead 0.47J ug/L 1.0 0.24 1 09/03/24 11:28 09/05/24 14:36 7439-92-1 Lithium 57.5 ug/L 1.0 0.24 1 0 09/03/24 11:28 09/05/24 14:36 7439-93-2 Molydenum 1950 ug/L 1.1 0.22 1 09/03/24 11:28 09/05/24 14:30 7439-93-2 Thallium 40.32 ug/L 1.0 0.14 1 09/03/24 11:28 09/05/24 14:30 7439-98-7 Thallium 40.06 ug/L 0	•	4230	-			10			7440-42-8	
Calcium 82700 ug/L 254 76.2 1 09/03/24 11:28 09/05/24 14:36 7440-70-2 Chromium 1.6J ug/L 3.4 1.0 1 09/03/24 11:28 09/05/24 14:36 7440-74-3 Cobalt 0.72J ug/L 1.0 0.12 1 09/03/24 11:28 09/05/24 14:36 7440-48-4 Lead 0.47J ug/L 1.0 0.24 1 09/03/24 11:28 09/05/24 14:36 7439-92-1 Lithium 57.9 ug/L 1.1 0.32 1 09/03/24 11:28 09/05/24 14:36 7439-93-2 Molybdenum 40.32 ug/L 1.1 0.32 1 09/03/24 11:28 09/05/24 14:36 7439-93-2 Thallium 40.14 ug/L 1.0 0.32 1 09/03/24 11:28 09/05/24 14:36 7439-93-2 Thallium 40.14 ug/L 0.2 0.066 1 0.903/24 11:28 09/05/24 13:36 7439-93-6 Field Data 7.70 Std. Units 1			-							
Chromium 1.6J ug/L 3.4 1.0 1 09/03/24 11:28 09/05/24 14:36 7440-47-3 Cobalt 0.72J ug/L 1.0 0.12 1 09/03/24 11:28 09/05/24 14:36 7440-48-4 Lead 0.47J ug/L 1.0 0.24 1 09/03/24 11:28 09/05/24 14:36 7439-92-1 Lithium 57.9 ug/L 1.0 0.22 1 09/03/24 11:28 09/05/24 14:36 7439-93-2 Molybdenum 1950 ug/L 1.1 0.32 1 09/03/24 11:28 09/05/24 14:36 7439-99-7 Selenium <0.32			-							
Cobalt 0.72J ug/L 1.0 0.12 l 1 09/03/24 11:28 09/05/24 14:36 7440-48-4 lead 7440-48-4 lead 0.47J ug/L 1.0 0.24 l 1 09/03/24 11:28 09/05/24 14:36 7439-92-1 lightum 7439-92-1 lightum 67.99 ug/L 1.0 0.22 l 1 09/03/24 11:28 09/05/24 14:36 7439-92-1 lightum 7439-93-2 dhay-2 range 2-1 lightum 60.90 (60)/24 14:28 09/05/24 14:36 7439-92-1 lightum 7439-98-7 range 2-1 lightum 7439-98-7 range 2-1 lightum 7439-98-7 range 2-1 lightum 7439-98-7 range 2-1 lightum 7439-98-7 range 2-1 lightum 7439-98-7 range 2-1 lightum 7409-92 range 2-1 lightum			J							
Lead 0.47J 57.9 ug/L ug/L ug/L vg/L vg/L vg/L vg/L vg/L vg/L vg/L v			-							
Lithium 57.9			-							
Molybdenum			-							
Selenium			-							
Thallium <0.14 ug/L 1.0 0.14 1 09/03/24 11:28 09/05/24 14:36 7440-28-0 7470 Mercury Analytical Method: EPA 7470 Preparation Method: EPA 7470 Preparation Method: EPA 7470 Free Nation Method: Process Green Bay Mercury <0.066 ug/L 0.20 0.066 1 09/03/24 12:30 09/04/24 07:58 7439-97-6 Field Data Analytical Method: Prace Analytical Services - Green Bay Preparation Method: Process Green Bay Process Green Bay <t< td=""><td>•</td><td></td><td>J</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></t<>	•		J			-				
Analytical Method: EPA 7470 Preparation Method: EPA 7470 Preparation Method: EPA 7470 Pace Analytical Services - Green Bay Mercury			-							
Pace Analytical Services - Green Bay			· ·							
Mercury	7470 Mercury	-				od: EP/	A 7470			
Field Data Analytical Services - Green Bay Field pH 7.70 Std. Units 1 08/28/24 13:05 Field Specific Conductance 571.5 umhos/cm 1 08/28/24 13:05 Oxygen, Dissolved 0.11 mg/L 1 08/28/24 13:05 Oxygen, Dissolved 1 08/28/24 13:05 Oxygen, Dissolved 1 08/28/24 13:05 Oxygen, Dissolved 1 08/28/24 13:05 Oxygen, Dissolved 1 08/28/24 13:05 Oxygen, Dissolved 1 08/28/24 13:05 Oxygen, Dissolved 1 08/28/24 13:05 Oxygen, Dissolved 1 08/28/24 13:05 Oxygen, Dissolved 1 08/28/24 13:05 Oxygen, Dissolved 1 08/28/24 13:05 Oxygen, Dissolved 1 08/28/24 13:05 Oxygen, Dissolved Solids Oxygen, Dissolved 1 08/28/24 13:05 Oxygen, Dissolved Solids Oxygen, Dissolved 1 08/28/24 13:05 Oxygen, Dissolved Solids Oxygen, Dissolved Oxygen, Dissolved 1 08/28/24 13:05 Oxygen 1 08/28/24 13:05 Oxygen 1 08/28/24 13:05 Oxygen 1 08/28/24 13:05 Oxygen 1 08/28/24 13:05 Oxygen 1 08/28/24 13:05 Oxygen 1 08/28/24 13:05 Oxygen 1 08/28/24 13:05 Oxygen 1 08/28/24 13:05 Oxygen 1 08/28/24 13:05 Oxygen 1 08/28/24 13:05 Oxygen 1 08/28/24 13:05 Oxygen 1 08/28/24 13:05 Oxygen 1 08/28/24 13:05 Oxygen 1 08/28		Pace Analy	tical Services	- Green Bay	y					
Pace Analytical Services - Green Bay	Mercury	<0.066	ug/L	0.20	0.066	1	09/03/24 12:30	09/04/24 07:58	7439-97-6	
Field pH 7.70 Std. Units 1 08/28/24 13:05 Field Specific Conductance 571.5 umhos/cm 1 08/28/24 13:05 Oxygen, Dissolved 0.11 mg/L 1 08/28/24 13:05 Oxygen, Dissolved 0.11 mg/L 1 08/28/24 13:05 Trurbidity 30.16 NTU 1 08/28/24 13:05 Static Water Level 593.71 feet 1 08/28/24 13:05 Temperature, Water (C) 11.1 deg C 1 08/28/24 13:05 2540C Total Dissolved Solids Analytical Method: SM 2540C Pace Analytical Services - Green Bay Total Dissolved Solids 404 mg/L 20.0 8.7 1 09/04/24 12:21 9040 pH Analytical Method: EPA 9040 Pace Analytical Services - Green Bay pH at 25 Degrees C 7.8 Std. Units 0.10 0.010 1 09/05/24 14:36 H6 300.0 IC Anions Analytical Services - Green Bay Chloride 25.0 mg/L 2.0 0.59 1 09/10/24 18:25 16887-00-6	Field Data	Analytical I	Method:							
Field Specific Conductance		Pace Analy	tical Services	- Green Bay	y					
Field Specific Conductance 571.5 umhos/cm 1 08/28/24 13:05 Oxygen, Dissolved 0.11 mg/L 1 08/28/24 13:05 TREDOX -26.5 mV 1 08/28/24 13:05 Turbidity 30.16 NTU 1 08/28/24 13:05 Static Water Level 593.71 feet 1 08/28/24 13:05 Temperature, Water (C) 11.1 deg C 1 08/28/24 13:05 2540C Total Dissolved Solids Analytical Method: SM 2540C Pace Analytical Services - Green Bay Total Dissolved Solids 404 mg/L 20.0 8.7 1 09/04/24 12:21 9040 pH Analytical Method: EPA 9040 Pace Analytical Services - Green Bay pH at 25 Degrees C 7.8 Std. Units 0.10 0.010 1 09/05/24 14:36 H6 300.0 IC Anions Analytical Method: EPA 300.0 Pace Analytical Services - Green Bay Chloride 25.0 mg/L 2.0 0.59 1 09/10/24 18:25 16887-00-6	Field all	7 70	Std Units			1		09/29/24 12:05		
Oxygen, Dissolved 0.11 mg/L 1 08/28/24 13:05 7782-44-7 REDOX -26.5 mV 1 08/28/24 13:05 08/28/24 13:05 Turbidity 30.16 NTU 1 08/28/24 13:05 08/28/24 13:05 Static Water Level 593.71 feet 1 08/28/24 13:05 08/28/24 13:05 Temperature, Water (C) 11.1 deg C 1 08/28/24 13:05 08/28/24 13:05 2540C Total Dissolved Solids Analytical Method: SM 2540C Pace Analytical Services - Green Bay Total Dissolved Solids 404 mg/L 20.0 8.7 1 09/04/24 12:21 9040 pH Analytical Method: EPA 9040 Pace Analytical Services - Green Bay pH at 25 Degrees C 7.8 Std. Units 0.10 0.010 1 09/05/24 14:36 He 300.0 IC Anions Analytical Method: EPA 300.0 Pace Analytical Services - Green Bay Chloride 25.0 mg/L 2.0 0.59 1 09/10/24 18:25 16887-00-6	•									
REDOX	•					•			7782-44-7	
Turbidity 30.16 NTU 1 08/28/24 13:05 Static Water Level 593.71 feet 1 08/28/24 13:05 Temperature, Water (C) 11.1 deg C 1 08/28/24 13:05 2540C Total Dissolved Solids Analytical Method: SM 2540C Pace Analytical Services - Green Bay Total Dissolved Solids 404 mg/L 20.0 8.7 1 09/04/24 12:21 9040 pH Analytical Method: EPA 9040 Pace Analytical Services - Green Bay PH at 25 Degrees C 7.8 Std. Units 0.10 0.010 1 09/05/24 14:36 H6 300.0 IC Anions Analytical Method: EPA 300.0 Pace Analytical Services - Green Bay Chloride 25.0 mg/L 2.0 0.59 1 09/10/24 18:25 16887-00-6									1102-44-1	
Static Water Level 593.71 feet 1 08/28/24 13:05 Temperature, Water (C) 11.1 deg C 1 08/28/24 13:05 2540C Total Dissolved Solids Analytical Method: SM 2540C Pace Analytical Services - Green Bay Total Dissolved Solids 404 mg/L 20.0 8.7 1 09/04/24 12:21 9040 pH Analytical Method: EPA 9040 Pace Analytical Services - Green Bay pH at 25 Degrees C 7.8 Std. Units 0.10 0.010 1 0 09/05/24 14:36 H6 300.0 IC Anions Analytical Method: EPA 300.0 Pace Analytical Services - Green Bay Chloride 25.0 mg/L 2.0 0.59 1 0 09/10/24 18:25 16887-00-6										
Temperature, Water (C)	•									
2540C Total Dissolved Solids Analytical Method: SM 2540C Pace Analytical Services - Green Bay Total Dissolved Solids 404 mg/L 20.0 8.7 1 09/04/24 12:21 9040 pH Analytical Method: EPA 9040 Pace Analytical Services - Green Bay pH at 25 Degrees C 7.8 Std. Units 0.10 0.010 1 09/05/24 14:36 H6 300.0 IC Anions Analytical Method: EPA 300.0 Pace Analytical Services - Green Bay Chloride 25.0 mg/L 2.0 0.59 1 09/10/24 18:25 16887-00-6										
Pace Analytical Services - Green Bay Total Dissolved Solids 404 mg/L 20.0 8.7 1 09/04/24 12:21 9040 pH Analytical Method: EPA 9040 Pace Analytical Services - Green Bay pH at 25 Degrees C 7.8 Std. Units 0.10 0.010 1 09/05/24 14:36 H6 300.0 IC Anions Analytical Method: EPA 300.0 Pace Analytical Services - Green Bay Chloride 25.0 mg/L 2.0 0.59 1 09/10/24 18:25 16887-00-6	Temperature, water (0)		_					00/20/24 13:03		
Total Dissolved Solids 404 mg/L 20.0 8.7 1 09/04/24 12:21 9040 pH Analytical Method: EPA 9040 Pace Analytical Services - Green Bay pH at 25 Degrees C 7.8 Std. Units 0.10 0.010 1 09/05/24 14:36 H6 300.0 IC Anions Analytical Method: EPA 300.0 Pace Analytical Services - Green Bay Chloride 25.0 mg/L 2.0 0.59 1 09/10/24 18:25 16887-00-6	2540C Total Dissolved Solids	•								
9040 pH Analytical Method: EPA 9040 Pace Analytical Services - Green Bay pH at 25 Degrees C 7.8 Std. Units 0.10 0.010 1 09/05/24 14:36 H6 300.0 IC Anions Analytical Method: EPA 300.0 Pace Analytical Services - Green Bay Chloride 25.0 mg/L 2.0 0.59 1 09/10/24 18:25 16887-00-6		_								
Pace Analytical Services - Green Bay pH at 25 Degrees C 7.8 Std. Units 0.10 0.010 1 09/05/24 14:36 H6 300.0 IC Anions Analytical Method: EPA 300.0 Pace Analytical Services - Green Bay Chloride 25.0 mg/L 2.0 0.59 1 09/10/24 18:25 16887-00-6	Total Dissolved Solids	404	mg/L	20.0	8.7	1		09/04/24 12:21		
pH at 25 Degrees C 7.8 Std. Units 0.10 0.010 1 09/05/24 14:36 H6 300.0 IC Anions Analytical Method: EPA 300.0 Pace Analytical Services - Green Bay Chloride 25.0 mg/L 2.0 0.59 1 09/10/24 18:25 16887-00-6	9040 pH	Analytical I	Method: EPA 9	9040						
300.0 IC Anions Analytical Method: EPA 300.0 Pace Analytical Services - Green Bay Chloride 25.0 mg/L 2.0 0.59 1 09/10/24 18:25 16887-00-6		Pace Analy	tical Services	- Green Bay	y					
Pace Analytical Services - Green Bay Chloride 25.0 mg/L 2.0 0.59 1 09/10/24 18:25 16887-00-6	pH at 25 Degrees C	7.8	Std. Units	0.10	0.010	1		09/05/24 14:36		H6
Pace Analytical Services - Green Bay Chloride 25.0 mg/L 2.0 0.59 1 09/10/24 18:25 16887-00-6	300.0 IC Anions	Analytical N	Method: EPA 3	300.0						
· · · · · · · · · · · · · · · · · · ·		-			y					
· · · · · · · · · · · · · · · · · · ·	Chloride	25 N	ma/l	20	n 50	1		09/10/24 18:25	16887-00-6	
1 1001100 1109/10/24 10.25 110904-40-0			-							
Sulfate 94.5 mg/L 10.0 2.2 5 09/11/24 14:40 14808-79-8										

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS

Project: 25224068 EDGEWATER

Pace Project No.: 40283322

Sample: FIELD BLANK	Lab ID:	40283322002	Collected	l: 08/28/2 ⁴	13:15	Received: 08/	/29/24 09:00 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Met	hod: EF	PA 3010A			
	Pace Analy	tical Services	- Green Bay	,					
Antimony	<0.15	ug/L	1.0	0.15	1	09/03/24 11:28	09/05/24 14:03	7440-36-0	
Arsenic	<0.28	ug/L	1.0	0.28	1	09/03/24 11:28	09/05/24 14:03	7440-38-2	
Barium	<0.70	ug/L	2.3	0.70	1	09/03/24 11:28	09/05/24 14:03	7440-39-3	
Beryllium	<0.25	ug/L	1.0	0.25	1	09/03/24 11:28	09/05/24 14:03	7440-41-7	
Boron	<3.0	ug/L	10.0	3.0	1	09/03/24 11:28	09/05/24 14:03	7440-42-8	
Cadmium	<0.15	ug/L	1.0	0.15	1	09/03/24 11:28	09/05/24 14:03	7440-43-9	
Calcium	<76.2	ug/L	254	76.2	1	09/03/24 11:28	09/05/24 14:03	7440-70-2	
Chromium	<1.0	ug/L	3.4	1.0	1	09/03/24 11:28	09/05/24 14:03	7440-47-3	
Cobalt	<0.12	ug/L	1.0	0.12	1	09/03/24 11:28	09/05/24 14:03	7440-48-4	
Lead	<0.24	ug/L	1.0	0.24	1	09/03/24 11:28	09/05/24 14:03	7439-92-1	
Lithium	<0.22	ug/L	1.0	0.22	1	09/03/24 11:28	09/05/24 14:03	7439-93-2	
Molybdenum	< 0.44	ug/L	1.5	0.44	1	09/03/24 11:28	09/05/24 14:03	7439-98-7	
Selenium	< 0.32	ug/L	1.1	0.32	1	09/03/24 11:28	09/05/24 14:03	7782-49-2	
Thallium	<0.14	ug/L	1.0	0.14	1	09/03/24 11:28	09/05/24 14:03	7440-28-0	
7470 Mercury	Analytical I	Method: EPA 7	470 Prepar	ation Metho	od: EPA	7470			
•	Pace Analy	tical Services	- Green Bay	′					
Mercury	<0.066	ug/L	0.20	0.066	1	09/03/24 12:30	09/04/24 08:00	7439-97-6	
2540C Total Dissolved Solids	Analytical I	Method: SM 25	40C						
	Pace Analy	tical Services	- Green Bay	,					
Total Dissolved Solids	<8.7	mg/L	20.0	8.7	1		09/04/24 12:21		
9040 pH	Analytical	Method: EPA 9	040						
	•	tical Services		,					
pH at 25 Degrees C	6.9	Std. Units	0.10	0.010	1		09/05/24 14:52		H6
300.0 IC Anions	•	Method: EPA 3		,					
Chloride	<0.59	•	2.0	0.59	1		09/10/24 18:36	16007 00 6	
Fluoride	<0.59 <0.095	mg/L	0.32	0.59	1		09/10/24 18:36		
	<0.095 <0.44	mg/L	2.0	0.095					
Sulfate	<0.44	mg/L	2.0	0.44	1		09/10/24 18:36	14000-79-8	

REPORT OF LABORATORY ANALYSIS

Project: 25224068 EDGEWATER

Pace Project No.: 40283322

QC Batch: 483413 QC Batch Method: EPA 7470 Analysis Method: EPA 7470
Analysis Description: 7470 Mercury

Laboratory: Pace Analy

Associated Lab Samples: 40283322001, 40283322002

Pace Analytical Services - Green Bay

METHOD BLANK: 2767701

Matrix: Water

Associated Lab Samples: 40283322001, 40283322002

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Mercury ug/L <0.066 0.20 09/04/24 07:09

LABORATORY CONTROL SAMPLE: 2767702

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Mercury ug/L 4.5 90 85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2767703 2767704

MS MSD

40283303003 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Result <0.066 5 4.2 4.2 84 20 M0 Mercury ug/L 5 84 85-115

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 25224068 EDGEWATER

Pace Project No.: 40283322

QC Batch: 483423 Analysis Method:
QC Batch Method: EPA 3010A Analysis Description:

