2020 Annual Groundwater Monitoring and Corrective Action Report

Edgewater Generating Station Sheboygan, Wisconsin

Prepared for:

SCS ENGINEERS

25220068.00 | January 29, 2021

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830

OVERVIEW OF CURRENT STATUS

Edgewater Generating Station, Surface Impoundments 2020 Annual Report

In accordance with §257.90(e)(6), this section at the beginning of the annual report provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR units. The groundwater monitoring system at the Edgewater Generating Station is a multiunit system. Supporting information is provided in the text of the annual report.

Category	Rule Requirement	Site Status
Monitoring Status - Start of Year	(i) At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95;	Detection
Monitoring Status - End of Year	(ii) At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95;	Detection
Statistically Significant Increases (SSIs)	(iii) If it was determined that there was a statistically significant increase over background for one or more constituents listed in appendix III to this part pursuant to §257.94(e):	
	(A) Identify those constituents listed in appendix III to this part and the names of the monitoring wells associated with such an increase; and	April/June 2020 Boron: MW-301, MW-302, MW-303 Fluoride: MW-302 pH: MW-301, MW-302 Sulfate: MW-301, MW-302 October 2020 Boron: MW-301, MW-302, MW-303 Sulfate: MW-301, MW-303
	(B) Provide the date when the assessment monitoring program was initiated for the CCR unit.	Alternative Source Demonstrations prepared for October 2019 and April 2020 events during 2020. Assessment monitoring not required. Alternative sources for October 2020 SSIs will be evaluated in 2021.

Category	Rule Requirement	Site Status
Statistically Significant Levels (SSL) Above Groundwater Protection Standard	(iv) If it was determined that there was a statistically significant level above the groundwater protection standard for one or more constituents listed in appendix IV to this part pursuant to §257.95(g) include all of the following:	Not applicable – Appendix IV parameter sampling not required
olandara	(A) Identify those constituents listed in appendix IV to this part and the names of the monitoring wells associated with such an increase;	
	(B) Provide the date when the assessment of corrective measures was initiated for the CCR unit;	
	(C) Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and	
	(D) Provide the date when the assessment of corrective measures was completed for the CCR unit.	
Selection of Remedy	(v) Whether a remedy was selected pursuant to §257.97 during the current annual reporting period, and if so, the date of remedy selection; and	Not applicable – Site is in detection monitoring
Corrective Action	(vi) Whether remedial activities were initiated or are ongoing pursuant to §257.98 during the current annual reporting period.	Not applicable - Site is in detection monitoring

Table of Contents

Sect	ion	Page
		f Current Status
1.0 2.0		duction
2.0		Geologic and Hydrogeologic Setting
	2.1	2.1.1 Regional Information
		2.1.2 Site Information
	2.2	
3.0		CCR Monitoring System
3.0	3.1	§257.90(e)(1) Site Map
	3.2	§257.90(e)(2) Monitoring System Changes
	3.3	§257.90(e)(3) Summary of Sampling Events
	3.4	§257.90(e)(4) Monitoring Transition Narrative
	3.5	§257.90(e)(5) Other Requirements
	3.5	3.5.1 §257.90(e) General Requirements
		3.5.2 §257.94(d) Alternative Detection Monitoring Frequency
		3.5.3 §257.94(e)(2) Alternative Source Demonstration for Detection Monitoring5
		3.5.4 §257.95(c) Alternative Assessment Monitoring Frequency
		3.5.5 §257.95(d)(3) Assessment Monitoring Results and Standards
		3.5.6 §257.95(g)(3)(ii) Alternative Source Demonstration for Assessment Monitoring6
		3.5.7 §257.96(a) Extension of Time for Corrective Measures Assessment
	3.6	§257.90(e)(6) Overview
	0.0	3_0 : 10 0 (0)(0) 0 : 0 : 110 :
		Tables
Table	1	Groundwater Monitoring Well Network
Table	2	Groundwater Samples Summary
Table		Groundwater Elevation Summary State Wells
Table		Groundwater Elevation Summary CCR Wells
Table Table		Groundwater Gradients and Average Linear Flow Velocities 2020 Groundwater Analytical Results Summary – January – September 2020
Table		2020 Groundwater Analytical Results Summary – October 2020
Table		2020 Groundwater Field Data Summary
		, and the second
		Figures
Figur	e 1.	Site Location Map
Figur		Site Plan and Monitoring Well Locations
Figur	e 3	April 2020 Water Table Map
Figur	e 4	October 2020 Water Table Map

Appendices

Appendix A	Summary of the Regional Hydrogeologic Stratigraphy
Appendix B	Boring Logs and Well Construction Documentation
4 1: 0	

Appendix C Laboratory Reports

C1 April 2020 Assessment Monitoring

C2 June Resample

C3 October 2020 Assessment Monitoring

Appendix D Historical Monitoring Results

Appendix E Statistical Evaluation

Appendix F Alternative Source Demonstrations (ASDs)

F1 October 2019 ASD F2 April 2020 ASD

1.0 INTRODUCTION

This 2020 Annual Groundwater Monitoring and Corrective Action Report was prepared to support compliance with the groundwater monitoring requirements of the Coal Combustion Residuals (CCR) Rule [40 CFR 257.50-107]. Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.90(e). The applicable sections of the Rule are provided below in italics, followed by applicable information relative to the 2020 Annual Groundwater Monitoring and Corrective Action Report for the CCR Units.

This report covers the period of groundwater monitoring from January 1, 2020, through December 31, 2020.

The groundwater monitoring system at the Edgewater Generating Station (EDG) is a multiunit system. The Edgewater Generation Station has four existing CCR units which are contiguous:

- EDG Slag Pond (existing CCR surface impoundment)
- EDG North A-Pond (existing CCR surface impoundment)
- EDG South A-Pond (existing CCR surface impoundment)
- EDG B-Pond (existing surface CCR impoundment)

The system is designed to detect monitored constituents at the waste boundary of the CCR units as required by 40 CFR 257.91(d). The groundwater monitoring system consists of one upgradient and three downgradient monitoring wells (**Table 1**, **Figure 1**, and **Figure 2**).

Closure of the four ponds was in progress in 2020 and will be completed in 2021.

2.0 BACKGROUND

To provide context for the required annual report information, the following background information is provided in this section of the report, prior to the required information:

- Geologic and hydrogeologic setting
- CCR Rule monitoring system

2.1 GEOLOGIC AND HYDROGEOLOGIC SETTING

2.1.1 Regional Information

For the purposes of groundwater monitoring, the unconsolidated sand and gravel aquifer is considered to be the uppermost aquifer, as defined under 40 CFR 257.53, at the EDG ponds. A summary of the regional hydrogeologic stratigraphy and a regional geologic cross section are included in **Appendix A**.

The sand and gravel aquifer is present in some parts of Sheboygan County (Skinner and Borman, 1973). Boring logs from monitoring wells at the EDG ponds and for nearby private wells indicate that the unconsolidated material at and near the site contains a significant amount of sand. Private well logs from the surrounding area indicate that the sand and gravel aquifer has been used as a water source; however, several older sand wells in the area have been replaced with bedrock water supply

wells. In a search of area well records, SCS Engineers (SCS) did not find any records indicating that shallow wells are still being used in the area around EDG.

The dolomite aquifer underlies the unconsolidated material at the site. The total thickness of the dolomite aquifer at the site is unknown. The dolomite aquifer is underlain by the Maquoketa shale, which is a confining unit. The Maquoketa shale is underlain by the Cambrian-Ordovician sandstone aquifer. This sequence of sedimentary bedrock units is over 1,500 feet thick in the site vicinity. The sedimentary sequence is underlain by Precambrian crystalline rocks that are not considered an aquifer in eastern Wisconsin.

2.1.2 Site Information

The site consists of four CCR surface impoundments that are currently undergoing closure and expected to complete closure in 2021. Adjacent to the surface impoundments is an inactive CCR landfill that was closed prior to 2015 and is regulated by the Wisconsin Department of Natural Resources (License #2524). A groundwater monitoring network was installed at the site to meet state requirements prior to installation of additional monitoring wells to meet CCR Rule requirements. Soils at the site are primarily silt, sand, and some clay to a depth of approximately 80 to 140 feet and overlie dolomite bedrock. During drilling of CCR wells MW-301, MW-302, and MW-303, the unconsolidated materials were identified as consisting primarily of lean clay overlying sandy silt. The boring log for the previously-installed background monitoring well 2R-OW show lean clay as the primary unconsolidated material at this location. The boring logs for Ash Ponds CCR monitoring wells are provided in **Appendix B**. All CCR monitoring wells are screened within the unconsolidated glacial aquifer.

Shallow groundwater in the area of the EDG site generally flows to the south-southeast. There is some localized groundwater mounding associated with the EDG ponds. The water table maps shown on **Figures 3** and **4** are based on groundwater levels measured in the unconsolidated deposits during the April 2020 and October 2020 detection monitoring events. A summary of the sampling events that occurred throughout 2020 is shown in **Table 2**. The water table maps show a generally southward flow direction, with localized groundwater mounding in the area of the EDG ponds. The groundwater elevations are summarized in **Table 3A** (state wells) and **Table 3B** (CCR wells). Horizontal gradients and flow velocities for each of the flow paths are provided in **Table 4**.

2.2 CCR MONITORING SYSTEM

The groundwater monitoring system established under the CCR Rule consists of one upgradient (background) monitoring well and three downgradient monitoring wells (**Table 1** and **Figure 2**). The upgradient monitoring well is 2R-OW. The downgradient monitoring wells include MW-301, MW-302, and MW-303. The CCR compliance monitoring wells were installed in the unconsolidated sediments with screens in the uppermost soil layer producing appreciable water, which was a sandy silt unit. Well depths range from approximately 14.5 to 40 feet, measured from the top of the well casing.

3.0 §257.90(E) ANNUAL REPORT REQUIREMENTS

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has

been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by §257.105(h)(1). At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

3.1 §257.90(E)(1) SITE MAP

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

A map of the site location is provided as **Figure 1**. A map with an aerial image showing the CCR units and all background (or upgradient) and downgradient monitoring wells with identification numbers for the groundwater monitoring program is provided as **Figure 2**.

3.2 §257.90(E)(2) MONITORING SYSTEM CHANGES

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No new monitoring wells were installed, and no wells were decommissioned as part of the groundwater monitoring program for the CCR units in 2020. To accommodate regrading due to pond closure construction activities occurring at the site, the casing of downgradient monitoring well MW-301 was extended during November 2020 and the casing of monitoring wells MW-302 and MW-303 was shortened during September 2020. A small amount of filter pack sand, originally placed above ground between the well casing and protective casing, fell into the well during the casing height reduction work. The sand was removed and the well was redeveloped prior to the October sampling event. The well casing elevations were resurveyed after the casing modifications were completed, as shown in **Table 3B**.

3.3 §257.90(E)(3) SUMMARY OF SAMPLING EVENTS

In addition to all the monitoring data obtained under §257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

Two semiannual groundwater sampling events were completed in April and October 2020 for Appendix III constituents. A resampling event for monitoring well MW-301 was completed in June 2020 to further evaluate the GPS exceedance at MW-301. The resample was done in accordance with the Sampling and Analysis Plan for the site, which allows for 1-of-2 testing. A summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection or assessment monitoring programs is included in **Table 2**.

The sampling results for Appendix III parameters in 2020 are summarized in **Tables 5A and 5B.** Field parameter results for the 2020 sampling events are provided in **Table 6**. The analytical laboratory

reports for 2020 are provided in **Appendix C**. Historical results for each monitoring well are summarized in **Appendix D**.

3.4 §257.90(E)(4) MONITORING TRANSITION NARRATIVE

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels);

There were no transitions between monitoring programs in 2020. The EDG CCR units remained in the detection monitoring program.

In 2020, the monitoring results for the October 2019 and April 2020 monitoring events were evaluated for statistically significant increases (SSIs) in detection monitoring parameters relative to background. The Interwell UPLs were updated in January 2021 to be based on additional background monitoring results from compliance wells (MW-301, MW-302, and MW-303). The Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities (USEPA, 2009) recommends periodic updating of background, The UPL update calculations are included in **Appendix E**. The UPLs calculated in January 2021 were applied to the October 2020 monitoring results (**Table 5B**).

For both the October 2019 and April 2020 events, SSIs for boron, fluoride, field pH, and sulfate were identified; however, alternative source demonstrations (ASDs) were completed, demonstrating that a source other than the CCR units was the likely cause of the observed concentrations. The ASD reports are provided in **Appendix F**.

3.5 §257.90(E)(5) OTHER REQUIREMENTS

Other information required to be included in the annual report as specified in §257.90 through 257.98.

Additional potentially applicable requirements for the annual report, and the location of the requirement within the Rule, are provided in the following sections. For each cited section of the Rule, the portion referencing the annual report requirement is provided below in italics, followed by applicable information relative to the 2020 Annual Groundwater Monitoring and Corrective Action Report for the CCR Units.

3.5.1 §257.90(e) General Requirements

For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year.

Status of Groundwater Monitoring and Corrective Action Program. The groundwater monitoring and corrective action program was in detection monitoring throughout 2020.

Summary of Key Actions Completed (2020):

 Statistical evaluation and determination of SSIs for the October 2019 and April 2020 monitoring events.

- ASD reports for the SSIs identified from the October 2019 and April 2020 monitoring events.
- Two semiannual groundwater sampling and analysis events (April and October 2019).
- One resampling event in June 2020.
- Adjustments to well casing heights to accommodate regrading associated with closure of the ponds.

Description of Any Problems Encountered. No problems were encountered in 2020.

Discussion of Actions to Resolve the Problems. Not applicable.

Projection of Key Activities for the Upcoming Year (2021):

- Statistical evaluation and determination of any SSIs for the October 2020 and April 2021 monitoring events.
- If an SSI is determined, then within 90 days either:
 - Complete alternative source demonstration (if applicable), or
 - Establish an assessment monitoring program.
- Two semiannual groundwater sampling and analysis events (April and October 2021).

3.5.2 §257.94(d) Alternative Detection Monitoring Frequency

The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer in the annual groundwater monitoring and corrective action report required by §257.90(e).

Not applicable. No alternative detection monitoring frequency has been proposed.

3.5.3 §257.94(e)(2) Alternative Source Demonstration for Detection Monitoring

The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by §257.90(e), in addition to the certification by a qualified professional engineer.

The ASD reports prepared to address the SSIs observed for the October 2019 and April 2020 sampling events are provided in **Appendix F**. The ASD reports are certified by a qualified professional engineer.

3.5.4 §257.95(c) Alternative Assessment Monitoring Frequency

The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer in the annual groundwater monitoring and corrective action report required by §257.90(e).

Not applicable. Assessment monitoring has not been initiated.

3.5.5 §257.95(d)(3) Assessment Monitoring Results and Standards

Include the recorded concentrations required by paragraph (d)(1) of this section, identify the background concentrations established under §257.94(b), and identify the groundwater protection standards established under paragraph (d)(2) of this section in the annual groundwater monitoring and corrective action report required by §257.90(e).

Not applicable. Assessment monitoring has not been initiated.

3.5.6 §257.95(g)(3)(ii) Alternative Source Demonstration for Assessment Monitoring

The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by §257.90(e), in addition to the certification by a qualified professional engineer.

Not applicable. Assessment monitoring has not been initiated.

3.5.7 §257.96(a) Extension of Time for Corrective Measures Assessment

The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measure due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by §257.90(e), in addition to the certification by a qualified professional engineer.

Not applicable. Corrective measures assessment has not been initiated.

3.6 §257.90(E)(6) OVERVIEW

A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit.

The specific requirements for the overview under §257.90(e)(6) are listed and the information is provided at the beginning of this report, before the Table of Contents.

Tables

- 1 CCR Rule Groundwater Samples Summary
- 2 Groundwater Samples Summary
- 3A Groundwater Elevation Summary State Wells
- 3B Groundwater Elevation Summary CCR Wells
- 4 Groundwater Gradients and Average Linear Flow Velocities
- 5A 2020 Groundwater Analytical Results Summary January to September 2020
- 5B 2020 Groundwater Analytical Results Summary October 2020
- 6 2020 Groundwater Field Data Summary

Table 1. Groundwater Monitoring Well Network
Edgewater Closed Landfill
SCS Engineers Project #25220068.00

Monitoring Well	Location in Monitoring Network	Role in Monitoring Network
2R-OW	Upgradient	Background
MW-301	Downgradient	Compliance
MW-302	Downgradient	Compliance
MW-303	Downgradient	Compliance

 Created by: RM
 Date: 12/14/2020

 Last revision by: RM
 Date: 1/7/2021

 Checked by: NDK
 Date: 1/7/2021

Table 2. CCR Rule Groundwater Samples Summary Edgewater Generating Station SCS Engineers Project #25220068.00

Sample Dates	Dov	Background Well		
	MW-301	MW-302	MW-303	2R-OW
4/8/2020	D	D	D	D
6/26/2020	D-R			
10/15/2020	D	D	D	D
Total Samples	3	2	2	2

Abbreviations:

D = Required by Detection Monitoring Program

D-R = Detection Monitoring Retest Sample

-- = Not Sampled

 Created by:
 NDK
 Date: 1/4/2018

 Last revision by:
 RM
 Date: 1/7/2021

 Checked by:
 NDK
 Date: 1/7/2021

Table 3A. Groundwater Elevations - State Monitoring Wells Edgewater 1-4 Closed Ash Disposal Facility / SCS Engineers Project #25220068.00

	Ground Water Elevation in feet above mean sea level (amsl)																					
Well Number	1-OW	2R-OW	3R-OW	4R-OW	5-OW	W-5A	6AR	6R-OW	7A-OW	7-OW	18-OW	29-OW	29-A	30-OW	31-OW	32-OW	36-OW	37-OW	38R-OW	39R-OW	40-OW	SG-01
Top of Casing Elevation (feet amsl)	591.72	612.72	591.32	595.60	600.72	601.84	591.32	590.98	593.41	592.51	586.47	588.86	589.25	590.81	589.00	589.07	614.63	615.02	620.98	614.04	587.42	1
Screen Length (ft)																						1
Total Depth (ft from top of casing)	11.10	17.53	15.82	16.48	10.65	21.51	19.86	10.37	20.21	9.93	14.25	19.96	43.12	14.88	14.98	14.95	21.01	18.55	29.00	22.29	17.3	1
Top of Well Screen Elevation (ft)	580.62	595.19	575.50	579.12	590.07	580.33	571.46	580.61	573.20	582.58	572.22	568.90	546.13	575.93	574.02	574.12	593.62	596.47	591.98	591.75		0.00
Measurement Date																						ĺ
October 24, 2012	588.11	607.82	582.64	585.24	595.63	596.69	587.42	587.40	591.71	589.56	583.49	585.16	586.60	586.40	582.58	583.63	599.77	599.42	599.38	598.05		597.60
April 18, 2012					595.89	597.13	587.33	587.35	592.35	589.79		585.32	588.39									1
October 24, 2012					595.63	596.69	587.42	587.40	592.00	589.78		585.33	586.60									1
April 8, 2013	588.50	609.92	588.37	586.35	596.66	597.65	588.40	587.34	592.79	589.95	583.97	585.78	588.07	588.57	584.35	584.50	600.79	600.24	600.16	598.30		597.9
October 22, 2013	584.88	601.15	580.90	584.46	594.23	595.64	582.64	584.83	591.23	587.24	NM ⁽¹⁾	584.70	586.76	582.19	580.40	580.76	599.13	598.22	598.42	596.56		598.0
April 22, 2014	588.05	609.22	587.99	586.11	595.18	597.10	587.00	587.37	589.27	589.51	NM ⁽¹⁾	585.38	588.22	587.53	583.75	583.75	NM ⁽¹⁾	599.67	599.38	598.56		597.8
October 28, 2014	586.14	607.27	586.30	585.08	595.33	596.51	587.68	586.99	591.92	589.29	NM ⁽¹⁾	585.00	587.84	585.48	582.88	582.68	600.07	599.81	599.26	598.37		595.85
April 7 - 9, 2015	587.90	608.47	587.44	585.52	595.66	596.76	586.99	587.50	591.95	588.50	ABAND	585.44	587.55	586.29	583.21	583.87	599.69	599.21	599.21	597.46	583.77	597.6
October 8, 2015	584.78	604.22	583.34	584.52	594.76	594.47	582.65	585.67	591.23	589.71	ABAND	584.69	587.27	584.26	581.60	582.52	600.29	599.47	599.70	598.09	583.01	
April 4-5, 2016	588.40	610.02	587.72	586.69	596.70	597.81	584.52	585.68	592.41	587.93	ABAND	582.95	587.25	586.91	584.35	584.47	601.05	601.37	601.18	601.13	579.28	599
October 17, 2016 ⁽²⁾	587.50	607.27	586.71	585.15	595.41	596.82	584.34	586.61	592.01	587.65	ABAND	581.25	586.10	586.23	583.02	583.83	600.87	600.70	600.74	599.49	579.42	1
April 12-13, 2017	588.23	609.80	587.95	586.31	596.08	597.69	586.77	587.32	592.19	587.06	ABAND	583.74	585.43	585.36	583.68	584.52	602.01	602.11	602.08	601.29	584.02	1
October 9, 2017	584.14	600.87	581.00	584.49	594.68	596.04	583.03	583.51	590.50	585.96	ABAND	583.01	584.88	582.76	580.93	581.18	600.18	598.48	599.65	598.07	583.05	
April 2, 2018	587.79	607.87	586.63	586.68	595.73	596.88	586.80	587.44	591.76	589.62	ABAND	585.51	587.11	585.68	582.95	582.85	600.71	600.00	600.04	597.99	583.64	
June 19, 2018	NM	605.70	585.49	585.20	595.41	NM	NM	NM	NM	587.20	ABAND	585.43	585.79	584.96	582.29	NM	NM (1)	600.44	600.68	599.61	583.07	NM
October 1, 2018	585.37	604.61	584.18	584.86	595.24	596.44	586.10	586.86	591.01	588.75	ABAND	585.04	584.94	584.79	582.11	582.81	600.30	600.12	600.27	599.79	583.17	
April 8, 2019	588.57	609.50	588.01	591.93	596.03	597.33	584.61	587.35	591.92	590.06	ABAND	585.76	586.75	587.83	584.18	584.85	600.21	599.60	599.74	598.49	583.75	
October 9-10, 2019	587.85	609.39	587.39	585.99	595.68	596.92	586.42	587.24	591.66	587.53	ABAND	585.14	585.10	587.15	583.63	584.48	599.92	600.25	600.01	599.82	583.08	
April 8-9, 2020	588.03	608.97	587.70	586.05	595.57	596.89	585.74	586.95	591.61	587.76	ABAND	584.98	587.35	587.29	583.70	584.59	599.40	599.52	599.48	599.38	583.01	
October 14-15, 2020	584.62	604.37	582.20	584.54	593.27	594.86	582.71	583.45	588.81	586.53	ABAND	583.95	586.83	583.83	582.60	582.82	ABAND	596.87	NM	594.72	583.26	NM
Bottom of Well Elevation (ft)	580.62	595.19	575.50	579.12	590.07	580.33	571.46	580.61	573.20	582.58	572.22	568.90	546.13	575.93	574.02	574.12	593.62	596.47	591.98	591.75	570.12	0.00

Notes: Created by: MDB Date: 5/6/2013

NM = not measured Last revision by: JSN Date: 10/20/2020

ABAND = abandoned Checked by: RM Date: 10/21/2020

I:\25220068.00\Deliverables\2020 Fed CCR Annual Report\Tables\[Table 3A_Groundwater Elevation Summary - State.xls]levels

^{1:} Well broken

^{2:} Well casings at 7-OW, 7A, and 29-OW were cut down to allow the protective covers to close. 7-OW was cut down by 0.22 ft, 7A was cut down by 0.29 ft, and 29-OW was cut down by 0.17 ft. Top of casing elevations in this table were adjusted accordingly.

^{*:} Well was frozen

Table 3B. Groundwater Elevations - CCR Monitoring Wells
WPL - Edgewater 1-4 (Closed) Ash Disposal Facility / SCS Engineers Project #25220068.00

Ground Water Eleva	ation in feet abov	e mean sea leve	l (amsl)	
Well Number	MW-301	MW-302	MW-303	2R-OW
Top of Casing Elevation (feet amsl)	604.42	615.15	611.99	612.72
Revised Top of Casing Elevation (feet amsl)		606.77	603.87	
Screen Length (ft)	5.00	5.00	5.00	10.00
Total Depth (ft from top of casing)	27.47	40.00	33.26	14.50
Top of Well Screen Elevation (ft)	581.95	580.15	579.60	608.22
Measurement Date				
April 8, 2016	599.75	596.19	589.04	609.68
June 20, 2016	598.30	595.68	587.22	606.70
August 9, 2016	598.00	595.53	587.72	605.74
October 20, 2016	598.50	595.46	588.37	607.27
January 23-24, 2017	597.10	596.30	588.84	609.64
April 6, 2017	600.04	593.57	589.04	609.72
June 6, 2017	598.77	595.86	588.44	607.63
August 1, 2017	597.40	595.22	587.36	604.59
October 24, 2017	597.20	595.25	587.97	601.74
April 2, 2018	598.54	595.71	588.77	607.87
October 1, 2018	597.60	595.28	588.17	604.61
April 8, 2019	598.92	595.68	588.88	609.50
October 7, 2019	599.56	595.58	588.77	609.39
April 8, 2020	599.17	595.33	588.66	608.97
June 26, 2020	597.89			
October 15, 2020	595.10	590.18	585.07	604.27
Bottom of Well Elevation (ft)	576.95	575.15	578.73	598.22

Notes:	Created by:	NDK	Date:	4/8/2020
NM = not measured	Last rev. by:	ZTW	Date:	1/15/2021
	Checked by:	TK	Date:	1/16/2021

 $I:\ 25220068.00 \ Deliverables \ 2020 \ Fed \ CCR \ Annual \ Report\ Tables \ 3B_Groundwater \ Elevation \ Summary \ - \ CCR.xls] levels$

Table 4. Horizontal Gradients and Flow Velocity Edgewater Closed Landfill SCS Engineers Project #25220068.00 January - December 2020

	South							
Sampling Dates	h1 (ft)	h2 (ft)	ΔI (ft)	Δh/Δl (ft/ft)	V (ft/d)			
4/8-9/2020	595.0	590.0	185	0.03	0.02			
10/14-15/2020	595.0	590.0	300	0.02	0.01			

	Southeast							
Sampling Dates	h1 (ft)	h2 (ft)	ΔI (ft)	Δh/Δl (ft/ft)	V (ft/d)			
4/8-9/2020	595.0	590.0	67	0.08	0.05			
10/14-15/2020	595.0	590.0	250	0.02	0.01			

Sampling Dates	K (ft/d)	n	Average Δh/Δl (ft/ft)	V (ft/d)
4/8-9/2020	0.274	0.40	0.051	0.035
10/14-15/2020	0.274	0.40	0.018	0.013

	K Value	
Wells	(cm/sec)	K Value (ft/d)
MW-301	2.1E-05	0.060
MW-302	4.0E-04	1.139
MW-303	1.1E-04	0.304
Geometric	9.7E-05	0.274

Assumed Porosity, n

Groundwater flow velocity equation: $V = [K^*(\Delta h/\Delta I)] / n$

ft = feet

ft/d = feet per day

K = hydraulic conductivity

n = effective porosity

V = groundwater flow velocity

h1, h2 = point interpreted

groundwater elevation at locations 1

 ΔI = distance between location 1 and 2

 $\Delta h/\Delta l$ = hydraulic gradient

Created by: RM I Last revision by: RM I Checked by: TK I

Date: 1/15/2021

Date: 1/16/2021

Table 5A. Groundwater Analytical Results Summary April - June 2020 Edgewater Generating Station / SCS Engineers Project #25220068.00

		Background Well	Compliance Wells										
		2R-OW	MV	V-301	MW-302	MW-303							
Parameter Name	UPL	4/8/2020	4/8/2020	6/26/2020	4/8/2020	4/8/2020							
Appendix III													
Boron, µg/L	107	52.3	7,450		1,570	3,380							
Calcium, µg/L	206,247	117,000	80,800		66,800	144,000							
Chloride, mg/L	378	67.5	12.5		19.2	23.5							
Fluoride, mg/L	DQ	<0.095	0.39 M0	0.26 J,M0	0.97	<0.48 D3							
Field pH, Std. Units	7.47	7.08	7.82	7.53	7.56	6.7							
Sulfate, mg/L	35	11.6	298		65.3	<2.2 D3							
Total Dissolved Solids, mg/L	1,145	604	718		316	692							

4.4	Blue shaded cell indicates the compliance well result exceeds the UPL (background)
	and the Limit of Quantitation (LOQ).

Abbreviations:

UPL = Upper Prediction Limit LOD = Limit of Detection mg/L = milligrams per liter GPS = Groundwater Protection Standard LOQ = Limit of Quantitation μ g/L = micrograms per liter μ g/L = micrograms per liter

Lab Notes:

D3 = Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

J = Estimated concentration at or above the LOD and below the LOQ.

M0 = Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

Notes:

- 1. An individual result above the UPL does not constitute an SSI above background. See the accompanying report text for identification of statistically significant results.
- 2. Interwell UPLs calculated based on results from background wells 2R-OW. Interwell UPLs based on 1-of-2 retesting approach.

Created by: NDK	Date: 1/7/2021
Last revision by: SCC	Date: 1/15/2021
Checked by: TK	Date: 1/15/2021
Scientist/PM QA/QC: TK	Date: 1/15/2021

I:\25220068.00\Deliverables\2020 Fed CCR Annual Report\Tables\[Table 5A. Analytical Results Summary - January - September 2020.xlsx]Table 5A - 2020 Analytical

Table 5B. Groundwater Analytical Results Summary - October 2020 Edgewater Generating Station / SCS Engineers Project #25220068.00

		Background Well	Compliance Wells										
		2R-OW	MW-301	MW-302	MW-303								
Parameter Name	UPL	10/15/2020	10/15/2020	10/15/2020	10/15/2020								
Appendix III													
Boron, µg/L	86.0	29.9	6,550	1,410	3,310								
Calcium, µg/L	200,000	124,000	114,000	124,000	132,000								
Chloride, mg/L	400	179	13.9	20.9	20.9								
Fluoride, mg/L	0.200	0.096 J	<0.48 D3, M0	1.0 J, D3	<0.48 D3								
Field pH, Std. Units	8.57	7.20	7.64	7.90	7.11								
Sulfate, mg/L	36.2	20.3	293	73.1	<2.2 D3								
Total Dissolved Solids, mg/L	1,190	806	678	182	620								

4.4 Blue shaded cell indicates the compliance well result exceeds the UPL (background) and the Limit of Quantitation (LOQ).

Abbreviations:

UPL = Upper Prediction Limit mg/L = milligrams per liter LOD = Limit of Detection SSI = Statistically Significant Increase $\mu g/L = micrograms per liter$ LOQ = Limit of Quantitation

Lab Notes:

D3 = Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

J = Estimated concentration at or above the LOD and below the LOQ.

M0 = Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

Notes:

- 1. An individual result above the UPL does not constitute an SSI above background. See the accompanying report text for identification of statistically significant results.
- 2. Interwell UPLs calculated based on results from background well 2R-OW. Interwell UPLs based on 1-of-2 retesting approach. The interwell UPLs were updated in January 2021 using data from April 2016 through October 2020.

 Created by:
 NDK
 Date:
 5/1/2018

 Last revision by:
 SCC
 Date:
 1/15/2021

 Checked by:
 NDK
 Date:
 1/15/2021

 Scientist/PM QA/QC:
 TK
 Date:
 1/15/2021

\\Mad-fs01\data\Projects\25220068.00\Deliverables\2020 Fed CCR Annual Report\Tables\[Table 5B. CCR GW Screening Summary_EDG-Oct 202

Table 6. 2020 Groundwater Field Monitoring Data Edgewater 1-4 (Closed) Ash Disposal Facility / SCS Engineers Project #25220068.00 January - December 2020

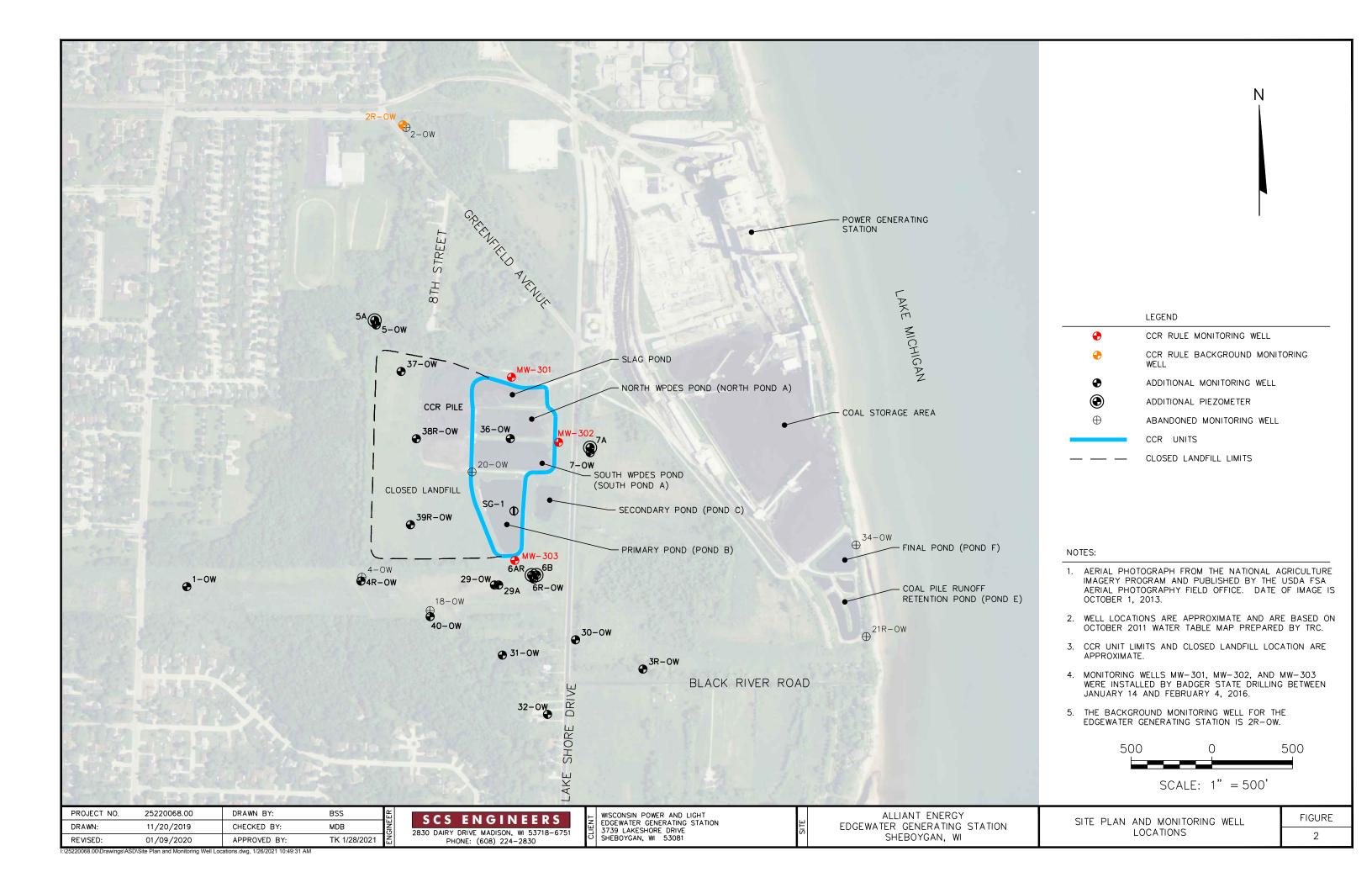
Well	Sample Date	Groundwater Elevation (feet)	Field Temperature (deg C)	Field pH (Std. Units)	Oxygen, Dissolved (mg/L)	Field Specific Conductance (umhos/cm)	Field Oxidation Potential (mV)	Turbidity (NTU)
MW-301	4/8/2020	599.17	8.5	7.82	6.90	977	17.1	37.12
	6/26/2020	597.89	16.8	7.53	5.47	983	49.1	62.57
	10/15/2020	595.10	11.2	7.64	0.80	996	140.0	130.00
MW-302	4/8/2020	595.33	11.3	7.56	0.40	476	-107.6	69.22
	10/15/2020	590.18	11.2	7.90	0.30	523	-83.0	161.80
MW-303	4/8/2020	588.66	10.0	6.70	0.20	1,241	-102.9	87.60
	10/15/2020	585.07	10.9	7.11	0.20	1,123	-32.0	70.42
2R-OW	4/8/2020	608.97	6.1	7.08	1.50	1,081	43.7	15.24
	10/15/2020	604.27	13.6	7.20	3.50	1,490	282.0	28.74

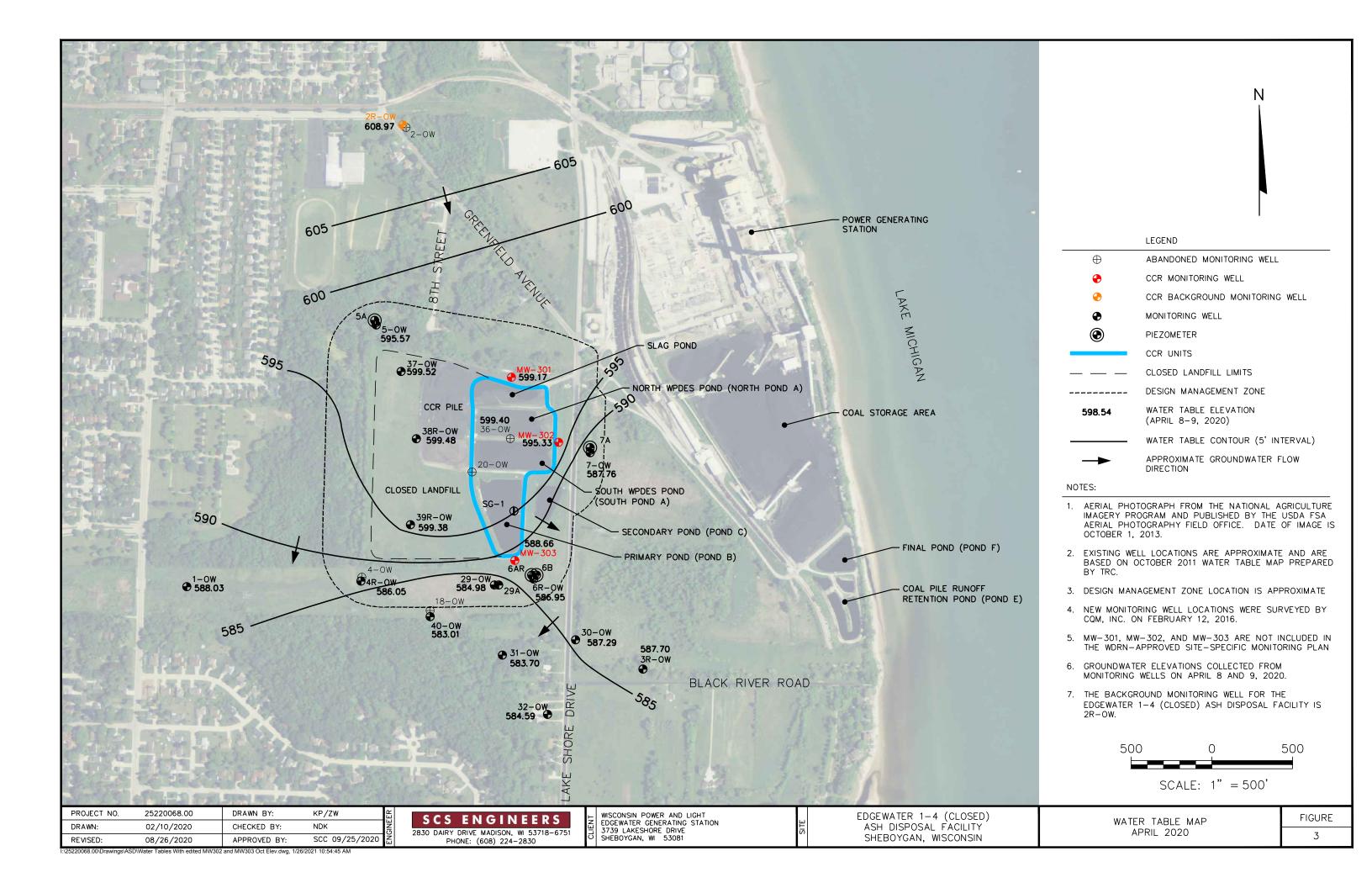
Created by: RM

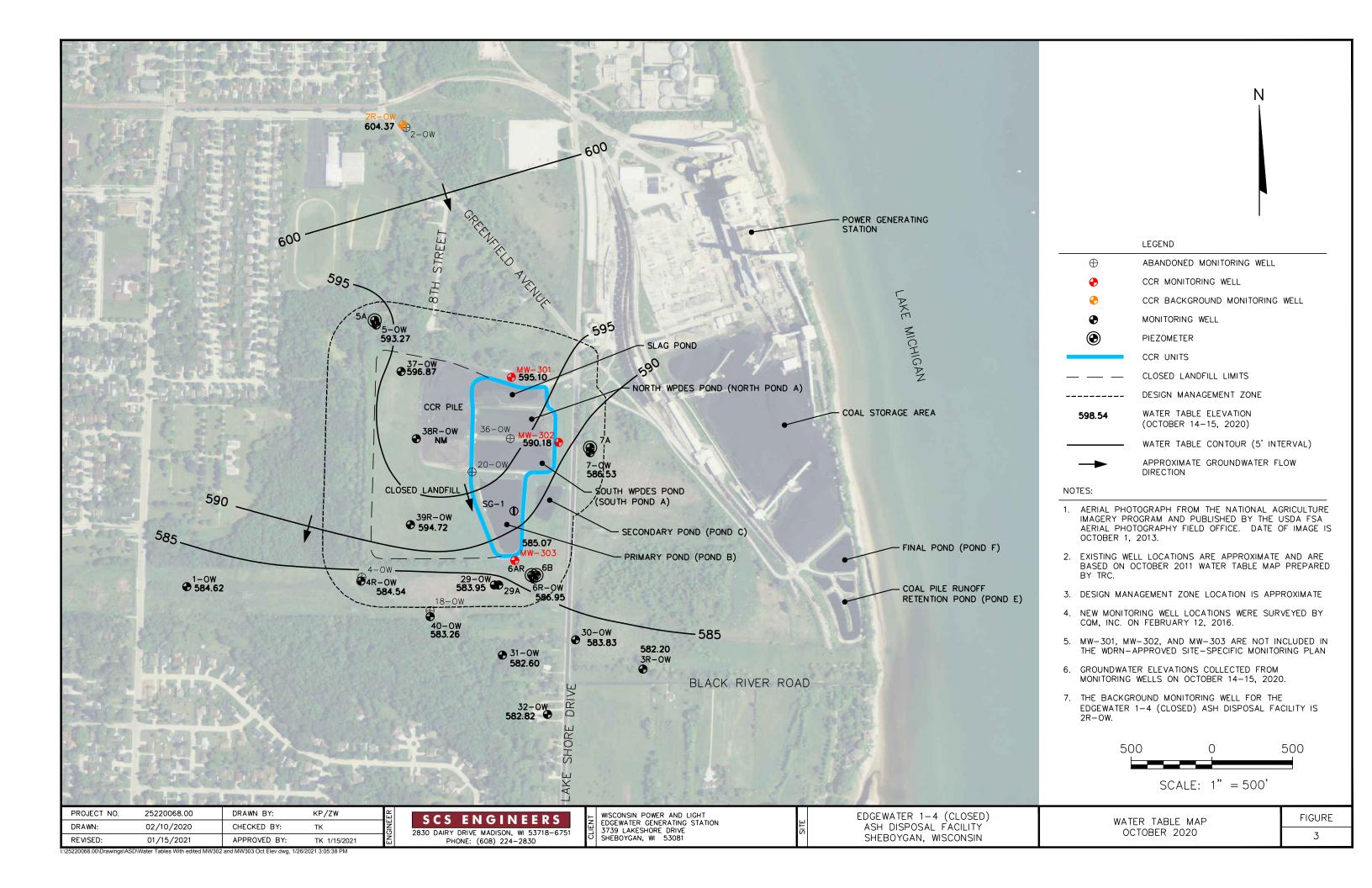
Last revision by: RM

Checked by: TK

 Date:
 12/22/2020


 Date:
 1/6/2021


 Date:
 1/16/2021


Figures

- 1 Site Location Map
- 2 Site Plan and Monitoring Well Locations
- 3 April 2020 Water Table Map
- 4 October 2020 Water Table Map

