2023 Annual Groundwater Monitoring and Corrective Action Report

Edgewater Generating Station Sheboygan, Wisconsin

Prepared for:

25223068.00 | January 31, 2024

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830

OVERVIEW OF CURRENT STATUS

Edgewater Generating Station, Surface Impoundments 2023 Annual Report

In accordance with §257.90(e)(6), this section at the beginning of the annual report provides an overview of the current status of groundwater monitoring and corrective action programs for the coal combustion residual (CCR) units. The groundwater monitoring system at the Edgewater Generating Station is a multiunit system. Supporting information is provided in the text of the annual report.

Category	Rule Requirement	Site Status
Monitoring Status – Start of Year	(i) At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95;	Detection
Monitoring Status – End of Year	(ii) At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95;	Detection
Statistically Significant Increases (SSIs)	(iii) If it was determined that there was an SSI over background for one or more constituents listed in appendix III to this part pursuant to §257.94(e):	
	(A) Identify those constituents listed in appendix III to this part and the names of the monitoring wells associated with such an increase; and	<u>October 2022</u> Boron: MW-301, MW302, MW-303 Fluoride: MW-302 Sulfate: MW-301, MW-302 <u>April 2023:</u> Boron: MW-301, MW302, MW-303 Fluoride: MW-302 Sulfate: MW-301, MW-302
	(B) Provide the date when the assessment monitoring program was initiated for the CCR unit.	Alternative Source Demonstrations prepared for October 2022 and April 2023 events during 2023. Assessment monitoring not required.

Category	Rule Requirement	Site Status
Statistically Significant Levels (SSL) Above Groundwater Protection	(iv) If it was determined that there was an SSL above the GPS for one or more constituents listed in appendix IV to this part pursuant to §257.95(g) include all of the following:	Not applicable – Appendix IV parameter sampling not required
Standard (GPS)	(A) Identify those constituents listed in appendix IV to this part and the names of the monitoring wells associated with such an increase;	
	(B) Provide the date when the assessment of corrective measures was initiated for the CCR unit;	
	(C) Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and	
	(D) Provide the date when the assessment of corrective measures was completed for the CCR unit.	
Selection of Remedy	(v) Whether a remedy was selected pursuant to §257.97 during the current annual reporting period, and if so, the date of remedy selection; and	Not applicable – Site is in detection monitoring
Corrective Action	(vi) Whether remedial activities were initiated or are ongoing pursuant to §257.98 during the current annual reporting period.	Not applicable – Site is in detection monitoring

Table of Contents

Sect	ion		Page
Over	view o	Current Status	i
1.0	Intro	uction	1
2.0	Back	round	1
	2.1	Geologic and Hydrogeologic Setting	1
		2.1.1 Regional Information	1
		2.1.2 Site Information	2
	2.2	CCR Monitoring System	3
3.0	§257	90(e) Annual Report Requirements	3
	3.1	§257.90(e)(1) Site Map	
	3.2	§257.90(e)(2) Monitoring System Changes	3
	3.3	§257.90(e)(3) Summary of Sampling Events	3
	3.4	§257.90(e)(4) Monitoring Transition Narrative	4
	3.5	§257.90(e)(5) Other Requirements	5
		3.5.1 §257.90(e) General Requirements	5
		3.5.2 §257.94(d) Alternative Detection Monitoring Frequency	6
		3.5.3 §257.94(e)(2) Alternative Source Demonstration for Detection Monitoring	
		3.5.4 §257.95(c) Alternative Assessment Monitoring Frequency	6
		3.5.5 §257.95(d)(3) Assessment Monitoring Results and Standards	6
		3.5.6 §257.95(g)(3)(ii) Alternative Source Demonstration for Assessment Monitor	ring6
		3.5.7 §257.96(a) Extension of Time for Corrective Measures Assessment	6
	3.6	§257.90(e)(6) Overview	
4.0	Refe	ences	7

Tables

Table 1	Groundwater Monitoring Well Network
---------	-------------------------------------

- Table 2CCR Rule Groundwater Samples Summary
- Table 3A
 Groundwater Elevations State Monitoring Wells
- Table 3B
 Groundwater Elevations CCR Monitoring Wells
- Table 4
 Horizontal Gradients and Flow Velocity
- Table 5AGroundwater Analytical Results Summary October 2022
- Table 5BGroundwater Analytical Results Summary April 2023
- Table 6Groundwater Field Data Summary

Figures

Figure 1	Site Location Map
I Iguie I	Site Location Map

- Figure 2 Site Plan and Monitoring Well Locations
- Figure 3 April 2023 Water Table Map
- Figure 4 October 2023 Water Table Map

Appendices

- Appendix ASummary of the Regional Hydrogeologic StratigraphyAppendix BBoring Logs and Well Construction DocumentationAppendix CLaboratory Reports
- Appendix D Historical Monitoring Results
- Appendix E Alternative Source Demonstrations (ASDs)
 - E1 October 2022 ASD
 - E2 April 2023 ASD
- Appendix F July 2023 Updated UPL Memorandum

I:\25223068.00\Deliverables\2023 Fed CCR Annual Report\240125_2023 Annual CCR GW Report_EDG_DRAFT.docx

1.0 INTRODUCTION

This 2023 Annual Groundwater Monitoring and Corrective Action Report was prepared to support compliance with the groundwater monitoring requirements of the Coal Combustion Residuals (CCR) Rule [40 Code of Federal Regulations (CFR) 257.50-107]. Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.90(e). The applicable sections of the Rule are provided below in italics, followed by applicable information relative to the 2023 Annual Groundwater Monitoring and Corrective Action Report for the CCR Units.

This report covers the period of groundwater monitoring from January 1, 2023, through December 31, 2023.

The groundwater monitoring system at the Edgewater Generating Station (EDG) is a multiunit system. EDG has four closed CCR units, which are contiguous:

- EDG Slag Pond (existing CCR surface impoundment)
- EDG North A-Pond (existing CCR surface impoundment)
- EDG South A-Pond (existing CCR surface impoundment)
- EDG B-Pond (existing surface CCR impoundment)

The system is designed to detect monitored constituents at the waste boundary of the CCR units as required by 40 CFR 257.91(d). The groundwater monitoring system consists of one upgradient and three downgradient monitoring wells (**Table 1**, **Figure 1**, and **Figure 2**).

Closure of the four ponds was completed in 2021. The Notification of Completion of Closure pursuant to 40 CFR 257.102(d) was entered into the EDG CCR Operating Record on August 10, 2021.

2.0 BACKGROUND

To provide context for the required annual report information, the following background information is provided in this section of the report, prior to the required information:

- Geologic and hydrogeologic setting
- CCR Rule monitoring system

2.1 GEOLOGIC AND HYDROGEOLOGIC SETTING

2.1.1 Regional Information

For the purposes of groundwater monitoring, the unconsolidated sand and gravel aquifer is considered to be the uppermost aquifer, as defined under 40 CFR 257.53, at the EDG ponds. A summary of the regional hydrogeologic stratigraphy and a regional geologic cross section are included in **Appendix A**.

The sand and gravel aquifer is present in some parts of Sheboygan County (Skinner and Borman, 1973). Boring logs from monitoring wells at the EDG ponds and for nearby private wells indicate that the unconsolidated material at and near the site contains a significant amount of sand. Private well logs from the surrounding area indicate that the sand and gravel aquifer has been used as a water

source; however, several older sand wells in the area have been replaced with bedrock water supply wells. In a search of area well records, SCS Engineers (SCS) did not find any records indicating that shallow wells are still being used in the area around EDG.

The dolomite aquifer underlies the unconsolidated material at the site. The total thickness of the dolomite aquifer at the site is unknown. The dolomite aquifer is underlain by the Maquoketa shale, which is a confining unit. The Maquoketa shale is underlain by the Cambrian-Ordovician sandstone aquifer. This sequence of sedimentary bedrock units is over 1,500 feet thick in the site vicinity. The sedimentary sequence is underlain by Precambrian crystalline rocks that are not considered an aquifer in eastern Wisconsin.

2.1.2 Site Information

The site consists of four closed CCR surface impoundments that are monitored as a single Closure Area. Closure of the impoundments began in 2020 and was completed in 2021. Adjacent to the surface impoundments is an inactive CCR landfill that was closed prior to 2015 and the area as a whole is regulated by the Wisconsin Department of Natural Resources (Edgewater 1-4 Closed Ash Disposal Facility, License #2524). A groundwater monitoring network of 19 wells was installed at the site to meet state requirements prior to installation of additional monitoring wells to meet CCR Rule requirements. Soils at the site are primarily silt, sand, and some clay to a depth of approximately 80 to 140 feet and overlie dolomite bedrock.

During drilling of CCR wells MW-301, MW-302, and MW-303, the unconsolidated materials were identified as consisting primarily of lean clay overlying sandy silt. The boring log for the previously installed background monitoring well 2R-OW shows lean clay as the primary unconsolidated material at this location. The boring logs for Ash Ponds CCR monitoring wells are provided in **Appendix B**. All CCR monitoring wells are screened within the unconsolidated glacial aquifer.

The water table maps shown on **Figures 3** and **4** are based on groundwater levels measured in the unconsolidated deposits during the April 2023 and October 2023 detection monitoring events. A summary of the sampling events that occurred throughout 2023 is shown in **Table 2**. The groundwater elevations are summarized in **Table 3A** (state wells) and **Table 3B** (CCR wells). Horizontal gradients and flow velocities for each of the flow paths are provided in **Table 4**.

Shallow groundwater in the area of the EDG site generally flows to the south-southeast. There was a more easterly flow direction in the immediate vicinity of the ponds prior to the impoundment closure and capping. Due to the change in flow direction after the closure activities were completed, a fourth downgradient compliance well will be installed on the south side of the closure area and will be documented in the next annual groundwater monitoring report.

Historically, there was some localized groundwater mounding associated with the now closed EDG ponds. With the closure of the ponds, groundwater mounding appears to be decreasing, although levels also vary seasonally. Water levels measured at three wells installed within the closed CCR landfill were historically interpreted as representing the water table, but under current conditions may not be consistent with groundwater elevations in the soil below the landfill and pond closure area. Water levels for these wells are shown in brackets in the water table maps and contours in the landfill and pond closure area are dashed to reflect uncertainty.

2.2 CCR MONITORING SYSTEM

The groundwater monitoring system established under the CCR Rule consists of one upgradient (background) monitoring well and three downgradient monitoring wells (**Table 1** and **Figure 2**). The upgradient monitoring well is 2R-OW. The downgradient monitoring wells include MW-301, MW-302, and MW-303 with an additional compliance well to be installed during early 2024 to monitor the closure area on the south side of the Former South Wisconsin Pollutant Discharge Elimination System (WPDES) Pond Location.

The CCR compliance monitoring wells were installed in the unconsolidated sediments with screens in the uppermost soil layer producing appreciable water, which was a sandy silt unit. Well depths range from approximately 14.5 to 40 feet, measured from the top of the well casing.

3.0 §257.90(E) ANNUAL REPORT REQUIREMENTS

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by §257.105(h)(1). At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

3.1 §257.90(E)(1) SITE MAP

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

A map of the site location is provided as **Figure 1**. A map with an aerial image showing the CCR units and all background (or upgradient) and downgradient monitoring wells with identification numbers for the groundwater monitoring program is provided as **Figure 2**.

3.2 §257.90(E)(2) MONITORING SYSTEM CHANGES

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No new monitoring wells were installed, and no wells were decommissioned as part of the groundwater monitoring program for the CCR units in 2023.

3.3 §257.90(E)(3) SUMMARY OF SAMPLING EVENTS

In addition to all the monitoring data obtained under §257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and

downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

Two semiannual groundwater sampling events were completed in April and October 2023 for Appendix III constituents. A summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection or assessment monitoring programs is included in **Table 2**.

The validation and evaluation of the October 2022 monitoring event data was completed and transmitted to WPL on February 7, 2023. The validation and evaluation of the April 2023 monitoring event data was completed and transmitted to WPL on August 10, 2023. The validation and evaluation of the October 2023 monitoring event data was in progress at the end of 2023 and will be transmitted to WPL in 2024; therefore, the October 2023 monitoring results and analytical report will be included in the 2024 annual report. The groundwater elevations are included in this report.

The sampling results for Appendix III parameters in October 2022 and April 2023 are summarized in **Tables 5A** and **5B**. Field parameter results for the October 2022 and April 2023 sampling events are provided in **Table 6**. The analytical laboratory reports for October 2022 and April 2023 are provided in **Appendix C**. Historical results for each monitoring well through April 2023 are summarized in **Appendix D**.

3.4 §257.90(E)(4) MONITORING TRANSITION NARRATIVE

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels);

There were no transitions between monitoring programs in 2023. The EDG CCR units remained in the detection monitoring program.

In 2023, the monitoring results for the October 2022 and April 2023 monitoring events were evaluated for statistically significant increases (SSIs) in detection monitoring parameters relative to background. The comparison to background was based on a prediction limit approach, comparing the results to interwell upper prediction limits (UPLs) based on background monitoring results from the upgradient well (2R-OW). The interwell UPLs were updated in January 2021 using background data collected through October 2020. The October 2022 data were compared to the UPLs updated in January 2021. The January 2021 Statistical Analysis was included as an appendix in the 2021 Annual Groundwater Monitoring Report.

The UPLs were updated in July 2023 using the background data from April 2016 through April 2023. The July 2023 UPL update memorandum is included in **Appendix F.** The Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at Resource Conservation and Recovery Act (RCRA) Facilities (U.S. EPA, 2009; Section 5.3.1) recommends periodic updating of background for both intrawell and interwell analyses. For semiannual monitoring, an update interval of 2 to 3 years is recommended; therefore, the next UPL update is planned for 2026.

SSIs for boron, fluoride, and sulfate were identified for both the October 2022 and April 2023 events; however, alternative source demonstrations (ASDs) were completed, demonstrating that a source other than the CCR units was the likely cause of the observed concentrations. The ASD reports are provided in **Appendix E**.

3.5 §257.90(E)(5) OTHER REQUIREMENTS

Other information required to be included in the annual report as specified in §257.90 through 257.98.

Additional potentially applicable requirements for the annual report, and the location of the requirement within the Rule, are provided in the following sections. For each cited section of the Rule, the portion referencing the annual report requirement is provided below in italics, followed by applicable information relative to the 2023 Annual Groundwater Monitoring and Corrective Action Report for the CCR Units.

3.5.1 §257.90(e) General Requirements

For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year.

Status of Groundwater Monitoring and Corrective Action Program. The groundwater monitoring and corrective action program was in detection monitoring throughout 2023.

Summary of Key Actions Completed (2022):

- Statistical evaluation and determination of SSIs for the October 2022 and April 2023 monitoring events.
- ASD reports for the SSIs identified from the October 2022 and April 2023 monitoring events.
- Two semiannual groundwater sampling and analysis events (April and October 2023).

Description of Any Problems Encountered. No problems were encountered in 2023.

Discussion of Actions to Resolve the Problems. Not applicable.

Projection of Key Activities for the Upcoming Year (2023).

- Statistical evaluation and determination of any SSIs for the October 2023 and April 2024 monitoring events.
- If an SSI is determined, then within 90 days either:
 - Complete alternative source demonstration (if applicable), or
 - Establish an assessment monitoring program.
- Installation of an additional compliance well on the south side of the closure area during early 2024.
- Two semiannual groundwater sampling and analysis events (April and October 2024).

3.5.2 §257.94(d) Alternative Detection Monitoring Frequency

The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer in the annual groundwater monitoring and corrective action report required by §257.90(e).

Not applicable. No alternative detection monitoring frequency has been proposed.

3.5.3 §257.94(e)(2) Alternative Source Demonstration for Detection Monitoring

The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by §257.90(e), in addition to the certification by a qualified professional engineer.

The ASD reports prepared to address the SSIs observed for the October 2022 and April 2023 sampling events are provided in **Appendix E**. The ASD reports are certified by a qualified professional engineer.

3.5.4 §257.95(c) Alternative Assessment Monitoring Frequency

The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer in the annual groundwater monitoring and corrective action report required by §257.90(e).

Not applicable. Assessment monitoring has not been initiated.

3.5.5 §257.95(d)(3) Assessment Monitoring Results and Standards

Include the recorded concentrations required by paragraph (d)(1) of this section, identify the background concentrations established under §257.94(b), and identify the groundwater protection standards established under paragraph (d)(2) of this section in the annual groundwater monitoring and corrective action report required by §257.90(e).

Not applicable. Assessment monitoring has not been initiated.

3.5.6 §257.95(g)(3)(ii) Alternative Source Demonstration for Assessment Monitoring

The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by §257.90(e), in addition to the certification by a qualified professional engineer.

Not applicable. Assessment monitoring has not been initiated.

3.5.7 §257.96(a) Extension of Time for Corrective Measures Assessment

The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measure due to site-specific conditions or circumstances. The owner or operator must obtain a

certification from a qualified professional engineer attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by §257.90(e), in addition to the certification by a qualified professional engineer.

Not applicable. Corrective measures assessment has not been initiated.

3.6 §257.90(E)(6) OVERVIEW

A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit.

The specific requirements for the overview under $\S257.90(e)(6)$ are listed and the information is provided at the beginning of this report, before the Table of Contents.

4.0 **REFERENCES**

Skinner, Earl L., and Borman, Ronald G., 1973, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigation Atlas HA-432.

U.S. EPA, 2009, The Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities.

[This page left blank intentionally]

Tables

- 1 Groundwater Monitoring Well Network
- 2 CCR Rule Groundwater Samples Summary
- 3A Groundwater Elevations State Monitoring Wells
- 3B Groundwater Elevations CCR Monitoring Wells
- 4 Horizontal Gradients and Flow Velocity
- 5A Groundwater Analytical Results Summary October 2022
- 5B Groundwater Analytical Results Summary April 2023
- 6 Groundwater Field Data Summary

 Table 1. Groundwater Monitoring Well Network

Edgewater 1-4 Closed Ash Disposal Facility / SCS Engineers Project #25223068.00

Monitoring Well	Location in Monitoring Network	Role in Monitoring Network
2R-OW	Upgradient	Background
MW-301	Downgradient	Compliance
MW-302	Downgradient	Compliance
MW-303	Downgradient	Compliance

Created by:	NDK
Last revision by:	NLB
Checked by:	RM

Date:	9/19/2022
Date:	6/30/2023
Date:	7/7/2023

Table 2. CCR Rule Groundwater Samples SummaryEdgewater 1-4 Closed Ash Disposal Facility / SCS Engineers Project #25223068.00

Sample Dates						
	MW-301	MW-302	MW-303	2R-OW		
4/25-26/2023	D	D	D	D		
10/10-11/2023	D	D	D	D		
Total Samples	2	2	2	2		

Abbreviations:

D = Required by Detection Monitoring Program

Created by:	NDK	Date: 9/19/2022
Last revision by:	NLB	Date: 12/30/2023
Checked by:	RM	Date: 1/11/2024

I:\25223068.00\Deliverables\2023 Fed CCR Annual Report\Tables\Table 2 - Groundwater Samples Summary.xlsx Table 2, Page 1 of 1

Table 3A. Groundwater Elevations - State Monitoring WellsEdgewater 1-4 Closed Ash Disposal Facility / SCS Engineers Project #25223068.00

	Ground Water Elevation in feet above mean sea level (amsl)											Water El	Water Elevation within Landfil								
Well Number	1-OW	2R-OW	3R-OW	4R-OW	5-OW	W-5A	6-AR	6R-OW	7A-OW	7-OW	18-OW	29-OW	29-A	30-OW	31-OW	32-OW	36-OW	40-OW	37-OW	38R-OW	39R-OW
Top of Casing Elevation (ft amsl)^	592.18	611.85	591.59	594.68	600.94	600.66	590.78	591.74	593.45	593.19	ABAND	588.72	588.43	591.13	589.22	589.21	ABAND	586.69	615.30	620.24	614.27
Screen Length (ft)																					
Total Depth (ft from top of casing)	11.10	17.53	15.82	16.48	10.65	21.51	19.86	10.37	20.21	9.93	14.25	19.96	43.12	14.88	14.98	14.95	21.01	17.3	18.55	29.00	22.29
Top of Well Screen Elevation (ft)	580.62	595.19	575.50	579.12	590.07	580.33	571.46	580.61	573.20	582.58	572.22	568.90	546.13	575.93	574.02	574.12	593.62		596.47	591.98	591.75
Measurement Date																					
October 24, 2012	588.11	607.82	582.64	585.24	595.63	596.69	587.42	587.40	592.00	589.78	583.49	585.33	586.60	586.40	582.58	583.63	599.77		599.42	599.38	598.05
April 18, 2012					595.89	597.13	587.33	587.35	592.35	589.79		585.32	588.39								
October 24, 2012					595.63	596.69	587.42	587.40	592.00	589.78		585.33	586.60								
April 8, 2013	588.50	609.92	588.37	586.35	596.66	597.65	588.40	587.34	592.79	589.95	583.97	585.78	588.07	588.57	584.35	584.50	600.79		600.24	600.16	598.30
October 22, 2013	584.88	601.15	580.90	584.46	594.23	595.64	582.64	584.83	591.23	587.24	NM ⁽¹⁾	584.70	586.76	582.19	580.40	580.76	599.13		598.22	598.42	596.56
April 22, 2014	588.05	609.22	587.99	586.11	595.18	597.10	587.00	587.37	589.27	589.51	NM ⁽¹⁾	585.38	588.22	587.53	583.75	583.75	NM ⁽¹⁾		599.67	599.38	598.56
October 28, 2014	586.14	607.27	586.30	585.08	595.33	596.51	587.68	586.99	591.92	589.29	NM ⁽¹⁾	585.00	587.84	585.48	582.88	582.68	600.07		599.81	599.26	598.37
April 7 - 9, 2015	587.90	608.47	587.44	585.52	595.66	596.76	586.99	587.50	591.95	588.50	ABAND	585.44	587.55	586.29	583.21	583.87	599.69	583.77	599.21	599.21	597.46
October 8, 2015	584.78	604.22	583.34	584.52	594.76	594.47	582.65	585.67	591.23	589.71	ABAND	584.69	587.27	584.26	581.60	582.52	600.29	583.01	599.47	599.70	598.09
April 4-5, 2016	588.40	610.02	587.72	586.69	596.70	597.81	584.52	585.68	592.41	587.93	ABAND	582.95	587.25	586.91	584.35	584.47	601.05	579.28	601.37	601.18	601.13
October 17, 2016 ⁽²⁾	587.50	607.27	586.71	585.15	595.41	596.82	584.34	586.61	592.01	587.65	ABAND	581.25	586.10	586.23	583.02	583.83	600.87	579.42	600.70	600.74	599.49
April 12-13, 2017	588.23	609.80	587.95	586.31	596.08	597.69	586.77	587.32	592.19	587.06	ABAND	583.74	585.43	585.36	583.68	584.52	602.01	584.02	602.11	602.08	601.29
October 9, 2017	584.14	600.87	581.00	584.49	594.68	596.04	583.03	583.51	590.50	585.96	ABAND	583.01	584.88	582.76	580.93	581.18	600.18	583.05	598.48	599.65	598.07
April 2, 2018	587.79	607.87	586.63	586.68	595.73	596.88	586.80	587.44	591.76	589.62	ABAND	585.51	587.11	585.68	582.95	582.85	600.71	583.64	600.00	600.04	597.99
June 19, 2018	NM	605.70	585.49	585.20	595.41	NM	NM	NM	NM	587.20	ABAND	585.43	585.79	584.96	582.29	NM	NM (1)	583.07	600.44	600.68	599.61
October 1, 2018	585.37	604.61	584.18	584.86	595.24	596.44	586.10	586.86	591.01		ABAND	585.04	584.94	584.79	582.11	582.81	600.30	583.17	600.12	600.27	599.79
April 8, 2019	588.57	609.50	588.01	591.93	596.03	597.33	584.61	587.35	591.92	590.06	ABAND	585.76	586.75	587.83	584.18	584.85	600.21	583.75	599.60	599.74	598.49
October 9-10, 2019	587.85	609.39	587.39	585.99	595.68	596.92	586.42	587.24	591.66	587.53	ABAND	585.14	585.10	587.15	583.63	584.48	599.92	583.08	600.25	600.01	599.82
April 8-9, 2020	588.03	608.97	587.70	586.05	595.57	596.89	585.74	586.95	591.61	587.76	ABAND	584.98	587.35	587.29	583.70	584.59	599.40	583.01	599.52	599.48	599.38
October 14-15, 2020	<u>584.62</u> 587.95	604.37	582.20	584.54	593.27	594.86	582.71	583.45	588.81	586.53	ABAND	583.95	586.83	583.83	582.60	582.82	ABAND	583.26	596.87	NM FO(FO	594.72
April 14, 2021 October 27-28, 2021	<u> </u>	608.50 603.62	587.64 580.74	585.42 584.47	594.87 593.06	596.13	586.53 579.90	587.29 584.60	590.45	589.89 587.39	ABAND ABAND	585.16 584.60	587.64 586.65	587.06 582.89	583.46 581.88	584.25 582.02	ABAND ABAND	583.08 582.74	DRY DRY	596.50 595.49	593.95 592.34
February 28, 2021	<u>564.55</u> NM	003.02 NM	NM	NM	NM	NM	NM	NM	NM	NM	ABAND	NM	NM	NM	NM	NM	ABAND	NM	DRY	595.25	NM
April 13, 2022	588.64	608.63	588.30	585.06	595.72	595.11	586.08	588.15	591.60	590.70	ABAND	584.69	584.82	588.02	584.10	585.09	ABAND		DRY	594.43	DRY
October 6, 2022	584.39	601.93	580.62	583.52	593.16	593.41	582.43	584.86	590.02	587.38	ABAND	583.21	584.18	583.09	581.55	581.98	ABAND		DRY	594.62	593.36
April 25-26, 2023	588.51	607.74	588.00	585.15	595.48	595.22	588.13	588.18	591.90	590.13	ABAND	584.92	586.46	587.94	583.60	584.62	ABAND	00=.00	597.35	596.81	598.09
October 10-11, 2023	583.99	599.85	579.87	583.26	592.52	592.83	583.52	582.36	588.67	585.67	ABAND	583.46	583.80	582.27	580.47	581.37	ABAND		DRY	595.63	594.40
Bottom of Well Elevation (ft)	591.72	612.72	591.32	595.60	600.72	601.84	591.32	590.98	573.20	582.58	572.22	568.90	546.13	575.93	574.02	574.12	593.62	568.75	596.47	592.14	591.75

Notes:	Created by:	MDB	Date: 5/6/2013
NM = not measured	Last revision by:	NLB	Date: 12/29/2023
ABAND = abandoned	Checked by:	RM	Date: 1/11/2024

1: Well broken

2: Well casings at 7-OW, 7A, and 29-OW were cut down to allow the protective covers to close. 7-OW was cut down by 0.22 ft, 7A was cut down by 0.29 ft, and 29-OW was cut down by 0.17 ft. Top of casing elevations in this table were adjusted accordingly.

*: Well was frozen

^: Monitoring well adjustments and resurveys:

Monitoring well 38R-OW was extended on October 30, 2020 during repairs following well damage by pond closure construction equipment.

Monitoring Well 40-OW cut down to have a top of casing elevation of 586.05 famsl on December 3, 2021.

All active monitoring wells were resurveyed in January 2023. These elevations are retroactively applied to 2022 monitoring events.

VPL - Edgewater 1-4 (Closed) Ash Disposal Facility / SCS Engineers Project #25223068.00							
Ground Water Elevation in	n feet above	mean sea le	vel (amsl)				
Well Number MW-301 MW-302 MW-303 2R-OW							
Top of Casing Elevation (feet AMSL) ^(1,2,3)	606.90	607.70	604.78	611.85			
Screen Length (ft)	5.00	5.00	5.00	10.00			
Total Depth (ft from top of casing)	27.47	40.00	33.26	14.50			
Top of Well Screen Elevation (ft)	581.95	580.15	579.60	608.22			

599.75

598.30

598.00

598.50

597.10

600.04

598.77

597.40

597.20

598.54

597.60

598.92

599.56

597.89

595.10

596.81

592.32

597.37

592.69

597.77

592.51

576.95

596.19

595.68

595.53

595.46

596.30

593.57

595.86

595.22

595.25

595.71

595.28

595.68

595.58

NM

590.18

592.18

591.44

593.05

591.96

593.63

592.01

575.15

609.68

606.70

605.74

607.27

609.64

609.72

607.63

604.59

601.74

607.87

604.61

609.50

609.39

NM

604.27

608.50

604.04

608.63

601.93

607.74

600.38

598.22

589.04

587.22

587.72

588.37

588.84

589.04

588.44

587.36

587.97

588.77

588.17

588.88

588.77

NM

585.07

586.89

585.95

587.99

586.42

587.99

585.79

578.73

Table 3B. Groundwater Elevations - CCR Monitoring Wells

Notes:

NM = not measured

Measurement Date

April 8, 2016 June 20, 2016

August 9, 2016

October 20, 2016

January 23-24, 2017

April 6, 2017 October 24, 2017

August 1, 2017

October 24, 2017

April 2, 2018

October 1, 2018

April 8, 2019

October 7, 2019

June 26, 2020

October 15, 2020

April 14, 2021

October 26, 2021

April 13, 2022

October 6, 2022 April 2<u>5-26, 2023</u>

October 10, 2023

Bottom of Well Elevation (ft)

(1): MW-302 and MW-303 were shortened in September 2020 due to site regrading during pond closure. The wells were resurveyed in November 2020.

(2): MW-301 was extended in November 2020 due to site regrading during pond closure. The well was resurveyed in November 2020.

(3): All site wells were re-surveyed in January 2023, and elevations were tied to NGS benchmark PID #DE7593. These elevations are retroactively applied to 2022 monitoring events.

Created by:	MDB	Date:	6/27/2016
Last rev. by:	MDB	Date:	5/2/2023
Checked by:	REO	Date:	5/4/2023
Scientist QA/QC:	TK	Date:	1/8/2024

Table 4. Horizontal Gradients and Flow Velocity - CCR Monitoring Wells Edgewater 1-43 Closed Ash Disposal Facility / SCS Engineers Project #25223068.00 January - December 2023

	Flow Path A - South					
Sampling Dates	h1 (ft) h2 (ft) Δl (ft) Δh/Δl (ft/ft) V (ft/					
4/25-26/2023	587.99	585.00	174	0.02	0.01	

	Flow Path B - Southeast					
Sampling Dates	h1 (ft) h2 (ft) Δl (ft) Δh/Δl (ft/ft) V (ft/					
10/10-11/2023	590.00	585.79	328	0.01	0.01	

	K Value			Assumed
Wells	(cm/sec)	K Value (ft/d)		
MW-301	2.1E-05	0.060		Porosity, n
MW-302	4.0E-04	1.139		0.40
MW-303	1.1E-04	0.304	-	
Geometric				
Mean	9.7E-05	0.274		

Groundwater flow velocity equation: $V = [K^*(\Delta h/\Delta I)] / n$

ft = feet

ft/d = feet per day

K = hydraulic conductivity

n = effective porosity

V = groundwater flow velocity

<u>Note:</u>

1. See Figures 3 and 4 for velocity calculation flow path locations

Created by: NDK	Date: 9/19/2022
Last revision by: NLB	Date: 12/26/2023
Checked by: RM	Date: 12/29/2023

h1, h2 = point interpreted groundwater elevation at locations 1 and 2 ΔI = distance between location 1 and 2 $\Delta h/\Delta I$ = hydraulic gradient

Table 5A. Groundwater Analytical Results Summary - CCR Monitoring WellsEdgewater 1-4 Closed Ash Disposal Facility / SCS Engineers Project #25223068.00

		Background Well	Compliance Wells		
		2R-OW	MW-301	MW-302	MW-303
Parameter Name	UPL	10/6/2022	10/6/2022	10/6/2022	10/6/2022
Groundwater Elevation, ft amsl		601.93	592.69	591.96	586.42
Appendix III					
Boron, µg/L	86	49.0	6,230	1,610	3,650
Calcium, µg/L	200,000	152,000	86,900	64,000	135,000
Chloride, mg/L	400	414	15.5	21.2	22.0
Fluoride, mg/L	0.2	<0.095	0.21 J	0.87	<0.095
Field pH, Std. Units	8.57	7.08	7.56	7.89	6.92
Sulfate, mg/L	36.2	28.0	213	70.5	<0.44
Total Dissolved Solids, mg/L	1,190	1,110	572	306	658

4.4

Blue shaded cell indicates the compliance well result exceeds the UPL (background) and the Limit of Quantitation (LOQ).