Analysis Description: 6020B MET

Laboratory: Pace Analytical Services - Green Bay

EPA 6020B

Associated Lab Samples: 40283322001, 40283322002

METHOD BLANK: 2767724 Matrix: Water

Associated Lab Samples: 40283322001, 40283322002

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Antimony	ug/L	<0.15	1.0	09/05/24 13:25	
Arsenic	ug/L	<0.28	1.0	09/05/24 13:25	
Barium	ug/L	< 0.70	2.3	09/05/24 13:25	
Beryllium	ug/L	< 0.25	1.0	09/05/24 13:25	
Boron	ug/L	<3.0	10.0	09/05/24 13:25	
Cadmium	ug/L	<0.15	1.0	09/05/24 13:25	
Calcium	ug/L	80.8J	254	09/05/24 13:25	
Chromium	ug/L	<1.0	3.4	09/05/24 13:25	
Cobalt	ug/L	<0.12	1.0	09/05/24 13:25	
Lead	ug/L	< 0.24	1.0	09/05/24 13:25	
Lithium	ug/L	<0.22	1.0	09/05/24 13:25	
Molybdenum	ug/L	< 0.44	1.5	09/05/24 13:25	
Selenium	ug/L	< 0.32	1.1	09/05/24 13:25	
Thallium	ug/L	<0.14	1.0	09/05/24 13:25	

LABORATORY CONTROL SAMPLE:	2767725					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	ug/L	250	244	97	80-120	
Arsenic	ug/L	250	242	97	80-120	
Barium	ug/L	250	244	97	80-120	
Beryllium	ug/L	250	251	100	80-120	
Boron	ug/L	250	235	94	80-120	
Cadmium	ug/L	250	247	99	80-120	
Calcium	ug/L	10000	10100	101	80-120	
Chromium	ug/L	250	239	96	80-120	
Cobalt	ug/L	250	245	98	80-120	
Lead	ug/L	250	249	100	80-120	
Lithium	ug/L	250	245	98	80-120	
Molybdenum	ug/L	250	248	99	80-120	
Selenium	ug/L	250	244	98	80-120	
Thallium	ug/L	250	242	97	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 25224068 EDGEWATER

Pace Project No.: 40283322

MATRIX SPIKE & MATRIX	SPIKE DUPL	ICATE: 2767	726 MS	MSD	2767727							
		40283441001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	ug/L	<0.15	250	250	246	245	98	98	75-125	1	20	
Arsenic	ug/L	1.3	250	250	242	242	96	96	75-125	0	20	
Barium	ug/L	54.5	250	250	290	291	94	95	75-125	0	20	
Beryllium	ug/L	< 0.25	250	250	252	250	101	100	75-125	1	20	
Boron	ug/L	49.3	250	250	280	282	92	93	75-125	1	20	
Cadmium	ug/L	<0.15	250	250	242	244	97	97	75-125	1	20	
Calcium	ug/L	44600	10000	10000	53400	53100	88	85	75-125	0	20	
Chromium	ug/L	<1.0	250	250	235	235	94	94	75-125	0	20	
Cobalt	ug/L	0.13J	250	250	232	232	93	93	75-125	0	20	
Lead	ug/L	<0.24	250	250	244	245	97	98	75-125	0	20	
Lithium	ug/L	4.5	250	250	243	244	95	96	75-125	1	20	
Molybdenum	ug/L	52.4	250	250	301	302	99	100	75-125	1	20	
Selenium	ug/L	< 0.32	250	250	241	239	96	96	75-125	1	20	
Thallium	ug/L	< 0.14	250	250	239	241	96	96	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 25224068 EDGEWATER

Pace Project No.: 40283322

QC Batch: 483502 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40283322001, 40283322002

METHOD BLANK: 2767904 Matrix: Water

Associated Lab Samples: 40283322001, 40283322002

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L 16.0J 20.0 09/04/24 12:19

LABORATORY CONTROL SAMPLE: 2767905

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 582 582 100 80-120

SAMPLE DUPLICATE: 2767911

Parameter Units 40283261001 Dup Max Result RPD RPD Qualifiers

Total Dissolved Solids mg/L 730 726 1 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 25224068 EDGEWATER

Pace Project No.: 40283322

QC Batch: 483652 Analysis Method: EPA 9040
QC Batch Method: EPA 9040 Analysis Description: 9040 pH

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40283322001, 40283322002

SAMPLE DUPLICATE: 2768614

40283322001 Dup Max Parameter Units Result RPD RPD Qualifiers Result 7.8 pH at 25 Degrees C Std. Units 7.8 20 H6 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 25224068 EDGEWATER

Pace Project No.: 40283322

QC Batch: 483974
QC Batch Method: EPA 300.0

Analysis Description: 300.0 IC Anions

EPA 300.0

Laboratory:

Analysis Method:

Pace Analytical Services - Green Bay

Associated Lab Samples: 40283322001, 40283322002

METHOD BLANK: 2770601 Matrix: Water

Associated Lab Samples: 40283322001, 40283322002

Blank Reporting Limit Qualifiers Parameter Units Result Analyzed Chloride mg/L < 0.59 2.0 09/10/24 12:53 Fluoride mg/L < 0.095 0.32 09/10/24 12:53 Sulfate mg/L 09/10/24 12:53 < 0.44 2.0

LABORATORY CONTROL SAMPLE: 2770602

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L		19.8	99	90-110	
Fluoride	mg/L	2	1.9	97	90-110	
Sulfate	mg/L	20	19.9	99	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPLI	CATE: 2770	603		2770604							
			MS	MSD								
		40283779002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	6.2J	100	100	109	110	102	104	90-110	1	15	
Fluoride	mg/L	<0.48	10	10	10.8	10.9	108	109	90-110	1	15	
Sulfate	mg/L	33.8	100	100	143	144	109	110	90-110	1	15	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2770	605		2770606							
			MS	MSD								
		40283537003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	145	200	200	362	372	109	114	90-110	3	15	MO
Fluoride	mg/L	< 0.95	20	20	21.7	22.4	109	112	90-110	3	15	MO
Sulfate	mg/L	12.5J	200	200	224	233	106	110	90-110	4	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 25224068 EDGEWATER

Pace Project No.: 40283322

Sample: MW-304 PWS:	Lab ID: 4028 Site ID:	3322001 Collected: 08/28/24 13:05 Sample Type:	Received:	08/29/24 09:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 903.1	0.113 ± 0.542 (1.00) C:NA T:94%	pCi/L	09/11/24 15:06	6 13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	0.559 ± 0.383 (1.00) C:81% T:87%	pCi/L	09/06/24 12:02	2 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.672 ± 0.925 (2.00)	pCi/L	09/12/24 15:44	4 7440-14-4	

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 25224068 EDGEWATER

Pace Project No.: 40283322

Sample: FIELD BLANK PWS:	Lab ID: 4028 Site ID:	3322002 Collected: 08/28/24 13:15 Sample Type:	Received:	08/29/24 09:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 903.1	0.224 ± 0.492 (1.00) C:NA T:95%	pCi/L	09/11/24 15:20	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	0.236 ± 0.366 (1.00) C:84% T:89%	pCi/L	09/06/24 12:02	2 15262-20-1	
	Pace Analytical	Services - Greensburg				
Total Radium	Total Radium Calculation	0.460 ± 0.858 (2.00)	pCi/L	09/12/24 15:44	4 7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project: 25224068 EDGEWATER

Pace Project No.: 40283322

QC Batch: 693332 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 40283322001, 40283322002

METHOD BLANK: 3376074 Matrix: Water

Associated Lab Samples: 40283322001, 40283322002

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.703 ± 0.384 (0.692) C:78% T:91%
 pCi/L
 09/06/24 12:00

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: 25224068 EDGEWATER

Pace Project No.: 40283322

QC Batch: 693335 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 40283322001, 40283322002

METHOD BLANK: 3376082 Matrix: Water

Associated Lab Samples: 40283322001, 40283322002

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.375 ± 0.321 (0.435) C:NA T:88%
 pCi/L
 09/11/24 15:06

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 25224068 EDGEWATER

Pace Project No.: 40283322

DEFINITIONS

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval).

Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - The reported result is an estimated value.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

DL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Analyte was not detected and is reported as less than the LOD or as defined by the customer.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

H6 Analysis initiated outside of the 15 minute EPA required holding time.

M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

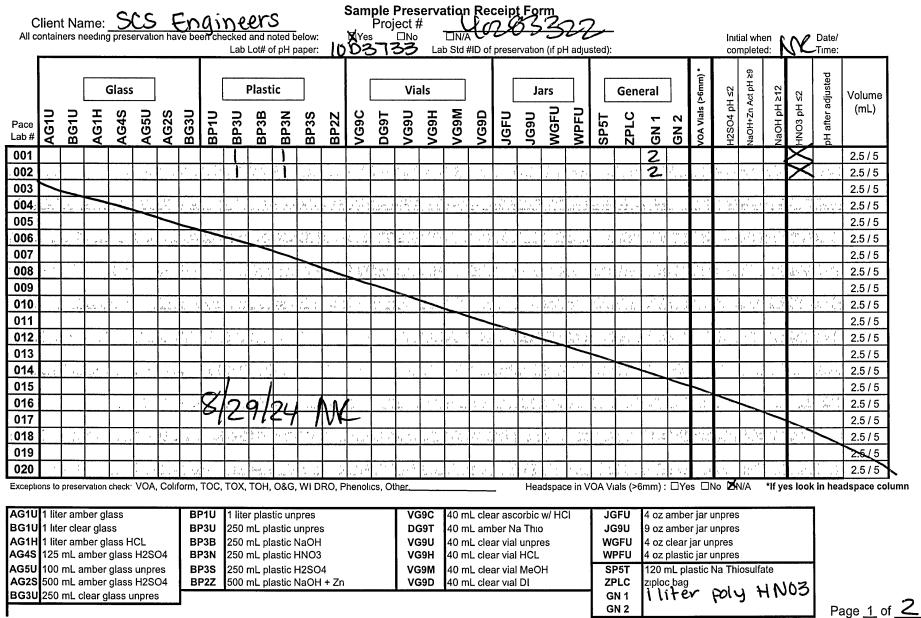
Project: 25224068 EDGEWATER

Pace Project No.: 40283322

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40283322001	MW-304	EPA 3010A	483423	EPA 6020B	483495
40283322002	FIELD BLANK	EPA 3010A	483423	EPA 6020B	483495
40283322001	MW-304	EPA 7470	483413	EPA 7470	483479
40283322002	FIELD BLANK	EPA 7470	483413	EPA 7470	483479
40283322001	MW-304				
40283322001	MW-304	EPA 903.1	693335		
40283322002	FIELD BLANK	EPA 903.1	693335		
40283322001	MW-304	EPA 904.0	693332		
40283322002	FIELD BLANK	EPA 904.0	693332		
40283322001	MW-304	Total Radium Calculation	695733		
40283322002	FIELD BLANK	Total Radium Calculation	695733		
40283322001	MW-304	SM 2540C	483502		
40283322002	FIELD BLANK	SM 2540C	483502		
40283322001	MW-304	EPA 9040	483652		
40283322002	FIELD BLANK	EPA 9040	483652		
40283322001	MW-304	EPA 300.0	483974		
40283322002	FIELD BLANK	EPA 300.0	483974		

REPORT OF LABORATORY ANALYSIS

4293322


Pace

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

	Submitting a sample via this cha		/ cons	stitute	s ackno	owieagme	ent and a	cceptanc				erms	and (Cona	itions	toun	nd at i	nttps //	into pa	ceiabs	s con	n/nub	rs/pa	s-star	ngard	1-terms	par				
Section	A d Client Information:	Section B Required Pr		before	mationi						on C ce Infe	a-ma (Ι.	Page:			Of	1
Compan		Report To		han Bk						Atten		UIIIA	ion.					-						7			age.		<u>, </u>	<u> </u>	
Address		Сору То	weg	Han Di	ougen						oany N	ame												┨ .							
	WI 53718								_	Addre														+			Regu	lator	y Agenc	v	
_	mblodgett@scsengineers.com	Purchase Or	der#						\neg	Pace	Quote	;												_						-	
Phone	608-216-7362 Fax	Project Name	8	25224	1068 Edg	gewater				Pace	Projec	ct Mar	nager	C	lan m	lewsk	у@ра	celabs	com,								Sta	te / Lo	eation		
Request	ed Due Date Standard TAT	Project # 25	22406	8						Pace	Profil	le #.																W	1		
																			Re	quest	ed A	nalysi	s Filte	ered (Y/N)	,	, ,				
	MATRIX Drinking Wi	CODE ter DW	les to left)	=comp)		COLLE	CTED		NO			P	resen	vative	es		X/N	N	N	N	N	N						·			
	SAMPLE ID One Character per box.	WT	DE (see valid codes to left)	PE (G=GRAB C=COMP)	STA	ART	Eł	ND.	SAMPLE TEMP AT COLLECTION	AINERS	pa		:				Analyses Test	ļa;	luoride, Sulfate,			6 & 228					(A/V) concluded in the con-	(IIII) alliquine			
ITEM #	(A-Z, 0-91, -) Coter Sample kis must be unique Tiesus	Of TS	MATRIX CODE		DATE	TIME	DATE	TIME	SAMPLE TE	# OF CONTAINERS	Unpreserved	HNO3		NaOH	Na2S203	Memanol	Analy	Metals, Tota	Chlonde, Fluoride, 8 total	TDS	Hd	Radium 226 & 228					o de la companya de l	Vesidual			
` '1	MW-304		wt	1	6 /28	1805			41	┯	1	3					1	×	l _x	x	×	$ _{x} $							\cap	Ol	
			wr		1	1315			4	4	i	3	П	\exists	T		1	l,	l,	l,		Ü				П	П	Г	\sim	02	
<u>2</u>	Field Blank		W	\dashv	·V	1717			-1	┧	+	7	H	\dashv	╁	+-	1	<u>×</u> _	X	×	х		+	+	╁	\vdash	+	\vdash		<u> </u>	
3			-	1						\dashv	\perp	+	\vdash	4	+	-	4	<u> </u>	<u> </u>	-	-	\vdash	+	+		\vdash	\vdash	\vdash			
4													Ш														Ш	L			
5	-																														
6			П									\top		\top	\dashv	T	1	·	 	1		П	\top	1	T		\sqcap				
\ 7 [±]	The state of the s		П	T							Ť			\exists							Γ	П		1			\Box	-			
. 8			П									T	\Box		\top					Π						П					
9																							1								
10																	1									П					
11 .																															
12			Ш									-		1				l										1			
	ADDITIONAL COMMENTS	wij ji	RELIN	QUISH	ED BY / A	AFFILIATION	١	DATE		` . 1	IME	T	3.30		, AC	CEPTI	ED BY	AFFIL	ATION	1 m		3.7	` · DA	TE	1	TIME .	. ***	S/	AMPLE CO	POITIONS	
			X	1	7	_/s	<u>, C2</u>	8/28	7	17	OC.	7																T			
	and Field Blank metals list. Antimony, Arsenic, Barium, Beryllium, Bo Calcium, Chromium, Cobalt, Lead, Lithium, Mercury, Molybdenum, Thallium.	on, Co	5	lo	gis	tics	,	8/29/2	24	00	100		<u> </u>				マー	8	<u>. </u>	Pa	Q		8/24	1/24	0	900	1.5	5	Y	Y	Y
									_			+								-					╀		 				
						SAMPLE	D NAME	AND SIC	IAT	DE	,						. ~ .								<u> </u>		\vdash	+			
								of SAMPL		5	5-Fr			Sca	h -	[-					-			-		ပ္	ed o		÷ .	s s
						SIGN	IATURE	of SAMPL	ER:			rav	<u> </u>	٢		سوح	<u>~</u>		DATE	Signe	d:	8	12	8			TEMP in	Receiv	S ige	Sealed Cooler (Y/N)	Samples Intact (Y/N)

DC#_Title: ENV-FRM-GBAY-0035 v03_Sample Preservation Receipt Form

Effective Date: 8/16/2022

DC#_Title: ENV-FRM-GBAY-0014 v03_SCUR

Effective Date: 8/17/2022

Sample Condition Upon Receipt Form (SCUR)

Client Name: SCS Engineer Courier: CS Logistics Fed Ex Speede Client Pace Other:		UPS	w	/altco		40283322
Tracking #: Custody Seal on Cooler/Box Present: Ses Custody Seal on Samples Present: Ses Ses Seal on Samples Present: Ses Ses Ses Seal on Samples Present: Ses Ses Ses Ses Ses Ses Ses Ses Ses Ses	no le Bag Type o	Seals s D of Ice:	intact: None Wet	☐ yes ☐ no	☐ Meltwater C	Person examining contents: Date: 1/29/124/Initials: 1/1/2
Temp should be above freezing to 6°C. Biota Samples may be received at ≤ 0°C if shipped on Dry						Labeled By Initials:
Chain of Custody Present:	¥Yes	□No	□N/A	1.		
Chain of Custody Filled Out:	X Yes	□No	□n/a	2.		
Chain of Custody Relinquished:	Yes	□No	□n/a	3.		
Sampler Name & Signature on COC:	Yes	□No	□n/a	4.		
Samples Arrived within Hold Time:	¥Yes	□No		5.		
- DI VOA Samples frozen upon receipt	□Yes	□No		Date/Time:		
Short Hold Time Analysis (<72hr):	□Yes	136 No		6.		
Rush Turn Around Time Requested:	□Yes	MNo		7.		
Sufficient Volume:				8.		
For Analysis: ™ Yes □No MS/MSD:	□Yes	₩No	□n/a			
Correct Containers Used:	XYes	□No		9.		
Correct Type: Pace Green Bay, Pace IR, Non-Pace	!		·			
Containers Intact:	ØYes	□No		10.		
Filtered volume received for Dissolved tests	□Yes	□No	⊠ N/A	11.		
Sample Labels match COC:	Yes	□No	□n/a	12.		
-Includes date/time/ID/Analysis Matrix:	M					
Trip Blank Present:	□Yes	□No	⊠ N/A	13.		
Trip Blank Custody Seals Present	□Yes	□No	⊠ N/A			
Pace Trip Blank Lot # (if purchased):	_			<u> </u>		ed form for additional comments
Client Notification/ Resolution:			Date/		ecked, see attach	led form for additional comments
Person Contacted:Comments/ Resolution:			- Date/			
PM Review is documented electronically in LIMs	: Byre	leasir	na the	project, the PM ack	nowledges the	y have reviewed the sample logic
FWI Review is documented electronically in Lims	Бу ге	icasii	ig tile	project, the rim don		Page <u>2</u> of <u>2</u>

Qualtrax ID: 41292

Pace® Analytical Services, LLC

Page 1 of 2

Appendix D Historical Monitoring Results

Location ID:

2R-OW Number of Sampling Dates: 22

Parameter Name	Units	4/8/2016	6/20/2016	8/9/2016	10/20/2016	1/24/2017	4/6/2017	6/6/2017	8/1/2017	10/23/2017	4/2/2018	10/1/2018	4/8/2019	10/7/2019	4/8/2020	10/15/2020	4/14/2021
Boron	ug/L	100	22.4	32.6	43.1	31.2	70.6	45.2	35.7	55.9	19.7	34.7	35.8	58.8	52.3	29.9	45.7
Calcium	ug/L	205000	148000	145000	155000	152000	143000	145000	164000	170000	121000	190000	121000	132000	117000	124000	154000
Chloride	mg/L	91.7	232	215	217	201	102	115	272	305	108	462	55.3	88.8	67.5	179	116
Fluoride	mg/L	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.12	<0.1	<0.1	<0.1	<0.095	0.096	<0.095
Field pH	Std. Units	7.34	7.02	6.1	6.98	7.15	7.01	6.86	7	7.23	7.29	7.03	8.57	6.88	7.08	7.2	7.52
Sulfate	mg/L	19.5	28	25.4	21.6	23.9	17.6	17.8	28.8	29.3	17.2	37.2	10.6	13.2	11.6	20.3	15.3
Total Dissolved Solids	mg/L	774	908	974	944	854	750	744	1000	1010	680	1260	610	706	604	806	737
Antimony	ug/L	0.3	<0.073	<0.073	<0.073	0.073	<0.073	0.32	<0.15								
Arsenic	ug/L	5.2	0.34	0.39	0.39	0.65	0.35	0.71	1.2								
Barium	ug/L	344	110	155	189	158	150	172	154								
Beryllium	ug/L	0.83	<0.13	<0.13	<0.13	<0.13	<0.13	<0.18	<0.18								
Cadmium	ug/L	0.21	<0.089	<0.089	<0.089	<0.089	<0.089	0.2	<0.081								
Chromium	ug/L	23.6	3.1	2.9	1.7	2.6	2.2	1.6	4.3								
Cobalt	ug/L	6	0.081	0.05	0.21	0.22	0.28	0.7	1.7								
Lead	ug/L	13	0.17	0.14	0.074	0.38	0.48	0.4	1.2								
Lithium	ug/L	19.6	9.6	9	8.2	8.2	5.3	6.2	15.1								
Molybdenum	ug/L	0.58	0.28	0.32	0.25	0.28	0.5	0.54	0.44								
Selenium	ug/L	2.2	<0.21	<0.21	<0.21	<0.21	<0.21	0.34	<0.32								
Thallium	ug/L	0.19	<0.14	<0.14	<0.14	<0.14	<0.14	0.45	<0.14								
Mercury	ug/L	<0.18	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13								
Total Radium	pCi/L	0.945	0.815	0.432	0.896	0.627	1.02	1.58	2.12								
pH at 25 Degrees C	Std. Units	7.4	7.4	7	7.4	7.4	7.1	6.9	7.1	7.1	7.4	7	7.5	7.1	7.1	7.4	7.4
Radium-226	pCi/L	0.304	0.433	0.0836	0.193	0	0.418	0.531	0.658								
Radium-228	pCi/L	0.641	0.382	0.348	0.703	0.627	0.605	1.05	0.502								
Field Specific Conductance	umhos/cm	1332	1277	1697	1533	1579	1387	1294	1651	1864	1177	2202	1077	1261	1081	1490	1229
Oxygen, Dissolved	mg/L	4.6	0.9	1	0.6	1	0.5	0.1	0	4.9	6.7	1.6	0.6	2.5	1.5	3.5	6.9
Field Oxidation Potential	mV	130	82	140	117	87	120	-20	-22	131	85	180	75	148	43.7	282	282
Groundwater Elevation	feet	610.02	606.7	605.74	607.27	609.64	609.27	607.63	604.59	601.74	607.87	604.61	609.5	609.39	608.97	604.27	608.5
Temperature, Water (C)	deg C	5.6	10.6	13.9	14.1	7.5	7	10.1	13	13	5.2	13.4	6.7	14	6.1	13.6	6.6
Turbidity	NTU	612.3	10.97	3.64	3.32	11.71	16.46	0.55	41.3	2.24	6.38	7.09	8.59		15.24	28.74	413

Location ID: 2R-OW

Number of Sampling Dates: 22

Parameter Name	Units	10/26/2021	4/13/2022	10/6/2022	4/26/2023	10/10/2023	4/16/2024
Boron	ug/L	47.2	27.9	49	32	33.5	36.7
Calcium	ug/L	192000	160000	152000	91800	156000	109000
Chloride	mg/L	493	275	414	53.4	420	67.4
Fluoride	mg/L	<4.8	<0.95	<0.095	0.11	<0.95	0.14
Field pH	Std. Units	7.01	7.2	7.08	7.3	7.06	6.99
Sulfate	mg/L	35.7	18.5	28	7.5	28.7	9
Total Dissolved Solids	mg/L	1170	866	1110	512	1080	566
Antimony	ug/L						
Arsenic	ug/L						
Barium	ug/L						
Beryllium	ug/L						
Cadmium	ug/L						
Chromium	ug/L						
Cobalt	ug/L						
Lead	ug/L						
Lithium	ug/L						
Molybdenum	ug/L						
Selenium	ug/L						
Thallium	ug/L						
Mercury	ug/L						
Total Radium	pCi/L						
pH at 25 Degrees C	Std. Units	7.2	7.2	7.1	7.4	7	8
Radium-226	pCi/L						
Radium-228	pCi/L						
Field Specific Conductance	umhos/cm	2290	1549	1992	889	1902	952
Oxygen, Dissolved	mg/L	0.6	6.72	1.06	0.9	1.22	0.7
Field Oxidation Potential	mV	242	425.6	522.7	306.2	544.4	133.4
Groundwater Elevation	feet	604.04	609.5	602.8	607.74	600.38	607.7
Temperature, Water (C)	deg C	14	7.5	13.6	6.9	12.7	8.6
Turbidity	NTU	95.2	205	2.75	3.62	3.78	3.61

Location ID: MW-301
Number of Sampling Dates: 23

Parameter Name	Units	4/11/2016	6/20/2016	8/9/2016	10/20/2016	1/23/2017	4/6/2017	6/6/2017	8/2/2017	10/24/2017	4/2/2018	10/1/2018	4/8/2019	10/7/2019	4/8/2020	6/26/2020	10/15/2020
Boron	ug/L	8550	8190	8450	8620	9280	8370	9160	8610	8820	7950	8230	7310	7220	7450		6550
Calcium	ug/L	88700	92200	84000	89400	89200	98800	94900	83600	87200	78900	88800	77500	87600	80800		114000
Chloride	mg/L	16.2	15.9	13.7	13.9	13.8	12.7	13.5	12.3	11.9	11.2	11.5	11.4	11.1	12.5		13.9
Fluoride	mg/L	0.33	0.36	0.33	0.34	0.42	0.21	<0.1	0.32	<0.1	0.25	0.2	0.29	0.24	0.39	0.26	<0.48
Field pH	Std. Units	7.91	7.48	6.47	7.68	8.03	7.98	7.7	7.58	7.43	8.02	7.71	8.18	7.56	7.82	7.53	7.64
Sulfate	mg/L	372	343	368	369	372	367	362	340	341	332	318	322	312	298		293
Total Dissolved Solids	mg/L	838	794	862	838	826	838	804	780	772	752	722	724	694	718		678
Antimony	ug/L	0.49	0.21	<0.073	0.083	0.2	<0.15	0.33	<0.15								
Arsenic	ug/L	4.3	2.4	2.3	4.2	1.8	2.8	1.9	1.5								
Barium	ug/L	48.7	32.6	30.5	31.4	32.2	53.8	30.3	28.2								
Beryllium	ug/L	0.18	<0.13	<0.13	<0.13	0.28	<0.25	<0.18	<0.18								
Cadmium	ug/L	0.2	0.22	<0.089	<0.089	0.17	<0.18	<0.081	<0.081								
Chromium	ug/L	3.5	0.55	<0.39	0.86	1.1	6.4	<1	<1								
Cobalt	ug/L	1.2	0.39	0.38	0.39	0.24	1.5	0.24	0.2								
Lead	ug/L	2.2	0.3	<0.04	0.29	0.47	2.1	0.28	0.29								
Lithium	ug/L	21.4	14.2	15.6	15.8	16.3	20.6	17	15.8								
Molybdenum	ug/L	2200	2040	2160	2300	2210	2090	2460	2070								
Selenium	ug/L	0.52	<0.21	<0.21	<0.21	<0.21	<0.42	<0.32	<0.32								
Thallium	ug/L	0.31	<0.14	<0.14	<0.14	0.22	<0.29	0.17	<0.14								
Mercury	ug/L	<0.18	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13								
Total Radium	pCi/L	0.41	1.62	0.456	0.729	1.09	1.51	0.494	1.67								
pH at 25 Degrees C	Std. Units	7.9	7.6	7.4	7.5	7.9	7.9	7.7	7.5	7.5	7.8	7.7	7.9	7.8	7.9		7.6
Radium-226	pCi/L	0.32	0.958	-0.17	0.193	0.136	0.734	0.179	0.548								
Radium-228	pCi/L	0.0904	0.661	0.456	0.536	0.951	0.774	0.315	0.296								
Field Specific Conductance	umhos/cm	1206	1173	1230	1214	1198	1213	1147	1111	1096	1071	1086	1022	1052	977	983	996
Oxygen, Dissolved	mg/L	4.8	1.6	0.1	0.2	7.4	5.5	3	0.5	0	6.5	4.5	6.2	2.7	6.9	5.47	0.8
Field Oxidation Potential	mV	5.2	89	-31	-24	173	51	-15	-13	-18	44	53	55	146	17.1	49.1	140
Groundwater Elevation	feet	599.94	598.3	598	598.5	597.1	600.04	598.77	597.4	597.2	598.54	597.6	598.92	599.56	599.17	597.89	595.1
Temperature, Water (C)	deg C	7.2	10.1	10.5	10.8	8.8	8.9	9.5	11.6	10.7	7.8	11	9	12.2	8.5	16.8	11.2
Turbidity	NTU	10.88	3.13	2.42	46.07	21.84	168.6	16.11	6.51	11.58	12.19	13.32	32.91	79.44	37.12	62.57	130

Location ID: MW-301
Number of Sampling Dates: 23

Parameter Name	Units	4/14/2021	10/26/2021	4/13/2022	10/6/2022	4/25/2023	10/10/2023	4/16/2024
Boron	ug/L	7200	6710	7240	6230	6770	6600	6490
Calcium	ug/L	118000	102000	89300	86900	87900	98500	93900
Chloride	mg/L	13.5	13.8	14	15.5	17.9	18.3	18.8
Fluoride	mg/L	0.25	0.24	<0.095	0.21	0.21	0.2	0.27
Field pH	Std. Units	7.96	7.01	7.38	7.56	7.63	7.66	7.34
Sulfate	mg/L	195	203	212	213	168	185	191
Total Dissolved Solids	mg/L	614	538	560	572	554	560	572
Antimony	ug/L							
Arsenic	ug/L							
Barium	ug/L							
Beryllium	ug/L							
Cadmium	ug/L							
Chromium	ug/L							
Cobalt	ug/L							
Lead	ug/L							
Lithium	ug/L							
Molybdenum	ug/L							
Selenium	ug/L							
Thallium	ug/L							
Mercury	ug/L							
Total Radium	pCi/L							
pH at 25 Degrees C	Std. Units	7.7	7.1	7.5	7.6	7.7	7.5	8.1
Radium-226	pCi/L							
Radium-228	pCi/L							
Field Specific Conductance	umhos/cm	815	811	777	804	765	339	785
Oxygen, Dissolved	mg/L	8.2	5.4	2.82	0.39	3.14	4.85	4.32
Field Oxidation Potential	mV	226	196	417.1	-41.7	416.4	548	132.1
Groundwater Elevation	feet	595.17	590.68	594.89	590.21	597.77	592.51	597.38
Temperature, Water (C)	deg C	7.8	11.2	9	11.6	8.5	10.4	9.7
Turbidity	NTU	124	88.4	25.6	20.7	96.1		33.5

Location ID: MW-302
Number of Sampling Dates: 22

Parameter Name	Units	4/8/2016	6/20/2016	8/9/2016	10/20/2016	1/24/2017	4/6/2017	6/6/2017	8/2/2017	10/24/2017	4/2/2018	10/1/2018	4/8/2019	10/7/2019	4/8/2020	10/15/2020	4/14/2021
Boron	ug/L	1950	2010	2000	2150	2000	1970	1970	1890	1760	1800	1570	1670	1730	1570	1410	1550
Calcium	ug/L	122000	116000	75900	72100	87400	114000	72200	62600	68100	68000	64700	64800	67500	66800	124000	81200
Chloride	mg/L	18.9	27.2	18	19.5	18.6	18.9	20	19.3	18.9	18.5	18.6	18.4	17.8	19.2	20.9	20.6
Fluoride	mg/L	0.83	1.3	0.8	0.8	0.89	0.76	0.9	0.78	0.84	0.78	0.81	0.87	0.85	0.97	1	0.88
Field pH	Std. Units	8.01	7.73	6.55	7.89	7.98	7.99	7.84	7.76	7.6	7.78	7.99	7.98	7.86	7.56	7.9	8.19
Sulfate	mg/L	75.1	89.6	80.7	77.2	71.1	85.8	88.5	80.2	72.2	72.7	59.2	71.7	55.7	65.3	73.1	70.5
Total Dissolved Solids	mg/L	352	364	396	348	328	358	350	360	316	314	306	324	290	316	182	342
Antimony	ug/L	0.3	0.085	<0.073	<0.073	0.86	<0.36	0.16	<0.15								
Arsenic	ug/L	10.3	9.7	10.2	8.4	10.9	9.6	8.7	9								
Barium	ug/L	152	109	66.7	57.2	90.1	104	58.4	50.9								
Beryllium	ug/L	0.59	0.35	<0.13	<0.13	0.78	<0.63	<0.18	<0.18								
Cadmium	ug/L	0.24	<0.089	<0.089	<0.089	0.49	<0.44	<0.081	<0.081								
Chromium	ug/L	18.7	11.1	3.5	2.5	7.1	10	6.6	1.1								
Cobalt	ug/L	6.2	3.6	1.1	0.84	2.6	3.2	1.5	0.53								
Lead	ug/L	5.5	3.3	0.84	0.71	2.3	5.2	0.7	0.44								
Lithium	ug/L	58.1	62.3	55.4	51.8	54.8	58.7	52.3	52.2								
Molybdenum	ug/L	610	640	652	685	674	654	631	649								
Selenium	ug/L	1.3	0.76	<0.21	0.22	<1	<1	<0.32	<0.32								
Thallium	ug/L	0.35	<0.14	<0.14	<0.14	1.6	<0.71	<0.14	<0.14								
Mercury	ug/L	<0.18	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13								
Total Radium	pCi/L	1.47	0.505	0.0999	0.771	1.9	1.18	1.66	1.08								
pH at 25 Degrees C	Std. Units	7.3	7.8	7.7	7.8	7.7	7.9	7.5	7.7	7.7	7.8	7.6	7.8	7.6	7.8	7.7	7.8
Radium-226	pCi/L	0.843	-0.408	-0.153	0.331	0.37	0.371	0.706	0.474								
Radium-228	pCi/L	0.623	0.505	0.0999	0.44	1.53	0.813	0.95	0.604								
Field Specific Conductance	umhos/cm	531	564	539	525	519	552	465	532	505	517	504	519	487	476	523	517
Oxygen, Dissolved	mg/L	1	0.2	0.1	1	0.1	0	0.5	0	0	0.6	0.8	1.6	1.3	0.4	0.3	1.8
Field Oxidation Potential	mV	-41	-123	-123	-111	-87	-517	-40	-121	-118	-123	-96	-95	124	-107.6	-83	41
Groundwater Elevation	feet	596.39	595.68	595.53	595.46	596.3	593.57	595.86	595.22	595.25	595.71	595.28	595.68	595.58	595.33	598.56	600.56
Temperature, Water (C)	deg C	9	13.1	13.2	11.2	9.3	9.6	12.2	12.6	11.1	10.3	11.6	11.9	13.5	11.3	11.2	7.5
Turbidity	NTU	885.4	369.4	108.3	62.99	161.1	367.5	94.92	39.69	42.45	24.89	55.15	59.51	32.69	69.22	161.8	252

Location ID: MW-302
Number of Sampling Dates: 22

Parameter Name	Units	10/26/2021	4/13/2022	10/6/2022	4/26/2023	10/10/2023	4/16/2024
Boron	ug/L	1580	1460	1610	1450	1400	1610
Calcium	ug/L	78200	61500	64000	46900	59400	48600
Chloride	mg/L	20.7	21.2	21.2	16.5	22	<3
Fluoride	mg/L	0.88	0.91	0.87	0.75	0.85	<0.48
Field pH	Std. Units	7.6	7.7	7.89	7.85	7.89	7.58
Sulfate	mg/L	71.2	68.5	70.5	75.4	57.5	6
Total Dissolved Solids	mg/L	290	318	306	344	308	348
Antimony	ug/L						
Arsenic	ug/L						
Barium	ug/L						
Beryllium	ug/L						
Cadmium	ug/L						
Chromium	ug/L						
Cobalt	ug/L						
Lead	ug/L						
Lithium	ug/L						
Molybdenum	ug/L						
Selenium	ug/L						
Thallium	ug/L						
Mercury	ug/L						
Total Radium	pCi/L						
pH at 25 Degrees C	Std. Units	7.8	7.7	7.8	8	7.8	8.3
Radium-226	pCi/L						
Radium-228	pCi/L						
Field Specific Conductance	umhos/cm	496	488	499	501	465	481
Oxygen, Dissolved	mg/L	0.1	1.39	0.61	1.86	1.4	1.77
Field Oxidation Potential	mV	134	337.4	105.4	169.1	310.8	-51.9
Groundwater Elevation	feet	599.82	600.5	599.41	593.63	592.01	593.52
Temperature, Water (C)	deg C	11.1	8.7	12.1	8.7	11.7	10.6
Turbidity	NTU	69.8	26.2	21.9	3.1	4.82	10.2