Appendix A

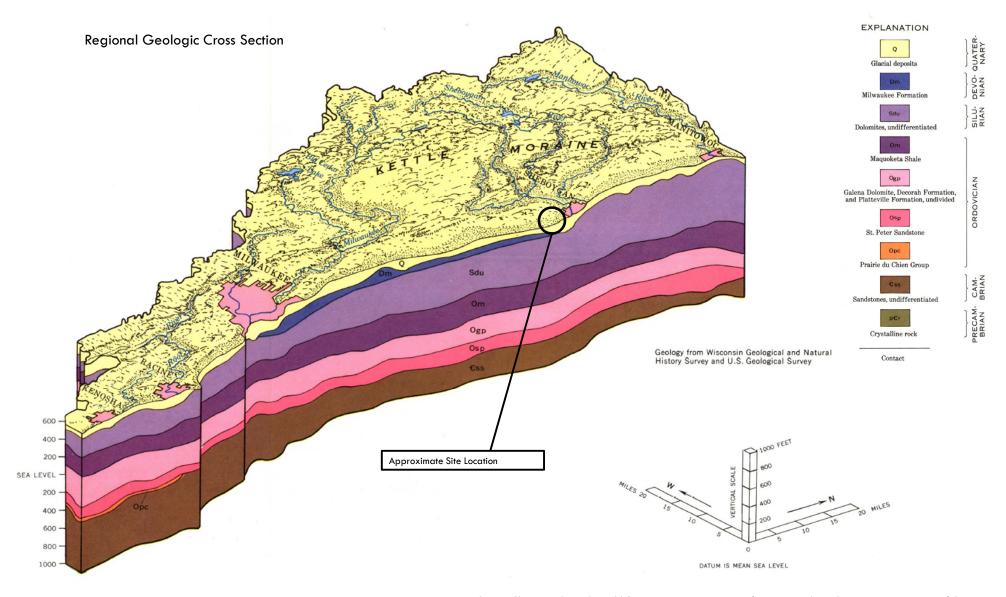
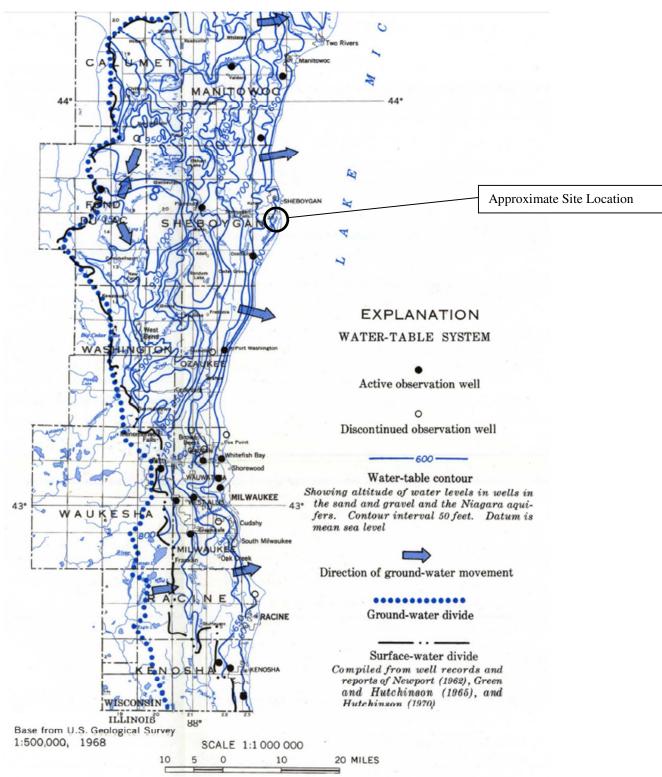

Summary of the Regional Hydrogeologic Stratigraphy

Table EGS-3. Regional Hydrogeologic Stratigraphy Edgewater Generating Station / SCS Engineers Project #25215053

Age	Hydrogeologic Unit	General Thickness (feet)	Name of Rock Unit*	Predominant Lithology					
Quaternary	Sand and Gravel	0 to 235	Surface sand and gravel	Sand and Gravel					
	Aquifer	0 to 300	Buried sand and gravel						
Devonian	Niagara Dolomite	0 to 750	Dolomite	Dolomite					
Silurian	Aquifer	010730	(undifferentiated)	Dolonne					
	Confining Unit	0 to 400	Maquoketa Shale	Shale and dolomite					
Ordovician		100 to 340	Galena Decorah Platteville	Dolomite					
		0 to 330	St. Peter	Sandstone					
	Sandstone Aquifer	0 to 140	Prairie du Chien	Dolomite					
Cambrian		0 to 3,500?	Trempeleau Franconia Galesville Eau Claire Mt. Simon	Sandstone, some Dolomite and Shale					
Precambrian	Not an Aquifer	Unknown	Crystalline Rocks	Igneous and metamorphic rocks					


Source:

Skinner, Earl L. and Ronald G. Borman, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigations Atlas HA-432, 1973.

Source: Skinner, Earl L. and Ronald G. Borman, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigations Atlas HA-432, 1973.

Regional Groundwater Flow Map - Uppermost Aquifer

Source: Skinner, Earl L. and Ronald G. Borman, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigations Atlas HA-432, 1973.

Appendix B

Boring Logs and Well Construction Documentation

State of Departm	Wiscon	isin Natura	l Resour	rces ϕ_y	Route To	Waste	Пн							om 440	_	g mi	Jillat	7-91	
					☐ Emer	gency Respons	_	-	round ' Resourc			-				_		_	
					#rasi		o	ther							Page		of	1	
Facility/	Project	Name						į.		mit/Mor	nitoring	Numbe	r	Boring 1					
Moni	toring	g Wel	ll Insta	llation				02524 Date Drilling Started					Drilling			Drilling	Meth	od	
M&I	C Env	ironn	m name nental	and name of Drilling. C	crew chie Chief Di	iller Micha	el	Date		g 3tarie 29/98	•		04/2			HSA			
	ardle.		lssn	Unique Well	No	Common Well	l Name	Final	Static	Water I	_evel	Surfa	ce Elev	ation	Во	Borehole Diameter			
DNR Fa	cility W	vell No). WI	Omque wen			607	.2 Feet	MSL	,	10.3			8.0 In					
Boring 1	ocation	n							Lat	0 , 11		Loca	l Grid L	ocation		icable)		ΣE	
NW	1/4 o	f NE	E 1/4	4 of Section	2	T 14 N.R	23E	L	ong	o , "			72 Fee			600		□ w	
County	воус	GAN					DNR Cou	inty C	ode		BOYG		Hage	Soil	Propert	ies		1	
Sam	ple		eet										- C	3011	riopen,	162	Γ	1	
	(in)	Counts	In Fe	I .		ck Descriptio logic Origin			Ø	i.c	,am	OI.		rure ent	p ₊	t ic	9	RQD/ Comments	
Number	Length (i Recovered	Blow C	Depth		Each	Major Unit			o s n	Graphic Log	Well Diagram	PIO/FID	Standard Penetrat	Moisture Content	Liquid Limit	Plast Limit	P 200	RaD/ Comm	
_ <u>z</u> _	٦٣	<u>ω</u>		TOPSOIL	·				TS				-						
1	18	12	1 2 3 4	LEAN C brown (1	LAY - : 0YR 5/	moist, stiff, 6), silty sand	yellowish d seams.		CL		¥		12	23.6					
3	18	22 46	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	very st	iff.								46	16.8					
4	18	26	10 11 11 12	4/3), occ	casional	f, dark brow sand seams.	n (10YR						26	19.7			98.4		
5	18	15	13	NOTES: 1) End c 2) Monitat compl	of boring V	g at 14.5 fee Vell 2R-OW	t. construct	eđ											
I herel	y certif	fy that	the info	rmation on thi	s form is	true and correc	t to the best	of my	know	edge.									
Signat			p					Fim	n 	Mille	South 12	2th Stre -6164	& Sci et, Sheb Fax: (9	oygan, 20)458-	0369		nor mo		

This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$5,000 for each violation. Fined not less than \$10 or more than \$100 or imprisoned not less than 30 days, or both for each violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06, Wis. Stats.

State of Wisconsin Department of Natural Resources

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

		Re	oute To:	Watershed/W	astewater	Wast	e Manag	gement										
				Remediation/	Redevelopment	Other	r 🗌											
													Pag	ge 1	of	2		
Facility/Pro	ject Na	me				Licens	e/Permit	/Monito	ring Ni	ımber		Boring	_	,				
WPL-Ed	lgewat	er Gene	rating St	ation	SCS#: 25215135.10)								MV	W-30)1		
Boring Dril	led By:	Name o	of crew ch	ief (first, last) ar	nd Firm	Date D	Date Drilling Started Date Dri					ng Con	npleted			ing Method		
Kevin I							4 /4 /	1/2016				. 100				ollow stem		
Badger			DAID V	Well ID No.	Common Well Name	- Final C	1/14 tatic Wa	1/2016		Coorfo		1/14/2016 evation Bor				auger		
WI Unique	Weii N V862		DINK	veil ID No.	MW-301	Fillal S	13.7		ei	Surrac			et	BO	Borehole Diameter 8.5 in.			
Local Grid			stimated:	O or Bor	ring Location		13.7					601.95 Feet ocal Grid Location				8.3 III.		
State Plane	-			2,573,429		I	_at	o 	<u>'</u>		Feet N					Feet \square E		
NE 1.	/4 of]	W	1/4 of Sect	tion 2,	T 14 N, R 23 E	Lo	ng	o 	<u>'</u>	"			\Box s			\square \square \square		
Facility ID				County		County C	Code	Civil T		-	Village							
		-		Shawano		59		Sheb	oygan							Ţ		
Sample												Soil	Prope	erties				
· &	(iii)	et		Soil/R	ock Description													
e Att.	ount	η Fe		And Ge	ologic Origin For						ion	a a		>		nts		
Typ gth	Blow Counts	th Ir		Eac	h Major Unit		CS	ohic	1 gran	/FIL	dare	stur	bit it	ticit	0)/ Ime		
Number and Type Length Att. &	Blov	Depth In Feet					N S	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments		
		E	Boring	already cleared	to 8' bgs by hydrovac.				MK									
		<u>_</u> 1																
		Ē,																
		-2																
		F																
-		-3	Standin	g water at 3' in	existing hydrovac hole	e and										Standing water at 3 ft bgs in		
		Ė.		at toe of berm.												existing hole and		
		F-4	-													boring at toe of berm.		
		_5																
		= 3																
		F ₋₆																
		- -7																
		_7																
		E																
П		F-8	SILTY	CLAY, brown	(7.5YR 4/6).													
	5.7	E														2000 1200 AND		
S1 22	5 7 9 13	- 9									3.5	M				water @ 11.9 ft bgs after sitting		
Ц		-10														an hour with augers at 20 ft		
		E														bgs.		
		-11					CL-ML											
		E																
		-12																
		Ē																
П		_13	=															
	7 13	- 14									2.75	117						
S2 20	23 21	F 14	SANDY	SILT, grey bro	own (10YR 4/2).		ML				2.75	W						
Ц		E-15																
hereby cert	ify that		rmation or	n this form is tri	ue and correct to the b	est of my k	nowled	ge.								Anna Antonia (Anna anna anna anna anna anna anna an		
Signature					Test	CS Engin									Tel: (6	08) 224-2830		
-3//1/	200		1		1 50	~ ~ 115,111									(0	00, 22 1 2000		

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

2830 Dairy Drive Madison, WI 53718

Borin	g Num	ber	MV	V-301 Use only as an attachment to Form 440	0-122.									ge 2	of	2
Sar	nple								T			Soil	Prope	erties		
	t. &	nts	eet	Soil/Rock Description												70
er	h Att	Com	In F	And Geologic Origin For Each Major Unit	S	ic			am	Œ	ard ration	ure	-	city		nents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each Major Onit	nsc	Graphic	Log	Well	Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
_ < ~		Щ	F -		1	П				<u>н</u>	S H	20		HI	Д	<u> </u>
			<u>-</u> 16	CANDY OH T												
			E	SANDY SILT, grey brown.												
			F 17													
П			18													
	20	5.7	E 10									***				
S3	20	5 7 18 13	- 19									W				
Ш			20	Same as above, except brown (7.5 YR 4/6).												
			= 22					E								
			22					E								
П			23													
S4	22	2 2 3 4	- -24									W				
34	22	3 4	E					E				**				
Н			- 25		ML				1							
S5	20	3 3 4 9	26									W				screen 20-25 ft
		49	_ 27													bgs.
			- 21						ı							1
П			28					200	22							
S6	24	2 2 2 2	E -29						X			W				
	21	2 2	E						3			.,				
Н			-30				0	2	30							
S7	24	2 2 4 8	_31				0					W				
		70	-32				0									
- 11							0	2	3G 3G							
S8	16	2 3 4 5	33				0	8	弱			W				
Н			_ 34				Q									
- II		2.2	-				0	2								
S9	24	2 2 2 2	- 35	CLAV (7.5VP.4/C)		Ш			頸		1.0	M				water at 16.8 ft bgs with augers at 34 ft bgs.
Ц			-36	CLAY, grey (7.5YR 4/6). End of boring at 36 ft bgs.	CL		0	98	XX							ut 2 i it ogs.
				-												
1	1				1	1	1		I		1		ı	1		ı

State of Wisconsin Department of Natural Resources

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Ro	ute To:	Watershed/W				ement								
					Remediation	Redevelopment	Other										
														Pag	ge 1	of	2
	y/Proje						License	Permit	/Monito	ring N	umbei	r	Boring	Numb			
				rating S		SCS#: 25215135.10									M۱	V-30	
		-	Name o	f crew ch	hief (first, last) a	ind Firm	Date Dr	Date Drilling Started Date Drilling						npleted			ing Method
	vin Du lger S							1/14	5/2016				1/15/2	016		Hollow stem auger	
	ique W		·	DNR '	Well ID No.	Common Well Name	Final Sta	Final Static Water Level Surface Elevat						2010	Во	rehole Diameter	
	_	V861				MW-302		Fe					2.65 Feet				.5 in.
Local	Grid O	rigin				ring Location 🖂	1 -		0	,	,	Local C	irid Lo	cation			
State					, 2,573,726		La	at					Feet	\square N			Feet \square E
SE		of N	W 1	/4 of Sec		T 14 N, R 23 E	Lon		0		,	-		\Box s			□ W
Facilit	y ID				County		County Co	ode				Village					
Carr	1.				Shawano		59 .	Т	Sheb	oygai	1	1	Cail	Duons			
San	nple				- 11 -								5011	Prope	rues		
	% (ii)	nts	eet			Rock Description											
er De	Att ered	Cour	In F			eologic Origin For		S	. <u>o</u>	E E		rd ation	ire it		ity		ents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		Eac	ch Major Unit		SC	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	200	RQD/ Comments
a N	Le	BI	De					D	Grap	Well	PI PI	St _z	Σ ပိ	Ë Ë	Pla	Ъ	× 2
			E	Boring	g already cleared	to 8' bgs by hydrovac.					1						
			-1														
			E														
			-2														
			_3														
			E 1														
			F_4														
			E														
			_5														
			=														
			F-6														
			E ₇														
			= '														
О			E ₈	GAND	TI OT ATT	(011)											
П			E	SAND	OY CLAY, vario	us colors (fill).											
S1	16	6 8 11 10	<u>-</u> 9									2.5/1.75	М				
		1110	E														
			-10														
			- 11														
			E 11					CL									
			_ _12														
			= 1														
П			_13														
Ш			Εl														
S2	16	5 6 11 19	-14									3.5	M				
			E , [
		1	<u>-15</u>		1' 6 '												
nereb	y certif	y that t	ne infor	mation c	on this form is tr	ue and correct to the be	est of my kr	iowied	ge.								

Firm **SCS** Engineers for Joe Larson 2830 Dairy Drive Madison, WI 53718

Tel: (608) 224-2830 Fax:

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A

	g Num	ber	MV	V-302 Use only as an attachment to Form 4400)-122.					*******************	Pag		of	2
Sar	nple									Soil	Propo	erties		_
	tt. &	unts	Depth In Feet	Soil/Rock Description And Geologic Origin For					l e					ts
ıber Type	gth A	Blow Counts	th In	Each Major Unit	CS	ohic		Diagram PID/FID	dard	sture	it it	Plasticity Index	0)/ Imen
Number and Type	Length Att. & Recovered (in)	Blov	Dep		S D	Graphic Log	Well	Diag PID,	Standard Penetration	Moisture Content	Liquid Limit	Plastic Index	P 200	RQD/ Comments
			E											2
			- 16	SANDY CLAY, (fill).										
			E-17		CL									
			<u>-</u> 18											
			=											
S3	16	67 912	- 19	GY AY A LA LOUI (A LOUI)(A LOUI (A LOUI)(A LOUI)(A LOUI (A LOUI (A LOUI (A LOUI)(A LOUI)(A LOUI)(A LOUI)(A LOUI (A LOUI (A LOUI)(A LOUI)(A LOUI)(A LOUI)(A LOUI)(A LOUI)(A LOUI (A LOUI)(A LOUI)(A LOUI)(A LOUI)(A LOUI (A LOUI)(A LOUI)(A LOUI)(A LOUI)(A LOUI)(A LOUI (A LOUI)(A LOUI)(A LOUI)(A LOUI)(A LOUI)(A LOUI (A LOUI)(A LOU					3.25	M				
L			-20	CLAY, dark brown, some gravel and fill (topsoil).										
			- -21		CL									
			E											
			22	LEAN CLAY, brown (7.5YR 4/6).										
П			23											
S4	24	4 7 10 13	24						2.75	M				
		10 13	_ 											
			E		CL									
			- 26											
			27											
			E -28											
			E	SANDY SILT, brown (7.5YR 4/6).	-	1-11								
S5	24	6 6 7 8	- 29						1.5	W				
H			=30											
S6	12	5 7 8 8	_ 31											
		8 8	-											
			-32											
S7	22	2 2 4 9	33											
H			34		ML									
G0	24	2.2												
S8	24	2 2 4 7		6 inch sandier zone at 35-35.5 ft bgs, soil less cohesive, more water.										
H			_36											
S9	24	2 2 2 4	37							W				
Ш			$\begin{bmatrix} -38 \end{bmatrix}$											
		2.2	=											
S10	24	2 2 4 6	39	End of having at 40 ft has			-							water at 17.8 ft bgs after well installation.
Ц			-40	End of boring at 40 ft bgs.				_						

State of Wisconsin Department of Natural Resources

should be sent.

SOIL BORING LOG INFORMATION

Form 4400-122

Rev. 7-98

Fax:

			Ro	ute To:	Watershed/\			Waste Other		gement									
					Remediation	n/Redevelopment		Otner	Ц									_	
Facility	-/D:-	at Niam						Liannaa	Page 1 of 2 License/Permit/Monitoring Number Boring Number										
-				rating St	ration	License	License/Permit/Monitoring Number Borin							MW-303					
					ief (first, last)		Date Drilling Started Date Drill						ing Completed Deiling Method						
	in Du											H				ollow stem			
	ger S			DMD	V II ID N	F' 1.C	2/4/2016 Final Static Water Level S				2/4/2016				auger orehole Diameter				
WI Un	_	7860		DINK	Well ID No.	Final St	Final Static water Level Feet				Surface Elevation Bo 609.73 Feet					8.5 in.			
Local			(es	stimated:	1					Local Grid Location					.5 111.				
State 1			631	,609 N,	L	Lat				Feet \square N					Feet E				
SE 1/4 of NW 1/4 of Section 2, T 14 N, R 23 E									Long '					\square s \square W				□ w	
									County Code Civil Town/C 59 Shebovga:				/ or Village						
									Sheboygan Soil Properties						ortios				
Saii	Sample Soil/Rock Description												-	5011	Порс	Toperties		-	
	Length Att. & Recovered (in)	ınts	Feet									uc					ts		
ber ype	h A1 /ered	Con	l In I			eologic Origin Fo ch Major Unit	or		S	jic	am	Ð	ard	ure	75	city		, nent	
Number and Type	Length Att. Recovered (Blow Counts	Depth In Feet		La	ich Major Offit			SC	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments	
Z 8	N K		<u> </u>	Boring	already cleare	d to 8' bgs by hyd	lrovac		D	0 1		4	SP	20	HH	P	Ь	- C - M	
			1		-														
			E '																
			_2																
			- '																
			_5																
			=																
			- 6																
П	SANDY LEAN CLAY, yellowish brown (10Y																		
S1	15	5 9 9 12	<u>-9</u>									3.0	W						
Ц			10																
			_11																
			-						CL										
			_12																
			- ₁₃					(10*											
				Same as 3/2).	s above except	, very dark grayis	sh brow	/n (10YR						7					
S2	18	11 11 12 14	14	,									>4.5	w					
- 11		16 14																	
I best-1	1.00==1:0	+1	—15	motio-	n this fam:	mio and sormet t	a tha !-	ngt of m1-	2011-1	70									
Signatu		y mat t	HE HHOL	mation of		rue and correct to				<u> </u>							T-1 /	00) 224 2020	
- 5	-/	0/	10	0			SC	S Engine	CIS								1 et: (6	08) 224-2830	

For Kyle Kramer This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form

SCS Engineers

2830 Dairy Drive Madison, WI 53718

	g Num	ber	MV	V-303 Use only as an attachment to Form 4400-	122.							ge 2	of	2
San	nple									Soil	Prope	erties		
	% (ii)	ıts	eet	Soil/Rock Description										
r pe	Att	Cour	In F	And Geologic Origin For	S	ပ	8		rd	re		ty		ents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each Major Unit	USC	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
- N un	Le Re	BI	Ď		D	Grap	≥ 5		Sta Pe	Σ̈́S	Ľ.	Pla	P	N 0
			E											
			16											
			E ''											
П			_18	Same as above except, yellowish brown (10YR 5/4).										
		60	- 10											
S3	20	6 8 13 14	- 19	70	CL				2.0	W				
L			20											
			=											
			- 21											
			_											
П			-23	Same as above except, very dark grayish brown (10YR										
S4	22	5 8 8 12	<u>-</u> 24	3/2).					1.75	W				
01	22	8 12	F	SANDY SILT, yellowish brown (10YR 5/4).					1.75	**				
Н			- 25											
S5	16	8 12	- -26							W				
33	10	8 12 14 17	= 20							VV				
Н			27											
		15	_ 											
S6	24	4 5 3 3	E 28		ML					W				
Н			_29											
		2.6	=											
S7	24	3 6 9 14	30							W				
Ц							H							
			32											
			_ 	F-1-C1-:				-						
				End of boring at 33 ft bgs.										

State of Wisconsin Route to: Solid Waste	Haz. Waste Wastewater	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 4-90
Desertment of Natural Resources Env Perronce & Renai	Underground Tanks O Other O	Well Name
	nd Location of Well	Well Name 2 A - D(1)
WITH Engewater Site 1111	89 ft. 05. 1599.69 ft DE	21100
Facility License, Permit or Monitoring Number Grid Ori	gin Location	Wis Unique Well Number DNR Well Number
Facility License, Farini or installed	Long or	
		Date Well Installed 4, 79, 90
Type of Well Water Table Observation Well 211 St. Plan		1/2/1/8
Discounter D2 Carrier	Location of Waste/Source	mm dd y v
Distance Well Is From Waste/Source Boundary Wan14	of NE 1/4 of Sec. 2, T. 14 N. R. 23	Well Installed By: (Person's Name and Firm)
ft. Leaving	01/16 1/4 01 3 ct 11 111 111 111.	Mike Mc Arole
	n of Well Relative to Waste/Source Joggradient 5 Sidegradient	
		MIK Environmental
	Downgradient n 🗆 Not Known	
A. Protective pipe, top elevation _612.80 ft. MSL-	1. Cap and lock	· · · · · · · · · · · · · · · · · · ·
		ver pipe:
P. Well casing, top elevation _6/2.72 ft MSL	Inside diam	neter: in.
D. With the sile of	1111/	ft.
C. Lard surface elevation _610.3 ft. MSL	b. Length:	
C. Danter	C Maignail	Steel 🔼 04
D. Surface seal, bottom ft. MSL or 1.0 ft.	 	Other 🛚 🧮
	d Additional	protection? Yes 🖂 No
12 USCS classification of soil near screen:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ជាbe:
GP GM GC GW G SW G SP G		
SM SC ML MH CL CH	3. Surface seal:	
Betrock 🗆		Concrete 🔼 01
13. Sieve analysis attached?		Other 🗖 🎆
1	W W V V V V V V V V V V V V V V V V V V	veen well casing and protective piper
14. Drilling method used: Rotary 50	4. Maleta cets	Bentonite 🖾 30
Hollow Stem Auger 🖾 4.1		20
Other []		Armular space seal 🔲 💯
		Other 🔲 🚉
. W. E.O. W. E.O.		ce seal: a. Granular Bentonite 🖾 33
15. Drilling fluid used: Water 0 02 Air 0 01	5. Armular space	te seal: Replantite-sand shirty 3 5
Drilling Mud [] 03 None [2 99	bLbs/	gai iiidd weight
	Lbs.	gal mud weight Bentonite slurry 3 1
16. Drilling additives used? Yes No	96 B	entonite Bentonite-cement grout \(\Pi \) 50
10. Diming	5. Armulæ space bLbs/ cLbs/ d % B e f. How instead	Ft 3 volume added for any of the above
	c. ———	
Describe	£ How inst	alled: Tremie 💆 01
17. Source of water (attach analysis):		Tremie pumped 🛛 02
		Gravity 🛛 03
		al: a Bentonite granules 🔀 33
	6. Benionite se	
E. Bentonite seal, top fr. MSL or	16 29 22 / 5, 417-1	n. \$\alpha 3/8 in. \$\Bar\tag{1}/2 in. Bentonite pellets \$\Bar\tag{3} 2\$
E Bentonite seat, up		Other 🔲 🚉
6 NG - 2 S	ft. 7. Fine sand m	aterial: Manufacturer, product name & mesh size
F. Fine sand, top ft. MSL or	" Received	Mine 65-75
G. Filter pack, top ft. MSL or _ 3 3	it. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ೂರರಣೆ ಗ್ ^೨
•	3 Filter pack	material: Manufacturer, product name and mesh size
H. Screen joint, top ft. MSL or _ 4.5		er Mine 65-75
H. Screen joint, top R. MSL or Z.	- Lary	<u></u>
	b. Volume	
I. Well bottom ft. MSL or _ 14.5	ft. 9. Well casing	: Flush threaded PVC schedule 40 🖸 23
1. Well bottom		Flush threaded PVC schedule 80 24
. vo. : , U 5		Other 🗖 🦉
J. Filter pack, bottom ft. MSL or _ 14.5		
	10. Screen mau	
K. Borehole, bottom ft. MSL or	fL. Screen t	ype: Factory cut 🔯 11
K. Borehole, bottom n. MSL or		Continuous slot 0 1
		Other 🛛 💹
L. Borchole, diameter _ & O in.		Park Ta
	b. Manufac	turer Beolock Ino.
V 00 Warding 238 =	c. Slot size	: 0.075 m
M. O.D. well casing 2.38 in.	d Sloned	length:ft.
_	`	
N. I.D. well casing 200 in.	11. Backful ma	terial (below filter pack): None 💢 14
I hereby certify that the information on this form	is true and correct to the best of m	y knowledge.
	Firm	/ . /. /
Signature	Firm Miller Fraince	els + Scientists
the full		rm as required by chs. 144, 147 and 160, Wis. Stats.
		mi as recomed by Cas. 144, 147 and 100, 17 is office.

Please complete both sides of this form and return to the appropriate DNR office listed at the top of this form as required by chs. 144, 147 and 160, Wis. Stats and ch. NR 141, Wis. Ad. Code. In accordance with ch.144, Wis Stats, failure to file this form may result in a forfeiture of not less than \$10, nor more than \$5000 for each day of violation. In accordance with ch. 147, Wis. Stats, failure to file this form may result in a forfeiture of not more than \$10,000 for each day of violation. NOTE: Shaded areas are for DNR use only. See instructions for more information including where the completed form should be sent.

	Vatershed/Wastewater Remediation/Redevelopment	Waste Mar	nagemen	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Facility/Project Name	Local Grid Location of Well		, DE.	Well Name MW-301
WPL-Edgewater Generating Station Facility License, Permit or Monitoring No. 02524	Local Grid Origin (estin	mated:) or Long.	Well Location X	Wis. Unique Well No. DNR Well ID No. VV862
Facility ID 460021980	St. Plane632740.8 ft.	N, 25734	28.5 ft. E. S/C/N	Date Well Installed
Type of Well	Section Location of Waste/Se NE _{1/4} of NW 1/4 of Sec		⁴ N. R. 23 ⊠E	Well Installed By: Name (first, last) and Firm
Well Code/	Location of Well Relative to		Gov. Lot Number	Kevin Durst
Distance from Waste/ Enf. Stds. Sourceft. Apply	u Upgradient s d Downgradient n	Sidegradier	t	Badger State Drilling
	4 _ 61 ft. MSL ———		 Cap and lock? Protective cover: 	Yes No
B. Well casing, top elevation $= -\frac{60}{2}$	04 _42 ft. MSL		a. Inside diamete	$= \frac{6.0}{1}$ in.
C. Land surface elevation 60	1. 95 ft. MSL		b. Length:	_ <u>5.0</u> ft.
D. Surface seal, bottom _ 60145 ft. MS	-		c. Material:	Steel 🔀 0 4
12. USCS classification of soil near screen	\$22.757.50.34.51	1.3	d. Additional pro	Other No
GP GM GC GW S	SW SP		If yes, describ	
SM SC MLX MH	ст 🗌 сн 🔲 🖊		3. Surface scal:	Bentonite 🔀 3 0
	Yes 🔀 No			Concrete 0 1 Other 0
,	tary 5 0	 	4. Material between	well casing and protective pipe:
Hollow Stem At	100			Bentonite 30
o	ther			io #5 Sand Other 🗵
15. Drilling fluid used: Water 0 2	Air 01		5. Annular space se	al: a. Granular/Chipped Bentonite 3 3 nud weight Bentonite-sand slurry 3 5
V2 1111 2 4 1	None 99		bLbs/gal r	nud weight Bentonite slurry 3 1
16. Drilling additives used?	Yes 🔀 No		d % Bentor	ite Bentonite-cement grout 50
			eFt f. How installed	volume added for any of the above Tremie 0 1
Describe			f. How installed	Tremie pumped 0 2
17. Source of water (attach analysis, if requ	ıired):			Gravity 08
None			6. Bentonite seal:	a. Bentonite granules 3 3 3 3/8 in. 1/2 in. Bentonite chips 3 2
E. Bentonite seal, top601.45 ft. MS	L or <u>0</u> .5 ft.		c	Other Other
F. Fine sand, top 585.95 ft. MS	SL or 16 ft.		7. Fine sand materi	al: Manufacturer, product name & mesh size Ohio #7
G. Filter pack, top583.95 ft. MS	L or 18 ft.		b. Volume adde	0.5 ft ³
H. Screen joint, top581.95 ft. MS	L or 20 ft.		8. Filter pack mater	ial: Manufacturer, product name & mesh size Ohio #5
, , ,	Š.		b. Volume adde	d2 ft ³
I. Well bottom ft. MS	L or 25 ft.		9. Well casing:	Flush threaded PVC schedule 40 \(\infty 23\)
J. Filter pack, bottom 573.95 ft. MS	SL or 28 ft.			Flush threaded PVC schedule 80 Other Other
K. Borehole, bottomf65.95 ft. MS	SL or 36 ft.		 Screen material: a. Screen type: 	Factory cut X 11
L. Borehole, diameter8.5 in.				Continuous slot 0 1
M. O.D. well casing2.04 in.			b. Manufacturer c. Slot size:	0. <u>010</u> in.
N. I.D. well casing 2.0 in.		\	d. Slotted length 11. Backfill material	t:5.0 ft. (below filter pack): None 1 4
-			3/8	Bentonite Chips Other X
I hereby certify that the information on this		ne best of my kn	owledge.	
Signature of the Kyle	Kamer Firm SCS E	ENGINEERS.	2830 Dairy Drive,	Madison, WI 53718-6751

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

	Vatershed/Wastewater Remediation/Redevelopment	Waste Manag		MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
	Local Grid Location of Well-	N.	ft. BE.	Well Name MW-302
Facility License, Permit or Monitoring No. 02524	Local Grid Origin (estim	nated:) or \ Long	Well Location	Wis. Unique Well No. DNR Well ID No. VV861
Facility ID 460021980	St. Plane 632342.6 ft. N	v, <u>2573726</u>	6.3 ft. E. S/C/N	Date Well Installed
Type of Well Well Code/_ PZ	Section Location of Waste/So SE _{1/4} of NW 1/4 of Sec	urce 02.T14_1	N, R23	Well Installed By: Name (first, last) and Firm Kevin Durst
Distance from Waste/ Enf. Stds.	u Upgradient s	Sidegradient	Gov. Lot Number	Badger State Drilling
Sourceft. Apply	d X Downgradient n 5. 35 ft. MSL		Cap and lock?	Yes No
	515 ft, MSL	11.57	Protective cover p a. Inside diameter	
	265 ft. MSL		b. Length: c. Material:	$ \begin{array}{c} $
D. Surface seal, bottom61215 ft. MS 12. USCS classification of soil near screen	8243000347		d. Additional pro	tection? Other No
GP GM GC GW S	SW SP CH		If yes, describe	01 1 1
Bedrock 🗆		3.	Surface scal:	Concrete 01
· · ·	Yes ⊠No ary □ 50	4.	Material between	well casing and protective pipe:
Hollow Stem Av	ıger 🔀 4 1 💢 ther 💮		Ohi	o #5 Sand Bentonite 30
15. Drilling fluid used: Water 0 2	Air 01	Calcol Control	Annular space sea	al; a. Granular/Chipped Bentonite 3 3 3 and weight Bentonite-sand slurry 3 5
	None 99		Lbs/gal n	nud weight Bentonite slurry 31 ite Bentonite-cement grout 50
16. Drilling additives used?	Yes ⊠No	e	Ft	volume added for any of the above
Describe	nited).	f.	How installed:	Tremie pumped 0 2
None		688á	Bentonite seal:	Gravity 0 8 a. Bentonite granules 33
E. Bentonite seal, top 612.15 ft. MS	L or0.5 ft.		b/4 in. [X]	3/8 in. 1/2 in. Bentonite chips 3 2 Other
F. Fine sand, top 584.15 ft. MS	L or 28.5 ft.	7.	Fine sand materia	al: Manufacturer, product name & mesh size Ohio #7 sand
G. Filter pack, top582.15 ft. MS	L or 30.5 ft.		b. Volume added	10.5_ft ³
H. Screen joint, top580.15 ft. MS	L or 32.5 ft.	_ /	a	ial: Manufacturer, product name & mesh size Ohio #5 sand
I. Well bottom 575.15 ft. MS	L or 37.5 ft.		b. Volume addedWell casing:	Flush threaded PVC schedule 40 🔀 23
J. Filter pack, bottom572.65 ft. MS	L or40 ft.			Flush threaded PVC schedule 80 2 4 Other 24
K. Borehole, bottomft. MS	E-3	7777	Screen material: a. Screen type:	Factory cut X 11
L. Borehole, diameter 8.5 in.				Continuous slot 0 1 dia sch 40 PVC Other 0
M. O.D. well casing 2.4 in.			b. Manufacturerc. Slot size:d. Slotted length	0. <u>.010</u> in.
N. I.D. well casing $\frac{2.0}{1.0}$ in.		•		(below filter pack): None 1 4 Other 1
I hereby certify that the information on this		best of my know	vledge.	Other
Signature for Hyle	Kramer SCS E	NGINEERS, 28	330 Dairy Drive,	Madison, WI 53718-6751

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

	Watershed/Wastewater Remediation/Redevelopment	Waste Man		MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Facility/Project Name WPL-Edgewater Generating Station	Local Grid Location of Well		ft. E.	Well Name MW-303
Facility License, Permit or Monitoring No. 02524	Local Grid Origin (estin	mated:) or Long.	Well Location X	Wis. Unique Well No. DNR Well ID No. VV860
Facility ID 460021980	St. Plane 631609.4 ft. Section Location of Waste/S	N, 257349	96.7 ft. E. S/C/N	Date Well Installed $\frac{2}{m} \frac{4}{d} \frac{4}{d} \frac{\sqrt{2016}}{\sqrt{20}}$
Type of Well Well Code 12 / PZ	SE _{1/4 of} NW 1/4 of Se	c. 02.T14		Well Installed By: Name (first, last) and Firm Kevin Durst
Distance from Waste/ Enf. Stds.	Location of Well Relative to u Upgradient s	Sidegradient	Gov. Lot Number	Badger State Drilling
Sourceft. Apply 61	d Nowngradient n		1. Cap and lock?	X Yes No
	11. 99 ft. MSL		2. Protective cover p	oipe:
D. Well casing, top elevation = = =	09. 73 ft. MSL		b. Length:	n.
D. Surface seal, bottom _ 60923 ft. M.	Silvery Co.		c. Material:	Steel X 04
12. USCS classification of soil near scree	1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		d. Additional pro	tection? Yes No
GP GM GC GW :			If yes, describe	e: Steel Posts-3 Bentonite X 3 0
Bedrock			3. Surface seal:	Bentonite X 30 Concrete 01
_ · ·	Yes No	 	4 34	Other D
14. Drilling method used: Ro Hollow Stem A	uger X 4 1		4. Material between	well casing and protective pipe: Bentonite 3 0
	Other			io #5 sand Other Other 323
15. Drilling fluid used: Water 0 2	Air 0 1		5. Annular space se	al; a. Granular/Chipped Bentonite 3 3 3 and weight Bentonite-sand slurry 3 5
	None 99		cLbs/gal n	nud weight Bentonite slurry 3 1
16. Drilling additives used?	Yes 🛛 No			ite Bentonite-cement grout 50 volume added for any of the above
Describe			f. How installed	Tremie 0 1
17. Source of water (attach analysis, if req	uired):			Tremie pumped 0 2 Gravity 0 8
None			6. Bentonite seal:	a. Bentonite granules 33
E. Bentonite seal, top609.23 ft, MS	SL or <u>0.5</u> ft.		с	3/8 in. 1/2 in. Bentonite chips 3 2 Other
F. Fine sand, top 587.73 ft. MS	SL or 22 ft.		7. Fine sand materia	al: Manufacturer, product name & mesh size Ohio #7 sand
G. Filter pack, top 585.73 ft. Ms	SL or 24 ft.		a b. Volume added	1 0.5 ft ³
H. Screen joint, top 583.73 ft. Ms	SL or26 ft.		a	Ohio #5
I. Well bottom578.73 ft. MS	SL or 31 ft.		b. Volume added9. Well casing:	Flush threaded PVC schedule 40 🔀 23
J. Filter pack, bottom 576.73 ft. M	SL or 33 ft.			Flush threaded PVC schedule 80 2 4 Other Other
K. Borehole, bottom 576.73 ft. M	SL or 33 ft.		 Screen material: a. Screen type: 	Factory cut X 11
L. Borehole, diameter $-\frac{8.5}{100}$ in.				Continuous slot 0 1
M. O.D. well casing2.04 in.			b. Manufacturer c. Slot size:	0. <u>010</u> in.
N. I.D. well casing $\frac{2.0}{10.0}$ in.		1	d. Slotted length	1:5_0 ft. (below filter pack): None
I hereby certify that the information on thi	s form is true and correct to th	he best of my kno	owledge.	Otto S
Signature/ 2/2	Firm			Madison, WI 53718-6751