Abbreviations: UPL = Upper Prediction Limit -- = Not Applicable

Lab Notes:

J = Estimated concentration at or above the LOD and below the LOQ.

Notes:

1. An individual result above the UPL does not constitute an SSI above background.

See the accompanying report text for identification of statistically significant results.

2. Interwell UPLs calculated based on results from background well 2R-OW. Interwell UPLs based on 1-of-2 retesting approach. The interwell UPLs were updated in January 2021 using data from April 2016 through October 2020.

Created by:	NDK
Last revision by:	NLB
Checked by:	RM
Scientist/PM QA/QC:	TK

Date:	9/19/2022
Date:	3/31/2023
Date:	7/7/2023
Date:	1/8/2024

Table 5B. Groundwater Analytical Results Summary - CCR Monitoring WellsEdgewater 1-4 Closed Ash Disposal Facility / SCS Engineers Project #25223068.00

	Background Compliance Wells			ells	
		2R-OW	MW-301	MW-302	MW-303
Parameter Name	UPL	4/26/2023	4/25/2023	4/26/2023	4/25/2023
Groundwater Elevation, ft amsl		607.74	597.77	593.63	587.99
Appendix III					
Boron, µg/L	78.4	32.0	6,770	1,450	4,870
Calcium, µg/L	201,000	91,800 P6	87,900	46,900	128,000
Chloride, mg/L	456	53.4	17.9	16.5	22.3
Fluoride, mg/L	0.200	0.11 J	0.21 J	0.75	<0.095
Field pH, Std. Units	8.57	7.30	7.63	7.85	6.87
Sulfate, mg/L	36.7	7.5	168	75.4	0.50 J
Total Dissolved Solids, mg/L	1,220	512	554	344	740

4.4

Blue shaded cell indicates the compliance well result exceeds the UPL (background) and the Limit of Quantitation (LOQ).

Abbreviations:

UPL = Upper Prediction LimitLOD = Limit of Detectionmg/L = milligrams per liter-- = Not ApplicableLOQ = Limit of Quantitation $\mu g/L$ = micrograms per liter

Lab Notes:

J = Estimated concentration at or above the LOD and below the LOQ.

P6 = Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.

Notes:

1. An individual result above the UPL does not constitute an SSI above background. See the accompanying report text for identification of statistically significant results.

2. Interwell UPLs calculated based on results from background well 2R-OW. Interwell UPLs based on 1-of-2 retesting approach. The interwell UPLs were updated in July 2023 using data from April 2016 through April 2023.

Created by:	NDK	Date: 9/19/2022
Last revision by:	NLB	Date: 6/30/2023
Checked by:	RM	Date: 7/7/2023
Scientist/PM QA/QC:	TK	Date: 1/8/2024

Table 6. Groundwater Field Data Summary - CCR Monitoring WellsEdgewater 1-4 Closed Ash Disposal Facility / SCS Engineers Project #25223068.00

Well	Sample Date	Groundwater Elevation	Field Temperature	Field pH	Oxygen, Dissolved	Field Specific Conductance	Field Oxidation Potential	Turbidity
		(feet)	(deg C)	(Std. Units)	(mg/L)	(umhos/cm)	(mV)	(NTU)
MW-301	10/6/2022	590.21	11.6	7.56	0.39	804	-42	20.7
	4/25/2023	597.77	8.5	7.63	3.14	765	416	96.1
MW-302	10/6/2022	599.41	12.1	7.89	0.61	499	105	21.9
	4/26/2023	593.63	8.7	7.85	1.86	501	169	3.1
MW-303	10/6/2022	593.63	11.8	6.92	1.31	1,184	175	165
	4/25/2023	587.99	8.0	6.87	5.27	1,230	370	44.1
2R-OW	10/6/2022	602.80	13.6	7.08	1.06	1,992	523	2.75
	4/26/2023	607.74	6.9	7.30	0.90	889	306	3.62

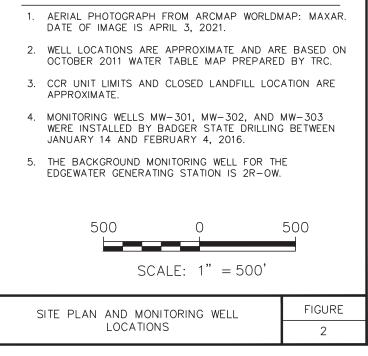
Abbreviations:

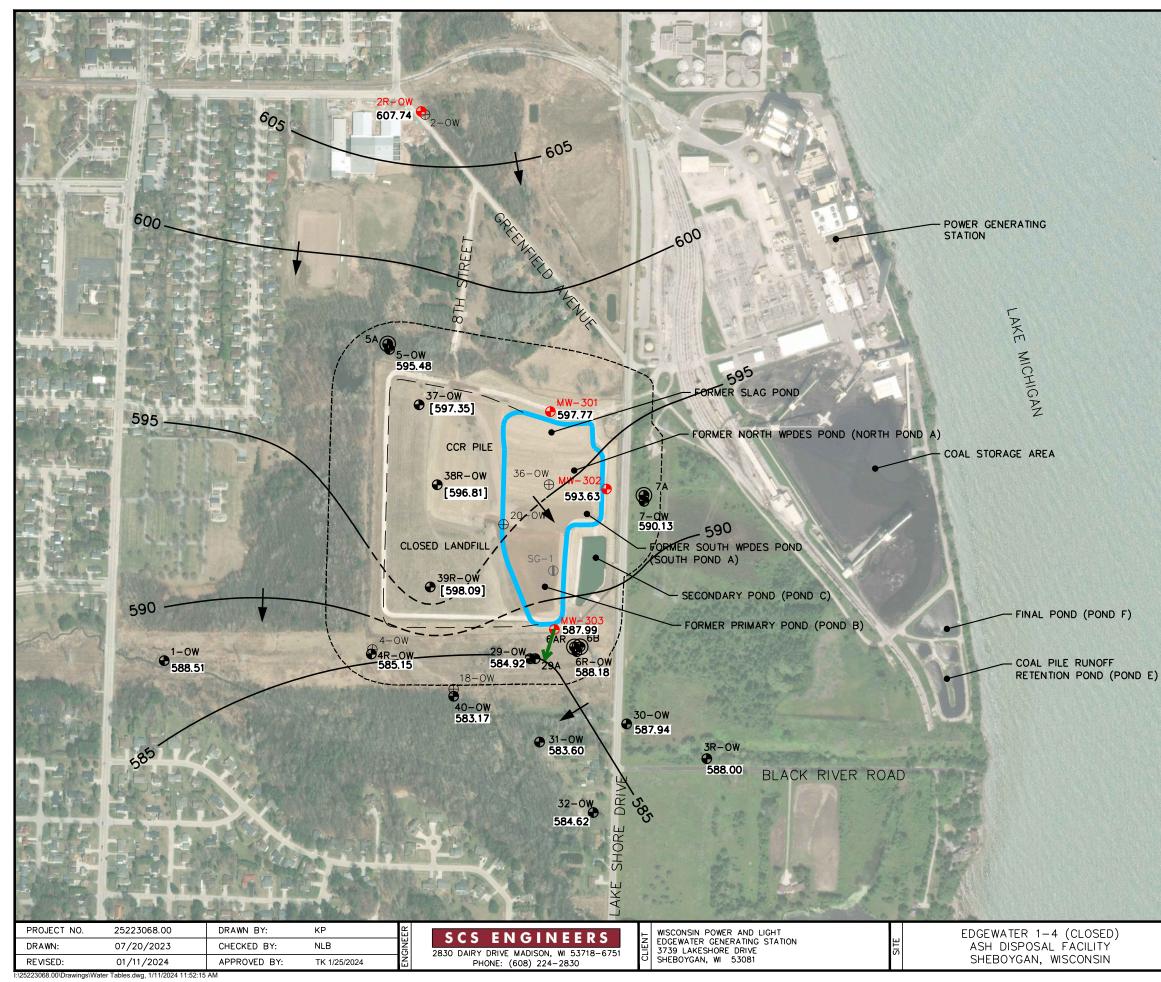
mg/L = milligrams per liter ft amsl = feet above mean sea level µmhos/cm = micromhos per centimeter ORP = Oxidation-reduction potential mV = millivolts

Created by:	NDK	Date:	9/19/2022
Last revision by:	NLB	Date:	6/30/2023
Checked by:	RM	Date:	7/7/2023

Figures

- 1 Site Location Map
- 2 Site Plan and Monitoring Well Locations
- 3 April 2023 Water Table Map
- 4 October 2023 Water Table Map


02/26/2024 - Classification: Internal - ECRM13238693

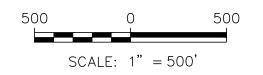

LEGEND	
--------	--

•	CCR RULE MONITORING WELL
Ð	CCR RULE BACKGROUND MONITORING WELL
•	ADDITIONAL MONITORING WELL
۲	ADDITIONAL PIEZOMETER
\oplus	ABANDONED MONITORING WELL
Ф	ABANDONED STAFF GAUGE
	CCR UNITS
	CLOSED LANDFILL LIMITS

Ν

NOTES:

02/26/2024 - Classification: Internal - ECRM13238693


LEGEND

\oplus	ABANDONED MONITORING WELL
Ð	CCR MONITORING WELL
•	MONITORING WELL
۲	PIEZOMETER
Ф	ABANDONED STAFF GAUGE
	CCR UNITS
~	FLOW PATH FOR VELOCITY CALCULATION (SEE TABLE 4)
	CLOSED LANDFILL LIMITS
	DESIGN MANAGEMENT ZONE
598.54	WATER TABLE ELEVATION
[597.35]	WATER TABLE ELEVATION WITHIN LANDFILL
	WATER TABLE CONTOUR (5' INTERVAL)
-	APPROXIMATE GROUNDWATER FLOW DIRECTION

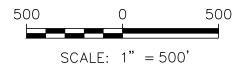
Ν

NOTES:

- 1. AERIAL PHOTOGRAPH FROM ARCMAP WORLDMAP: MAXAR. DATE OF IMAGE IS APRIL 3, 2021.
- EXISTING WELL LOCATIONS ARE APPROXIMATE AND ARE BASED ON OCTOBER 2011 WATER TABLE MAP PREPARED BY TRC.
- 3. DESIGN MANAGEMENT ZONE LOCATION IS APPROXIMATE
- 4. NEW MONITORING WELL LOCATIONS WERE SURVEYED BY CQM, INC. ON FEBRUARY 12, 2016.
- 5. MW-301, MW-302, AND MW-303 ARE NOT INCLUDED IN THE WDNR-APPROVED SITE-SPECIFIC MONITORING PLAN
- 6. GROUNDWATER ELEVATIONS COLLECTED FROM MONITORING WELLS ON APRIL 25-26, 2023.

WATER	TABLE	MAP
APF	RIL 202	3

02/26/2024 - Classification: Internal - ECRM13238693


LEGEND

\oplus	ABANDONED MONITORING WELL
•	CCR MONITORING WELL
•	MONITORING WELL
۲	PIEZOMETER
Ф	ABANDONED STAFF GAUGE
	CCR UNITS
~	FLOW PATH FOR VELOCITY CALCULATION (SEE TABLE 4)
	CLOSED LANDFILL LIMITS
	DESIGN MANAGEMENT ZONE
598.54	WATER TABLE ELEVATION
[595.63]	WATER TABLE ELEVATION WITHIN LANDFILL
	WATER TABLE CONTOUR (5' INTERVAL)
-	APPROXIMATE GROUNDWATER FLOW DIRECTION

Ν

NOTES:

- 1. AERIAL PHOTOGRAPH FROM ARCMAP WORLDMAP: MAXAR. DATE OF IMAGE IS APRIL 3, 2021.
- 2. EXISTING WELL LOCATIONS ARE APPROXIMATE AND ARE BASED ON OCTOBER 2011 WATER TABLE MAP PREPARED BY TRC.
- 3. DESIGN MANAGEMENT ZONE LOCATION IS APPROXIMATE
- 4. NEW MONITORING WELL LOCATIONS WERE SURVEYED BY CQM, INC. ON FEBRUARY 12, 2016.
- 5. MW-301, MW-302, AND MW-303 ARE NOT INCLUDED IN THE WDNR-APPROVED SITE-SPECIFIC MONITORING PLAN
- 6. GROUNDWATER ELEVATIONS COLLECTED FROM MONITORING WELLS ON OCTOBER 10-11, 2023.

WATER TABLE MAP OCTOBER 2023

Appendix A

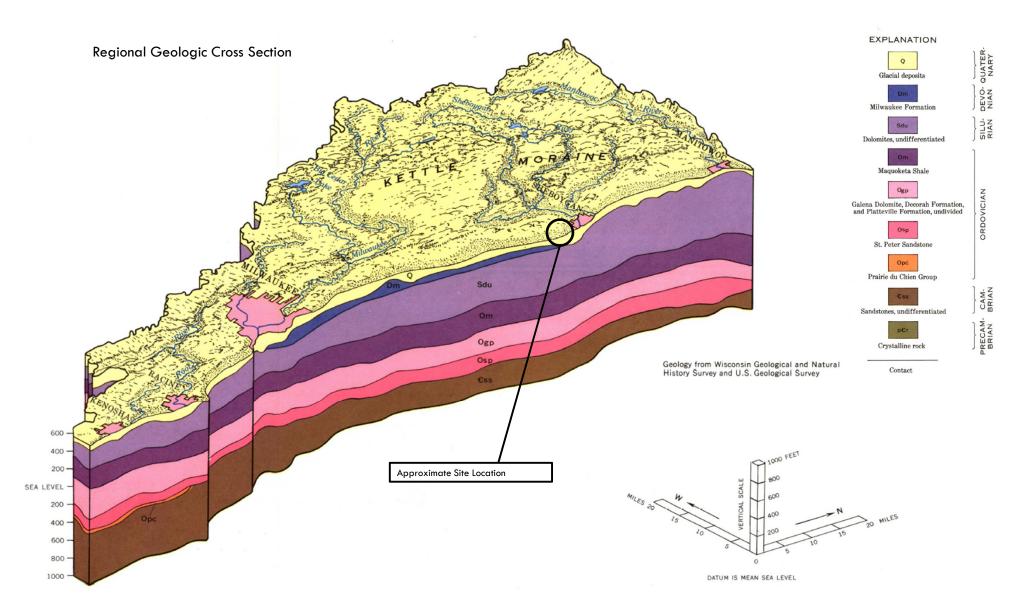
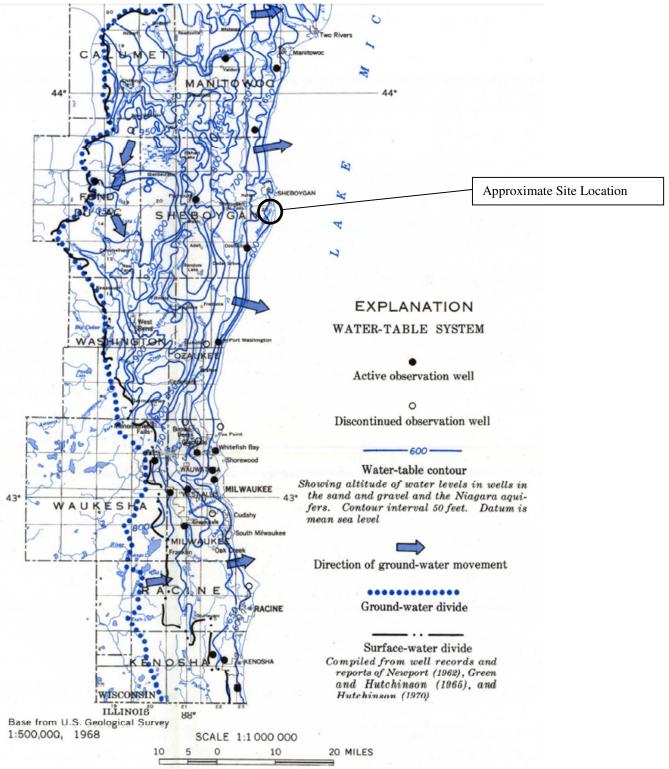

Summary of the Regional Hydrogeologic Stratigraphy

Table EGS-3. Regional Hydrogeologic StratigraphyEdgewater Generating Station / SCS Engineers Project #25215053


Age	Hydrogeologic Unit	General Thickness (feet)	Name of Rock Unit*	Predominant Lithology
Quaternary	Sand and Gravel	0 to 235	Surface sand and gravel	Sand and Gravel
	Aquifer	0 to 300	Buried sand and gravel	
Devonian	Niagara Dolomite	0 to 750	Dolomite	Dolomite
Silurian	Aquifer	010730	(undifferentiated)	Dolonine
	Confining Unit	0 to 400	Maquoketa Shale	Shale and dolomite
Ordovician		100 to 340	Galena Decorah Platteville	Dolomite
		0 to 330	St. Peter	Sandstone
	Sandstone Aquifer	0 to 140	Prairie du Chien	Dolomite
Cambrian		0 to 3,500?	Trempeleau Franconia Galesville Eau Claire Mt. Simon	Sandstone, some Dolomite and Shale
Precambrian	Not an Aquifer	Unknown	Crystalline Rocks	Igneous and metamorphic rocks

Source:

Skinner, Earl L. and Ronald G. Borman, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigations Atlas HA-432, 1973.

Source: Skinner, Earl L. and Ronald G. Borman, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigations Atlas HA-432, 1973.

Regional Groundwater Flow Map - Uppermost Aquifer

Source: Skinner, Earl L. and Ronald G. Borman, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigations Atlas HA-432, 1973. Appendix B

Boring Logs and Well Construction Documentation

State of Depart	f Wiscor ment of	isin Natural	l Resour	Route T ces // Solid Eme		□ H2 □ Ur		aste round 1	Fanks				oil Bor orm 440	-	og Info	rmatio	on 7-91
				□ Was				Resourc	es		-			Page		of 1	
Facility	/Project	Name							mit/Mon	itoring l	Numbe		Boring 1 2R-C		•		
Mon	itoring	g Wel	l Insta	llation	•				g Started	1	Date	Drilling			Drilling	Metho	d
M&	Drilled I K Env Cardle.	ironn	m name iental	and name of crew chie Drilling. Chief D			29/98			04/29	9/98		HSA				
-	acility V		. WI	Unique Well No.	Common Well Na	ame	Final		Water L 2 Feet			ce Eleva 10.3 F			orehole I	Diamete 3.0 In	
Boring	Location	<u> </u>					l 		0 9 11		Local	Grid L			icable)		 7
-				2	T 14 N.R 23	£		Lat ong	0,11		17	72 Fee			. 600 F		3 E] w
NW County		f NE	, 1/4	of Section 2	E	ONR Cou		_	Civil To			illage					
	BOY	GAN			(60			SHE	BOYG			Soil	Proper	ties		
San		ú	Feet									Б		`,`			
	ed (in)	Counts			ck Description					_	0		e t		U 		†s
Ļ	ч э		L L L		logic Origin Fo	T		s ບ	Ч Ч	Jrai	Η	andal etr	s tu ten	Lid it	+- +-	200	Lam
Number	Length (i Recovered	Blow	Depth	Each	Major Unit			s n	Graphic Log	Well Diag	PID/FID	Standard Penetrat i	Moisture Content	Liquid Limit	Plas [.] Limi	сл 	RQD∕ Comments
_ <u>z</u> _	12			TOPSOIL			7	TS									
			E1	LEAN CLAY -	moist, stiff, yel	lowish		CL									
			<u>-</u> 2	brown (10YR 5/	(6), silty sand se	eams.						1.2	23.6				
1	18	12	<u> </u>							Ĭ		12	23.0				
			E-4									1					
			1 1 1 2 3 4 5 6 7 8	very stiff.						目		22	16.6				
2	18	22	E6	very still.													
L			E,							目							
3	18	46	Ľ,	hard.								46	16.8				
			Ē,														
Ļ	1		Ē													98.4	
4	18	26	E ¹⁰	wet, very stif 4/3), occasional	f, dark brown ()	10YR						26	19.7			70.4	
			9 10 10 11 11	4/3), occasional	Salid Scallis.			ſ									
_			E-12									15	22.8				
5	18	15	13	moist.						目							
L	-		E-14														
				NOTES: 1) End of borin	a at 14.5 feet												
				2) Monitoring V	Well 2R-OW cos	nstructe	d										
				at completion.													
									1		1						
								Ļ	<u> </u>							1	
		fy that	the infor	mation on this form is	true and correct to	the best (of my Firm	knowl	Mill-	r Engi	neere	& Sci	enticte				
Signa	ture	/	h					-	5308 S	South 12	th Stree	et, Sheb	oygan,	WI 53	081		
		2	n				1		Tel: (9	20)458-	6164	Fax: (9	20)458-	0369			

This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$5,000 for each violation. Fined not less than \$10 or more than \$100 or imprisoned not less than 30 days, or both for each violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06, Wis. Stats.

Route To:

Watershed/Wastewater Remediation/Redevelopment

Waste Management Other

SOIL BORING LOG INFORMATION Form 4400-122

Rev. 7-98

													Pag	-	of	2	
Facilit						License/Permit/Monitoring Number Boring Number MW-301											
				ating Station crew chief (first, last) ar	SCS#: 25215135.10	Date Dri	lling St	Dat	te Drilli	ng Con	nnleted		D <u>#iling</u> Method				
-	in Du		i tuine oi			Butte		un tou				ing con	nprotod		Hollow stem		
Bad	ger S	tate						/2016				1/14/2	2016			ıger	
WI Ur	-			DNR Well ID No.	Common Well Name	Final Sta			Sı	urface	e Elevat			В		Diameter	
Local		/862		imated: 🗌) or Bor	MW-301		13.7	Feet			601. Local (95 Fe				8.5 in.	
State 1		ngm	632.	741 N, 2,573,429	E s/C/N	La	ıt	• •		"	LUCAI			r		Feet 🗌 E	
NE		of N		4 of Section 2 ,	т 14 N, R 23 Е	Long	g	o 1		"		reet					
Facilit			ĩ	County	0	County Co		Civil Town	/City	/ or \	/illage						
-				Shawano		59		Sheboyg	an								
San	nple											Soil	Prope	erties		_	
	k (ii)	s	et	Soil/R	ock Description												
L e	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	And Ge	ologic Origin For				5	0	d tion	9		Ŋ		ents	
Typ	gth ove	M C	th I	Eac	h Major Unit		CS	Graphic Log Well	Diagram	PID/FID	otra	Moisture Content	uid	Plasticity Index	200	RQD/ Comments	
Number and Type	Len Rec	Blo	Dep				U S	Grapl Log Well	Dia	DID	Standard Penetration	Mo Cor	Liquid Limit	Plastic Index	P 2(RQD/ Comr	
			=	Boring already cleared	to 8' bgs by hydrovac.				\mathbb{X}								
			Ē														
			-2														
			E														
_				Standing water at 3' in	existing hydrovac hole a	nd										Standing water at 3 ft bgs in	
				boring at toe of berm.												existing hole and boring at toe of	
			E													berm.	
×			-5														
			E														
			6														
			-7														
			E' I														
			Ē	SILTY CLAY, brown	(7.5 Y K 4/6).												
S1	22	57 913	-9								3.5	М				water @ 11.9 ft bgs after sitting	
		715														an hour with augers at 20 ft	
																bgs.	
							CL-ML										
			E														
			-12														
			E														
П			-13														
	20	7 13									2.75	W					
S2	20	7 13 23 21		SANDY SILT, grey bro	own (10YR 4/2).		ML				2.75	W					
U U			-15														
I hereb	y certif	y that t	he inform	nation on this form is tru	are and correct to the best	of my kn	owledg	ge.									
Signat		-			Firm SCS	-		-								(09) 224 2920	

Signature	0	Firm SCS Engineers	Tel: (608) 224-2830
Then you	for Jue Lason	2830 Dairy Drive Madison, WI 53718	Fax:

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A

Borin	Boring Number MW-301 Use only as an attachment to Form 4400-122. Page 2 of 2 Sample Soil Properties															2
Sar	-											Soil	Prope	erties		-
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic	Log	Well	Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
			16	SANDY SILT, grey brown.												
S3	20	57 1813	18 19 20 21 21	Same as above, except brown (7.5 YR 4/6).								W				
S4	22	2 2 3 4	23									W				
S5	20	33 49	25		ML							W				screen 20-25 ft bgs.
S6	24	2 2 2 2	28 29 30									w				
S7	24	2 2 4 8	-31 -32									W				
S8	16	23 45	33									w				
S9	24	2 2 2 2	-35	CLAY, grey (7.5YR 4/6).	CL						1.0	М				water at 16.8 ft bgs with augers at 34 ft bgs.
				End of boring at 36 ft bgs.												

State of Wisconsin Department of Natural Resources

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

Route To: Watershed/Wastewater Remediation/Redevelopment Waste Management
Other

																Pag		of	2
		ct Nam					SCS#: 25215135.10	Lic	License/Permit/Monitoring Number Boring Number)2		
				rating S	tation nief (first,	Dat	Date Drilling Started Date D							npleted		MW-302			
	vin Du		vanie o		nei (msi,	last) all	Dat		iiig 3	ancu				ing Con	npicicu		D <u>nilling</u> Method Hollow stem		
	lger S									1/15	/2016				1/15/2	2016			iger
		Vell No.		DNR	Well ID N	ю.	Common Well Name	Fin	al Stat		ter Leve		Surfac	e Eleva			B		Diameter
		/861					MW-302			Fe	et				.65 Fe			8	.5 in.
	Grid O	rigin					ng Location	1	Lat	÷	0	,		Local (_
State		c NI			, 2,573							,	,,		Feet				Feet E
SE Facilit		of N	W I	/4 of Sec	County 2	2,	T 14 N, R 23 E		Long		Civil T		ity/ or `	Village		S			□ W
raciin	y ID				Shawar	10		59		iic	Sheb			vinage					
San	mle				Siluvu			0,				Bu			Soil	Prope	erties		
Jun	-					Soil/Do	ock Description												-
	tt. & d (in	unts	Feet				blogic Origin For							u u					S
ype	h Ai /ere	Cot	l In		A		n Major Unit			S	nic	am	A	ard	ure	-9	city		/ nent
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			Laci	i Major Onit			SC	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	200	RQD/ Comments
A IS	N L	B	D	Borino	already o	leared t	o 8' bgs by hydrovac.			D	5 J		P	PS	2 U	ЦЦ	P 1		L R D
			-	Borne	, un out y o	iourou i													
			$\frac{-1}{2}$																
			-2																
			-3																
			_																
			_4																
			-5																
			-6																
			7																
			_																
_ п			-8	SAND	Y CLAY,	, variou	s colors (fill).												
		60	_0																
S1	16	68 1110	10											2.5/1.7:	5 M				
Ц			$\frac{1}{-10}$																
			=																
			-11																
			-12							CL	2363								
			-12																
			-13																
Π		-	- 13																
S2	16	56 1119	-14											3.5	М				
	10	11 19																	
U			-15								5-12 L.M								

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature Why Talk for Joe Larson Firm SCS Engineers 2830 Dairy Drive Madison, WI 53718	Tel: (608) 224-2830 Fax:
---	-----------------------------

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A

Contraction of the local division of the loc	g Numl	ber	MV	V-302 Use only as an attachment to Form 4400)-122.					 		ge 2	of	2
Number and Type	Length Att. & dd Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic	Log	Well	Diagram	Standard Penetration	Moisture Content	Plasticity sail.	P 200	RQD/ Comments
S3	16	67		SANDY CLAY, (fill).	CL					3.25	М			
53	16	67 912	20	CLAY, dark brown, some gravel and fill (topsoil). LEAN CLAY, brown (7.5YR 4/6).	CL					5.2.5	IVI			
S4	24	4 7 10 13	25		CL					2.75	Μ			
S5	24	66 78	-28 -29 -30	SANDY SILT, brown (7.5YR 4/6).		-				1.5	W			
S6 _	12	57 88	31											
S7 _	22		33 34		ML									
S8 -	24	4 /		6 inch sandier zone at 35-35.5 ft bgs, soil less cohesive, more water.							XX 7			
S9 	24	2 2 2 4 2 2 4 6	-38								W			water at 17.8 ft
		46	- 	End of boring at 40 ft bgs.					_					water at 17.8 ft bgs after well installation.