Location ID: MW-303
Number of Sampling Dates: 22

Parameter Name	Units	4/8/2016	6/20/2016	8/9/2016	10/20/2016	1/24/2017	4/6/2017	6/6/2017	8/2/2017	10/24/2017	4/2/2018	10/1/2018	4/8/2019	10/7/2019	4/8/2020	10/15/2020	4/14/2021
Boron	ug/L	4210	3360	3860	3740	4210	4170	4570	3780	3480	3040	2360	2930	2830	3380	3310	4600
Calcium	ug/L	176000	138000	145000	147000	147000	135000	154000	139000	173000	146000	139000	135000	136000	144000	132000	176000
Chloride	mg/L	21.8	31.5	22.8	26	26.2	22.7	25.4	23.2	20.4	19.7	4.3	20	19.1	23.5	20.9	22.5
Fluoride	mg/L	<0.2	<1	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.1	<0.5	<0.5	<0.48	<0.48	<0.095
Field pH	Std. Units	7.04	6.79	6.09	6.94	6.94	6.88	7	6.94	7.14	6.86	6.93	7.15	6.9	6.7	7.11	7.27
Sulfate	mg/L	3	11.4	2.4	5.6	<5	<5	<5	<5	<5	<5	<1	<5	<5	<2.2	<2.2	0.54
Total Dissolved Solids	mg/L	660	716	732	744	738	700	714	714	566	630	620	668	584	692	620	710
Antimony	ug/L	0.14	<0.073	<0.073	<0.073	<0.073	<0.073	0.32	0.25								
Arsenic	ug/L	12.8	9.7	10.7	18.1	25.3	21.8	25.2	21.9								
Barium	ug/L	229	189	195	180	186	142	143	144								
Beryllium	ug/L	0.3	<0.13	<0.13	<0.13	<0.13	<0.13	0.33	0.21								
Cadmium	ug/L	<0.089	<0.089	<0.089	<0.089	<0.089	<0.089	0.17	0.14								
Chromium	ug/L	14.1	1.5	2	1.8	1.4	1.5	2.1	1.7								
Cobalt	ug/L	8.7	5.3	5	4.4	4.3	3	3.4	3.2								
Lead	ug/L	4.7	0.28	0.35	0.21	0.19	0.16	0.56	0.66								
Lithium	ug/L	17.6	9.1	10.4	8.9	8.3	8.3	9.3	10.7								
Molybdenum	ug/L	25.1	11.6	12.7	9	7.7	5.1	4.5	5.9								
Selenium	ug/L	1.2	0.48	0.31	0.55	0.71	0.38	0.5	0.6								
Thallium	ug/L	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14	0.36	0.26								
Mercury	ug/L	<0.18	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13								
Total Radium	pCi/L	1.44	1.93	1.22	1.48	1.16	1.31	1.2	1.81								
pH at 25 Degrees C	Std. Units	7.2	7	6.9	7.2	7	6.8	6.9	7	6.8	7	6.8	6.9	7	6.8	7	7.1
Radium-226	pCi/L	0.239	1.03	0.651	0.521	0.386	0.123	0.276	0.772								
Radium-228	pCi/L	1.2	0.898	0.567	0.962	0.772	1.19	0.926	1.04								
Field Specific Conductance	umhos/cm	1273	1196	1220	1313	1335	1320	1112	1218	1095	1131	1105	1196	1127	1241	1123	1222
Oxygen, Dissolved	mg/L	0.49	0.9	0.1	0	0	0	0.8	0	0	0.3	0.2	0.3	0.2	0.2	0.2	2.3
Field Oxidation Potential	mV	-48	-71	-81	-102	-89	-20	-58	-116	-108	-97	-93	-85	122	-102.9	-32	-41
Groundwater Elevation	feet	589.24	587.22	587.72	588.37	588.84	589.04	588.44	587.36	587.97	588.77	588.17	588.88	588.77	588.66	593.19	595.01
Temperature, Water (C)	deg C	9.1	11.6	11.9	10.7	10.5	10	10.2	10.4	11	9.8	10.7	10.3	11.8	10	10.9	7.7
Turbidity	NTU	409.5	18.26	48.39	16.45	12.58	9.61	186.4	28.41	563	233.5	107.1	61.84	94.01	87.6	70.42	408

Location ID: MW-303
Number of Sampling Dates: 22

Parameter Name	Units	10/26/2021	4/13/2022	10/6/2022	4/25/2023	10/10/2023	4/16/2024
Boron	ug/L	3650	4360	3650	4870	4160	5100
Calcium	ug/L	148000	139000	135000	128000	134000	148000
Chloride	mg/L	21.6	23.4	22	22.3	19.9	22.9
Fluoride	mg/L	<0.48	<0.48	<0.095	<0.095	<0.095	<0.095
Field pH	Std. Units	6.92	6.78	6.92	6.87	6.99	6.64
Sulfate	mg/L	<2.2	<2.2	<0.44	0.5	<0.44	<0.44
Total Dissolved Solids	mg/L	640	722	658	740	600	724
Antimony	ug/L						
Arsenic	ug/L						
Barium	ug/L						
Beryllium	ug/L						
Cadmium	ug/L						
Chromium	ug/L						
Cobalt	ug/L						
Lead	ug/L						
Lithium	ug/L						
Molybdenum	ug/L						
Selenium	ug/L						
Thallium	ug/L						
Mercury	ug/L						
Total Radium	pCi/L						
pH at 25 Degrees C	Std. Units	7	6.8	6.8	7.1	6.9	7.7
Radium-226	pCi/L						
Radium-228	pCi/L						
Field Specific Conductance	umhos/cm	1171	1224	1184	1230	1030	1155
Oxygen, Dissolved	mg/L	1.6	1.98	1.31	5.27	3.49	4.65
Field Oxidation Potential	mV	170	330.2	175.4	370.4	311.5	-61.6
Groundwater Elevation	feet	594.07	595.2	593.63	587.99	585.79	587.88
Temperature, Water (C)	deg C	12.3	8.6	11.8	8	11.4	10.5
Turbidity	NTU	88.4	75.1	165	44.1		50.8

Location ID: MW-304
Number of Sampling Dates: 3

Parameter Name	Units	4/16/2024	7/26/2024	8/28/2024	
Boron	ug/L	4780		4230	
Calcium	ug/L	278000	83800	82700 25 0.83 7.7	
Chloride	mg/L	22.1			
Fluoride	mg/L	0.8			
Field pH	Std. Units	7.4	7.68		
Sulfate	mg/L	99.5		94.5	
Total Dissolved Solids	mg/L	474		404	
Antimony	ug/L	<0.3		<0.15	
Arsenic	ug/L	6.9		1.4	
Barium	ug/L	293		69.1	
Beryllium	ug/L	1.3		<0.25	
Cadmium	ug/L	<0.3		<0.15	
Chromium	ug/L	42.5		1.6	
Cobalt	ug/L	13.7		0.72	
Lead	ug/L	12		0.47	
Lithium	ug/L	82.8		57.9	
Molybdenum	ug/L	2630		1950	
Selenium	ug/L	0.95		<0.32	
Thallium	ug/L	0.32		<0.14	
Mercury	ug/L	<0.066		<0.066	
Total Radium	pCi/L	1.92		0.672	
pH at 25 Degrees C	Std. Units	8.2		7.8	
Radium-226	pCi/L	0.834		0.113	
Radium-228	pCi/L	1.09		0.559	
Field Specific Conductance	umhos/cm	563	572.9	571.5	
Oxygen, Dissolved	mg/L	2.79	0.09	0.11	
Field Oxidation Potential	mV	225.7	-2.6	-26.5	
Groundwater Elevation	feet		593.43	593.71	
Temperature, Water (C)	deg C	9.8	11	11.1	
Turbidity	NTU		63.37	30.16	

Appendix E Alternative Source Demonstration (ASD)

Alternative Source Demonstration October 2023 Detection Monitoring

Edgewater Generating Station Sheboygan, Wisconsin

Prepared for:

SCS ENGINEERS

25224068.00 | April 26, 2024

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830

Table of Contents

Sect	ion	F	age
PE Ce	ertifica	ation	iii
1.0	Intro	duction	1
	1.1	§257.94(E)(2) Alternative Source Demonstration Requirements	1
	1.2	Site Information and Map	1
	1.3	Statistically Significant Increases Identified	2
	1.4	Overview of Alternative Source Demonstration	2
2.0	Back	ground	2
	2.1	Regional Geology and Hydrogeology	3
	2.2	CCR Monitoring System	3
	2.3	Other Monitoring Wells	3
	2.4	Groundwater Flow Direction	3
3.0	Meth	odology and Analysis Review	4
	3.1	Sampling and Field Analysis Review	4
	3.2	Laboratory Analysis Review	4
	3.3	Statistical Evaluation Review	4
	3.4	Summary of Methodology and Analysis Review Findings	5
4.0	Alteri	native Sources	5
	4.1	Potential Causes of SSI	5
		4.1.1 Natural Variation	5
		4.1.2 Man-Made Alternative Sources	6
	4.2	Lines of Evidence	6
		4.2.1 Previous CCR Pond and Landfill Study	6
		4.2.2 CCR Constituents in Landfill Leachate	7
		4.2.3 State Program Groundwater Monitoring Results	8
5.0	Alteri	native Source Demonstration Conclusions	8
6.0	Site (Groundwater Monitoring Recommendations	8
7.0	Refe	rences	9
		Tables	
Table Table Table Table Table	2. 3A. 3B. 4.	Groundwater Analytical Results Summary – October 2023 Historical Analytical Results for Parameters with SSIs Groundwater Elevations – State Monitoring Wells Groundwater Elevations – CCR Rule Monitoring Wells 2016-2023 Groundwater Analytical Results – Closed Landfill State Monitoring Program Wells Analytical Results – Closed Landfill Leachate Fluoride Monitoring	

Figures

Figure 1. Site Location Map

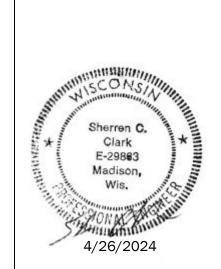

Figure 2. Site Plan and Monitoring Well Locations

Figure 3. Water Table Map – October 2023

Appendix

Appendix A Trend Plots for CCR Wells

PE CERTIFICATION

I, Sherren Clark, hereby certify that the information in this alternate source demonstration is accurate and meets the requirements of 40 CFR 257.94(e)(2). This certification is based on my review of the groundwater data and related site information available for the Edgewater Generating Station Ash Ponds. I am a duly licensed Professional Engineer under the laws of the State of Wisconsin.

4/26/2024

(signature)

(date)

Sherren Clark, PE

(printed or typed name)

License number E-29863

My license renewal date is July 31, 2024.

Pages or sheets covered by this seal:

Alternative Source Demonstration - October 2023 Detection

Monitoring, Edgewater Generating Station, Sheboygan Wisconsin

(Entire Document)

1.0 INTRODUCTION

This Alternative Source Demonstration (ASD) was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" published by the U.S. Environmental Protection Agency (U.S. EPA) in the *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule,* dated April 17, 2015 (U.S. EPA, 2015), and subsequent amendments. Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.94(e)(2). The applicable sections of the Rule are provided below in *italics*.

1.1 §257.94(E)(2) ALTERNATIVE SOURCE DEMONSTRATION REQUIREMENTS

The owner and operator may demonstrate that a source other than the CCR Unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels.

An ASD is completed when there are exceedances of one or more benchmarks established within the groundwater monitoring program. The ASD is completed to determine if any other sources are likely causes of the identified exceedance(s) of the established benchmark(s) at the site. This ASD was performed in response to results indicating a statistically significant increase (SSI) over background levels during detection monitoring under the CCR Rule.

This ASD report is evaluating the SSIs observed in the statistical evaluation of the October 2023 detection monitoring event at the Edgewater Generating Station (EDG). The first ASD was prepared for this facility evaluating the SSIs observed in the statistical evaluation of the October 2017 detection monitoring event (SCS Engineers [SCS], 2018b). The October 2017 ASD and subsequent semiannual updates have concluded that several lines of evidence demonstrate that SSIs reported for boron, fluoride, and sulfate concentrations in the downgradient monitoring wells (MW-301, MW-302, and MW-303) were likely due to leachate from the closed landfill, which is not subject to the requirements of 40 CFR 257.50-107.

As discussed in more detail in **Section 4.2** of this ASD, the findings for the October 2023 monitoring event were consistent with those for the previous events.

1.2 SITE INFORMATION AND MAP

EDG is located at 3739 Lakeshore Drive in Sheboygan, Sheboygan County, Wisconsin (**Figure 1**). EDG is an active coal-burning generating station. The EDG property includes a closed landfill and a series of CCR settling ponds, located on the opposite side of Lakeshore Drive from the plant itself (**Figure 1**). The EDG landfill is closed and no longer receives CCR. The groundwater monitoring system at EDG is a multi-unit system monitoring four former existing CCR Units, which were contiguous:

- EDG Slag Pond (existing CCR surface impoundment)
- EDG North A-Pond (existing CCR surface impoundment)
- EDG South A-Pond (existing CCR surface impoundment)
- EDG B-Pond (existing CCR surface impoundment)

Closure of the four CCR surface impoundments was initiated in 2020, the cover was in place in June 2021, and the closure was certified on August 9, 2021. The existing monitoring system is being used to monitor the closure area. A map showing the CCR Units and all background (or upgradient) and downgradient monitoring wells with identification numbers for the groundwater monitoring program is provided on **Figure 2**.

The closed CCR landfill (Wisconsin Department of Natural Resources [WDNR] Permit No. 2524) is located immediately west of the former ponds location. The landfill contains primarily fly ash with some slag and was closed in 1987. Because this CCR landfill did not accept CCR after October 19, 2015, the landfill is not subject to the requirements of 40 CFR 257.50-107. The closed landfill is unlined and is known to be impacting groundwater at the site (SCS, 2016). Previous investigations done at the site (BT², Inc., 1993; RMT, 1997) concluded that the groundwater impacts downgradient of the landfill and ponds were attributable to groundwater interaction with the landfill, rather than leakage from the ponds.

1.3 STATISTICALLY SIGNIFICANT INCREASES IDENTIFIED

SSIs were identified for boron, fluoride, and sulfate at one or more wells based on the October 2023 detection monitoring event. A summary of the October 2023 constituent concentrations and the established benchmark concentrations are provided in **Table 1**. The constituent concentrations with SSIs above the background concentration are highlighted in the table.

1.4 OVERVIEW OF ALTERNATIVE SOURCE DEMONSTRATION

This ASD report includes:

- Background information (Section 2.0)
- Evaluation of potential that SSIs are due to methodology or analysis (Section 3.0)
- Evaluation of potential that SSIs are due to natural sources or man-made sources other than the CCR Units (Section 4.0)
- ASD conclusions (**Section 5.0**)
- Monitoring recommendations (Section 6.0)

The boron, fluoride, and sulfate results from background and compliance sampling are provided in **Table 2**. The laboratory report for the October 2023 detection monitoring event will be included in the 2024 annual groundwater monitoring and corrective action report to be completed in January 2025. Complete laboratory reports for the background monitoring events and previous detection monitoring events were included in the previous annual groundwater monitoring and corrective action reports.

2.0 BACKGROUND

To provide context for the ASD evaluation, the following background information is provided in this section of the report, prior to the ASD evaluation sections:

- · Geologic and hydrogeologic setting
- CCR Rule monitoring system
- Other monitoring wells
- Groundwater flow direction

A more detailed discussion of the background information for the site is provided in the ASD for the October 2017 event (SCS, 2018a).

2.1 REGIONAL GEOLOGY AND HYDROGEOLOGY

For the purposes of groundwater monitoring, the unconsolidated sand and gravel aquifer is considered to be the uppermost aquifer, as defined under 40 CFR 257.53, at the EDG ponds. The sand and gravel aquifer is present in some parts of Sheboygan County (Skinner and Borman, 1973). Boring logs from monitoring wells at the EDG ponds and for nearby private wells indicate that the unconsolidated material at, and near, the site contains a significant amount of sand. Private well logs from the surrounding area indicate that the sand and gravel aquifer has been used as a water source; however, several older sand wells in the area have been replaced with bedrock water supply wells.

The dolomite aquifer underlies the unconsolidated material at the site. The total thickness of the dolomite aquifer at the site is unknown. The dolomite aquifer is underlain by the Maquoketa shale, which is a confining unit. The Maquoketa shale is underlain by the Cambrian-Ordovician sandstone aquifer. This sequence of sedimentary bedrock units is over 1,500 feet thick in the site vicinity.

The regional groundwater flow in the unconsolidated sand and gravel aquifer in the vicinity of the site is to the east and slightly southeast.

2.2 CCR MONITORING SYSTEM

The groundwater monitoring system established under the CCR Rule consists of one upgradient (background) monitoring well and three downgradient monitoring wells, as shown on **Figure 2**. The upgradient monitoring well is 2R-OW. The downgradient monitoring wells include MW-301, MW-302, and MW-303. The CCR compliance monitoring wells were installed in the unconsolidated sediments with screens in the uppermost soil layer producing appreciable water, which was a sandy silt unit. Well depths range from approximately 14.5 to 40 feet, measured from the top of the well casing.

2.3 OTHER MONITORING WELLS

Sixteen groundwater monitoring wells currently exist at the EDG site as part of the monitoring system developed for the state monitoring program for the closed landfill. The well locations are shown on **Figure 2**. These monitoring wells are used to monitor groundwater conditions at the site under the WDNR state monitoring program.

Monitoring wells for the state monitoring program are installed in the unconsolidated material at the site. This shallow monitoring system includes water table wells and piezometers. Well depths range from approximately 9 to 43 feet, measured from the top of the well casing.

2.4 GROUNDWATER FLOW DIRECTION

Shallow groundwater in the area of the EDG site generally flows to the south-southeast, toward Fish Creek, which discharges into Lake Michigan. There is some localized groundwater mounding associated with the EDG ponds. The water table map shown on **Figure 3** represents the site conditions of the unconsolidated deposits during the October 2023 detection monitoring event. The water table map shows a generally southward flow direction. The groundwater elevations at the CCR and state monitoring wells during the October 2023 detection monitoring event are in **Tables 3A** and **3B**.

3.0 METHODOLOGY AND ANALYSIS REVIEW

To evaluate the potential that an SSI is due to a source other than the regulated CCR Unit, SCS used a two-step evaluation process. First, the sample collection, field and laboratory analysis, and statistical evaluation were reviewed to identify any potential error or analysis that led to the exceedance of the benchmark. Second, potential alternative sources, including natural variation and man-made sources other than the CCR Unit, were evaluated. This section of the report provides the findings of the methodology and analysis review. **Section 4.0** of the report addresses the potential alternative sources.

3.1 SAMPLING AND FIELD ANALYSIS REVIEW

Field notes and sampling results were reviewed to determine if any sampling error may have caused or contributed to the observed SSIs. Potential field sampling errors or issues could include mislabeling of samples, improper sample handling, missed holding times, cross-contamination during sampling, or another field error. Field blank sample results were also reviewed for any indication of potential contamination from sampling equipment or containers. Based on the review of the field notes and results, SCS did not identify any indication that the SSI concentrations were due to a sampling error.

3.2 LABORATORY ANALYSIS REVIEW

The laboratory report for the October 2023 detection monitoring was reviewed to evaluate whether any laboratory analysis error or issue may have caused or contributed to the observed SSIs for boron, fluoride, or sulfate. The laboratory report review included reviewing the laboratory quality control flags and narrative, verifying that correct methods were used and desired detection limits were achieved, and checking the field and laboratory blank sample results. Laboratory reports for the background monitoring events were reviewed for the October 2017 ASD. Laboratory reports for subsequent detection monitoring events were reviewed as part of the ASD preparation for each event.

Based on the review of the laboratory reports, SCS did not identify any indication that the SSI concentrations were due to a laboratory analysis error. There were no laboratory quality control flags or issues identified in the laboratory reports that affect the usability of the data for detection monitoring.

Time series plots of the analytical data were also reviewed for any anomalous results that might indicate a possible sampling or laboratory error (e.g., dilution error or incorrect sample labeling). Time series plots for the Appendix III parameters are provided in **Appendix A**. No indications of sampling or laboratory errors were noted based on the time series review. The October 2023 boron, fluoride, and sulfate results for 2R-OW, MW-301, MW-302, and MW-303 are consistent with the historical data.

3.3 STATISTICAL EVALUATION REVIEW

The review of the statistical results and methods includes a quality control check of the following:

- Input analytical data vs. laboratory analytical reports
- Review of statistical method and outlier concentration lists for each monitoring well/CCR unit

Based on the review of the statistical evaluation, SCS did not identify any errors or issues in the statistical evaluation that caused or contributed to the determination of interwell SSIs for the October 2023 detection monitoring event.

3.4 SUMMARY OF METHODOLOGY AND ANALYSIS REVIEW FINDINGS

In summary, there were no changes to the SSI determinations for the October 2023 monitoring event based on the methodology and analysis review, and no errors or issues causing or contributing to the reported SSIs were identified.

4.0 ALTERNATIVE SOURCES

This section of the report discusses the potential alternative sources for the boron, fluoride, and sulfate SSIs at MW-301, MW-302, and MW-303; identifies the most likely alternative source(s); and presents the lines of evidence indicating that an alternative source is most likely the cause of the observed SSIs for boron, fluoride, and sulfate.