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10\$ and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

Route to: Solid Env. Response &	Waste□ Haz.Wa : Repair□ Unde	ste 🗌 Wastewater 🛭 rground Tanks 🗎 Od	=	
Facility/Project Name WPIL Engewater Site	County Name	vgan	Well Name ZB-C	
Facility License, Permit or Monitoring Number 2321	County Code	Wis Unique Wall N	imber DNR We	II Number
1. Can this well be purged dry?	Ys ON	11. Depth to Water	Before Development	After Development
2. Well development method surged with bailer and bailed surged with bailer and pumped	41 .	(from top of well casing)		
surged with block and bailed surged with block and pumped surged with block, bailed and pumped	42 62 70	Date	b_3104128 mm ddyy	1
compressed air bailed only	20 10	Time 12. Sediment in well	c. <u>[]</u> : <u>05</u> p.m.	
pumped only pumped slowly Other	51	bottom 13. Water clarity	Clear 10 Turbid 215	Clear pd 20 Turbid II 25
2, 1200 - 1 - 1	<u> 20 min.</u>		(Describe)	(Describe)
	16.5 ft.		5	
6. Volume of water in filter pack and well	gal	En in if drilling flui	ds were used and well is a	at solid waste facility:
7. Yolding of Wall Tunes of London	<u>O.O.</u>	14. Total suspended solids		
Volume of water added (if any) 9. Source of water added	<u>O</u> . <u>O</u> gal.	15. COD	ng/l	mg/l
10. Analysis performed on water added? (If yes, attach results) 16. Additional comments on development Well were peveloped Volume of water results the three pevelopment	Yes No O Ver moved 13	3 Days D	ove to slow	w recovery.
Well developed by: Person's Name and Firm		I hereby certify that of my knowledge.	the above information is	true and correct to the best
Name: Buan Leicham Firm: Miller Engineers +	6: 4:A	Print Initials:		
Firm: Miller Engineers L.	XICATISIS			is phientists

State of Wisconsin Department of Natural Resources

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/Wastev	vater	Waste Management			
Remediation/Rede	velopment	Other X			
Facility/Project Name	County Name		Well Name	***************************************	
WPL-Edgewater Generating Station		eyboygan			MW-301
Facility License, Permit or Monitoring Number	County Code	Wis. Unique Well Nu	mber		ell ID Number
FID 460021980, License #02524	<u>59</u>				
1. Can this well be purged dry? 2. Well development method surged with bailer and bailed surged with block and bailed surged with block and bailed surged with block and pumped surged with block, bailed and pumped surged with block, bailed and pumped	s	11. Depth to Water (from top of well casing) Date	Before Dev a. $\frac{5}{m m} / \frac{1}{d c}$ c. $\frac{12}{00}$ Clear $\boxed{1}$	23 ft. 5 /3a.minches	After Development $ \begin{array}{cccccccccccccccccccccccccccccccccc$
	60 min.		Turbid 1 (Describe)	5	Turbid 🔀 2 5 (Describe)
4. Depth of well (from top of well casisng) $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$					
5. Inside diameter of well2	0 in.				
6. Volume of water in filter pack and well casing	5 gal.				at solid waste facility:
8. Volume of water added (if any) 9. Source of water added NA	. — gai.	solids 15. COD		mg/l	mg/l
		0		6/1	
-		16. Well developed by	: Name (first, l	ast) and Firn	1
10. Analysis performed on water added? Yes (If yes, attach results)	No No	First Name: Kyle Firm: SCS ENGIN	NEERS	Last Nam	_{e:} Kramer
17. Additional comments on development:				er en der konsuleren konsul die den er en en	
Name and Address of Facility Court (C)	Davis				
Name and Address of Facility Contact /Owner/Responsible First Name: Last Name: Jim Name: Jakubiak	Party	I hereby certify that of my knowledge.	the above inf	ormation i	s true and correct to the best
Facility/Firm: Wisconsin Power and Light		Signature:	m Hy	2	
Street: 3739 Lakeshore Drive	and the second s	Print Name:	ghan Bl	odgett	for Kyle Kramer
City/State/Zip: Sheyboygan,WI 53081		Firm: SCS EN	GINEERS	<u>, , , , , , , , , , , , , , , , , , , </u>	The desired

State of Wisconsin Department of Natural Resources

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/Wastew	ater	Waste Management	:			
Remediation/Redev	velopment	Other	-			
Facility/Project Name	County Name		Well Name			-
WPL-Edgewater Generating Station		eyboygan		J	MW-302	
Facility License, Permit or Monitoring Number	County Code	Wis. Unique Well N	umber	DNR Wel	ll ID Number	
FID 460021980, License #02524	<u>59</u>	<u>VV86</u>	1	<u></u>		
 Can this well be purged dry? Well development method surged with bailer and bailed 		11. Depth to Water (from top of well casing)			After Development	
surged with bailer and pumped surged with block and bailed surged with block and pumped surged with block, bailed and pumped compressed air bailed only pumped only pumped slowly Other	1 2 2 2 0 0 0 0 1		c1:35	a.m. x p.m. inches	Clear 2 0 Turbid 2 5	<u>2016</u> у у
3. Time spent developing well15	50 min.		(Describe)		(Describe)	
4. Depth of well (from top of well casisng) $= \frac{36}{2}$.	15 ft.					
5. Inside diameter of well $\frac{2}{2}$.	<u>0</u> in.					
6. Volume of water in filter pack and well casing 9	_6 gal.					
7. Volume of water removed from well135.	_0 gal.	Fill in if drilling fluid			•	
8. Volume of water added (if any)	gal.	 Total suspended solids 		· mg/l	mg/l	
9. Source of water addedNA		15. COD		mg/l	mg/l	
10. Analysis performed on water added? Yes (If yes, attach results)		16. Well developed b First Name: Kyle Firm: SCS ENGI		ast) and Firm Last Name		
17. Additional comments on development:						
Name and Address of Facility Contact /Owner/Responsible First	Party	I hereby certify tha of my knowledge.	t the above inf	ormation is	true and correct to the bes	t
Facility/Firm: Wisconsin Power and Light		Signature: M	RUG			
Street: 3739 Lakeshore Drive		Print Name: Meg	han Blo	reget	For Kyle Krans	V
City/State/Zip: Sheyboygan,WI 53081		Firm: SCS EN	NGINEERS	<u> </u>	•	

State of Wisconsin Department of Natural Resources

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/Wastev	vater	Waste Management				
Remediation/Rede	velopment	Other				
Facility/Project Name	County Name		Well Name			-
WPL-Edgewater Generating Station		eyboygan		N	/IVV-303	
Facility License, Permit or Monitoring Number	County Code	Wis. Unique Well Nu	mber		ID Number	
FID 460021980, License #02524	59	<u>VV860</u>				
1. Can this well be purged dry? 2. Well development method surged with bailer and bailed		11. Depth to Water (from top of well casing)			After Develop	
surged with bailer and pumped surged with block and bailed surged with block and pumped surged with block, bailed and pumped compressed air bailed only pumped only pumped slowly 6 7 7 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9	2 2 0 0 0 0	17	c1:00_		016 m m d d] a.m.]p.m.
Other		13. Water clarity	Clear 1	0	Clear 20	
3. Time spent developing well	70 min.		Turbid X 1 (Describe)	5	Turbid 🔀 2 5 (Describe)	
4. Depth of well (from top of well casisng) $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	<u>. 15</u> ft.					
5. Inside diameter of well2,	<u>0</u> in.	,				
6. Volume of water in filter pack and well casing 8_	. <u>03</u> gal.	Fill in if drilling fluids	were used as	ad well is at	solid waste facili	hu-
7. Volume of water removed from well <u>23</u>	_0 gal.	14. Total suspended				
8. Volume of water added (if any)	gal.	solids				mg/1
9. Source of water added NA		15. COD		mg/l		mg/l
		Well developed by	: Name (first, la	ast) and Firm		
10. Analysis performed on water added? Yes (If yes, attach results)	No No	First Name: Kyle Last Name: Kramer				
1/9 A 131. 1		Firm: SCS ENGIN	IEERS			
17. Additional comments on development:						
Name and Address of Facility Contact/Owner/Responsible	Party	T11	.1 1			
First Jim Last Jakubiak Name:		I hereby certify that of my knowledge.	the above infe	ormation is	true and correct to	the best
Facility/Firm: Wisconsin Power and Light		Signature: 79/0	~ Belg			
Street: 3739 Lakeshore Drive		Print Name: Med		dgett	for Kyle	Kraner
City/State/Zip: Sheyboygan,WI 53081		Firm: SCS EN	GINEERS			Months

Appendix C

Laboratory Reports

C1	April 2020 Assessment Monitoring
C2	June Resample
C3	October 2020 Assessment Monitoring

C1	April 2020 Assessment Monitoring

April 24, 2020

Meghan Blodgett SCS ENGINEERS 2830 Dairy Drive Madison, WI 53718

RE: Project: 25220068 EDGEWATER CLOSED CCR

Pace Project No.: 40206073

Dear Meghan Blodgett:

Enclosed are the analytical results for sample(s) received by the laboratory on April 10, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

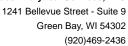
The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Green Bay

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436


Lan Mileny

Project Manager

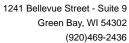
Enclosures

cc: Tom Karwoski, SCS ENGINEERS Nicole Kron, SCS ENGINEERS Jeff Maxted, ALLIANT ENERGY Marc Morandi, ALLIANT ENERGY

CERTIFICATIONS

Project: 25220068 EDGEWATER CLOSED CCR

Pace Project No.: 40206073


Pace Analytical Services Green Bay

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334

New York Certification #: 12064 North Dakota Certification #: R-150 Virginia VELAP ID: 460263

South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157

Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: 25220068 EDGEWATER CLOSED CCR

Pace Project No.: 40206073

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40206073001	MW301	Water	04/08/20 14:20	04/10/20 08:55
40206073002	MW302	Water	04/08/20 13:40	04/10/20 08:55
40206073003	MW303	Water	04/08/20 13:00	04/10/20 08:55
40206073004	2R0W	Water	04/08/20 15:10	04/10/20 08:55
40206073005	FIELD BLANK	Water	04/08/20 13:45	04/10/20 08:55

SAMPLE ANALYTE COUNT

Project: 25220068 EDGEWATER CLOSED CCR

Pace Project No.: 40206073

Lab ID	Sample ID	Method	Analysts	Analytes Reported
40206073001	MW301	EPA 6020	KXS	2
			HMG	7
		SM 2540C	HNT	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40206073002	MW302	EPA 6020	KXS	2
			HMG	7
		SM 2540C	HNT	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40206073003	MW303	EPA 6020	KXS	2
			HMG	7
		SM 2540C	HNT	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40206073004	2R0W	EPA 6020	KXS	2
			HMG	7
		SM 2540C	HNT	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40206073005	FIELD BLANK	EPA 6020	KXS	2
		SM 2540C	HNT	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3

PASI-G = Pace Analytical Services - Green Bay

Project: 25220068 EDGEWATER CLOSED CCR

Pace Project No.: 40206073

Date: 04/24/2020 04:30 PM

Lab ID:	40206073001	Collected:	04/08/20	14:20	Received: 04/	10/20 08:55 Ma	atrix: Water	
Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
-			ition Metho	od: EPA	3010			
7450	ug/L	100	30.3	10				
80800	ug/L	254	76.2	1	04/12/20 22:16	04/17/20 12:10	7440-70-2	
		- Green Bay						
7.82	Std. Units			1		04/08/20 14:20		
977	umhos/cm			1		04/08/20 14:20		
	_			-			7782-44-7	
				-				
_				-				
8.5	deg C			1		04/08/20 14:20		
,								
718	mg/L	20.0	8.7	1		04/13/20 17:27		
-								
7.9	Std. Units	0.10	0.010	1		04/13/20 09:39		H6
•								
12.5	mg/L	2.0	0.43	1		04/16/20 17:43	16887-00-6	
0.39	mg/L	0.32	0.095	1		04/16/20 17:43	16984-48-8	M0
298	mg/L	20.0	4.4	10		04/17/20 10:38	14808-79-8	
Lab ID:	40206073002	Collected:	04/08/20	13:40	Received: 04/	10/20 08:55 Ma	atrix: Water	
Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
•		•	ition Metho	od: EPA	3010			
1570	ug/L	10.0	3.0	1	04/12/20 22:16	04/17/20 12:51	7440-42-8	
66800	ug/L	254	76.2	1	04/12/20 22:16	04/17/20 12:51	7440-70-2	
•		- Green Bay						
		ĺ		1		04/08/20 13:40		
0.4	mg/L			1		04/08/20 13:40	7782-44-7	
	IIIU/L					UT/UU/ZU 13.4U	1102 77-1	
-107.6	mV			1		04/08/20 13:40		
	Analytical Pace Analytical Pac	Analytical Method: EPA 66 Pace Analytical Services 7450 ug/L 80800 ug/L Analytical Method: Pace Analytical Services 7.82 Std. Units 977 umhos/cm 6.9 mg/L 17.1 mV 37.12 NTU 599.17 feet 8.5 deg C Analytical Method: SM 25 Pace Analytical Services 718 mg/L Analytical Method: EPA 96 Pace Analytical Services 7.9 Std. Units Analytical Method: EPA 36 Pace Analytical Services 7.9 mg/L 0.39 mg/L 298 mg/L Lab ID: 40206073002 Results Units Analytical Method: EPA 66 Pace Analytical Services 98 1570 ug/L Analytical Method: EPA 66 Pace Analytical Services 99 1570 ug/L Analytical Method: EPA 66 Pace Analytical Services 99 1570 ug/L Analytical Method: EPA 66 Pace Analytical Services 99 1570 ug/L Analytical Method: EPA 66 Pace Analytical Services 99 1570 ug/L Analytical Method: EPA 66 Pace Analytical Services 99 7.56 Std. Units 476 umhos/cm	Analytical Method: EPA 6020 Prepara Pace Analytical Services - Green Bay 7450 ug/L 100 80800 ug/L 254 Analytical Method: Pace Analytical Services - Green Bay 7.82 Std. Units 977 umhos/cm 6.9 mg/L 17.1 mV 37.12 NTU 599.17 feet 8.5 deg C Analytical Method: SM 2540C Pace Analytical Services - Green Bay 718 mg/L 20.0 Analytical Method: EPA 9040 Pace Analytical Services - Green Bay 7.9 Std. Units 0.10 Analytical Method: EPA 300.0 Pace Analytical Services - Green Bay 12.5 mg/L 2.0 0.39 mg/L 0.32 298 mg/L 20.0 Lab ID: 40206073002 Collected: Results Units LOQ Analytical Method: EPA 6020 Prepara Pace Analytical Services - Green Bay 1570 ug/L 10.0 66800 ug/L 254 Analytical Method: Pace Analytical Services - Green Bay 1570 ug/L 10.0 66800 ug/L 254 Analytical Method: Pace Analytical Services - Green Bay 7.56 Std. Units 476 umhos/cm	Results	Results	Results Units LOQ LOD DF Prepared Analytical Method: EPA 6020 Preparation Method: EPA 3010 Pace Analytical Services - Green Bay 7450 ug/L 100 30.3 10 04/12/20 22:16 Analytical Method: Pace Analytical Services - Green Bay 1 04/12/20 22:16 Analytical Method: Pace Analytical Services - Green Bay 1 1 7.82 Std. Units 1 1 977 umhos/cm 1 1 6.9 mg/L 1 1 17.1 mV 1 1 37.12 NTU 1 1 4.0 39.9 mg/L 20.0 8.7 1 Analytical Method: SM 2540C Pace Analytical Services - Green Bay 7.9 Std. Units 0.10 0.010 1 Analytical Method: EPA 9040 Pace Analytical Services - Green Bay 1 2.0 0.43 1 4.2 mg/L 2.0 0.43 1 Analytical Method: EPA 6020<	Results	Results

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 25220068 EDGEWATER CLOSED CCR

Pace Project No.: 40206073

Date: 04/24/2020 04:30 PM

Sample: MW302	Lab ID:	40206073002	Collected	04/08/20	13:40	Received: 04/	10/20 08:55 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical Pace Ana	l Method: llytical Services	- Green Bay						
Static Water Level Temperature, Water (C)	595.33 11.3	feet deg C			1 1		04/08/20 13:40 04/08/20 13:40		
2540C Total Dissolved Solids	•	l Method: SM 25 llytical Services							
Total Dissolved Solids	316	mg/L	20.0	8.7	1		04/13/20 17:27		
9040 pH	•	l Method: EPA 9 llytical Services							
pH at 25 Degrees C	7.8	Std. Units	0.10	0.010	1		04/13/20 09:40		H6
300.0 IC Anions	•	l Method: EPA 3 llytical Services							
Chloride Fluoride Sulfate	19.2 0.97 65.3	mg/L mg/L mg/L	2.0 0.32 10.0	0.43 0.095 2.2	1 1 5		04/16/20 18:27 04/16/20 18:27 04/17/20 11:22	16984-48-8	
Sample: MW303	Lab ID:	40206073003	Collected:	04/08/20	13:00	Received: 04/	/10/20 08:55 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	-	I Method: EPA 6		ation Metho	od: EPA	.3010			
Boron Calcium	3380 144000	ug/L ug/L	10.0 254	3.0 76.2	1 1	04/12/20 22:16 04/12/20 22:16	04/17/20 12:57 04/17/20 12:57		
Field Data	Analytical Pace Ana	Method:	- Green Bay						
Field pH Field Specific Conductance Oxygen, Dissolved REDOX	6.70 1241 0.2 -102.9 87.60 588.66	Std. Units umhos/cm mg/L mV NTU feet			1 1 1 1 1		04/08/20 13:00 04/08/20 13:00 04/08/20 13:00 04/08/20 13:00 04/08/20 13:00 04/08/20 13:00	7782-44-7	
Turbidity Static Water Level Temperature, Water (C)	10.0	deg C			1		04/08/20 13:00		
Static Water Level	10.0 Analytical				1		04/08/20 13:00		

Project: 25220068 EDGEWATER CLOSED CCR

Pace Project No.: 40206073

Date: 04/24/2020 04:30 PM

Sample: MW303	Lab ID:	40206073003	Collected	04/08/20	0 13:00	Received: 04/	10/20 08:55 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
9040 pH	-	Method: EPA 9							
pH at 25 Degrees C	6.8	Std. Units	0.10	0.010	1		04/13/20 09:42		H6
300.0 IC Anions	-	Method: EPA 3 llytical Services							
Chloride	23.5	mg/L	10.0	2.2	5		04/16/20 19:27	16887-00-6	
Fluoride	<0.48	mg/L	1.6	0.48	5		04/16/20 19:27		D3
Sulfate	<2.2	mg/L	10.0	2.2	5		04/16/20 19:27	14808-79-8	D3
Sample: 2R0W	Lab ID:	40206073004	Collected	04/08/20	0 15:10	Received: 04/	10/20 08:55 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	-	Method: EPA 6			od: EPA	3010			
Boron	52.3	ug/L	10.0	3.0	1	04/12/20 22:16	04/17/20 13:04	7440-42-8	
Calcium	117000	ug/L	254	76.2	1	04/12/20 22:16	04/17/20 13:04	7440-70-2	
Field Data	Analytica Pace Ana	Method: llytical Services	- Green Bay						
Field pH	7.08	Std. Units			1		04/08/20 15:10		
Field Specific Conductance	1081	umhos/cm			1		04/08/20 15:10		
Oxygen, Dissolved	1.5	mg/L			1		04/08/20 15:10	7782-44-7	
REDOX	43.7	mV			1		04/08/20 15:10		
Turbidity	15.24	NTU			1		04/08/20 15:10		
Static Water Level Temperature, Water (C)	608.97 6.1	feet deg C			1 1		04/08/20 15:10 04/08/20 15:10		
2540C Total Dissolved Solids	•	Method: SM 25							
Total Dissolved Solids	604	mg/L	20.0	8.7	1		04/13/20 17:28		
9040 pH	•	Method: EPA 9							
pH at 25 Degrees C	7.1	Std. Units	0.10	0.010	1		04/13/20 09:44		H6
300.0 IC Anions	•	Method: EPA 3 alytical Services							
Chloride	67.5	mg/L	10.0	2.2	5		04/17/20 11:37	16887-00-6	
Fluoride	<0.095	mg/L	0.32	0.095	1		04/16/20 19:41		

(920)469-2436

ANALYTICAL RESULTS

Project: 25220068 EDGEWATER CLOSED CCR

Pace Project No.: 40206073

Date: 04/24/2020 04:30 PM

Sample: FIELD BLANK	Lab ID:	Collecte	d: 04/08/20	13:45	Received: 04/								
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual				
6020 MET ICPMS	•	Analytical Method: EPA 6020 Preparation Method: EPA 3010 Pace Analytical Services - Green Bay											
Boron Calcium	<3.0 <76.2	ug/L ug/L	10.0 254	3.0 76.2	1 1	04/12/20 22:16 04/12/20 22:16	04/16/20 14:23 04/16/20 14:23						
2540C Total Dissolved Solids	•	Analytical Method: SM 2540C Pace Analytical Services - Green Bay											
Total Dissolved Solids	10.0J	mg/L	20.0	8.7	1		04/13/20 17:28						
9040 pH	•	Method: EPA 9 lytical Services		у									
pH at 25 Degrees C	6.2	Std. Units	0.10	0.010	1		04/13/20 09:49		H6				
300.0 IC Anions	•	Method: EPA 3 lytical Services		у									
Chloride Fluoride Sulfate	<0.43 <0.095 <0.44	mg/L mg/L mg/L	2.0 0.32 2.0	0.43 0.095 0.44	1 1 1		04/16/20 19:56 04/16/20 19:56 04/16/20 19:56	16984-48-8					

(920)469-2436

QUALITY CONTROL DATA

Project: 25220068 EDGEWATER CLOSED CCR

Pace Project No.: 40206073

Boron

Calcium

Date: 04/24/2020 04:30 PM

QC Batch: 352275 Analysis Method: EPA 6020
QC Batch Method: EPA 3010 Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40206073001, 40206073002, 40206073003, 40206073004, 40206073005

METHOD BLANK: 2039942 Matrix: Water

Associated Lab Samples: 40206073001, 40206073002, 40206073003, 40206073004, 40206073005

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed <3.0 10.0 04/16/20 14:16 ug/L <76.2 254 04/16/20 14:16 ug/L

LABORATORY CONTROL SAMPLE: 2039943

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Boron 500 469 94 80-120 ug/L Calcium 5000 5100 102 80-120 ug/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2039944 2039945 MS MSD 40206073006 Spike Spike MS MSD MS MSD % Rec Max Conc. Parameter Units Result Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Boron ug/L 65.8 500 500 538 535 95 75-125 20 Calcium 88800 5000 5000 91900 94800 62 75-125 20 P6 ug/L 118 3

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Qualifiers

QUALITY CONTROL DATA

Project: 25220068 EDGEWATER CLOSED CCR

Pace Project No.: 40206073

QC Batch: 352371 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40206073001, 40206073002, 40206073003, 40206073004, 40206073005

METHOD BLANK: 2040332 Matrix: Water

Associated Lab Samples: 40206073001, 40206073002, 40206073003, 40206073004, 40206073005

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <8.7 20.0 04/13/20 17:22

LABORATORY CONTROL SAMPLE: 2040333

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits

Total Dissolved Solids mg/L 549 558 102 80-120

SAMPLE DUPLICATE: 2040334

40206049001 Dup Max

ParameterUnitsResultResultRPDRPDQualifiersTotal Dissolved Solidsmg/L646684610

SAMPLE DUPLICATE: 2040335

Date: 04/24/2020 04:30 PM

40206073001 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 718 mg/L 696 3 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 25220068 EDGEWATER CLOSED CCR

Pace Project No.: 40206073

QC Batch: 352315 Analysis Method: EPA 9040
QC Batch Method: EPA 9040 Analysis Description: 9040 pH

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40206073001, 40206073002, 40206073003, 40206073004, 40206073005

SAMPLE DUPLICATE: 2040062

40205757001 Dup Max RPD RPD Qualifiers Parameter Units Result Result pH at 25 Degrees C 8.0 Std. Units 8.0 0 20 H6

SAMPLE DUPLICATE: 2040063

Date: 04/24/2020 04:30 PM

		40205948001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
pH at 25 Degrees C	Std. Units	7.4	7.5	1	2	0 H6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 25220068 EDGEWATER CLOSED CCR

LABORATORY CONTROL SAMPLE: 20/1150

Date: 04/24/2020 04:30 PM

Pace Project No.: 40206073

QC Batch: 352599 Analysis Method: EPA 300.0
QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40206073001, 40206073002, 40206073003, 40206073004, 40206073005

METHOD BLANK: 2041158 Matrix: Water

Associated Lab Samples: 40206073001, 40206073002, 40206073003, 40206073004, 40206073005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Chloride	mg/L	<0.43	2.0	04/16/20 10:24	
Fluoride	mg/L	< 0.095	0.32	04/16/20 10:24	
Sulfate	mg/L	< 0.44	2.0	04/16/20 10:24	

LABORATORT CONTROL SAWIFLE.	2041139	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	20	20.3	101	90-110	
Fluoride	mg/L	2	2.0	99	90-110	
Sulfate	mg/L	20	20.1	100	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2041	160	2041161								
			MS	MSD								
		40206062001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	421	400	400	842	834	105	103	90-110	1	15	
Fluoride	mg/L	8.1	40	40	49.5	49.1	103	102	90-110	1	15	
Sulfate	mg/L	20.4J	400	400	461	456	110	109	90-110	1	15	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2041	162	2041163								
			MS	MSD								
		40206073001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	12.5	20	20	34.4	34.3	109	109	90-110	0	15	
Fluoride	mg/L	0.39	2	2	2.6	2.6	112	112	90-110	0	15	M0
Sulfate	mg/L	298	200	200	481	495	92	99	90-110	3	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 25220068 EDGEWATER CLOSED CCR

Pace Project No.: 40206073

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 04/24/2020 04:30 PM

D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

H6 Analysis initiated outside of the 15 minute EPA required holding time.

M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

P6 Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the

spike level.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 25220068 EDGEWATER CLOSED CCR

Pace Project No.: 40206073

Date: 04/24/2020 04:30 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40206073001	MW301	EPA 3010	352275	EPA 6020	352306
40206073002	MW302	EPA 3010	352275	EPA 6020	352306
40206073003	MW303	EPA 3010	352275	EPA 6020	352306
40206073004	2R0W	EPA 3010	352275	EPA 6020	352306
40206073005	FIELD BLANK	EPA 3010	352275	EPA 6020	352306
40206073001	MW301				
10206073002	MW302				
40206073003	MW303				
40206073004	2R0W				
40206073001	MW301	SM 2540C	352371		
10206073002	MW302	SM 2540C	352371		
40206073003	MW303	SM 2540C	352371		
40206073004	2R0W	SM 2540C	352371		
40206073005	FIELD BLANK	SM 2540C	352371		
40206073001	MW301	EPA 9040	352315		
40206073002	MW302	EPA 9040	352315		
10206073003	MW303	EPA 9040	352315		
10206073004	2R0W	EPA 9040	352315		
40206073005	FIELD BLANK	EPA 9040	352315		
40206073001	MW301	EPA 300.0	352599		
40206073002	MW302	EPA 300.0	352599		
40206073003	MW303	EPA 300.0	352599		
40206073004	2R0W	EPA 300.0	352599		
40206073005	FIELD BLANK	EPA 300.0	352599		

	(Please Print C]	<u>UPPER MIDWEST REGION</u>									Page 1	of ⊱				
Company Na	me: $ SCS \mathcal{E}_{l}$	nginee.	Z		~	./	4		,•			MN: 61	2-607-1700	WI: 920-469-2436) 5 of
Branch/Loca		on WI			/_/	eace	? Ana	llytic ecelebs	iai -				•		40	80(A)	
Project Conta	act: Tom Ka	rrwoski		1 /			H H H	ercens.	.c.ara					Quote #:			0. 0.
Phone:	\$ 608 21	6 7369)] '	C	H	NI	OI	F C	US	TO	DY		Mail To Contact:			
Project Numb				A=N	<u>'Preservation Codes</u> A=None B=HCL C=H2SO4 D=HNO3 E=DI Water F=Methanol G=NaOH							nol G≕NaC	он	Mail To Company:			
Project Name	: Edgewa	ter		H=S	odium Bisul	fate Solut	ion	i≕Sodiu	m Thiosul	ifate .	J=Other			Mail To Address:			Service Control
Project State:					ERED? B/NO)	Y/N	N	N	N	T N	N			1			
Sampled By (Print): ZACH W	IA,TSON			RVATION DE)*	Pick Letter	A	A	D	D	D			Invoice To Contact:			
Sampled By (1		1						20	101/			Invoice To Company:			
PO#:			Regulatory Program:			Sete	8		200	756/855	120	1		Invoice To Address:			
Data Packa		S/MSD	Ma = Air	trix Code: W = Water	3	Requ	K		1	3	1						
☐ EPA	A Level III LUON	billable) B	= Biota = Charcoal = Oil	DW = Drinki GW = Groun SW = Surface	nd Water		8	18	STANKAR CO	, r	Reka			Invoice To Phone:			
		ur sample s	= Soil = Sludge	WW = Wast WP = Wipe LECTION	e Water	Analyse	X		8	Radum	1			CLIENT		OMMENTS	Profile #
PACE LAB#	CLIENT FIE		DATE	TIME	MATRIX		P			<u> </u>				COMMENTS	(Lap	Use Only)	
00/	<u>Mw30</u>	<u>/</u>	14-8	1420	GW		K		K							- 1	
004	MW30.	2 0	19-8	1340	GW		/	<u> </u>								16M-	
003	MW30		4.6		CW	<u> </u>	4			1						1 '	
004	2ROU		4-8	1570	600		4										
005		eld Black		1345	W												
206	MW30.	Carry Miller Transcript and Carry Street Co.	4-7	1320	GW			\angle	K,		/						
007	Field Bi	lank	4-7	1335	W		_		4	\angle	/						
008	MW30	/	4-7	1531	GW		\angle										
009	MW304	<i>[</i> -	4-7	1216	600												
0/0	MW303		4-8	930	6W		\angle	\leq									
011	MW302	L	4-8	1020	6W												
	17. 6		<u> </u>			ļ.							l_			PACE Proje	act No
	naround Time Reque AT subject to approve			acyl		atso.	n	0.0000000000000000000000000000000000000	te/Time: 8-20	120	/730	Received By		Date/Time:		-4.00 Na	(17)3
Transmit Preli	Date Needed: im Rush Results by (compl	ete what you war			OCIL	Hecs		4-10	te/Time:)ZD	08	333	Received By	watt	Ulu 4-10-7	,083	Receipt Temp =	2007-00
Email #1:			PORTOCOPOR PERCENT	quished By:	0			Da	te/Time:			Received By	r.	Ofac Date/Time:		Sample Rec	eint pH
Email #2: Felephone:			Relin	quished By:				Da	te/Time:			Received By	r	Date/Time:			isted
Fax:																College Custo	98897889942-00127-00128-0.14 CASA
Samples on HOLD are subject to Relinquisher special pricing and release of liability			quished By:	uished By: Date/Time: Received By:							Date/Time: Present Not Present Intact Not Intact						

Sample Preservation Receipt Form

Client Name:

Project # 40000073

Initial where complete All containers needing preservation have been checked and noted below. Yes □No □N/A /Date/ Time: Lab Lot# of pH paper://)US279/ Lab Std #ID of preservation (if pH adjusted): (OA Vials (>6mm) 풉 adjusted **Plastic** Vials Jars General Glass 12SO4 pH ≤2 laOH+Zn Act aOH pH ≥12 Volume pH ≤2 (mL) WGFU WPFU VG9M **VG9D** JGFU AG2S VG9A DG9T VG9U **VG9H** 1690 AG1H **BG3U** BP3N **BP3S** AG10 BG1U AG5U **BP1U BP3U BP3B** SP5T 1809H S S Pace Lab # 2.5 / 5 / 10 001 2.5 / 5 / 10 002 2.5 / 5 / 10 9 003 a 2.5 / 5 / 10 004 2.5 / 5 / 10 2 005 2.5 / 5 / 10 Э 7 a 006 2.5 / 5 / 10 2 007 2.5 / 5 / 10 008 2.5 / 5 / 10 ጋ 009 2.5 / 5 / 10 2 010 2.5 / 5 / 10 011 4 2.5/5/10 012 2.5 / 5 / 10 013 2.5 / 5 / 10 014 2.5 / 5 / 10 015 2.5 / 5 / 10 016 2.5 / 5 / 10 017 2.5 / 5 / 10 018 **2**.5 / 5 / 10 019 2.5/5/10 020 Headspace in VOA Vials (>6mm): □Yes □No □M/A *If yes look in headspace column Exceptions to preservation check: VOA, Coliform, TOC, TOX, TOH, O&G, WI DRO, Phenolics, Other: JGFU 4 oz amber jar unpres 40 mL clear ascorbic BP1U 1 liter plastic unpres VG9A AG1U 1 liter amber glass JG9U 9 oz amber jar unpres DG9T 40 mL amber Na Thio BP3U 250 mL plastic unpres BG1U 1 liter clear glass WGFU 4 oz clear jar unpres 40 mL clear vial unpres BP3B 250 mL plastic NaOH VG9U AG1H 1 liter amber glass HCL WPFU 4 oz plastic jar unpres VG9H 40 mL clear vial HCL AG4S 125 mL amber glass H2SO4 BP3N 250 mL plastic HNO3 120 mL plastic Na Thiosulfate 40 mL clear vial MeOH SP5T 250 mL plastic H2SO4 VG9M

VG9D

40 mL clear vial Di

ZPLC

GN

ziploc bag

AG4U 120 mL amber glass unpres

AG5U 100 mL amber glass unpres

AG2S 500 mL amber glass H2SO4 BG3U 250 mL clear glass unpres

BP3S

	~)	
)		
	Pace Analy	tioo!®
/	PaceAllaly	licai
/		
1241 Pollov	ue Street, Gree	n Dov. \All E420

Document Name:
Sample Condition Upon Receipt (SCUR)

Document No.: ENV-FRM-GBAY-0014-Rev.00

Document Revised: 26Mar2020

Author:

Pace Green Bay Quality Office

Sample Condition Upon Receipt Form (SCUR)

Client Name: Courier: CS Logistics Fed Ex Speedee UPS Waltco Client Pace Other: Tracking #: Custody Seal on Cooler/Box Present: Yes no Seals intact: Yes Custody Seal on Samples Present: Yes no Seals intact: Yes Packing Material: Bubble Wrap Bubble Bags None Cooler Temperature Uncorr: Wolf / / / / / / / / / / / / / / / / / / /				
Custody Seal on Cooler/Box Present:	Project #: 40206073 altco ####################################			
Temp Blank Present:	□ no ther			
Temp should be above freezing to 6°C. Biota Samples may be received at ≤ 0°C if shipped on Dry Ice. Chain of Custody Present: Chain of Custody Filled Out: Chain of Custody Relinquished: Sampler Name & Signature on COC: Samples Arrived within Hold Time: - VOA Samples frozen upon receipt Tyes □No □N/A 4. Date/Tim	Person examining contents:			
Biota Samples may be received at ≤ 0°C if shipped on Dry Ice. Chain of Custody Present: Chain of Custody Filled Out: Chain of Custody Relinquished: Sampler Name & Signature on COC: Samples Arrived within Hold Time: - VOA Samples frozen upon receipt Cyes □No □N/A 4. Date/Tim	Frozen: yes no Date: //nitias			
Chain of Custody Filled Out: Chain of Custody Relinquished: Sampler Name & Signature on COC: Samples Arrived within Hold Time: - VOA Samples frozen upon receipt □Yes □No □N/A 3. 5. □Ate/Tim	Labeled By Initials:			
Chain of Custody Relinquished: Sampler Name & Signature on COC: Samples Arrived within Hold Time: - VOA Samples frozen upon receipt Description				
Sampler Name & Signature on COC:	at Mail Throne Project 4 4			
Samples Arrived within Hold Time: - VOA Samples frozen upon receipt □Yes □No □Ate/Tim	<i>a, , , , , , , , , , , , , , , , , , , </i>			
- VOA Samples frozen upon receipt □Yes □No □ate/Tim				
Short Hold Time Analysis (<72hr): ✓ Yes □No 6.				
Rush Turn Around Time Requested: □Yes ZÎNo 7.				
Sufficient Volume: For Analysis: Yes Ono MS/MSD: Oyes Ono On/A				
Correct Containers Used: ✓ Yes □No 9.				
-Pace Containers Used: ✓Yes □No □N/A				
-Pace IR Containers Used: □Yes □No □7N/A				
Containers Intact: ☐Yes ☐No 10.				
Filtered volume received for Dissolved tests Yes No No No No No No No No				
Sample Labels match COC: -Includes date/time/ID/Analysis Matrix: Yes TNo DN/A 12.	5-4ime 1425 402			
Trip Blank Present: □Yes □No □N/A 13.	St.			
Trip Blank Custody Seals Present □Yes □No 🗖N/A				
Pace Trip Blank Lot # (if purchased):				
Client Notification/ Resolution: Person Contacted: Comments/ Resolution: Date/Time:	If checked, see attached form for additional comments			

C2 June Resample

July 06, 2020

Meghan Blodgett SCS ENGINEERS 2830 Dairy Drive Madison, WI 53718

RE: Project: 25220068.00 WPL-EDGEWATER

Pace Project No.: 40210355

Dear Meghan Blodgett:

Enclosed are the analytical results for sample(s) received by the laboratory on June 30, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

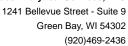
The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Green Bay

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436


Lan Mileny

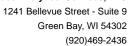
Project Manager

Enclosures

cc: Tom Karwoski, SCS ENGINEERS Nicole Kron, SCS ENGINEERS Jeff Maxted, ALLIANT ENERGY Marc Morandi, ALLIANT ENERGY

CERTIFICATIONS

Project: 25220068.00 WPL-EDGEWATER

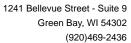

Pace Project No.: 40210355

Pace Analytical Services Green Bay

North Dakota Certification #: R-150

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 Virginia VELAP ID: 460263

South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

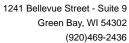


SAMPLE SUMMARY

Project: 25220068.00 WPL-EDGEWATER

Pace Project No.: 40210355

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
40210355001	MW-301	Water	06/26/20 14:00	06/30/20 11:40	
40210355002	FIELD BLANK	Water	06/26/20 14:05	06/30/20 11:40	

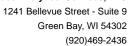

SAMPLE ANALYTE COUNT

Project: 25220068.00 WPL-EDGEWATER

Pace Project No.: 40210355

Lab ID	Sample ID	Method	Analysts	Analytes Reported
40210355001	MW-301		AXL	7
		EPA 300.0	HMB	1
40210355002	FIELD BLANK	EPA 300.0	НМВ	1

PASI-G = Pace Analytical Services - Green Bay



Project: 25220068.00 WPL-EDGEWATER

Pace Project No.: 40210355

Date: 07/06/2020 03:16 PM

Sample: MW-301	Lab ID:	40210355001	Collecte	ed: 06/26/20	14:00	Received: 06	6/30/20 11:40 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytica	l Method:							
	Pace Ana	alytical Services	- Green Ba	ay					
Field pH	7.53	Std. Units			1		06/26/20 14:00		
Field Specific Conductance	983	umhos/cm			1		06/26/20 14:00		
Oxygen, Dissolved	5.47	mg/L			1		06/26/20 14:00	7782-44-7	
REDOX	49.1	mV			1		06/26/20 14:00		
Turbidity	62.57	NTU			1		06/26/20 14:00		
Static Water Level	597.89	feet			1		06/26/20 14:00		
Temperature, Water (C)	16.8	deg C			1		06/26/20 14:00		
300.0 IC Anions	Analytical Method: EPA 300.0								
	Pace Ana	alytical Services	- Green Ba	ay					
Fluoride	0.26J	mg/L	0.32	0.095	1		07/01/20 12:54	16984-48-8	MO

Project: 25220068.00 WPL-EDGEWATER

Pace Project No.: 40210355

Date: 07/06/2020 03:16 PM

Sample: FIELD BLANK Lab ID: 40210355002 Collected: 06/26/20 14:05 Received: 06/30/20 11:40 Matrix: Water Parameters Results Units LOQ LOD DF Prepared CAS No. Analyzed Qual Analytical Method: EPA 300.0 300.0 IC Anions Pace Analytical Services - Green Bay Fluoride < 0.095 mg/L 0.32 0.095 07/01/20 13:38 16984-48-8

(920)469-2436

QUALITY CONTROL DATA

Project: 25220068.00 WPL-EDGEWATER

Pace Project No.: 40210355

Date: 07/06/2020 03:16 PM

QC Batch: 359094 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40210355001, 40210355002

METHOD BLANK: 2076786 Matrix: Water

Associated Lab Samples: 40210355001, 40210355002

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Fluoride mg/L <0.095 0.32 07/01/20 11:54

LABORATORY CONTROL SAMPLE: 2076787

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Fluoride mg/L 2.0 99 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2076788 2076789

MS MSD

40210355001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Conc. Limits 0.26J 2 15 M0 Fluoride mg/L 2 2.5 2.6 114 116 90-110

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 25220068.00 WPL-EDGEWATER

Pace Project No.: 40210355

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 07/06/2020 03:16 PM

M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 25220068.00 WPL-EDGEWATER

Pace Project No.: 40210355

Date: 07/06/2020 03:16 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40210355001	MW-301				
40210355001	MW-301	EPA 300.0	359094		
40210355002	FIELD BLANK	EPA 300.0	359094		

Company N	(Please Print Clearly) ame: SCS Enginul ation: 25 - Madis	US]	, 5	D			,0			ALC: HEREIN		<u>/EST REGION</u> -1700 WI : 9	하다 하다 나는 말이 없어요. 나다.	. (Page 1 2035	of C
Branch/Loc	ation: 25 - Madis	~Qx		/_/	rac	e Ana									40	4035	5
Project Con		4	1 /			www.p	ecelabs	s.com						Quote #:			
Phone:	1,0		1 '	(SH.	AIN	O	FC	UST	O	DY		М	ail To Contact:	Ton	n Karwo Engill	5Ki
Project Num	1ber: 25220008	00.0	A=N			=H2SO4	Madazantory to accept	vation Coc	des		ol G=N		Ma	il To Company:	SCS	Enaine	ers
Project Nam		Control of the Contro		Sodium Bist				um Thiosul		Other			Ma	ail To Address:	1	 U	
Project Stat		<u> </u>		ERED? S/NO)	Y/N	M											
Sampled By	∧ . I	SOM	PRESE	RVATION	Pick	1λ							Inve	oice To Contact:	Tic -		ν,
Sampled By		0000	1 (60	ODE)*	Lette	41,							Invo	ice To Company	: kc		١(
PO#:	(Sign) Today To Color	Regulatory Program:			lested	ါ သ								ice To Address:		O Dairy dison, v	Drive
	ilable) MS/MSD	Ma A = Air	trix Code: W = Water	S	- B	1-3									Mare	dison, i	NI 53.
	PA Level III (billable)	B = Biota C = Charcoal	DW = Drink GW = Grou	nd Water	8	Noride							Inv	oice To Phone:			
PACE LAB	your sample		SW = Surfa WW = Was WP = Wipe LECTION	te Water	Amaly	12								CLIENT OMMENTS		COMMENTS Use Only)	Profile #
001	MM-301	WA4	1400	6W		X								MS/MS			1
002	-TR-1	11/	1405		:	KV2							TRIX	n tumau	hind		
	1.0-1	 	1.00	1 7 7										1010	+ -	<u> </u>	
					1												
			-														
			 		7.									2.00	1		
			!			-											
								<u> </u>									
			1												<u> </u>		
	urnaround Time Requested Prelin		ngylshed By:	<u> </u> '. (<u> </u>	Di /	ate/Time:	-/d0d:	$\frac{1}{\lambda}$	Received	I By:		Date/Time:	<u>. I</u>	PACE Pro	oject No.
(Rush	TAT subject to approval/surcharge Date Needed:	Rélir	nquished By:	البح	<u> </u>		Da	ate/Time:			Received	ر ر ا	1156	Date/Time:		14011	5000
Email #1:	relim Rush Results by (complete what you w	vant): 20gî h <i>e</i> R ^{elir}	CSI	-de	13H	<u>->cs</u>	100000000000000000000000000000000000000	-/30/7 ate/Time:	110 OI	10	Received	w	UNY	Ruce 4131 Date/Time:	rzo 114	Receipt Temp = A	ROT °C
Email #2: Felephone:		であれ ^で Relir	rquished By:				Da	ate/Time:			Received	By:		Date/Time:		OK / Ac	
Fax:	Samples on HOLD are subject to		nquished By:					ate/Time:			Received			Date/Time:		Cooler Cus Present / N	ot Present
et	pecial pricing and release of liability															Intact N	ot Intact

Pace Container Order #663400

	l			
	-		_	7
	ı	\ C	Š)
		1	ر ۲	
		`)	
۲))	

Addi	Addresses -					
Order By:	3y :		Ship To:		Return To:	То:
Company SCS ENGINEERS	SCS ENGII	VEERS	Company SCS ENGINEERS	INEERS	Company	Company Pace Analytical Green Bay
Contact Blodgett, Meghan	Slodgett, M	eghan	Contact Blodgett, Meghan	Veghan	Contact	Milewsky, Dan
Email n	nblodgett@	Email mblodgett@scsengineers.com	Email mblodgett	Email mblodgett@scsengineers.com	Email	Email dan.milewsky@pacelabs.com
Address 2	2830 Dairy Drive	Drive	Address 2830 Dairy Drive	y Drive	Address	1241 Bellevue Street
Address 2		and the second s	Address 2		Address 2	Suite 9
City	City Madison		City Madison		City	Green Bay
State WI		Zip 53718	State WI	Zip 53718	State	Wi Zip 54302
Phone 6	Phone 608-216-7362	162	Phone 608-216-7362	362	Phone	(920)469-2436
Info						
Project	: Name	Project Name Alliant Edgewater Fluoride	Due Date 06/25/2020	0 Profile 4908		Quote
Project Ma	anager M		Return Date		omical	Location
Trin Blanke	luke				1	
קיי מי	2			Labels		polities
<u>ğ</u>	Include Trip Blanks	lanks	X	Blank		Boxed Cases
			<u> </u>	Pre-Printed No Sample IDs		Individually Wrapped
				rie-rillied vviii Sample Lys		Grouped by Sample ID/Matrix
ー Return	Return Shipping Labe	g Labels ————	Misc -			
် [No Shipper		ئ 	: : : : : : : : : : : : : : : : : : :		
₩ [][With Shipper		<u>₩</u>	Sampling instructions Custody Seal		Extra Bubble Wrap Short Hold/Rush Stickers
				Temp. Blanks		X DI Water [1 Liter(s)
COC Options Number of F	COC Options ——— Number of Blanks	ınks	Š ×	Coolers		USDA Regulated Soils
	Pre-Printed			Syringes		
# of Samples	Matrix	Test	Container	Total # of	Lot #	Notes
2	ΙM	Fluoride by 300.0	250mL plastic unpres	2 0 M-	M-9-311-06BB	
•	WT	Lab DI Water - I liter	1 liter lab DI water	1 0 NA		

Hazard Shipping Placard In Place: NA

*Sample receiving hours are typically 8am-5pm, but may differ by location. Please check with your Pace Project Manager.