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

Route To: Wate

Watershed/Wastewater

Waste Management
Other

Tachtly/Project Name Boring Number MVP-303 Boring Dilled By: Name of crew chief (first, last) and Firm Date Delling Stated Date Delling State Date Delling State <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Pa</th><th></th><th>of</th><th>2</th></t<>														Pa		of	2	
Boring Drilled By: Name of erew chief (first, last) and Pfm Badger State Date Drilling Stanted Date Drilling Completed Diglipp Method Kevin Durse No. DNR Well ID No. Common Well Name Final Static Water Level Surface Elevation Borchole Diameter VURDinge Well No. DNR Well ID No. Common Well Name Final Static Water Level Surface Elevation Borchole Diameter VOR 00 Control of Origin Costmated: O restring to cost on Elevation Elevation Elevation Borchole Diameter State Plane G31,GOB N, 2,573,497 E S/C/N Lat							License/	Permit	Monito	ring Nı	umber		Boring	, Numb		W 20		
Kevin Durst Badger State 2/4/2016 2/4/2016 2/4/2016 Badger State 2/4/2016 Badger State 2/4/2016 Bordhel Dumder VURG0 DNR Well ID No. Common Well Name Final State Water Level Surface Elevation Bordhel Dumder State Plane G16,00 N, 2,573,497 E S/C/N Lat							Dete De	11:	4 4 1		D	ta D::11	Car					
Badger State 2/4/2016 2/4/2016 auger WI Unique WIN No. DBR Well ID No. Common Well Name Final Static Water Level Surface Elevation Benchelo Elmand: Bordhelo Elmand: Et I Itali 'I /I				Name of	f crew chief (first, last) a	na Firm	Date Dri	lling S	tarted		Da	te Driff				*/ ·		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							2/4	2016				2/4/2	016					
VVS60 MW-303 Feet 0973 Feet 8.5 in. Local Grid Origin cestimated:) or Boring Location 2 Local Grid Origin State Hame 631,609 N, 2,573,497 E State Hame Feet N S Feet N Feet N Feet N Feet N Feet N Feet					DNR Well ID No.	Common Well Name	Final Sta			el	Surfac	e Eleva		.010	Bo	rehole	Diameter	
State Plane 631,609 N, 2,573,497 E S/C/N Lat Feet II N S S S <th< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>et</td><td></td><td></td><td></td></th<>		-												et				
Since Plane 631,609 N, 2,573,497 B S/C/N Lat Feet [] N Soll Properties Soll Properties Soll Properties Soll Properties Soll Properties Soll Properties Soll Properties Soll Properties Soll Properties <th cols<="" td=""><td></td><td></td><td>rigin</td><td>(es</td><td>stimated: 🗌) or Bor</td><td>ing Location</td><td> </td><td></td><td>0</td><td>,</td><td></td><td>Local (</td><td>Grid Lo</td><td>cation</td><td></td><td></td><td></td></th>	<td></td> <td></td> <td>rigin</td> <td>(es</td> <td>stimated: 🗌) or Bor</td> <td>ing Location</td> <td> </td> <td></td> <td>0</td> <td>,</td> <td></td> <td>Local (</td> <td>Grid Lo</td> <td>cation</td> <td></td> <td></td> <td></td>			rigin	(es	stimated: 🗌) or Bor	ing Location			0	,		Local (Grid Lo	cation			
Stell 1/4 of NW 1/4 of Net Cally 1/4 N, R 23 E 1 Long Stelly													Feet			1		
Sample Shawano 59 Sheboygan Sample gi Soil/Rock Description Soil/Rock Description Soil/Rock Description ag(4) gi gi <td></td> <td></td> <td>of N</td> <td>W 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7:11</td> <td></td> <td></td> <td></td> <td>÷</td> <td>L W</td>			of N	W 1								7:11				÷	L W	
Sample Soil/Rock Description Soil/Rock Description Soil/Rock Description adjuing gifting	Facilit	y ID					-	de				village						
still 15 5 9 9 12 9 9 12 Same as above except, very dark grayish brown (10YR 5/4). ct. 3.0 W W I	Can				Shawaho		39	1	Sheb	l	1 	1	Sail	Dron	artia			
addicipul indicate And Geologic Origin For Each Major Unit S	San												5011	Flope				
S1 15 $59 \\ 912 \\ 10 \\ 112 \\ 14 \\ 1214 \\ 14 \\ 1214 \\ 14 \\ 1214 \\ 14 \\ $		t. & (in)	nts	eet													10	
S1 15 $59 \\ 912 \\ 10 \\ 112 \\ 14 \\ 1214 \\ 14 \\ 1214 \\ 14 \\ 1214 \\ 14 \\ $	er /pe	n Ati ered	Coul	In F		0 0		S	2	E	e	atio	art		ity		lents	
S1 15 $59 \\ 912 \\ 912 \\ 110 \\ 112 \\ 14 \\ 1214 \\ 14 \\ 14 \\ 1214 \\ 14 \\ $	d Ty	ngth cov	MO (pth	Eac	ch Major Unit			aph g	ell agra	D/F]	anda	oistu	quid	astic lex	200	D/ mm	
$SI \begin{bmatrix} 15 & 5 & 9 \\ 9 & 12 \\ 15 & 9 & 9 \\ 9 & 12 \\ 18 & 11 & 11 \\ 12 & 14 \\ 18 & 11 & 11 \\ 12 & 14 \\ 14 \end{bmatrix} Same as above except, very dark grayish brown (10YR 5/4). S2 \begin{bmatrix} 18 & 11 & 11 \\ 12 & 14 \\ 14 & 3/2 \\ . \\ . \\ . \\ . \\ . \\ . \\ . \\ . \\ . \\ $	NL	Le Re	Bl	D					E G	<u>N</u> N	Id	St: Pe	ΣŬ	E E	Pla Inc	Р	C K	
S1 $\begin{bmatrix} 15 & 59 \\ 912 & -7 \\ -8 \\ -7 \\ -8 \\ -9 \\ -10 \\ -11 \\ -12 \\ -13 \\ -14 \end{bmatrix}$ SANDY LEAN CLAY, yellowish brown (10YR 5/4). S2 $\begin{bmatrix} 18 & \frac{11}{12} \\ \frac{11}{12} \\ -14 \\ -12 \\ -14 \end{bmatrix}$ Same as above except, very dark grayish brown (10YR -10) -10 -11 -12 -13 -13 -14 -12 -13 -14 -12 -13 -14 -12 -13 -14 -12 -14 -14 -12 -14					Boring already cleared	to 8' bgs by hydrovac.												
S1 $\begin{bmatrix} 15 & 59 \\ 912 & -7 \\ -8 \\ -7 \\ -8 \\ -9 \\ -10 \\ -11 \\ -12 \\ -13 \\ -14 \end{bmatrix}$ SANDY LEAN CLAY, yellowish brown (10YR 5/4). S2 $\begin{bmatrix} 18 & \frac{11}{12} \\ \frac{11}{12} \\ -14 \\ -12 \\ -14 \end{bmatrix}$ Same as above except, very dark grayish brown (10YR -10) >4.5 W				-1														
S1 $\begin{bmatrix} 15 & 59 \\ 912 & -7 \\ -8 \\ -7 \\ -8 \\ -9 \\ -10 \\ -11 \\ -12 \\ -13 \\ -14 \end{bmatrix}$ SANDY LEAN CLAY, yellowish brown (10YR 5/4). S2 $\begin{bmatrix} 18 & \frac{11}{12} \\ \frac{11}{12} \\ -14 \\ -12 \\ -14 \end{bmatrix}$ Same as above except, very dark grayish brown (10YR -10) -10 -11 -12 -13 -13 -14 -12 -13 -14 -12 -13 -14 -12 -13 -14 -12 -14 -14 -12 -14																		
$SI \begin{bmatrix} 15 & 5 & 9 & 9 \\ 9 & 12 & 6 & -7 \\ -7 & -8 & -7 & -8 \\ -7 & -8 & -7 & -8 & -7 \\ -8 & -7 & -8 & -7 & -7 \\ -8 & -7 & -8 & -7 & -7 \\ -10 & -11 & -12 & -10 & -10 \\ -11 & -12 & -11 & -12 \\ -13 & -7 & -7 & -7 & -7 \\ -10 & -11 & -12 & -7 & -7 \\ -11 & -12 & -7 & -7 & -7 \\ -11 & -12 & -7 & -7 & -7 \\ -11 & -12 & -7 & -7 & -7 \\ -11 & -12 & -7 & -7 & -7 & -7 \\ -11 & -12 & -7 & -7 & -7 & -7 \\ -11 & -12 & -7 & -7 & -7 & -7 & -7 \\ -11 & -12 & -7 & -7 & -7 & -7 & -7 \\ -11 & -12 & -7 & -7 & -7 & -7 & -7 & -7 \\ -11 & -12 & -7 & -7 & -7 & -7 & -7 & -7 & -7 \\ -11 & -12 & -7 & -7 & -7 & -7 & -7 & -7 & -7 & -$				-2														
$SI \begin{bmatrix} 15 & 5 & 9 & 9 \\ 9 & 12 & 6 & -7 \\ -7 & -8 & SANDY LEAN CLAY, yellowish brown (10YR 5/4). \\ 15 & 5 & 9 & -7 \\ -7 & -8 & -7 & -7 \\ -8 & -7 & -7 & -7 \\ -8 & -7 & -7 & -7 \\ -7 & -8 & -7 & -7 \\ -7 & -8 & -7 & -7 \\ -7 & -8 & -7 & -7 \\ -7 & -8 & -7 & -7 \\ -7 & -8 & -7 & -7 \\ -7 & -7 & -7 & -7 \\ -7 & -7 &$				- ,														
S1 $\begin{bmatrix} 15 & 59 & -5 & -6 & -7 & -8 & -7 & -7$				-3														
SI $\begin{bmatrix} 15 & 59 & 9 \\ 9 & 12 & 9 \\ 11 & 12 & 14 \\ 12 & 14 & 14 \end{bmatrix}$ SANDY LEAN CLAY, yellowish brown (10YR 5/4). SI $\begin{bmatrix} 15 & 9 & 12 & 9 \\ 9 & 12 & 9 & 12 \\ 13 & 320 & 0 & 0 \\ 11 & 12 & 14 & 14 \end{bmatrix}$ Ct. CLAY, yellowish brown (10YR 5/4). Ct. CLAY, yellowish brown (10YR 5/4). Ct. CLAY, yellowish brown (10YR 5/4). Ct. CLAY, yellowish brown (10YR 5/4). Same as above except, very dark grayish brown (10YR 5/4).				-4														
SI $\begin{bmatrix} 15 & 59 & 9 \\ 9 & 12 & 9 \\ 11 & 12 & 14 \\ 12 & 14 & 14 \end{bmatrix}$ SANDY LEAN CLAY, yellowish brown (10YR 5/4). SI $\begin{bmatrix} 15 & 9 & 12 & 9 \\ 9 & 12 & 9 & 12 \\ 13 & 320 & 0 & 0 \\ 11 & 12 & 14 & 14 \end{bmatrix}$ Ct. CLAY, yellowish brown (10YR 5/4). Ct. CLAY, yellowish brown (10YR 5/4). Ct. CLAY, yellowish brown (10YR 5/4). Ct. CLAY, yellowish brown (10YR 5/4). Same as above except, very dark grayish brown (10YR 5/4).																		
SI $\begin{bmatrix} 15 & 59 & -7 & -8 & -7 & -8 & -9 & -10 & -11 & -12 & -11 & -12 & -13 & -14 & $				_5														
S1 $\begin{bmatrix} 15 & 59 & -7 \\ -8 & 59 & -9 \\ -10 & -11 & -12 \\ -13 & 53me as above except, very dark grayish brown (10YR 5/4). \\ 52 & 18 & 1111 & -14 \end{bmatrix}$ Same as above except, very dark grayish brown (10YR 5/4). -1011121314 -				-														
S1 15 $59 - 9$ 3.0 W S1 15 $59 - 9$ 3.0 W S2 18 $11 + 11 - 14$ Same as above except, very dark grayish brown (10YR 3/4). CL 3.0 W				6														
S1 15 $59 - 9$ 3.0 W S1 15 $59 - 9$ 3.0 W S2 18 $11 + 11 - 14$ Same as above except, very dark grayish brown (10YR 3/4). CL 3.0 W																		
S1 15 $59 - 9$ 3.0 W S1 15 $59 - 9$ 3.0 W S2 18 $11 + 11 - 14$ Same as above except, very dark grayish brown (10YR 3/4). CL 3.0 W				$\frac{-7}{2}$														
S1 15 $59 - 9$ 3.0 W S1 15 $59 - 9$ 3.0 W S2 18 $11 + 11 - 14$ Same as above except, very dark grayish brown (10YR 3/4). CL 3.0 W																		
$S2 \begin{bmatrix} 18 \\ 11 \\ 12 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14$				= 0	SANDY LEAN CLAY	7, yellowish brown (10)	′R 5/4).											
$S2 \begin{bmatrix} 18 \\ 11 \\ 12 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14$	S1	15	59	_9								3.0	w					
S2 $\begin{bmatrix} 18 & 11 & 11 & 11 & 11 & 11 & 11 & 11 $		15	912	-								5.0						
S2 $\begin{bmatrix} 18 \\ 11 \\ 12 \\ 14 \\ 14 \end{bmatrix}$ Same as above except, very dark grayish brown (10YR $\begin{bmatrix} CL \\ -13 \\ 3/2 \end{bmatrix}$ >4.5 W	Ц			-10														
S2 $\begin{bmatrix} 18 \\ 11 \\ 12 \\ 14 \\ 14 \end{bmatrix}$ Same as above except, very dark grayish brown (10YR $\begin{bmatrix} CL \\ -13 \\ 3/2 \end{bmatrix}$ >4.5 W				-					2.23									
S2 $\begin{bmatrix} 18 \\ 11 \\ 12 \\ 14 \\ 14 \end{bmatrix}$ Same as above except, very dark grayish brown (10YR 3/2). >4.5 W				_11														
S2 $\begin{bmatrix} 18 \\ 11 \\ 12 \\ 14 \\ 12 \\ 14 \\ 14 \\ 14 \\ 14$								CL										
S2 18 $\begin{bmatrix} 11 & 11 \\ 12 & 14 \\ 12 \end{bmatrix}$ Same as above except, very dark grayish brown (10YR) 3/2). >4.5 W				_ 12														
S2 18 $\begin{bmatrix} 11 & 11 \\ 12 & 14 \\ 12 \end{bmatrix}$ Same as above except, very dark grayish brown (10YR) $3/2$. >4.5 W	_		-	-13														
S2 18 1111 1214 -14 >4.5 W			-		Same as above except, $3/2$)	very dark grayish brown	n (10YR											
	S2	18	11 11	-14	5143.							>4.5	w					
			12 14															
				-15					1									

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature 200		Firm	SCS Engineers	Tel: (608) 224-2830
Mu Kl	for Kyle Krame		2830 Dairy Drive Madison, WI 53718	Fax:

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A

and the second se	g Num	ber	MV	V-303 Use only as an attachment to Form 4400-	122.						•1		ge 2	of	2
Number and Type	Length Att. & dd Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic 1 22	Well	Diagram	Standard			Liquid Limit	Plasticity seit.	P 200	RQD/ Comments
S3	20	68 1314	16 17 18 19 20 21 22	Same as above except, yellowish brown (10YR 5/4).	CL				2.0		W				
S4	22	58 812	23	Same as above except, very dark grayish brown (10YR 3/2). SANDY SILT, yellowish brown (10YR 5/4).					1.7:	5 1	V				
S5	16	8 12 14 17	25								v				
S6	24	4 5 3 3	-27 -28 -29		ML					1	V				
S7	24	36 914	30							v	v				
			32 	End of boring at 33 ft bgs.											
				End of Johnig at 55 ft Ugs.											

State of Wisconsin Route to:	Solid Waste 🛛 Haz. Waste		MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 4-90
Department of Natural Resources Env. Rest	nnse & Renair 🔲 Undergro	und Tarika 🔲 Other 🛛	
Facility/Project Name	Local God Location of	Well	Well Name 2A-OW
WPHL EDgewater Site	- 1771.89 fr. A	1599.69 th DE	
Facility License, Permit or Monitoring Number	Grid Origin Location		Wis Unique Wall Number DNR Well Number
PECHINY LICENCE OZSZ	4 Lat	_ Long ar	
Type of Well Water Table Observation Well		fr. N, fr. E.	Date Well Installed 4,29,98
Piezometer	12 Section Location of Wa		
Distance Well Is From Waste/Source Boundary		2 - 14 x p 22 2 E	Well Installed By: (Person's Name and Firm)
	1/4 of ME 1/4 of Se	∞. <u>2</u> , T. <u>14</u> N. R. <u>23</u>	Mike Mc Arole
	ft. Location of Well Relati	s Sidegradient	
Is Well A Point of Enforcement Std. Applicatio	m? u 🛛 Upgradient		MIK Environmental
		1. Cap and lock	
A. Protective pipe, top elevation _612.	BU fL MSL	2. Protective co	• •
117	ZZfL MSL	a Inside dian	
D. Hen energy of the			ft.
C. Land surface elevation -610 .	3 fLMSL	b. Length:	Sizel 5 3 04
		c. Material:	
D. Surface seal, bottom fr. MSL	or _ Z . = IL		
12. USCS classification of soil near screen:	2010-0-14-1		l protection?
GP GM GM GC GW G SW		If yes, des	
GP GM GC GW SW SM SC ML MH CL	П СН П Г	3. Surface seal:	Bentonite 🛛 30
Bedrock			Concrete par UT
13. Sieve analysis anached? 🛛 Yes	□ N₀ 🛱		Other 🛛 🧾
	, m so 🕅	4. Material ber	ween well casing and protective pipe:
14. Drilling method used: Rotary Hollow Stem Auger			Bentonite 🖾 30
Hollow Stall Auga			Arnular space seal 🔲 🎡
			Other 🖬 💹
Var Date Aller 102			ce seal: L Granular Benionite 🖾 33
	× 12 99		/gal mud weight Bentonite-sand shurry [] 35
		bLos	/gal mud weight Bentonite slurry 🔲 3 1
16. Drilling additives used? 🛛 Yes	⊠ №		entonite Bentonite-cement grout [] 50
		d ⁷⁰ ^D	Ft volume added for any of the above
		e	
Describe		£ How inst	
17. Source of water (attach analysis):			
			Gravity 🛛 0 S
		6. Bentonite se	al: a Bentonite granules 🕅 33
E Bentonite seal, top fr. MSL	$\alpha I I I I I I I I I I I I I I I I I I I$	4 000 / h LI/4 u	n. 🖾 3/8 in. 🗆 1/2 in. Bentonite pellets 🔲 32
		С	Other 🛛 🖉
E Eine and top fr. MSL	or _ 3.5 ft.	c 7. Fine sand m a <i>Deco</i> go	naterial: Manufacturer, product name & mesh size
		BI . Bacago	Mine 65-75
	or _ 3 5 ft.	b. Volume	A
G. Filter pack, top IL MOL	o"	8 Eilter nack	material: Manufacturer, product name and mesh size
6) (DT	45.		er Mine 65-15
H. Screen joint, top fr. MSL	or !!		
,		b. Volume	
I. Well boxomft. MSL	or_17.2 ft.	9. Well casing	Flush threaded PVC schedule 80 24
J. Filter pack, bottom ft. MSL	or 19 2 ft.	個 /	Other 🗖 🧾
		10. Screen mat	
K. Borehole, bouom ft. MSL	or 14 5 fr.		ype: Factory cut 🖾 11
K. Borenole, bottom			Continuous slot 🛛 01
			Other 🛛 🖉
L. Borchole, diameter _ <u>8</u> O in.		b. Manufac	inver Beolock Ino.
028.		c. Slot siz	
M. O.D. well casing 238 in.		d Slotted	2
		1	uterial (below filter pack): None 🛱 14
N. I.D. well casing 200 in.		11. Decenti III	
I hereby certify that the information	on this form is true and	correct to the best of m	Y KNOWIHUUHH.
Signature /	Firm	Iles Frains	ers + Scientists
- por half		110 Ligino	

Please complete both sides of this form and return to the appropriate DNR office listed at the top of this form as required by chs. 144, 147 and 160, Wis. Stats., and ch. NR 141, Wis. Ad. Code. In accordance with ch. 144, Wis Stats., failure to file this form may result in a forfeiture of not less than \$10, nor more than 02.5000 for each day of violation. In accordance with ch. 147, Wis. Stats., failure to file this form may result in a forfeiture of not more than \$10,000 for each day of violation. NOTE: Shaded areas are for DNR use only. See instructions for more information including where the completed form should be sent.

SCS #25215135.10

	Watershed/Wastewater	Waste Mar	nagemen	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Facility/Project Name WPL-Edgewater Generating Station	Local Grid Location of Well		ft. W	Well Name MW-301
Facility License, Permit or Monitoring No. 02524			Well Location X	Wis. Unique Well No. DNR Well ID No. VV862
Facility ID 460021980	St. Plane632740.8 ft.	.N. <u>25734</u>	28.5 ft. E. S/C/N	Date Well Installed m m d d y y y y
Type of Well	Section Location of Waste/S NE _{1/4} of NW 1/4 of Se	02 T 1	4 N R 23	Well Installed By: Name (first, last) and Firm
Well Code <u>12</u> / PZ	Location of Well Relative to	Waste/Source	Gov. Lot Number	Kevin Durst
Distance from Waste/ Enf. Stds. Sourceft. Apply	u Upgradient s d \times Downgradient n	Sidegradien		Badger State Drilling
A. Protective pipe, top elevation $- 60$			1. Cap and lock?	Yes No
B. Well casing, top elevation $-\frac{60}{2}$	04_{42} ft. MSL	Π	2. Protective cover p a. Inside diameter	$\frac{6.0}{10}$ in.
C. Land surface elevation60)195 ft. MSL		b. Length:	-5.0 ft.
D. Surface seal, bottom60145 ft. MS	SL or 0.5 ft.	N.S.	c. Material:	Steel 🔀 04
12. USCS classification of soil near screet			d. Additional pro	tection? X Yes No
Lancest press	sw sp sp l		If yes, describe	e: Steel Posts -3
SM SC MLX MH		▮ 🖾 ∖ `	3. Surfacc scal:	Bentonite \times 30 Concrete \bigcirc 01
13. Sieve analysis performed?	Yes No			Other
5	tary 50		4. Material between	well casing and protective pipe:
Hollow Stem An			Obi	o #5 Sand 30
0			5. Annular space se	
15. Drilling fiuid used: Water 0 2	Air 0 1		bLbs/gal n	nud weight Bentonite-sand slurry 35
Drilling Mud 0 3	None 99	8		nud weight Bentonite slurry 31
16. Drilling additives used?	Yes 🗙 No			ite Bentonite-cement grout 50 volume added for any of the above
			f. How installed:	· ·
Describe 17. Source of water (attach analysis, if requ	uired):			Tremie pumped D 02
None			6. Bentonite seal:	Gravity 08 a. Bentonite granules 33
	k	8 🗱	b /4 in. X	
E. Bentonite seal, top601.45 ft. MS	SL or $_ \0.5$ ft.		C	Other 🔲 🚛
F. Fine sand, top 585.95 ft. MS	SL or $\frac{16}{-1}$ ft.		7. Fine sand materia	al: Manufacturer, product name & mesh size Ohio #7
G. Filter pack, top583.95 ft. MS	Lor18 ft.		a b. Volume added	
			8. Filter pack mater	ial: Manufacturer, product name & mesh size
H. Screen joint, top -581.95 ft. MS	SL or $_{}^{20}$ ft.		a b. Volume addea	$\frac{\text{Ohio #5}}{2 \text{ ft}^3}$
I. Well bottom 576.95 ft. MS	SL or $_$ $_$ $_$ $25 ft.$		9. Well casing:	Flush threaded PVC schedule 40 🔀 23
J. Filter pack, bottom573.95 ft. MS	SL or $_$ $_$ $_$ 28 ft.			Other
K. Borehole, bottomft. MS	SL or36 ft.		 Screen material: a. Screen type: 	2" dia PVC Sch 40 Factory cut X 1 1
L. Borehole, diameter $-\frac{8.5}{-1}$ in.				Continuous slot 0 1 Other 0
L. Borenoie, diameter $$ m.			b. Manufacturer	Monoflex
M. O.D. well casing -2.04 in.		\backslash	c. Slot size:d. Slotted length	0. <u>010</u> in. ft.
N. I.D. well casing2.0 in.			11. Backfill material	(below filter pack): None 14
I hereby certify that the information on this	s form is true and correct to the	he best of my kn		Bentonite Chips Other 🗙
Signature 1	IFirm			
mint for Kyle	Kramer scs	ENGINEERS,	2830 Dairy Drive,	Madison, WI 53718-6751

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

SCS #25215135.10

	Natershed/Wastewater	Waste Mana	Igemen	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
	Local Grid Location of Well		ft. W	Well Name MW-302
Facility License, Permit or Monitoring No. 02524	Local Grid Origin (estir	mated:) or "Long	Well Location X	Wis. Unique Well No. DNR Well ID No. VV861
Facility ID	St. Plane632342.6 ft.		6.3 ft. E. S/C/N	Date Well Installed
<u>460021980</u> Type of Well	Section Location of Waste/Se	ource		Well Installed By: Name (first, last) and Firm
Well Code12 /PZ	$\frac{\text{SE}_{1/4 \text{ of } NW}}{\text{SE}_{1/4 \text{ of } NW}} \frac{1/4 \text{ of } \text{SE}_{1/4 \text{ of } NW}}{1/4 \text{ of } \text{SE}_{1/4 \text{ of } NW}}$	c. <u>02</u> ,T. <u>14</u>	N, R ²³ □₩	Kevin Durst
Distance from Waste/ Enf. Stds. Sourceft. Apply	Location of Well Relative to u Upgradient s d X Downgradient n	Waste/Source Sidegradient Not Known	Gov. Lot Number	Badger State Drilling
A. Protective pipe, top elevation 61	535 ft. MSL		. Cap and lock?	Yes No
B. Well casing, top elevation61	515 ft, MSL		a. Inside diameter	6.0 in.
C. Land surface elevation $- \frac{61}{2}$	2. 65 ft. MSL		b. Length:	$-\underline{\overline{5}}.\underline{\overline{0}}$ ft.
D. Surface seal, bottom61215 ft. MS	SL or 0.5 ft.	3	c. Material:	Steel X 04
12. USC <u>S classification of soil near screen</u>			d. Additional pro	Other [_] tection? [X] Yes [] No
	sw sp		If yes, describe	e: Steel posts
	СЦСНС		, Surface scal:	Bentonite 🔀 30
Bedrock			, Bullace Seal.	Concrete 0 1
	Yes XNo tarv 50		Matarial batwara	well casing and protective pipe:
14. Drilling method used: Rot Hollow Stem Au	60	1 📓 🤺	- Malerial Delween	Bentonite 30
	ther		Ohi	o #5 Sand Other
		5	. Annular space se	al: a. Granular/Chipped Bentonite X 3 3
15. Drilling fiuid used: Water 0 2 Drilling Mud 0 3	$\begin{array}{c c} \text{Air} & 0 \\ 1 \\ \text{None} & 99 \end{array}$			aud weight Bentonite-sand slurry 35
_			cLbs/gal n	uud weight Bentonite slurry 31 ite Bentonite-cement grout 50
16. Drilling additives used?	Yes 🗙 No			³ volume added for any of the above
Describe			f. How installed:	
17. Source of water (attach analysis, if requ	uired):			$\begin{array}{c c} \text{Tremie pumped} & 0 \\ \text{Gravity} & 0 \\ \end{array}$
None			5. Bentonite seal:	Gravity 08 a. Bentonite granules 33
-	👹			$3/8$ in. $1/2$ in. Bentonite chips \checkmark 32
E. Bentonite seal, top612.15 ft. MS	L or 0.5 ft.		c	Other 🔲 🏭
F. Fine sand, top ft. MS	L or $^{28.5}_{}$ ft.	7	. Fine sand materia	al: Manufacturer, product name & mesh size Ohio #7 sand
G. Filter pack, top582.15 ft. MS	L or <u>30.5</u> ft.		a b. Volume added	<u>0.5 ft³</u>
590 15 c . 1 c	32.5 0		3. Filter pack mater	ial: Manufacturer, product name & mesh size
H. Screen joint, top580.15 ft. MS	L or II.		a b. Volume added	Ohio #5 sand
	SL or $_ 37.5$ ft.		b. Volume added Well casing:	Flush threaded PVC schedule 40 🔀 23 Flush threaded PVC schedule 80 🗖 24
J. Filter pack, bottom 572.65 ft. MS	L or40ft.			Other 🗖 🚛
K. Borehole, bottom 572.65 ft. MS	$SL \text{ or } _ _ _ 40 \text{ ft.}$		 Screen material: a. Screen type: 	Factory cut X 11 Continuous slot 0
L. Borehole, diameter $-\frac{8.5}{-1}$ in.				dia sch 40 PVC Other 🗖 🎆
M. O.D. well casing -2.4 in.			b. Manufacturerc. Slot size:	Monoflex0. <u>.010</u> in.
2.0		\backslash	d. Slotted length	
N. I.D. well casing $-\frac{2.0}{-1}$ in.		1	l. Backfill material	(below filter pack): None X 14
I hereby certify that the information on this	form is true and correct to th	e best of my kno	wledge.	
Signature _	Firm			
Mp ble for Kyle	Kramer SCS E	ENGINEERS, 2	830 Dairy Drive,	Madison, WI 53718-6751

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

SCS #25215135.10

	Watershed/Wastewater	Waste Mana	Igemen	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Facility/Project Name	Local Grid Location of Wel		. ШЕ.	Well Name
WPL-Edgewater Generating Station	<u>f</u> t.	S	ft. W.	MVV-303
Facility License, Permit or Monitoring No. 02524	Local Grid Origin (est	imated:) or Long	Well Location X	Wis. Unique Well No. DNR Well ID No.
Facility ID	St. Plane 631609.4 ft	N 257349	6.7 ft. E. S/C/N	Date Well Installed 4./2016
460021980	C	6		$\frac{27}{m} \frac{47}{d} \frac{2010}{v v v y}$
Type of Well	Section Location of waster, $\frac{SE_{1/4} \text{ of } NW 1/4 \text{ of } S}{(NV)^{1/4} NV}$	02 m 14	N D 23 실탄	Well Installed By: Name (first, last) and Firm
Well Code <u>12</u> / PZ		ec. 02.1.	<u>N, K</u> W	- Kevin Durst
Distance from Waste/ Enf. Stds.	Location of Well Relative to u Upgradient s	Sidegradient	Gov. Lot Number	
Sourceft. Apply	$d \times Downgradient n$			Badger State Drilling
A. Protective pipe, top elevation 61.			. Cap and lock?	Yes No
61	1. 99 ft. MSL		Protective cover	
D. Well casing, top crevation = = =			a. Inside diameter	
C. Land surface elevation60	9. 73 ft. MSL		b. Length:	ft.
	WHERE S		c. Material:	Steel 🗙 04
D. Surface seal, bottom60923 ft. MS	SL or = -U.S H			Other
12. USCS classification of soil near screet	n: 🚬	New York	d. Additional pro	tection? 🗌 Yes 🗌 No
GP GM GC GW S	sw sp i		If yes, describ	e: Steel Posts-3
	СЬСНСН			Bentonite X 30
Bedrock		8 8 K - K - K - K - K - K - K - K - K -	3. Surfacc scal:	Concrete 0 1
13. Sieve analysis performed?	Yes No			Other
14. Drilling method used: Ro	tary 50		Material between	well casing and protective pipe:
Hollow Stem An				Bentonite 30
	ther .		Oh	io #5 sand Other
15. Drilling fiuid used: Water 0 2	Air 01	CALL DIGHT	5. Annular space se	nud weight Bentonite-sand slurry 35
Drilling Mud 0 3	None X 99		bLbs/gal r	nud weight Bentonite-said sturry 31
				, <u> </u>
16. Drilling additives used?	Yes 🗙 No			ite Bentonite-cement grout 50
			••	³ volume added for any of the above
Describe			f. How installed	
17. Source of water (attach analysis, if required)		× *		Tremie pumped 0 2
	incu).			Gravity 08
None			5. Bentonite seal:	a. Bentonite granules 33
000.00	0.5.0		b/4 in. X	$3/8$ in. $1/2$ in. Bentonite chips \checkmark 32
E. Bentonite seal, top 609.23 ft. MS	L or $_ _ _ U.5$ ft.	XX XX /	c	Other 🗌 🏭
587 73	22	X X / .	7 Fine sand materi	al: Manufacturer, product name & mesh size
F. Fine sand, top $$ ft. MS	SL or $22 ft.$. I mo sund motorr	Ohio #7 sand
E95 72	24 -		a	
G. Filter pack, top ft. MS	SL or $_$ $_$ $24 ft.$			$0.5 ft^3$
	26		8. Filter pack mater	ial: Manufacturer, product name & mesh size
H. Screen joint, top -583.73 ft. MS	SL or $_{}^{26}$ ft.		a	Ohio #5
578 73	21 -		b. Volume adde	
I. Well bottom	SL or $_$ $_$ $_$ $\frac{31}{1}$ ft.		9. Well casing:	Flush threaded PVC schedule 40 🔀 23
530.30	22			Flush threaded PVC schedule 80 24
J. Filter pack, bottom576.73 ft. MS	SL or ft.			Other 📃 🚛
			0. Screen material:	sch PVC 40
K. Borehole, bottom 576.73 ft. MS	SL or $_$ $_$ $_$ 33^{3} ft.		a. Screen type:	Factory cut 🔀 11
				Continuous slot 01
L. Borehole, diameter $-\frac{8.5}{-1}$ in.				Other
			b. Manufacturer	
M. O.D. well casing 2.04 in.			c. Slot size:	0. <u>010</u> in.
		\ \	d. Slotted length	n:5_0 ft.
N. I.D. well casing $-\frac{2.0}{1.0}$ in.		1	1. Backfill material	(below filter pack): None X 14
		-		Other
I hereby certify that the information on this	s form is true and correct to	the best of my kno	wledge.	
C'and a l	Firm			
The still for 14.		ENGINEERS, 2	830 Dairy Drive,	Madison, WI 53718-6751

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 4-90

Route to: Solid Waste Haz. Waste Wastewater

Env. Response & K	-			
Facility/Project Name WPJL Engewater Site	County Name Shebo	vgan	Well Name ZR-C	PW/ II Number
Facility License, Permit or Monitoring Number	County Code	Wis-Unique Well Nu		
1. Can this well be purged dry?	5 🗆 No	11. Depth to Water	Before Development	
Surged with block, bailed and pumped 7 surged with block, bailed and pumped 7 compressed air 2 bailed only 1 pumped only 1 pumped slowly 5 Other 1 3. Time spent developing well	1 2 2 0 0 1 0 $2 \sum_{i=1}^{n} f_{i}$	(from top of well casing) Date Time 12. Sediment in well bottom 13. Water clarity	c. $2 - \frac{1}{2}$: $2 - \frac{1}{2}$ p.m. $2 - \frac{1}{2}$ inches Clear 10 Turbid 15 (Describe)	Qinches
 10. Analysis performed on water added? □ Ye (If yes, attach results) 16. Additional comments on development: Well were Developed Volome of water remainded 	• 	3 Days D	ue to slow	w recovery.
Volume of water rem. the three Developmen	oved 13 73.			
Well developed by: Person's Name and Firm		of my knowledge.		true and correct to the best
Name: Brian Leicham Firm: Miller Engineers + 2		Signature:	_	
Firm: Miller Engineers + 2	LICATISIS	Firm:	ille Enginee	is + buchtists

NOTE: Shaded areas are for DNR use only. See instructions for more information including a list of county codes.