4.1 POTENTIAL CAUSES OF SSI

4.1.1 Natural Variation

The statistical analysis was completed using an interwell approach, comparing the October 2023 detection monitoring results to the upper prediction limits (UPLs) calculated based on the sampling of the background well (2R-OW). If concentrations of a constituent that is naturally present in the aquifer vary spatially, then the potential exists that the downgradient concentrations may be higher than upgradient concentrations due to natural variation.

Although natural variation is present in the shallow aquifer, it does not appear likely that natural variation is the primary source causing the boron and sulfate SSIs. These parameters were detected at higher concentrations than would likely be present naturally.

Natural variation may have caused or contributed to the SSI for fluoride at MW-302. Elevated natural fluoride concentrations significantly higher than those reported for the downgradient wells (above 2 milligrams per liter [mg/L]) have been observed in a region in eastern Wisconsin extending along the Lake Michigan shoreline from Kewaunee County in the north to the Illinois border in the south, as described in Luczaj, J., and Masarik, K., 2015, *Groundwater Quantity and Quality Issues in a Water-Rich Region: Examples from Wisconsin, USA*. The authors note that most of the wells with elevated fluoride appear to be drawing from the Pleistocene glacial sediments and Silurian dolomite units. Skinner and Borman (1973) and Kammerer (1995) also identify the Lake Michigan shoreline area of eastern Wisconsin as having somewhat elevated fluoride concentrations in groundwater.

The fluoride concentrations reported for MW-302 for October 2017 through April 2020 and April 2021 through October 2023 were just above the laboratory's limit of quantitation (LOQ), ranging from 0.75 mg/L in April 2023 to 0.88 mg/L in October 2021. These results are within the range of fluoride results at MW-302 during background monitoring for the CCR rule prior to October 2017 (**Table 2**). The result at MW-302 is within the range of reported regional natural concentrations, indicating that the fluoride concentration observed in this well is potentially due to natural variability in the glacial sediments and shallow groundwater. As discussed below, there is also a potential that fluoride in MW-302 is associated with impacts from the closed CCR landfill.

4.1.2 Man-Made Alternative Sources

Man-made alternative sources that could potentially contribute to the boron, fluoride, and sulfate SSIs could include the closed CCR landfill, the coal storage area, or other plant operations. Based on the groundwater flow directions and previous investigations at the site, the closed landfill appears to be the most likely cause of the SSIs for wells MW-301, MW-302, and MW-303.

4.2 LINES OF EVIDENCE

The lines of evidence indicating that the SSIs for boron, fluoride, and sulfate in compliance wells MW-301, MW-302, and MW-303, relative to the background well, are due to an alternative source include:

- 1. A previous study of the CCR ponds and the closed CCR landfill determined that the landfill was the primary source of groundwater impacts in the area, based on multiple lines of evidence.
- 2. Past and current monitoring performed under the state monitoring program shows that boron, fluoride, and sulfate are present in the CCR landfill leachate.
- 3. Past and current monitoring performed under the state monitoring program shows that the highest boron and sulfate concentrations are in the monitoring wells near and downgradient from the CCR landfill.

Lines of evidence regarding natural variability as an additional alternative source of the fluoride SSIs are discussed above in **Section 4.1.1**.

Each of these lines of evidence and the supporting data were discussed in detail in the ASD for the October 2017 detection monitoring event (SCS, 2018b). The lines of evidence are discussed briefly below, focusing on any updated information collected since the previous ASDs.

4.2.1 Previous CCR Pond and Landfill Study

A previous investigation titled *Field Investigation Report: Edgewater Closed Ash Disposal Facility*, completed by BT² in 1993, found that groundwater impacts were likely due to the closed landfill (**Figure 2**) located immediately west of the ponds (BT², 1993). The purpose of the 1993 investigation was to investigate the likely impact on groundwater quality of lining or abandoning the CCR impoundments (referred to in the report as the Wisconsin Pollutant Discharge Elimination System [WPDES] lagoons). The results from the investigation indicated that the CCR impoundments were not the primary source of downgradient groundwater impacts, and that closure or lining was not warranted at that time. The WDNR concurred with that finding in a letter dated April 20, 1994.

The primary lines of evidence from the 1993 report that supported this finding, and support the ASD for boron, fluoride, and sulfate, included:

- Water samples collected from each of the ponds met the Wisconsin groundwater enforcement standards established under NR 140, Wisconsin Administrative Code.
- Soil borings installed in the material below the larger ash pond, where the slag pond and the WDPES lagoons (North Pond A and South Pond A) were constructed, indicated that material below the ponds was almost entirely slag material. Water leaking out of the lagoons and moving downward would encounter primarily slag, which is relatively inert, and not fly ash.

- Results for water leach testing of site-wide composite samples of fly ash and slag confirmed that the fly ash had a higher potential than slag to impact groundwater. Water leach test results for the fly ash composite sample were higher for boron, sulfate, and fluoride in comparison to the slag composite sample.
- Ash disposal in the closed landfill was primarily fly ash. For seven borings in the landfill, the percent fly ash ranged from 60 to 86 percent.
- Water leach testing for individual boring samples of fly ash and/or slag also confirmed that fly ash leachate had significantly higher concentrations of boron and sulfate than slag leachate. For example, boron leach test results for seven samples from borings within the landfill, consisting mainly of fly ash, ranged from 624 to 3,370 micrograms per liter (µg/L), with most results over 2,000 µg/L. Boron leach test results for nine samples from borings around and between the ponds, consisting mainly of slag, ranged from less than 16 to 206 µg/L.
- Water sampling within the landfill and pond area, in CCR above the native soil, documented that groundwater/leachate within the landfill had significantly higher concentrations of boron than the groundwater/leachate within the slag berms immediately adjacent to and between the Slag Pond, North/South Pond A, and Pond B.
- Groundwater monitoring results indicated that the highest concentrations of boron and sulfate were in monitoring wells downgradient from the landfill, including 18-OW and 29-OW. Elevated boron and sulfate were also reported for samples from wells 4-OW and 5-OW, located near the southwest and northwest corners of the landfill. Monitoring wells 6-OW and 7-OW, located east and southeast of the ponds, had much lower concentrations of boron and sulfate.

In the April 1994 approval letter, the WDNR approved the 1993 investigation of the WPDES lagoons/CCR impoundments and concurred with the findings of the report. The WDNR requested additional monitoring from the four new monitoring wells installed within the CCR (36-OW, 37-OW, 38R-OW, and 39R-OW) and requested the addition of fluoride and arsenic to the monitoring program for these groundwater/leachate head wells.

The results of the additional monitoring were reported to the WDNR in a Groundwater Assessment Report dated September 30, 1997. The WDNR responded to the 1997 report in a letter dated April 16, 1998, which stated, "We agree with the report's finding that the WPDES ponds [Slag Pond, North Pond A, and South Pond A] do not appear to be significantly contributing to the contaminant plume downgradient of the facility. No further remedial action concerning the influence of the ponds on the landfill is warranted at this time." The WDNR also noted that the leachable constituents migrating from the saturated portion of the closed landfill have stabilized or also decreased since the landfill's closure and capping.

4.2.2 CCR Constituents in Landfill Leachate

Past and current monitoring performed under the state monitoring program shows that boron and sulfate are present in the CCR landfill leachate. Recent groundwater and leachate monitoring results for boron and sulfate in samples from the state monitoring program wells are summarized in **Table 4** (April 2016 through April 2023). The leachate head wells monitoring conditions within the CCR landfill are 37-OW, 38R-OW, and 39R-OW, listed near the end of the table. Beginning in October 2020, one or more of these wells have not been sampled because they were dry, or did not have

enough water in the well for sample collection; however, historical results can be used to characterize the leachate. Water levels within the landfill have decreased in response to the pond closures.

Boron: Boron concentrations in samples from leachate head wells 37-OW, 38R-OW, and 39R-OW have generally exceeded those reported for the CCR monitoring wells.

Sulfate: Sulfate concentrations in samples from leachate head wells 37-0W, 38R-0W, and 39R-0W have generally exceeded those reported for the CCR monitoring wells.

Fluoride: Fluoride is not part of the routine state monitoring program for the closed CCR landfill, but was sampled from the leachate wells (37-OW, 38R-OW, and 39R-OW) and the pond berm well (36-OW) from 1994 to 1997, as requested by the WDNR. The fluoride concentrations ranged from 0.25 to 0.97 mg/L (**Table 5**). The fluoride concentration for the sample collected at MW-302 (0.85 mg/L) was less than the highest observed concentration at the leachate wells.

Based on these results, fly ash disposal in the closed CCR landfill is a likely historical source of elevated boron and sulfate in groundwater, and is a potential source of fluoride.

4.2.3 State Program Groundwater Monitoring Results

Current monitoring performed under the state monitoring program continues to show that the highest boron and sulfate concentrations are in the monitoring wells near and downgradient from the CCR landfill. State program monitoring results for the CCR Rule detection monitoring parameters that overlap with the state program are summarized in **Table 4**, and well locations are on **Figure 2**.

Although boron concentrations in the downgradient state monitoring wells have decreased significantly since the time of the 1993 report, the recent groundwater monitoring results indicate that the highest concentrations of boron continue to be in monitoring wells downgradient from the landfill, including 40-OW (replaced former 18-OW) and 29-OW. Sulfate concentrations at 29-OW have decreased since 1993, but remain elevated at downgradient well 40-OW. Elevated boron and sulfate also continue to be reported for samples from wells 4R-OW (replacement well for 4-OW) and 5-OW, located near the southwest and northwest corners of the landfill. Concentrations of boron and sulfate in the CCR program monitoring wells are somewhat lower than current concentrations in the downgradient state program wells, and much lower than historic concentrations in the downgradient state program wells, consistent with the closed CCR landfill as the primary source.

5.0 ALTERNATIVE SOURCE DEMONSTRATION CONCLUSIONS

The lines of evidence discussed above regarding the SSIs reported for boron, fluoride, and sulfate concentrations in downgradient monitoring wells MW-301, MW-302, and/or MW-303 demonstrate that the SSIs are likely primarily due to leachate from the closed landfill, which is not subject to the requirements of 40 CFR 257.50-107. The landfill is regulated by the WDNR under the solid waste program. Natural variation may also contribute to the SSI reported for fluoride in downgradient monitoring well MW-302.

6.0 SITE GROUNDWATER MONITORING RECOMMENDATIONS

In accordance with section 257.94(e)(2) of the CCR Rule, the EDG pond site may continue with detection monitoring based on this ASD. The ASD report will be included in the 2024 Annual Report due January 31, 2025.

7.0 REFERENCES

BT², Inc., 1993, Field Investigation Report, Edgewater Closed Ash Disposal Facility, Wisconsin Power & Light Company, WDNR License #2524, June 1993.

Krammerer, P.A. Jr., 1995, Ground-Water Flow and Quality in Wisconsin's Shallow Aquifer System, U.S. Geological Survey, Water-Resources Investigations Report 90-4171.

Luczaj, J., and Masarik, K, 2015, Groundwater Quantity and Quality Issues in a Water-Rich Region: Examples from Wisconsin, USA: Resources, 2015, 4, 323-357.

RMT, Inc., 1997, Groundwater Assessment Report, Edgewater Closed Ash Disposal Facility, September 30, 1997.

SCS Engineers, 2016, Biennial Groundwater Monitoring Report for 2014-2015, Wisconsin Power and Light Company – Edgewater 1-4 (Closed) Ash Disposal Facility, Sheboygan, WI, License #02524, March 2016.

SCS Engineers, 2018a, Alternative Source Demonstration, October 2017 Monitoring Event, Edgewater Generating Station, April 2018.

SCS Engineers, 2018b, 2017 Annual Groundwater Monitoring and Corrective Action Report, Edgewater Generating Station, January 2018.

Skinner, Earl L., and Borman, Ronald G., 1973, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigation Atlas HA-432.

U.S. Environmental Protection Agency, 2015, Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities, Final Rule, April 2015.

[This page left blank intentionally.]

Tables

- 1 Groundwater Analytical Results Summary October 2023
- 2 Historical Analytical Results for Parameters with SSIs
- 3A Groundwater Elevations State Monitoring Wells
- 3B Groundwater Elevations CCR Rule Monitoring Wells
- 4 2016-2023 Groundwater Analytical Results Closed Landfill State Monitoring Program Wells
- 5 Analytical Results Closed Landfill Leachate Fluoride Monitoring

Table 1. Groundwater Analytical Results Summary Edgewater Generating Station / SCS Engineers Project #25224068.00

		Backgro Well			Compliance We	ells
Parameter Name		2R-OV	٧	MW-301	MW-302	MW-303
rarameter name		10/10/2	023	10/10/2023	10/10/2023	10/10/2023
Groundwater Elevation, ft amsl	UPL	600.3	8	592.51	592.01	585.79
Appendix III						
Boron, µg/L	78.4	33.5		6,600	1,400	4,160
Calcium, µg/L	201,000	156,000	P6	98,500	59,400	134,000
Chloride, mg/L	456	420		18.3	22.0	19.9
Fluoride, mg/L	0.200	<0.95	D3	0.20 J	0.85	<0.095
Field pH, Std. Units	8.57	7.06		7.66	7.89	6.99
Sulfate, mg/L	36.7	28.7		185	57.5	<0.44
Total Dissolved Solids, mg/L	1,220	1,080		560	308	600

4.4 Blue shaded cell indicates the compliance well result exceeds the UPL (background) and the Limit of Quantitation (LOQ).

Abbreviations:

UPL = Upper Prediction Limit LOD = Limit of Detection mg/L = milligrams per liter LOQ = Limit of Quantitation μ g/L = micrograms per liter

Lab Notes:

D3 = Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

J = Estimated concentration at or above the LOD and below the LOQ.

P6 = Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.

Notes:

- 1. An individual result above the UPL does not constitute an SSI above background. See the accompanying report text for identification of statistically significant results.
- Interwell UPLs calculated based on results from background well 2R-OW. Interwell UPLs based on a 1-of-2 retesting approach. The interwell UPLs were updated in July 2023 using data from April 2016 through April 2023.

Created by: RM	Date: 11/17/2023
Last revision by: RM	Date: 11/17/2023
Checked by: BAS	Date: 12/14/2023
Scientist/PM QA/QC: TK	Date: 1/13/2024

Table 2. Historical Analytical Results for Parameters with SSIs Edgewater Generating Station, Sheboygan, Wisconsin SCS Engineers Project #25224068.00

Well Group	Well	Collection Date	Boron (µg/L)	Fluoride (mg/L)	Sulfate (mg/L)
		4/8/2016	100	<0.20	19.5
		6/20/2016	22.4	<0.20	28.0
		8/9/2016 10/20/2016	32.6 43.1	<0.20 <0.10	25.4 21.6
		1/24/2017	31.2	<0.10	23.9
		4/6/2017	70.6	<0.10	17.6
		6/6/2017	45.2	<0.10	17.8
		8/1/2017	35.7	<0.10	28.8
pu		10/23/2017	55.9	<0.10	29.3
Background	00.014	4/2/2018 10/1/2018	19.7 34.7	0.12 J <0.10	17.2 37.2
χ	2R-OW	4/8/2019	35.8	<0.10	10.6
Вас		10/7/2019	58.8	<0.10	13.2
		4/8/2020	52.3	<0.095	11.6
		10/15/2020	29.9	<0.096 J	20.3
		4/14/2021	45.7	<0.095	15.3
		10/27/2021 4/13/2022	47.2 27.9 lq	<4.8 D3 <0.95 D3	35.7 J, D3
		10/6/2022	49.0	<0.95	28.0
		4/26/2023	32.0	0.11 J	7.5
		10/10/2023	33.5	<0.95 D3	28.7
		4/11/2016	8,550	0.33 J	372
		6/20/2016	8,190	0.36 J	343
		8/9/2016	8,450	0.33 J	368
		10/20/2016	8,620	0.34	369
		1/23/2017	9,280	0.42	372
		4/6/2017	8,370	0.21 J	367
		6/6/2017	9,160 8,610	<0.10 0.32	362 340
		8/2/2017 10/24/2017	8,820	<0.10	340
		4/2/2018	7,950	0.25 J	332
	MW-301	10/1/2018	8,230	0.20 J	318
		4/8/2019	7,310	0.29 J	322
		10/7/2019	7,220	0.24 J	312
		4/8/2020	7,450	0.39 M0	298
		10/15/2020 4/14/2021	6,550 7,200	<0.48 D3, M0 0.25 J	293 195
		10/26/2021	6,710	0.24 J, M0	203 MC
		4/13/2022	7,240	<0.095	212
		10/6/2022	6,230	0.21 J	213
d)		4/25/2023	6,770	0.21 J	168
liance		10/10/2023	6,600	0.20 J	185
		4/8/2016	1,950	0.83	75.1
Compl		6/20/2016	2,010	1.3 J	89.6
ŏ		8/9/2016	2,000	0.80	80.7
		10/20/2016 1/24/2017	2,150 2,000	0.80 0.89 J	77.2 71.1
		4/6/2017	1,970	0.87 3	85.8
		6/6/2017	1,970	0.9	88.5
		8/2/2017	1,890	0.78	80.2
		10/24/2017	1,760	0.84	72.2
		4/2/2018	1,800	0.78	72.7
	V V/V 300	10/1/2018	1,570	0.81	59.2
	MW-302	4/8/2019	1,670	0.87	71.7
		10/7/2019	1,730	0.85	55.7
		4/8/2020	1,570	0.97	65.3
		10/15/2020	1,410	1.0 J, D3	73.
		4/14/2021	1,550	0.88	70.5
		10/26/2021	1,580	0.88	71.2
		4/13/2022	1,460	0.91	68.5
		10/6/2022	1,610	0.87	70.5
		4/26/2023	1,450	0.75	75.4
		10/10/2023	1,400	0.85	57.5

Table 2. Historical Analytical Results for Parameters with SSIs Edgewater Generating Station, Sheboygan, Wisconsin SCS Engineers Project #25224068.00

Well Group	Well	Collection Date	Boron (μg/L)	Fluoride (mg/L)	Sulfate (mg/L)
		4/8/2016	4,210	<0.20	3.0 J
		6/20/2016	3,360	<1.0	11.4 J
		8/9/2016	3,860	<0.20	2.4 J
		10/20/2016	3,740	<0.50	5.6 J
		1/24/2017	4,210	<0.50	<5.0
		4/6/2017	4,170	<0.50	<5.0
		6/6/2017	4,570	<0.50	<5.0
		8/2/2017	3,780	<0.50	<5.0
Δ)		10/24/2017	3,480	<0.50	<5.0
Compliance		4/2/2018	3,040	<0.50	<5.0
olia	MW-303	10/1/2018	2,360	<0.10	<1.0
ά		4/8/2019	2,930	<0.50	<5.0
ပိ		10/7/2019	2,830	<0.50	<5.0
		4/8/2020	3,380	<0.48	<2.2
		10/15/2020	3,310	<0.48 D3	<2.2 D3
		4/14/2021	4,600	<0.095	0.54 J
		10/26/2021	3,650	<0.48 D3	<2.2 D3
		4/13/2022	4,360	<0.48 D3	<2.2 D3
		10/6/2022	3,650	<0.095	<0.44
		4/25/2023	4,870	<0.095	0.50 J
		10/10/2023	4,160	<0.095	<0.44

Abbreviations:

μg/L = micrograms per liter or parts per billion (ppb)

mg/L = milligrams per liter or parts per million (ppm)

Notes

 Complete laboratory reports are included in the Annual Groundwater Monitoring and Corrective Action Reports, Edgewater Generating Station.