*Pace Analytical reserves the right to return hazardous, toxic, or radioactive samples to you. *Pace Analytical reserves the right to charge for unused bottles, as well as cost associated with sample storage/disposal.

*Payment term are net 30 days. *Please include the proposal number on the chain of custody to insure proper billing.

:	<i>i</i>		
CLIENT USE (Optional):	Date Rec'd:	Received By:	Verified By:
CLIENT	ATTENDATION OF THE PROPERTY OF		
- 1,			
	A Transport		
Sample			

F-ALL-C-009-rev.00, 19Dec2016

LAB USE:

Prepared By: Mai Yer Her **Ship Date**: 06/24/2020

Verified By:

Page 1 of 1

Page 11 of 13

Sample Preservation Receipt Form
Project # 4024035

Pace Analytical Services, LLC [™] 1241 Bellevue Street, Suite 9 5 Green Bay, WI 54302 €

All containers needing preservation have been checked and noted below: □Yes □No 万N/A

Client Name:

Initial when Date/

completed: Time: Lab Lot# of pH paper: Lab Std #ID of preservation (if pH adjusted): PH 29 /OA Vials (>6mm) H after adjusted Glass **Plastic Vials** Jars General laOH+Zn Act IaOH pH ≥12 12SO4 pH <2 Volume INO3 pH ≤2 WGFU (mL) AG1H VG9M WPFU AG10 AG4S AG4U AG5U AG2S BG3U **BP1U BP3U** BP3B BP3N VG9A DG9T VG9U VG9H VG9D JGFU **BP3S** 1690 SP5T Pace Lab # 001 2.5 / 5 / 10 002 2.5 / 5 / 10 003 2.5 / 5 / 10 004 2.5/5/10 005 2.5 / 5 / 10 006 2.5 / 5 / 10 007 2.5 / 5 / 10 008 2.5 / 5 / 10 009 2.5 / 5 / 10 010 2.5 / 5 / 10 011 2.5 / 5 / 10 012 2.5/5/10 013 2.5 / 5 / 10 014 2.5 / 5 / 10 015 2.5 / 5 / 10 016 2.5 / 5 / 10 017 2.5 / 5 / 10 018 2.5 / 5 / 10 019 2.5 / 5 / 10 020

Exceptions to preservation check: VOA, Coliform, TOC, TOX, TOH, O&G, WI DRO, Phenolics, Other:

Headspace in VOA Vials (>6mm) : □Yes □No 📶N/A *If yes look in headspace column

AG1U 1 liter amber glass	BP1U	1 liter plastic unpres	VG9A	40 mL clear ascorbic	JGFU	4 oz amber jar unpres
BG1U 1 liter clear glass	BP3U	250 mL plastic unpres	DG9T	40 mL amber Na Thio	JG9U	9 oz amber jar unpres
AG1H 1 liter amber glass HCL	BP3B	250 mL plastic NaOH	VG9U	40 mL clear vial unpres	WGFU	4 oz clear jar unpres
AG4S 125 mL amber glass H2SO4	BP3N	250 mL plastic HNO3	VG9H	40 mL clear vial HCL	WPFU	4 oz plastic jar unpres
AG4U 120 mL amber glass unpres	BP3S	250 mL plastic H2SO4	VG9M	40 mL clear vial MeOH	SP5T	120 mL plastic Na Thiosulfate
AG5U 100 mL amber glass unpres			VG9D	40 mL clear vial DI	ZPLC	ziploc bag
AG2S 500 mL amber glass H2SO4					GN	
BG3U 250 mL clear glass unpres					A TRACK	

2.5 / 5 / 10

Pace Analytical * 1241 Bellevue Street, Green Bay, WI 54302

Document Name:
Sample Condition Upon Receipt (SCUR)

Document No.: ENV-FRM-GBAY-0014-Rev.00

.

Document Revised: 26Mar2020

Author:

Pace Green Bay Quality Office

Sample Condition Upon Receipt Form (SCUR)

		Project #	:	
Client Name: SCS			/ • · · · · · · · · · · · · · · · · · ·	l0210355
Courier: CS Logistics Fed Ex Speedee	T UPS T	Waltco	WUH · 4	MZIMOOO
Client Pace Other:				
Tracking #: 1483062920	v.	a arraga	40210355	B
Custody Seal on Cooler/Box Present: yes n	o Seals inta	ves ⊏ no	10210000	
Custody Seal on Samples Present: yes no		act: Tyes I no		
Packing Material: 🔲 Bubble Wrap 📮 Bubble I				
		et Blue Dry None	Samples of	on ice, cooling process has begun
Cooler Temperature Uncorr: Kateorr:				Person examining contents:
Temp Blank Present: yes no	Biologic	al Tissue is Frozen:	☐ yes ☐ no	Date: d3000 Initials: SMW
Temp should be above freezing to 6°C. Biota Samples may be received at ≤ 0°C if shipped on Dry Ica). 444			Labeled By Initials:
Chain of Custody Present:	Yes □No □I	v/A 1.		
Chain of Custody Filled Out:	Yes ØNo □I	VA 2. NO 00-	H. Ohe	ne Es
Chain of Custody Relinquished:	, Yes □No □I	√ 3.		
Sampler Name & Signature on COC:	Yes □No □I	N/A 4.		
Samples Arrived within Hold Time:	Yes □No	5.		
- VOA Samples frozen upon receipt □	Yes □No	Date/Time:		
	Yes ZNo	6.		
	Yes □No	7		
Sufficient Volume:		8.		
For Analysis: Øyes □No MS/MSD: □	Yes ☑No □I			
	Yes □No	9.		<u> </u>
	2_			
	Yes No /OI			
	Yes □No	10.		
	. /	V/A 11.		
Sample Labels match COC:	Yes □No □I	√A 12.		
-Includes date/time/ID/Analysis Matrix:	<u>√</u> ,			
Trip Blank Present:	Yes □No ⊅i	I/A 13.		
발표를 생물러 내용하다 시민들이 그리고 하는 것이 되었다.	Yes □No ⊅☐i	N/A		
Pace Trip Blank Lot # (if purchased):	· ·			
Client Notification/ Resolution: Person Contacted:	Da	te/Time:	f checked, see attac	thed form for additional comments
Comments/ Resolution:				

PM Review is documented electronically in LIMs. By releasing the project, the PM acknowledges they have reviewed the sample logir

Page of Page 13 of 13

1241 Bellevue Street, Suite 9 Green Bay, WI 54302

(920)469-2436

Dan Milewsky

Phone (920)469-2436

dan.milewsky@pacelabs.com

SAMPLE ACKNOWLEDGMENT

Samples Submitted By: SCS ENGINEERS

Client PO#:

Client Project ID:

25220068.00 WPL-EDGEWATER

Pace Analytical Project ID: 40210355

Pace Project Manager:

Samples Received: June 30, 2020 11:40 AM

Estimated Completion: July 02, 2020

CC: Meghan Blodgett, Nicole Kron

Client Specified QC Sample(s): MW-301

Customer Sample ID	Pace Analytical Lab ID	Matrix	Date/Time Collected	Method
MW-301	40210355001	Water	06/26/20 14:00	300.0 IC Anions
				Field Data
TB-1	40210355002	Water	06/26/20 14:05	300.0 IC Anions

Please contact your project manager if you recognize any discrepancy in this form or have any questions about your project.

Confidentiality Statement: The Parties agree that they will take all reasonable precautions to prevent the unauthorized disclosure of any proprietary or confidential information of each other and that they will not disclose such information except to those employees, subcontractors, or agents who have expressly agreed to maintain confidentiality.

SAMPLE ACKNOWLEDGMENT

Analyte List

Customer Sample ID	Method	Compound	Reporting Limit Units	
1W-301	300.0 IC Anions	Fluoride	0.316 mg/L	
	Field Data	Collected By	no units	s
		Collected Date	no units	
		Collected Time	no units	
		Field pH	Std. Un	
		Field Temperature	deg C	
		Appearance	no units	s
		Field Specific Conductance	umhos/e	
		Field Oxidation Potential	mV	CIII
		Oxygen, Dissolved	mg/L	
		Field Residual Chlorine	no units	c
		REDOX	mV	3
			NTU	
		Turbidity		
		Chlorine, Total Residual	mg/L	
		Salinity ppt	mg/L	
		Chlorine, Free	mg/L	
		Static Water Level	feet	
		Apparent Color	no units	
		Odor	no units	
		Barometic Pressure (mm Hg)	no units	S
		CO2 Volume	%	
		Methane Volume	%	
		Oxygen Volume	%	
		Pressure Trend	no units	s
		Gas Flow Rate	no units	s
		Header Pressure	no units	s
		Elevation Water Level	feet	
		Methane Volume Dissolved Gases	%	
		Methane Volume LEL	%	
		Field Temperature, C	deg C	
		Field Temperature, F	deg F	
		Volume Leachate (Pumped)	Kgallor	ns
		Leachate Head Elevation	feet	
		Leachate Depth	feet	
		Depth to Groundwater	feet	
		Laboratory Temperature, C	deg C	
		Temperature, Water (C)	deg C	
		Temperature, Water (C) Temperature, Air (F)	deg F	
		Temperature, Gas (F)	deg F	
		Temperature, Soil (F)	deg F	
		Flow Rate		
			deg F	
		Well Frozen	no units	
		Well Broken	no units	
		Well Dry	no units	š
		Balance Gases	%	
		Well Pressure	no units	
		Well Vacuum	no units	S
		Valve Position	%	
		Well Obstructed	%	
		Lysimeter Discharge	no units	s
B-1	300.0 IC Anions	Fluoride	0.316 mg/L	

Please contact your project manager if you recognize any discrepancy in this form or have any questions about your project.

C3	October 2020 Assessment Monitoring

November 04, 2020

Meghan Blodgett SCS ENGINEERS 2830 Dairy Drive Madison, WI 53718

RE: Project: 25220068 EDGE I-4 CLOSED CCR

Pace Project No.: 40216742

Dear Meghan Blodgett:

Enclosed are the analytical results for sample(s) received by the laboratory on October 17, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

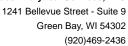
The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Green Bay

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436


Lan Mileny

Project Manager

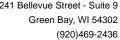
Enclosures

cc: Tom Karwoski, SCS ENGINEERS Nicole Kron, SCS ENGINEERS Jeff Maxted, ALLIANT ENERGY Marc Morandi, ALLIANT ENERGY

CERTIFICATIONS

Project: 25220068 EDGE I-4 CLOSED CCR

Pace Project No.: 40216742


Pace Analytical Services Green Bay

North Dakota Certification #: R-150

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 Virginia VELAP ID: 460263

South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157

Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: 25220068 EDGE I-4 CLOSED CCR

Pace Project No.: 40216742

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40216742001	MW-301	Water	10/15/20 14:00	10/17/20 09:05
40216742002	MW-302	Water	10/15/20 13:20	10/17/20 09:05
40216742003	MW-303	Water	10/15/20 12:30	10/17/20 09:05
40216742004	FIELD BLANK	Water	10/15/20 14:05	10/17/20 09:05
40216742005	2R-OW	Water	10/15/20 14:30	10/17/20 09:05

SAMPLE ANALYTE COUNT

Project: 25220068 EDGE I-4 CLOSED CCR

Pace Project No.: 40216742

Lab ID	Sample ID	Method	Analysts	Analytes Reported
40216742001	MW-301	EPA 6020	KXS	2
			VGC	7
		SM 2540C	HNT	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40216742002	MW-302	EPA 6020	DS1, KXS	2
			VGC	7
		SM 2540C	HNT	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40216742003	MW-303	EPA 6020	DS1, KXS	2
			VGC	7
		SM 2540C	HNT	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40216742004	FIELD BLANK	EPA 6020	KXS	2
		SM 2540C	HNT	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40216742005	2R-OW	EPA 6020	DS1, KXS	2
			VGC	7
		SM 2540C	HNT	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3

PASI-G = Pace Analytical Services - Green Bay

ANALYTICAL RESULTS

Project: 25220068 EDGE I-4 CLOSED CCR

Pace Project No.: 40216742

Date: 11/04/2020 08:05 AM

Sample: MW-301	Lab ID:	40216742001	Collected	10/15/20	14:00	Received: 10/	17/20 09:05 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	•	Method: EPA 6	•		od: EPA	3010			
Boron Calcium	6550 114000	ug/L ug/L	200 508	60.6 152	20 2	10/20/20 07:54 10/20/20 07:54			SD
Field Data	Analytical Pace Ana	Method: llytical Services	- Green Bay						
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	7.64 996 0.8 140 130.0 595.10	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1 1		10/15/20 14:00 10/15/20 14:00 10/15/20 14:00 10/15/20 14:00 10/15/20 14:00 10/15/20 14:00 10/15/20 14:00	7782-44-7	
2540C Total Dissolved Solids	•	Method: SM 2 llytical Services							
Total Dissolved Solids	678	mg/L	20.0	8.7	1		10/19/20 17:04		
9040 pH	•	Method: EPA 9							
pH at 25 Degrees C	7.6	Std. Units	0.10	0.010	1		10/20/20 08:03		H6
300.0 IC Anions	,	Method: EPA 3							
Chloride Fluoride Sulfate	13.9 <0.48 293	mg/L mg/L mg/L	10.0 1.6 40.0	2.2 0.48 8.9	5 5 20		10/28/20 13:59 10/28/20 13:59 11/02/20 13:12	16984-48-8	D3,M0

ANALYTICAL RESULTS

Project: 25220068 EDGE I-4 CLOSED CCR

Pace Project No.: 40216742

Date: 11/04/2020 08:05 AM

Sample: MW-302	Lab ID:	40216742002	Collected	: 10/15/20	0 13:20	Received: 10/	17/20 09:05 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	•	I Method: EPA 6	•		od: EP/	\ 3010			
	Pace Ana	alytical Services	- Green Bay	'					
Boron	1410	ug/L	50.0	15.2	5	10/20/20 07:54	10/26/20 19:07		
Calcium	124000	ug/L	508	152	2	10/20/20 07:54	10/22/20 19:56	7440-70-2	
Field Data	Analytica	l Method:							
	Pace Ana	alytical Services	- Green Bay	,					
Field pH	7.90	Std. Units			1		10/15/20 13:20		
Field Specific Conductance	523	umhos/cm			1		10/15/20 13:20		
Oxygen, Dissolved	0.3	mg/L			1		10/15/20 13:20	7782-44-7	
REDOX	-83.0	mV			1		10/15/20 13:20		
Turbidity	161.8	NTU			1		10/15/20 13:20		
Static Water Level	598.56	feet			1		10/15/20 13:20		
Temperature, Water (C)	11.2	deg C			1		10/15/20 13:20		
2540C Total Dissolved Solids	Analytica	l Method: SM 25	40C						
	Pace Ana	alytical Services	- Green Bay	,					
Total Dissolved Solids	182	mg/L	20.0	8.7	1		10/19/20 17:04		
9040 pH	Analytica	l Method: EPA 9	040						
•	Pace Ana	alytical Services	- Green Bay	,					
pH at 25 Degrees C	7.7	Std. Units	0.10	0.010	1		10/20/20 08:07		H6
300.0 IC Anions	Analytica	l Method: EPA 3	00.0						
	Pace Ana	alytical Services	- Green Bay	,					
Chloride	20.9	mg/L	10.0	2.2	5		10/28/20 14:42	16887-00-6	
Fluoride	1.0J	mg/L	1.6	0.48	5		10/28/20 14:42	16984-48-8	D3
Sulfate	73.1	mg/L	10.0	2.2	5		10/28/20 14:42	14808-79-8	
		ū							

ANALYTICAL RESULTS

Project: 25220068 EDGE I-4 CLOSED CCR

Pace Project No.: 40216742

Date: 11/04/2020 08:05 AM

Sample: MW-303	Lab ID:	40216742003	Collected	10/15/20	12:30	Received: 10/	17/20 09:05 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	•	l Method: EPA 6 llytical Services	•		od: EPA	A 3010			
Boron Calcium	3310 132000	ug/L ug/L	100 254	30.3 76.2	10 1	10/20/20 07:54 10/20/20 07:54	10/26/20 19:13 10/22/20 20:03		
Field Data	Analytical Pace Ana	l Method: llytical Services	- Green Bay						
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	7.11 1123 0.2 -32.0 70.42 593.19 10.9	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1 1		10/15/20 12:30 10/15/20 12:30 10/15/20 12:30 10/15/20 12:30 10/15/20 12:30 10/15/20 12:30 10/15/20 12:30	7782-44-7	
2540C Total Dissolved Solids	•	l Method: SM 25 llytical Services							
Total Dissolved Solids 9040 pH	•	mg/L I Method: EPA 9 alytical Services		8.7	1		10/19/20 17:05		
pH at 25 Degrees C 300.0 IC Anions	7.0 Analytical	Std. Units I Method: EPA 3 Ilytical Services	0.10 00.0	0.010	1		10/20/20 08:08		H6
Chloride Fluoride Sulfate	20.9 <0.48 <2.2	mg/L mg/L mg/L	10.0 1.6 10.0	2.2 0.48 2.2	5 5 5		10/28/20 14:56 10/28/20 14:56 10/28/20 14:56	16984-48-8	D3 D3

ANALYTICAL RESULTS

Project: 25220068 EDGE I-4 CLOSED CCR

Pace Project No.: 40216742

Date: 11/04/2020 08:05 AM

Sample: FIELD BLANK	Lab ID:	40216742004	Collected	d: 10/15/20	14:05	Received: 10/	17/20 09:05 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	•	Method: EPA 6 lytical Services	•		od: EPA	A 3010			
Boron Calcium	3.5J 90.8J	ug/L ug/L	10.0 254	3.0 76.2	1 1	10/20/20 07:54 10/20/20 07:54	10/22/20 14:18 10/22/20 14:18		
2540C Total Dissolved Solids	•	Method: SM 25 lytical Services		/					
Total Dissolved Solids	<8.7	mg/L	20.0	8.7	1		10/19/20 17:05		
9040 pH	•	Method: EPA 9 lytical Services		/					
pH at 25 Degrees C	6.8	Std. Units	0.10	0.010	1		10/20/20 08:10		H6
300.0 IC Anions	•	Method: EPA 3 lytical Services		/					
Chloride Fluoride Sulfate	<0.43 <0.095 <0.44	mg/L mg/L mg/L	2.0 0.32 2.0	0.43 0.095 0.44	1 1 1		10/28/20 15:25 10/28/20 15:25 10/28/20 15:25		

ANALYTICAL RESULTS

Project: 25220068 EDGE I-4 CLOSED CCR

Pace Project No.: 40216742

Date: 11/04/2020 08:05 AM

Sample: 2R-OW	Lab ID:	40216742005	Collected	: 10/15/20	14:30	Received: 10/	17/20 09:05 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	ation Meth	od: EPA	A 3010			
	Pace Ana	lytical Services	- Green Bay						
Boron	29.9	ug/L	10.0	3.0	1	10/20/20 07:54	10/26/20 19:20	7440-42-8	
Calcium	124000	ug/L	254	76.2	1	10/20/20 07:54	10/22/20 20:10	7440-70-2	
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Green Bay						
Field pH	7.20	Std. Units			1		10/15/20 14:30		
Field Specific Conductance	1490	umhos/cm			1		10/15/20 14:30		
Oxygen, Dissolved	3.5	mg/L			1		10/15/20 14:30	7782-44-7	
REDOX	282	mV			1		10/15/20 14:30		
Turbidity	28.74	NTU			1		10/15/20 14:30		
Static Water Level	604.27	feet			1		10/15/20 14:30		
Temperature, Water (C)	13.6	deg C			1		10/15/20 14:30		
2540C Total Dissolved Solids	Analytical	Method: SM 25	340C						
	Pace Ana	lytical Services	- Green Bay						
Total Dissolved Solids	806	mg/L	20.0	8.7	1		10/19/20 17:05		
9040 pH	Analytical	Method: EPA 9	040						
	Pace Ana	lytical Services	- Green Bay						
pH at 25 Degrees C	7.4	Std. Units	0.10	0.010	1		10/20/20 08:15		H6
300.0 IC Anions	Analytical	Method: EPA 3	0.00						
	Pace Ana	lytical Services	- Green Bay						
Chloride	179	mg/L	10.0	2.2	5		10/28/20 17:20	16887-00-6	
Fluoride	0.096J	mg/L	0.32	0.095	1		11/02/20 12:43		
Sulfate	20.3	mg/L	2.0	0.44	1		11/02/20 12:43		

QUALITY CONTROL DATA

Project: 25220068 EDGE I-4 CLOSED CCR

Pace Project No.: 40216742

Boron

Calcium

Date: 11/04/2020 08:05 AM

QC Batch: 368751 Analysis Method: EPA 6020
QC Batch Method: EPA 3010 Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40216742001, 40216742002, 40216742003, 40216742004, 40216742005

METHOD BLANK: 2131937 Matrix: Water

Associated Lab Samples: 40216742001, 40216742002, 40216742003, 40216742004, 40216742005

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed <3.0 10.0 10/22/20 14:05 ug/L <76.2 254 10/22/20 14:05 ug/L

LABORATORY CONTROL SAMPLE: 2131938

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Boron 474 95 80-120 ug/L 500 Calcium 5000 4900 98 80-120 ug/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2131939 2131940 MS MSD 40216632001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Boron ug/L 690 500 500 1110 1110 84 84 75-125 0 20 Calcium 192000 5000 5000 203000 205000 220 75-125 20 P6 ug/L 254

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 25220068 EDGE I-4 CLOSED CCR

Pace Project No.: 40216742

QC Batch: 368700 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40216742001, 40216742002, 40216742003, 40216742004, 40216742005

METHOD BLANK: 2131681 Matrix: Water

Associated Lab Samples: 40216742001, 40216742002, 40216742003, 40216742004, 40216742005

Blank Reporting

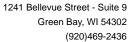
Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <8.7 20.0 10/19/20 17:01

LABORATORY CONTROL SAMPLE: 2131682

Spike LCS LCS % Rec Conc. % Rec Limits Qualifiers Parameter Units Result mg/L **Total Dissolved Solids** 584 532 91 80-120

SAMPLE DUPLICATE: 2131683


40216680001 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 228 **Total Dissolved Solids** mg/L 218 4 10

SAMPLE DUPLICATE: 2131684

Date: 11/04/2020 08:05 AM

40216744001 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 228 mg/L 214 6 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 25220068 EDGE I-4 CLOSED CCR

Pace Project No.: 40216742

QC Batch: 368741 Analysis Method: EPA 9040
QC Batch Method: EPA 9040 Analysis Description: 9040 pH

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40216742001, 40216742002, 40216742003, 40216742004, 40216742005

SAMPLE DUPLICATE: 2131902

Date: 11/04/2020 08:05 AM

40216567010 Dup Max Parameter Units RPD RPD Qualifiers Result Result 7.8 pH at 25 Degrees C 7.8 Std. Units 0 20 H6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 25220068 EDGE I-4 CLOSED CCR

Pace Project No.: 40216742

QC Batch: 369393 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40216742001, 40216742002, 40216742003, 40216742004, 40216742005

METHOD BLANK: 2135651 Matrix: Water

Associated Lab Samples: 40216742001, 40216742002, 40216742003, 40216742004, 40216742005

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed Chloride mg/L < 0.43 2.0 10/28/20 10:09 Fluoride mg/L < 0.095 0.32 10/28/20 10:09 Sulfate mg/L 2.0 10/28/20 10:09 < 0.44

LABORATORY CONTROL SAMPLE: 2135652

Date: 11/04/2020 08:05 AM

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L		20.6	103	90-110	
Fluoride	mg/L	2	2.1	105	90-110	
Sulfate	mg/L	20	20.6	103	90-110	

MATRIX SPIKE & MATRIX S	PIKE DUPL	ICATE: 2135	653		2135654							
			MS	MSD								
		40216742001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	13.9	100	100	122	121	108	108	90-110	0	15	
Fluoride	mg/L	< 0.48	10	10	11.6	11.6	116	116	90-110	1	15	M0
Sulfate	mg/L	293	400	400	731	730	110	109	90-110	0	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 25220068 EDGE I-4 CLOSED CCR

Pace Project No.: 40216742

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 11/04/2020 08:05 AM

SD

D3	Sample was diluted due to the r	presence of high le	evels of non-target analy	tes or other matrix interference.

H6 Analysis initiated outside of the 15 minute EPA required holding time.

M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

P6 Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.

The serial dilution and the original analysis did not agree within ±10%. The concentration is estimated due to a suspected chemical or physical interference.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 25220068 EDGE I-4 CLOSED CCR

Pace Project No.: 40216742

Date: 11/04/2020 08:05 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40216742001	MW-301	EPA 3010	368751	EPA 6020	368970
40216742002	MW-302	EPA 3010	368751	EPA 6020	368970
40216742003	MW-303	EPA 3010	368751	EPA 6020	368970
40216742004	FIELD BLANK	EPA 3010	368751	EPA 6020	368970
40216742005	2R-OW	EPA 3010	368751	EPA 6020	368970
40216742001	MW-301				
40216742002	MW-302				
40216742003	MW-303				
40216742005	2R-OW				
40216742001	MW-301	SM 2540C	368700		
40216742002	MW-302	SM 2540C	368700		
40216742003	MW-303	SM 2540C	368700		
40216742004	FIELD BLANK	SM 2540C	368700		
40216742005	2R-OW	SM 2540C	368700		
40216742001	MW-301	EPA 9040	368741		
40216742002	MW-302	EPA 9040	368741		
40216742003	MW-303	EPA 9040	368741		
40216742004	FIELD BLANK	EPA 9040	368741		
40216742005	2R-OW	EPA 9040	368741		
40216742001	MW-301	EPA 300.0	369393		
40216742002	MW-302	EPA 300.0	369393		
40216742003	MW-303	EPA 300.0	369393		
40216742004	FIELD BLANK	EPA 300.0	369393		
40216742005	2R-OW	EPA 300.0	369393		

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section		Section B								tion (1																			
		Required Pro										ation:													LP	age:		1 01	<u>f</u>	1
Compa		Report To:	Megha	n Blodge	ett					ntion:																				
200000000000000000000000000000000000000	s: 2830 Dairy Drive in, WI 53718	Copy To:							********	npany ress:	/ Nam	e:											******							
Email:		Purchase Ord	ler#							e Quo																Regu	ilatory /	gency		
Phone	V. C.	Project Name	Contract to the second	CR Rule	Edgewater	LA Closer	1 (252160	681	100000		Anna Cara	anage	r	don	milew	sky@p	acela	he co	377 0							810	te / Loc	ation		
	sted Due Date:	Project #:	<u> </u>	, or trial	Logewaler		1 (202100	00)	-		file #:	Section 200	46-13		.irmicvi	3KY@F	accia	103.00	JIII,								075500	<u> racu</u>		
																		F	teque	sted A	Inalv	sis Fil	ered	(Y/N)						
ITEM#	MATRIX Drinking Wa Water Waste Water Product Soil/Soid Oil One Character per box. (A-Z, 0-9 /, -) Sample lds must be unique MATRIX MAT	WT WW P SL OL	MATRIX CODE (see valid codes to left) SAMPLE TYPE (G=GRAB C=COMP)	5	START		ND	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Unpreserved	H2SO4	Prese			Methanol	Analyses Test Y.R.	Boron		TDS, Cl. F, SO4							Residual Chlorine (Y/N)	A TOTAL DESIGNATION OF THE PARTY OF THE PART			
_			Σ σ	DAT	and was previous	DATE	TIME	(ý)	#	2	Z 2		Z	z	≥ (2	ပ	ā.	F							~				
1	MW-301		WT	10//	5/1400												х	х	х									C	100	
2	MW-302		WT	16/	5 1320													Ų.	x									C	202 202 203	
-	WW-302		VV I	1.4/								+					×	X	+						+				حدد	
3	MW-303		WT	10/19	1230												x	х	×									<u>C</u>	<u>ک د</u>	<u>د</u>
4	FIELD BLANK		WT	10/13	1405												х	х	х									C	<u>20</u>	
5	2R-OW		WT	10/1	5/1430)											x	Х	x									C	222	
6																														
7																														
				l																					H					
8																-								+	H					
9																														
10																														
11																											1			
12	ADDITIONAL COMMENTS	RE	LINOUII	SHED BY	I AFFILIATIO	N	DATE		7	IME				CCE	PTED	3Y/AF	F91 167	TION				DATE		TIME		Н-	SAME	LE CONDITIO	SNS	\dashv
ALL CASE			2 11	1			10-15			30		w			7					10	2//	o/20	, l	03						=
ALL SAME	ILES UNFILTERED	1 mil	1	4					Control of the	45		4	ar	y	74	m	141			-7	1/8	/	4	J-9,	SECTION S		1			
		17 <u>7</u> /	ass	1	mu	<i>الما</i>	15/2	AUGUSTON.	4				Ш	4		4	A						4			2.5	<u> </u>			
		1 (C	. W	169	Sh(S		10/7/2	ے	99	<u> ۵5</u>			$M \lambda$	114	\bigcirc		Ш	W	<u>) </u>		10	17/2	8	090	1 <u>22</u>	POP	14	_! પ	14	
											K	J	J '				1									MA	10-r	7-20		
					SAMPLE	NAME A	ND SIGN	ATH	ge		- 1										1				\dashv	110.	T"			
					PRIN	T Name o	f SAMPL	ER:	4	Ac	<u>C</u> E	£	N	A	73	700		ATE	Sign	ed:	//3	-/(-20		TEMP in C	Received on	(Y/N) Custody Sealed Cooler	Y/N) Samples tract	V/N)

Sample Preservation Receipt Form

Client Name: SCS Engineers 1241 Bellevue Street, Suite 9 Project # 40216742 Green Bay, WI 54302 0 All containers needing preservation have been checked and noted below: Ses □No □N/A Initial when Date/ Lab Lot# of pH paper: 1004194 completed: Lab Std #ID of preservation (if pH adjusted): Time: laOH+Zn Act pH ≥9 (>6mm) Glass **Plastic Vials** Jars General 23 aOH pH ≥12 Volume Vials (12SO4 pH AG1H BG1U WGFU AG4U AG5U AG2S BG3U **BP1U BP3U** ВРЗВ 표 (mL) VG9M **BP3N** VG9A 7690 **VG9H MPFU BP3S** VG9D DG9T JGFU JG9U ZPLC SP5T Pace S S **VO** Lab# 001 2.5 / 5 / 10 002 \supset 2.5 / 5 / 10 003 \supset 2.5 / 5 / 10 004 3 2.5/5/10 005 2.5 / 5 / 10 006 2.5/5/10 007 2.5 / 5 / 10 008 2.5 / 5 / 10 009 2.5 / 5 / 10 010 2.5 / 5 / 10 011 2.5 / 5 / 10 012 2.5/5/10 013 2.5 / 5 / 10 014 2.5 / 5 / 10 015 2.5 / 5 / 10 016 2.5 / 5 / 10 017 2.5 / 5 / 10 018 2.5 / 5 / 10 019 2.5 / 5 / 10 020 2.5/5/10 Exceptions to preservation check: VOA, Coliform, TOC, TOX, TOH, O&G, WI DRO, Phenolics, Other: Headspace in VOA Vials (>6mm): a Yes also any 4 *If yes look in headspace column AG1U 1 liter amber glass BP1U 1 liter plastic unpres VG9A 40 mL clear ascorbic **JGFU** 4 oz ambér jar unpres BG1U1 liter clear glass **BP3U** 250 mL plastic unpres DG9T 40 mL amber Na Thio JG9U 9 oz amber jar unpres AG1H 1 liter amber glass HCL BP3B 250 mL plastic NaOH VG9U 40 mL clear vial unpres WGFU 4 oz clear jar unpres AG4S 125 mL amber glass H2SO4 **BP3N** 250 mL plastic HNO3 VG9H 40 mL clear vial HCL WPFU 4 oz plastic jar unpres AG4U 120 mL amber glass unpres BP3S 250 mL plastic H2SO4 VG9M 40 mL clear vial MeOH SP5T 120 mL plastic Na Thiosulfate AG5U 100 mL amber glass unpres VG9D 40 mL clear vial DI **ZPLC** ziploc bag AG2S 500 mL amber glass H2SO4 GN BG3U 250 mL clear glass unpres

Pace Analytical*

Document Name: Sample Condition Upon Receipt (SCUR)

Document No.:

Document Revised: 26Mar2020
Author:

1241 Bellevue Street, Green Bay, WI 54302

ENV-FRM-GBAY-0014-Rev.00

Pace Green Bay Quality Office

Page 18 of 18

Sample Condition Upon Receipt Form (SCUR)

Courier: CS Logistics Fed Ex Special Client Pace Other: Tracking #: Custody Seal on Cooler/Box Present: Ve		WO#: 	40216742
Custody Seal on Samples Present:	no Seals intact	: Tyes Tho	
Packing Material: Bubble Wrap B	ubble Bags 🔲 Non	e 🦲 Other	
Cooler Temperature 7 Puncorr: VDI /Corr	Type of Ice: (Vet)	Blue Dry None Samples	on ice, cooling process has begun Person examining contents:
Temp Blank Present: yes 76 5		Tissue is Frozen: Yes no	Date: 1617/20/Initials: 1/20
Temp should be above freezing to 6°C. Biota Samples may be received at ≤ 0°C if shipped o			Labeled By Initials: MC
Chain of Custody Present:	ZE¥es □No □N/A	1 copy to info invoice in	Po, orio, state sample to
Chain of Custody Filled Out:	□Yes ဩKNo □N/A		MC Y CSIAIOI
Chain of Custody Relinquished:	SEYes □No □N/A	3.	/p=
Sampler Name & Signature on COC:	b√es □no □n/a	4.	
Samples Arrived within Hold Time:	DAYes □No	5.	
- VOA Samples frozen upon receipt	□Yes □No	Date/Time:	
Short Hold Time Analysis (<72hr):	□Yes DANo	6.	
Rush Turn Around Time Requested:	□Yes ISK o	7.	
Sufficient Volume: For Analysis: IS€es □No MS/M	SD: □Yes 【SMATO □N/A	8.	
Correct Containers Used:	Spacyes □No	9.	
-Pace Containers Used:	Yes □No □N/A		
-Pace IR Containers Used:	Yes □No DATA		
Containers Intact:	⊠ ¥es □No	10.	
Filtered volume received for Dissolved tests	□Yes □No Ş (Ñ/Ā	11.	
Sample Labels match COC: -Includes date/time/ID/Analysis Matrix:	Yes \$200 \ \N/A		1017/20
Trip Blank Present:	□Yes □No Y XÑ/A	13.	1011/10
Trip Blank Custody Seals Present	□Yes □No Spat7A		
Pace Trip Blank Lot # (if purchased):			
Client Notification/ Resolution: Person Contacted:	Date/1	If checked, see attac	hed form for additional comments
Comments/ Resolution: (y # contain f	as pres 1	U-10-17-2	