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

00-113B	Rev. 7
---------	---------------

Route to: Watershed/Wastewater	Waste Management
Remediation/Redevelopment	Other X
Facility/Project Name County Name	Well Name
	eyboygan MW-301
Facility License, Permit or Monitoring Number County Code	Wis. Unique Well Number DNR Well ID Number
FID 460021980, License #02524 59	<u>VV862</u>
1. Can this well be purged dry? X Yes No 2. Well development method aurged with bailer and bailed 4 1 surged with bailer and pumped 6 1 surged with bailer and pumped 6 2 surged with block and pumped 6 2 surged with block, bailed and pumped 7 0 compressed air 20 bailed only 1 0 pumped only 5 1 pumped slowly 5 0	In the second system11. Depth to Water (from top of well casing)Before Development After Development a
Other 3. Time spent developing well 60 min	13. Water clarity Clear 10 Clear 20 Turbid 15 Turbid 25
4. Depth of well (from top of well casisng) $-\frac{28}{28} \cdot \frac{05}{25}$ ft.	(Describe) (Describe)
5. Inside diameter of well $-\frac{2}{2}$, $-\frac{0}{2}$ in.	
6. Volume of water in filter pack and well casing10 93 gal.	Fill in if drilling fluids were used and well is at solid waste facility:
7. Volume of water removed from well $12 \cdot 5_{gal}$ gal.	- ·
8. Volume of water added (if any) gal.	14. Total suspended mg/l mg/l mg/l solids
9. Source of water added NA	15. CODmg/lmg/l
10. Analysis performed on water added? Yes No (If yes, attach results)	16. Well developed by: Name (first, last) and Firm First Name: Kyle Last Name: Kramer Firm:

17. Additional comments on development:

Name and Address of Facility Contact /Owner/Responsible Party First Jim Name:	I hereby certify that the above information is true and correct to the best of my knowledge.
Facility/Firm: Wisconsin Power and Light	Signature: Mh Rh
Street:3739 Lakeshore Drive	Print Name: Meghan Blodgett For Kyle Kramer
City/State/Zip:	Firm:

NOTE: See instructions for more information including a list of county codes and well type codes.

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/W	Vastewater	Waste Management				
Remediation	/Redevelopment	Other				
Facility/Project Name	County Name		Well Name			
WPL-Edgewater Generating Station	She	eyboygan		1	MW-302	
Facility License, Permit or Monitoring Number	County Code	Wis. Unique Well Nu	umber	DNR Wel	ll ID Number	
FID 460021980, License #02524	<u>59 </u>	<u>VV861</u>				
 Can this well be purged dry? Well development method surged with bailer and bailed surged with bailer and pumped]Yes ⊠ No] 41] 61	 Depth to Water (from top of well casing) 			After Development	
	_ 42 ≪ 62 _ 70				$\frac{2016}{y} \frac{2}{m} \frac{2}{m} \frac{15}{d} \frac{15}{y}$	<u>2016</u> уууу
compressed air bailed only pumped only pumped slowly Other	20 10 51 50	Time 12. Sediment in well bottom 13. Water clarity		inches	4: 05 x p.m.	
3. Time spent developing well	<u>150 min</u> .		(Describe)		Turbid 🔀 2 5 (Describe)	
4. Depth of well (from top of well casisng)	<u>36 . 15</u> ft.					
5. Inside diameter of well	<u>2</u> 0 in.					
	9.6 gal.	Fill in if drilling fluid	s were used ar	nd well is a	t solid waste facility:	
	gal.	14. Total suspended solids		mg/l	mg/l	
9. Source of water added NA		15. COD		mg/l	mg/l	
		16. Well developed by	: Name (first. la	ast) and Firm		
10. Analysis performed on water added?	Yes 🗌 No	First Name: Kyle		Last Name		
(~ J and another research)		Firm: SCS ENGI	NEERS			

17. Additional comments on development:

Name and Address of Facility Contact /Owner/Responsible Party First Jim Name: Jakubiak	I hereby certify that the above information is true and correct to the best of my knowledge.
Facility/Firm:	Signature: Mr. Roll
	Print Name: Meghen Blodget for Kyle Know
City/State/Zip:	Firm: SCS ENGINEERS

NOTE: See instructions for more information including a list of county codes and well type codes.

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/Wastewater	Waste Management
Remediation/Redevelopment	Other
Facility/Project Name County Name	Well Name
WPL-Edgewater Generating Station Sh	eyboygan MW-303
Facility License, Permit or Monitoring Number County Code	Wis. Unique Well Number DNR Well ID Number
FID 460021980, License #02524 59	<u>VV860</u>
1. Can this well be purged dry? X Yes No 2. Well development method surged with bailer and bailed 4 1 surged with bailer and pumped 6 1 surged with block and bailed 4 2 surged with block and pumped 6 2 surged with block and pumped 6 2 surged with block and pumped 7 0 compressed air 2 0	$\begin{array}{c c} \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \\ 11. \ Depth to Water \\ (from top of \\ well casing) \end{array} \begin{array}{c} \hline & & \\ a. & _ & _^{23} \\ \hline & & _^{23} \\ \hline & & _^{41} \text{ ft.} \\ \hline & & _^{33} \\ \hline & & _^{1} \text{ ft.} \\ \hline & & \\ \hline & & \\ \hline & & \\ Date \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline \hline & & \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \\ \hline \hline$
bailed only 10 pumped only 51 pumped slowly 50 Other 1 3. Time spent developing well 70 min.	12. Sediment in well inches inches bottom inches inches 13. Water clarity Clear 10 Clear 20 Turbid X 15 Turbid X 25 (Describe) (Describe) (Describe)
4. Depth of well (from top of well casisng) $- 33 \cdot \frac{15}{15}$ ft.	
5. Inside diameter of well $-\frac{2}{2}$, $-\frac{0}{2}$ in.	
 6. Volume of water in filter pack and well casing8.03 gal. 7. Volume of water removed from well23.0 gal. 	Fill in if drilling fluids were used and well is at solid waste facility:
8. Volume of water added (if any) gal.	14. Total suspended mg/l mg/l mg/l mg/l
9. Source of water added NA	15. CODmg/lmg/l
	16. Well developed by: Name (first, last) and Firm
10. Analysis performed on water added? Yes No (If yes, attach results)	First Name: Kyle Last Name: Kramer
17 Additional comments on developments	Firm: SCS ENGINEERS

17. Additional comments on development:

Name and Address of Facility Contact /Owner/Responsible Party First Last Name: Jim Name: Name:	I hereby certify that the above information is true and correct to the best of my knowledge.
Facility/Firm:	Signature: M/L RVP
	Print Name: Medun Blodgett for Kyle Kramer
City/State/Zip:	Firm: SCS ENGINEERS

NOTE: See instructions for more information including a list of county codes and well type codes.

Appendix C

Laboratory Reports

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

November 10, 2022

Meghan Blodgett SCS ENGINEERS 2830 Dairy Drive Madison, WI 53718

RE: Project: CCR RULE EDGEWATER I-4 CLOSED Pace Project No.: 40252795

Dear Meghan Blodgett:

Enclosed are the analytical results for sample(s) received by the laboratory on October 07, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Green Bay

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Day Milery

Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: Matt Bizjack, Alliant Energy Sherren Clark, SCS Engineers Jenny Coughlin, Alliant Energy Tom Karwoski, SCS ENGINEERS Nicole Kron, SCS ENGINEERS Ryan Matzuk, SCS Engineers Jeff Maxted, ALLIANT ENERGY Marc Morandi, ALLIANT ENERGY

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: CCR RULE EDGEWATER I-4 CLOSED

Pace Project No.: 40252795

Pace Analytical Services Green Bay

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 South Carolina Certification #: 83006001 Texas Certification #: T104704529-21-8 Virginia VELAP Certification ID: 11873 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-21-00008 Federal Fish & Wildlife Permit #: 51774A

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project: CCR RULE EDGEWATER I-4 CLOSED

Pace Project No.: 40252795

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40252795001	MW-301	Water	10/06/22 11:30	10/07/22 10:00
40252795002	MW-302	Water	10/06/22 14:15	10/07/22 10:00
40252795003	MW-303	Water	10/06/22 13:15	10/07/22 10:00
40252795004	FIELD BLANK	Water	10/06/22 12:20	10/07/22 10:00
40252795005	2R-OW	Water	10/06/22 10:05	10/07/22 10:00

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: CCR RULE EDGEWATER I-4 CLOSED

Pace Project No.: 40252795

Lab ID	Sample ID	Method	Analysts	Analytes Reported
40252795001		EPA 6020B	KXS	2
			KPR	7
		SM 2540C	SRK	1
		SM 4500-H+B	YER	1
		EPA 300.0	HMB	3
40252795002	MW-302	EPA 6020B	KXS	2
			KPR	7
		SM 2540C	SRK	1
		SM 4500-H+B	YER	1
		EPA 300.0	HMB	3
40252795003	MW-303	EPA 6020B	KXS	2
			KPR	7
		SM 2540C	SRK	1
		SM 4500-H+B	YER	1
		EPA 300.0	HMB	3
40252795004	FIELD BLANK	EPA 6020B	KXS	2
		SM 2540C	SRK	1
		SM 4500-H+B	YER	1
		EPA 300.0	HMB	3
40252795005	2R-OW	EPA 6020B	KXS	2
			KPR	7
		SM 2540C	SRK	1
		SM 4500-H+B	YER	1
		EPA 300.0	HMB	3

PASI-G = Pace Analytical Services - Green Bay

REPORT OF LABORATORY ANALYSIS

SUMMARY OF DETECTION

Project: CCR RULE EDGEWATER I-4 CLOSED

Pace Project No.: 40252795

Lab Sample ID Client Sample ID Method Parameters Qualifiers Result Units Report Limit Analyzed 40252795001 MW-301 EPA 6020B Boron 6230 ug/L 200 11/09/22 08:00 EPA 6020B Calcium 86900 ug/L 254 11/08/22 18:32 Field pH 7.56 Std. Units 10/06/22 11:30 Field Specific Conductance 804 umhos/cm 10/06/22 11:30 Oxygen, Dissolved 0.39 mg/L 10/06/22 11:30 REDOX -41.7 10/06/22 11:30 mV Turbidity 20.7 NTU 10/06/22 11:30 Static Water Level 590.21 feet 10/06/22 11:30 Temperature, Water (C) 11.6 deg C 10/06/22 11:30 SM 2540C **Total Dissolved Solids** 572 mg/L 20.0 10/11/22 15:35 SM 4500-H+B pH at 25 Degrees C 7.6 Std. Units 0.10 10/24/22 10:43 H6 EPA 300.0 Chloride 15.5 mg/L 2.0 10/17/22 16:56 EPA 300.0 Fluoride 0.21J mg/L 0.32 10/17/22 16:56 EPA 300.0 Sulfate 213 mg/L 20.0 10/19/22 03:21 40252795002 MW-302 EPA 6020B Boron 1610 ug/L 100 11/09/22 09:21 EPA 6020B Calcium 64000 ug/L 254 11/08/22 18:40 Std. Units 10/06/22 14:15 Field pH 7.89 Field Specific Conductance 499 umhos/cm 10/06/22 14:15 Oxygen, Dissolved 0.61 mg/L 10/06/22 14:15 105.4 REDOX mV 10/06/22 14:15 NTU Turbidity 21.9 10/06/22 14:15 Static Water Level 599.41 feet 10/06/22 14:15 Temperature, Water (C) 12.1 deg C 10/06/22 14:15 SM 2540C **Total Dissolved Solids** 306 mg/L 20.0 10/11/22 15:36 SM 4500-H+B pH at 25 Degrees C 7.8 Std. Units 0.10 10/24/22 10:47 H6 EPA 300.0 Chloride 21.2 10/17/22 17:11 mg/L 2.0 EPA 300.0 Fluoride 0.87 10/17/22 17:11 mg/L 0.32 EPA 300.0 Sulfate 70.5 mg/L 10.0 10/19/22 03:35 40252795003 MW-303 EPA 6020B Boron 3650 ug/L 200 11/09/22 09:28 EPA 6020B 135000 11/08/22 18:47 Calcium ua/L 254 Field pH 6.92 Std. Units 10/06/22 13:15 Field Specific Conductance 1184 umhos/cm 10/06/22 13:15 Oxygen, Dissolved 1.31 10/06/22 13:15 mg/L REDOX 175.4 10/06/22 13:15 mV Turbidity 165 NTU 10/06/22 13:15 Static Water Level 593.63 feet 10/06/22 13:15 Temperature, Water (C) 11.8 deg C 10/06/22 13:15 SM 2540C **Total Dissolved Solids** 658 mg/L 20.0 10/11/22 15:36 SM 4500-H+B pH at 25 Degrees C 6.8 Std. Units 0.10 10/24/22 10:49 H6 EPA 300.0 Chloride 22.0 10/17/22 17:26 mg/L 2.0 40252795004 FIELD BLANK EPA 6020B Calcium 148J ug/L 11/08/22 17:04 254 SM 4500-H+B pH at 25 Degrees C 6.4 Std. Units 0.10 10/24/22 10:53 H6

REPORT OF LABORATORY ANALYSIS

SUMMARY OF DETECTION

Project: CCR RULE EDGEWATER I-4 CLOSED

Pace Project No.: 40252795

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
40252795005	2R-OW					
EPA 6020B	Boron	49.0	ug/L	10.0	11/08/22 18:54	
EPA 6020B	Calcium	152000	ug/L	254	11/08/22 18:54	
	Field pH	7.08	Std. Units		10/06/22 10:05	
	Field Specific Conductance	1992	umhos/cm		10/06/22 10:05	
	Oxygen, Dissolved	1.06	mg/L		10/06/22 10:05	
	REDOX	522.7	mV		10/06/22 10:05	
	Turbidity	2.75	NTU		10/06/22 10:05	
	Static Water Level	602.80	feet		10/06/22 10:05	
	Temperature, Water (C)	13.6	deg C		10/06/22 10:05	
SM 2540C	Total Dissolved Solids	1110	mg/L	20.0	10/11/22 15:36	
SM 4500-H+B	pH at 25 Degrees C	7.1	Std. Units	0.10	10/24/22 10:56	H6
EPA 300.0	Chloride	414	mg/L	40.0	10/26/22 20:43	
EPA 300.0	Sulfate	28.0	mg/L	2.0	10/25/22 12:42	

Project: CCR RULE EDGEWATER I-4 CLOSED

Pace Project No.: 40252795

Sample: MW-301	Lab ID:	40252795001	Collected	: 10/06/22	2 11:30	Received: 10/	/07/22 10:00 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS		Method: EPA 6	•		hod: El	PA 3010A			
Boron Calcium	6230 86900	ug/L ug/L	200 254	60.6 76.2	20 1	11/02/22 05:06 11/02/22 05:06	11/09/22 08:00 11/08/22 18:32		
Field Data	Analytical Pace Ana	Method:	- Green Bay	,					
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	7.56 804 0.39 -41.7 20.7 590.21 11.6	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1 1		10/06/22 11:30 10/06/22 11:30 10/06/22 11:30 10/06/22 11:30 10/06/22 11:30 10/06/22 11:30 10/06/22 11:30	7782-44-7	
2540C Total Dissolved Solids		Method: SM 2		,					
Total Dissolved Solids	572	mg/L	20.0	8.7	1		10/11/22 15:35		
4500H+ pH, Electrometric		Method: SM 4		,					
pH at 25 Degrees C	7.6	Std. Units	0.10	0.010	1		10/24/22 10:43		H6
300.0 IC Anions		Method: EPA		,					
Chloride Fluoride Sulfate	15.5 0.21J 213	mg/L mg/L mg/L	2.0 0.32 20.0	0.43 0.095 4.4	1 1 10		10/17/22 16:56 10/17/22 16:56 10/19/22 03:21	16984-48-8	

Project: CCR RULE EDGEWATER I-4 CLOSED

Pace Project No.: 40252795

Sample: MW-302	Lab ID:	40252795002	Collected	: 10/06/2	2 14:15	Received: 10/	07/22 10:00 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS		Method: EPA 6	•		hod: El	PA 3010A			
Boron Calcium	1610 64000	ug/L ug/L	100 254	30.3 76.2	10 1	11/02/22 05:06 11/02/22 05:06	11/09/22 09:21 11/08/22 18:40		
Field Data	Analytical Pace Ana	Method: Ilytical Services	- Green Bay						
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	7.89 499 0.61 105.4 21.9 599.41 12.1	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1 1		10/06/22 14:15 10/06/22 14:15 10/06/22 14:15 10/06/22 14:15 10/06/22 14:15 10/06/22 14:15 10/06/22 14:15	7782-44-7	
2540C Total Dissolved Solids	-	Method: SM 28							
Total Dissolved Solids	306	mg/L	20.0	8.7	1		10/11/22 15:36		
4500H+ pH, Electrometric		Method: SM 4							
pH at 25 Degrees C	7.8	Std. Units	0.10	0.010	1		10/24/22 10:47		H6
300.0 IC Anions		Method: EPA 3							
Chloride Fluoride Sulfate	21.2 0.87 70.5	mg/L mg/L mg/L	2.0 0.32 10.0	0.43 0.095 2.2	1 1 5		10/17/22 17:11 10/17/22 17:11 10/19/22 03:35	16984-48-8	

Project: CCR RULE EDGEWATER I-4 CLOSED

Pace Project No.: 40252795

Sample: MW-303	Lab ID:	40252795003	Collected	10/06/22	2 13:15	Received: 10/	07/22 10:00 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS		Method: EPA 6	•		hod: EF	PA 3010A			
Boron Calcium	3650 135000	ug/L ug/L	200 254	60.6 76.2	20 1	11/02/22 05:06 11/02/22 05:06	11/09/22 09:28 11/08/22 18:47		
Field Data	Analytical Pace Ana	Method: Ilytical Services	- Green Bay						
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	6.92 1184 1.31 175.4 165 593.63 11.8	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1		10/06/22 13:15 10/06/22 13:15 10/06/22 13:15 10/06/22 13:15 10/06/22 13:15 10/06/22 13:15 10/06/22 13:15	7782-44-7	
2540C Total Dissolved Solids		Method: SM 28							
Total Dissolved Solids	658	mg/L	20.0	8.7	1		10/11/22 15:36		
4500H+ pH, Electrometric		Method: SM 4							
pH at 25 Degrees C	6.8	Std. Units	0.10	0.010	1		10/24/22 10:49		H6
300.0 IC Anions		Method: EPA 3							
Chloride Fluoride Sulfate	22.0 <0.095 <0.44	mg/L mg/L mg/L	2.0 0.32 2.0	0.43 0.095 0.44	1 1 1		10/17/22 17:26 10/17/22 17:26 10/17/22 17:26	16984-48-8	

Project: CCR RULE EDGEWATER I-4 CLOSED

i iojeci.

Pace Project No.: 40252795

Sample: FIELD BLANK	Lab ID:	40252795004	Collected	Collected: 10/06/22 12:20			Received: 10/07/22 10:00 Matrix			
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual	
6020B MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Met	hod: EF	PA 3010A				
	Pace Ana	lytical Services	- Green Bay	/						
Boron	<3.0	ug/L	10.0	3.0	1	11/02/22 05:06	11/08/22 17:04	7440-42-8		
Calcium	148J	ug/L	254	76.2	1	11/02/22 05:06	11/08/22 17:04	7440-70-2		
2540C Total Dissolved Solids	Analytical Method: SM 2540C									
	Pace Analytical Services - Green Bay									
Total Dissolved Solids	<8.7	mg/L	20.0	8.7	1		10/11/22 15:36			
4500H+ pH, Electrometric	Analytical	Method: SM 45	500-H+B							
	Pace Ana	lytical Services	- Green Bay	/						
pH at 25 Degrees C	6.4	Std. Units	0.10	0.010	1		10/24/22 10:53		H6	
300.0 IC Anions	Analytical	Method: EPA 3	00.0							
	Pace Ana	lytical Services	- Green Bay	/						
Chloride	<0.43	mg/L	2.0	0.43	1		10/25/22 12:27	16887-00-6		
Fluoride	<0.095	mg/L	0.32	0.095	1		10/25/22 12:27	16984-48-8		
Sulfate	<0.44	mg/L	2.0	0.44	1		10/25/22 12:27	14808-79-8		

Project: CCR RULE EDGEWATER I-4 CLOSED

Pace Project No.: 40252795

Sample: 2R-OW	Lab ID:	40252795005	Collected:	10/06/22	2 10:05	Received: 10/	07/22 10:00 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS		Method: EPA 6 lytical Services	•	ration Met	hod: Ef	PA 3010A			
Boron Calcium	49.0 152000	ug/L ug/L	10.0 254	3.0 76.2	1 1	11/02/22 05:06 11/02/22 05:06	11/08/22 18:54 11/08/22 18:54		
Field Data	Analytical Pace Ana	Method: lytical Services	- Green Bay						
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	7.08 1992 1.06 522.7 2.75 602.80 13.6	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1		10/06/22 10:05 10/06/22 10:05 10/06/22 10:05 10/06/22 10:05 10/06/22 10:05 10/06/22 10:05 10/06/22 10:05	7782-44-7	
2540C Total Dissolved Solids	,	Method: SM 25 lytical Services							
Total Dissolved Solids	1110	mg/L	20.0	8.7	1		10/11/22 15:36		
4500H+ pH, Electrometric		Method: SM 45 lytical Services							
pH at 25 Degrees C	7.1	Std. Units	0.10	0.010	1		10/24/22 10:56		H6
300.0 IC Anions		Method: EPA 3 lytical Services							
Chloride Fluoride Sulfate	414 <0.095 28.0	mg/L mg/L mg/L	40.0 0.32 2.0	8.6 0.095 0.44	20 1 1		10/26/22 20:43 10/25/22 12:42 10/25/22 12:42	16984-48-8	

Project:	CCR RULE EDGE	WATER I-4 CLOS	SED									
Pace Project No.:	40252795											
QC Batch:	430368		Analy	sis Methor	d:	EPA 6020B						
QC Batch Method:	EPA 3010A		Analy	/sis Descrip	ption:	6020B MET						
			Labo	ratory:		Pace Analyt	ical Service	es - Green	Bay			
Associated Lab Sa	mples: 40252795	001, 4025279500	2, 4025279	5003, 402	52795004,	4025279500	05					
METHOD BLANK:	2478487			Matrix: Wa	ater							
Associated Lab Sar	mples: 40252795	001, 4025279500	2, 4025279	5003, 402	52795004,	4025279500	05					
			Blar	nk l	Reporting							
Para	meter	Units	Res	ult	Limit	Analy	zed	Qualifiers	6			
		ug/L		<3.0	10.	.0 11/08/22	2 16:34					
Boron												
Boron Calcium		ug/L		<76.2	25	54 11/08/22	2 16:34					
		ug/L		<76.2	25	54 11/08/22	2 16:34					
	NTROL SAMPLE:	ug/L 2478488		<76.2	25	54 11/08/22	2 16:34					
Calcium	NTROL SAMPLE:		Spike	<76.2 LC		LCS	2 16:34	ec				
Calcium LABORATORY CO	NTROL SAMPLE:		Spike Conc.		S				Qualifiers			
Calcium LABORATORY CO		2478488	•	LC Res	S	LCS	% Re Limi		Qualifiers			
Calcium LABORATORY CO Para		2478488 Units	Conc.	LC Res	S sult	LCS % Rec	% Re 7 {2	ts (Qualifiers			
Calcium LABORATORY CO Para Boron Calcium	meter	2478488 Units ug/L ug/L	Conc. 25 1000	LC Res	S sult 217 9350	LCS % Rec 87 93	% Re 7 {2	ts (30-120	Qualifiers	_		
Calcium LABORATORY CO Para Boron Calcium		2478488 Units ug/L ug/L	Conc. 25 1000 489	LC Res 00	S sult 217	LCS % Rec 87 93	% Re 7 {2	ts (30-120	Qualifiers			
Calcium LABORATORY CO Para Boron Calcium	meter	2478488 Units ug/L ug/L PLICATE: 2478	- Conc. 25 1000 489 MS	LC Res 00 00 MSD	S sult 217 9350 2478490	LCS % Rec 87 93	% Re Limi 7	ts (80-120 80-120		_	May	
Calcium LABORATORY CO Para Boron Calcium	meter MATRIX SPIKE DUF	2478488 Units ug/L ug/L PLICATE: 2478- 40252910001	Conc. 25 1000 489	LC Res 00	S sult 217 9350	LCS % Rec 87 93	% Re 7 {2	ts (30-120	Qualifiers % Rec Limits	RPD	Max RPD	Qual
Calcium LABORATORY CO Para Boron Calcium MATRIX SPIKE & M	meter MATRIX SPIKE DUF	2478488 Units ug/L ug/L PLICATE: 2478- 40252910001	489 MS Spike	LC Res 00 00 MSD Spike	S sult 217 9350 2478490 MS	LCS % Rec 87 93	% Re Limi 7 E 3 E MS	ts (30-120 30-120 MSD	% Rec		RPD	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	CCR RULE EDGE 40252795	WATER I-4 CLOSEI	0					
QC Batch:	428466		Analysis M	ethod:	SM 2540C			
QC Batch Method:	SM 2540C		Analysis D	•	2540C Total D			
Associated Lab San	aplas: 40252705	001, 40252795002, 4	Laboratory			I Services - Gre	een Bay	
	•	001, 40232793002, 4	,		, 40232793003			
METHOD BLANK:	2467522		Matri	x: Water				
Associated Lab San	nples: 40252795	001, 40252795002, 4	40252795003,	40252795004	, 40252795005			
			Blank	Reporting				
Paran	neter	Units	Result	Limit	Analyze	ed Quali	fiers	
Total Dissolved Soli	ds	mg/L	<8.7	7 20	0.0 10/11/22 1	5:33		
LABORATORY CON	NTROL SAMPLE:	2467523						
			Spike	LCS	LCS	% Rec		
Paran	neter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Total Dissolved Soli	ds	mg/L	587	532	91	80-120		
SAMPLE DUPLICA	TE: 2467524							
			40252811001	Dup		Max		
Paran	neter	Units	Result	Result	RPD	RPD	Qualifiers	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	CCR RULE EDGE	WATER I-4 CLOS	ED				
Pace Project No.:	40252795						
QC Batch:	429532		Analysis Meth	od:	SM 4500-H+B		
QC Batch Method:	SM 4500-H+B		Analysis Desc	ription:	4500H+B pH		
			Laboratory:		Pace Analytical S	Services - Gre	en Bay
Associated Lab Sam	nples: 402527950	001, 40252795002	2, 40252795003, 40	252795004,	, 40252795005		
Associated Lab Sam SAMPLE DUPLICAT	•	001, 40252795002	2, 40252795003, 40	252795004,	, 40252795005		
	•	001, 40252795002	2, 40252795003, 40 40252716010	252795004, Dup	, 40252795005	Max	
	TE: 2474186	001, 40252795002 Units			, 40252795005 RPD	Max RPD	Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QC Batch: 42	28801		Anal	ysis Metho	d: E	PA 300.0						
QC Batch Method: E	PA 300.0			, ysis Descri		00.0 IC Ani	ons					
				pratory:		ace Analyti	cal Servic	es - Green	Bay			
Associated Lab Sample	s: 402527950	001, 4025279500		•		,			,			
METHOD BLANK: 246	69796			Matrix: W	ater							
Associated Lab Sample	s: 402527950	001, 4025279500	2, 4025279	95003								
			Bla		Reporting							
Paramete	r	Units	Res	ult	Limit	Analy	zed	Qualifier	S			
Chloride		mg/L		<0.43	2.0		-					
Fluoride		mg/L		<0.095	0.32		-					
Sulfate		mg/L		<0.44	2.0	10/17/22	12:29					
LABORATORY CONTR	OL SAMPLE:	2469797										
			Spike	LC		LCS	% R					
Paramete	r	Units	Conc.	Res	sult	% Rec	Limi	its	Qualifiers	_		
Chloride		mg/L	2	20	20.4	102		90-110				
Fluoride		mg/L		2	2.0	98		90-110				
Sulfate		mg/L	2	20	20.2	101		90-110				
MATRIX SPIKE & MATF	RIX SPIKE DUP	LICATE: 2469	798		2469799							
			MS	MSD								
Descenter	11-26-	40252730007	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	0
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
Chloride	mg/L	11.0	20	20	32.6	32.7	108	109	90-110	0		
Fluoride Sulfate	mg/L mg/L	1.0 144	2 200	2 200	3.1 345	3.1 342	101 100	102 99	90-110 90-110	1		
Sunate	ilig/∟	144	200	200	040	542	100	55	30-110	I	15	
MATRIX SPIKE & MATR	RIX SPIKE DUP	LICATE: 2469			2469801							
		400507000	MS	MSD					04 D			
		40252798015 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qua
Parameter	Units	Result										
Parameter	Units mg/L		1000	1000	2220	2220	99	99	90-110	0	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Date: 11/10/2022 08:25 AM witho 02/26/2024 - Classification: Internal - ECRM13238693

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, LLC.