Created by:	RM	Date:	1/15/2024
Last revision by:	RM	Date:	1/15/2024
Checked by:	NLB	Date:	1/16/2024

^{-- =} not analyzed

J = Estimated value below laboratory's limit of quantitation (LOQ)

M0 = Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

D3 = Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

¹q = Analyte was measured in the associated method blank at -3.1 μ g/L.

Table 3A. Groundwater Elevations - State Monitoring Wells Edgewater 1-4 Closed Ash Disposal Facility / SCS Engineers Project #25224068.00

					G	round W	ater Elev	ation in f	eet abov	e mean :	sea level	(amsl)							Water El	evation withi	n Landfill
Well Number	1-OW	2R-OW	3R-OW	4R-OW	5-OW	W-5A	6-AR	6R-OW	7A-OW	7-OW	18-OW	29-OW	29-A	30-OW	31-OW	32-OW	36-OW	40-OW	37-OW	38R-OW	39R-OW
Top of Casing Elevation (ft amsl)^	592.18	611.85	591.59	594.68	600.94	600.66	590.78	591.74	593.45	593.19	ABAND	588.72	588.43	591.13	589.22	589.21	ABAND	586.69	615.30	620.24	614.27
Screen Length (ft)																					
Total Depth (ft from top of casing)	11.10	17.53	15.82	16.48	10.65	21.51	19.86	10.37	20.21	9.93	14.25	19.96	43.12	14.88	14.98	14.95	21.01	17.3	18.55	29.00	22.29
Top of Well Screen Elevation (ft)	580.62	595.19	575.50	579.12	590.07	580.33	571.46	580.61	573.20	582.58	572.22	568.90	546.13	575.93	574.02	574.12	593.62		596.47	591.98	591.75
Measurement Date																					
October 24, 2012	588.11	607.82	582.64	585.24	595.63	596.69	587.42	587.40	592.00	589.78	583.49	585.33	586.60	586.40	582.58	583.63	599.77		599.42	599.38	598.05
April 18, 2012					595.89	597.13	587.33	587.35	592.35	589.79		585.32	588.39								
October 24, 2012					595.63	596.69	587.42	587.40	592.00	589.78		585.33	586.60								
April 8, 2013	588.50	609.92	588.37	586.35	596.66	597.65	588.40	587.34	592.79	589.95	583.97	585.78	588.07	588.57	584.35	584.50	600.79		600.24	600.16	598.30
October 22, 2013	584.88	601.15	580.90	584.46	594.23	595.64	582.64	584.83	591.23	587.24	NM ⁽¹⁾	584.70	586.76	582.19	580.40	580.76	599.13		598.22	598.42	596.56
April 22, 2014	588.05	609.22	587.99	586.11	595.18	597.10	587.00	587.37	589.27	589.51	NM ⁽¹⁾	585.38	588.22	587.53	583.75	583.75	NM ⁽¹⁾		599.67	599.38	598.56
October 28, 2014	586.14	607.27	586.30	585.08	595.33	596.51	587.68	586.99	591.92	589.29	NM ⁽¹⁾	585.00	587.84	585.48	582.88	582.68	600.07		599.81	599.26	598.37
April 7 - 9, 2015	587.90	608.47	587.44	585.52	595.66	596.76	586.99	587.50	591.95	588.50	ABAND	585.44	587.55	586.29	583.21	583.87	599.69	583.77	599.21	599.21	597.46
October 8, 2015	584.78	604.22	583.34	584.52	594.76	594.47	582.65	585.67	591.23	589.71	ABAND	584.69	587.27	584.26	581.60	582.52	600.29	583.01	599.47	599.70	598.09
April 4-5, 2016	588.40	610.02	587.72	586.69	596.70	597.81	584.52	585.68	592.41	587.93	ABAND	582.95	587.25	586.91	584.35	584.47	601.05	579.28	601.37	601.18	601.13
October 17, 2016 (2)	587.50	607.27	586.71	585.15	595.41	596.82	584.34	586.61	592.01	587.65	ABAND	581.25	586.10	586.23	583.02	583.83	600.87	579.42	600.70	600.74	599.49
April 12-13, 2017	588.23	609.80	587.95	586.31	596.08	597.69	586.77	587.32	592.19	587.06	ABAND	583.74	585.43	585.36	583.68	584.52	602.01	584.02	602.11	602.08	601.29
October 9, 2017	584.14	600.87	581.00	584.49	594.68	596.04	583.03	583.51	590.50	585.96	ABAND	583.01	584.88	582.76	580.93	581.18	600.18	583.05	598.48	599.65	598.07
April 2, 2018	587.79	607.87	586.63	586.68	595.73	596.88	586.80	587.44	591.76	589.62	ABAND	585.51	587.11	585.68	582.95	582.85	600.71	583.64	600.00	600.04	597.99
June 19, 2018	NM	605.70	585.49	585.20	595.41	NM	NM	NM	NM	587.20	ABAND		585.79	584.96	582.29	NM	NM (1)	583.07	600.44	600.68	599.61
October 1, 2018	585.37	604.61	584.18	584.86	595.24	596.44	586.10	586.86	591.01	588.75	ABAND		584.94	584.79	582.11	582.81	600.30	583.17	600.12	600.27	599.79
April 8, 2019	588.57	609.50	588.01	591.93	596.03	597.33	584.61	587.35	591.92	590.06	ABAND		586.75	587.83	584.18	584.85	600.21	583.75	599.60	599.74	598.49
October 9-10, 2019	587.85	609.39	587.39	585.99	595.68	596.92	586.42	587.24	591.66	587.53	ABAND	585.14	585.10	587.15	583.63	584.48	599.92	583.08	600.25	600.01	599.82
April 8-9, 2020	588.03	608.97	587.70	586.05	595.57	596.89	585.74	586.95	591.61	587.76	ABAND	584.98	587.35	587.29	583.70	584.59	599.40	583.01	599.52	599.48	599.38
October 14-15, 2020	584.62	604.37	582.20	584.54	593.27	594.86	582.71	583.45	588.81	586.53	ABAND	583.95	586.83	583.83	582.60	582.82	ABAND	583.26	596.87	NM	594.72
April 14, 2021	587.95	608.50	587.64	585.42	594.87	596.13	586.53	587.29	591.28	589.89	ABAND		587.64	587.06	583.46	584.25		583.08	DRY	596.50	593.95
October 27-28, 2021	584.53	603.62	580.74	584.47	593.06	594.70 NM	579.90	584.60	590.45	587.39 NM	ABAND ABAND		586.65	582.89 NM	581.88	582.02 NM	ABAND ABAND	582.74	DRY DRY	595.49 595.25	592.34 NM
February 28, 2022 April 13, 2022	NM 588.64	608.63	NM 588.30	NM 585.06	NM 595.72	595.11	NM 586.08	NM 588.15	NM 591.60	590.70	ABAND		NM 584.82	588.02	NM 584.10	585.09	ABAND	NM 583.09	DRY	595.25 594.43	DRY
October 6, 2022	584.39	601.93	580.62	583.52	593.16	593.41	582.43	584.86	590.02	587.38	ABAND		584.18	583.09	581.55	581.98	ABAND	582.60	DRY	594.62	593.36
April 25-26, 2023	588.51	607.74	588.00	585.15	595.48	595.22	588.13	588.18	591.90	590.13	ABAND	584.92	586.46	587.94	583.60	584.62	ABAND	583.17	597.35	596.81	598.09
October 10-11, 2023	583.99	599.85	579.87	583.26	592.52	592.83	583.52	582.36	588.67	585.67	ABAND		583.80	582.27	580.47	581.37	ABAND	582.01	DRY	595.63	594.40
Bottom of Well Elevation (ft)	591.72	612.72	591.32	595.60	600.72	601.84	591.32	590.98	573.20	582.58	572.22	568.90	546.13	575.93	574.02	574.12	593.62	568.75	596.47	592.14	591.75

Notes: Created by: MDB Date: 5/6/2013

NM = not measured Last revision by: NLB Date: 12/29/2023

ABAND = abandoned Checked by: RM Date: 1/11/2024

^: Monitoring well adjustments and resurveys:

Monitoring well 38R-OW was extended on October 30, 2020 during repairs following well damage by pond closure construction equipment.

Monitoring Well 40-OW cut down to have a top of casing elevation of 586.05 famsl on December 3, 2021.

All active monitoring wells were resurveyed in January 2023. These elevations are retroactively applied to 2022 monitoring events.

^{1:} Well broken

^{2:} Well casings at 7-OW, 7A, and 29-OW were cut down to allow the protective covers to close. 7-OW was cut down by 0.22 ft, 7A was cut down by 0.29 ft, and 29-OW was cut down by 0.17 ft. Top of casing elevations in this table were adjusted accordingly.

^{*:} Well was frozen

Table 3B. Groundwater Elevations - CCR Monitoring Wells WPL - Edgewater 1-4 (Closed) Ash Disposal Facility / SCS Engineers Project #25224068.00

Ground Water Elevation in	Ground Water Elevation in feet above mean sea level (amsl)								
Well Number	MW-301	MW-302	MW-303	2R-OW					
Top of Casing Elevation (feet AMSL) ^(1,2,3)	606.90	607.70	604.78	611.85					
Screen Length (ft)	5.00	5.00	5.00	10.00					
Total Depth (ft from top of casing)	27.47	40.00	33.26	14.50					
Top of Well Screen Elevation (ft)	581.95	580.15	579.60	608.22					
Measurement Date									
April 8, 2016	599.75	596.19	589.04	609.68					
June 20, 2016	598.30	595.68	587.22	606.70					
August 9, 2016	598.00	595.53	587.72	605.74					
October 20, 2016	598.50	595.46	588.37	607.27					
January 23-24, 2017	597.10	596.30	588.84	609.64					
April 6, 2017	600.04	593.57	589.04	609.72					
October 24, 2017	598.77	595.86	588.44	607.63					
August 1, 2017	597.40	595.22	587.36	604.59					
October 24, 2017	597.20	595.25	587.97	601.74					
April 2, 2018	598.54	595.71	588.77	607.87					
October 1, 2018	597.60	595.28	588.17	604.61					
April 8, 2019	598.92	595.68	588.88	609.50					
October 7, 2019	599.56	595.58	588.77	609.39					
June 26, 2020	597.89	NM	NM	NM					
October 15, 2020	595.10	590.18	585.07	604.27					
April 14, 2021	596.81	592.18	586.89	608.50					
October 26, 2021	592.32	591.44	585.95	604.04					
April 13, 2022	597.37	593.05	587.99	608.63					
October 6, 2022	592.69	591.96	586.42	601.93					
April 25-26, 2023	597.77	593.63	587.99	607.74					
October 10, 2023	592.51	592.01	585.79	600.38					
Bottom of Well Elevation (ft)	576.95	575.15	578.73	598.22					

Notes:

NM = not measured

(3): All site wells were re-surveyed in January 2023, and elevations were tied to NGS benchmark PID #DE7593. These elevations are retroactively applied to 2022 monitoring events.

Created by:	MDB	Date:	6/27/2016
Last rev. by:	MDB	Date:	5/2/2023
Checked by:	REO	Date:	5/4/2023
Scientist QA/QC:	TK	Date:	1/8/2024

^{(1):} MW-302 and MW-303 were shortened in September 2020 due to site regrading during pond closure. The wells were resurveyed in November 2020.

^{(2):} MW-301 was extended in November 2020 due to site regrading during pond closure. The well was resurveyed in November 2020.

Table 4. 2016 - 2023 Groundwater Analytical Results Closed Landfill State Monitoring Program Wells WPL - Edgewater Generating Station / SCS Project #25224068.00 Sheboygan, Wisconsin

Point Name	Reporting Period	pH-Field (Standard Units)	Boron, dissolved (µg/L as B)	Sulfate, dissolved (mg/L as SO ₄)		
Ionitoring Wells	•	•				
2R-OW	2016-Apr	7.45	26.6	30.9		
2R-OW	2016-Oct	6.98	40.4	22.9		
2R-OW	2017-Apr	7.30	69.3 J	28.6		
2R-OW	2017-Oct	7.66	35.2	32.9		
2R-OW	2018-Apr	7.29	23.3	18.2		
2R-OW	2018-Oct	7.03	41.8	35.5		
2R-OW	2019-Apr	8.57	40.6	12.2		
2R-OW	2019-Oct	6.76	88.5	29.3		
2R-OW	2020-Apr	7.40	45.8	16.9		
2R-OW	2020-Oct	7.40	29.9	21.8		
2R-OW	2021-Apr	7.52	31.1	22.7		
2R-OW	2021-Oct	8.12	39.2	26		
2R-OW	2022-Apr	7.20	25.7	14.1 MO		
2R-OW	2022-Oct	7.08	36.3	28.0		
2R-OW	2023-Apr	7.30	34.9	7.9 M0		
2R-OW	2023-Apr	7.06	32.4	34.4 J,D3		
ZR-0 **	2023-001	7.00	32.4	34.4 3,03		
3R-OW	2016-Apr	7.41	392	533		
3R-OW	2016-Oct	7.32	468	372		
3R-OW	2017-Apr	7.35	400	409		
3R-OW	2017-Oct	7.39	389	637		
3R-OW	2018-Apr	7.24	351	498		
3R-OW	2018-Oct	7.03	462	495		
3R-OW	2019-Apr	7.70	337	279		
3R-OW	2019-Oct	6.45	454	299		
3R-OW	2020-Apr	7.21	473	498		
3R-OW	2020-Oct	7.57	339	654		
3R-OW	2021-Apr	7.76	316	172		
3R-OW	2021-Oct	7.21	260	497		
3R-OW	2022-Apr	7.45	234	126		
3R-OW	2022-Apr	7.19	272	567		
3R-OW	2022-OCT 2023-Apr	7.17	387	392		
	'					
3R-OW	2023-Oct	7.37	309	498		
4R-OW	2016-Apr	7.69	7,710	120		
4R-OW	2016-Oct	7.71	17,300	252		
4R-OW	2017-Apr	7.44	12,600	180		
4R-OW	2017-Oct	7.31	15,700	178		
4R-OW	2018-Apr	7.51	12,700	164		
4R-OW	2018-Oct	7.22	8,630	129		
4R-OW	2019-Apr	6.67	10,200	158		
4R-OW	2019-Oct	7.51	9,200	161		
4R-OW	2020-Apr	7.40	9,320	90.9		
4R-OW	2020-Oct	7.57	10,200	134		
4R-OW	2021-Apr	8.16	10,800	191		
4R-OW	2021-Oct	7.62	10,400	140		
4R-OW	2021-OC1 2022-Apr	7.67	8,930	76		
4R-OW	2022-Apr	7.47	8,840	112		
4R-OW	2022-OC1 2023-Apr	7.47	8,200	95.5		
4R-OW	2023-Apr 2023-Oct	7.66	6,400	66.7		
41/-01/	2023-001	7.00	U,4UU	00./		
5-OW	2016-Apr	7.64	4,330	215		
5-OW	2016-Oct	7.75	5,970	210		
5-OW	2017-Apr	7.51	5,490	258		
5-OW	2017-Oct	7.54	6,040	230		
5-OW	2018-Apr	7.90	3,900	143		
5-OW	2018-Oct	7.43	6,180	226		
5-OW	2019-Apr	6.74	4,140	197		
5-OW	2019-Oct	7.19	4,680	179		
5-OW	2020-Apr	7.17	4,610	199		
5-OW	2020-Apr	7.78	4,870	161		
5-OW	2020-OC1 2021-Apr	8.31	2,670	111		
5-OW		7.82				
	2021-Oct		3,250	100		
5-OW	2022-Apr	7.75	2,280	82.1		
5-OW	2022-Oct	7.62	3,830	101		
5-OW	2023-Apr	7.99	1,550	21.0		
5-OW	2023-Oct	7.94	3,620	135		

Table 4. 2016 - 2023 Groundwater Analytical Results Closed Landfill State Monitoring Program Wells WPL - Edgewater Generating Station / SCS Project #25224068.00 Sheboygan, Wisconsin

Point Name	Reporting Period	pH-Field (Standard Units)	Boron, dissolved (µg/L as B)	Sulfate, dissolved (mg/L as SO ₄)		
Nonitoring Wells (co	ntinued)	<u> </u>		•		
7-OW	2016-Apr	8.14	610	255		
7-OW	2016-Oct	7.59	964	251		
7-OW	2017-Apr	8.10	761	259		
7-OW	2017-Oct	7.73	1,130	246		
7-OW	2018-Apr	8.08	818	243		
7-OW	2018-Oct	7.69	1150	218		
7-OW	2019-Apr	7.85	914	254		
7-OW	2019-Oct	7.47	1,200	224		
7-OW	2020-Apr	8.01	928	214		
7-OW	2020-Apr	7.74	1,290	242		
7-OW	2020-OC1 2021-Apr	8.12		247		
7-OW	2021-Apr		961			
		7.94	1,350	224		
7-OW	2022-Apr	7.47	1,110	225		
7-OW	2022-Oct	7.80	1,210	189		
7-OW	2023-Apr	7.69	1,090	213		
7-OW	2023-Oct	7.81	1,250	166		
29-A	2016-Apr	9.07	357	40.9		
29-A	2016-Oct	8.54	264	39.6		
29-A	2017-Apr	9.09	365	41.5		
29-A 29-A	2017-Apr 2017-Oct	8.97	278	42.1		
29-A 29-A			264	39.4		
	2018-Apr	8.72				
29-A	2018-Oct	8.38	268	39.2		
29-A	2019-Apr	8.10	292	44.2		
29-A	2019-Oct	8.81	258	39.1		
29-A	2020-Apr	8.82	268	37.5		
29-A	2020-Oct	8.90	263	42.9		
29-A	2021-Apr	8.62	262	214		
29-A	2021-Oct	9.35	233	40.8		
29-A	2022-Apr	7.94	250	39.6		
29-A	2022-Oct	8.82	495	44.3		
29-A	2023-Apr	8.86	268	44.1		
29-A	2023-Oct	9.32	263	39.0		
29-OW	2016-Apr	8.03	10,600	120		
29-OW	2016-Oct	7.69	10,900	85.7		
29-OW	2017-Apr	8.49	9,500	77.0		
29-OW	2017-Oct	8.15	9,060	62.0		
29-OW	2018-Apr	7.97	8,640	102		
29-OW	2018-Oct	7.84	11,000	109		
29-OW	2019-Apr	7.89	10,600	190		
29-OW	2019-Oct	7.57	10,800	114		
29-OW	2020-Apr	7.90	9,160	69.9		
29-OW	2020-Oct	8.09	8,480	73.3		
29-OW	2021-Apr	8.2	7,120	66.4		
29-OW	2021-Oct	8.59	8,700	86.7		
29-OW	2022-Apr	7.55	9,160	77.2		
29-OW	2022-Oct	7.76	9,160	70.2		
29-OW	2022-OC1 2023-Apr	8.10	8,570	69.2		
29-OW	2023-Apr	7.99	7,410	42.2		
27-O VV	2023-001	/.77	/, 4 10	42.2		
30-OW	2016-Apr	8.26	79.1	4.80		
30-OW	2016-Oct	7.56	113	4.60		
30-OW	2017-Apr	8.47	176	7.50		
30-OW	2017-Oct	7.44	135	16.7		
30-OW	2018-Apr	7.96	94.5	21.5		
30-OW	2018-Oct	7.47	115	11.4		
30-OW	2019-Apr	8.07	52.1	2.40 J		
30-OW	2017-Apr 2019-Oct	7.37	84.9	5.60		
30-OW	2020-Apr	7.61	54.4	2.80		
30-OW	2020-Oct	7.24	118	15.2		
30-OW	2021-Apr	8.26	42.3	5.5		
30-OW	2021-Oct	7.52	108	14.9		
30-OW	2022-Apr	7.91	35.9	3.6		
30-OW	2022-Oct	7.48	93.1	10.7		
30-OW	2023-Apr	7.78	27.5	5.0		
30-OW	2023-Oct	7.85	80.6	11.0		