Appendix D Historical Monitoring Results

Name: WPL - Edgewater Closed

Location ID:	2R-OW															
Number of Sampling Dates						ı				ı	ı			ı		
Parameter Name	Units	4/8/2016	6/20/2016	8/9/2016	10/20/2016	1/24/2017	4/6/2017	6/6/2017	8/1/2017	10/23/2017	4/2/2018	10/1/2018	4/8/2019	10/7/2019	4/8/2020	10/15/2020
Boron	ug/L	100	22.4	32.6	43.1	31.2	70.6	45.2	35.7	55.9	19.7	34.7	35.8	58.8	52.3	29.9
Calcium	ug/L	205000	148000	145000	155000	152000	143000	145000	164000	170000	121000	190000	121000	132000	117000	124000
Chloride	mg/L	91.7	232	215	217	201	102	115	272	305	108	462	55.3	88.8	67.5	179
Fluoride	mg/L	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.12	<0.1	<0.1	<0.1	<0.095	0.096
Field pH	Std. Units	7.34	7.02	6.1	6.98	7.15	7.01	6.86	7	7.23	7.29	7.03	8.57	6.88	7.08	7.2
Sulfate	mg/L	19.5	28	25.4	21.6	23.9	17.6	17.8	28.8	29.3	17.2	37.2	10.6	13.2	11.6	20.3
Total Dissolved Solids	mg/L	774	908	974	944	854	750	744	1000	1010	680	1260	610	706	604	806
Antimony	ug/L	0.3	<0.073	<0.073	<0.073	0.073	<0.073	0.32	<0.15							
Arsenic	ug/L	5.2	0.34	0.39	0.39	0.65	0.35	0.71	1.2							
Barium	ug/L	344	110	155	189	158	150	172	154							
Beryllium	ug/L	0.83	<0.13	<0.13	<0.13	<0.13	<0.13	<0.18	<0.18							
Cadmium	ug/L	0.21	<0.089	<0.089	<0.089	<0.089	<0.089	0.2	<0.081			-		-	-	
Chromium	ug/L	23.6	3.1	2.9	1.7	2.6	2.2	1.6	4.3							
Cobalt	ug/L	6	0.081	0.05	0.21	0.22	0.28	0.7	1.7							
Lead	ug/L	13	0.17	0.14	0.074	0.38	0.48	0.4	1.2							
Lithium	ug/L	19.6	9.6	9	8.2	8.2	5.3	6.2	15.1							
Molybdenum	ug/L	0.58	0.28	0.32	0.25	0.28	0.5	0.54	0.44							
Selenium	ug/L	2.2	<0.21	<0.21	<0.21	<0.21	<0.21	0.34	<0.32							
Thallium	ug/L	0.19	<0.14	<0.14	<0.14	<0.14	<0.14	0.45	<0.14							
Mercury	ug/L	<0.18	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13							
Total Radium	pCi/L	0.945	0.815	0.432	0.896	0.627	1.02	1.58	2.12							
pH at 25 Degrees C	Std. Units	7.4	7.4	7	7.4	7.4	7.1	6.9	7.1	7.1	7.4	7	7.5	7.1	7.1	7.4
Radium-226	pCi/L	0.304	0.433	0.0836	0.193	0	0.418	0.531	0.658							
Radium-228	pCi/L	0.641	0.382	0.348	0.703	0.627	0.605	1.05	0.502							
Field Specific Conductance	umhos/cm	1332	1277	1697	1533	1579	1387	1294	1651	1864	1177	2202	1077	1261	1081	1490
Oxygen, Dissolved	mg/L	4.6	0.9	1	0.6	1	0.5	0.1	0	4.9	6.7	1.6	0.6	2.5	1.5	3.5
Field Oxidation Potential	mV	130	82	140	117	87	120	-20	-22	131	85	180	75	148	43.7	282
Groundwater Elevation	feet	610.02	606.7	605.74	607.27	609.64	609.27	607.63	604.59	601.74	607.87	604.61	609.5	609.39	608.97	604.27
Temperature, Water (C)	deg C	5.6	10.6	13.9	14.1	7.5	7	10.1	13	13	5.2	13.4	6.7	14	6.1	13.6
Turbidity	NTU	612.3	10.97	3.64	3.32	11.71	16.46	0.55	41.3	2.24	6.38	7.09	8.59		15.24	28.74

Page 1 1/13/2021 9:30:29 AM

Name: WPL - Edgewater Closed

Location ID:	MW-301																
Number of Sampling Dates														ı			
Parameter Name	Units	4/11/2016	6/20/2016	8/9/2016	10/20/2016	1/23/2017	4/6/2017	6/6/2017	8/2/2017	10/24/2017	4/2/2018	10/1/2018	4/8/2019	10/7/2019	4/8/2020	6/26/2020	10/15/2020
Boron	ug/L	8550	8190	8450	8620	9280	8370	9160	8610	8820	7950	8230	7310	7220	7450		6550
Calcium	ug/L	88700	92200	84000	89400	89200	98800	94900	83600	87200	78900	88800	77500	87600	80800		114000
Chloride	mg/L	16.2	15.9	13.7	13.9	13.8	12.7	13.5	12.3	11.9	11.2	11.5	11.4	11.1	12.5		13.9
Fluoride	mg/L	0.33	0.36	0.33	0.34	0.42	0.21	<0.1	0.32	<0.1	0.25	0.2	0.29	0.24	0.39	0.26	<0.48
Field pH	Std. Units	7.91	7.48	6.47	7.68	8.03	7.98	7.7	7.58	7.43	8.02	7.71	8.18	7.56	7.82	7.53	7.64
Sulfate	mg/L	372	343	368	369	372	367	362	340	341	332	318	322	312	298		293
Total Dissolved Solids	mg/L	838	794	862	838	826	838	804	780	772	752	722	724	694	718		678
Antimony	ug/L	0.49	0.21	<0.073	0.083	0.2	<0.15	0.33	<0.15								
Arsenic	ug/L	4.3	2.4	2.3	4.2	1.8	2.8	1.9	1.5								
Barium	ug/L	48.7	32.6	30.5	31.4	32.2	53.8	30.3	28.2								
Beryllium	ug/L	0.18	<0.13	<0.13	<0.13	0.28	<0.25	<0.18	<0.18								
Cadmium	ug/L	0.2	0.22	<0.089	<0.089	0.17	<0.18	<0.081	<0.081								
Chromium	ug/L	3.5	0.55	<0.39	0.86	1.1	6.4	<1	<1								
Cobalt	ug/L	1.2	0.39	0.38	0.39	0.24	1.5	0.24	0.2								
Lead	ug/L	2.2	0.3	<0.04	0.29	0.47	2.1	0.28	0.29								
Lithium	ug/L	21.4	14.2	15.6	15.8	16.3	20.6	17	15.8								
Molybdenum	ug/L	2200	2040	2160	2300	2210	2090	2460	2070								
Selenium	ug/L	0.52	<0.21	<0.21	<0.21	<0.21	<0.42	<0.32	<0.32								
Thallium	ug/L	0.31	<0.14	<0.14	<0.14	0.22	<0.29	0.17	<0.14								
Mercury	ug/L	<0.18	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13								
Total Radium	pCi/L	0.41	1.62	0.456	0.729	1.09	1.51	0.494	1.67								
pH at 25 Degrees C	Std. Units	7.9	7.6	7.4	7.5	7.9	7.9	7.7	7.5	7.5	7.8	7.7	7.9	7.8	7.9		7.6
Radium-226	pCi/L	0.32	0.958	-0.17	0.193	0.136	0.734	0.179	0.548								
Radium-228	pCi/L	0.0904	0.661	0.456	0.536	0.951	0.774	0.315	0.296								
Field Specific Conductance	umhos/cm	1206	1173	1230	1214	1198	1213	1147	1111	1096	1071	1086	1022	1052	977	983	996
Oxygen, Dissolved	mg/L	4.8	1.6	0.1	0.2	7.4	5.5	3	0.5	0	6.5	4.5	6.2	2.7	6.9	5.47	0.8
Field Oxidation Potential	mV	5.2	89	-31	-24	173	51	-15	-13	-18	44	53	55	146	17.1	49.1	140
Groundwater Elevation	feet	599.94	598.3	598	598.5	597.1	600.04	598.77	597.4	597.2	598.54	597.6	598.92	599.56	599.17	597.89	595.1
Temperature, Water (C)	deg C	7.2	10.1	10.5	10.8	8.8	8.9	9.5	11.6	10.7	7.8	11	9	12.2	8.5	16.8	11.2
Turbidity	NTU	10.88	3.13	2.42	46.07	21.84	168.6	16.11	6.51	11.58	12.19	13.32	32.91	79.44	37.12	62.57	130

Page 1 1/13/2021 9:31:48 AM

Name: WPL - Edgewater Closed

Location ID:	MW-302															
Number of Sampling Dates Parameter Name	: 15 Units	4/8/2016	6/20/2016	8/9/2016	10/20/2016	1/24/2017	4/6/2017	6/6/2017	8/2/2017	10/24/2017	4/2/2018	10/1/2018	4/8/2019	10/7/2019	4/8/2020	10/15/2020
Boron	ug/L	1950	2010	2000	2150	2000	1970	1970	1890	1760	1800	1570	1670	1730	1570	1410
Calcium	ug/L	122000	116000	75900	72100	87400	114000	72200	62600	68100	68000	64700	64800	67500	66800	124000
Chloride	mg/L	18.9	27.2	18	19.5	18.6	18.9	20	19.3	18.9	18.5	18.6	18.4	17.8	19.2	20.9
Fluoride	mg/L	0.83	1.3	0.8	0.8	0.89	0.76	0.9	0.78	0.84	0.78	0.81	0.87	0.85	0.97	1
Field pH	Std. Units	8.01	7.73	6.55	7.89	7.98	7.99	7.84	7.76	7.6	7.78	7.99	7.98	7.86	7.56	7.9
Sulfate	mg/L	75.1	89.6	80.7	77.2	71.1	85.8	88.5	80.2	72.2	72.7	59.2	71.7	55.7	65.3	73.1
Total Dissolved Solids	mg/L	352	364	396	348	328	358	350	360	316	314	306	324	290	316	182
Antimony	ug/L	0.3	0.085	<0.073	<0.073	0.86	<0.36	0.16	<0.15							
Arsenic	ug/L	10.3	9.7	10.2	8.4	10.9	9.6	8.7	9							
Barium	ug/L	152	109	66.7	57.2	90.1	104	58.4	50.9							
Beryllium	ug/L	0.59	0.35	<0.13	<0.13	0.78	<0.63	<0.18	<0.18							
Cadmium	ug/L	0.24	<0.089	<0.089	<0.089	0.49	<0.44	<0.081	<0.081							
Chromium	ug/L	18.7	11.1	3.5	2.5	7.1	10	6.6	1.1							
Cobalt	ug/L	6.2	3.6	1.1	0.84	2.6	3.2	1.5	0.53							
Lead	ug/L	5.5	3.3	0.84	0.71	2.3	5.2	0.7	0.44							
Lithium	ug/L	58.1	62.3	55.4	51.8	54.8	58.7	52.3	52.2							
Molybdenum	ug/L	610	640	652	685	674	654	631	649							
Selenium	ug/L	1.3	0.76	<0.21	0.22	<1	<1	<0.32	<0.32							
Thallium	ug/L	0.35	<0.14	<0.14	<0.14	1.6	<0.71	<0.14	<0.14							
Mercury	ug/L	<0.18	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13							
Total Radium	pCi/L	1.47	0.505	0.0999	0.771	1.9	1.18	1.66	1.08							
pH at 25 Degrees C	Std. Units	7.3	7.8	7.7	7.8	7.7	7.9	7.5	7.7	7.7	7.8	7.6	7.8	7.6	7.8	7.7
Radium-226	pCi/L	0.843	-0.408	-0.153	0.331	0.37	0.371	0.706	0.474							
Radium-228	pCi/L	0.623	0.505	0.0999	0.44	1.53	0.813	0.95	0.604							
Field Specific Conductance	umhos/cm	531	564	539	525	519	552	465	532	505	517	504	519	487	476	523
Oxygen, Dissolved	mg/L	1	0.2	0.1	1	0.1	0	0.5	0	0	0.6	0.8	1.6	1.3	0.4	0.3
Field Oxidation Potential	mV	-41	-123	-123	-111	-87	-517	-40	-121	-118	-123	-96	-95	124	-107.6	-83
Groundwater Elevation	feet	596.39	595.68	595.53	595.46	596.3	593.57	595.86	595.22	595.25	595.71	595.28	595.68	595.58	595.33	590.18
Temperature, Water (C)	deg C	9	13.1	13.2	11.2	9.3	9.6	12.2	12.6	11.1	10.3	11.6	11.9	13.5	11.3	11.2
Turbidity	NTU	885.4	369.4	108.3	62.99	161.1	367.5	94.92	39.69	42.45	24.89	55.15	59.51	32.69	69.22	161.8

Page 1 1/13/2021 9:32:57 AM

Name: WPL - Edgewater Closed

Number of Sampling Dates Parameter Name	Units	4/8/2016	6/20/2016	8/9/2016	10/20/2016	1/24/2017	4/6/2017	6/6/2017	8/2/2017	10/24/2017	4/2/2018	10/1/2018	4/8/2019	10/7/2019	4/8/2020	10/15/2020
Boron	ug/L	4210	3360	3860	3740	4210	4170	4570	3780	3480	3040	2360	2930	2830	3380	3310
Calcium	ug/L	176000	138000	145000	147000	147000	135000	154000	139000	173000	146000	139000	135000	136000	144000	132000
Chloride	mg/L	21.8	31.5	22.8	26	26.2	22.7	25.4	23.2	20.4	19.7	4.3	20	19.1	23.5	20.9
Fluoride	mg/L	<0.2	<1	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.1	<0.5	<0.5	<0.48	<0.48
Field pH	Std. Units	7.04	6.79	6.09	6.94	6.94	6.88	7	6.94	7.14	6.86	6.93	7.15	6.9	6.7	7.11
Sulfate	mg/L	3	11.4	2.4	5.6	<5	<5	<5	<5	<5	<5	<1	<5	<5	<2.2	<2.2
Total Dissolved Solids	mg/L	660	716	732	744	738	700	714	714	566	630	620	668	584	692	620
Antimony	ug/L	0.14	<0.073	<0.073	<0.073	<0.073	<0.073	0.32	0.25							
Arsenic	ug/L	12.8	9.7	10.7	18.1	25.3	21.8	25.2	21.9							
Barium	ug/L	229	189	195	180	186	142	143	144							
Beryllium	ug/L	0.3	<0.13	<0.13	<0.13	<0.13	<0.13	0.33	0.21							
Cadmium	ug/L	<0.089	<0.089	<0.089	<0.089	<0.089	<0.089	0.17	0.14							
Chromium	ug/L	14.1	1.5	2	1.8	1.4	1.5	2.1	1.7							
Cobalt	ug/L	8.7	5.3	5	4.4	4.3	3	3.4	3.2							
Lead	ug/L	4.7	0.28	0.35	0.21	0.19	0.16	0.56	0.66							
Lithium	ug/L	17.6	9.1	10.4	8.9	8.3	8.3	9.3	10.7							
Molybdenum	ug/L	25.1	11.6	12.7	9	7.7	5.1	4.5	5.9							
Selenium	ug/L	1.2	0.48	0.31	0.55	0.71	0.38	0.5	0.6							
Thallium	ug/L	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14	0.36	0.26							
Mercury	ug/L	<0.18	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13							
Total Radium	pCi/L	1.44	1.93	1.22	1.48	1.16	1.31	1.2	1.81							
pH at 25 Degrees C	Std. Units	7.2	7	6.9	7.2	7	6.8	6.9	7	6.8	7	6.8	6.9	7	6.8	7
Radium-226	pCi/L	0.239	1.03	0.651	0.521	0.386	0.123	0.276	0.772							
Radium-228	pCi/L	1.2	0.898	0.567	0.962	0.772	1.19	0.926	1.04							
Field Specific Conductance	umhos/cm	1273	1196	1220	1313	1335	1320	1112	1218	1095	1131	1105	1196	1127	1241	1123
Oxygen, Dissolved	mg/L	0.49	0.9	0.1	0	0	0	0.8	0	0	0.3	0.2	0.3	0.2	0.2	0.2
Field Oxidation Potential	mV	-48	-71	-81	-102	-89	-20	-58	-116	-108	-97	-93	-85	122	-102.9	-32
Groundwater Elevation	feet	589.24	587.22	587.72	588.37	588.84	589.04	588.44	587.36	587.97	588.77	588.17	588.88	588.77	588.66	585.07
Temperature, Water (C)	deg C	9.1	11.6	11.9	10.7	10.5	10	10.2	10.4	11	9.8	10.7	10.3	11.8	10	10.9
Turbidity	NTU	409.5	18.26	48.39	16.45	12.58	9.61	186.4	28.41	563	233.5	107.1	61.84	94.01	87.6	70.42

Page 1 1/13/2021 9:33:39 AM

Appendix E Statistical Evaluation

SCS ENGINEERS

January 14, 2021 File No. 25220068.00

TECHNICAL MEMORANDUM

SUBJECT: Statistical Evaluation of Groundwater Monitoring Results – UPL Update

Edgewater Generating Station

PREPARED BY: Nicole Kron

CHECKED BY: Sherren Clark

STATISTICAL METHOD

Groundwater monitoring data for the multiunit system at the Edgewater Generating Station (EDG), is evaluated in accordance with 40 CFR 257.93(f)(3), using a prediction interval procedure, in which an interval for each constituent is established from the distribution of the background data, and the level of each constituent in each compliance well is compared to the upper prediction limit.

Statistical evaluation is performed using commercially available software (Sanitas for Groundwater® or similar) in general accordance with the USEPA's *Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities* dated March 2009 (Unified Guidance) (USEPA, 2009) and generally accepted procedures.

The EDG monitoring data includes one background monitoring well, 2R-OW, and three compliance monitoring wells, MW-301, MW-302, and MW-303. The statistical analysis includes an interwell evaluation for the Appendix III parameters.

The initial UPLs were calculated based on eight rounds of background monitoring performed prior to the initiation of compliance monitoring for the EDG CCR units, from April 2016 through August 2017. Since then, additional rounds of monitoring for Appendix III parameters have been performed at the background well. As part of the evaluation of the October 2020 monitoring results, the background data set for the UPL calculations is being updated to include data from the background well collected through October 2020. This memo addresses updated UPLs for Appendix III parameters.

TIME SERIES PLOTS

Time series plots are prepared for the required monitoring parameters to show the concentration variations over time. Time series graphs are included in **Attachment 1**.

OUTLIER ANALYSIS - INTERWELL

For interwell analysis, an outlier evaluation is performed for background monitoring results at the upgradient wells. A statistical outlier is a value that is extremely different from the other values in the data set. The Sanitas outlier tests identify data points that do not appear to fit the distribution of the

rest of the data set and determine if they differ significantly from the rest of the data. The outlier analysis performed in Sanitas includes the following steps:

- 1) Run normality test (Shapiro Wilk/Francia).
- 2) If normally distributed, run USEPA's 1989 Outlier Test to identify suspected outliers.
 - a) If number of background samples is less than or equal to 25, run Dixon's test for suspected outliers.
 - b) If number of background samples is more than 25, run Rosner's test for suspected outliers.
- 3) If not normally distributed, run Tukey's test for outliers.
- 4) Review data flagged as possible outliers to evaluate whether they should be removed from the background data set. Also review time series plots for possible outliers that were not picked up in the statistical evaluation (e.g., outlier test may not identify outliers when two values are similar to each other, but very different from all other data).

Results identified as statistical outliers are checked for possible lab instrument failure, field collection problems, or data entry errors; however, outliers may exist naturally in the data if there is an extremely wide inherent or temporal variability in the data. The Unified Guidance states that unless a likely error can be identified, the outlier should not be removed.

For the interwell evaluation of the October 2020 sampling event, the following background values were identified as potential outliers and handled as described:

• Field pH. Two results from the August 2016 and April 2019 events were flagged as statistical outliers. The low result (August 2016) was removed from the dataset because all field pH results for that event at the background and compliance wells were low, suggesting a likely field measurement issue or calibration error. The high result (April 2019) was not removed from the dataset because there was no known explanation for the higher result and it appeared to be within the range of potential natural variation.

Outlier analysis output from Sanitas is included in Attachment 2.

BACKGROUND UPDATE

The background data pool was updated in accordance with the Unified Guidance, which recommends updating background every 2 to 3 years for semiannual sampling. Prior to expanding the data pool, the original background data set (4/2016 through 8/2017) and the data to be added (10/2017 through 10/2020) were compared. The Unified Guidance states that recently collected measurements from the background wells can be added to the existing pool if a Student's t-test or Wilcoxon rank-sum test finds no significant difference between the two groups at the 1% level of significance.

The Sanitas background group comparison for the EDG background data sets, included in **Attachment 3**, indicated no signficant difference at the 1% level; therefore, the more recent data can be added to the background pool. The comparison uses Welch's t-test for normally distributed data and the Mann-Whitney test for non-normal data. (Note: The Sanitas output labels the earlier

background dataset as "Background" and the later background dataset as "Compliance," but all data from background well 2R-OW is background data.)

INTERWELL PREDICTION LIMITS

Interwell prediction limits are calculated using background data from the upgradient monitoring well (2R-OW) for each monitored constituent, with outliers removed as noted above. During this evaluation of compliance monitoring, groundwater results from April 2016 through October 2020 were included to calculate the interwell prediction limits. The prediction limit analysis performed in Sanitas includes the following steps:

- 1) If 100% of the background values are non-detect, the Double Quanitification rule applies and no prediction limit is calculated.
- 2) If more than 50% of results are non-detect, then a non-parametric prediction limit is calculated.
- 3) If 50% or fewer of the results are non-detect, run normality test (Shapiro Wilk/Francia) to assess whether the data fit a normal distribution or can be transformed to fit a normal distribution (e.g., lognormal).
- 4) If normal or transformed normal, calculate parametric prediction limit.
- 5) If not normal or transformed normal, calculate non-parametric prediction limit.

Consistent with the Unified Guidance, parametric prediction limits are calculated based on a 1-of-2 retesting protocol and a 10 percent site-wide false positive rate. Sanitas establishes the per-test significance level based on user inputs of the number of events per year, number of constituents being evaluated, and number of compliance wells. For the October 2020 event, the following values were used:

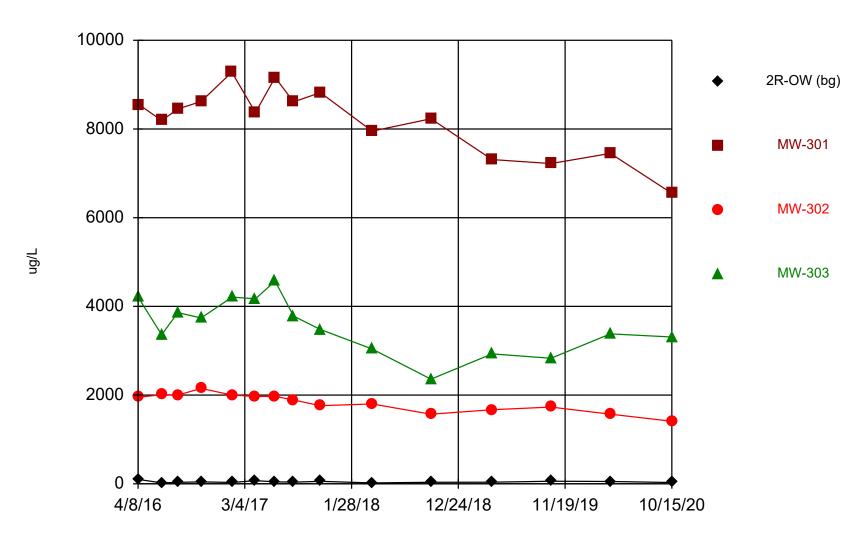
Parameter	Value	Comments
Evaluations per year	2	Spring and Fall events
Constituents analyzed	7	Appendix III parameters
Compliance wells	3	MW-301, MW-302, MW-303

Non-parametric prediction limits are also based on a 1-of-2 retesting protocol. The non-parametric limit is the highest value in the background dataset. Due to the small sample size, the false positive rate for the non-parametric tests is higher than for the parametric tests, but will go down as more background data are obtained.

For results with 100 percent non-detects in the background data, evaluation under the Double Quantification Rule means that a statistically significant increase (SSI) has not occurred for a compliance well unless two sample results from the well exceed the laboratory's reporting limit or quantification limit. For the current background dataset, none of the Appendix III parameters had 100 percent non-detects, so the Double Quantification rule was not applied.

TECHNICAL MEMORANDUM January 14, 2021 Page 4

For evaluation of parameters with less than 100 percent non-detects in the background sampling, the non-detects were adjusted using the Kaplan-Meier technique, unless the non-detects represent less than 15 percent of the total samples, in which case one-half of the detection limit was used.

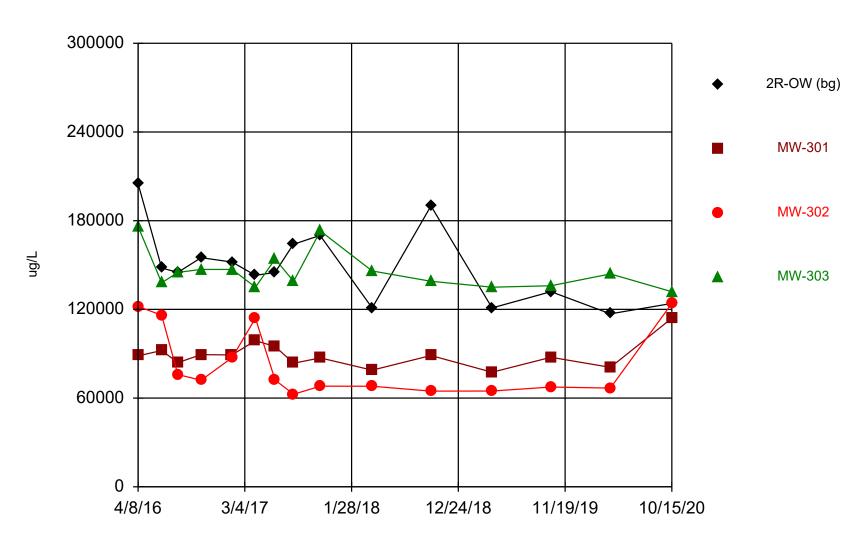

Interwell prediction limit analysis results are included in **Attachment 4**.

NDK/SCC

I:\25220068.00\Data and Calculations\Sanitas\EDG_Clsd - UPL calcs\Edg Closed CCR Stats Memo.docx

Attachment 1 Times Series Graphs

Boron

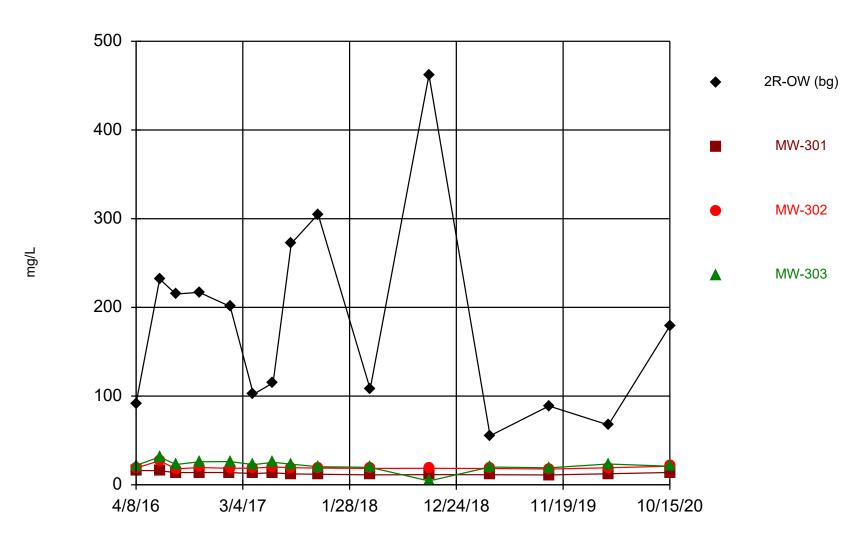

Time Series Analysis Run 12/21/2020 5:35 PM

Time Series

Constituent: Boron (ug/L) Analysis Run 12/21/2020 5:36 PM

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	100		1950	4210
4/11/2016		8550		
6/20/2016	22.4	8190	2010	3360
8/9/2016	32.6	8450	2000	3860
10/20/2016	43.1	8620	2150	3740
1/23/2017		9280		
1/24/2017	31.2		2000	4210
4/6/2017	70.6	8370	1970	4170
6/6/2017	45.2	9160	1970	4570
8/1/2017	35.7			
8/2/2017		8610	1890	3780
10/23/2017	55.9			
10/24/2017		8820	1760	3480
4/2/2018	19.7	7950	1800	3040
10/1/2018	34.7	8230	1570	2360
4/8/2019	35.8	7310	1670	2930
10/7/2019	58.8	7220	1730	2830
4/8/2020	52.3	7450	1570	3380
10/15/2020	29.9	6550	1410	3310

Calcium

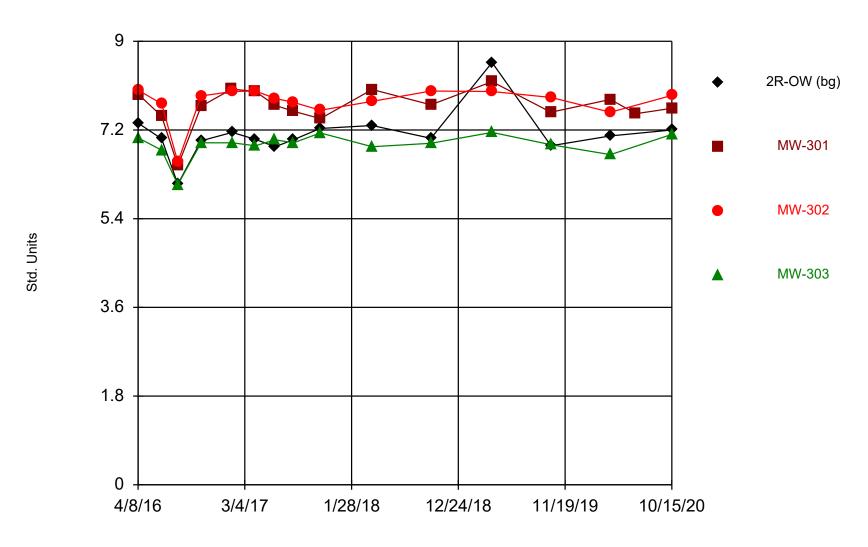

Time Series Analysis Run 12/21/2020 5:35 PM

Time Series

Constituent: Calcium (ug/L) Analysis Run 12/21/2020 5:36 PM

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	205000		122000	176000
4/11/2016		88700		
6/20/2016	148000	92200	116000	138000
8/9/2016	145000	84000	75900	145000
10/20/2016	155000	89400	72100	147000
1/23/2017		89200		
1/24/2017	152000		87400	147000
4/6/2017	143000	98800	114000	135000
6/6/2017	145000	94900	72200	154000
8/1/2017	164000			
8/2/2017		83600	62600	139000
10/23/2017	170000			
10/24/2017		87200	68100	173000
4/2/2018	121000	78900	68000	146000
10/1/2018	190000	88800	64700	139000
4/8/2019	121000	77500	64800	135000
10/7/2019	132000	87600	67500	136000
4/8/2020	117000	80800	66800	144000
10/15/2020	124000	114000	124000	132000

Chloride

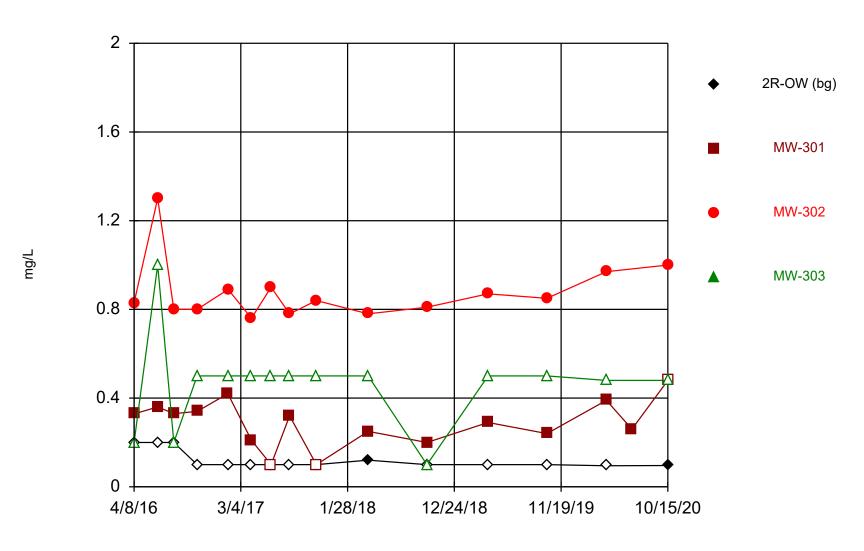

Time Series Analysis Run 12/21/2020 5:35 PM

Time Series

Constituent: Chloride (mg/L) Analysis Run 12/21/2020 5:36 PM

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	91.7		18.9	21.8
4/11/2016		16.2		
6/20/2016	232	15.9	27.2	31.5
8/9/2016	215	13.7	18	22.8
10/20/2016	217	13.9	19.5	26
1/23/2017		13.8		
1/24/2017	201		18.6	26.2
4/6/2017	102	12.7	18.9	22.7
6/6/2017	115	13.5	20	25.4
8/1/2017	272			
8/2/2017		12.3	19.3	23.2
10/23/2017	305			
10/24/2017		11.9	18.9	20.4
4/2/2018	108	11.2	18.5	19.7
10/1/2018	462	11.5	18.6	4.3
4/8/2019	55.3	11.4	18.4	20
10/7/2019	88.8	11.1	17.8	19.1
4/8/2020	67.5	12.5	19.2	23.5
10/15/2020	179	13.9	20.9	20.9

Field pH

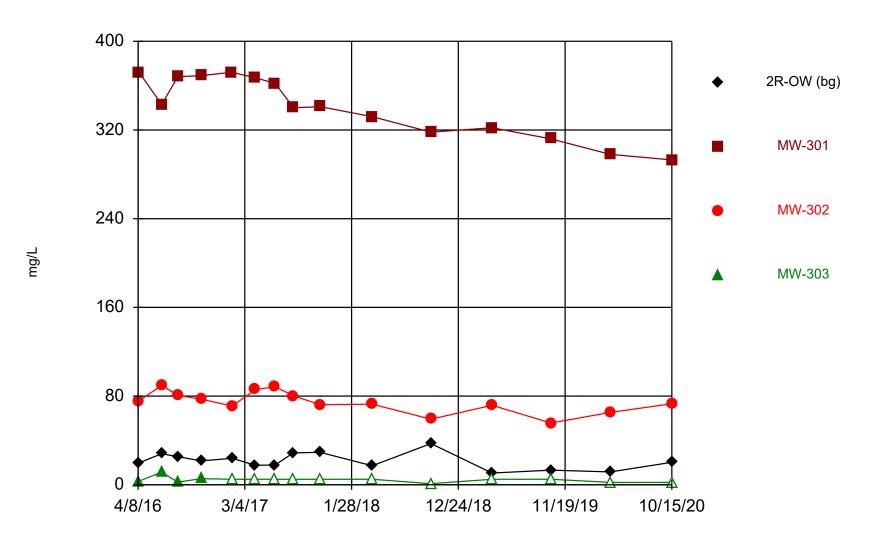

Time Series Analysis Run 12/21/2020 5:35 PM

Time Series

Constituent: Field pH (Std. Units) Analysis Run 12/21/2020 5:36 PM

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	7.34		8.01	7.04
4/11/2016		7.91		
6/20/2016	7.02	7.48	7.73	6.79
8/9/2016	6.1	6.47	6.55	6.09
10/20/2016	6.98	7.68	7.89	6.94
1/23/2017		8.03		
1/24/2017	7.15		7.98	6.94
4/6/2017	7.01	7.98	7.99	6.88
6/6/2017	6.86	7.7	7.84	7
8/1/2017	7			
8/2/2017		7.58	7.76	6.94
10/23/2017	7.23			
10/24/2017		7.43	7.6	7.14
4/2/2018	7.29	8.02	7.78	6.86
10/1/2018	7.03	7.71	7.99	6.93
4/8/2019	8.57	8.18	7.98	7.15
10/7/2019	6.88	7.56	7.86	6.9
4/8/2020	7.08	7.82	7.56	6.7
6/26/2020		7.53		
10/15/2020	7.2	7.64	7.9	7.11

Fluoride

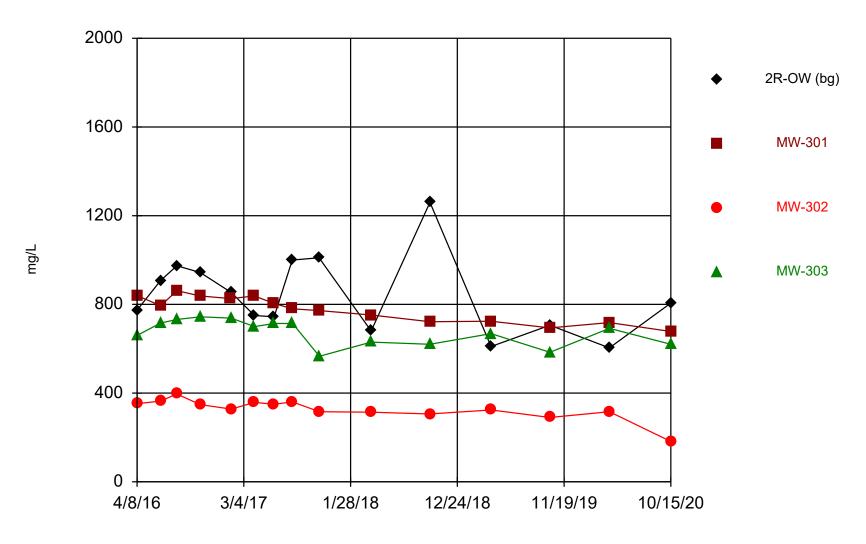

Time Series Analysis Run 12/21/2020 5:35 PM

Time Series

Constituent: Fluoride (mg/L) Analysis Run 12/21/2020 5:36 PM

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	<0.2 (U)		0.83	<0.2 (U)
4/11/2016		0.33 (J)		
6/20/2016	<0.2 (U)	0.36 (J)	1.3 (J)	<1 (U)
8/9/2016	<0.2 (U)	0.33 (J)	0.8	<0.2 (U)
10/20/2016	<0.1 (U)	0.34	0.8	<0.5 (U)
1/23/2017		0.42		
1/24/2017	<0.1 (U)		0.89 (J)	<0.5 (U)
4/6/2017	<0.1 (U)	0.21 (J)	0.76	<0.5 (U)
6/6/2017	<0.1 (U)	<0.1 (U)	0.9	<0.5 (U)
8/1/2017	<0.1 (U)			
8/2/2017		0.32	0.78	<0.5 (U)
10/23/2017	<0.1 (U)			
10/24/2017		<0.1 (U)	0.84	<0.5 (U)
4/2/2018	0.12 (J)	0.25 (J)	0.78	<0.5 (U)
10/1/2018	<0.1 (U)	0.2 (J)	0.81	<0.1 (U)
4/8/2019	<0.1 (U)	0.29 (J)	0.87	<0.5 (U)
10/7/2019	<0.1 (U)	0.24 (J)	0.85	<0.5 (U)
4/8/2020	<0.095 (U)	0.39	0.97	<0.48 (U)
6/26/2020		0.26 (J)		
10/15/2020	0.096 (J)	<0.48 (U)	1 (J)	<0.48 (U)

Sulfate


Time Series Analysis Run 12/21/2020 5:35 PM

Time Series

Constituent: Sulfate (mg/L) Analysis Run 12/21/2020 5:36 PM

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	19.5		75.1	3 (J)
4/11/2016		372		
6/20/2016	28	343	89.6	11.4 (J)
8/9/2016	25.4	368	80.7	2.4 (J)
10/20/2016	21.6	369	77.2	5.6 (J)
1/23/2017		372		
1/24/2017	23.9		71.1	<5 (U)
4/6/2017	17.6	367	85.8	<5 (U)
6/6/2017	17.8	362	88.5	<5 (U)
8/1/2017	28.8			
8/2/2017		340	80.2	<5 (U)
10/23/2017	29.3			
10/24/2017		341	72.2	<5 (U)
4/2/2018	17.2	332	72.7	<5 (U)
10/1/2018	37.2	318	59.2	<1 (U)
4/8/2019	10.6	322	71.7	<5 (U)
10/7/2019	13.2	312	55.7	<5 (U)
4/8/2020	11.6	298	65.3	<2.2 (U)
10/15/2020	20.3	293	73.1	<2.2 (U)

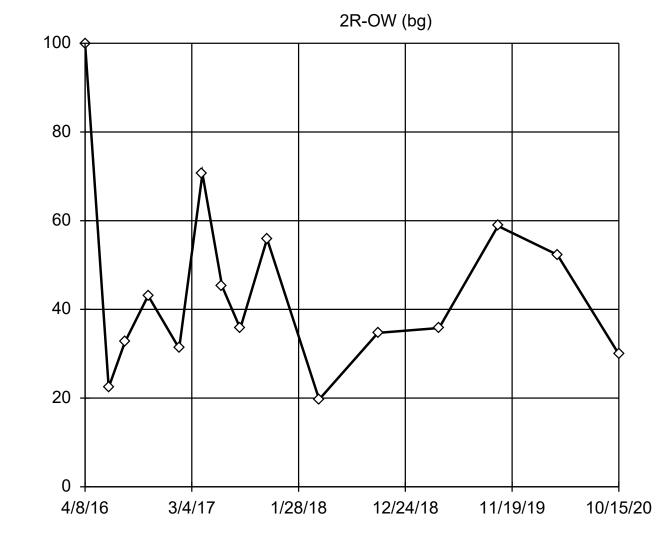
Total Dissolved Solids

Time Series Analysis Run 12/21/2020 5:35 PM

Time Series

Constituent: Total Dissolved Solids (mg/L) Analysis Run 12/21/2020 5:36 PM

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	774		352	660
4/11/2016		838		
6/20/2016	908	794	364	716
8/9/2016	974	862	396	732
10/20/2016	944	838	348	744
1/23/2017		826		
1/24/2017	854		328	738
4/6/2017	750	838	358	700
6/6/2017	744	804	350	714
8/1/2017	1000			
8/2/2017		780	360	714
10/23/2017	1010			
10/24/2017		772	316	566
4/2/2018	680	752	314	630
10/1/2018	1260	722	306	620
4/8/2019	610	724	324	668
10/7/2019	706	694	290	584
4/8/2020	604	718	316	692
10/15/2020	806	678	182	620


Attachment 2

Outlier Analysis

Outlier Analysis

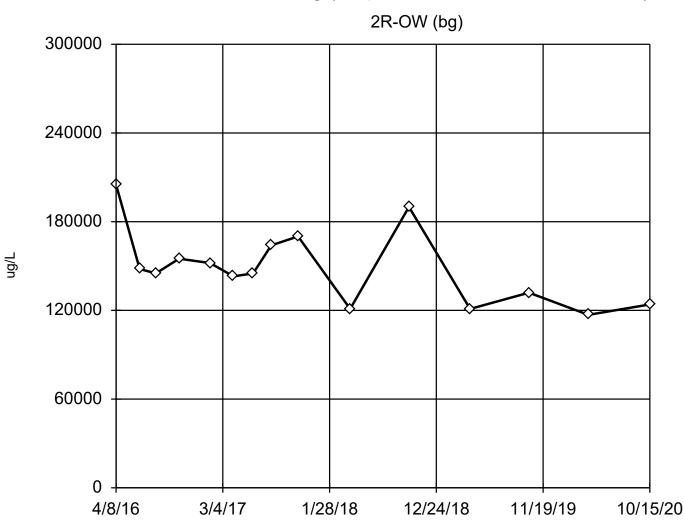
	Edgewater Clo	sed Generating	Station Clie	ent: SCS Engineers	Data: EDG_Clsd - C	them- export-Dec202	20 P	rinted 12/28	/2020, 6:04 F	PM	
Constituent	Well	<u>Outlier</u>	Value(s)	Date(s)	Method	<u>Alpha</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	<u>Distribution</u>	Normality Test
Boron (ug/L)	2R-OW (bg)	No	n/a	n/a	EPA 1989	0.05	15	44.53	20.78	ln(x)	ShapiroWilk
Calcium (ug/L)	2R-OW (bg)	No	n/a	n/a	EPA 1989	0.05	15	148800	25498	normal	ShapiroWilk
Chloride (mg/L)	2R-OW (bg)	No	n/a	n/a	EPA 1989	0.05	15	180.8	109.9	ln(x)	ShapiroWilk
Field pH (Std. Units)	2R-OW (bg)	Yes	8.57,6.1	4/8/2019,	Dixon`s	0.05	15	7.116	0.495	normal	ShapiroWilk
Sulfate (mg/L)	2R-OW (bg)	No	n/a	n/a	EPA 1989	0.05	15	21.47	7.379	normal	ShapiroWilk
Total Dissolved Solids (mg/L)	2R-OW (bg)	No	n/a	n/a	EPA 1989	0.05	15	841.6	177.2	normal	ShapiroWilk

EPA Screening (suspected outliers for Dixon's Test)

n = 15

Dixon's will not be run.
No suspect values identified or unable to establish suspect values.
Mean 44.53, std. dev.
20.78, critical Tn 2.409

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9789 Critical = 0.901 (after natural log transformation) The distribution was found to be log-normal.