QC Batch:	4294	62		Anal	ysis Metho	d: E	PA 300.0						
QC Batch M	lethod: EPA	300.0			vsis Descri		00.0 IC An	ions					
					ratory:			ical Servic	es - Green	Bay			
Associated	Lab Samples:	402527950	004, 40252795005		,		,						
METHOD B	BLANK: 24735	30			Matrix: W	ater							
Associated	Lab Samples:	402527950	04, 40252795005	5									
				Blai		Reporting							
	Parameter		Units	Res	ult	Limit	Analy	yzed	Qualifier	S			
Chloride			mg/L		<0.43	2.0							
Fluoride			mg/L		<0.095	0.32							
Sulfate			mg/L		<0.44	2.0	10/25/2	2 11:58					
ABORATO	ORY CONTROL	SAMPLE:	2473531										
				Spike	LC	S	LCS	% R	ec				
	Parameter		Units	Conc.	Res	ult	% Rec	Limi	ts	Qualifiers			
Chloride			mg/L	2	20	19.6	98	8 !	90-110		_		
Fluoride			mg/L		2	1.8	92	2 9	90-110				
Sulfate			mg/L	2	20	19.5	98	8 9	90-110				
MATRIX SF	PIKE & MATRIX	SPIKE DUPI	_ICATE: 24735	532		2473533							
				MS	MSD								
_			40253245001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	_
Pa	arameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
Chloride		mg/L	266	200	200	444	498	89	116		11	15	M0
Fluoride		mg/L	<0.95	20	20	21.4	21.1	107	106		1	15	
		mg/L	50.0	200	200	264	272	107	111	90-110	3	15	MO
						2473535							
Sulfate	PIKE & MATRIX	SPIKE DUPI	_ICATE: 24735	534									
Sulfate	PIKE & MATRIX	SPIKE DUPI	LICATE: 24735	534 MS	MSD	20000							
Sulfate	PIKE & MATRIX	SPIKE DUPI	LICATE: 24735 40253482001	-	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Sulfate	PIKE & MATRIX	SPIKE DUPI		MS			MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qua
Sulfate MATRIX SF Pa			40253482001	MS Spike	Spike	MS				Limits	RPD 1		Qua
Sulfate		Units	40253482001 Result	MS Spike Conc.	Spike Conc.	MS Result	Result	% Rec	% Rec	Limits 90-110		RPD	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Date: 11/10/2022 08:25 AM with 02/26/2024 - Classification: Internal - ECRM13238693

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, LLC.

QUALIFIERS

Project: CCR RULE EDGEWATER I-4 CLOSED

Pace Project No.: 40252795

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

H6 Analysis initiated outside of the 15 minute EPA required holding time.

M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: CCR RULE EDGEWATER I-4 CLOSED

Pace Project No.: 40252795

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40252795001	MW-301	EPA 3010A	430368	EPA 6020B	430436
40252795002	MW-302	EPA 3010A	430368	EPA 6020B	430436
40252795003	MW-303	EPA 3010A	430368	EPA 6020B	430436
40252795004	FIELD BLANK	EPA 3010A	430368	EPA 6020B	430436
40252795005	2R-OW	EPA 3010A	430368	EPA 6020B	430436
40252795001	MW-301				
40252795002	MW-302				
40252795003	MW-303				
40252795005	2R-OW				
40252795001	MW-301	SM 2540C	428466		
40252795002	MW-302	SM 2540C	428466		
40252795003	MW-303	SM 2540C	428466		
40252795004	FIELD BLANK	SM 2540C	428466		
40252795005	2R-OW	SM 2540C	428466		
40252795001	MW-301	SM 4500-H+B	429532		
40252795002	MW-302	SM 4500-H+B	429532		
40252795003	MW-303	SM 4500-H+B	429532		
40252795004	FIELD BLANK	SM 4500-H+B	429532		
40252795005	2R-OW	SM 4500-H+B	429532		
40252795001	MW-301	EPA 300.0	428801		
40252795002	MW-302	EPA 300.0	428801		
40252795003	MW-303	EPA 300.0	428801		
40252795004	FIELD BLANK	EPA 300.0	429462		
40252795005	2R-OW	EPA 300.0	429462		

Pace

CHAIN-OF-CUSTODY / Analytical Request Document

4052795

tion A	Submitting a sample via	Section B			0			5	Sectio	n C			ļ														
ipany:	SCS ENGINEERS	Required Pi Report To:						-	Attenti	e Infori	matic	on:	1.					_			1 1		Pa Pa	age :	1	Of	1
ess:	2830 Dairy Drive	· Copy To:	Megna	an Blodgett						any Nar	<u>no</u> .										-						
_	NI 53718								Addre				;								Lesson	SMERIC			*****		201-11-11-11-12-11-
	hblodgett@scsengineers.com	Purchase O	rder #					-		Quote:			ş V								利用物の			Regula	itory(Age	ncy	
ne:	608-216-7362 Fax	Project Nam		CR Rule Ed	daewater L	4 Closed	(2521606		_	Project I	Mana	aner:	dor	milou		nonala	be de	~			3500au		Sec. 1		17.9 10.00	n a kat	2010020006
	Due Date:	Project #:	<u>. </u>		Jugewaler I-	4 Closed	2521000			Profile		3946-1		.milew	/sky@	paceia	ibs.co	m,			1. Station of the	的是此常的	Survey de	Sestate		几 经分别的改进	
					· · ·			P	uco	Tome	<i>n</i> .	0040-1			Ŵ	a feiri	R	eques	ted An	ilysis Fi	ltered	(Y/N)	2.0		WI		
		MATRIX CODE Drinking Water DW Water WT Waste Water WW	(see valid codes to left)	CIMPO 2000 2000 2000 2000 2000 2000 2000 20	COLLE	CTED	· · · ·	ECTION			Pre	eserva	itives		SUNE SINE												
	SAMPLE ID One Character per box. (A-Z, 0-9 /, -)	Product P Soil/Solid SL Oil OL Wipe WP Air AR Other OT Tissue TS	1 1		ART	13	ID	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Unpreserved H2SO4	03		NaON Na2S203	Methanol	er Valuege Toet	Metals		TDS by 160.1						Residual Chlorine (Y/N)			新設に 1993年 明治帝 1993年 1993年
- - 51			MA			DATE	TIME				+ HNO3	HCI	Na, Na	Me	Other	Metals	Hd	Ë						8			n je godi Godine
<u> </u>	MW-301		ŴT	1. 11	1130				3:	22	1		-			×	X	x							1.1.1	<u>501</u>	
1	MW-302	·	wт	10H					$\left\{ \right\}$		$ \downarrow $				_	×	x :	x								002	
	MW-303		WT	1016	1				+						_	x	X	x			$\left - \right $					003	
<u> </u>	FIELD BLANK		<u>wt</u>	1016	1220											×	x	x						_		064	
<u></u>	2R-OW		<u></u>	10/6	1005	-				2	4					×	x	x						_		005	
98) 144	······································							$\left - \right $					1		_								<u></u>	<u> </u>			
	·····																				1.1			_			
	·····		+												-		- 1		· .			-	-			· ·	
	· · · · · · · · · · · · · · · · · · ·		+				· · ·						_						-								
2		· · · · · · · · · · · · · · · · · · ·												$\left \right $		-			_			_		_		i se en la propio de Transforma de la composición de la comp	
				4/-		· · ·									-						-		-				
	ADDITIONAL COMMENTS			UTHED BY I			DATI		<u> (</u>	ME	192			NEDTE:	2/50%	ACCUI			2.199	DA DA			VE SE	1400	CANADU	CONDITION	
			H	A				22	200	BD		3.,1500	33{Sin	98 Kora	MAL IG.	alfraigh sh	rinistra	e Parra			a di kana di ka Kana di kana di	Marcal ve	ALCON.				
AMPL	ES UNFILTERED, metals=Calcium/boron		CS -	1-0.5	stic	<u> </u>	1017			60		~	7		NON	Ø-	NO	(1)		10/11	רר	101	1	35	N	N	N
		/		<u>lo h</u>	<u></u>	.				<u> </u>				<u></u>	1	د د	1	WC-						<u></u>			
	······································					;			÷			· •.															
				· · ·		R NAME	1000	000000000	6.54 m (\$15	He he	1 1	<u>لى</u>				en a			224 1	æ¢				TEMP in C	Received on ce	рор и Аррия	ples
					SIG	ATURE	SAMP	LER:		1		_	~			1	DAT	ŧÿ	por l	122		11 A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A		IEW	Rece	Coole	Samples Intact (Y/N)

DC#_Title: ENV-FRM-GBAY-0035 v03_Sample Preservation Receipt Form Effective Date: 8/16/2022

			ime: eedin		<u>C</u> ervatio	on ha	En ve be	G) en ch	eckec	ers and r				DYe	ple Proj 3	□No			HID of				7C Hadju	15 sted):	>					ial wh		P	Date/ Time:	
			L	Glass	5					Plast	ic					Via	als				Ja	ars			Gen	eral		(>6mm) *	H ≤2	laOH+Zn Act pH ≥9	I≥12	≤2	after adjusted	Volume
ce b#	AG1U	BG1U	AG1H	AG4S	AG5U	AG2S	BG3U	BP1U	BP3U	BP3B	BP3N	BP3S	BP2Z	VG9C	DG9T	VG9U	VG9H	VG9M	VG9D	JGFU	JG9U	WGFU	WPFU	SP5T	ZPLC	GN 1	GN 2	vOA Vials	H2SO4 pH ≤2	NaOH+Zn	NaOH pH ≥12	HNO3 pH	pH after a	(mL)
)1									2		1	T																-				X		2.5/5
)2									2.		1											04714			Ala.St	830 C						×		2.5/5
)3									Z		1																					Х		2.5/5
)4							and a	10.05	2		3							in an												Stall		X		2.5/5
)5					<u> </u>				2	•	١																					と		2.5/5
)6	1	中國		1. 5. 6. 6			1 in		es al s	i Boy di			10.834				1.1.1.1.1						931		200 (法测验		864					2.5/5
7																																		2.5/5
8				a analasia A farangang						44.4			4495	6,498	Sa di È																			2.5/5
9				ļ			\geq																											2.5/5
0		Esc.	and a second second	i de la compañía	- 660.44 563.495			198 (453) 198 (453)	alt in a				- Kinaca							LL - VING LL - VING LIST SMILLS			Distant in the											2.5/5
1	tion of	Par colore es-							20122 21 22 20			\leftarrow																						2.5/5
2		1966												Constraints				i ting () . Si ting ()					「「「「「」」							San de				2.5/5
3	Second For				ŀ											\succ				C-10.000_00004-10							<u> </u>							2.5/5
4		(Ciax)	- HERRINA Provinsi			- Maria					運動的				10.00					Not S	5	D^-								31.59	HERE'S			2.5/5
5	500.JA										- <u>1120 - 1</u> - 1			1		0.07010700					\square	\mathbb{K}_{-}	1	D^{-}		L						1	Textinue 1	2.5/5
6					NOS IN			UN NEUX	的机械的					代情報	Solar de			Net a	19000		in the second					in the state of th	- Hellister		CALCULAR D	ALC: NO	and 2.40 Sec. 200 Sec. 200			2.5/5
7	10.000	1508021	1.4.6.0002520	- az fag		Alikor.	SHOP 1	400491688	1000000		. Piteliza sera		C	1 YZNAKSIM U		- and a location	The SECK Con R	TOWN INCOMES	Shiftada Shi		11 INTERNA	TOSTATORNAL	a Hazentitis Mills	ALL N	- 1988 Istora	(selfant i.i.i	- aniisteine	- ACAMERIC	- Inc. Beach	a service the fit	Photo Lanca	B. 1777.	stridestern?	2.5/5
18	90.		求約職	a ann an thair		4.660	3					1	- 965	- Heres		officiality	\$.8.¥.		4			1.1.1	19-68	1.00						-3814				2.5/5
19	ing at	National Inc.	17404-005	i deretari de			. Satan	1.2.90200		a industry	i unara.	< 3405-70				No. Contraction	Eixond A	a il fat correi	c assessive	1.0000000		- IST AND AND	Calculation of the	3846444	State State	1 (198)(241)(44)		- Theorem	essa de te	1.1.1.1.1.1.1.1	bara.	1000 areas		2.5/5
20	in the second			10.0016	的影响	North								Ale al				l dilânênê	- September - S		20080		Sec. 443					15.00					Called Control of Cont	2.5/5
eptio	ns to	prese	rvation	check	: VOA	, Coli	form,	IOC,	IOX	, ТОН	O&G	, WIL	DRO, F	henol	ics, O	th <u>er:</u>			-	-	Hea	adspac	ce in V	OA V	ials (>	6mm)	: LIYe	s⊔I	No P	N/A	*lf ye	s lool	(in hea	adspace co
10	1 lite	er am	ber g	ass			В	P1U	1 lite	er plas	tic ur	pres					39C	40 n	nL cle	araso	orbic	w/ H0	21	J	SFU	4 07	ambe	riar	unpres				1	
10	1 lite	er cle	ar gla	SS				P3U		mL pl			s				G9T		nL am						39U				unpres					
1H	1 lite	er am	ber g	lass ⊦	ICL			P3B		mL p							39U		nL cle						GFU		clear							
					H2S			P3N		mL pl							G9H		nL cle						PFU				unpres				4	
					s unpr s H2S			P3S P2Z		mL pl mL pl							39M 39D		nL cle nL cle			H			P5T PLC		mL pl c bag		Na Th	losulfa	ate			
					unpre				000	ine p	1310	na Or	, • <u>८</u> ।			1		101		ui vid		-			N 1	Lapio	u uag							

GN 2

Sample Condition Upon Recei	pt Form (SCUR)
C os o	roject #:
Client Name: SCS EnginPers	WO#:40252795
Courier: 🔽 CS Logistics 🔄 Fed Ex 📋 Speedee 🛛 UPS 🗔 Waltco	
Client Pace Other:	
Tracking #:	40252795
Custody Seal on Cooler/Box Present: 🕞 yes 📈 no Seals intact: 🔄 yes [no
Custody Seal on Samples Present: 🔲 yes 💋 no 👘 Seals intact: 🔄 yes	
Packing Material: Bubble Wrap Bubble Bags None Ot	
Thermometer Used ' SR - 110 Type of Ice: We Blue Dry	None Meltwater Only Person examining contents:
Cooler Temperature Uncorr: 3 /Corr: 3.5	
Temp Blank Present: Ves Ino Biological Tissue is F	Frozen: yes no Date: 01/22/Initials:
Temp should be above freezing to 6°C. Biota Samples may be received at ≤ 0°C if shipped on Dry Ice.	Labeled By Initials:
Chain of Custody Present:	
Chain of Custody Filled Out: 101702 AVG END DN/A 2. 10	proj. # 10,762,92)
Chain of Custody Relinquished: Ves DNo DN/A 3.	
Sampler Name & Signature on COC:	
Samples Arrived within Hold Time: Yes DNo 5.	
- DI VOA Samples frozen upon receipt	
Short Hold Time Analysis (<72hr):	
Rush Turn Around Time Requested: □Yes ØNo 7.	
Sufficient Volume: 8.	
For Analysis: 🖉 Yes 🗆 No 🛛 MS/MSD: 🗆 Yes 🗖 No 🗆 N/A	
Correct Containers Used: Ves No 9.	
Correct Type: Pace Oreen Bay, Pace IR, Non-Pace	
Containers Intact: ŹYes □No 10.	
Filtered volume received for Dissolved tests Ves No N/A 11.	
Sample Labels match COC: Ves DNo DN/A 12.	
-Includes date/time/ID/Analysis Matrix: W	
Trip Blank Present: DYes No N/A 13.	
Trip Blank Custody Seals Present	
Pace Trip Blank Lot # (if purchased):	
Client Notification/ Resolution: Person Contacted: Date/Time: Comments/ Resolution:	If checked, see attached form for additional comments

PM Review is documented electronically in LIMs. By releasing the project, the PM acknowledges they have reviewed the sample login

Page 2 of 2

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

July 05, 2023

Meghan Blodgett SCS ENGINEERS 2830 Dairy Drive Madison, WI 53718

RE: Project: 25223068 EDGEWATER CCR Pace Project No.: 40261411

Dear Meghan Blodgett:

Enclosed are the analytical results for sample(s) received by the laboratory on April 27, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Green Bay

Revised Report: The field data has been updated for MW-302 and MW-303.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Dan Milenty

Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: Matt Bizjack, Alliant Energy Natalie Burris, SCS ENGINEERS Sherren Clark, SCS Engineers Jenny Coughlin, Alliant Energy Tom Karwoski, SCS ENGINEERS Ryan Matzuk, SCS Engineers Jeff Maxted, ALLIANT ENERGY

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: 25223068 EDGEWATER CCR

Pace Project No.: 40261411

Pace Analytical Services Green Bay

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 South Carolina Certification #: 83006001 Texas Certification #: T104704529-21-8 Virginia VELAP Certification ID: 11873 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-21-00008 Federal Fish & Wildlife Permit #: 51774A

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project: 25223068 EDGEWATER CCR

Pace Project No.: 40261411

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40261411001	2R-OW	Water	04/26/23 11:30	04/27/23 09:15
40261411002	MW-301	Water	04/25/23 13:50	04/27/23 09:15
40261411003	MW-302	Water	04/26/23 10:10	04/27/23 09:15
40261411004	MW-303	Water	04/25/23 15:35	04/27/23 09:15
40261411005	FIELD BLANK	Water	04/25/23 14:30	04/27/23 09:15

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: 25223068 EDGEWATER CCR

Pace Project No.: 40261411

Lab ID	Sample ID	Method	Analysts	Analytes Reported
40261411001	2R-OW	EPA 6020B	KXS	2
			AG1	7
		SM 2540C	SRK	1
		EPA 9040	YER	1
		EPA 300.0	HMB	3
40261411002	MW-301	EPA 6020B	KXS, TXW	2
			AG1	7
		SM 2540C	SRK	1
		EPA 9040	YER	1
		EPA 300.0	HMB	3
40261411003	MW-302	EPA 6020B	KXS	2
			AG1	7
		SM 2540C	SRK	1
		EPA 9040	YER	1
		EPA 300.0	HMB	3
40261411004	MW-303	EPA 6020B	KXS, TXW	2
			AG1	7
		SM 2540C	SRK	1
		EPA 9040	YER	1
		EPA 300.0	HMB	3
40261411005	FIELD BLANK	EPA 6020B	KXS	2
		SM 2540C	SRK	1
		EPA 9040	YER	1
		EPA 300.0	HMB	3

PASI-G = Pace Analytical Services - Green Bay

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 25223068 EDGEWATER CCR

Pace Project No.: 40261411

Sample: 2R-OW	Lab ID:	40261411001	Collecte	d: 04/26/23	3 11:30	Received: 04/	/27/23 09:15 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	-	Method: EPA			hod: E	PA 3010A			
Boron	32.0	ug/L	10.0	3.0	1	05/02/23 05:28	05/10/23 20:39	7440-42-8	
Calcium	91800	ug/L	254	76.2	1	05/02/23 05:28	05/10/23 20:39	7440-70-2	P6
Field Data	Analytical Pace Ana	Method: Iytical Services	- Green Ba	у					
Field pH	7.30	Std. Units			1		04/26/23 11:30		
Field Specific Conductance	889	umhos/cm			1		04/26/23 11:30		
Oxygen, Dissolved	0.90	mg/L			1		04/26/23 11:30	7782-44-7	
REDOX Turbidity	306.2 3.62	mV NTU			1		04/26/23 11:30 04/26/23 11:30		
Static Water Level	3.62 607.74	feet			1		04/26/23 11:30		
Temperature, Water (C)	6.9	deg C			1		04/26/23 11:30		
2540C Total Dissolved Solids		Method: SM 2		y					
Total Dissolved Solids	512	mg/L	20.0	8.7	1		04/28/23 15:35		
9040 pH		Method: EPA		y					
pH at 25 Degrees C	7.4	Std. Units	0.10	0.010	1		05/02/23 09:01		H6
300.0 IC Anions		Method: EPA		y					
Chloride	53.4	mg/L	2.0	0.43	1		05/10/23 12:52	16887-00-6	
Fluoride	0.11J	mg/L	0.32	0.095	1		05/10/23 12:52	16984-48-8	
Sulfate	7.5	mg/L	2.0	0.44	1		05/10/23 12:52	14808-79-8	

Project: 25223068 EDGEWATER CCR

Pace Project No.: 40261411

Sample: MW-301	Lab ID:	40261411002	Collected:	04/25/23	3 13:50	Received: 04/	27/23 09:15 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS		l Method: EPA 6 alytical Services	•	ration Met	hod: EF	PA 3010A			
Boron Calcium	6770 87900	ug/L ug/L	200 254	60.6 76.2	20 1	05/02/23 05:28 05/02/23 05:28	05/11/23 16:50 05/10/23 21:23		
Field Data	Analytica Pace Ana	l Method: alytical Services	- Green Bay						
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	7.63 765 3.14 416.4 96.1 597.77 8.5	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1 1		04/25/23 13:50 04/25/23 13:50 04/25/23 13:50 04/25/23 13:50 04/25/23 13:50 04/25/23 13:50 04/25/23 13:50	7782-44-7	
2540C Total Dissolved Solids		l Method: SM 25 alytical Services							
Total Dissolved Solids 9040 pH		mg/L I Method: EPA 9 alytical Services		8.7	1		04/28/23 15:35		
pH at 25 Degrees C 300.0 IC Anions		Std. Units I Method: EPA 3 alytical Services		0.010	1		05/02/23 09:22		H6
Chloride Fluoride Sulfate	17.9 0.21J 168	mg/L mg/L mg/L	2.0 0.32 20.0	0.43 0.095 4.4	1 1 10		05/10/23 04:47 05/10/23 04:47 05/10/23 13:07	16984-48-8	

Project: 25223068 EDGEWATER CCR

Pace Project No.: 40261411

Sample: MW-302	Lab ID:	40261411003	Collected	1: 04/26/23	3 10:10	Received: 04/	/27/23 09:15 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	-	Method: EPA 6			hod: El	PA 3010A			
Boron Calcium	1450 46900	ug/L ug/L	10.0 254	3.0 76.2	1 1	05/02/23 05:28 05/02/23 05:28			
Field Data	Analytical Pace Ana	Method:	- Green Bay	/					
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	7.85 501 1.86 169.1 3.1 593.63 8.7	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1 1		04/26/23 10:10 04/26/23 10:10 04/26/23 10:10 04/26/23 10:10 04/26/23 10:10 04/26/23 10:10 04/26/23 10:10	7782-44-7	
2540C Total Dissolved Solids		Method: SM 2		/					
Total Dissolved Solids	344	mg/L	20.0	8.7	1		04/28/23 15:35		
9040 pH		Method: EPA S		/					
pH at 25 Degrees C	8.0	Std. Units	0.10	0.010	1		05/02/23 09:33		H6
300.0 IC Anions		Method: EPA 3		/					
Chloride Fluoride Sulfate	16.5 0.75 75.4	mg/L mg/L mg/L	2.0 0.32 10.0	0.43 0.095 2.2	1 1 5		05/10/23 05:02 05/10/23 05:02 05/10/23 13:22	16984-48-8	

Project: 25223068 EDGEWATER CCR

Pace Project No.: 40261411

Sample: MW-303	Lab ID:	40261411004	Collected	: 04/25/23	3 15:35	Received: 04/	/27/23 09:15 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	•	l Method: EPA 6 alytical Services			hod: Ef	PA 3010A			
Boron Calcium	4870 128000	ug/L ug/L	200 254	60.6 76.2	20 1	05/02/23 05:28 05/02/23 05:28	05/11/23 17:05 05/10/23 21:45		
Field Data	Analytica Pace Ana	l Method: alytical Services	- Green Bay						
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	6.87 1230 5.27 370.4 44.1 587.99 8.0	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1 1		04/25/23 15:35 04/25/23 15:35 04/25/23 15:35 04/25/23 15:35 04/25/23 15:35 04/25/23 15:35 04/25/23 15:35	7782-44-7	
2540C Total Dissolved Solids	,	l Method: SM 25 alytical Services							
Total Dissolved Solids	740	mg/L	20.0	8.7	1		04/28/23 15:35		
9040 pH		l Method: EPA 9 alytical Services							
pH at 25 Degrees C	7.1	Std. Units	0.10	0.010	1		05/02/23 09:42		H6
300.0 IC Anions		l Method: EPA 3 alytical Services							
Chloride Fluoride Sulfate	22.3 <0.095 0.50J	mg/L mg/L mg/L	2.0 0.32 2.0	0.43 0.095 0.44	1 1 1		05/10/23 05:16 05/10/23 05:16 05/10/23 05:16	16984-48-8	

Project: 25223068 EDGEWATER CCR

Pace Project No.: 40261411

Sample: FIELD BLANK	Lab ID:	40261411005	Collected	1: 04/25/23	3 14:30	Received: 04/	/27/23 09:15 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Met	hod: EF	PA 3010A			
	Pace Ana	lytical Services	- Green Bay	/					
Boron	<3.0	ug/L	10.0	3.0	1	05/02/23 05:28	05/10/23 19:18	7440-42-8	
Calcium	<76.2	ug/L	254	76.2	1	05/02/23 05:28	05/10/23 19:18	7440-70-2	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
	Pace Ana	lytical Services	- Green Bay	/					
Total Dissolved Solids	<8.7	mg/L	20.0	8.7	1		04/28/23 15:35		
9040 pH	Analytical	Method: EPA 9	040						
-	Pace Ana	lytical Services	- Green Bay	/					
pH at 25 Degrees C	7.0	Std. Units	0.10	0.010	1		05/02/23 09:57		H6
300.0 IC Anions	Analytical	Method: EPA 3	00.0						
	Pace Ana	lytical Services	- Green Bay	/					
Chloride	<0.43	mg/L	2.0	0.43	1		05/10/23 05:31	16887-00-6	
Fluoride	<0.095	mg/L	0.32	0.095	1		05/10/23 05:31	16984-48-8	
Sulfate	<0.44	mg/L	2.0	0.44	1		05/10/23 05:31	14808-79-8	

Project:	25223068 EDGE	WATER CCR										
Pace Project No .:	40261411											
QC Batch:	443772		Analy	sis Method	d: I	EPA 6020B						
QC Batch Method:	EPA 3010A		Analy	sis Descrip	ption: 6	5020B MET						
			Labor	ratory:	F	Pace Analyti	ical Service	es - Green	Bay			
Associated Lab Sar	mples: 40261411	001, 4026141100	02, 40261411	1003, 4026	61411004, 4	026141100	5					
METHOD BLANK:	2547952			Matrix: Wa	ater							
Associated Lab Sar	mples: 40261411	001, 4026141100	02, 40261411	1003, 4026	61411004, 4	026141100	5					
			Blan	k F	Reporting							
Parar	neter	Units	Resu	ult	Limit	Analy	zed	Qualifiers	S			
				<3.0	10.	0 05/10/23						
Boron		uq/L										
Boron Calcium		ug/L ug/L		<76.2	25	4 05/10/23	3 19:11					
		0	Spike Conc.		S	4 05/10/23 LCS % Rec	3 19:11 % Re Limit		Qualifiers			
Calcium LABORATORY CO Parar Boron		2547953 Units ug/L	Spike Conc. 250	<76.2 LC 	S sult	LCS % Rec 90	% Re 	ts (30-120	Qualifiers			
Calcium LABORATORY CO Parar		ug/L 2547953 Units	Spike Conc.	<76.2 LC 	S sult	LCS % Rec	% Re 	ts (Qualifiers			
Calcium LABORATORY CO Parar Boron	neter	2547953 Units ug/L ug/L	Spike Conc. 250 10000	<76.2 LC 	S sult	LCS % Rec 90 96	% Re 	ts (30-120	Qualifiers			
Calcium LABORATORY CO Parar Boron Calcium	neter	2547953 Units ug/L ug/L	Spike Conc. 250 10000	<76.2 LC 	S Sult 225 9600	LCS % Rec 90 96	% Re 	ts (30-120	Qualifiers	_		
Calcium LABORATORY CO Parar Boron Calcium	neter	2547953 Units ug/L ug/L	Spike Conc. 250 10000	<76.2 LC Res 0	S Sult 225 9600	LCS % Rec 90 96	% Re 	ts (30-120	Qualifiers % Rec	_	Мах	
Calcium LABORATORY CO Parar Boron Calcium	neter /ATRIX SPIKE DUF	ug/L 2547953 Units ug/L ug/L PLICATE: 2547 40261411001	Spike Conc. 250 10000 7954 MS	<76.2 LC Res 0 0 MSD	Sult 225 9600 2547955	LCS % Rec 90 96	% Re Limit) 8 5 8	ts (80-120 80-120		RPD	Max RPD	Qual
Calcium LABORATORY CO Parar Boron Calcium MATRIX SPIKE & M	neter /ATRIX SPIKE DUF	ug/L 2547953 Units ug/L ug/L PLICATE: 2547 40261411001 s Result	Spike Conc. 250 10000 7954 MS Spike	<76.2 LC Res 0 0 MSD Spike	Sult 225 9600 2547955 MS	LCS % Rec 90 96	% Re Limit) 8 5 8 MS	ts (30-120 30-120 MSD	% Rec		RPD	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2522	3068 EDGEV	VATER CCR					
Pace Project No.: 4026	51411						
QC Batch: 443	3595		Analysis M	lethod:	SM 2540C		
QC Batch Method: SM	2540C		Analysis D	escription:	2540C Total D	ssolved Solids	
			Laboratory	/:	Pace Analytica	I Services - Gre	een Bay
Associated Lab Samples:	40261411	001, 40261411002	2, 40261411003	, 40261411004,	40261411005		
METHOD BLANK: 2547	072		Matr	ix: Water			
Associated Lab Samples:	40261411	001, 40261411002	2, 40261411003	, 40261411004,	40261411005		
			Blank	Reporting			
Parameter		Units	Result	Limit	Analyze	d Quali	fiers
Total Dissolved Solids		mg/L	<8.	.7 20	0.0 04/28/23 1	5:33	
ABORATORY CONTROL	L SAMPLE:	2547073					
			Spike	LCS	LCS	% Rec	
Parameter		Units	Conc	Result	% Rec	Limits	Qualifiers
Total Dissolved Solids		mg/L	582	548	94	80-120	
SAMPLE DUPLICATE: 2	2547074						
			4026140100			Max	
		Units	Result	Result	RPD	RPD	Qualifiers
Parameter							

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	25223068 EDGEV	VATER CCR						
Pace Project No.:	40261411							
QC Batch:	443778		Analysis Meth	od: E	PA 9040			
QC Batch Method:	EPA 9040		Analysis Desc	ription: 9	040 pH			
			Laboratory:	Р	ace Analytical	Services - Gre	een Bay	
Associated Lab Sa	amples: 40261411	001, 40261411002	2, 40261411003, 40	261411004, 40	0261411005			
SAMPLE DUPLIC	ATE: 2547973							
			40261401001	Dup		Max		
Para	ameter	Units	Result	Result	RPD	RPD	Qualifiers	
pH at 25 Degrees	_	Std. Units	7.9	8.0			20 H6	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	252230	68 EDGEW	ATER CCR										
Pace Project No.:	402614	11											
QC Batch:	44430)1		Anal	ysis Metho	d: E	EPA 300.0						
QC Batch Method:	EPA 3	800.0		Anal	ysis Descri	ption: 3	300.0 IC An	ions					
				Labo	oratory:	F	Pace Analy	tical Service	es - Green	Bay			
Associated Lab Sa	mples:	402614110	01, 4026141100	2, 4026141	1003, 4026	61411004, 4	026141100)5					
METHOD BLANK:	255076	62			Matrix: W	ater							
Associated Lab Sa	mples:	402614110	01, 4026141100	2, 4026141	1003, 4026	61411004, 4	026141100)5					
				Bla	nk	Reporting							
Para	meter		Units	Res	ult	Limit	Anal	yzed	Qualifier	S			
Chloride			mg/L		<0.43	2.0	0 05/10/2	3 00:19					
Fluoride			mg/L		<0.095	0.3	2 05/10/2	3 00:19					
Sulfate			mg/L		<0.44	2.0	0 05/10/2	3 00:19					
LABORATORY CC			2550763										
			2000100	Spike	LC	S	LCS	% Re	ес				
Para	meter		Units	Conc.	Res	sult	% Rec	Limit	ts (Qualifiers			
Chloride			mg/L	2	20	18.5	9	2 9	90-110		_		
Fluoride			mg/L		2	1.9	9		90-110				
Sulfate			mg/L	2	20	18.6	9	3 9	90-110				
MATRIX SPIKE & I	MATRIX		_ICATE: 2550	764		2550765							
			2000	MS	MSD	2000700							
			40261368001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	er	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride		mg/L		400	400	682	684	99	99	90-110	0	15	
Fluoride		mg/L	<1.9	40	40	42.2	42.4	105	106	90-110	1	15	
Sulfate		mg/L	276	400	400	669	672	98	99	90-110	0	15	
MATRIX SPIKE & I	MATRIX		_ICATE: 2550	766		2550767							
				MS	MSD	2000,01							
			40261416004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
				Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Paramete	ər	Units	Result	00110.									
Paramete	er	Units mg/L	Result 2.2	20	20	23.1	23.2	105	105	90-110	0	15	
	er				20 2	23.1 2.6	23.2 2.6	105 104	105 105	90-110 90-110	0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Date: 07/05/2023 09:06 AM witho 02/26/2024 - Classification: Internal - ECRM13238693

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, LLC.