Table 4. 2016 - 2023 Groundwater Analytical Results Closed Landfill State Monitoring Program Wells WPL - Edgewater Generating Station / SCS Project #25224068.00 Sheboygan, Wisconsin

Point Name	Reporting Period	pH-Field (Standard Units)	Boron, dissolved (µg/L as B)	Sulfate, dissolved (mg/L as SO ₄)		
Monitoring Wells (co						
31-OW	2016-Apr	7.63	114	91.2		
31-OW	2016-Oct	7.68	34.7	63.3		
31-OW	2017-Apr	7.99	76.9	82.4		
31-OW	2017-Oct	7.79	190	70.3		
31-OW	2018-Apr	7.71	30.8	51.5		
31-OW	2018-Oct	7.64	36.7	62.7		
31-OW	2019-Apr	7.95	18.5	68.6		
31-OW	2019-Oct	7.41	38.6	57.5		
31-OW	2020-Apr	7.54	25.8	39.1		
31-OW	2020-Oct	7.69	30.8	58.5		
31-OW	2021-Apr	8.33	51	59.5		
31-OW	2021-Oct	7.47	39.5	35		
31-OW	2022-Apr	7.94	32.2	26.5		
31-OW	2022-Apr	7.66	48.3	30.4		
31-OW	2023-Apr	7.72	30.7	35.2		
31-OW	2023-Oct	7.87	46.3	31.6		
40-OW	2016-Apr	8.04	8,030	731		
40-OW	2016-Oct	7.91	29,400	768		
40-OW	2017-Apr	7.97	29,400 8,680	849		
40-OW	'		-,			
	2017-Oct	7.91	8,800	873		
40-OW	2018-Apr	7.93	9,790	771		
40-OW	2018-Oct	7.51	11,300	797		
40-OW	2019-Apr	6.80	8,620	636		
40-OW	2019-Oct	7.53	10,600	836		
40-OW	2020-Apr	7.83	10,900	836		
40-OW	2020-Oct	8.03	9,870	818		
40-OW	2021-Apr	8.23	8,010	827		
40-OW	2021-Oct	8.53	9,180	839		
40-OW	2022-Apr	7.68	10,000	807		
40-OW	2022-Apr	8.03	8,840	748		
40-OW			· · · · · · · · · · · · · · · · · · ·	709		
40-OW	2023-Apr 2023-Oct	8.01 8.17	7,670 6,850	707		
achate Monitoring 37-OW	2016-Apr	7.49	19,100	759		
37-OW	2016-Oct	7.31	12,500	439		
37-OW	2017-Apr	8.01	15,900	633		
37-OW	2017-Oct	7.24	9,440	264		
37-OW	2018-Apr	7.68	5,890	159		
37-OW	2018-Oct	7.42	16,600	555		
37-OW	2019-Apr	7.57	15,800	492		
37-OW	2019-Oct	7.13	16,300	798		
37-OW	2020-Apr	7.70	20,200	769		
37-OW	2020-Oct	7.70				
37-OW	2021-Apr					
27.014	0001.0					
37-OW	2021-Oct 2022-Apr					
37-OW			-			
37-OW	2022-Oct					
37-OW	2023-Apr					
37-OW	2023-Oct					
38R-OW	2016-Apr	8.00	33,800	1,000		
38R-OW	2016-Oct	7.71	17,100	514		
38R-OW	2017-Apr	7.86	21,100	932		
38R-OW	2017-Apr	7.72	10,800	364		
38R-OW	2017-OC1 2018-Apr	7.72		123		
			4,250			
38R-OW	2018-Oct	7.98	32,400	956		
38R-OW	2019-Apr	7.64	9,720	330		
38R-OW	2019-Oct	8.06	30,400	1,020		
38R-OW	2020-Apr	8.20	51,800	1,520		
38R-OW 2020-Oct						
38R-OW 2021-Apr		7.65	37,400	1,380		
38R-OW	2021-Oct	7.48	38,400	1,310		
38R-OW	2022-Apr					
38R-OW	2022-Oct	7.40	41,700	1,420		
		7.40	44,800	1,220 M0		
.38R-()VV			77,000	1,220 1910		
38R-OW 38R-OW	2023-Oct	7.66	38,800	1130		

Table 4. 2016 - 2023 Groundwater Analytical Results -Closed Landfill State Monitoring Program Wells

WPL - Edgewater Generating Station / SCS Project #25224068.00 Sheboygan, Wisconsin

Point Name	Reporting Period	pH-Field (Standard Units)	Boron, dissolved (µg/L as B)	Sulfate, dissolved (mg/L as SO ₄)
eachate Monitoring	Wells (continued)	•		•
39R-OW	2016-Apr	7.26	10,100	534
39R-OW	2016-Oct	7.32	29,900	1,390
39R-OW	2017-Apr	7.44	22,400	1,150
39R-OW	2017-Oct	7.52	32,800	1,400
39R-OW	2018-Apr		28,800	772
39R-OW	2018-Oct	7.40	24,700	1,160
39R-OW	2019-Apr	7.14	26,000	1,520
39R-OW	2019-Oct	7.13	17,100	601
39R-OW	2020-Apr	7.42	19,100	1,160
39R-OW	2020-Oct	7.69	34,200	1,190
39R-OW	2021-Apr	7.95	24,800	1,140
39R-OW	2021-Oct			
39R-OW	2022-Apr			
39R-OW	2022-Oct			
39R-OW	2023-Apr	7.4	16,800	261
39R-OW	2023-Oct			

Abbreviations:

μg/L = micrograms per liter or parts per billion (ppb) mg/L = milligrams per liter or parts per million (ppm)

Notes:

--: not measured

Laboratory Notes:

 $\label{eq:J} J = \text{Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.}$

M0 = Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

D3 = Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

Created by:	SCC	Date:	2/24/2014
Last revision by:	RM	Date:	1/15/2024
Checked by:	NLB	Date:	1/16/2024

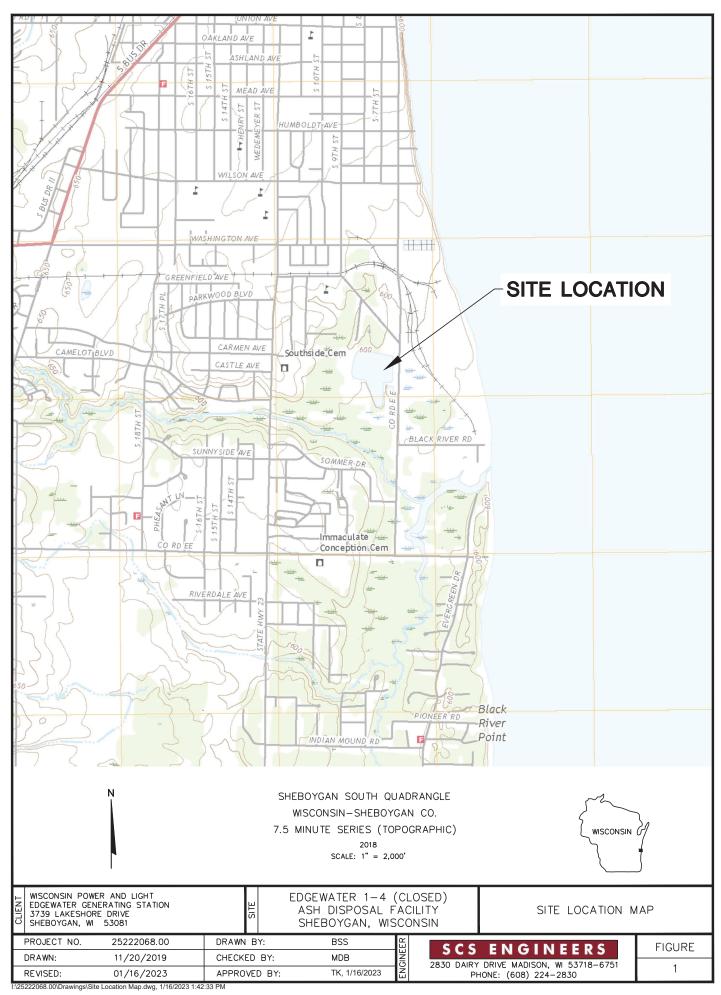
Table 5. Analytical Results - Closed Landfill Leachate Fluoride Monitoring Edgewater Generating Station, Sheboygan, Wisconsin SCS Engineers Project #25224068.00

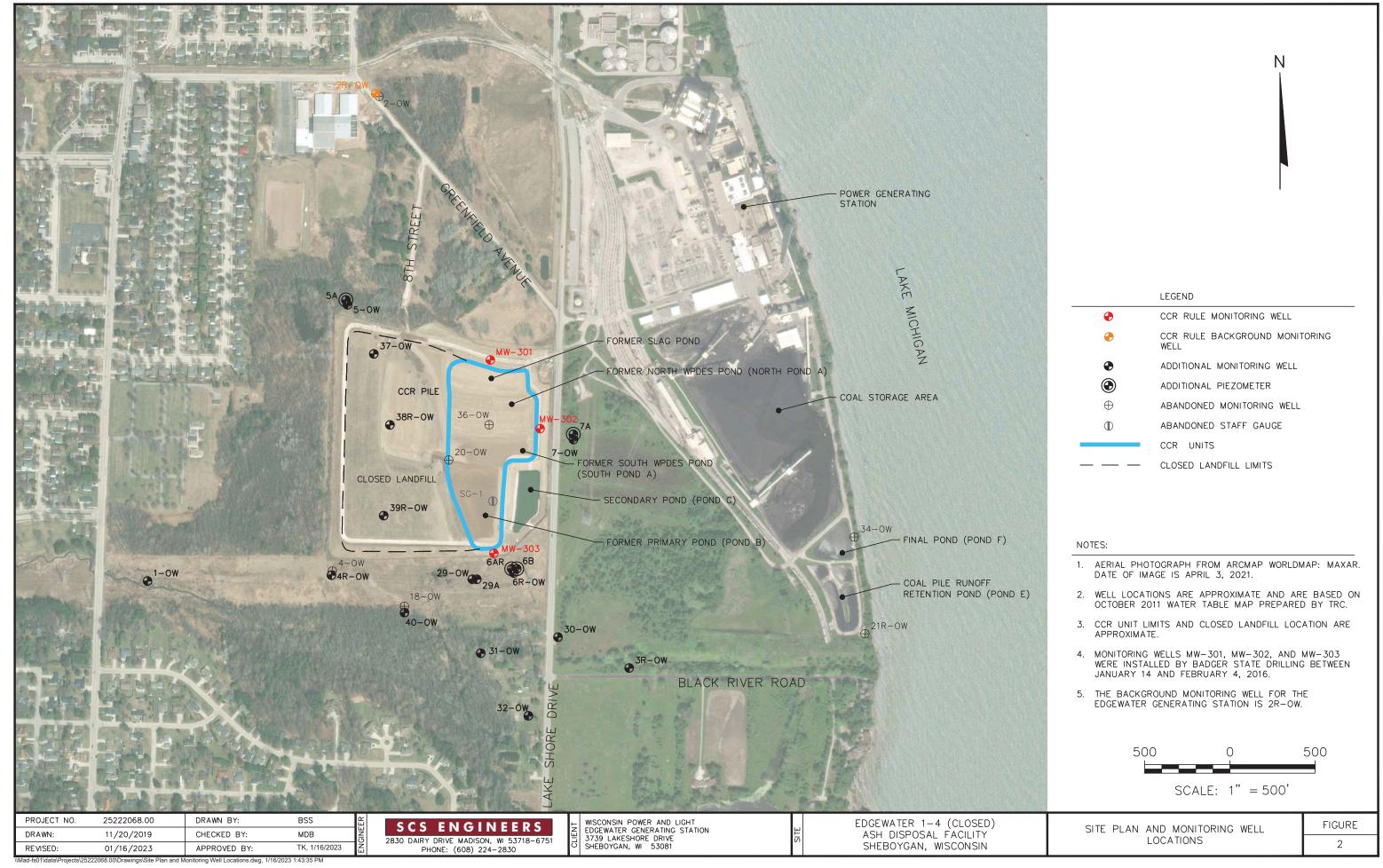
Collection Date	Fluoride (mg/L)					
Collection Dule	36-OW	37-OW	38R-OW	39R-OW		
9/8/1994	0.25	0.62	0.57	0.79		
9/14/1995	0.38	0.51	0.71	0.87		
9/17/1996	0.56	0.42	0.71	0.97		
9/16/1997	0.60	0.44	0.73	0.97		

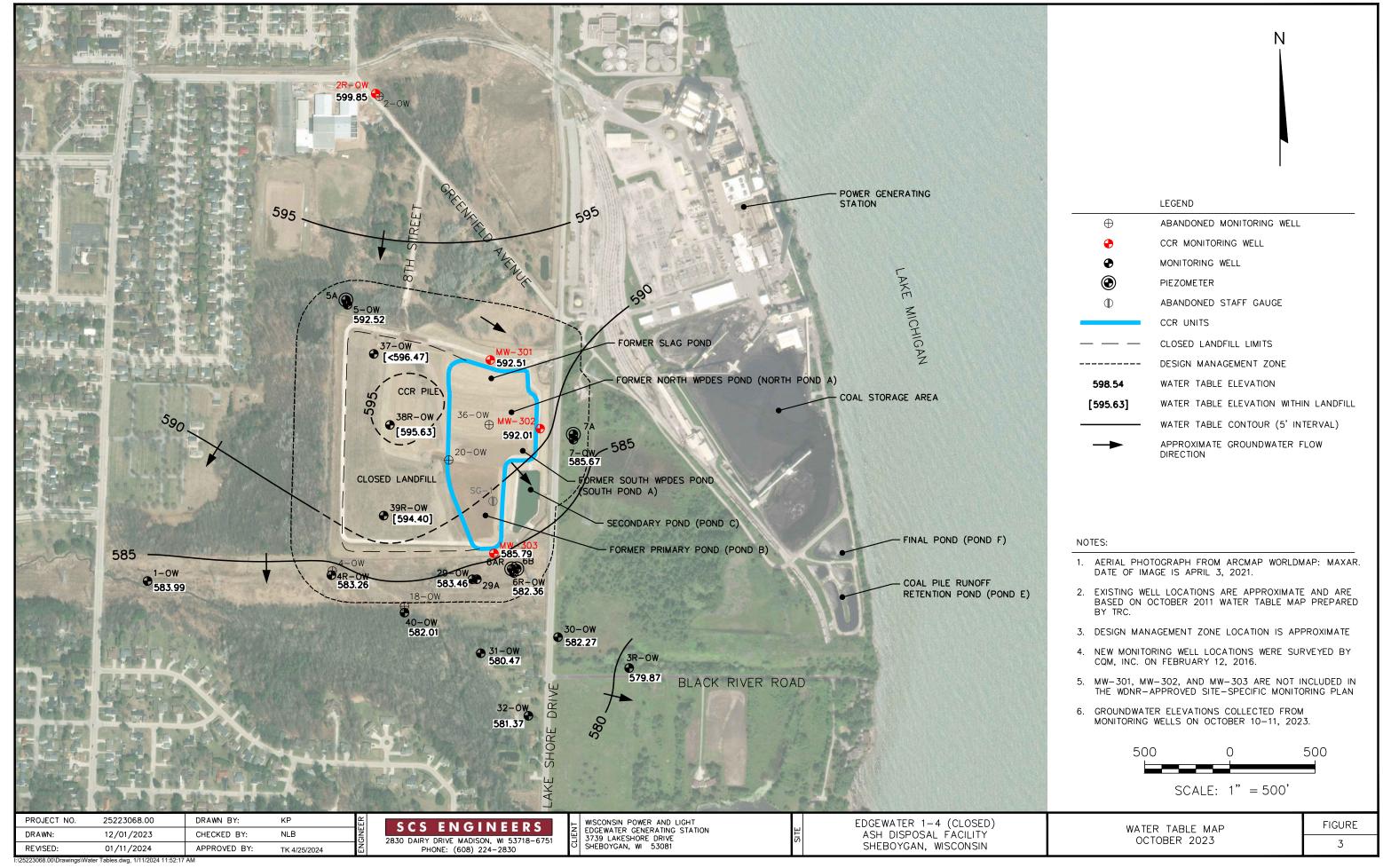
Abbreviations:

mg/L = milligrams per liter or parts per million (ppm)

Notes:

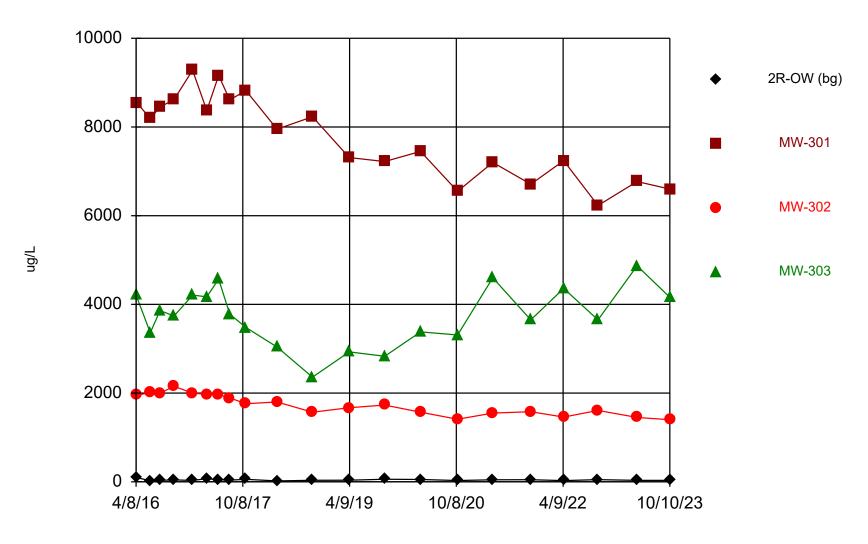

1. Data compiled from WDNR Groundwater Environmental Monitoring System (GEMS) website.


Created by:	NDK	Date:	3/5/2018
Last revision by:	NDK	Date:	3/5/2018
Checked by:	AJR	Date:	4/5/2018