Constituent: Boron Analysis Run 12/28/2020 6:03 PM View: CCR - UPL - 2020

EPA 1989 Outlier Screening

Constituent: Boron (ug/L) Analysis Run 12/28/2020 6:04 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

	2R-OW (bg)
4/8/2016	100
6/20/2016	22.4
8/9/2016	32.6
10/20/2016	43.1
1/24/2017	31.2
4/6/2017	70.6
6/6/2017	45.2
8/1/2017	35.7
10/23/2017	55.9
4/2/2018	19.7
10/1/2018	34.7
4/8/2019	35.8
10/7/2019	58.8
4/8/2020	52.3
10/15/2020	29.9

EPA Screening (suspected outliers for Dixon's Test)

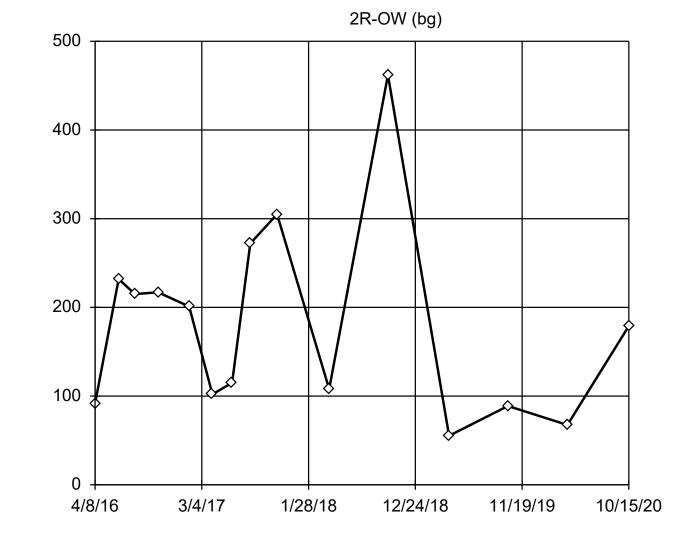
n = 15

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 148800, std. dev. 25498, critical Tn 2.409

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9279 Critical = 0.901 The distribution was found to be normally distributed.

Constituent: Calcium Analysis Run 12/28/2020 6:03 PM View: CCR - UPL - 2020

EPA 1989 Outlier Screening


Constituent: Calcium (ug/L) Analysis Run 12/28/2020 6:04 PM View: CCR - UPL - 2020

Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

	2R-OW (bg)
4/8/2016	205000
6/20/2016	148000
8/9/2016	145000
10/20/2016	155000
1/24/2017	152000
4/6/2017	143000
6/6/2017	145000
8/1/2017	164000
10/23/2017	170000
4/2/2018	121000
10/1/2018	190000
4/8/2019	121000
10/7/2019	132000
4/8/2020	117000
10/15/2020	124000

mg/L

EPA Screening (suspected outliers for Dixon's Test)

n = 15

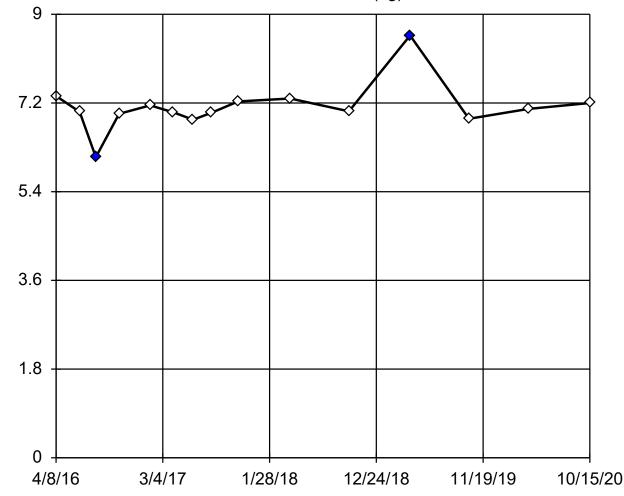
Dixon's will not be run.
No suspect values identified or unable to establish suspect values.
Mean 180.8, std. dev.
109.9, critical Tn 2.409

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9641 Critical = 0.901 (after natural log transformation) The distribution was found to be log-normal.

Constituent: Chloride Analysis Run 12/28/2020 6:03 PM View: CCR - UPL - 2020

EPA 1989 Outlier Screening

Constituent: Chloride (mg/L) Analysis Run 12/28/2020 6:04 PM View: CCR - UPL - 2020


Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

	2R-OW (bg)
4/8/2016	91.7
6/20/2016	232
8/9/2016	215
10/20/2016	217
1/24/2017	201
4/6/2017	102
6/6/2017	115
8/1/2017	272
10/23/2017	305
4/2/2018	108
10/1/2018	462
4/8/2019	55.3
10/7/2019	88.8
4/8/2020	67.5
10/15/2020	179

Std. Units

Dixon's Outlier Test

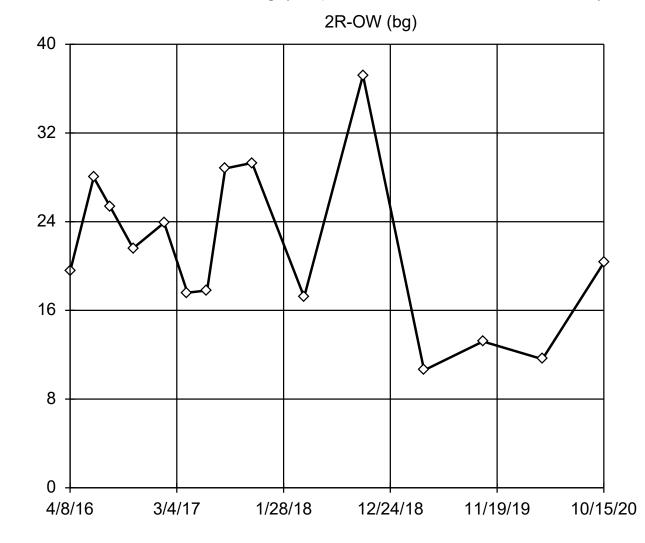
2R-OW (bg)

n = 15

Statistical outliers are drawn as solid.
Testing for 1 high and 1 low outliers.
Mean = 7.116.
Std. Dev. = 0.495.
8.57: c = 0.7574
tabl = 0.525.
6.1: c = 0.6555
tabl = 0.525.
Alpha = 0.05.

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9533 Critical = 0.889 The distribution, after removal of suspect values, was found to be normally distributed.

Constituent: Field pH Analysis Run 12/28/2020 6:03 PM View: CCR - UPL - 2020


Dixon's Outlier Test

Constituent: Field pH (Std. Units) Analysis Run 12/28/2020 6:04 PM View: CCR - UPL - 2020

Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

	2R-OW (bg)
4/8/2016	7.34
6/20/2016	7.02
8/9/2016	6.1 (O)
10/20/2016	6.98
1/24/2017	7.15
4/6/2017	7.01
6/6/2017	6.86
8/1/2017	7
10/23/2017	7.23
4/2/2018	7.29
10/1/2018	7.03
4/8/2019	8.57 (O)
10/7/2019	6.88
4/8/2020	7.08
10/15/2020	7.2

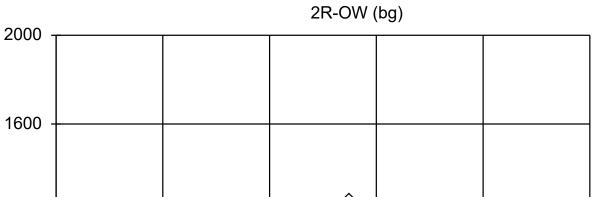
EPA Screening (suspected outliers for Dixon's Test)

n = 15

Dixon's will not be run.
No suspect values identified or unable to establish suspect values.
Mean 21.47, std. dev.
7.379, critical Tn 2.409

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9672 Critical = 0.901 The distribution was found to be normally distributed.

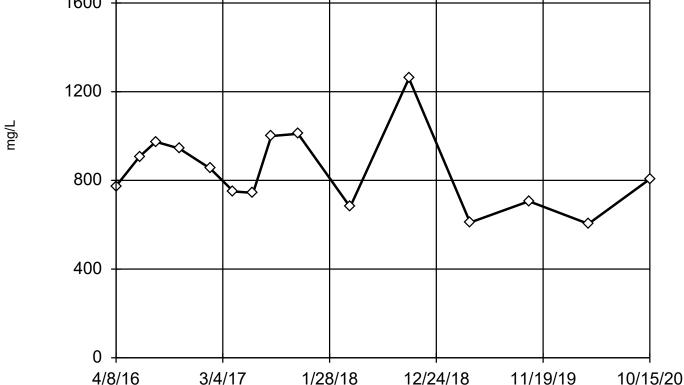
Constituent: Sulfate Analysis Run 12/28/2020 6:03 PM View: CCR - UPL - 2020


EPA 1989 Outlier Screening

Constituent: Sulfate (mg/L) Analysis Run 12/28/2020 6:04 PM View: CCR - UPL - 2020

Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

	2R-OW (bg)					
4/8/2016	19.5					
6/20/2016	28					
8/9/2016	25.4					
10/20/2016	21.6					
1/24/2017	23.9					
4/6/2017	17.6					
6/6/2017	17.8					
8/1/2017	28.8					
10/23/2017	29.3					
4/2/2018	17.2					
10/1/2018	37.2					
4/8/2019	10.6					
10/7/2019	13.2					
4/8/2020	11.6					
10/15/2020	20.3					


EPA Screening (suspected outliers for Dixon's Test)

n = 15

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 841.6, std. dev. 177.2, critical Tn 2.409

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9458 Critical = 0.901 The distribution was found to be normally distributed.

Constituent: Total Dissolved Solids Edgewater Closed Generating Station Analysis Run 12/28/2020 6:03 PM View: CCR - UPL - 2020

Client: SCS Engineers

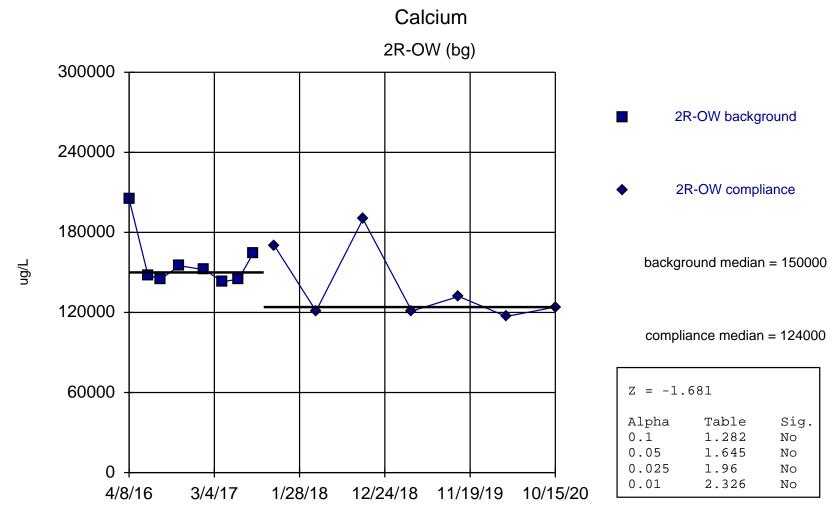
Data: EDG_Clsd - Chem- export-Dec2020

EPA 1989 Outlier Screening

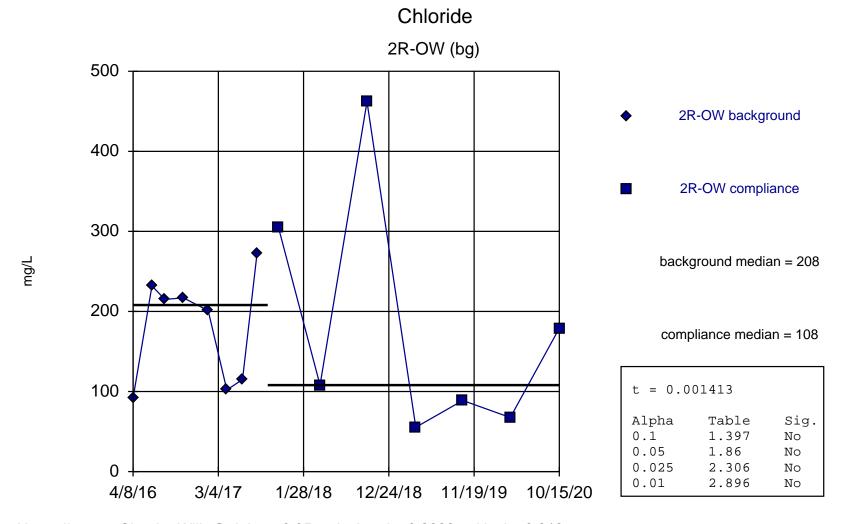

Constituent: Total Dissolved Solids (mg/L) Analysis Run 12/28/2020 6:04 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

	2R-OW (bg				
4/8/2016	774				
6/20/2016	908				
8/9/2016	974				
10/20/2016	944				
1/24/2017	854				
4/6/2017	750				
6/6/2017	744				
8/1/2017	1000				
10/23/2017	1010				
4/2/2018	680				
10/1/2018	1260				
4/8/2019	610				
10/7/2019	706				
4/8/2020	604				
10/15/2020	806				

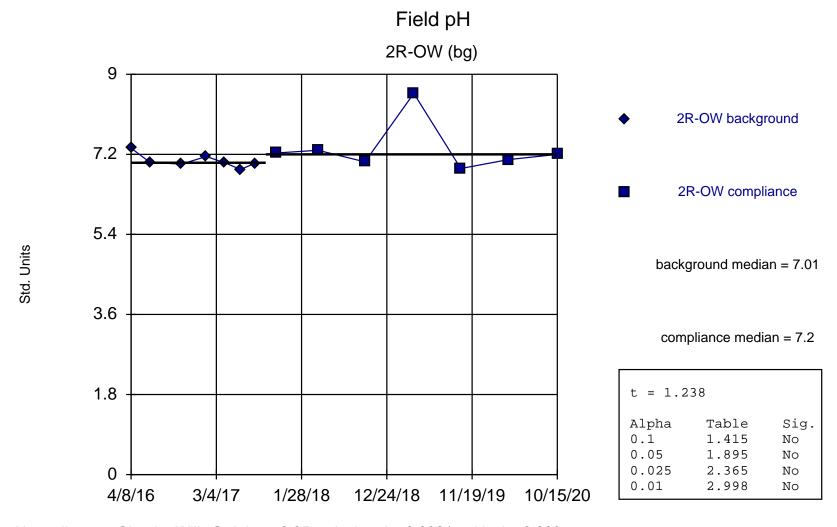
Attachment 3 Welch's/Mann-Whitney Comparison


Welch's t-test/Mann-Whitney

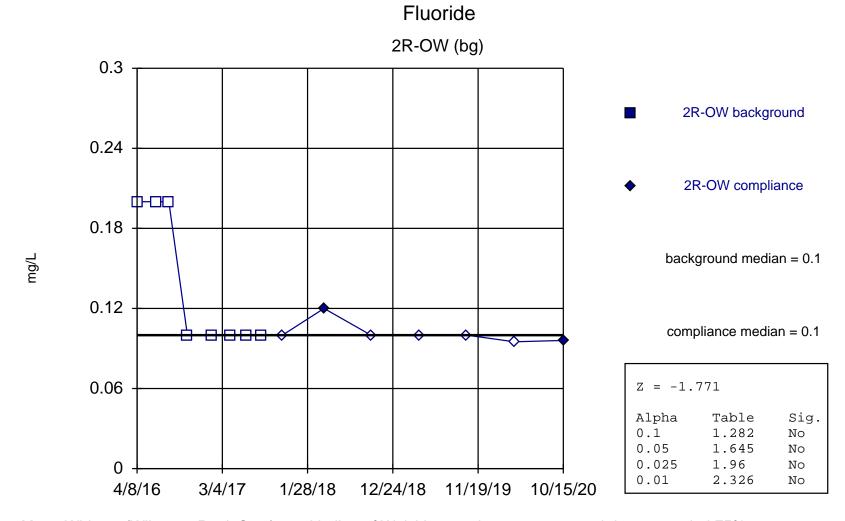
	Edgewater Closed Generating Station		Client: SCS Engineers		Data: EDG_Clsd - Chem- export-Dec2020			Printed 1/3/2021, 4:20 PM		
Constituent	<u>Well</u>	Calc.	0.1	0.05	0.025	0.01	<u>Alpha</u>	Sig.	Bg. Wells	<u>Method</u>
Boron (ug/L)	2R-OW (bg)	-0.62	No	No	No	No	0.01	No	(intrawell)	Welch`s
Calcium (ug/L)	2R-OW (bg)	-1.681	No	No	No	No	0.01	No	(intrawell)	Mann-W (normality)
Chloride (mg/L)	2R-OW (bg)	0.0	No	No	No	No	0.01	No	(intrawell)	Welch`s
Field pH (Std. Units)	2R-OW (bg)	1.238	No	No	No	No	0.01	No	(intrawell)	Welch`s
Fluoride (mg/L)	2R-OW (bg)	-1.771	No	No	No	No	0.01	No	(intrawell)	Mann-W (NDs)
Sulfate (mg/L)	2R-OW (bg)	-0	No	No	No	No	0.01	No	(intrawell)	Welch`s
Total Dissolved Solids (mg/L)	2R-OW (bg)	-0	No	No	No	No	0.01	No	(intrawell)	Welch's


Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.842, critical = 0.818.

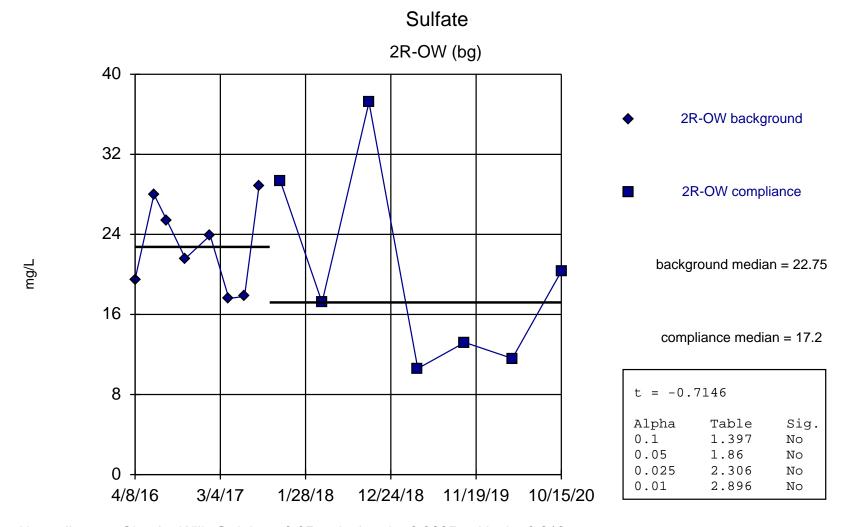
Welch's t-test Analysis Run 1/3/2021 4:19 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020


Mann-Whitney (Wilcoxon Rank Sum) used in lieu of Welch's t-test because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level.

Mann-Whitney (Wilcoxon Rank Sum) Analysis Run 1/3/2021 4:19 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

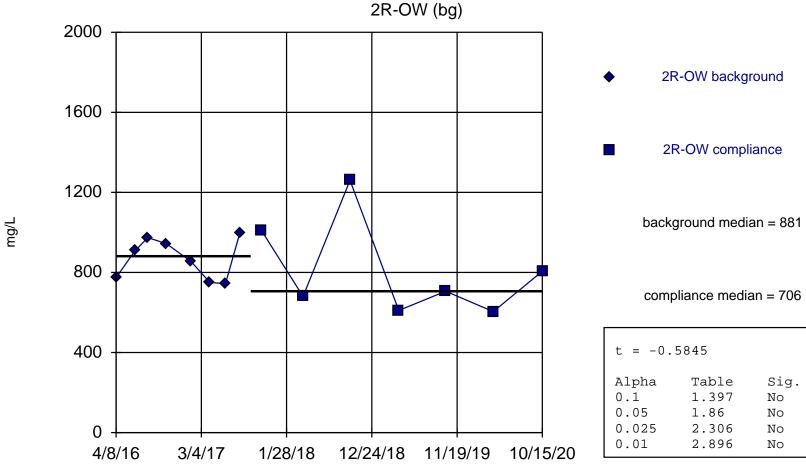

Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8822, critical = 0.818.

Welch's t-test Analysis Run 1/3/2021 4:19 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020


Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8921, critical = 0.803.

Welch's t-test Analysis Run 1/3/2021 4:19 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Mann-Whitney (Wilcoxon Rank Sum) used in lieu of Welch's t-test because censored data exceeded 75%.


Mann-Whitney (Wilcoxon Rank Sum) Analysis Run 1/3/2021 4:19 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9205, critical = 0.818.

Welch's t-test Analysis Run 1/3/2021 4:19 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Total Dissolved Solids 2R-OW (ba)

Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8983, critical = 0.818.

Welch's t-test Analysis Run 1/3/2021 4:19 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Attachment 4 Interwell Prediction Limit Analysis

		Edgewate	r Closed Gene	erating Station	Client:	SCS I	Engin	eers Data: EDG_0	Clsd - Chem-	export-De	ec2020	Printed	1/14/2021, 8:04	ł PM	
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg I	N Bg Wells	Bg Mean	Std. Dev	<u>/. %NDs</u>	ND Adj	. Transform	<u>Alpha</u>	Method
Boron (ug/L)	MW-301	86	n/a	10/15/2020	6550	Yes	15	2R-OW	44.53	20.78	0	None	No	0.002505	Param Inter 1 of 2
Boron (ug/L)	MW-302	86	n/a	10/15/2020	1410	Yes	15	2R-OW	44.53	20.78	0	None	No	0.002505	Param Inter 1 of 2
Boron (ug/L)	MW-303	86	n/a	10/15/2020	3310	Yes	15	2R-OW	44.53	20.78	0	None	No	0.002505	Param Inter 1 of 2
Calcium (ug/L)	MW-301	200000	n/a	10/15/2020	114000	No	15	2R-OW	148800	25498	0	None	No	0.002505	Param Inter 1 of 2
Calcium (ug/L)	MW-302	200000	n/a	10/15/2020	124000	No	15	2R-OW	148800	25498	0	None	No	0.002505	Param Inter 1 of 2
Calcium (ug/L)	MW-303	200000	n/a	10/15/2020	132000	No	15	2R-OW	148800	25498	0	None	No	0.002505	Param Inter 1 of 2
Chloride (mg/L)	MW-301	400	n/a	10/15/2020	13.9	No	15	2R-OW	180.8	109.9	0	None	No	0.002505	Param Inter 1 of 2
Chloride (mg/L)	MW-302	400	n/a	10/15/2020	20.9	No	15	2R-OW	180.8	109.9	0	None	No	0.002505	Param Inter 1 of 2
Chloride (mg/L)	MW-303	400	n/a	10/15/2020	20.9	No	15	2R-OW	180.8	109.9	0	None	No	0.002505	Param Inter 1 of 2
Field pH (Std. Units)	MW-301	8.57	n/a	10/15/2020	7.64	No	14	2R-OW	n/a	n/a	0	n/a	n/a	0.008038	NP Inter (normality)
Field pH (Std. Units)	MW-302	8.57	n/a	10/15/2020	7.9	No	14	2R-OW	n/a	n/a	0	n/a	n/a	0.008038	NP Inter (normality)
Field pH (Std. Units)	MW-303	8.57	n/a	10/15/2020	7.11	No	14	2R-OW	n/a	n/a	0	n/a	n/a	0.008038	NP Inter (normality)
Fluoride (mg/L)	MW-301	0.200	n/a	10/15/2020	0.48ND	No	15	2R-OW	n/a	n/a	86.67	n/a	n/a	0.007081	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	MW-302	0.200	n/a	10/15/2020	1J	No	15	2R-OW	n/a	n/a	86.67	n/a	n/a	0.007081	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	MW-303	0.200	n/a	10/15/2020	0.48ND	No	15	2R-OW	n/a	n/a	86.67	n/a	n/a	0.007081	NP Inter (NDs) 1 of 2
Sulfate (mg/L)	MW-301	36.2	n/a	10/15/2020	293	Yes	15	2R-OW	21.47	7.379	0	None	No	0.002505	Param Inter 1 of 2
Sulfate (mg/L)	MW-302	36.2	n/a	10/15/2020	73.1	Yes	15	2R-OW	21.47	7.379	0	None	No	0.002505	Param Inter 1 of 2
Sulfate (mg/L)	MW-303	36.2	n/a	10/15/2020	2.2ND	No	15	2R-OW	21.47	7.379	0	None	No	0.002505	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	MW-301	1190	n/a	10/15/2020	678	No	15	2R-OW	841.6	177.2	0	None	No	0.002505	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	MW-302	1190	n/a	10/15/2020	182	No	15	2R-OW	841.6	177.2	0	None	No	0.002505	Param Inter 1 of 2

No 15 2R-OW

841.6

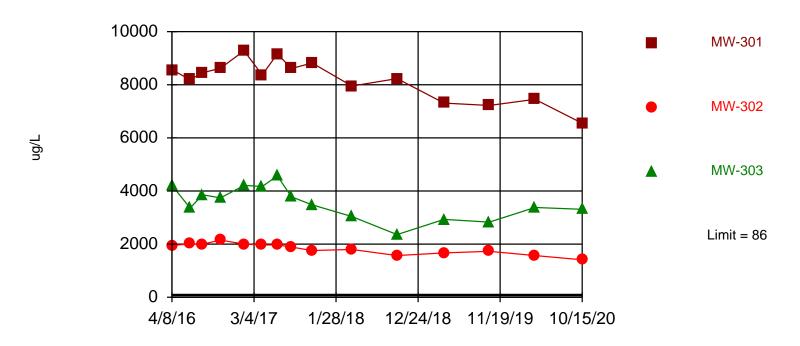
177.2 0

None No

0.002505 Param Inter 1 of 2

Total Dissolved Solids (mg/L)

MW-303


1190

n/a

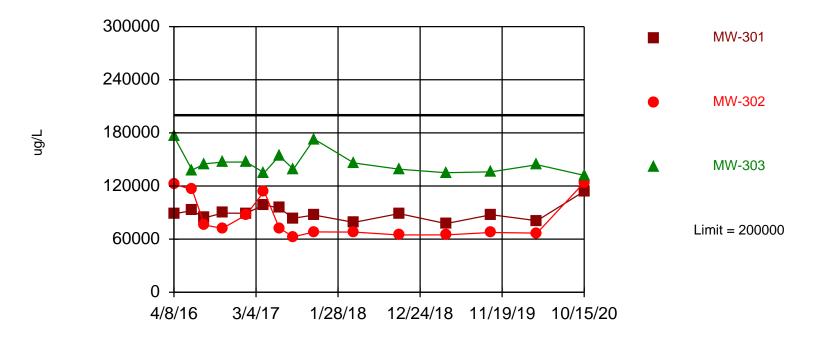
10/15/2020 620

Exceeds Limit: MW-301, MW-302, MW-303

Boron Interwell Parametric

Background Data Summary: Mean=44.53, Std. Dev.=20.78, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8829, critical = 0.835. Kappa = 1.994 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Comparing 3 points to limit.

Prediction Limit Analysis Run 1/14/2021 8:01 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020


Constituent: Boron (ug/L) Analysis Run 1/14/2021 8:04 PM View: CCR - UPL - 2020

Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

	2R-OW (bg)	MW-302	MW-303	MW-301
4/8/2016	100	1950	4210	
4/11/2016				8550
6/20/2016	22.4	2010	3360	8190
8/9/2016	32.6	2000	3860	8450
10/20/2016	43.1	2150	3740	8620
1/23/2017				9280
1/24/2017	31.2	2000	4210	
4/6/2017	70.6	1970	4170	8370
6/6/2017	45.2	1970	4570	9160
8/1/2017	35.7			
8/2/2017		1890	3780	8610
10/23/2017	55.9			
10/24/2017		1760	3480	8820
4/2/2018	19.7	1800	3040	7950
10/1/2018	34.7	1570	2360	8230
4/8/2019	35.8	1670	2930	7310
10/7/2019	58.8	1730	2830	7220
4/8/2020	52.3	1570	3380	7450
10/15/2020	29.9	1410	3310	6550

Within Limit Calcium

Interwell Parametric

Background Data Summary: Mean=148800, Std. Dev.=25498, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9279, critical = 0.835. Kappa = 1.994 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Comparing 3 points to limit.

Prediction Limit Analysis Run 1/14/2021 8:01 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Constituent: Calcium (ug/L) Analysis Run 1/14/2021 8:04 PM View: CCR - UPL - 2020

Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

	2R-OW (bg)	MW-302	MW-303	MW-301
4/8/2016	205000	122000	176000	
4/11/2016				88700
6/20/2016	148000	116000	138000	92200
8/9/2016	145000	75900	145000	84000
10/20/2016	155000	72100	147000	89400
1/23/2017				89200
1/24/2017	152000	87400	147000	
4/6/2017	143000	114000	135000	98800
6/6/2017	145000	72200	154000	94900
8/1/2017	164000			
8/2/2017		62600	139000	83600
10/23/2017	170000			
10/24/2017		68100	173000	87200
4/2/2018	121000	68000	146000	78900
10/1/2018	190000	64700	139000	88800
4/8/2019	121000	64800	135000	77500
10/7/2019	132000	67500	136000	87600
4/8/2020	117000	66800	144000	80800
10/15/2020	124000	124000	132000	114000

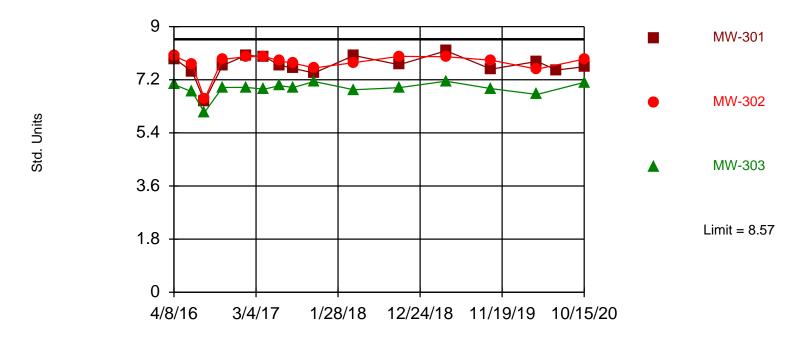
Within Limit Chloride

Interwell Parametric

MW-301 400 MW-302 300 100 4/8/16 3/4/17 1/28/18 12/24/18 11/19/19 10/15/20

Background Data Summary: Mean=180.8, Std. Dev.=109.9, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8933, critical = 0.835. Kappa = 1.994 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Comparing 3 points to limit.

Prediction Limit Analysis Run 1/14/2021 8:01 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020


Constituent: Chloride (mg/L) Analysis Run 1/14/2021 8:04 PM View: CCR - UPL - 2020

Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

	2R-OW (bg)	MW-302	MW-303	MW-301
4/8/2016	91.7	18.9	21.8	
4/11/2016				16.2
6/20/2016	232	27.2	31.5	15.9
8/9/2016	215	18	22.8	13.7
10/20/2016	217	19.5	26	13.9
1/23/2017				13.8
1/24/2017	201	18.6	26.2	
4/6/2017	102	18.9	22.7	12.7
6/6/2017	115	20	25.4	13.5
8/1/2017	272			
8/2/2017		19.3	23.2	12.3
10/23/2017	305			
10/24/2017		18.9	20.4	11.9
4/2/2018	108	18.5	19.7	11.2
10/1/2018	462	18.6	4.3	11.5
4/8/2019	55.3	18.4	20	11.4
10/7/2019	88.8	17.8	19.1	11.1
4/8/2020	67.5	19.2	23.5	12.5
10/15/2020	179	20.9	20.9	13.9

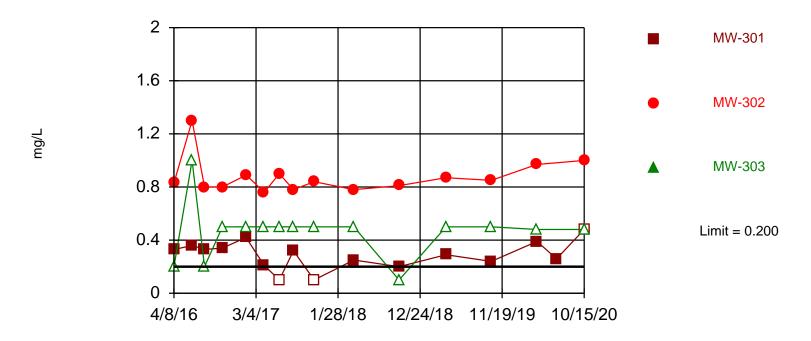
Within Limit Field pH

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 14 background values. Annual per-constituent alpha = 0.04727. Individual comparison alpha = 0.008038 (1 of 2). Comparing 3 points to limit.

Prediction Limit Analysis Run 1/14/2021 8:01 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG Clsd - Chem- export-Dec2020

Constituent: Field pH (Std. Units) Analysis Run 1/14/2021 8:04 PM View: CCR - UPL - 2020


Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

	2R-OW (bg)	MW-303	MW-302	MW-301
4/8/2016	7.34	7.04	8.01	
4/11/2016				7.91
6/20/2016	7.02	6.79	7.73	7.48
8/9/2016	6.1 (X)	6.09	6.55	6.47
10/20/2016	6.98	6.94	7.89	7.68
1/23/2017				8.03
1/24/2017	7.15	6.94	7.98	
4/6/2017	7.01	6.88	7.99	7.98
6/6/2017	6.86	7	7.84	7.7
8/1/2017	7			
8/2/2017		6.94	7.76	7.58
10/23/2017	7.23			
10/24/2017		7.14	7.6	7.43
4/2/2018	7.29	6.86	7.78	8.02
10/1/2018	7.03	6.93	7.99	7.71
4/8/2019	8.57	7.15	7.98	8.18
10/7/2019	6.88	6.9	7.86	7.56
4/8/2020	7.08	6.7	7.56	7.82
6/26/2020				7.53
10/15/2020	7.2	7.11	7.9	7.64

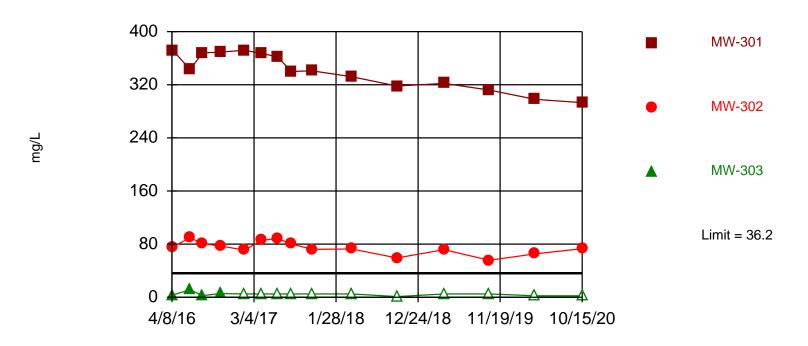
Within Limit

Interwell Non-parametric

Fluoride

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 15 background values. 86.67% NDs. Annual per-constituent alpha = 0.04174. Individual comparison alpha = 0.007081 (1 of 2). Comparing 3 points to limit.

Prediction Limit Analysis Run 1/14/2021 8:02 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG Clsd - Chem- export-Dec2020


Constituent: Fluoride (mg/L) Analysis Run 1/14/2021 8:04 PM View: CCR - UPL - 2020

Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

	2R-OW (bg)	MW-303	MW-302	MW-301
4/8/2016	<0.2 (U)	<0.2 (U)	0.83	
4/11/2016				0.33 (J)
6/20/2016	<0.2 (U)	<1 (U)	1.3 (J)	0.36 (J)
8/9/2016	<0.2 (U)	<0.2 (U)	0.8	0.33 (J)
10/20/2016	<0.1 (U)	<0.5 (U)	8.0	0.34
1/23/2017				0.42
1/24/2017	<0.1 (U)	<0.5 (U)	0.89 (J)	
4/6/2017	<0.1 (U)	<0.5 (U)	0.76	0.21 (J)
6/6/2017	<0.1 (U)	<0.5 (U)	0.9	<0.1 (U)
8/1/2017	<0.1 (U)			
8/2/2017		<0.5 (U)	0.78	0.32
10/23/2017	<0.1 (U)			
10/24/2017		<0.5 (U)	0.84	<0.1 (U)
4/2/2018	0.12 (J)	<0.5 (U)	0.78	0.25 (J)
10/1/2018	<0.1 (U)	<0.1 (U)	0.81	0.2 (J)
4/8/2019	<0.1 (U)	<0.5 (U)	0.87	0.29 (J)
10/7/2019	<0.1 (U)	<0.5 (U)	0.85	0.24 (J)
4/8/2020	<0.095 (U)	<0.48 (U)	0.97	0.39
6/26/2020				0.26 (J)
10/15/2020	0.096 (J)	<0.48 (U)	1 (J)	<0.48 (U)

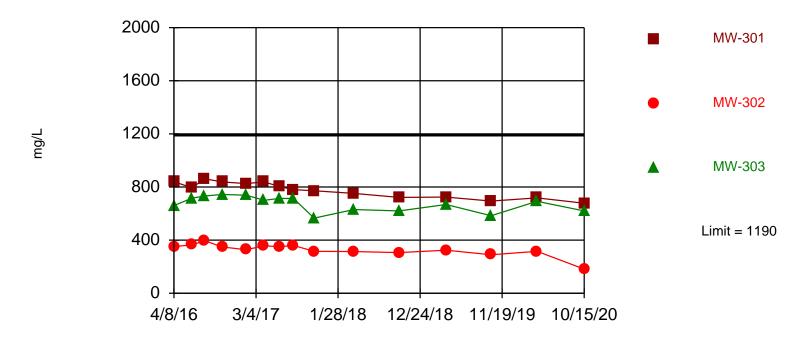
Exceeds Limit: MW-301, MW-302

Sulfate Interwell Parametric

Background Data Summary: Mean=21.47, Std. Dev.=7.379, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9672, critical = 0.835. Kappa = 1.994 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Comparing 3 points to limit.

Prediction Limit Analysis Run 1/14/2021 8:02 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Constituent: Sulfate (mg/L) Analysis Run 1/14/2021 8:04 PM View: CCR - UPL - 2020


Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

	2R-OW (bg)	MW-302	MW-303	MW-301
4/8/2016	19.5	75.1	3 (J)	
4/11/2016				372
6/20/2016	28	89.6	11.4 (J)	343
8/9/2016	25.4	80.7	2.4 (J)	368
10/20/2016	21.6	77.2	5.6 (J)	369
1/23/2017				372
1/24/2017	23.9	71.1	<5 (U)	
4/6/2017	17.6	85.8	<5 (U)	367
6/6/2017	17.8	88.5	<5 (U)	362
8/1/2017	28.8			
8/2/2017		80.2	<5 (U)	340
10/23/2017	29.3			
10/24/2017		72.2	<5 (U)	341
4/2/2018	17.2	72.7	<5 (U)	332
10/1/2018	37.2	59.2	<1 (U)	318
4/8/2019	10.6	71.7	<5 (U)	322
10/7/2019	13.2	55.7	<5 (U)	312
4/8/2020	11.6	65.3	<2.2 (U)	298
10/15/2020	20.3	73.1	<2.2 (U)	293

Within Limit

Total Dissolved Solids

Interwell Parametric

Background Data Summary: Mean=841.6, Std. Dev.=177.2, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9458, critical = 0.835. Kappa = 1.994 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Comparing 3 points to limit.