QUALIFIERS

Project: 25223068 EDGEWATER CCR

Pace Project No.: 40261411

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

DL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- H6 Analysis initiated outside of the 15 minute EPA required holding time.
- P6 Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 25223068 EDGEWATER CCR

Pace Project No.: 40261411

Analytical QC Batch Method QC Batch Lab ID Sample ID Batch **Analytical Method** 40261411001 2R-OW EPA 3010A 443772 EPA 6020B 443833 40261411002 EPA 3010A 443772 EPA 6020B 443833 MW-301 40261411003 MW-302 EPA 3010A 443772 EPA 6020B 443833 40261411004 MW-303 EPA 3010A 443772 EPA 6020B 443833 40261411005 443772 443833 FIELD BLANK EPA 3010A EPA 6020B 40261411001 2R-OW MW-301 40261411002 40261411003 MW-302 40261411004 MW-303 40261411001 2R-OW SM 2540C 443595 40261411002 MW-301 SM 2540C 443595 40261411003 MW-302 SM 2540C 443595 40261411004 MW-303 SM 2540C 443595 40261411005 FIELD BLANK SM 2540C 443595 40261411001 2R-OW EPA 9040 443778 40261411002 MW-301 EPA 9040 443778 40261411003 MW-302 EPA 9040 443778 40261411004 MW-303 EPA 9040 443778 40261411005 FIELD BLANK EPA 9040 443778 40261411001 2R-OW EPA 300.0 444301 40261411002 MW-301 EPA 300.0 444301 MW-302 444301 40261411003 EPA 300.0 MW-303 444301 40261411004 EPA 300.0 40261411005 FIELD BLANK EPA 300.0 444301

CHAIN-OF-CUSTODY / Analytical Reguest Documer "Curve Customer Turve Customer <th colspa="</th"><th></th><th></th><th></th><th></th><th>~</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th>	<th></th> <th></th> <th></th> <th></th> <th>~</th> <th></th> <th>_</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>					~																_									
CHAINOF-CUSTODY Analytical Request Document CUSTORY Analytical Request Document CUSTORY Analytical Request Document CUSTORY Analytical Request Document Notane-Colored prior tail control and prior t							.12	=	10	9	œ	7	6	UT	4	3	2	-	ITEM #	,	-	Reques	Phone	Madisor	Address	Compar	Require	Section			
TEMP in C C Residual Chlorine (Y/N) Received on loc Samples (YN) Samples						ADDITIONAL COMMENTS					-			FIELD BLANK	MW-303	MW-302	MW-301	2R-OW	SAMPLE ID One Character per box. (A-Z, 0-9 /, -) Sample kts must be unique			ed Due Date.	mooogeu@scsengineers.con	n, WI 53718			ed Client Information:				
TEMP in C C Residual Chlorine (Y/N) Received on loc Samples (YN) Samples				0		1																Project #.	Project Na	Dirchase	Copy To	Report To	Required	via uns chain of cusic Section E			
TEMP in C C Residual Chlorine (Y/N) Received on loc Samples (YN) Samples				Ę,	Q	RELIN								τv	¥	FA	¥.	TM	MATRIX CODE (see valid code	es to left)		252230		Order #		Mec	Project	S uy cui			
TEMP in C C Residual Chlorine (Y/N) Received on loc Samples (YN) Samples			(\mathbf{k}	\mathcal{S}	2 S													SAMPLE TYPE (G=GRAB C=	COMP)		ä	3		1	han l	Info	suu			
TEMP in C C Residual Chlorine (Y/N) Received on loc Samples (YN) Samples			0	R.	5	HED BY								405	3	41ac	4/25	RC/h	DATE				23068 F			Blodgett	rmatior	ies ack			
TEMP in C C Residual Chlorine (Y/N) Received on loc Samples (YN) Samples		SAM		J.) AFFILI	\vdash							+			-		<u></u> }≩	2		10000	driewat				Ħ	nowon			
TEMP in C C Residual Chlorine (Y/N) Received on loc Samples (YN) Samples	SIGNAT	PLERN	¢	F.		VTION.		-	-					8	3	ā	8	R				ľ	*					มูแต่เ	j ∃ O		
TEMP in C C Residual Chlorine (Y/N) Received on loc Samples (YN) Samples	URE of	AME AI		-						<u> </u>			ļ	<u> </u>						Ü											
TEMP in C C Residual Chlorine (Y/N) Received on loc Samples (YN) Samples	SAMPL	AD SIG	., .	þ,	c/h	DATE													TIME									nerdan			
TEMP in C C Residual Chlorine (Y/N) Received on loc Samples (YN) Samples	8	휘칠	į	R															SAMPLE TEMP AT COLLECTIO	N								ģ			
TEMP in C C Residual Chlorine (Y/N) Received on loc Samples (YN) Samples					5	_								∣∢		-			# OF CONTAINERS		ſ	Pac	Pace		i G	Atter	Invo	Sect	μ ¹ / ₂ ¹ / ₂ ¹ / ₂		
TEMP in C C Residual Chlorine (Y/N) Received on loc Samples (YN) Samples	2	7		R	Ŕ	M		<u> </u>	 	 			ļ	<	╞	+		<u>1 N</u>				3	Pele		Pany	đơn	ice In	ion C			
TEMP in C C Residual Chlorine (Y/N) Received on loc Samples (YN) Samples		7			9					_							<u> </u>					릚	ect M	8	Nam		Iform	Ĩ	1 G B		
TEMP in C C Residual Chlorine (Y/N) Received on loc Samples (YN) Samples	βŞ			\mathcal{P}										~	\vdash	+	=			Pres		"	anag		<u>۳</u>		lation	io al	Ŀ.		
TEMP in C C Residual Chlorine (Y/N) Received on loc Samples (YN) Samples	h^{2}			R						+		-	\vdash		-					erva			3				Ē	Ē	28 ≥		
TEMP in C C Residual Chlorine (Y/N) Received on loc Samples (YN) Samples	εls	3.	\mathcal{O}	8				-		+	-	1	-			-		├		tives			3								
TEMP in C C Residual Chlorine (Y/N) Received on loc Samples (YN) Samples	1			r		A CC								1		1															
TEMP in C C Residual Chlorine (Y/N) Received on loc Samples (YN) Samples	\` }	5 .		\$		PTE													Other										r≝ Co		
TEMP in C C Residual Chlorine (Y/N) Received on loc Samples (YN) Samples		T		Ľ) BY /												•	Analyses Test	Y/N`	1	6						atu			
TEMP in C C Residual Chlorine (Y/N) Received on loc Samples (YN) Samples				β		AFFILIA							ł	×	×	×	×	×	Metals, Total (B, Ca)	z	•	00000	in a hale					u/rsdn	equ.		
TEMP in C C Residual Chlorine (Y/N) Received on loc Samples (YN) Samples	DATES			C		TION								×	×	×	×	×	4-4-1		2	S						no.pad	est I		
TEMP in C C Residual Chlorine (Y/N) Received on loc Samples (YN) Samples	Signe		-	$\overline{\mathcal{R}}$		-								×	×	×	×	×	TDS	z	Lest								B O		
TEMP in C C Residual Chlorine (Y/N) Received on loc Samples (YN) Samples	8			K										×	×	×	×	×	pH _	z	A							S.000			
TEMP in C C Residual Chlorine (Y/N) Received on loc Samples (YN) Samples	Ч			<u>r</u>																	nalvs							nunc	nei		
TEMP in C C Residual Chlorine (Y/N) Received on loc Samples (YN) Samples	5					2						<u> </u>			_		<u> </u>				F							iis/pa			
TEMP in C C Residual Chlorine (Y/N) Received on loc Samples (YN) Samples	5		ે	R		ЛE			-	-								<u> </u>				+	+	╈	┢			S-SI2	2 at		
TEMP in C C Residual Chlorine (Y/N) Received on loc Samples (YN) Samples	0	1.1		2		1				┼──		-		-														indar	ely.	~	
TEMP in C C Residual Chlorine (Y/N) Received on loc Samples (YN) Samples				В		TIME	·			1														Ľ				d-ter		F	
TEMP in C C Residual Chlorine (Y/N) Received on loc Samples (YN) Samples				5		14																				[70			٦ 、	
Custody Sealed Cooler (YN) Samples Intact	TEMP II	n C		k		Ì,																	2	Reg	l		age	ļ	י וי ר	ר ר	
Custody Sealed Cooler (YN) Samples Intact				Ľ		_		1	T	.		<u> </u>	1		F				Residual Chlorine (Y/N)	1				ulato			••		2		
Custody Sealed Cooler (YN) Samples Intact	Ice	no pe		ト		MMPL		1				1		R	R	K	R	8			ľ	≤ §		ĨÅ.			-		7	_	
Sealed Cooler (Y/N) Samples		<u></u>				ECOL		-		1				10	Ĕ	N ³	ы	×						ency						-	
	Sealed Cooler			\succ		NOITION								ļ,			ľ			-				ľ			ç				
	Sample Intact	s		-		6					-																-				

.

DC#_Title: ENV-FRM-GBAY-0035 v03_Sample Preservation Receipt Form Effective Date: 8/16/2022

C All c	clier ontai	nt Na ners n	me: eeding	5 press	ervatio) on ha	Er ve be		eckec	and r	loted I	below paper	10	t⊊Óye	Pro s	ject∶ ⊡Na	#		40	26	14	11	-l adju	sted)					Init coi	ial whi	en d	RJ	Date/ Time.	
				Glass						Plast	ic						als				Ja	ars			Gen	eral		* (>6mm) *	H ≤2	laOH+Zn Act pH ≥9	ł≥12	H ≤2	after adjusted	Volume
Pace Lab #	AG1U	BG1U	AG1H	AG4S	AG5U	AG2S	BG3U	BP1U	BP3U	BP3B	BP3N	BP3S	BP2Z	VG9C	DG9T	VG9U	VG9H	VG9M	VG9D	JGFU	JG9U	WGFU	WPFU	SP5T	ZPLC	GN 1	GN 2	VOA Vials	H2SO4 pH s2	NaOH+Zn	NaOH pH ≥12	HNO3 pH ≤2	pH after a	(mL)
001									2		1																					$\left \mathbf{X} \right $		2.5/5
002	1	1			NY 3	うう	MR A		9			83	** 53	No.		5. AN	1		323	1. N.	* 2 8 - 2 8 - 2 8	\$	S.			É.X	. 4.07	1.				X	1893. N	2.5/5
003									2		L																					Ύ.		2.5/5
004		1998			\$9.Q	183			2		\$ <u></u>	:10	1.73		. 9 g		0.7		\$6.8.			\$ 2 -		19 1. K	1	ANT:		19-15 mg	192	1.20	2.45	X		2.5/5
005									2		Li																					Ý		2.5/5
.006	\geq	5.48 1970	N \$		с., ч 	97 B	c ⁷ n ŝ			1.1.1	. 1		14		\$	* B		52		验父	1. A	1855 1		· *	1 4 1 1 4 1	. ·		۸.	*	Ť	1.5	x .	1. N. M.	2.5/5
007					/			50 M2 N **		0 120 0	ļ					50						<u> </u>												2.5/5
008		198	\$x\$		2 K		21.1	104	X.X		standing By and st	1 200	18		· ·	1	<u> </u>	No. Gal		1000	્દું હું	in the second			13	1 1 1 1 1 1 38 1	. # S	* *	4		r. e	~ * »		2.5/5
009	22.5	10.000-000	- N. N. M. M. M.	10000000000	6																					<u> </u>								2.5/5
010		1.20	1.0%		1833	315	Ś.		· · · · ·	Υ.		2	1.46.5	193	1.	190	533		1	32.3	演繹		72.3	199	12.24	1.5		\$ \$\$;	ЧĶ.			81.2		2.5/5
011			18	(-C-	1		1		ļ			L		\geq			8.6 -										<u> </u>			2.7.9			2.5 / 5
012	, Ì	ĽŤ.			1/	2		19	\square	<u> </u>	2	î.Os		246	8 N	18 G /		₿\$\$\$ th	h . Save Lave	ά.ζ	• .	1	1 · · · ·		1.5489	13. v . v	122	2 x x 2 x	1.54	Ś	* * 8 .* 		3 X 	2.5 / 5
013				100.0000.000	4	0	<u> </u>			1				- 1.224 1A			ļ									<u> </u>							TERCAR	2.5/5
014	ξ.		3.58			\$\$.				1.4.2	d		205	<u> </u>	<u>}</u>	2.1	2		1215	212 ,	Ň	Si x Y		,			1.01	<u>.</u>	3.84	<u>.</u>	÷		<u> </u>	2.5/5
015	8.10 Sec.		<u>.</u>	1 Sec. 8	AN, Y		<u> </u>				Į۲	KI.	$\left \right\rangle$	1		E chines	1 - 5	alifana (6.11/20	- Widow	1 6.10										1.82.		7.85880aCuBA	2.5 / 5
016	100	-33;		Aller &	a a rai		2	大学	198 () 198	- 10-58	Ser. 7	211	28.			10.10	1	. 22. 7		A STREET	3	839			*		8.16	1	State .	2 A Daniel	308 942 - Juli Sa	1 4 M		2.5 / 5
017	trans.	8.	×		a 144.893	Action of		entri.		- 4. M	1		V 807 6	18 4 64		28.00	. 8	10 J-10 V		188p. 8.4	الله من	Station in	3 - 10 -	-3.8.		\succ			100	1.14		ļ	104 8000 A	2.5 / 5
018	2 6 61	1 1 1 1 1	夜 27	1 2 1	7 ° W	89992 1	\$2 ° \$	1.12.127	\$	1.25%	\$	1.58	1.5.8	19. U.S.	. ⁶ 966	豪受	th ≟∰		いるの	1988 S	8	\$ \$\$\$		8 Ş -	100	5.3	1.35			铲匕	С.		INK.	2.5/5
019	5. *	1.18.684		A-3-5	× . ¢ ;	Sey ,	11.18	arenalte.	5.79%	1.8980		1.8 Å		1.2.5				N 1								ļ							7	2.5/5
020	9 . 54		2002	Consta			23	\$	1. S. S.	1988	18 20		a -		<u> </u>	1,300 ;	<u> </u>	а					1 2018		ingle	188 • ~	. 34	ι. 1. 1911		1	5862		.*.	2.5/5
Excepte	ons to	presei	vation	check	VOA,	Coli	torm,	roc,	TOX	FOH,	0&G	, WID	RO, F	rhenol	ics, O	th <u>er.</u>				-	Hea	idspac	e in V	UA VI	als (>(6mm).	. ЦҮє	s ⊔t	No 🎘	A	*lf ye	s look	(in Trea	dspace colum
AG1U	1 lit	er am	ber al	ass			B	P1U	1 lite	er plas	tic un	pres				V	39C	40 m	nl. clea	ar asc	orbio	w/ HC	21	10	FU	4 07	ambe	riarı	Inpres				1	
BG1U	1 ht	er clea	ar glas	ss				P3U		mL pl			s				39T			ber N					59U			-	unpres					
AG1H	1 ht	er am	ber gla	ass H	CL			P3B	250	mL pl	astic	NaO⊦	l				39U			ar vial		es			GFU	4 oz	clear	jar un	pres					
AG4S								P3N		mL pl							39H			ar vial					PFU				Inpres				1	
AG5U AG2S								P3S P2Z		mL pl mL pl							39M 39D			ar vial ar vial		Н			25T PLC		mL pl c bag		Na Thi	osulfa	ate			
AG20									500	nic pi	ລວແບ	NaOF	τ Ζ Π				550	40 11								Zipio	u uag							

BG3U 250 mL clear glass unpres

GN 1

GN 2

Page <u>1</u> of <u>2</u>

Sample Condition Upon Rece	ipt Form (SCUR)
P	roject #:
Client Name: 5CS Engineers	WO#:40261411
Courier: 17 CS Logistics Fed Ex Speedee UPS Waltco	
Client Pace Other:	
Tracking #:	
Custody Seal on Cooler/Box Present: ves K no Seals intact: ves	
Custody Seal on Samples Present: yes no Seals intact: yes	
Packing Material: 🔲 Bubble Wrap 🔲 Bubble Bags 🔲 None 🕅 O	ther <u>Zeolog Baod</u>
Thermometer Used $SR - 127$ Type of Ice: Wet Blue Dry	
Cooler Temperature Uncorr: 1, D /Corr: 1, D	Person examining contents:
Temp Blank Present: 🕅 yes 🔲 no Biological Tissue is	Frozen: yes no Date: 42/23 Initials:
Temp should be above freezing to 6°C. Biota Samples may be received at \leq 0°C if shipped on Dry Ice.	
Chain of Custody Present: \mathcal{D} set $\Box N_0 \Box N/A$ 1.	
Chain of Custody Filed Out:	
Chain of Custody Relinquished:	
Sampler Name & Signature on COC:	
Samples Arrived within Hold Time: XIYes □No 5.	
	3.
Short Hold Time Analysis (<72hr): □Yes ☑No 6.	
Rush Turn Around Time Requested: □Yes 🖄 0 7.	
Sufficient Volume: 8.	
For Analysis: Ves No MS/MSD Yes No KA	
Correct Containers Used: XYes □No 9.	
Correct Type. Pace Green Bay Pace IR, Non-Pace	
Containers Intact:	
Filtered volume received for Dissolved tests	
Sample Labels match COC:	
-Includes date/time/ID/Analysis Matrix:	
Trip Blank Present: Sylves DNo DN/A 13.	
Trip Blank Custody Seals Present	
Pace Trip Blank Lot # (if purchased):	
Client Notification/ Resolution: Person Contacted: Date/Time: Comments/ Resolution:	If checked, see attached form for additional comments

PM Review is documented electronically in LIMs. By releasing the project, the PM acknowledges they have reviewed the sample login

Page Q of Q

Qualtrax ID: 41292

Appendix D Historical Monitoring Results

_ocation ID:	2R-OW								
Number of Sampling Dates:	20								
Parameter Name	Units	4/8/2016	6/20/2016	8/9/2016	10/20/2016	1/24/2017	4/6/2017	6/6/2017	8/1/2017
Boron	ug/L	100	22.4	32.6	43.1	31.2	70.6	45.2	35.7
Calcium	ug/L	205000	148000	145000	155000	152000	143000	145000	164000
Chloride	mg/L	91.7	232	215	217	201	102	115	272
Fluoride	mg/L	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1
Field pH	Std. Units	7.34	7.02	6.1	6.98	7.15	7.01	6.86	7
Sulfate	mg/L	19.5	28	25.4	21.6	23.9	17.6	17.8	28.8
Total Dissolved Solids	mg/L	774	908	974	944	854	750	744	1000
Antimony	ug/L	0.3	< 0.073	<0.073	<0.073	0.073	<0.073	0.32	<0.15
Arsenic	ug/L	5.2	0.34	0.39	0.39	0.65	0.35	0.71	1.2
Barium	ug/L	344	110	155	189	158	150	172	154
Beryllium	ug/L	0.83	<0.13	<0.13	<0.13	<0.13	<0.13	<0.18	<0.18
Cadmium	ug/L	0.21	<0.089	<0.089	<0.089	<0.089	<0.089	0.2	<0.081
Chromium	ug/L	23.6	3.1	2.9	1.7	2.6	2.2	1.6	4.3
Cobalt	ug/L	6	0.081	0.05	0.21	0.22	0.28	0.7	1.7
Lead	ug/L	13	0.17	0.14	0.074	0.38	0.48	0.4	1.2
Lithium	ug/L	19.6	9.6	9	8.2	8.2	5.3	6.2	15.1
Molybdenum	ug/L	0.58	0.28	0.32	0.25	0.28	0.5	0.54	0.44
Selenium	ug/L	2.2	<0.21	<0.21	<0.21	<0.21	<0.21	0.34	< 0.32
Thallium	ug/L	0.19	<0.14	<0.14	<0.14	<0.14	<0.14	0.45	<0.14
Mercury	ug/L	<0.18	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13
Total Radium	pĊi/L	0.945	0.815	0.432	0.896	0.627	1.02	1.58	2.12
pH at 25 Degrees C	Std. Units	7.4	7.4	7	7.4	7.4	7.1	6.9	7.1
Radium-226	pCi/L	0.304	0.433	0.0836	0.193	0	0.418	0.531	0.658
Radium-228	pCi/L	0.641	0.382	0.348	0.703	0.627	0.605	1.05	0.502
Field Specific Conductance	umhos/cm	1332	1277	1697	1533	1579	1387	1294	1651
Oxygen, Dissolved	mg/L	4.6	0.9	1	0.6	1	0.5	0.1	0
Field Oxidation Potential	mV	130	82	140	117	87	120	-20	-22
Groundwater Elevation	feet	610.02	606.7	605.74	607.27	609.64	609.27	607.63	604.59
Temperature, Water (C)	deg C	5.6	10.6	13.9	14.1	7.5	7	10.1	13
Turbidity	NŤU	612.3	10.97	3.64	3.32	11.71	16.46	0.55	41.3

Location ID:	2R-OW								
Number of Sampling Dates:	20								
Parameter Name	Units	10/23/2017	4/2/2018	10/1/2018	4/8/2019	10/7/2019	4/8/2020	10/15/2020	4/14/2021
Boron	ug/L	55.9	19.7	34.7	35.8	58.8	52.3	29.9	45.7
Calcium	ug/L	170000	121000	190000	121000	132000	117000	124000	154000
Chloride	mg/L	305	108	462	55.3	88.8	67.5	179	116
Fluoride	mg/L	<0.1	0.12	<0.1	<0.1	<0.1	<0.095	0.096	<0.095
Field pH	Std. Units	7.23	7.29	7.03	8.57	6.88	7.08	7.2	7.52
Sulfate	mg/L	29.3	17.2	37.2	10.6	13.2	11.6	20.3	15.3
Total Dissolved Solids	mg/L	1010	680	1260	610	706	604	806	737
Antimony	ug/L								
Arsenic	ug/L								
Barium	ug/L								
Beryllium	ug/L								
Cadmium	ug/L								
Chromium	ug/L								
Cobalt	ug/L								
Lead	ug/L								
Lithium	ug/L								
Molybdenum	ug/L								
Selenium	ug/L								
Thallium	ug/L								
Mercury	ug/L								
Total Radium	pCi/L								
pH at 25 Degrees C	Std. Units	7.1	7.4	7	7.5	7.1	7.1	7.4	7.4
Radium-226	pCi/L								
Radium-228	pCi/L								
Field Specific Conductance	umhos/cm	1864	1177	2202	1077	1261	1081	1490	1229
Oxygen, Dissolved	mg/L	4.9	6.7	1.6	0.6	2.5	1.5	3.5	6.9
Field Oxidation Potential	mV	131	85	180	75	148	43.7	282	282
Groundwater Elevation	feet	601.74	607.87	604.61	609.5	609.39	608.97	604.27	608.5
Temperature, Water (C)	deg C	13	5.2	13.4	6.7	14	6.1	13.6	6.6
Turbidity	NTU	2.24	6.38	7.09	8.59		15.24	28.74	413

Location ID:	2R-OW						
Number of Sampling Dates:	20						
Parameter Name	Units	10/26/2021	4/13/2022	10/6/2022	4/26/2023		
Boron	ug/L	47.2	27.9	49	32		
Calcium	ug/L	192000	160000	152000	91800		
Chloride	mg/L	493	275	414	53.4		
Fluoride	mg/L	<4.8	<0.95	<0.095	0.11		
Field pH	Std. Units	7.01	7.2	7.08	7.3		
Sulfate	mg/L	35.7	18.5	28	7.5		
Total Dissolved Solids	mg/L	1170	866	1110	512		
Antimony	ug/L						
Arsenic	ug/L						
Barium	ug/L						
Beryllium	ug/L						
Cadmium	ug/L						
Chromium	ug/L						
Cobalt	ug/L						
Lead	ug/L						
Lithium	ug/L						
Molybdenum	ug/L						
Selenium	ug/L						
Thallium	ug/L						
Mercury	ug/L						
Total Radium	pCi/L						
pH at 25 Degrees C	Std. Units	7.2	7.2	7.1	7.4		
Radium-226	pCi/L						
Radium-228	pCi/L						
Field Specific Conductance	umhos/cm	2290	1549	1992	889		
Oxygen, Dissolved	mg/L	0.6	6.72	1.06	0.9		
Field Oxidation Potential	mV	242	425.6	522.7	306.2		
Groundwater Elevation	feet	604.04	609.5	602.8	607.74		
Temperature, Water (C)	deg C	14	7.5	13.6	6.9		
Turbidity	NTU	95.2	205	2.75	3.62		

ocation ID:	MW-301								
Number of Sampling Dates:	21								
Parameter Name	Units	4/11/2016	6/20/2016	8/9/2016	10/20/2016	1/23/2017	4/6/2017	6/6/2017	8/2/2017
Boron	ug/L	8550	8190	8450	8620	9280	8370	9160	8610
Calcium	ug/L	88700	92200	84000	89400	89200	98800	94900	83600
Chloride	mg/L	16.2	15.9	13.7	13.9	13.8	12.7	13.5	12.3
Fluoride	mg/L	0.33	0.36	0.33	0.34	0.42	0.21	<0.1	0.32
Field pH	Std. Units	7.91	7.48	6.47	7.68	8.03	7.98	7.7	7.58
Sulfate	mg/L	372	343	368	369	372	367	362	340
Total Dissolved Solids	mg/L	838	794	862	838	826	838	804	780
Antimony	ug/L	0.49	0.21	<0.073	0.083	0.2	<0.15	0.33	<0.15
Arsenic	ug/L	4.3	2.4	2.3	4.2	1.8	2.8	1.9	1.5
Barium	ug/L	48.7	32.6	30.5	31.4	32.2	53.8	30.3	28.2
Beryllium	ug/L	0.18	<0.13	<0.13	<0.13	0.28	<0.25	<0.18	<0.18
Cadmium	ug/L	0.2	0.22	<0.089	<0.089	0.17	<0.18	<0.081	<0.081
Chromium	ug/L	3.5	0.55	<0.39	0.86	1.1	6.4	<1	<1
Cobalt	ug/L	1.2	0.39	0.38	0.39	0.24	1.5	0.24	0.2
Lead	ug/L	2.2	0.3	<0.04	0.29	0.47	2.1	0.28	0.29
Lithium	ug/L	21.4	14.2	15.6	15.8	16.3	20.6	17	15.8
Molybdenum	ug/L	2200	2040	2160	2300	2210	2090	2460	2070
Selenium	ug/L	0.52	<0.21	<0.21	<0.21	<0.21	<0.42	<0.32	<0.32
Thallium	ug/L	0.31	<0.14	<0.14	<0.14	0.22	<0.29	0.17	<0.14
Mercury	ug/L	<0.18	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13
Total Radium	pCi/L	0.41	1.62	0.456	0.729	1.09	1.51	0.494	1.67
pH at 25 Degrees C	Std. Units	7.9	7.6	7.4	7.5	7.9	7.9	7.7	7.5
Radium-226	pCi/L	0.32	0.958	-0.17	0.193	0.136	0.734	0.179	0.548
Radium-228	pCi/L	0.0904	0.661	0.456	0.536	0.951	0.774	0.315	0.296
Field Specific Conductance	umhos/cm	1206	1173	1230	1214	1198	1213	1147	1111
Oxygen, Dissolved	mg/L	4.8	1.6	0.1	0.2	7.4	5.5	3	0.5
Field Oxidation Potential	mV	5.2	89	-31	-24	173	51	-15	-13
Groundwater Elevation	feet	599.94	598.3	598	598.5	597.1	600.04	598.77	597.4
Temperature, Water (C)	deg C	7.2	10.1	10.5	10.8	8.8	8.9	9.5	11.6
Turbidity	NŤU	10.88	3.13	2.42	46.07	21.84	168.6	16.11	6.51

ocation ID:	MW-301								
mber of Sampling Dates:	21								
Parameter Name	Units	10/24/2017	4/2/2018	10/1/2018	4/8/2019	10/7/2019	4/8/2020	6/26/2020	10/15/202
Boron	ug/L	8820	7950	8230	7310	7220	7450		6550
Calcium	ug/L	87200	78900	88800	77500	87600	80800		114000
Chloride	mg/L	11.9	11.2	11.5	11.4	11.1	12.5		13.9
Fluoride	mg/L	<0.1	0.25	0.2	0.29	0.24	0.39	0.26	<0.48
Field pH	Std. Units	7.43	8.02	7.71	8.18	7.56	7.82	7.53	7.64
Sulfate	mg/L	341	332	318	322	312	298		293
Total Dissolved Solids	mg/L	772	752	722	724	694	718		678
Antimony	ug/L								
Arsenic	ug/L								
Barium	ug/L								
Beryllium	ug/L								
Cadmium	ug/L								
Chromium	ug/L								
Cobalt	ug/L								
Lead	ug/L								
Lithium	ug/L								
Molybdenum	ug/L								
Selenium	ug/L								
Thallium	ug/L								
Mercury	ug/L								
Total Radium	pCi/L								
pH at 25 Degrees C	Std. Units	7.5	7.8	7.7	7.9	7.8	7.9		7.6
Radium-226	pCi/L								
Radium-228	pCi/L								
Field Specific Conductance	umhos/cm	1096	1071	1086	1022	1052	977	983	996
Oxygen, Dissolved	mg/L	0	6.5	4.5	6.2	2.7	6.9	5.47	0.8
Field Oxidation Potential	mV	-18	44	53	55	146	17.1	49.1	140
Groundwater Elevation	feet	597.2	598.54	597.6	598.92	599.56	599.17	597.89	595.1
Temperature, Water (C)	deg C	10.7	7.8	11	9	12.2	8.5	16.8	11.2
Turbidity	NTU	11.58	12.19	13.32	32.91	79.44	37.12	62.57	130