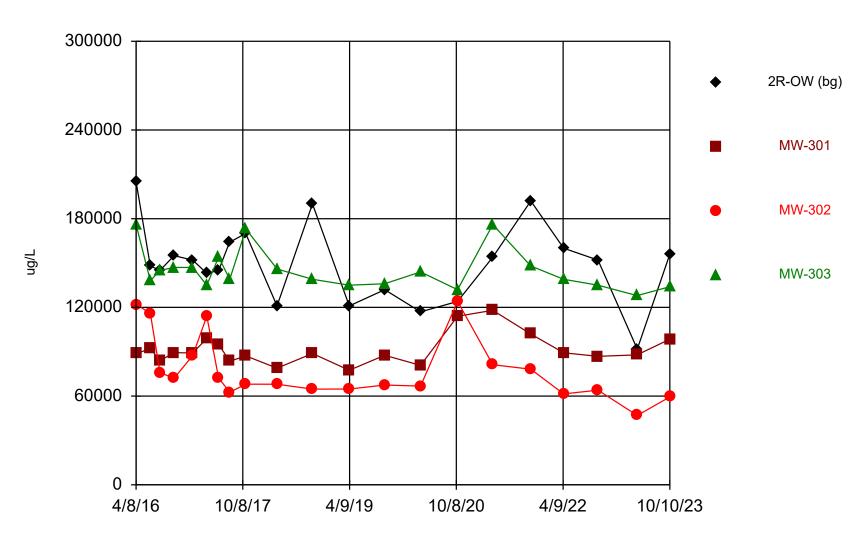

 $\label{thm:condition} I:\25222068.00\Deliverables\2022\ Apr\ ASD\ Edg\ Closed\Tables\G-\ EDG\ -\ closed\-Leachate\ Fluoride\ Monitoring.xlsx] Table\ 5-Floresults$

Figures

- 1 Site Location Map
- 2 Site Plan and Monitoring Well Locations
- 3 Water Table Map October 2023



Appendix A Trend Plots for CCR Wells

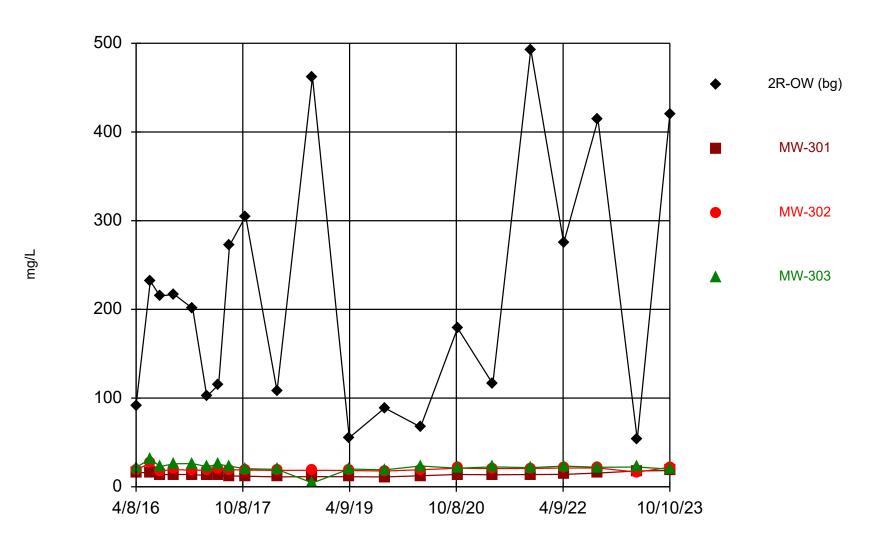

Time Series Analysis Run 1/15/2024 2:42 PM View: CCR - UPL - 2020

Time Series

Constituent: Boron (ug/L) Analysis Run 1/15/2024 2:43 PM View: CCR - UPL - 2020

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	100		1950	4210
4/11/2016		8550		
6/20/2016	22.4	8190	2010	3360
8/9/2016	32.6	8450	2000	3860
10/20/2016	43.1	8620	2150	3740
1/23/2017		9280		
1/24/2017	31.2		2000	4210
4/6/2017	70.6	8370	1970	4170
6/6/2017	45.2	9160	1970	4570
8/1/2017	35.7			
8/2/2017		8610	1890	3780
10/23/2017	55.9			
10/24/2017		8820	1760	3480
4/2/2018	19.7	7950	1800	3040
10/1/2018	34.7	8230	1570	2360
4/8/2019	35.8	7310	1670	2930
10/7/2019	58.8	7220	1730	2830
4/8/2020	52.3	7450	1570	3380
10/15/2020	29.9	6550	1410	3310
4/14/2021	45.7	7200	1550	4600
10/26/2021	47.2	6710	1580	3650
4/13/2022	27.9	7240	1460	4360
10/6/2022	49	6230	1610	3650
4/25/2023		6770		4870
4/26/2023	32		1450	
10/10/2023	33.5	6600	1400	4160

Calcium

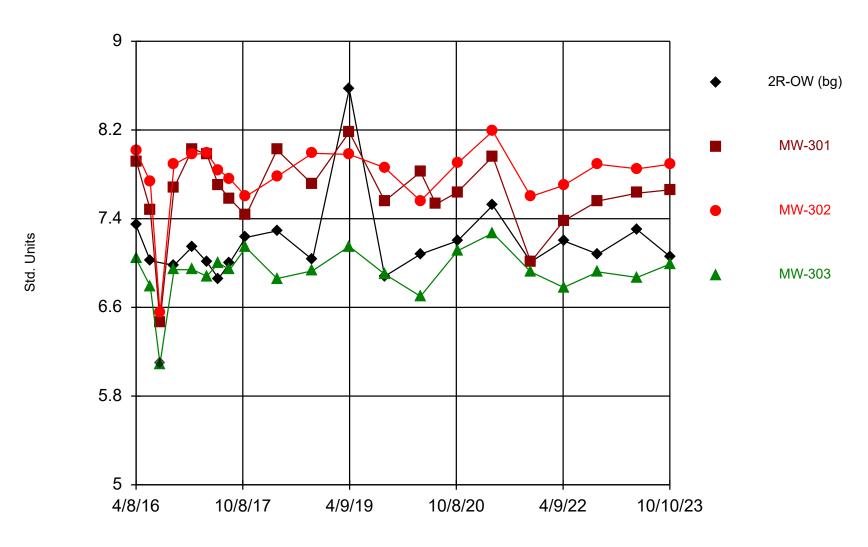

Time Series Analysis Run 1/15/2024 2:42 PM View: CCR - UPL - 2020

Time Series

Constituent: Calcium (ug/L) Analysis Run 1/15/2024 2:43 PM View: CCR - UPL - 2020

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	205000		122000	176000
4/11/2016		88700		
6/20/2016	148000	92200	116000	138000
8/9/2016	145000	84000	75900	145000
10/20/2016	155000	89400	72100	147000
1/23/2017		89200		
1/24/2017	152000		87400	147000
4/6/2017	143000	98800	114000	135000
6/6/2017	145000	94900	72200	154000
8/1/2017	164000			
8/2/2017		83600	62600	139000
10/23/2017	170000			
10/24/2017		87200	68100	173000
4/2/2018	121000	78900	68000	146000
10/1/2018	190000	88800	64700	139000
4/8/2019	121000	77500	64800	135000
10/7/2019	132000	87600	67500	136000
4/8/2020	117000	80800	66800	144000
10/15/2020	124000	114000	124000	132000
4/14/2021	154000	118000	81200	176000
10/26/2021	192000	102000	78200	148000
4/13/2022	160000	89300	61500	139000
10/6/2022	152000	86900	64000	135000
4/25/2023		87900		128000
4/26/2023	91800		46900	
10/10/2023	156000	98500	59400	134000

Chloride

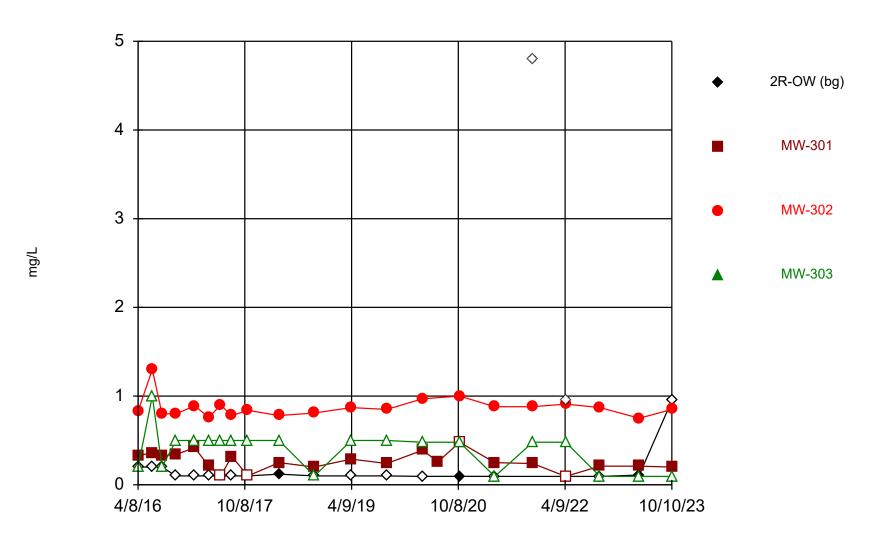

Time Series Analysis Run 1/15/2024 2:42 PM View: CCR - UPL - 2020

Time Series

Constituent: Chloride (mg/L) Analysis Run 1/15/2024 2:43 PM View: CCR - UPL - 2020

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	91.7		18.9	21.8
4/11/2016		16.2		
6/20/2016	232	15.9	27.2	31.5
8/9/2016	215	13.7	18	22.8
10/20/2016	217	13.9	19.5	26
1/23/2017		13.8		
1/24/2017	201		18.6	26.2
4/6/2017	102	12.7	18.9	22.7
6/6/2017	115	13.5	20	25.4
8/1/2017	272			
8/2/2017		12.3	19.3	23.2
10/23/2017	305			
10/24/2017		11.9	18.9	20.4
4/2/2018	108	11.2	18.5	19.7
10/1/2018	462	11.5	18.6	4.3
4/8/2019	55.3	11.4	18.4	20
10/7/2019	88.8	11.1	17.8	19.1
4/8/2020	67.5	12.5	19.2	23.5
10/15/2020	179	13.9	20.9	20.9
4/14/2021	116	13.5	20.6	22.5
10/26/2021	493	13.8	20.7	21.6
4/13/2022	275	14	21.2	23.4
10/6/2022	414	15.5	21.2	22
4/25/2023		17.9		22.3
4/26/2023	53.4		16.5	
10/10/2023	420	18.3	22	19.9

Field pH

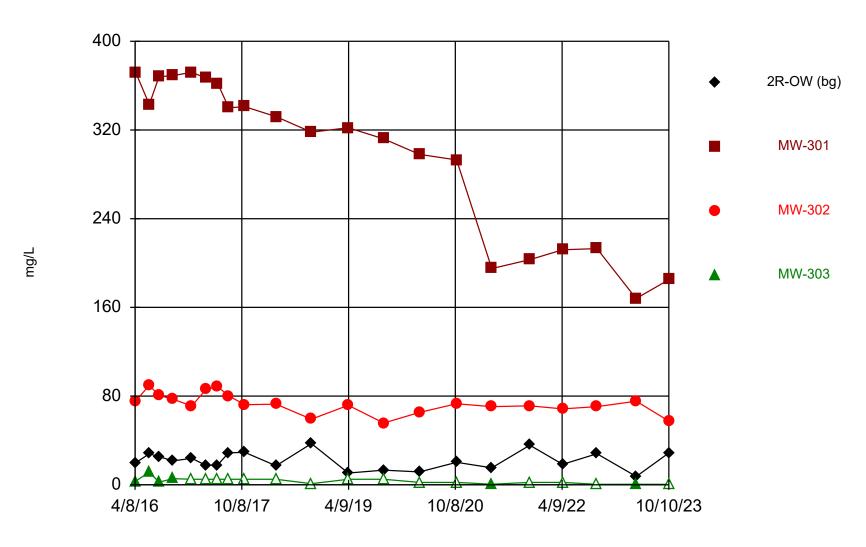

Time Series Analysis Run 1/15/2024 2:42 PM View: CCR - UPL - 2020

Time Series

Constituent: Field pH (Std. Units) Analysis Run 1/15/2024 2:43 PM View: CCR - UPL - 2020

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	7.34		8.01	7.04
4/11/2016		7.91		
6/20/2016	7.02	7.48	7.73	6.79
8/9/2016	6.1 (X)	6.47	6.55	6.09
10/20/2016	6.98	7.68	7.89	6.94
1/23/2017		8.03		
1/24/2017	7.15		7.98	6.94
4/6/2017	7.01	7.98	7.99	6.88
6/6/2017	6.86	7.7	7.84	7
8/1/2017	7			
8/2/2017		7.58	7.76	6.94
10/23/2017	7.23			
10/24/2017		7.43	7.6	7.14
4/2/2018	7.29	8.02	7.78	6.86
10/1/2018	7.03	7.71	7.99	6.93
4/8/2019	8.57	8.18	7.98	7.15
10/7/2019	6.88	7.56	7.86	6.9
4/8/2020	7.08	7.82	7.56	6.7
6/26/2020		7.53		
10/15/2020	7.2	7.64	7.9	7.11
4/14/2021	7.52	7.96	8.19	7.27
10/26/2021	7.01	7.01	7.6	6.92
4/13/2022	7.2	7.38	7.7	6.78
10/6/2022	7.08	7.56	7.89	6.92
4/25/2023		7.63		6.87
4/26/2023	7.3		7.85	
10/10/2023	7.06	7.66	7.89	6.99

Fluoride

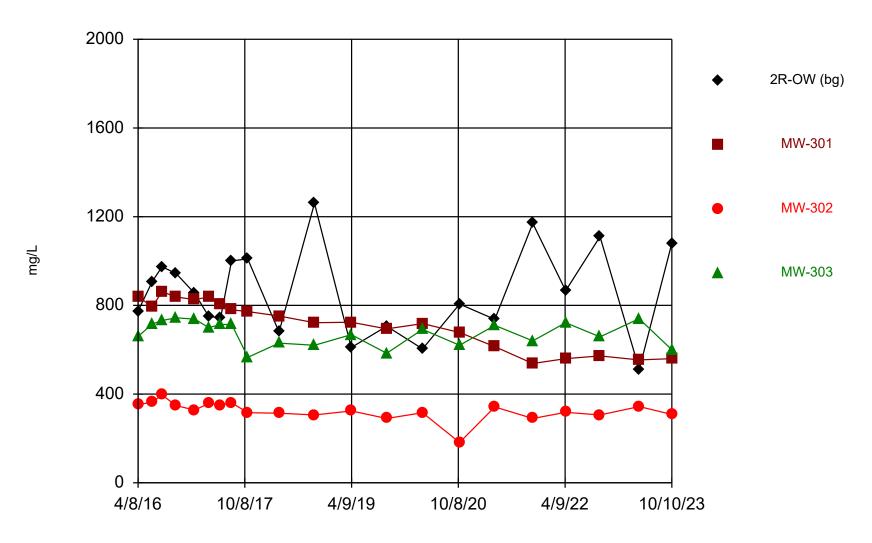

Time Series Analysis Run 1/15/2024 2:42 PM View: CCR - UPL - 2020

Time Series

Constituent: Fluoride (mg/L) Analysis Run 1/15/2024 2:43 PM View: CCR - UPL - 2020

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	<0.2 (U)		0.83	<0.2 (U)
4/11/2016		0.33 (J)		
6/20/2016	<0.2 (U)	0.36 (J)	1.3 (J)	<1 (U)
8/9/2016	<0.2 (U)	0.33 (J)	0.8	<0.2 (U)
10/20/2016	<0.1 (U)	0.34	0.8	<0.5 (U)
1/23/2017		0.42		
1/24/2017	<0.1 (U)		0.89 (J)	<0.5 (U)
4/6/2017	<0.1 (U)	0.21 (J)	0.76	<0.5 (U)
6/6/2017	<0.1 (U)	<0.1 (U)	0.9	<0.5 (U)
8/1/2017	<0.1 (U)			
8/2/2017		0.32	0.78	<0.5 (U)
10/23/2017	<0.1 (U)			
10/24/2017		<0.1 (U)	0.84	<0.5 (U)
4/2/2018	0.12 (J)	0.25 (J)	0.78	<0.5 (U)
10/1/2018	<0.1 (U)	0.2 (J)	0.81	<0.1 (U)
4/8/2019	<0.1 (U)	0.29 (J)	0.87	<0.5 (U)
10/7/2019	<0.1 (U)	0.24 (J)	0.85	<0.5 (U)
4/8/2020	<0.095 (U)	0.39	0.97	<0.48 (U)
6/26/2020		0.26 (J)		
10/15/2020	0.096 (J)	<0.48 (U)	1 (J)	<0.48 (U)
4/14/2021	<0.095 (U)	0.25 (J)	0.88	<0.095
10/26/2021	<4.8 (UX)	0.24 (J)	0.88	<0.48
4/13/2022	<0.95 (UX)	<0.095 (U)	0.91	<0.48 (U)
10/6/2022	<0.095 (U)	0.21 (J)	0.87	<0.095 (U)
4/25/2023		0.21 (J)		<0.095 (U)
4/26/2023	0.11 (J)		0.75	
10/10/2023	<0.95 (U)	0.2 (J)	0.85	<0.095 (U)

Sulfate


Time Series Analysis Run 1/15/2024 2:42 PM View: CCR - UPL - 2020

Time Series

Constituent: Sulfate (mg/L) Analysis Run 1/15/2024 2:43 PM View: CCR - UPL - 2020

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	19.5		75.1	3 (J)
4/11/2016		372		
6/20/2016	28	343	89.6	11.4 (J)
8/9/2016	25.4	368	80.7	2.4 (J)
10/20/2016	21.6	369	77.2	5.6 (J)
1/23/2017		372		
1/24/2017	23.9		71.1	<5 (U)
4/6/2017	17.6	367	85.8	<5 (U)
6/6/2017	17.8	362	88.5	<5 (U)
8/1/2017	28.8			
8/2/2017		340	80.2	<5 (U)
10/23/2017	29.3			
10/24/2017		341	72.2	<5 (U)
4/2/2018	17.2	332	72.7	<5 (U)
10/1/2018	37.2	318	59.2	<1 (U)
4/8/2019	10.6	322	71.7	<5 (U)
10/7/2019	13.2	312	55.7	<5 (U)
4/8/2020	11.6	298	65.3	<2.2 (U)
10/15/2020	20.3	293	73.1	<2.2 (U)
4/14/2021	15.3	195	70.5	0.54 (J)
10/26/2021	35.7 (J)	203	71.2	<2.2 (U)
4/13/2022	18.5 (J)	212	68.5	<2.2 (U)
10/6/2022	28	213	70.5	<0.44 (U)
4/25/2023		168		0.5 (J)
4/26/2023	7.5		75.4	
10/10/2023	28.7	185	57.5	<0.44 (U)

Total Dissolved Solids

Time Series Analysis Run 1/15/2024 2:42 PM View: CCR - UPL - 2020

Time Series

Constituent: Total Dissolved Solids (mg/L) Analysis Run 1/15/2024 2:43 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	774		352	660
4/11/2016		838		
6/20/2016	908	794	364	716
8/9/2016	974	862	396	732
10/20/2016	944	838	348	744
1/23/2017		826		
1/24/2017	854		328	738
4/6/2017	750	838	358	700
6/6/2017	744	804	350	714
8/1/2017	1000			
8/2/2017		780	360	714
10/23/2017	1010			
10/24/2017		772	316	566
4/2/2018	680	752	314	630
10/1/2018	1260	722	306	620
4/8/2019	610	724	324	668
10/7/2019	706	694	290	584
4/8/2020	604	718	316	692
10/15/2020	806	678	182	620
4/14/2021	737	614	342	710
10/26/2021	1170	538	290	640
4/13/2022	866	560	318	722
10/6/2022	1110	572	306	658
4/25/2023		554		740
4/26/2023	512		344	
10/10/2023	1080	560	308	600