Prediction Limit Analysis Run 1/14/2021 8:02 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG Clsd - Chem- export-Dec2020

Constituent: Total Dissolved Solids (mg/L) Analysis Run 1/14/2021 8:04 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

	2R-OW (bg)	MW-302	MW-303	MW-301
4/8/2016	774	352	660	
4/11/2016				838
6/20/2016	908	364	716	794
8/9/2016	974	396	732	862
10/20/2016	944	348	744	838
1/23/2017				826
1/24/2017	854	328	738	
4/6/2017	750	358	700	838
6/6/2017	744	350	714	804
8/1/2017	1000			
8/2/2017		360	714	780
10/23/2017	1010			
10/24/2017		316	566	772
4/2/2018	680	314	630	752
10/1/2018	1260	306	620	722
4/8/2019	610	324	668	724
10/7/2019	706	290	584	694
4/8/2020	604	316	692	718
10/15/2020	806	182	620	678

Appendix F

Alternative Source Demonstrations (ASDs)

F1 October 2019 ASD

F2 April 2020 ASD

F1 October 2019 ASD

Alternative Source Demonstration October 2019 Detection Monitoring

Edgewater Generating Station Sheboygan, Wisconsin

Prepared for:

SCS ENGINEERS

25219068.00 | April 14, 2020

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830

Table of Contents

Sect	ion			Page
PE Ce	ertifica	ation		ii
1.0	Intro	duction.		1
	1.1	§257.9	94(E)(2) Alternative Source Demonstration Requirements	1
	1.2	Site Inf	formation and Map	1
	1.3	Statist	ically Significant Increases Identified	2
	1.4	Overvi	ew of Alternative Source Demonstration	2
2.0	Back	ground.		2
	2.1	Region	nal Geology and Hydrogeology	3
	2.2	CCR M	Ionitoring System	3
	2.3	Other I	Monitoring Wells	3
	2.4	Ground	dwater Flow Direction	3
3.0	Meth	nodology	y and Analysis Review	∠
	3.1	Sampli	ing and Field Analysis Review	4
	3.2	Labora	atory Analysis Review	4
	3.3 Statistical Evaluation Review			
	3.4	Summ	ary of Methodology and Analysis Review Findings	5
4.0	Alter	native S	Sources	5
	4.1	Potent	ial Causes of SSI	5
		4.1.1	Natural Variation	5
		4.1.2	Man-Made Alternative Sources	6
	4.2	Lines	of Evidences	6
		4.2.1	Previous CCR Pond and Landfill Study	7
		4.2.2	CCR Constituents in Landfill Leachate	
		4.2.3	State Program Groundwater Monitoring Results	9
5.0			Source Demonstration Conclusions	
6.0	Site	Ground	water Monitoring Recommendations	9
7.0	Refe	rences.		9
			Tables	
Table Table Table Table	e 2 e 3 e 4	An: Gro Gro	oundwater Analytical Results Summary - CCR Program - Detection Monitoring alytical Results – CCR Ponds Detection Monitoring Program oundwater Elevations – CCR Rule Monitoring Wells oundwater Analytical Results – Closed Landfill State Monitoring Program Well alytical Results – Closed Landfill Leachate Fluoride Monitoring	

Figures

Figure 1. Site Location Map

Site Plan and Monitoring Well Locations Water Table Map – October 2019 Figure 2.

Figure 3.

Appendix

Trend Plots for CCR Wells Appendix A

 $\label{localized} I:\25220068.00\Deliverables\2020\ October\ ASD\ EDG\ CLSD\200414_EDG\ CLSD_Oct_ASD.docx$

PE CERTIFICATION

I, Sherren Clark, hereby certify that that the information in this alternate source demonstration is accurate and meets the requirements of 40 CFR 257.94(e)(2). This certification is based on my review of the groundwater data and related site information available for the Edgewater Generating Station Ash Ponds. I am a duly licensed Professional Engineer under the laws of the State of Wisconsin.

(signature)

License number E-29863


My license renewal date is July 31, 2020.

Pages or sheets covered by this seal:

Alternative Source Demonstration - October 2019 Detection

Monitoring, Edgewater Generating Station, Sheboygan Wisconsin

(Entire Document)

1.0 INTRODUCTION

This Alternative Source Demonstration (ASD) was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" published by the U.S. Environmental Protection Agency (USEPA) in the *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule,* dated April 17, 2015 (USEPA, 2015), and subsequent amendments. Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.94(e)(2). The applicable sections of the Rule are provided below in *italics*.

1.1 §257.94(E)(2) ALTERNATIVE SOURCE DEMONSTRATION REQUIREMENTS

The owner and operator may demonstrate that a source other than the CCR Unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels.

An ASD is completed when there are exceedances of one or more benchmarks established within the groundwater monitoring program. The ASD is completed to determine if any other sources are likely causes of the identified exceedance(s) of established benchmark(s) at the site. This ASD was performed in response to results indicating a statistically significant increase (SSI) over background levels during detection monitoring under the CCR Rule.

This ASD report is evaluating the SSIs observed in the statistical evaluation of the October 2019 detection monitoring event at the Edgewater Generating Station (EDG). The first ASD was prepared for this facility evaluating the SSIs observed in the statistical evaluation of the October 2017 detection monitoring event (SCS Engineers [SCS], 2018b). The October 2017 ASD and subsequent semiannual updates have concluded that several lines of evidence demonstrate that SSIs reported for boron, fluoride, field pH, and sulfate concentrations in the downgradient monitoring wells (MW-301, MW-302, and MW-303) were likely due to leachate from the closed landfill, which is not subject to the requirements of 40 CFR 257.50-107.

As discussed in more detail in **Section 4.2** of this ASD, the findings for the October 2019 monitoring event were consistent with those for the previous events.

1.2 SITE INFORMATION AND MAP

EDG is located at 3739 Lakeshore Drive in Sheboygan, Sheboygan County, Wisconsin (**Figure 1**). EDG is an active coal-burning generating station. The EDG property includes a closed landfill and a series of CCR settling ponds, located on the opposite side of Lakeshore Drive from the plant itself (**Figure 1**). The EDG landfill is closed and no longer receives CCR. The groundwater monitoring system at EDG is a multi-unit system. EDG has four existing CCR Units which are contiguous:

- EDG Slag Pond (existing CCR surface impoundment)
- EDG North A-Pond (existing CCR surface impoundment)
- EDG South A- Pond (existing CCR surface impoundment)
- EDG B-Pond (existing surface CCR impoundment)

A map showing the CCR Units and all background (or upgradient) and downgradient monitoring wells with identification numbers for the groundwater monitoring program is provided as **Figure 2**.

The closed CCR landfill (Wisconsin Department of Natural Resources [WDNR] Permit No. 2524) is located immediately west of the ponds. The landfill contains primarily fly ash with some slag, and was closed in 1987. Because this CCR landfill did not accept CCR after October 19, 2015, the landfill is not subject to the requirements of 40 CFR 257.50-107. The closed landfill is unlined and is known to be impacting groundwater at the site (SCS, 2016). Previous investigations done at the site (BT², Inc., 1993; RMT, 1997) concluded that the groundwater impacts downgradient of the landfill and ponds were attributable to groundwater interaction with the landfill, rather than leakage from the ponds.

1.3 STATISTICALLY SIGNIFICANT INCREASES IDENTIFIED

SSIs were identified for boron, fluoride, field pH, and sulfate at one or more wells based on the October 2019 detection monitoring event. A summary of the October 2019 constituent concentrations and the established benchmark concentrations is provided in **Table 1**. The constituent concentrations with SSIs above the background concentration are highlighted in the table.

1.4 OVERVIEW OF ALTERNATIVE SOURCE DEMONSTRATION

This ASD report includes:

- Background information (Section 2.0)
- Evaluation of potential that SSIs are due to methodology or analysis (Section 3.0)
- Evaluation of potential that SSIs are due to natural sources or man-made sources other than the CCR Units (Section 4.0)
- ASD conclusions (**Section 5.0**)
- Monitoring recommendations (Section 6.0)

The boron, fluoride, field pH, and sulfate results from background and compliance sampling are provided in **Table 2**. The laboratory report for the October 2019 detection monitoring event was included in the 2019 annual groundwater monitoring and corrective action report submitted in January 2020. Complete laboratory reports for the background monitoring events and previous detection monitoring events were included in the previous annual groundwater monitoring and corrective action reports.

2.0 BACKGROUND

To provide context for the ASD evaluation, the following background information is provided in this section of the report, prior to the ASD evaluation sections:

- Geologic and hydrogeologic setting
- CCR Rule monitoring system
- Other monitoring wells
- Groundwater Flow Direction

A more detailed discussion of the background information for the site is provided in the ASD for the October 2017 event (SCS, 2018b).

2.1 REGIONAL GEOLOGY AND HYDROGEOLOGY

For the purposes of groundwater monitoring, the unconsolidated sand and gravel aquifer is considered to be the uppermost aquifer, as defined under 40 CFR 257.53, at the EDG ponds. The sand and gravel aquifer is present in some parts of Sheboygan County (Skinner and Borman, 1973). Boring logs from monitoring wells at the EDG ponds and for nearby private wells indicate that the unconsolidated material at, and near, the site contains a significant amount of sand. Private well logs from the surrounding area indicate that the sand and gravel aquifer has been used as a water source; however, several older sand wells in the area have been replaced with bedrock water supply wells.

The dolomite aquifer underlies the unconsolidated material at the site. The total thickness of the dolomite aquifer at the site is unknown. The dolomite aquifer is underlain by the Maquoketa shale, which is a confining unit. The Maquoketa shale is underlain by the Cambrian-Ordovician sandstone aquifer. This sequence of sedimentary bedrock units is over 1,500 feet thick in the site vicinity.

The regional groundwater flow in the unconsolidated sand and gravel aquifer in the vicinity of the site, is to the east and slight southeast.

2.2 CCR MONITORING SYSTEM

The groundwater monitoring system established under the CCR Rule consists of one upgradient (background) monitoring well and three downgradient monitoring wells, as shown on **Figure 2**. The upgradient monitoring well is 2R-OW. The downgradient monitoring wells include MW-301, MW-302, and MW-303. The CCR compliance monitoring wells were installed in the unconsolidated sediments with screens in the uppermost soil layer producing appreciable water, which was a sandy silt unit. Well depths range from approximately 14.5 to 40 feet, measured from the top of the well casing.

2.3 OTHER MONITORING WELLS

Sixteen groundwater monitoring wells currently exist at the EDG site as part of the monitoring system developed for the state monitoring program for the closed landfill. The well locations are shown on **Figure 2**. These monitoring wells are used to monitor groundwater conditions at the site under the WDNR state monitoring program.

Monitoring wells for the state monitoring program are installed in the unconsolidated material at the site. This shallow monitoring system includes water table wells and piezometers. Well depths range from approximately 9 to 43 feet, measured from the top of the well casing.

2.4 GROUNDWATER FLOW DIRECTION

Shallow groundwater in the area of the EDG site generally flows to the south-southeast, toward Fish Creek, which discharges into Lake Michigan. There is some localized groundwater mounding associated with the EDG ponds. The water table map shown on **Figure 3** represents the site conditions of the unconsolidated deposits during the October 2019 detection monitoring event. The water table map shows a generally southward flow direction, with localized groundwater mounding in the area of the EDG ponds. The groundwater elevations at the CCR wells during the October 2019 detection monitoring event are in **Table 3**.

3.0 METHODOLOGY AND ANALYSIS REVIEW

To evaluate the potential that an SSI is due to a source other than the regulated CCR Unit, SCS used a two-step evaluation process. First, the sample collection, field and laboratory analysis, and statistical evaluation were reviewed to identify any potential error or analysis that led to exceedance of the benchmark. Second, potential alternative sources, including natural variation and man-made sources other than the CCR Unit, were evaluated. This section of the report provides the findings of the methodology and analysis review. **Section 4.0** of the report addresses the potential alternative sources.

3.1 SAMPLING AND FIELD ANALYSIS REVIEW

Field notes and sampling results were reviewed to determine if any sampling error may have caused or contributed to the observed SSIs. Potential field sampling errors or issues could include mislabeling of samples, improper sample handling, missed holding times, cross contamination during sampling, or other field error. Field blank sample results were also reviewed for any indication of potential contamination from sampling equipment or containers. Based on the review of the field notes and results, SCS did not identify any indication that the SSI concentrations were due to a sampling error.

The field pH trend plots were also reviewed for any anomalous results that might indicate a possible sampling or field analysis error (e.g., calibration error or incorrect sample identification). The time series plots are provided in **Appendix A**. The field pH results reported for all wells for the August 2016 background monitoring event were anomalously low, which is most likely due to a calibration error or other problem with the field pH meter for that event. During the statistical evaluation of the background data from well 2R-OW to develop the Upper Prediction Limit (UPL) for field pH, the August 2016 field pH result was identified as an outlier and was not used in the UPL calculation. Although the compliance wells also had outlier pH results for August 2016, the anomalous results for those wells were not considered when evaluating SSI determinations for the October 2019 detection monitoring, because an interwell analysis was used for the SSI evaluation, comparing current compliance well results to UPLs based on background well results.

The field pH result for background well 2R-OW was anomalously high during the previous sampling event in the April 2019 sampling, and the October 2019 pH result is similar to historical results. The April 2019 result may be a product of a potential measurement error or due to natural variation. This result does not affect the statistical evaluation because the current background data set only includes results through October 2017. The result will be evaluated as a possible outlier when the background data set is updated in the future.

Because boron, fluoride, and sulfate are laboratory parameters, there is little potential for a field analysis error to contribute to an SSI.

3.2 LABORATORY ANALYSIS REVIEW

The laboratory report for the October 2019 detection monitoring was reviewed to evaluate whether any laboratory analysis error or issue may have caused or contributed to the observed SSIs for boron, fluoride, or sulfate. The laboratory report review included reviewing the laboratory quality control flags and narrative, verifying that correct methods were used and desired detection limits were achieved, and checking the field and laboratory blank sample results. Laboratory reports for the background monitoring events were reviewed for the October 2017 ASD. Laboratory reports for subsequent detection monitoring events were reviewed as part of the ASD preparation for each event.

Based on the review of the laboratory reports, SCS did not identify any indication that the SSI concentrations were due to a laboratory analysis error. There were no laboratory quality control flags or issues identified in the laboratory reports that affect the usability of the data for detection monitoring.

Time series plots of the analytical data were also reviewed for any anomalous results that might indicate a possible sampling or laboratory error (e.g., dilution error or incorrect sample labeling). Time series plots for the parameters with SSIs are provided in **Appendix A**. No indications of sampling or laboratory errors were noted based on the time series review. The October 2019 boron, fluoride, pH, and sulfate results for MW-301, MW-302, and MW-303 are consistent with the historical data.

3.3 STATISTICAL EVALUATION REVIEW

The review of the statistical results and methods includes a quality control check of the following:

- Input analytical data vs. laboratory analytical reports
- Review statistical method and outlier concentration lists for each monitoring well/CCR Unit

Based on the review of the statistical evaluation, SCS did not identify any errors or issues in the statistical evaluation that caused or contributed to the determination of interwell SSIs for the October 2019 detection monitoring event.

3.4 SUMMARY OF METHODOLOGY AND ANALYSIS REVIEW FINDINGS

In summary, there were no changes to the SSI determinations for the October 2019 monitoring event based on the methodology and analysis review, and no errors or issues causing or contributing to the reported SSIs were identified.

4.0 ALTERNATIVE SOURCES

This section of the report discusses the potential alternative sources for the boron, fluoride, sulfate, and field pH SSIs at MW-301, MW-302, and MW-303; identifies the most likely alternative source(s); and presents the lines of evidence indicating that an alternative source is most likely the cause of the observed SSIs for boron, sulfate, and field pH.

4.1 POTENTIAL CAUSES OF SSI

4.1.1 Natural Variation

The statistical analysis was completed using an interwell approach, comparing the October 2019 detection monitoring results to the UPLs calculated based on sampling of the background well (2R-OW). If concentrations of a constituent that is naturally present in the aquifer vary spatially, then the potential exists that the downgradient concentrations may be higher than upgradient concentrations due to natural variation.

Although natural variation is present in the shallow aquifer, it does not appear likely that natural variation is the primary source causing the boron and sulfate SSIs. These parameters were detected at higher concentrations than would likely be present naturally.

Natural variation may have contributed to the SSIs for pH at MW-301 and MW-302. The UPL was calculated based on pH results at background well 2R-OW for the eight CCR Rule background monitoring events and the October 24, 2017, detection monitoring event. Based on these results the calculated UPL was 7.47, and the reported pH at MW-301 was 7.56 and at MW-302 was 7.86. Although the results exceed the UPL, the historical pH results for 2R-OW include pH values up to 7.98, indicating variability in the background. This suggests that the SSIs for pH may be partially or completely due to natural variation.

Natural variation may also have caused or contributed to the SSI for fluoride at MW-302. Elevated natural fluoride concentrations significantly higher than those reported for the downgradient wells (above 2 milligrams per liter [mg/L]) have been observed in a region in eastern Wisconsin extending along the Lake Michigan shoreline from Kewaunee County in the north to the Illinois border in the south, as described Luczaj, J., and Masarik, K, 2015, *Groundwater Quantity and Quality Issues in a Water-Rich Region: Examples from Wisconsin, USA*. The authors note that most of the wells with elevated fluoride appear to be drawing from the Pleistocene glacial sediments and Silurian dolomite units. Skinner and Borman (1973) and Kammerer (1995) also identify the Lake Michigan shoreline area of eastern Wisconsin as having somewhat elevated fluoride concentrations in groundwater.

The fluoride concentrations reported for MW-302 for October 2017 through October 2019 were just above the laboratory's limit of quantitation (LOQ), at 0.84 mg/L in October 2017, 0.78 mg/L in April 2018, 0.81 mg/L in October 2018, 0.87 mg/L in April 2019, and 0.85 mg/L in October 2019. These results are within the range of reported natural concentrations, indicating that the fluoride concentration observed in this well is likely due to natural variability in the glacial sediments and shallow groundwater. As discussed below, there is also a potential that fluoride in MW-302 is associated with impacts from the closed CCR landfill.

4.1.2 Man-Made Alternative Sources

Man-made alternative sources that could potentially contribute to the boron, fluoride, pH, and sulfate SSIs could include the closed CCR landfill, the coal storage area, or other plant operations. Based on the groundwater flow directions and on previous investigations at the site, the closed landfill appears to be the most likely cause of the SSIs for wells MW-301, MW-302, and MW-303.

4.2 LINES OF EVIDENCES

The lines of evidence indicating that the SSIs for boron, sulfate, and field pH in compliance wells MW-301, MW-302, and MW-303, relative to the background well, are due to an alternative source include:

- 1. A previous study of the CCR ponds and the closed CCR landfill determined that the landfill was the primary source of groundwater impacts in the area, based on multiple lines of evidence.
- 2. Past and current monitoring performed under the state monitoring program shows that boron, fluoride, sulfate, and elevated pH are all present in the CCR landfill leachate.
- 3. Past and current monitoring performed under the state monitoring program shows that the highest boron and sulfate concentrations are in the monitoring wells near and downgradient from the CCR landfill.

Lines of evidence regarding natural variability as an additional alternative source of the pH SSIs are discussed above in **Section 4.1.1**.

Each of these lines of evidence and the supporting data were discussed in detail in the ASD for the October 2017 detection monitoring event (SCS, 2018b). The lines of evidence are discussed briefly below, focusing on any updated information collected since the previous ASDs.

4.2.1 Previous CCR Pond and Landfill Study

A previous investigation titled *Field Investigation Report: Edgewater Closed Ash Disposal Facility*, completed by BT² in 1993, found that groundwater impacts were likely due to the closed landfill (**Figure 2**) located immediately west of the ponds (BT², 1993). The purpose of the 1993 investigation was to investigate the likely impact on groundwater quality of lining or abandoning the CCR impoundments (referred to in the report as the Wisconsin Pollutant Discharge Elimination System [WPDES] lagoons). The results from the investigation indicated that the CCR impoundments were not the primary source of downgradient groundwater impacts, and that closure or lining was not warranted. The WDNR concurred with that finding in a letter dated April 20, 1994.

The primary lines of evidence from the 1993 report that supported this finding, and support the ASD for boron, sulfate, and pH, included:

- Water samples collected from each of the ponds met the Wisconsin groundwater enforcement standards established under NR 140, Wisconsin Administrative Code.
- Soil borings installed in the material below the larger ash pond, where the slag pond and the WDPES lagoons (North Pond A and South Pond A) were constructed, is almost entirely slag material. Water leaking out of the lagoons and moving downward would encounter primarily slag, which is relatively inert, and not fly ash. Additionally, results for water leach testing of site-wide composite samples of fly ash and slag confirmed that the fly ash had a higher potential than slag to impact groundwater. Water leach test results for the fly ash composite sample were higher for boron, sulfate, fluoride, and pH in comparison to the slag composite sample.
- Water leach testing for individual boring samples of fly ash and/or slag also confirmed that fly ash leachate had significantly higher concentrations of boron and sulfate than slag leachate. Boron leach test results for nine samples from borings around and between the ponds, consisting mainly of slag, ranged from less than 16 to 206 micrograms per liter (µg/L).
- Water sampling within the landfill and pond area, in CCR above the native soil, documented that groundwater/leachate within the landfill had significantly higher concentrations of boron than the groundwater/leachate within the slag berms immediately adjacent to and between the Slag Pond, North/South Pond A, and Pond B.
- Groundwater monitoring results indicated that the highest concentrations of boron and sulfate were in monitoring wells downgradient from the landfill, including 18-OW and 29-OW. Elevated boron and sulfate were also reported for samples from wells 4-OW and 5-OW, located near the southwest and northwest corners of the landfill. Monitoring wells 6-OW and 7-OW, located east and southeast of the ponds, had much lower concentrations of boron and sulfate.

In the April 1994 approval letter, the WDNR approved the 1993 investigation of the WPDES lagoons/CCR impoundments and concurred with the findings of the report. The WDNR requested additional monitoring from the four new monitoring wells installed within the CCR (36-OW, 37-OW,

38R-OW, and 39R-OW) and requested the addition of fluoride and arsenic to the monitoring program for these groundwater/leachate head wells.

The results of the additional monitoring were reported to the WDNR in a Groundwater Assessment Report dated September 30, 1997. The WDNR responded to the 1997 report in a letter dated April 16, 1998, which stated, "We agree with the report's finding that the WPDES ponds [Slag Pond, North Pond A, and South Pond A] do not appear to be significantly contributing to the contaminant plume downgradient of the facility. No further remedial action concerning the influence of the ponds on the landfill is warranted at this time." The WDNR also noted that the leachable constituents migrating from the saturated portion of the closed landfill have stabilized or also decreased since the landfill's closure and capping.

4.2.2 CCR Constituents in Landfill Leachate

Past and current monitoring performed under the state monitoring program shows that boron, sulfate, and elevated pH are all present in the CCR landfill leachate. Recent groundwater and leachate monitoring results for boron, sulfate, and pH in samples from the state monitoring program wells are summarized in **Table 4** (April 2016 through October 2019). The leachate head wells monitoring conditions within the CCR landfill are 37-OW, 38R-OW, and 39R-OW, listed near the end of the table.

Boron: Boron concentrations in samples from leachate head wells 37-OW, 38R-OW, and 39R-OW have generally exceeded those reported for the CCR monitoring wells.

Sulfate: Sulfate concentrations in samples from, leachate head wells 37-0W, 38R-0W, and 39R-0W have generally exceeded those reported for the CCR monitoring wells.

Field pH: Field pH results for the three leachate head wells continue to have pH measurements that are slightly higher than the pH UPL calculated from the well 2R-OW background data. Thirteen of the 24 leachate field pH readings for April 2016 through October 2019 were higher than the calculated UPL. While slightly higher pH values were reported for the CCR well samples in October 2019, the range of pH values for the CCR compliance wells has generally been similar to recent pH results for leachate wells 37-OW and 38R-OW. Historically pH values at leachate head well 39R-OW were in the range of 8 to 9, but pH has followed a gradual decreasing trend at this well since routine monitoring began in 1994.

Fluoride: Fluoride is not part of the routine state monitoring program for the closed CCR landfill, but was sampled from the leachate wells (37-OW, 38R-OW, and 39R-OW) and the pond berm well (36-OW) from 1994 to 1997, as requested by the WDNR. The fluoride concentrations ranged from 0.25 to 0.97 mg/L (**Table 5**). Three of the four historic fluoride results from leachate head well 39R-OW exceed the April 2019 fluoride concentration for MW-302.

Based on these results, fly ash disposal in the closed CCR landfill is a likely historical source of elevated boron, fluoride, sulfate, and pH.

4.2.3 State Program Groundwater Monitoring Results

Current monitoring performed under the state monitoring program continues to show that the highest boron and sulfate concentrations are in the monitoring wells near and downgradient from the CCR landfill. State program monitoring results for the CCR Rule detection monitoring parameters that overlap with the state program are summarized in **Table 4**, and well locations are on **Figure 2**.

Consistent with the conditions observed at the time of the 1993 report, the recent groundwater monitoring results indicate that the highest concentrations of boron and sulfate are in monitoring wells downgradient from the landfill, including 18-OW (recently replaced by 40-OW) and 29-OW. Elevated boron and sulfate also continue to be reported for samples from wells 4-OW and 5-OW, located near the southwest and northwest corners of the landfill.

5.0 ALTERNATIVE SOURCE DEMONSTRATION CONCLUSIONS

The lines of evidence discussed above regarding the SSIs reported for boron, pH, and sulfate concentrations in downgradient monitoring wells MW-301, MW-302, and/or MW-303 demonstrate that the SSIs are likely primarily due to leachate from the closed landfill, which is not subject to the requirements of 40 CFR 257.50-107. The landfill is regulated by the WDNR under the solid waste program. The SSIs for fluoride and pH at MW-301 (pH only) and MW-302 may also be partially due to natural variability within the glacial sediment aquifer.

6.0 SITE GROUNDWATER MONITORING RECOMMENDATIONS

In accordance with section 257.94(e)(2) of the CCR Rule, the EDG pond site may continue with detection monitoring based on this ASD. The ASD report will be included in the 2020 Annual Report due January 31, 2021.

7.0 REFERENCES

BT², Inc., 1993, Field Investigation Report, Edgewater Closed Ash Disposal Facility, Wisconsin Power & Light Company, WDNR License #2524, June 1993.

Kammerer, P.A. Jr., 1995, Ground-Water Flow and Quality in Wisconsin's Shallow Aquifer System, U.S. Geological Survey, Water-Resources Investigations Report 90-4171.

Luczaj, J., and Masarik, K, 2015, Groundwater Quantity and Quality Issues in a Water-Rich Region: Examples from Wisconsin, USA: Resources, 2015, 4, 323-357.

RMT, Inc., 1997, Groundwater Assessment Report, Edgewater Closed Ash Disposal Facility, September 30, 1997.

SCS Engineers, 2016, Biennial Groundwater Monitoring Report for 2014-2015, Wisconsin Power and Light Company – Edgewater 1-4 (Closed) Ash Disposal Facility, Sheboygan, WI, License #02524, March 2016.

SCS Engineers, 2018a, 2017 Annual Groundwater Monitoring and Corrective Action Report, Edgewater Generating Station, January 2018.

SCS Engineers, 2018b, Alternative Source Demonstration, October 2017 Monitoring Event, Edgewater Generating Station, April 2018.

SCS Engineers, 2019, 2018 Annual Groundwater Monitoring and Corrective Action Report, Edgewater Generating Station, January 2019.

Skinner, Earl L., and Borman, Ronald G., 1973, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigation Atlas HA-432.

U.S. Environmental Protection Agency, 2015, Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. April 2015.

Tables

- Groundwater Analytical Results Summary CCR Program Detection Monitoring
- 2 Analytical Results CCR Ponds Detection Monitoring Program
- 3 Groundwater Elevations CCR Rule Monitoring Wells
- 4 Groundwater Analytical Results Closed Landfill State Monitoring Program Wells
- 5 Analytical Results Closed Landfill Leachate Fluoride Monitoring

Table 1. Groundwater Analytical Results Summary - CCR Program - Detection Monitoring Edgewater Generating Station / SCS Engineers Project #25220068.00

		Background Well	Compliance Wells		
		2R-OW	MW-301	MW-302	MW-303
Parameter Name	UPL	10/7/2019	10/7/2019	10/7/2019	10/7/2019
Appendix III					
Boron, μg/L	107	58.8	7,220 P6	1,730	2,830
Calcium, µg/L	206,247	132,000	87,600 P6	67,500	136,000
Chloride, mg/L	378	88.8	11.1	17.8	19.1
Fluoride, mg/L	DQ	<0.10	0.24 J	0.85	<0.50 D3
Field pH, Std. Units	7.47	6.88	7.56	7.86	6.90
Sulfate, mg/L	35	13.2	312	55.7	<5.0 D3
Total Dissolved Solids, mg/L	1,145	706	694	290	584

4.4 Blue shaded cell indicates the compliance well result exceeds the UPL (background) and the Limit of Quantitation (LOQ).

Abbreviations:

- D3 = Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
- DQ = Double quantification rule applies (not detected in background).
- J = Estimated concentration at or above the LOD and below the LOQ.
- P6 = Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.

Notes:

1. UPLs calculated based on results from background well 2R-OW.

 Created by:
 NDK
 Date:
 5/1/2018

 Last revision by:
 LMH
 Date:
 11/12/2019

 Checked by:
 AJR
 Date:
 11/12/2019

 Scientist/PM QA/QC:
 MDB
 Date:
 11/12/2019

\\Mad-fs01\data\Projects\25220068.00\Data and Calculations\Tables\ASD Tables\[CCR GW Screening State | State |

Table 2. Analytical Results - CCR Ponds Detection Monitoring Program Edgewater Generating Station, Sheboygan, Wisconsin SCS Engineers Project #25220068.00

Well Group	Well	Collection Date	Boron (µg/L)	Field pH (Std. Units)	Fluoride (mg/L)	Sulfate (mg/L)
		4/8/2016	100	7.34	<0.20 U	19.5
		6/20/2016	22.4	7.02	<0.20 U	28.0
		8/9/2016	32.6	6.10	<0.20 U	25.4
		10/20/2016	43.1	6.98	<0.10 U	21.6
рL		1/24/2017	31.2	7.15	<0.10 U	23.9
nnc		4/6/2017	70.6	7.01	<0.10 U	17.6
Background	2R-OW	6/6/2017	45.2 35.7	6.86	<0.10 U	17.8
aC		8/1/2017 10/23/2017	55.9	7.00 7.23	<0.10 U <0.10 U	28.8 29.3
Δi		4/2/2018	19.7	7.23	<0.10 U	17.2
		10/1/2018	34.7	7.03	<0.10 U	37.2
		4/8/2019	35.8	8.57	<0.10 U	10.6
		10/7/2019	59	6.88	<0.10 U	13.2
		4/11/2016	8,550	7.91	0.33 J	372
		6/20/2016	8,190	7.48	0.36 J	343
		8/9/2016	8,450	6.47	0.33 J	368
		10/20/2016	8,620	7.68	0.34	369
		1/23/2017	9,280	8.03	0.42	372
		4/6/2017	8,370	7.98	0.21 J	367
	MW-301	6/6/2017	9,160	7.70	<0.10 U	362
		8/2/2017	8,610	7.58	0.32	340
		10/24/2017	8,820	7.43	<0.10 U	341
		4/2/2018	7,950	8.02	0.25 J	332
		10/1/2018	8,230	7.71	0.2 J	318
		4/8/2019 10/7/2019	7,310 7,220	8.18 7.56	0.29 J 0.24 J	322 312
		4/8/2016	1,950	8.01	0.83	75.1
		6/20/2016	2,010	7.73	1.3 J	89.6
		8/9/2016	2,000	6.55	0.8	80.7
		10/20/2016 1/24/2017	2,150 2,000	7.89 7.98	0.8 0.89 J	77.2 71.1
4.		4/6/2017	1,970	7.98	0.89 3	85.8
JCe		6/6/2017	1,970	7.99	0.70	88.5
Compliance	MW-302	8/2/2017	1,890	7.76	0.78	80.2
dμ		10/24/2017	1,760	7.60	0.84	72.2
Cor		4/2/2018	1,800	7.78	0.78	72.7
		10/1/2018	1,570	7.70	0.81	59.2
		4/8/2019	1,670	7.98	0.87	71.7
		10/7/2019	1,730	7.86	0.85	55.7
		4/8/2016	4,210	7.04	<0.20 U	3 J
		6/20/2016	3,360	6.79	<1.0 U	11.4 J
		8/9/2016	3,860	6.09	<0.20 U	2.4 J
		10/20/2016	3,740	6.94	<0.50 U	5.6 J
		1/24/2017	4,210	6.94	<0.50 U	<5 U
		4/6/2017	4,170	6.88	<0.50 U	<5 U
	MW-303	6/6/2017	4,570	7.00	<0.50 U	<5 U
	10100-303	8/2/2017	3,780	6.94	<0.50 U	<5 U
		10/24/2017	3,480	7.14	<0.50 U	<5 U
		4/2/2018	3,040	6.86	<0.50 U	<5 U
		10/1/2018	2,360	6.93	<0.10 U	<1.0 U
		4/8/2019	2,930	7.15	<0.10 U	<5.0 U
		10/7/2019	2,830	6.9	<0.50 U	<5.0 U

Table 2. Analytical Results - CCR Ponds Detection Monitoring Program Edgewater Generating Station, Sheboygan, Wisconsin SCS Engineers Project #25220068.00

Abbreviations:

 μ g/L = micrograms per liter or parts per billion (ppb)

mg/L = milligrams per liter or parts per million (ppm)

-- = not analyzed

J = Estimated value below laboratory's limit of quantitation (LOQ)

U = Not detected

Notes:

1. Complete laboratory reports included in 2017 Annual Groundwater Monitoring and Corrective Action Report, Edgewater Generating Station.

Created by:	NDK NDK	Date:	3/2/2018
Last revision by:	NDK	Date:	4/1/2020
Checked by:	TK	Date:	4/2/2020

Table 3. Groundwater Elevations - CCR Rule Monitoring Wells Edgewater Generating Station, Sheboygan, Wisconsin SCS Engineers Project #25220068.00

Ground Water Ele	evation in feet ab	ove mean sea lev	vel (amsl)	
Well Number	MW-301	MW-302	MW-303	2R-OW
Top of Casing Elevation (feet amsl)	604.42	615.15	611.99	612.72
Screen Length (ft)	5.00	5.00	5.00	10.00
Total Depth (ft from top of casing)	27.47	40.00	33.26	14.50
Top of Well Screen Elevation (ft)	581.95	580.15	583.73	608.22
Measurement Date				
April 8, 2016	599.75	596.19	589.04	609.68
June 20, 2016	598.30	595.68	587.22	606.70
August 9, 2016	598.00	595.53	587.72	605.74
October 20, 2016	598.50	595.46	588.37	607.27
January 23-24, 2017	597.10	596.30	588.84	609.64
April 6, 2017	600.04	593.57	589.04	609.72
June 6, 2017	598.77	595.86	588.44	607.63
August 1, 2017	597.40	595.22	587.36	604.59
October 24, 2017	597.20	595.25	587.97	601.74
April 2, 2018	598.54	595.71	588.77	607.87
October 1, 2018	597.60	595.28	588.17	604.61
April 8, 2019	598.92	595.68	588.88	609.50
October 7, 2019	599.56	595.58	588.77	609.39
Bottom of Well Elevation (ft)	576.95	575.15	578.73	598.22

Notes:

Groundwater elevations compiled from field notes during sampling events.