Location ID:	MW-301							
Number of Sampling Dates:	21							
Parameter Name	Units	4/14/2021	10/26/2021	4/13/2022	10/6/2022	4/25/2023		
Boron	ug/L	7200	6710	7240	6230	6770		
Calcium	ug/L	118000	102000	89300	86900	87900		
Chloride	mg/L	13.5	13.8	14	15.5	17.9		
Fluoride	mg/L	0.25	0.24	<0.095	0.21	0.21		
Field pH	Std. Units	7.96	7.01	7.38	7.56	7.63		
Sulfate	mg/L	195	203	212	213	168		
Total Dissolved Solids	mg/L	614	538	560	572	554		
Antimony	ug/L							
Arsenic	ug/L							
Barium	ug/L							
Beryllium	ug/L							
Cadmium	ug/L							
Chromium	ug/L							
Cobalt	ug/L							
Lead	ug/L							
Lithium	ug/L							
Molybdenum	ug/L							
Selenium	ug/L							
Thallium	ug/L							
Mercury	ug/L							
Total Radium	pCi/L							
pH at 25 Degrees C	Std. Units	7.7	7.1	7.5	7.6	7.7		
Radium-226	pCi/L							
Radium-228	pCi/L							
Field Specific Conductance	umhos/cm	815	811	777	804	765		
Oxygen, Dissolved	mg/L	8.2	5.4	2.82	0.39	3.14		
Field Oxidation Potential	mV	226	196	417.1	-41.7	416.4		
Groundwater Elevation	feet	595.17	590.68	594.89	590.21	597.77		
Temperature, Water (C)	deg C	7.8	11.2	9	11.6	8.5		
Turbidity	NTU	124	88.4	25.6	20.7	96.1		

Location ID:	MW-302								
Number of Sampling Dates:	20								
Parameter Name	Units	4/8/2016	6/20/2016	8/9/2016	10/20/2016	1/24/2017	4/6/2017	6/6/2017	8/2/2017
Boron	ug/L	1950	2010	2000	2150	2000	1970	1970	1890
Calcium	ug/L	122000	116000	75900	72100	87400	114000	72200	62600
Chloride	mg/L	18.9	27.2	18	19.5	18.6	18.9	20	19.3
Fluoride	mg/L	0.83	1.3	0.8	0.8	0.89	0.76	0.9	0.78
Field pH	Std. Units	8.01	7.73	6.55	7.89	7.98	7.99	7.84	7.76
Sulfate	mg/L	75.1	89.6	80.7	77.2	71.1	85.8	88.5	80.2
Total Dissolved Solids	mg/L	352	364	396	348	328	358	350	360
Antimony	ug/L	0.3	0.085	<0.073	<0.073	0.86	<0.36	0.16	<0.15
Arsenic	ug/L	10.3	9.7	10.2	8.4	10.9	9.6	8.7	9
Barium	ug/L	152	109	66.7	57.2	90.1	104	58.4	50.9
Beryllium	ug/L	0.59	0.35	<0.13	<0.13	0.78	<0.63	<0.18	<0.18
Cadmium	ug/L	0.24	<0.089	<0.089	<0.089	0.49	<0.44	<0.081	<0.081
Chromium	ug/L	18.7	11.1	3.5	2.5	7.1	10	6.6	1.1
Cobalt	ug/L	6.2	3.6	1.1	0.84	2.6	3.2	1.5	0.53
Lead	ug/L	5.5	3.3	0.84	0.71	2.3	5.2	0.7	0.44
Lithium	ug/L	58.1	62.3	55.4	51.8	54.8	58.7	52.3	52.2
Molybdenum	ug/L	610	640	652	685	674	654	631	649
Selenium	ug/L	1.3	0.76	<0.21	0.22	<1	<1	<0.32	<0.32
Thallium	ug/L	0.35	<0.14	<0.14	<0.14	1.6	<0.71	<0.14	<0.14
Mercury	ug/L	<0.18	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13
Total Radium	pCi/L	1.47	0.505	0.0999	0.771	1.9	1.18	1.66	1.08
pH at 25 Degrees C	Std. Units	7.3	7.8	7.7	7.8	7.7	7.9	7.5	7.7
Radium-226	pCi/L	0.843	-0.408	-0.153	0.331	0.37	0.371	0.706	0.474
Radium-228	pCi/L	0.623	0.505	0.0999	0.44	1.53	0.813	0.95	0.604
Field Specific Conductance	umhos/cm	531	564	539	525	519	552	465	532
Oxygen, Dissolved	mg/L	1	0.2	0.1	1	0.1	0	0.5	0
Field Oxidation Potential	mV	-41	-123	-123	-111	-87	-517	-40	-121
Groundwater Elevation	feet	596.39	595.68	595.53	595.46	596.3	593.57	595.86	595.22
Temperature, Water (C)	deg C	9	13.1	13.2	11.2	9.3	9.6	12.2	12.6
Turbidity	NTU	885.4	369.4	108.3	62.99	161.1	367.5	94.92	39.69

ocation ID:	MW-302								
umber of Sampling Dates:	20								
Parameter Name	Units	10/24/2017	4/2/2018	10/1/2018	4/8/2019	10/7/2019	4/8/2020	10/15/2020	4/14/202
Boron	ug/L	1760	1800	1570	1670	1730	1570	1410	1550
Calcium	ug/L	68100	68000	64700	64800	67500	66800	124000	81200
Chloride	mg/L	18.9	18.5	18.6	18.4	17.8	19.2	20.9	20.6
Fluoride	mg/L	0.84	0.78	0.81	0.87	0.85	0.97	1	0.88
Field pH	Std. Units	7.6	7.78	7.99	7.98	7.86	7.56	7.9	8.19
Sulfate	mg/L	72.2	72.7	59.2	71.7	55.7	65.3	73.1	70.5
Total Dissolved Solids	mg/L	316	314	306	324	290	316	182	342
Antimony	ug/L								
Arsenic	ug/L								
Barium	ug/L								
Beryllium	ug/L								
Cadmium	ug/L								
Chromium	ug/L								
Cobalt	ug/L								
Lead	ug/L								
Lithium	ug/L								
Molybdenum	ug/L								
Selenium	ug/L								
Thallium	ug/L								
Mercury	ug/L								
Total Radium	pCi/L								
pH at 25 Degrees C	Std. Units	7.7	7.8	7.6	7.8	7.6	7.8	7.7	7.8
Radium-226	pCi/L								
Radium-228	pCi/L								
Field Specific Conductance	umhos/cm	505	517	504	519	487	476	523	517
Oxygen, Dissolved	mg/L	0	0.6	0.8	1.6	1.3	0.4	0.3	1.8
Field Oxidation Potential	mV	-118	-123	-96	-95	124	-107.6	-83	41
Groundwater Elevation	feet	595.25	595.71	595.28	595.68	595.58	595.33	598.56	600.56
Temperature, Water (C)	deg C	11.1	10.3	11.6	11.9	13.5	11.3	11.2	7.5
Turbidity	NTU	42.45	24.89	55.15	59.51	32.69	69.22	161.8	252

Location ID:	MW-302						
Number of Sampling Dates:	20						
Parameter Name	Units	10/26/2021	4/13/2022	10/6/2022	4/26/2023		
Boron	ug/L	1580	1460	1610	1450		
Calcium	ug/L	78200	61500	64000	46900		
Chloride	mg/L	20.7	21.2	21.2	16.5		
Fluoride	mg/L	0.88	0.91	0.87	0.75		
Field pH	Std. Units	7.6	7.7	7.89	7.85		
Sulfate	mg/L	71.2	68.5	70.5	75.4		
Total Dissolved Solids	mg/L	290	318	306	344		
Antimony	ug/L						
Arsenic	ug/L						
Barium	ug/L						
Beryllium	ug/L						
Cadmium	ug/L						
Chromium	ug/L						
Cobalt	ug/L						
Lead	ug/L						
Lithium	ug/L						
Molybdenum	ug/L						
Selenium	ug/L						
Thallium	ug/L						
Mercury	ug/L						
Total Radium	pCi/L						
pH at 25 Degrees C	Std. Units	7.8	7.7	7.8	8		
Radium-226	pCi/L						
Radium-228	pCi/L						
Field Specific Conductance	umhos/cm	496	488	499	501		
Oxygen, Dissolved	mg/L	0.1	1.39	0.61	1.86		
Field Oxidation Potential	mV	134	337.4	105.4	169.1		
Groundwater Elevation	feet	599.82	600.5	599.41	593.63		
Temperature, Water (C)	deg C	11.1	8.7	12.1	8.7		
Turbidity	NTU	69.8	26.2	21.9	3.1		

_ocation ID:	MW-303								
Number of Sampling Dates:	20								
Parameter Name	Units	4/8/2016	6/20/2016	8/9/2016	10/20/2016	1/24/2017	4/6/2017	6/6/2017	8/2/2017
Boron	ug/L	4210	3360	3860	3740	4210	4170	4570	3780
Calcium	ug/L	176000	138000	145000	147000	147000	135000	154000	139000
Chloride	mg/L	21.8	31.5	22.8	26	26.2	22.7	25.4	23.2
Fluoride	mg/L	<0.2	<1	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5
Field pH	Std. Units	7.04	6.79	6.09	6.94	6.94	6.88	7	6.94
Sulfate	mg/L	3	11.4	2.4	5.6	<5	<5	<5	<5
Total Dissolved Solids	mg/L	660	716	732	744	738	700	714	714
Antimony	ug/L	0.14	<0.073	<0.073	<0.073	<0.073	<0.073	0.32	0.25
Arsenic	ug/L	12.8	9.7	10.7	18.1	25.3	21.8	25.2	21.9
Barium	ug/L	229	189	195	180	186	142	143	144
Beryllium	ug/L	0.3	<0.13	<0.13	<0.13	<0.13	<0.13	0.33	0.21
Cadmium	ug/L	<0.089	<0.089	<0.089	<0.089	<0.089	<0.089	0.17	0.14
Chromium	ug/L	14.1	1.5	2	1.8	1.4	1.5	2.1	1.7
Cobalt	ug/L	8.7	5.3	5	4.4	4.3	3	3.4	3.2
Lead	ug/L	4.7	0.28	0.35	0.21	0.19	0.16	0.56	0.66
Lithium	ug/L	17.6	9.1	10.4	8.9	8.3	8.3	9.3	10.7
Molybdenum	ug/L	25.1	11.6	12.7	9	7.7	5.1	4.5	5.9
Selenium	ug/L	1.2	0.48	0.31	0.55	0.71	0.38	0.5	0.6
Thallium	ug/L	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14	0.36	0.26
Mercury	ug/L	<0.18	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13
Total Radium	pCi/L	1.44	1.93	1.22	1.48	1.16	1.31	1.2	1.81
pH at 25 Degrees C	Std. Units	7.2	7	6.9	7.2	7	6.8	6.9	7
Radium-226	pCi/L	0.239	1.03	0.651	0.521	0.386	0.123	0.276	0.772
Radium-228	pCi/L	1.2	0.898	0.567	0.962	0.772	1.19	0.926	1.04
Field Specific Conductance	umhos/cm	1273	1196	1220	1313	1335	1320	1112	1218
Oxygen, Dissolved	mg/L	0.49	0.9	0.1	0	0	0	0.8	0
Field Oxidation Potential	mV	-48	-71	-81	-102	-89	-20	-58	-116
Groundwater Elevation	feet	589.24	587.22	587.72	588.37	588.84	589.04	588.44	587.36
Temperature, Water (C)	deg C	9.1	11.6	11.9	10.7	10.5	10	10.2	10.4
Turbidity	NTU	409.5	18.26	48.39	16.45	12.58	9.61	186.4	28.41

ocation ID:	MW-303								
umber of Sampling Dates:	20								
Parameter Name	Units	10/24/2017	4/2/2018	10/1/2018	4/8/2019	10/7/2019	4/8/2020	10/15/2020	4/14/202
Boron	ug/L	3480	3040	2360	2930	2830	3380	3310	4600
Calcium	ug/L	173000	146000	139000	135000	136000	144000	132000	176000
Chloride	mg/L	20.4	19.7	4.3	20	19.1	23.5	20.9	22.5
Fluoride	mg/L	<0.5	<0.5	<0.1	<0.5	<0.5	<0.48	<0.48	<0.095
Field pH	Std. Units	7.14	6.86	6.93	7.15	6.9	6.7	7.11	7.27
Sulfate	mg/L	<5	<5	<1	<5	<5	<2.2	<2.2	0.54
Total Dissolved Solids	mg/L	566	630	620	668	584	692	620	710
Antimony	ug/L								
Arsenic	ug/L								
Barium	ug/L								
Beryllium	ug/L								
Cadmium	ug/L								
Chromium	ug/L								
Cobalt	ug/L								
Lead	ug/L								
Lithium	ug/L								
Molybdenum	ug/L								
Selenium	ug/L								
Thallium	ug/L								
Mercury	ug/L								
Total Radium	pCi/L								
pH at 25 Degrees C	Std. Units	6.8	7	6.8	6.9	7	6.8	7	7.1
Radium-226	pCi/L								
Radium-228	pCi/L								
Field Specific Conductance	umhos/cm	1095	1131	1105	1196	1127	1241	1123	1222
Oxygen, Dissolved	mg/L	0	0.3	0.2	0.3	0.2	0.2	0.2	2.3
Field Oxidation Potential	mV	-108	-97	-93	-85	122	-102.9	-32	-41
Groundwater Elevation	feet	587.97	588.77	588.17	588.88	588.77	588.66	593.19	595.0 ²
Temperature, Water (C)	deg C	11	9.8	10.7	10.3	11.8	10	10.9	7.7
Turbidity	NTU	563	233.5	107.1	61.84	94.01	87.6	70.42	408

Location ID:	MW-303						
Number of Sampling Dates:	20						
Parameter Name	Units	10/26/2021	4/13/2022	10/6/2022	4/25/2023		
Boron	ug/L	3650	4360	3650	4870		
Calcium	ug/L	148000	139000	135000	128000		
Chloride	mg/L	21.6	23.4	22	22.3		
Fluoride	mg/L	<0.48	<0.48	<0.095	<0.095		
Field pH	Std. Units	6.92	6.78	6.92	6.87		
Sulfate	mg/L	<2.2	<2.2	<0.44	0.5		
Total Dissolved Solids	mg/L	640	722	658	740		
Antimony	ug/L						
Arsenic	ug/L						
Barium	ug/L						
Beryllium	ug/L						
Cadmium	ug/L						
Chromium	ug/L						
Cobalt	ug/L						
Lead	ug/L						
Lithium	ug/L						
Molybdenum	ug/L						
Selenium	ug/L						
Thallium	ug/L						
Mercury	ug/L						
Total Radium	pCi/L						
pH at 25 Degrees C	Std. Units	7	6.8	6.8	7.1		
Radium-226	pCi/L						
Radium-228	pCi/L						
Field Specific Conductance	umhos/cm	1171	1224	1184	1230		
Oxygen, Dissolved	mg/L	1.6	1.98	1.31	5.27		
Field Oxidation Potential	mV	170	330.2	175.4	370.4		
Groundwater Elevation	feet	594.07	595.2	593.63	587.99		
Temperature, Water (C)	deg C	12.3	8.6	11.8	8		
Turbidity	NTU	88.4	75.1	165	44.1		

Appendix E

Alternative Source Demonstrations (ASDs)

E1 October 2022 ASD

Alternative Source Demonstration October 2022 Detection Monitoring

Edgewater Generating Station Sheboygan, Wisconsin

Prepared for:

25223068.00 | May 8, 2023

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830

Table of Contents

Sect	ion		Pag	je
PE Ce	ertifica	ation		iii
1.0	Intro	duction.		.1
	1.1	§257.9	94(E)(2) Alternative Source Demonstration Requirements	.1
	1.2		ormation and Map	
	1.3	Statisti	cally Significant Increases Identified	.2
	1.4	Overvie	ew of Alternative Source Demonstration	.2
2.0	Back	ground.		.2
	2.1	Region	al Geology and Hydrogeology	.3
	2.2	CCR M	onitoring System	.3
	2.3	Other M	Nonitoring Wells	.3
	2.4	Ground	Iwater Flow Direction	.3
3.0	Meth	odology	and Analysis Review	.4
	3.1	Sampli	ng and Field Analysis Review	.4
	3.2	Labora	tory Analysis Review	.4
	3.3	Statisti	cal Evaluation Review	.4
	3.4	Summa	ary of Methodology and Analysis Review Findings	.5
4.0	Alter		ources	
	4.1	Potenti	al Causes of SSI	.5
		4.1.1	Natural Variation	.5
		4.1.2	Man-Made Alternative Sources	.6
	4.2	Lines o	f Evidence	.6
		4.2.1	Previous CCR Pond and Landfill Study	
		4.2.2	CCR Constituents in Landfill Leachate	.7
		4.2.3	State Program Groundwater Monitoring Results	.8
5.0	Alter	native S	ource Demonstration Conclusions	.8
6.0	Site (Groundv	vater Monitoring Recommendations	.8
7.0	References9			

Tables

Table 1	Groundwater Analytical Results Summary – October 2022
Table 2	Historical Analytical Results for Parameters with SSIs
Table 3A	Groundwater Elevations – State Monitoring Wells
Table 3B	Groundwater Elevations – CCR Rule Monitoring Wells
Table 4	2016-2022 Groundwater Analytical Results – Closed Landfill State Monitoring Program Wells
Table 5	Analytical Results – Closed Landfill Leachate Fluoride Monitoring

Alternative Source Demonstration

Figures

- Figure 1. Site Location Map
- Figure 2. Site Plan and Monitoring Well Locations
- Figure 3. Water Table Map October 2022

Appendix

Appendix A Trend Plots for CCR Wells

I:\25223068.00\Deliverables\2022 Oct ASD Edg Closed\230508_EDG CLSD_Oct_ASD_Final.docx

PE CERTIFICATION

Sherren C. Clark E-29863 Madison, Wis,	I, Sherren Clark, hereby certify that that the information in this alternate source demonstration is accurate and meets the requirements of 40 CFR 257.94(e)(2). This certification is based on my review of the groundwater data and related site information available for the Edgewater Generating Station Ash Ponds. I am a duly licensed Professional Engineer under the laws of the State of Wisconsin.			
Madison, Wis, Wis,	(signature) 5/8/2023			
STORAC ENGLISHING	Sherren Clark, PE (printed or typed name)			
	License number E-29863			
	My license renewal date is July 31, 2024.			
	Pages or sheets covered by this seal: Alternative Source Demonstration – October 2022 Detection Monitoring, Edgewater Generating Station, Sheboygan Wisconsin (Entire Document)			

[This page left blank intentionally]

Alternative Source Demonstration

1.0 INTRODUCTION

This Alternative Source Demonstration (ASD) was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" published by the U.S. Environmental Protection Agency (USEPA) in the *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule,* dated April 17, 2015 (USEPA, 2015), and subsequent amendments. Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.94(e)(2). The applicable sections of the Rule are provided below in *italics*.

1.1 §257.94(E)(2) ALTERNATIVE SOURCE DEMONSTRATION REQUIREMENTS

The owner and operator may demonstrate that a source other than the CCR Unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels.

An ASD is completed when there are exceedances of one or more benchmarks established within the groundwater monitoring program. The ASD is completed to determine if any other sources are likely causes of the identified exceedance(s) of the established benchmark(s) at the site. This ASD was performed in response to results indicating a statistically significant increase (SSI) over background levels during detection monitoring under the CCR Rule.

This ASD report is evaluating the SSIs observed in the statistical evaluation of the October 2022 detection monitoring event at the Edgewater Generating Station (EDG). The first ASD was prepared for this facility evaluating the SSIs observed in the statistical evaluation of the October 2017 detection monitoring event (SCS Engineers [SCS], 2018b). The October 2017 ASD and subsequent semiannual updates have concluded that several lines of evidence demonstrate that SSIs reported for boron, fluoride, and sulfate concentrations in the downgradient monitoring wells (MW-301, MW-302, and MW-303) were likely due to leachate from the closed landfill, which is not subject to the requirements of 40 CFR 257.50-107.

As discussed in more detail in **Section 4.2** of this ASD, the findings for the October 2022 monitoring event were consistent with those for the previous events.

1.2 SITE INFORMATION AND MAP

EDG is located at 3739 Lakeshore Drive in Sheboygan, Sheboygan County, Wisconsin (**Figure 1**). EDG is an active coal-burning generating station. The EDG property includes a closed landfill and a series of CCR settling ponds, located on the opposite side of Lakeshore Drive from the plant itself (**Figure 1**). The EDG landfill is closed and no longer receives CCR. The groundwater monitoring system at EDG is a multi-unit system monitoring four former existing CCR Units, which were contiguous:

- EDG Slag Pond (existing CCR surface impoundment)
- EDG North A-Pond (existing CCR surface impoundment)
- EDG South A-Pond (existing CCR surface impoundment)
- EDG B-Pond (existing CCR surface impoundment)

Closure of the four CCR surface impoundments was initiated in 2020, the cover was in place in June 2021, and the closure was certified on August 9, 2021. The existing monitoring system is being used to monitor the closure area. A map showing the CCR Units and all background (or upgradient) and downgradient monitoring wells with identification numbers for the groundwater monitoring program is provided on **Figure 2**.

The closed CCR landfill (Wisconsin Department of Natural Resources [WDNR] Permit No. 2524) is located immediately west of the former ponds location. The landfill contains primarily fly ash with some slag and was closed in 1987. Because this CCR landfill did not accept CCR after October 19, 2015, the landfill is not subject to the requirements of 40 CFR 257.50-107. The closed landfill is unlined and is known to be impacting groundwater at the site (SCS, 2016). Previous investigations done at the site (BT², Inc., 1993; RMT, 1997) concluded that the groundwater impacts downgradient of the landfill and ponds were attributable to groundwater interaction with the landfill, rather than leakage from the ponds.

1.3 STATISTICALLY SIGNIFICANT INCREASES IDENTIFIED

SSIs were identified for boron, fluoride, and sulfate at one or more wells based on the October 2022 detection monitoring event. A summary of the October 2022 constituent concentrations and the established benchmark concentrations are provided in **Table 1**. The constituent concentrations with SSIs above the background concentration are highlighted in the table.

1.4 OVERVIEW OF ALTERNATIVE SOURCE DEMONSTRATION

This ASD report includes:

- Background information (Section 2.0)
- Evaluation of potential that SSIs are due to methodology or analysis (Section 3.0)
- Evaluation of potential that SSIs are due to natural sources or man-made sources other than the CCR Units (Section 4.0)
- ASD conclusions (Section 5.0)
- Monitoring recommendations (Section 6.0)

The boron, fluoride, and sulfate results from background and compliance sampling are provided in **Table 2**. The laboratory report for the October 2022 detection monitoring event was included in the 2022 annual groundwater monitoring and corrective action report completed in January 2023. Complete laboratory reports for the background monitoring events and previous detection monitoring events were included in the previous annual groundwater monitoring and corrective action reports.

2.0 BACKGROUND

To provide context for the ASD evaluation, the following background information is provided in this section of the report, prior to the ASD evaluation sections:

- Geologic and hydrogeologic setting
- CCR Rule monitoring system
- Other monitoring wells
- Groundwater flow direction

A more detailed discussion of the background information for the site is provided in the ASD for the October 2017 event (SCS, 2018a).

Alternative Source Demonstration

2.1 REGIONAL GEOLOGY AND HYDROGEOLOGY

For the purposes of groundwater monitoring, the unconsolidated sand and gravel aquifer is considered to be the uppermost aquifer, as defined under 40 CFR 257.53, at the EDG ponds. The sand and gravel aquifer is present in some parts of Sheboygan County (Skinner and Borman, 1973). Boring logs from monitoring wells at the EDG ponds and for nearby private wells indicate that the unconsolidated material at, and near, the site contains a significant amount of sand. Private well logs from the surrounding area indicate that the sand and gravel aquifer has been used as a water source; however, several older sand wells in the area have been replaced with bedrock water supply wells.

The dolomite aquifer underlies the unconsolidated material at the site. The total thickness of the dolomite aquifer at the site is unknown. The dolomite aquifer is underlain by the Maquoketa shale, which is a confining unit. The Maquoketa shale is underlain by the Cambrian-Ordovician sandstone aquifer. This sequence of sedimentary bedrock units is over 1,500 feet thick in the site vicinity.

The regional groundwater flow in the unconsolidated sand and gravel aquifer in the vicinity of the site is to the east and slightly southeast.

2.2 CCR MONITORING SYSTEM

The groundwater monitoring system established under the CCR Rule consists of one upgradient (background) monitoring well and three downgradient monitoring wells, as shown on **Figure 2**. The upgradient monitoring well is 2R-OW. The downgradient monitoring wells include MW-301, MW-302, and MW-303. The CCR compliance monitoring wells were installed in the unconsolidated sediments with screens in the uppermost soil layer producing appreciable water, which was a sandy silt unit. Well depths range from approximately 14.5 to 40 feet, measured from the top of the well casing.

2.3 OTHER MONITORING WELLS

Sixteen groundwater monitoring wells currently exist at the EDG site as part of the monitoring system developed for the state monitoring program for the closed landfill. The well locations are shown on **Figure 2**. These monitoring wells are used to monitor groundwater conditions at the site under the WDNR state monitoring program.

Monitoring wells for the state monitoring program are installed in the unconsolidated material at the site. This shallow monitoring system includes water table wells and piezometers. Well depths range from approximately 9 to 43 feet, measured from the top of the well casing.

2.4 GROUNDWATER FLOW DIRECTION

Shallow groundwater in the area of the EDG site generally flows to the south-southeast, toward Fish Creek, which discharges into Lake Michigan. There is some localized groundwater mounding associated with the EDG ponds. The water table map shown on **Figure 3** represents the site conditions of the unconsolidated deposits during the October 2022 detection monitoring event. The water table map shows a generally southward flow direction. The groundwater elevations at the CCR and state monitoring wells during the October 2022 detection monitoring event are in **Tables 3A** and **3B**.

3.0 METHODOLOGY AND ANALYSIS REVIEW

To evaluate the potential that an SSI is due to a source other than the regulated CCR Unit, SCS used a two-step evaluation process. First, the sample collection, field and laboratory analysis, and statistical evaluation were reviewed to identify any potential error or analysis that led to the exceedance of the benchmark. Second, potential alternative sources, including natural variation and man-made sources other than the CCR Unit, were evaluated. This section of the report provides the findings of the methodology and analysis review. **Section 4.0** of the report addresses the potential alternative sources.

3.1 SAMPLING AND FIELD ANALYSIS REVIEW

Field notes and sampling results were reviewed to determine if any sampling error may have caused or contributed to the observed SSIs. Potential field sampling errors or issues could include mislabeling of samples, improper sample handling, missed holding times, cross-contamination during sampling, or another field error. Field blank sample results were also reviewed for any indication of potential contamination from sampling equipment or containers. Based on the review of the field notes and results, SCS did not identify any indication that the SSI concentrations were due to a sampling error.

Because boron, fluoride, and sulfate are laboratory parameters, there is little potential for a field analysis error to contribute to an SSI.

3.2 LABORATORY ANALYSIS REVIEW

The laboratory report for the October 2022 detection monitoring was reviewed to evaluate whether any laboratory analysis error or issue may have caused or contributed to the observed SSIs for boron, fluoride, or sulfate. The laboratory report review included reviewing the laboratory quality control flags and narrative, verifying that correct methods were used and desired detection limits were achieved, and checking the field and laboratory blank sample results. Laboratory reports for the background monitoring events were reviewed for the October 2017 ASD. Laboratory reports for subsequent detection monitoring events were reviewed as part of the ASD preparation for each event.

Based on the review of the laboratory reports, SCS did not identify any indication that the SSI concentrations were due to a laboratory analysis error. There were no laboratory quality control flags or issues identified in the laboratory reports that affect the usability of the data for detection monitoring.

Time series plots of the analytical data were also reviewed for any anomalous results that might indicate a possible sampling or laboratory error (e.g., dilution error or incorrect sample labeling). Time series plots for the parameters with SSIs are provided in **Appendix A**. No indications of sampling or laboratory errors were noted based on the time series review. The October 2022 boron, fluoride, and sulfate results for 2R-OW, MW-301, MW-302, and MW-303 are consistent with the historical data.

3.3 STATISTICAL EVALUATION REVIEW

The review of the statistical results and methods includes a quality control check of the following:

• Input analytical data vs. laboratory analytical reports

 Review statistical method and outlier concentration lists for each monitoring well/CCR unit

Based on the review of the statistical evaluation, SCS did not identify any errors or issues in the statistical evaluation that caused or contributed to the determination of interwell SSIs for the October 2022 detection monitoring event.

3.4 SUMMARY OF METHODOLOGY AND ANALYSIS REVIEW FINDINGS

In summary, there were no changes to the SSI determinations for the October 2022 monitoring event based on the methodology and analysis review, and no errors or issues causing or contributing to the reported SSIs were identified.

4.0 ALTERNATIVE SOURCES

This section of the report discusses the potential alternative sources for the boron, fluoride, and sulfate SSIs at MW-301, MW-302, and MW-303; identifies the most likely alternative source(s); and presents the lines of evidence indicating that an alternative source is most likely the cause of the observed SSIs for boron, fluoride, and sulfate.

4.1 POTENTIAL CAUSES OF SSI

4.1.1 Natural Variation

The statistical analysis was completed using an interwell approach, comparing the October 2022 detection monitoring results to the upper prediction limits (UPLs) calculated based on the sampling of the background well (2R-OW). If concentrations of a constituent that is naturally present in the aquifer vary spatially, then the potential exists that the downgradient concentrations may be higher than upgradient concentrations due to natural variation.

Although natural variation is present in the shallow aquifer, it does not appear likely that natural variation is the primary source causing the boron and sulfate SSIs. These parameters were detected at higher concentrations than would likely be present naturally.

Natural variation may have caused or contributed to the SSI for fluoride at MW-302. Elevated natural fluoride concentrations significantly higher than those reported for the downgradient wells (above 2 milligrams per liter [mg/L]) have been observed in a region in eastern Wisconsin extending along the Lake Michigan shoreline from Kewaunee County in the north to the Illinois border in the south, as described in Luczaj, J., and Masarik, K, 2015, *Groundwater Quantity and Quality Issues in a Water-Rich Region: Examples from Wisconsin, USA*. The authors note that most of the wells with elevated fluoride appear to be drawing from the Pleistocene glacial sediments and Silurian dolomite units. Skinner and Borman (1973) and Kammerer (1995) also identify the Lake Michigan shoreline area of eastern Wisconsin as having somewhat elevated fluoride concentrations in groundwater.

The fluoride concentrations reported for MW-302 for October 2017 through April 2020 and April 2021 through October 2022 were just above the laboratory's limit of quantitation (LOQ), ranging from 0.78 mg/L in April 2018 to 0.88 mg/L in October 2021. These results are within the range of fluoride results at MW-302 during background monitoring for the CCR rule prior to October 2017 (**Table 2**). The result at MW-302 is within the range of reported regional natural

concentrations, indicating that the fluoride concentration observed in this well is potentially due to natural variability in the glacial sediments and shallow groundwater. As discussed below, there is also a potential that fluoride in MW-302 is associated with impacts from the closed CCR landfill.

4.1.2 Man-Made Alternative Sources

Man-made alternative sources that could potentially contribute to the boron, fluoride, and sulfate SSIs could include the closed CCR landfill, the coal storage area, or other plant operations. Based on the groundwater flow directions and previous investigations at the site, the closed landfill appears to be the most likely cause of the SSIs for wells MW-301, MW-302, and MW-303.