-- = not measured

Created by:	NDK	Date:	2/28/2018
Last rev. by:	NDK	Date:	3/22/2020
Checked by:	AJR	Date:	3/23/2020

I:\25220068.00\Data and Calculations\Tables\ASD Tables\[EDG-closed-Tables 2,3,4.xlsx]Table 3. GW elev - CCR

Table 4. 2016-2019 Groundwater Analytical Results - Closed Landfill State Monitoring Program Wells
Edgewater Generating Station, Sheboygan, Wisconsin
SCS Engineers Project #25220068.00

Point Name	Reporting Period	ph-Field (standard units)	Boron, dissolved (µg/L as B)	Sulfate, dissolved (mg/L as SO ₄)
Monitoring Wells		-		
2R-OW	2016-Apr	7.45	26.6	30.9
2R-OW	2016-Oct	6.98	40.4	22.9
2R-OW	2017-Apr	7.30	69.3 J	28.6
2R-OW	2017-Oct	7.66	35.2	32.9
2R-OW	2018-Apr	7.29	23.3	18.2
2R-OW	2018-Oct	7.03	41.8	35.5
2R-OW	2019-Apr	8.57	40.6	12.2
2R-OW	2019-Oct	6.76	88.5	29.3
3R-OW	2016-Apr	7.41	392	533
3R-OW	2016-Oct	7.32	468	372
3R-OW	2017-Apr	7.35	400	409
3R-OW	2017-Oct	7.39	389	637
3R-OW	2018-Apr	7.24	351	498
3R-OW	2018-Oct	7.03	462	495
3R-OW	2019-Apr	7.7	337	279
3R-OW	2019-Oct	6.45	454	299
4R-OW	2016-Apr	7.69	7,710	120
4R-OW	2016-Oct	7.71	17,300	252
4R-OW	2017-Apr	7.44	12,600	180
4R-OW	2017-Oct	7.31	15,700	178
4R-OW	2018-Apr	7.51	12,700	164
4R-OW	2018-Oct	7.22	8630	129
4R-OW	2019-Apr	6.67	10200	158
4R-OW	2019-Oct	7.51	9,200	161
5-OW	2016-Apr	7.64	4,330	215
5-OW	2016-Oct	7.75	5,970	210
5-OW	2017-Apr	7.51	5,490	258
5-OW	2017-Oct	7.54	6,040	230
5-OW	2018-Apr	7.90	3,900	143
5-OW	2018-Oct	7.43	6,180	226
5-OW	2019-Apr	6.74	4,140	197
5-OW	2019-Oct	7.19	4,680	179
7-OW	2016-Apr	8.14	610	255
7-OW	2016-Oct	7.59	964	251
7-OW	2017-Apr	8.10	761	259
7-OW	2017-Oct	7.73	1,130	246
7-OW	2018-Apr	8.08	818	243
7-OW	2018-Oct	7.69	1150	218
7-OW	2019-Apr	7.85	914	254
7-OW	2019-Oct	7.47	1,200	224

Table 4. 2016-2019 Groundwater Analytical Results - Closed Landfill State Monitoring Program Wells
Edgewater Generating Station, Sheboygan, Wisconsin
SCS Engineers Project #25220068.00

Point Name	Reporting Period	ph-Field (standard units)	Boron, dissolved (µg/L as B)	Sulfate, dissolved (mg/L as SO ₄)
Monitoring Wells (con	tinued)	•	•	•
29-A	2016-Apr	9.07	357	40.9
29-A	2016-Oct	8.54	264	39.6
29-A	2017-Apr	9.09	365	41.5
29-A	2017-Oct	8.97	278	42.1
29-A	2018-Apr	8.72	264	39.4
29-A	2018-Oct	8.38	268	39.2
29-A	2019-Apr	8.10	292	44.2
29-A	2019-Oct	8.81	258	39.1
29-OW	2016-Apr	8.03	10,600	120
29-OW	2016-Oct	7.69	10,900	85.7
29-OW	2017-Apr	8.49	9,500	77
29-OW	2017-Oct	8.15	9,060	62
29-OW	2018-Apr	7.97	8,640	102
29-OW	2018-Oct	7.84	11,000	109
29-OW	2019-Apr	7.89	10,600	190
29-OW	2019-Oct	7.57	10,800	114
30-OW	2016-Apr	8.26	79	4.8
30-OW	2016-Oct	7.56	113	4.6
30-OW	2017-Apr	8.47	176	7.5
30-OW	2017-Oct	7.44	135	16.7
30-OW	2018-Apr	7.96	94.5	21.5
30-OW	2018-Oct	7.47	115	11.4
30-OW	2019-Apr	8.07	52.1	2.4 J
30-OW	2019-Oct	7.37	84.9	5.6
31-OW	2016-Apr	7.63	114	91.2
31-OW	2016-Oct	7.68	35	63.3
31-OW	2017-Apr	7.99	77	82.4
31-OW	2017-Oct	7.79	190	70.3
31-OW	2018-Apr	7.71	30.8	51.5
31-OW	2018-Oct	7.64	36.7	62.7
31-OW	2019-Apr	7.95	18.5	68.6
31-OW	2019-Oct	7.41	38.6	57.5
40-OW	2016-Apr	8.04	8,030	731
40-OW	2016-Oct	7.91	29,400	768
40-OW	2017-Apr	7.97	8,680	849
40-OW	2017-Oct	7.91	8,800	873
40-OW	2018-Apr	7.93	9,790	771
40-OW	2018-Oct	7.51	11,300	797
40-OW	2019-Apr	6.8	8620	636
40-OW	2019-Oct	7.53	10,600	836

Table 4. 2016-2019 Groundwater Analytical Results - Closed Landfill State Monitoring Program Wells
Edgewater Generating Station, Sheboygan, Wisconsin
SCS Engineers Project #25220068.00

Point Name	Reporting Period	ph-Field (standard units)	Boron, dissolved (µg/L as B)	Sulfate, dissolved (mg/L as SO ₄)
eachate Monitoring	Wells			
37-OW	2016-Apr	7.49	19,100	759
37-OW	2016-Oct	7.31	12,500	439
37-OW	2017-Apr	8.01	15,900	633
37-OW	2017-Oct	7.24	9,440	264
37-OW	2018-Apr	7.68	5,890	159
37-OW	2018-Oct	7.42	16,600	555
37-OW	2019-Apr	7.57	15,800	492
37-OW	2019-Oct	7.13	16,300	798
38R-OW	2016-Apr	8.00	33,800	1,000
38R-OW	2016-Oct	7.71	17,100	514
38R-OW	2017-Apr	7.86	21,100	932
38R-OW	2017-Oct	7.72	10,800	364
38R-OW	2018-Apr	7.72	4,250	123
38R-OW	2018-Oct	7.98	32,400	956
38R-OW	2019-Apr	7.64	9,720	330
38R-OW	2019-Oct	8.06	30,400	1,020
39R-OW	2016-Apr	7.26	10,100	534
39R-OW	2016-Oct	7.32	29,900	1,390
39R-OW	2017-Apr	7.44	22,400	1,150
39R-OW	2017-Oct	7.52	32,800	1,400
39R-OW	2018-Apr	7.76	28,800	772
39R-OW	2018-Oct	7.40	24,700	1,160
39R-OW	2019-Apr	7.14	26,000	1,520
39R-OW	2019-Oct	7.13	17,100	601

Abbreviations:

 μ g/L = micrograms per liter or parts per billion (ppb)

mg/L = milligrams per liter or parts per million (ppm)

Laboratory Notes:

J: Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

Created by:	SCC	Date:	2/24/2014
Last revision by:	NDK	Date:	3/22/2020
Checked by:	AJR	Date:	3/23/2020

I:\25220068.00\Data and Calculations\Tables\ASD Tables\[EDG-closed-Tables 2,3,4.xlsx]Table 4. GW quality Data

Table 5. Analytical Results - Closed Landfill Leachate Fluoride Monitoring Edgewater Generating Station, Sheboygan, Wisconsin SCS Engineers Project #25220068.00

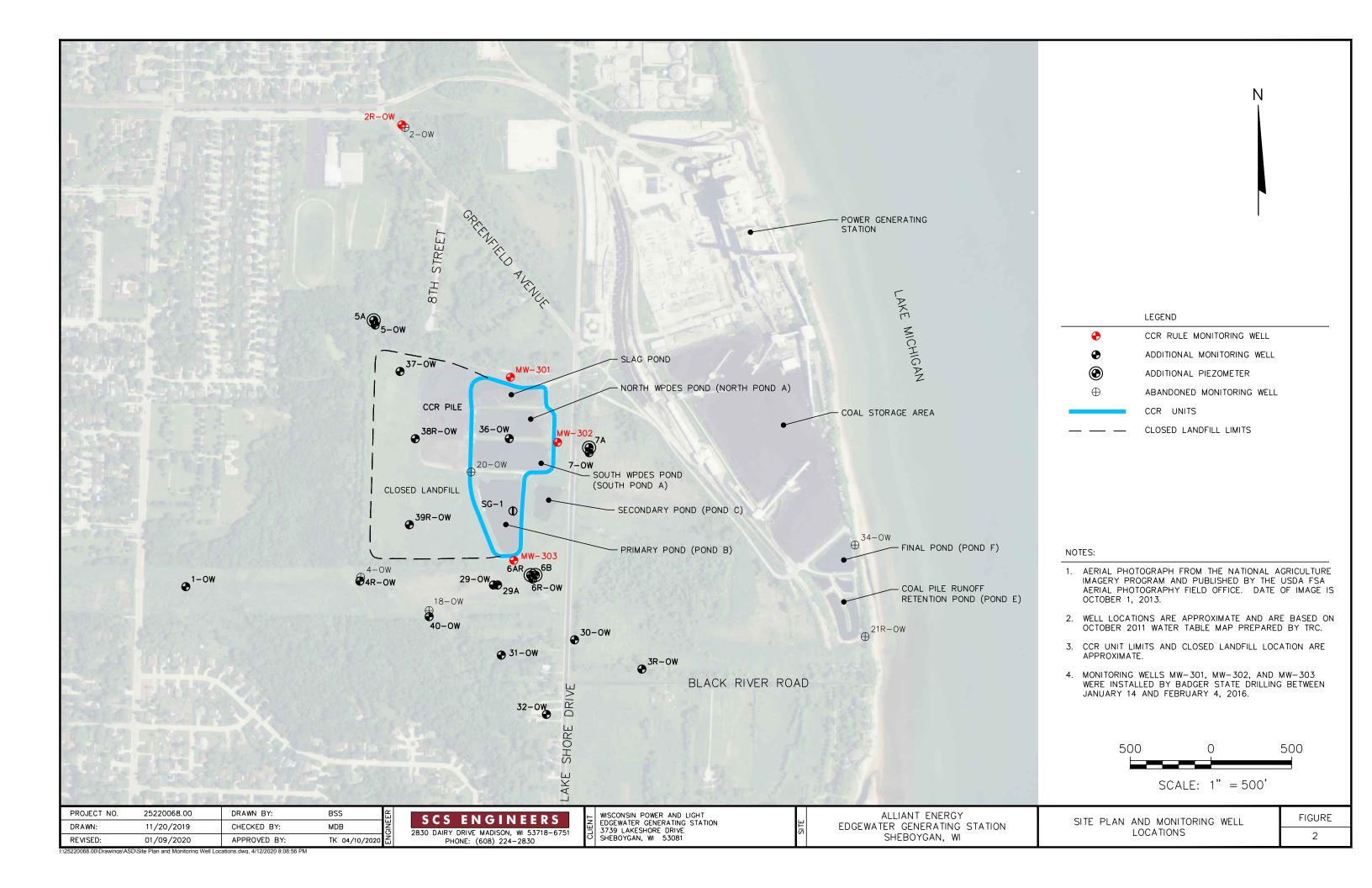
Collection Date	Fluoride (mg/L)					
Collection Date	36-OW	37-OW	38R-OW	39R-OW		
9/8/1994	0.25	0.62	0.57	0.79		
9/14/1995	0.38	0.51	0.71	0.87		
9/17/1996	0.56	0.42	0.71	0.97		
9/16/1997	0.60	0.44	0.73	0.97		

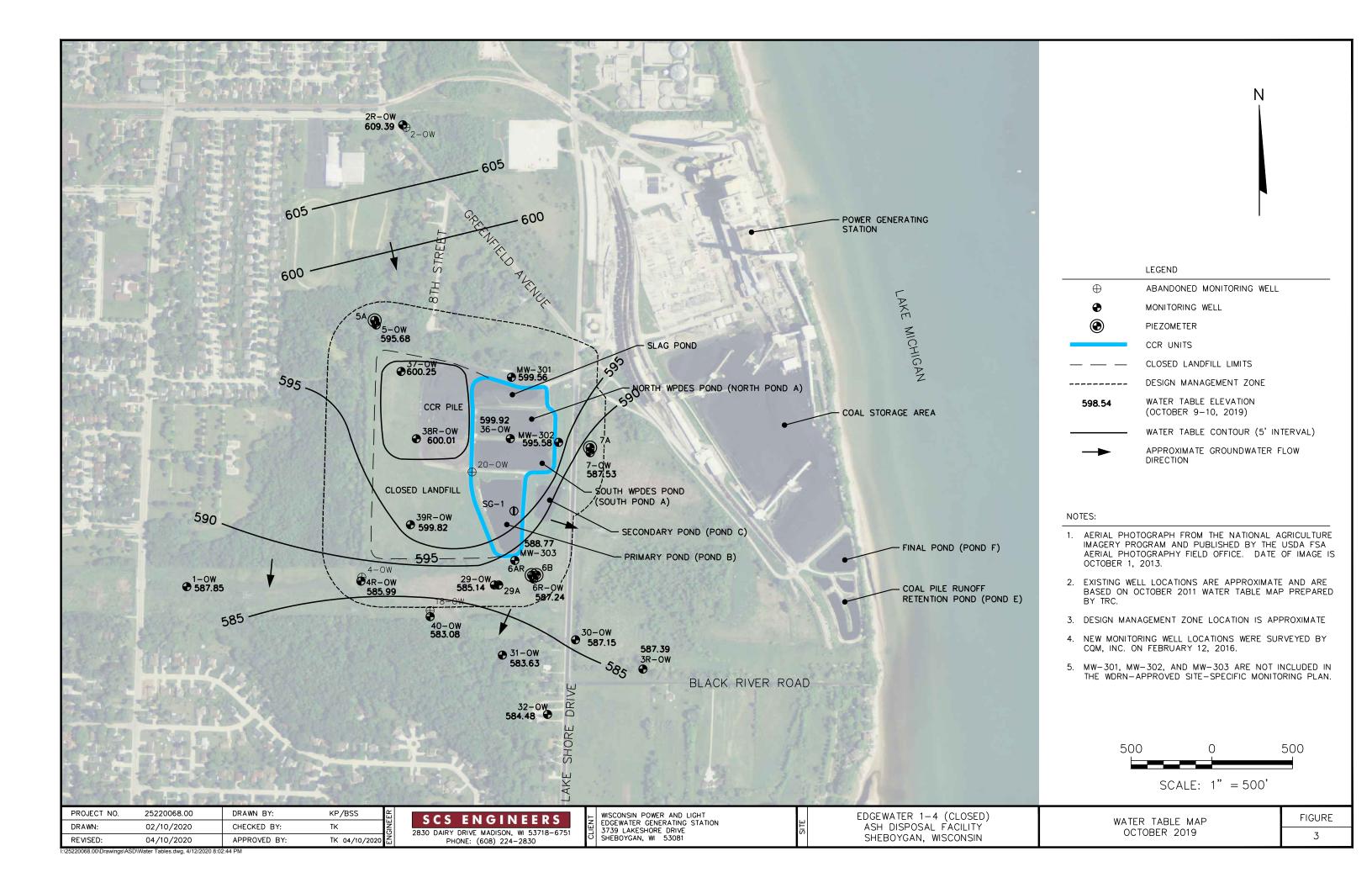
Abbreviations:

mg/L = milligrams per liter or parts per million (ppm)

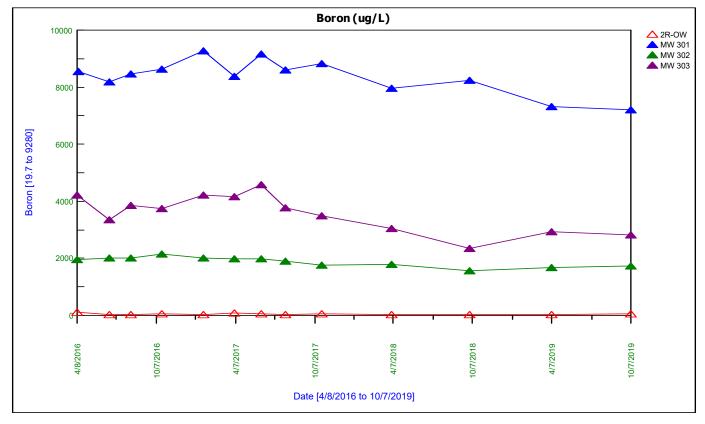
Notes:

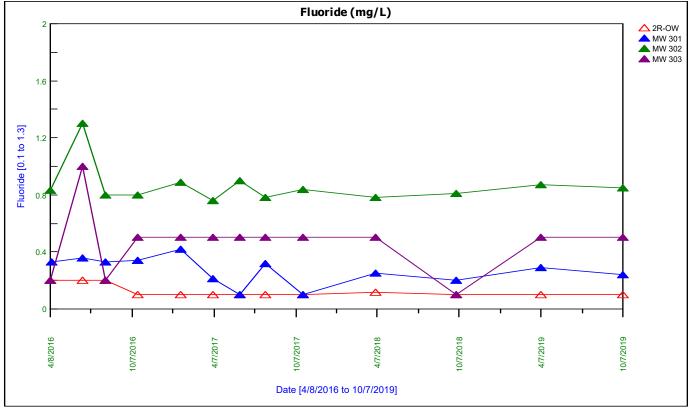
1. Data compiled from WDNR Groundwater Environmental Monitoring System (GEMS) website.

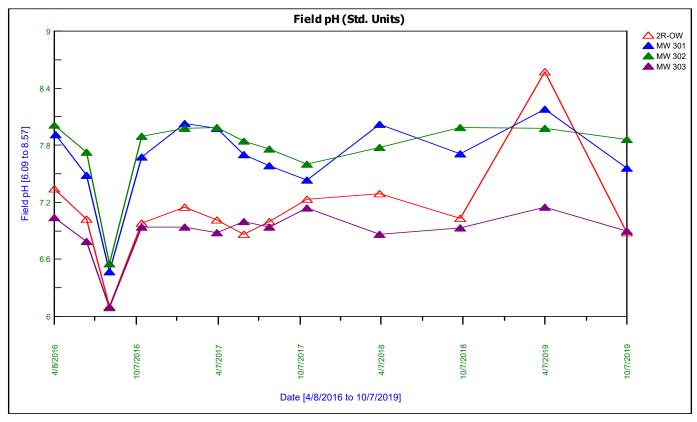

Created by:	NDK	Date:	3/5/2018
Last revision by:	NDK	Date:	3/5/2018
Checked by:	AJR	Date:	4/5/2018

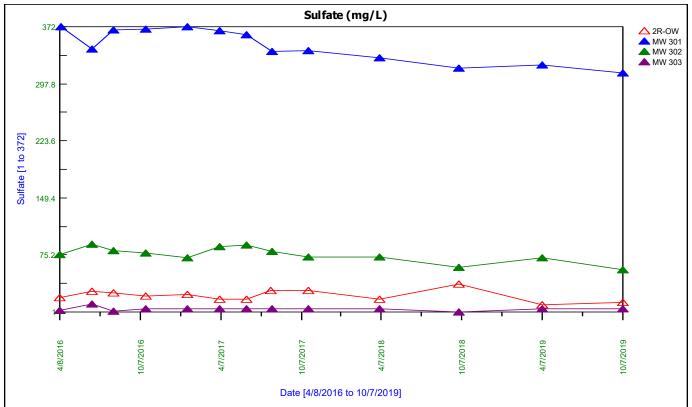

I:\25220068.00\Data and Calculations\Tables\ASD Tables\[EDG-closed-Tables 2,3,4.xlsx]Table 5- FI results

Figures


- 1 Site Location Map
- 2 Site Plan and Monitoring Well Locations
- 3 Water Table Map October 2019







Appendix A Trend Plots for CCR Wells

F2 April 2020 ASD

Alternative Source Demonstration April 2020 Detection Monitoring

Edgewater Generating Station Sheboygan, Wisconsin

Prepared for:

SCS ENGINEERS

25220068.00 | October 12, 2020

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830

Table of Contents

Sect	ion		Page
PE C	ertific	ation	iii
1.0	Intro	duction	1
	1.1	§257.94(E)(2) Alternative Source Demonstration Requirements	1
	1.2	Site Information and Map	1
	1.3	Statistically Significant Increases Identified	2
	1.4	Overview of Alternative Source Demonstration	2
2.0	Back	kground	3
	2.1	Regional Geology and Hydrogeology	3
	2.2	CCR Monitoring System	3
	2.3	Other Monitoring Wells	4
	2.4	Groundwater Flow Direction	4
3.0	Meth	hodology and Analysis Review	4
	3.1	Sampling and Field Analysis Review	4
	3.2	Laboratory Analysis Review	5
	3.3	Statistical Evaluation Review	5
	3.4	Summary of Methodology and Analysis Review Findings	5
4.0	Alter	rnative Sources	6
	4.1	Potential Causes of SSI	6
		4.1.1 Natural Variation	6
		4.1.2 Man-Made Alternative Sources	6
	4.2	Lines of Evidences	7
		4.2.1 Previous CCR Pond and Landfill Study	7
		4.2.2 CCR Constituents in Landfill Leachate	
		4.2.3 State Program Groundwater Monitoring Results	9
5.0		native Source Demonstration Conclusions	
6.0		Groundwater Monitoring Recommendations	
7.0	Refe	erences	9
		Tables	
Table Table Table Table Table	2 2 3 2 4 2 5	Groundwater Analytical Results Summary – April 2020 Event Historical Analytical Results for Parameters with SSIs Groundwater Elevations – CCR Rule Monitoring Wells Groundwater Elevations – State Monitoring Wells Analytical Results – Closed Landfill State Monitoring Program Wells Analytical Results – Closed Landfill Leachate Fluoride Monitoring	

Figures

Figure 1. Site Location Map

Figure 2. Monitoring Well Location Map Figure 3. Water Table Map – April 2020

Appendix

Appendix A Trend Plots for CCR Wells

 $I:\25220068.00\\ Deliverables\\ 2020\ April\ ASD\ EDG\\ 201012_EDG_No.4_April\ ASD_Final.docx$

PE CERTIFICATION

I, Sherren Clark, hereby certify that that the information in this alternative source demonstration is accurate and meets the requirements of 40 CFR 257.94(e)(2). This certification is based on my review of the groundwater data and related site information available for the Edgewater Generating Station Ash Ponds. I am a duly licensed Professional Engineer under the laws of the State of Wisconsin.
(signature) (date)
(printed or typed name)
License number
My license renewal date is January 31, 2021.
Pages or sheets covered by this seal:
Alternative Source Demonstration – April 2020 Detection Monitoring, Edgewater Generating Station, Sheboygan Wisconsin (Entire Document)

[This page left blank intentionally]

1.0 INTRODUCTION

This Alternative Source Demonstration (ASD) was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" published by the U.S. Environmental Protection Agency (USEPA) in the *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule,* dated April 17, 2015 (USEPA, 2015), and subsequent amendments. Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.94(e)(2). The applicable sections of the Rule are provided below in *italics*.

1.1 §257.94(E)(2) ALTERNATIVE SOURCE DEMONSTRATION REQUIREMENTS

The owner and operator may demonstrate that a source other than the CCR Unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels.

An ASD is completed when there are exceedances of one or more benchmarks established within the groundwater monitoring program. The ASD is completed to determine if any other sources are likely causes of the identified exceedance(s) of established benchmark(s) at the site. This ASD was performed in response to results indicating a statistically significant increase (SSI) over background levels during detection monitoring under the CCR Rule.

This ASD report is evaluating the SSIs observed in the statistical evaluation of the April 2020 detection monitoring event at the Edgewater Generating Station (EDG). The first ASD was prepared for this facility evaluating the SSIs observed in the statistical evaluation of the October 2017 detection monitoring event (SCS Engineers [SCS], 2018b). The October 2017 ASD and subsequent semiannual updates have concluded that several lines of evidence demonstrate that SSIs reported for boron, fluoride, pH, and sulfate concentrations in the downgradient monitoring wells (MW-301, MW-302, and MW 303) were likely due to leachate from the closed landfill, which is not subject to the requirements of 40 CFR 257.50-107.

As discussed in more detail in **Section 4.2** of this ASD, the findings for the April 2020 monitoring event were consistent with those for the previous events.

1.2 SITE INFORMATION AND MAP

EDG is located at 3739 Lakeshore Drive in Sheboygan, Sheboygan County, Wisconsin (**Figure 1**). EDG is an active coal-burning generating station. The EDG property includes a closed landfill and a series of CCR settling ponds, located on the opposite side of Lakeshore Drive from the plant itself (**Figure 1**). The EDG landfill is closed and no longer receives CCR. The groundwater monitoring system at EDG is a multi-unit system. EDG has four existing CCR Units which are contiguous:

- EDG Slag Pond (existing CCR surface impoundment)
- EDG North A-Pond (existing CCR surface impoundment)
- EDG South A- Pond (existing CCR surface impoundment)
- EDG B-Pond (existing surface CCR impoundment)

A map showing the CCR Units and all background (or upgradient) and downgradient monitoring wells with identification numbers for the groundwater monitoring program is provided as **Figure 2**. Closure of the CCR impoundments is in progress during 2020.

The closed CCR landfill (Wisconsin Department of Natural Resources [WDNR] Permit No. 2524) is located immediately west of the ponds. The landfill contains primarily fly ash with some slag, and was closed in 1987. Because this CCR landfill did not accept CCR after October 19, 2015, the landfill is not subject to the requirements of 40 CFR 257.50-107. The closed landfill is unlined and is known to be impacting groundwater at the site (SCS, 2016). Previous investigations done at the site (BT2, Inc., 1993; RMT, 1997) concluded that the groundwater impacts downgradient of the landfill and ponds were attributable to groundwater interaction with the landfill, rather than leakage from the ponds.

1.3 STATISTICALLY SIGNIFICANT INCREASES IDENTIFIED

The statistical evaluation was completed in accordance with 40 CFR 257.93(f)(3) using a prediction interval procedure, in which an interval for each constituent is established from the distribution of the background data, and the level of each constituent in each compliance well is compared to the upper prediction limit (UPL) to evaluate whether a statistically significant increase (SSI) has occurred. The evaluation was based on an interwell comparison. The interwell UPLs were calculated based on a 1-of-2 resampling approach. The UPLs and results for the April 2020 monitoring event and the June 2020 resampling event are summarized in the attached **Table 1**.

The April/June 2020 SSIs included the following parameters and wells:

Boron: MW-301, MW-302, MW-303

Fluoride: MW-302pH: MW-301, MW-302Sulfate: MW-301, MW-302

The SSIs are consistent with SSIs identified in previous detection monitoring results.

The initial April sample results also indicated a potential SSI for fluoride at monitoring well MW-301. Because fluoride was not detected in the background samples used to develop the UPLs, the Double Quantification Rule applies for this parameter, meaning that an SSI is identified if two results (original and retest) exceed the laboratory's LOQ. Based on the reported detection of fluoride above the LOQ and the associated laboratory QC failure for fluoride at MW-301 identified in the April 2020 results, a resample was completed for fluoride at MW-301 on June 26, 2020. The resample result was below the LOQ; therefore, there is no fluoride SSI for MW-301.

1.4 OVERVIEW OF ALTERNATIVE SOURCE DEMONSTRATION

This ASD report includes:

- Background information (Section 2.0)
- Evaluation of potential that SSIs are due to methodology or analysis (Section 3.0)
- Evaluation of potential that SSIs are due to natural sources or man-made sources other than the CCR Units (Section 4.0)
- ASD conclusions (**Section 5.0**)
- Monitoring recommendations (Section 6.0)

The boron, field pH, fluoride, and sulfate results from background and compliance sampling are provided in **Table 2**. The laboratory report for the April 2020 detection monitoring event will be included in the 2020 annual groundwater monitoring and corrective action report submitted in January 2021. Complete laboratory reports for the background monitoring events and previous detection monitoring events were included in the previous annual groundwater monitoring and corrective action reports.

2.0 BACKGROUND

To provide context for the ASD evaluation, the following background information is provided in this section of the report, prior to the ASD evaluation sections:

- Geologic and hydrogeologic setting
- CCR Rule monitoring system
- Other monitoring wells
- Groundwater Flow Direction

A more detailed discussion of the background information for the site is provided in the ASD for the October 2017 event (SCS, 2018b).

2.1 REGIONAL GEOLOGY AND HYDROGEOLOGY

For the purposes of groundwater monitoring, the unconsolidated sand and gravel aquifer is considered to be the uppermost aquifer, as defined under 40 CFR 257.53, at the EDG ponds. The sand and gravel aquifer is present in some parts of Sheboygan County (Skinner and Borman, 1973). Boring logs from monitoring wells at the EDG ponds and for nearby private wells indicate that the unconsolidated material at, and near, the site contains a significant amount of sand. Private well logs from the surrounding area indicate that the sand and gravel aquifer has been used as a water source; however, several older sand wells in the area have been replaced with bedrock water supply wells.

The dolomite aquifer underlies the unconsolidated material at the site. The total thickness of the dolomite aquifer at the site is unknown. The dolomite aquifer is underlain by the Maquoketa shale, which is a confining unit. The Maquoketa shale is underlain by the Cambrian-Ordovician sandstone aquifer. This sequence of sedimentary bedrock units is over 1,500 feet thick in the site vicinity.

The regional groundwater flow in the unconsolidated sand and gravel aquifer in the vicinity of the site, is to the east and slight southeast.

2.2 CCR MONITORING SYSTEM

The groundwater monitoring system established under the CCR Rule consists of one upgradient (background) monitoring well and three downgradient monitoring wells, as shown on **Figure 2**. The upgradient monitoring well is 2R-OW. The downgradient monitoring wells include MW-301, MW-302, and MW-303. The CCR compliance monitoring wells were installed in the unconsolidated sediments with screens in the uppermost soil layer producing appreciable water, which was a sandy silt unit. Well depths range from approximately 14.5 to 40 feet, measured from the top of the well casing.

2.3 OTHER MONITORING WELLS

Sixteen groundwater monitoring wells currently exist at the EDG site as part of the monitoring system developed for the state monitoring program for the closed landfill. The well locations are shown on **Figure 2**. These monitoring wells are used to monitor groundwater conditions at the site under the WDNR state monitoring program.

Monitoring wells for the state monitoring program are installed in the unconsolidated material at the site. This shallow monitoring system includes water table wells and piezometers. Well depths range from approximately 9 to 43 feet, measured from the top of the well casing.

2.4 GROUNDWATER FLOW DIRECTION

Shallow groundwater in the area of the EDG site generally flows to the south-southeast, toward Fish Creek, which discharges into Lake Michigan. There is some localized groundwater mounding associated with the EDG ponds. The water table map shown on **Figure 3** is based on groundwater levels measured in the unconsolidated deposits during the April 2020 detection monitoring event. The water table map shows a generally southward flow direction, with localized groundwater mounding in the area of the EDG ponds. The groundwater elevations at the CCR wells during the April 2020 detection monitoring event are in **Table 3**. The groundwater elevations at the state monitoring wells during the April 2020 monitoring event are in **Table 4**.

3.0 METHODOLOGY AND ANALYSIS REVIEW

To evaluate the potential that an SSI is due to a source other than the regulated CCR Unit, SCS used a two-step evaluation process. First, the sample collection, field and laboratory analysis, and statistical evaluation were reviewed to identify any potential error or analysis that led to exceedance of the benchmark. Second, potential alternative sources, including natural variation and man-made sources other than the CCR unit, were evaluated. This section of the report provides the findings of the methodology and analysis review. **Section 4.0** of the report addresses the potential alternative sources.

3.1 SAMPLING AND FIELD ANALYSIS REVIEW

Field notes and sampling results were reviewed to determine if any sampling error may have caused or contributed to the observed SSIs. Potential field sampling errors or issues could include mislabeling of samples, improper sample handling, missed holding times, cross contamination during sampling, or other field error. Field blank sample results were also reviewed for any indication of potential contamination from sampling equipment or containers. Based on the review of the field notes and results, SCS did not identify any indication that the SSI concentrations were due to a sampling error.

The field pH trend plots were also reviewed for any anomalous results that might indicate a possible sampling or field analysis error (e.g., calibration error or incorrect sample identification). The time series plots are provided in **Appendix A**.

The field pH results reported for all wells for the August 2016 background monitoring event were anomalously low, which is most likely due to a calibration error or other problem with the field pH meter for that event. During the statistical evaluation of the background data from well 2R-OW to develop the Upper Prediction Limit (UPL) for field pH, the August 2016 field pH result was identified as an outlier and was not used in the UPL calculation.

Although the compliance wells also had outlier pH results for August 2016, the anomalous results for those wells were not considered when evaluating SSI determinations for the April 2020 detection monitoring, because an interwell analysis was used for the SSI evaluation, comparing current compliance well results to UPLs based on background well results.

Because boron, fluoride, and sulfate are laboratory parameters, there is little potential for a field analysis error to contribute to an SSI.

3.2 LABORATORY ANALYSIS REVIEW

The laboratory report for the April 2020 detection monitoring was reviewed to evaluate whether any laboratory analysis error or issue may have caused or contributed to the observed SSIs for boron, fluoride, or sulfate. The laboratory report review included reviewing the laboratory quality control flags and narrative, verifying that correct methods were used and desired detection limits were achieved, and checking the field and laboratory blank sample results. Laboratory reports for previous detection monitoring events were reviewed as part of the ASD preparation for each event where applicable.

Based on the review of the laboratory reports, SCS did not identify any indication that the SSI concentrations were due to a laboratory analysis error. For the wells and parameters with SSIs, there were no other laboratory QC flags or issues identified in the laboratory reports that affect the usability of the data for detection monitoring.

Time series plots of the analytical data were also reviewed for any anomalous results that might indicate a possible sampling or laboratory error (e.g., dilution error or incorrect sample labeling). Time series plots for the parameters with SSIs are provided in **Appendix A**. No indications of sampling or laboratory errors were noted based on the time series review. The April 2020 boron, pH, fluoride, and sulfate results for MW-301, MW-302, and MW-303 are consistent with the historical data.

3.3 STATISTICAL EVALUATION REVIEW

The review of the statistical results and methods includes a quality control check of the following:

- Input analytical data vs. laboratory analytical reports
- Review statistical method and outlier concentration lists for each monitoring well/CCR Unit

Based on the review of the statistical evaluation, SCS did not identify any errors or issues in the statistical evaluation that caused or contributed to the determination of interwell SSIs for the April 2020 detection monitoring event.

3.4 SUMMARY OF METHODOLOGY AND ANALYSIS REVIEW FINDINGS

In summary, there were no changes to the SSI determinations for the April 2020 monitoring event based on the methodology and analysis review, and no errors or issues causing or contributing to the reported SSIs were identified.

4.0 ALTERNATIVE SOURCES

This section of the report discusses the potential alternative sources for the boron, sulfate, field pH, and fluoride SSIs at MW-301, MW-302, and MW-303; identifies the most likely alternative source(s); and presents the lines of evidence indicating that an alternative source is most likely the cause of the observed SSIs for boron, sulfate, field pH, and fluoride.

4.1 POTENTIAL CAUSES OF SSI

4.1.1 Natural Variation

The statistical analysis was completed using an interwell approach, comparing the April 2020 detection monitoring results to the UPLs calculated based on sampling of the background well (2R-OW). If concentrations of a constituent that is naturally present in the aquifer vary spatially, then the potential exists that the downgradient concentrations may be higher than upgradient concentrations due to natural variation.

Although natural variation is present in the shallow aquifer, it does not appear likely that natural variation is the primary source causing the boron and sulfate SSIs. These parameters were detected at higher concentrations than would likely be present naturally.

Natural variation may have contributed to the SSIs for pH at MW-301 and MW-302. The UPL was calculated based on pH results at background well 2R-OW for the eight CCR Rule background monitoring events. Based on these results the calculated UPL was 7.47. During the April 2020 sampling event, the reported pH results at MW-301 and MW 302 were 7.82 and 7.56, respectively. The pH exceedance at MW-301 was confirmed during a resampling event in June 2020 where MW-301 pH was 7.53. The April 2019 and October 2019 pH values at 2R-OW, the background well, were 8.57 and 6.88, respectively, indicating considerable natural variability. This suggests that the SSIs for pH may be partially or completely due to natural variation.

Natural variation may also have caused or contributed to the SSI for fluoride at MW-302. Elevated natural fluoride concentrations significantly higher than those reported for the downgradient wells (above 2 milligrams per liter [mg/L]) have been observed in a region in eastern Wisconsin extending along the Lake Michigan shoreline from Kewaunee County in the north to the Illinois border in the south, as described Luczaj, J., and Masarik, K, 2015, *Groundwater Quantity and Quality Issues in a Water-Rich Region: Examples from Wisconsin, USA*. The authors note that most of the wells with elevated fluoride appear to be drawing from the Pleistocene glacial sediments and Silurian dolomite units. Skinner and Borman (1973) and Kammerer (1995) also identify the Lake Michigan shoreline area of eastern Wisconsin as having somewhat elevated fluoride concentrations in groundwater.

The fluoride concentrations reported for MW-302 for October 2017 through April 2020 were just above the laboratory's LOQ, ranging from 0.78 mg/L in April 2018 to 0.97 mg/L in April 2020. The result at MW-302 is within the range of reported natural concentrations, indicating that the fluoride concentration observed in these wells are likely due to natural variability in the glacial sediments and shallow groundwater. As discussed below, there is also a potential that fluoride in MW-302 is associated with impacts from the closed CCR landfill.

4.1.2 Man-Made Alternative Sources

Man-made alternative sources that could potentially contribute to the boron, fluoride, pH, and sulfate SSIs could include the closed CCR landfill, the coal storage area, or other plant operations. Based on

the groundwater flow directions and on previous investigations at the site, the closed landfill appears to be the most likely cause of the SSIs for wells MW-301, MW-302, and MW-303.

4.2 LINES OF EVIDENCES

The lines of evidence indicating that the SSIs for boron, sulfate, fluoride, and pH in compliance wells MW-301, MW-302, and MW-303, relative to the background well, are due to an alternative source include:

- 1. A previous study of the CCR ponds and the closed CCR landfill determined that the landfill was the primary source of groundwater impacts in the area, based on multiple lines of evidence.
- 2. Past and current monitoring performed under the state monitoring program shows that boron, sulfate, fluoride, and elevated pH are all present in the CCR landfill leachate.
- 3. Past and current monitoring performed under the state monitoring program shows that the highest boron and sulfate concentrations are in the monitoring wells near and downgradient from the CCR landfill.

Lines of evidence regarding natural variability as an additional alternative source of the fluoride and pH SSIs are discussed above in **Section 4.1.1**.

Each of these lines of evidence and the supporting data were discussed in detail in the ASD for the October 2017 detection monitoring event (SCS, 2018b). The lines of evidence are discussed briefly below, focusing on any updated information collected since the previous ASDs.

4.2.1 Previous CCR Pond and Landfill Study

A previous investigation titled *Field Investigation Report: Edgewater Closed Ash Disposal Facility*, completed by BT² in 1993, found that groundwater impacts were likely due to the closed landfill (**Figure 2**) located immediately west of the ponds (BT², 1993). The purpose of the 1993 investigation was to investigate the likely impact on groundwater quality of lining or abandoning the CCR impoundments (referred to in the report as the Wisconsin Pollutant Discharge Elimination System [WPDES] lagoons). The results from the investigation indicated that the CCR impoundments were not the primary source of downgradient groundwater impacts, and that closure or lining was not warranted. The WDNR concurred with that finding in a letter dated April 20, 1994.

The primary lines of evidence from the 1993 report that supported this finding, and support the ASD for boron, sulfate, fluoride, and pH, included:

- Water samples collected from each of the ponds met the Wisconsin groundwater enforcement standards established under NR 140, Wisconsin Administrative Code.
- Soil borings installed in the material below the larger ash pond, where the slag pond and the WDPES lagoons (North Pond A and South Pond A) were constructed is almost entirely slag material. Water leaking out of the lagoons and moving downward would encounter primarily slag, which is relatively inert, and not fly ash. Additionally, results for water leach testing of site-wide composite samples of fly ash and slag confirmed that the fly ash had a higher potential than slag to impact groundwater. Water leach test results for the fly ash composite sample were higher for boron, sulfate, fluoride, and pH in comparison to the slag composite sample.

- Water leach testing for individual boring samples of fly ash and/or slag also confirmed that fly ash leachate had significantly higher concentrations of boron and sulfate than slag leachate. Boron leach test results for nine samples from borings around and between the ponds, consisting mainly of slag, ranged from less than 16 to 206 µg/L.
- Water sampling within the landfill and pond area, in CCR above the native soil, documented that groundwater/leachate within the landfill had significantly higher concentrations of boron than the groundwater/leachate within the slag berms immediately adjacent to and between the Slag Pond, North/South Pond A, and Pond B.
- Groundwater monitoring results indicated that the highest concentrations of boron and sulfate were in monitoring wells downgradient from the landfill, including 18-OW and 29-OW. Elevated boron and sulfate were also reported for samples from wells 4R-OW and 5-OW, located near the southwest and northwest corners of the landfill. Monitoring wells 6-OW and 7-OW, located east and southeast of the ponds, had much lower concentrations of boron and sulfate.

In the April 1994 approval letter, the WDNR approved the 1993 investigation of the WPDES lagoons/CCR impoundments and concurred with the findings of the report. The WDNR requested additional monitoring from the four new monitoring wells installed within the CCR (36-OW, 37-OW, 38R-OW, and 39R-OW) and requested the addition of fluoride and arsenic to the monitoring program for these groundwater/leachate head wells.

The results of the additional monitoring were reported to the WDNR in a Groundwater Assessment Report dated September 30, 1997. The WDNR responded to the 1997 report in a letter dated April 16, 1998, which stated, "We agree with the report's finding that the WPDES ponds [Slag Pond, North Pond A, and South Pond A] do not appear to be significantly contributing to the contaminant plume downgradient of the facility. No further remedial action concerning the influence of the ponds on the landfill is warranted at this time." The WDNR also noted that the leachable constituents migrating from the saturated portion of the closed landfill have stabilized or also decreased since the landfill's closure and capping.

4.2.2 CCR Constituents in Landfill Leachate

Past and current monitoring performed under the state monitoring program shows that boron, sulfate, fluoride, and elevated pH are all present in the CCR landfill leachate. Recent groundwater and leachate monitoring results for boron, sulfate, and pH in samples from the state monitoring program wells are summarized in **Table 5** (April 2016 through April 2020). The leachate head wells monitoring conditions within the CCR landfill are 37-0W, 38R-OW, and 39R-OW, listed near the end of the table.

Boron: Boron concentrations in samples from leachate head wells 37-OW, 38R-OW, and 39R-OW have generally exceeded those reported for the CCR monitoring wells.

Sulfate: Sulfate concentrations in samples from, leachate head wells 37-OW, 38R-OW, and 39R-OW have generally exceeded those reported for the CCR monitoring wells.

Field pH: Field pH results for the three leachate head wells continue to have pH measurements that are slightly higher than the pH UPL calculated from the well 2R-OW background data. Sixteen of the 27 leachate field pH readings for April 2016 through April 2020 were higher than the calculated UPL. While slightly higher pH values were reported for the CCR well samples in April 2020, the range of pH

values for the CCR compliance wells has generally been similar to recent pH results for leachate wells 37-OW and 38R-OW. Historically pH values at leachate head well 39R-OW were in the range of 8 to 9, but pH has followed a gradual decreasing trend at this well since routine monitoring began in 1994.

Fluoride: Fluoride is not part of the routine state monitoring program for the closed CCR landfill, but was sampled from the leachate wells (37-OW, 38R-OW, and 39R-OW) and the pond berm well (36-OW) from 1994 to 1997, as requested by the WDNR. The fluoride concentrations ranged from 0.25 to 0.97 mg/L (**Table 6**). The fluoride concentration for the sample collected at MW-302 was equal to the highest observed concentration at the leachate wells with a value of 0.97 mg/L.

Based on these results, fly ash disposal in the closed CCR landfill is a likely historical source of elevated boron, sulfate, pH, and fluoride.

4.2.3 State Program Groundwater Monitoring Results

Current monitoring performed under the state monitoring program continues to show that the highest boron and sulfate concentrations are in the monitoring wells near and downgradient from the CCR landfill. State program monitoring results for the CCR Rule detection monitoring parameters that overlap with the state program are summarized in **Table 5**, and well locations are on **Figure 2**.

Consistent with the conditions observed at the time of the 1993 report, the recent groundwater monitoring results indicate that the highest concentrations of boron and sulfate are in monitoring wells downgradient from the landfill, including 40-OW (recently replaced 18-OW) and 29-OW. Elevated boron and sulfate also continue to be reported for samples from wells 4R-OW and 5-OW, located near the southwest and northwest corners of the landfill.

5.0 ALTERNATIVE SOURCE DEMONSTRATION CONCLUSIONS

The lines of evidence discussed above regarding the SSIs reported for boron, fluoride, field pH, and sulfate concentrations in downgradient monitoring wells MW-301, MW-302, and/or MW 303 demonstrate that the SSIs are likely primarily due to leachate from the closed landfill, which is not subject to the requirements of 40 CFR 257.50-107. The landfill is regulated by the WDNR under the solid waste program. The SSIs for fluoride and field pH at MW-301 and MW 302 may also be partially due to natural variability within the glacial sediment aquifer.

6.0 SITE GROUNDWATER MONITORING RECOMMENDATIONS

In accordance with section 257.94(e)(2) of the CCR Rule, the EDG pond site may continue with detection monitoring based on this ASD. The ASD report will be included in the 2020 Annual Report due January 31,2021

7.0 REFERENCES

BT², Inc., 1993, Field Investigation Report, Edgewater Closed Ash Disposal Facility, Wisconsin Power & Light Company, WDNR License #2524, June 1993.

Kammerer, P.A. Jr., 1995, Ground-Water Flow and Quality in Wisconsin's Shallow Aquifer System, U.S. Geological Survey, Water-Resources Investigations Report 90-4171.

Luczaj, J., and Masarik, K, 2015, Groundwater Quantity and Quality Issues in a Water-Rich Region: Examples from Wisconsin, USA: Resources, 2015, 4, 323-357.

RMT, Inc., 1997, Groundwater Assessment Report, Edgewater Closed Ash Disposal Facility, September 30, 1997.

SCS Engineers, 2019, 2018 Annual Groundwater Monitoring and Corrective Action Report, Edgewater Generating Station, January 2019.

SCS Engineers, 2018a, 2017 Annual Groundwater Monitoring and Corrective Action Report, Edgewater Generating Station, January 2018.

SCS Engineers, 2018b, Alternative Source Demonstration, October 2017 Monitoring Event, Edgewater Generating Station, April 2018.

SCS Engineers, 2016, Biennial Groundwater Monitoring Report for 2014-2015, Wisconsin Power and Light Company – Edgewater 1-4 (Closed) Ash Disposal Facility, Sheboygan, Wisconsin, License #02524, March 2016.

Skinner, Earl L. and Ronald G. Borman, 1973, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigation Atlas HA-432.

U.S. Environmental Protection Agency, 2015, Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. April 2015.