4.2 LINES OF EVIDENCE

The lines of evidence indicating that the SSIs for boron and sulfate in compliance wells MW-301, MW-302, and MW-303, relative to the background well, are due to an alternative source include:

- 1. A previous study of the CCR ponds and the closed CCR landfill determined that the landfill was the primary source of groundwater impacts in the area, based on multiple lines of evidence.
- 2. Past and current monitoring performed under the state monitoring program shows that boron, fluoride, and sulfate are present in the CCR landfill leachate.
- 3. Past and current monitoring performed under the state monitoring program shows that the highest boron and sulfate concentrations are in the monitoring wells near and downgradient from the CCR landfill.

Lines of evidence regarding natural variability as an additional alternative source of the fluoride SSIs are discussed above in **Section 4.1.1**.

Each of these lines of evidence and the supporting data were discussed in detail in the ASD for the October 2017 detection monitoring event (SCS, 2018b). The lines of evidence are discussed briefly below, focusing on any updated information collected since the previous ASDs.

4.2.1 Previous CCR Pond and Landfill Study

A previous investigation titled *Field Investigation Report: Edgewater Closed Ash Disposal Facility*, completed by BT² in 1993, found that groundwater impacts were likely due to the closed landfill (**Figure 2**) located immediately west of the ponds (BT², 1993). The purpose of the 1993 investigation was to investigate the likely impact on groundwater quality of lining or abandoning the CCR impoundments (referred to in the report as the Wisconsin Pollutant Discharge Elimination System [WPDES] lagoons). The results from the investigation indicated that the CCR impoundments were not the primary source of downgradient groundwater impacts, and that closure or lining was not warranted at that time. The WDNR concurred with that finding in a letter dated April 20, 1994.

The primary lines of evidence from the 1993 report that supported this finding, and support the ASD for boron, fluoride, and sulfate, included:

- Water samples collected from each of the ponds met the Wisconsin groundwater enforcement standards established under NR 140, Wisconsin Administrative Code.
- Soil borings installed in the material below the larger ash pond, where the slag pond and the WDPES lagoons (North Pond A and South Pond A) were constructed, indicated that

material below the ponds was almost entirely slag material. Water leaking out of the lagoons and moving downward would encounter primarily slag, which is relatively inert, and not fly ash.

- Results for water leach testing of site-wide composite samples of fly ash and slag confirmed that the fly ash had a higher potential than slag to impact groundwater. Water leach test results for the fly ash composite sample were higher for boron, sulfate, and fluoride in comparison to the slag composite sample.
- Ash disposal in the closed landfill was primarily fly ash. For seven borings in the landfill, the percent fly ash ranged from 60 to 86 percent.
- Water leach testing for individual boring samples of fly ash and/or slag also confirmed that fly ash leachate had significantly higher concentrations of boron and sulfate than slag leachate. For example, boron leach test results for seven samples from borings within the landfill, consisting mainly of fly ash, ranged from 624 to 3,370 micrograms per liter (μ g/L), with most results over 2,000 μ g/L. Boron leach test results for nine samples from borings around and between the ponds, consisting mainly of slag, ranged from less than 16 to 206 μ g/L.
- Water sampling within the landfill and pond area, in CCR above the native soil, documented that groundwater/leachate within the landfill had significantly higher concentrations of boron than the groundwater/leachate within the slag berms immediately adjacent to and between the Slag Pond, North/South Pond A, and Pond B.
- Groundwater monitoring results indicated that the highest concentrations of boron and sulfate were in monitoring wells downgradient from the landfill, including 18-OW and 29-OW. Elevated boron and sulfate were also reported for samples from wells 4-OW and 5-OW, located near the southwest and northwest corners of the landfill. Monitoring wells 6-OW and 7-OW, located east and southeast of the ponds, had much lower concentrations of boron and sulfate.

In the April 1994 approval letter, the WDNR approved the 1993 investigation of the WPDES lagoons/CCR impoundments and concurred with the findings of the report. The WDNR requested additional monitoring from the four new monitoring wells installed within the CCR (36-OW, 37-OW, 38R-OW, and 39R-OW) and requested the addition of fluoride and arsenic to the monitoring program for these groundwater/leachate head wells.

The results of the additional monitoring were reported to the WDNR in a Groundwater Assessment Report dated September 30, 1997. The WDNR responded to the 1997 report in a letter dated April 16, 1998, which stated, "We agree with the report's finding that the WPDES ponds [Slag Pond, North Pond A, and South Pond A] do not appear to be significantly contributing to the contaminant plume downgradient of the facility. No further remedial action concerning the influence of the ponds on the landfill is warranted at this time." The WDNR also noted that the leachable constituents migrating from the saturated portion of the closed landfill have stabilized or also decreased since the landfill's closure and capping.

4.2.2 CCR Constituents in Landfill Leachate

Past and current monitoring performed under the state monitoring program shows that boron and sulfate are present in the CCR landfill leachate. Recent groundwater and leachate monitoring results

Alternative Source Demonstration

for boron and sulfate in samples from the state monitoring program wells are summarized in **Table 4** (April 2016 through October 2022). The leachate head wells monitoring conditions within the CCR landfill are 37-OW, 38R-OW, and 39R-OW, listed near the end of the table. Beginning in October 2020, one or more of these wells have not been sampled because they were dry; however, historical results can be used to characterize the leachate. Water levels within the landfill have decreased in response to the pond closures.

Boron: Boron concentrations in samples from leachate head wells 37-OW, 38R-OW, and 39R-OW have generally exceeded those reported for the CCR monitoring wells.

Sulfate: Sulfate concentrations in samples from leachate head wells 37-OW, 38R-OW, and 39R-OW have generally exceeded those reported for the CCR monitoring wells.

Fluoride: Fluoride is not part of the routine state monitoring program for the closed CCR landfill, but was sampled from the leachate wells (37-OW, 38R-OW, and 39R-OW) and the pond berm well (36-OW) from 1994 to 1997, as requested by the WDNR. The fluoride concentrations ranged from 0.25 to 0.97 mg/L (**Table 5**). The fluoride concentration for the sample collected at MW-302 (0.87 mg/L) was less than the highest observed concentration at the leachate wells.

Based on these results, fly ash disposal in the closed CCR landfill is a likely historical source of elevated boron and sulfate in groundwater, and is a potential source of fluoride.

4.2.3 State Program Groundwater Monitoring Results

Current monitoring performed under the state monitoring program continues to show that the highest boron and sulfate concentrations are in the monitoring wells near and downgradient from the CCR landfill. State program monitoring results for the CCR Rule detection monitoring parameters that overlap with the state program are summarized in **Table 4**, and well locations are on **Figure 2**.

Consistent with the conditions observed at the time of the 1993 report, the recent groundwater monitoring results indicate that the highest concentrations of boron are in monitoring wells downgradient from the landfill, including 40-OW (replaced former 18-OW) and 29-OW. Sulfate concentrations at 29-OW have decreased since 1993, but remain high at downgradient well 40-OW. Elevated boron and sulfate also continue to be reported for samples from wells 4R-OW (replacement well for 4-OW) and 5-OW, located near the southwest and northwest corners of the landfill. Concentrations of boron and sulfate in the CCR program monitoring wells are lower than in the downgradient state program wells, consistent with the closed CCR landfill as the primary source.

5.0 ALTERNATIVE SOURCE DEMONSTRATION CONCLUSIONS

The lines of evidence discussed above regarding the SSIs reported for boron, fluoride, and sulfate concentrations in downgradient monitoring wells MW-301, MW-302, and/or MW-303 demonstrate that the SSIs are likely primarily due to leachate from the closed landfill, which is not subject to the requirements of 40 CFR 257.50-107. The landfill is regulated by the WDNR under the solid waste program. Natural variation may also contribute to the SSI reported for fluoride in downgradient monitoring well MW-302.

6.0 SITE GROUNDWATER MONITORING RECOMMENDATIONS

In accordance with section 257.94(e)(2) of the CCR Rule, the EDG pond site may continue with detection monitoring based on this ASD. The ASD report will be included in the 2023 Annual Report due January 31, 2024.

Alternative Source Demonstration

8

7.0 **REFERENCES**

BT², Inc., 1993, Field Investigation Report, Edgewater Closed Ash Disposal Facility, Wisconsin Power & Light Company, WDNR License #2524, June 1993.

Krammerer, P.A. Jr., 1995, Ground-Water Flow and Quality in Wisconsin's Shallow Aquifer System, U.S. Geological Survey, Water-Resources Investigations Report 90-4171.

Luczaj, J., and Masarik, K, 2015, Groundwater Quantity and Quality Issues in a Water-Rich Region: Examples from Wisconsin, USA: Resources, 2015, 4, 323-357.

RMT, Inc., 1997, Groundwater Assessment Report, Edgewater Closed Ash Disposal Facility, September 30, 1997.

SCS Engineers, 2016, Biennial Groundwater Monitoring Report for 2014-2015, Wisconsin Power and Light Company – Edgewater 1-4 (Closed) Ash Disposal Facility, Sheboygan, WI, License #02524, March 2016.

SCS Engineers, 2018a, Alternative Source Demonstration, October 2017 Monitoring Event, Edgewater Generating Station, April 2018.

SCS Engineers, 2018b, 2017 Annual Groundwater Monitoring and Corrective Action Report, Edgewater Generating Station, January 2018.

Skinner, Earl L., and Borman, Ronald G., 1973, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigation Atlas HA-432.

U.S. Environmental Protection Agency, 2015, Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities, Final Rule, April 2015.

Tables

- 1 Groundwater Analytical Results Summary October 2022
- 2 Historical Analytical Results for Parameters with SSIs
- 3A Groundwater Elevations State Monitoring Wells
- 3B Groundwater Elevations CCR Rule Monitoring Wells
- 4 2016-2022 Groundwater Analytical Results Closed Landfill State Monitoring Program Wells
- 5 Analytical Results Closed Landfill Leachate Fluoride Monitoring

		Background Well	Compliance Wells		
		2R-OW	MW-301	MW-302	MW-303
Parameter Name	UPL	10/6/2022	10/6/2022	10/6/2022	10/6/2022
Appendix III					-
Boron, µg/L	86	49.0	6,230	1,610	3,650
Calcium, µg/L	200,000	152,000	86,900	64,000	135,000
Chloride, mg/L	400	414	15.5	21.2	22.0
Fluoride, mg/L	0.2	<0.095	0.21 J	0.87	<0.095
Field pH, Std. Units	8.57	7.08	7.56	7.89	6.92
Sulfate, mg/L	36	28.0	213	70.5	<0.44
Total Dissolved Solids, mg/L	1,190	1,110	572	306	658

Table 1. Groundwater Analytical Results SummaryEdgewater Generating Station / SCS Engineers Project #25223068.00

Blue shaded cell indicates the compliance well result exceeds the UPL (background) and the Limit of Quantitation (LOQ).

Abbreviations:

UPL = Upper Prediction Limit -- = Not Applicable

4.4

LOD = Limit of Detection mg/L = milligrams per liter LOQ = Limit of Quantitation $\mu g/L = micrograms$ per liter

Lab Notes:

J = Estimated concentration at or above the LOD and below the LOQ.

Notes:

- 1. An individual result above the UPL does not constitute an SSI above background. See the accompanying report text for identification of statistically significant results.
- 2. Interwell UPLs calculated based on results from background well 2R-OW. Interwell UPLs based on a 1-of-2 retesting approach. The interwell UPLs were updated in January 2021 using data from April 2016 through October 2020.

Created by: NDK	Date: 1/7/2021
Last revision by: ACW	Date: 11/11/2022
Checked by: MDB	Date: 11/11/2022
Scientist/PM QA/QC: MDB	Date: 11/22/2022

Well Group	Well	Collection Date	Boron (µg/L)	Fluoride (mg/L)	Sulfate (mg/L)
		4/8/2016	100	<0.20	19.5
		6/20/2016	22.4	<0.20	28.0
		8/9/2016	32.6	<0.20	25.4
		10/20/2016	43.1	<0.10	21.6
		1/24/2017	31.2	< 0.10	23.9
		4/6/2017	70.6	<0.10	17.6
		6/6/2017	45.2	<0.10	17.8
pq		8/1/2017	35.7 55.9	<0.10 <0.10	28.8 29.3
Background	05.014	4/2/2018	19.7	0.10 0.12 J	17.2
rg k	2R-OW	10/1/2018	34.7	<0.12 J	37.2
ac		4/8/2019	35.8	<0.10	10.6
Δ		10/7/2019	58.8	<0.10	13.2
		4/8/2020	52.3	< 0.095	11.6
		10/15/2020	29.9	<0.096 J	20.3
		4/14/2021	45.7	< 0.095	15.3
		10/27/2021	47.2	<4.8 D3	35.7 J, D3
		4/13/2022	27.9 lq	<0.95 D3	18.5 J, D3
		10/6/2022	49.0	<0.095	28.0
		4/11/2016	8,550	0.33 J	372
		6/20/2016	8,190	0.36 J	343
		8/9/2016	8,450	0.33 J	368
		10/20/2016	8,620	0.34	369
		1/23/2017	9,280	0.42	372
	MW-301	4/6/2017	8,370	0.21 J	367
		6/6/2017	9,160	<0.10	362
		8/2/2017	8,610	0.32	340
		10/24/2017	8,820	<0.10	341
		4/2/2018	7,950	0.25 J	332
		10/1/2018	8,230	0.20 J	318
		4/8/2019	7,310	0.29 J	322
		10/7/2019	7,220	0.24 J	312
		4/8/2020	7,450 6,550	0.39 M0 <0.48 D3, M0	298 293
		4/14/2021	7,200	<0.48 D3, M0 0.25 J	195
		10/26/2021	6,710	0.24 J, M0	203 M0
		4/13/2022	7,240	<0.095	203 1/10
Compliance		10/6/2022	6,230	0.21 J	213
olia		4/8/2016	1,950	0.83	75.1
ш		6/20/2016	2,010	1.3 J	89.6
ő		8/9/2016	2,000	0.80	80.7
		10/20/2016	2,150	0.80	77.2
		1/24/2017	2,000	0.89 J	71.1
		4/6/2017	1,970	0.76	85.8
		6/6/2017	1,970	0.9	88.5
		8/2/2017	1,890	0.78	80.2
		10/24/2017	1,760	0.84	72.2
	MMA 200	4/2/2018	1,800	0.78	72.7
	MW-302	10/1/2018	1,570	0.81	59.2
		4/8/2019	1,670	0.87	71.7
		10/7/2019	1,730	0.85	55.7
		4/8/2020	1,570	0.97	65.3
		10/15/2020	1,410	1.0 J, D3	73.1
		4/14/2021	1,550	0.88	70.5
		10/26/2021	1,580	0.88	71.2
		4/13/2022	1,460	0.00	68.5
		10/6/2022	1,400	0.87	70.5
		10/0/2022	1,010	0.07	, 0.5

Table 2. Historical Analytical Results for Parameters with SSIs Edgewater Generating Station, Sheboygan, Wisconsin SCS Engineers Project #25223068.00

Well Group	Well	Collection Date	Boron (µg/L)	Fluoride (mg/L)	Sulfate (mg/L)
		4/8/2016	4,210	<0.20	3.0 J
		6/20/2016	3,360	<1.0	11.4 J
		8/9/2016	3,860	<0.20	2.4 J
		10/20/2016	3,740	<0.50	5.6 J
		1/24/2017	4,210	<0.50	<5.0
		4/6/2017	4,170	<0.50	<5.0
		6/6/2017	4,570	<0.50	<5.0
d)	MW-303	8/2/2017	3,780	<0.50	<5.0
Compliance		10/24/2017	3,480	<0.50	<5.0
olia		4/2/2018	3,040	<0.50	<5.0
ŭ l		10/1/2018	2,360	<0.10	<1.0
Ŭ		4/8/2019	2,930	<0.50	<5.0
		10/7/2019	2,830	<0.50	<5.0
		4/8/2020	3,380	<0.48	<2.2
		10/15/2020	3,310	<0.48 D3	<2.2 D3
		4/14/2021	4,600	<0.095	0.54 J
		10/26/2021	3,650	<0.48 D3	<2.2 D3
		4/13/2022	4,360	<0.48 D3	<2.2 D3
		10/6/2022	3,650	<0.095	<0.44
		10/15/2020 4/14/2021 10/26/2021 4/13/2022	3,310 4,600 3,650 4,360	<0.48 D3 <0.095 <0.48 D3 <0.48 D3	

Table 2. Historical Analytical Results for Parameters with SSIs Edgewater Generating Station, Sheboygan, Wisconsin SCS Engineers Project #25223068.00

Abbreviations:

 μ g/L = micrograms per liter or parts per billion (ppb)

mg/L = milligrams per liter or parts per million (ppm)

-- = not analyzed

J = Estimated value below laboratory's limit of quantitation (LOQ)

- M0 = Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
- D3 = Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

1q = Analyte was measured in the associated method blank at -3.1 ug/L.

Notes:

1. Complete laboratory reports are included in the Annual Groundwater Monitoring and Corrective Action Reports, Edgewater Generating Station.

Created by:	NDK	Date:	3/2/2018
Last revision by:	RM	Date:	4/12/2023
Checked by:	NLB	Date:	4/12/2023

 $\label{eq:lister} I:\25223068.00\Deliverables\2022\Cct\ASD\Edg\Closed\Tables\[Tables\2\and\4-Analytical\CCR\ and\ State\ Monitoring.xlsx]\Table 2.\ CCR\ Analytical\CCR\ and\ State\ Monitoring.xlsx]\Table 2.\ CCR\ Analytical\CCR\ analytical\ Ana$

E2 April 2023 ASD

Alternative Source Demonstration April 2023 Detection Monitoring

Edgewater Generating Station Sheboygan, Wisconsin

Prepared for:

25223068.00 | November 8, 2023

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830 Table of Contents

Sect	ion		Pag	je
PE C	ertifica	ation		iii
1.0	Intro	duction.		.1
	1.1	§257.9	04(E)(2) Alternative Source Demonstration Requirements	.1
	1.2		ormation and Map	
	1.3	Statisti	cally Significant Increases Identified	.2
	1.4	Overvie	ew of Alternative Source Demonstration	.2
2.0	Back	ground.		.2
	2.1	Region	al Geology and Hydrogeology	.3
	2.2	CCR M	onitoring System	.3
	2.3	Other N	Nonitoring Wells	.3
	2.4	Ground	Iwater Flow Direction	.3
3.0	Meth		and Analysis Review	
	3.1	Sampli	ng and Field Analysis Review	.4
	3.2		tory Analysis Review	
	3.3		cal Evaluation Review	
	3.4		ary of Methodology and Analysis Review Findings	
4.0	Alter		ources	
	4.1	Potenti	al Causes of SSI	
		4.1.1	Natural Variation	-
		4.1.2	Man-Made Alternative Sources	-
	4.2	Lines o	f Evidence	
		4.2.1	Previous CCR Pond and Landfill Study	
		4.2.2	CCR Constituents in Landfill Leachate	
		4.2.3	State Program Groundwater Monitoring Results	
5.0			ource Demonstration Conclusions	
6.0	Site (Groundv	vater Monitoring Recommendations	.8
7.0	Refe	rences		.9

Tables

Table 1	Groundwater Analytical Results Summary – April 2023
Table 2	Historical Analytical Results for Parameters with SSIs
Table 3A	Groundwater Elevations – State Monitoring Wells
Table 3B	Groundwater Elevations – CCR Rule Monitoring Wells
Table 4	2016-2023 Groundwater Analytical Results – Closed Landfill State Monitoring Program Wells
Table 5	Analytical Results – Closed Landfill Leachate Fluoride Monitoring

Alternative Source Demonstration

Figures

Figure 1. Site Location Map

- Site Plan and Monitoring Well Locations Water Table Map April 2023 Figure 2.
- Figure 3.

Appendix

Trend Plots for CCR Wells Appendix A

I:\25223068.00\Deliverables\2023 April ASD Edg Closed\231108_EDG CLSD_Apr_ASD_Final.docx

Alternative Source Demonstration

PE CERTIFICATION

Sherren C. K Clark E-29863 Madison, Wis.	I, Sherren Clark, hereby certify that the information in this alternate source demonstration is accurate and meets the requirements of 40 CFR 257.94(e)(2). This certification is based on my review of the groundwater data and related site information available for the Edgewater Generating Station Ash Ponds. I am a duly licensed Professional Engineer under the laws of the State of Wisconsin.
1990 Manufautur	11/8/2023 (signature) (date)
	Sherren Clark, PE (printed or typed name)
	License number E-29863
	My license renewal date is July 31, 2024.
	Pages or sheets covered by this seal: Alternative Source Demonstration – April 2023 Detection Monitoring, Edgewater Generating Station, Sheboygan Wisconsin (Entire Document)

[This page left blank intentionally]

Alternative Source Demonstration

1.0 INTRODUCTION

This Alternative Source Demonstration (ASD) was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" published by the U.S. Environmental Protection Agency (U.S. EPA) in the *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule,* dated April 17, 2015 (U.S. EPA, 2015), and subsequent amendments. Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.94(e)(2). The applicable sections of the Rule are provided below in *italics*.

1.1 §257.94(E)(2) ALTERNATIVE SOURCE DEMONSTRATION REQUIREMENTS

The owner and operator may demonstrate that a source other than the CCR Unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels.

An ASD is completed when there are exceedances of one or more benchmarks established within the groundwater monitoring program. The ASD is completed to determine if any other sources are likely causes of the identified exceedance(s) of the established benchmark(s) at the site. This ASD was performed in response to results indicating a statistically significant increase (SSI) over background levels during detection monitoring under the CCR Rule.

This ASD report is evaluating the SSIs observed in the statistical evaluation of the April 2023 detection monitoring event at the Edgewater Generating Station (EDG). The first ASD was prepared for this facility evaluating the SSIs observed in the statistical evaluation of the October 2017 detection monitoring event (SCS Engineers [SCS], 2018b). The October 2017 ASD and subsequent semiannual updates have concluded that several lines of evidence demonstrate that SSIs reported for boron, fluoride, and sulfate concentrations in the downgradient monitoring wells (MW-301, MW-302, and MW-303) were likely due to leachate from the closed landfill, which is not subject to the requirements of 40 CFR 257.50-107.

As discussed in more detail in **Section 4.2** of this ASD, the findings for the April 2023 monitoring event were consistent with those for the previous events.

1.2 SITE INFORMATION AND MAP

EDG is located at 3739 Lakeshore Drive in Sheboygan, Sheboygan County, Wisconsin (**Figure 1**). EDG is an active coal-burning generating station. The EDG property includes a closed landfill and a series of CCR settling ponds, located on the opposite side of Lakeshore Drive from the plant itself (**Figure 1**). The EDG landfill is closed and no longer receives CCR. The groundwater monitoring system at EDG is a multi-unit system monitoring four former existing CCR Units, which were contiguous:

- EDG Slag Pond (existing CCR surface impoundment)
- EDG North A-Pond (existing CCR surface impoundment)
- EDG South A-Pond (existing CCR surface impoundment)
- EDG B-Pond (existing CCR surface impoundment)

Closure of the four CCR surface impoundments was initiated in 2020, the cover was in place in June 2021, and the closure was certified on August 9, 2021. The existing monitoring system is being used to monitor the closure area. A map showing the CCR Units and all background (or upgradient) and downgradient monitoring wells with identification numbers for the groundwater monitoring program is provided on **Figure 2**.

The closed CCR landfill (Wisconsin Department of Natural Resources [WDNR] Permit No. 2524) is located immediately west of the former ponds location. The landfill contains primarily fly ash with some slag and was closed in 1987. Because this CCR landfill did not accept CCR after October 19, 2015, the landfill is not subject to the requirements of 40 CFR 257.50-107. The closed landfill is unlined and is known to be impacting groundwater at the site (SCS, 2016). Previous investigations done at the site (BT², Inc., 1993; RMT, 1997) concluded that the groundwater impacts downgradient of the landfill and ponds were attributable to groundwater interaction with the landfill, rather than leakage from the ponds.

1.3 STATISTICALLY SIGNIFICANT INCREASES IDENTIFIED

SSIs were identified for boron, fluoride, and sulfate at one or more wells based on the April 2023 detection monitoring event. A summary of the April 2023 constituent concentrations and the established benchmark concentrations are provided in **Table 1**. The constituent concentrations with SSIs above the background concentration are highlighted in the table.

1.4 OVERVIEW OF ALTERNATIVE SOURCE DEMONSTRATION

This ASD report includes:

- Background information (Section 2.0)
- Evaluation of potential that SSIs are due to methodology or analysis (Section 3.0)
- Evaluation of potential that SSIs are due to natural sources or man-made sources other than the CCR Units (**Section 4.0**)
- ASD conclusions (Section 5.0)
- Monitoring recommendations (Section 6.0)

The boron, fluoride, and sulfate results from background and compliance sampling are provided in **Table 2**. The laboratory report for the April 2023 detection monitoring event will be included in the 2023 annual groundwater monitoring and corrective action report to be completed in January 2024. Complete laboratory reports for the background monitoring events and previous detection monitoring events were included in the previous annual groundwater monitoring and corrective action reports.

2.0 BACKGROUND

To provide context for the ASD evaluation, the following background information is provided in this section of the report, prior to the ASD evaluation sections:

- Geologic and hydrogeologic setting
- CCR Rule monitoring system
- Other monitoring wells
- Groundwater flow direction

Alternative Source Demonstration

A more detailed discussion of the background information for the site is provided in the ASD for the October 2017 event (SCS, 2018a).

2.1 REGIONAL GEOLOGY AND HYDROGEOLOGY

For the purposes of groundwater monitoring, the unconsolidated sand and gravel aquifer is considered to be the uppermost aquifer, as defined under 40 CFR 257.53, at the EDG ponds. The sand and gravel aquifer is present in some parts of Sheboygan County (Skinner and Borman, 1973). Boring logs from monitoring wells at the EDG ponds and for nearby private wells indicate that the unconsolidated material at, and near, the site contains a significant amount of sand. Private well logs from the surrounding area indicate that the sand and gravel aquifer has been used as a water source; however, several older sand wells in the area have been replaced with bedrock water supply wells.

The dolomite aquifer underlies the unconsolidated material at the site. The total thickness of the dolomite aquifer at the site is unknown. The dolomite aquifer is underlain by the Maquoketa shale, which is a confining unit. The Maquoketa shale is underlain by the Cambrian-Ordovician sandstone aquifer. This sequence of sedimentary bedrock units is over 1,500 feet thick in the site vicinity.

The regional groundwater flow in the unconsolidated sand and gravel aquifer in the vicinity of the site is to the east and slightly southeast.

2.2 CCR MONITORING SYSTEM

The groundwater monitoring system established under the CCR Rule consists of one upgradient (background) monitoring well and three downgradient monitoring wells, as shown on **Figure 2**. The upgradient monitoring well is 2R-OW. The downgradient monitoring wells include MW-301, MW-302, and MW-303. The CCR compliance monitoring wells were installed in the unconsolidated sediments with screens in the uppermost soil layer producing appreciable water, which was a sandy silt unit. Well depths range from approximately 14.5 to 40 feet, measured from the top of the well casing.

2.3 OTHER MONITORING WELLS

Sixteen groundwater monitoring wells currently exist at the EDG site as part of the monitoring system developed for the state monitoring program for the closed landfill. The well locations are shown on **Figure 2**. These monitoring wells are used to monitor groundwater conditions at the site under the WDNR state monitoring program.

Monitoring wells for the state monitoring program are installed in the unconsolidated material at the site. This shallow monitoring system includes water table wells and piezometers. Well depths range from approximately 9 to 43 feet, measured from the top of the well casing.

2.4 GROUNDWATER FLOW DIRECTION

Shallow groundwater in the area of the EDG site generally flows to the south-southeast, toward Fish Creek, which discharges into Lake Michigan. There is some localized groundwater mounding associated with the EDG ponds. The water table map shown on **Figure 3** represents the site conditions of the unconsolidated deposits during the April 2023 detection monitoring event. The water table map shows a generally southward flow direction. The groundwater elevations at the CCR and state monitoring wells during the April 2023 detection monitoring event are in **Tables 3A** and **3B**.

3.0 METHODOLOGY AND ANALYSIS REVIEW

To evaluate the potential that an SSI is due to a source other than the regulated CCR Unit, SCS used a two-step evaluation process. First, the sample collection, field and laboratory analysis, and statistical evaluation were reviewed to identify any potential error or analysis that led to the exceedance of the benchmark. Second, potential alternative sources, including natural variation and man-made sources other than the CCR Unit, were evaluated. This section of the report provides the findings of the methodology and analysis review. **Section 4.0** of the report addresses the potential alternative sources.

3.1 SAMPLING AND FIELD ANALYSIS REVIEW

Field notes and sampling results were reviewed to determine if any sampling error may have caused or contributed to the observed SSIs. Potential field sampling errors or issues could include mislabeling of samples, improper sample handling, missed holding times, cross-contamination during sampling, or another field error. Field blank sample results were also reviewed for any indication of potential contamination from sampling equipment or containers. Based on the review of the field notes and results, SCS did not identify any indication that the SSI concentrations were due to a sampling error.

Because boron, fluoride, and sulfate are laboratory parameters, there is little potential for a field analysis error to contribute to an SSI.

3.2 LABORATORY ANALYSIS REVIEW

The laboratory report for the April 2023 detection monitoring was reviewed to evaluate whether any laboratory analysis error or issue may have caused or contributed to the observed SSIs for boron, fluoride, or sulfate. The laboratory report review included reviewing the laboratory quality control flags and narrative, verifying that correct methods were used and desired detection limits were achieved, and checking the field and laboratory blank sample results. Laboratory reports for the background monitoring events were reviewed for the October 2017 ASD. Laboratory reports for subsequent detection monitoring events were reviewed as part of the ASD preparation for each event.

Based on the review of the laboratory reports, SCS did not identify any indication that the SSI concentrations were due to a laboratory analysis error. There were no laboratory quality control flags or issues identified in the laboratory reports that affect the usability of the data for detection monitoring.

Time series plots of the analytical data were also reviewed for any anomalous results that might indicate a possible sampling or laboratory error (e.g., dilution error or incorrect sample labeling). Time series plots for the parameters with SSIs are provided in **Appendix A**. No indications of sampling or laboratory errors were noted based on the time series review. The April 2023 boron, fluoride, and sulfate results for 2R-OW, MW-301, MW-302, and MW-303 are consistent with the historical data.

3.3 STATISTICAL EVALUATION REVIEW

The review of the statistical results and methods includes a quality control check of the following:

- Input analytical data vs. laboratory analytical reports
- Review statistical method and outlier concentration lists for each monitoring well/CCR unit

Based on the review of the statistical evaluation, SCS did not identify any errors or issues in the statistical evaluation that caused or contributed to the determination of interwell SSIs for the April 2023 detection monitoring event.

3.4 SUMMARY OF METHODOLOGY AND ANALYSIS REVIEW FINDINGS

In summary, there were no changes to the SSI determinations for the April 2023 monitoring event based on the methodology and analysis review, and no errors or issues causing or contributing to the reported SSIs were identified.

4.0 ALTERNATIVE SOURCES

This section of the report discusses the potential alternative sources for the boron, fluoride, and sulfate SSIs at MW-301, MW-302, and MW-303; identifies the most likely alternative source(s); and presents the lines of evidence indicating that an alternative source is most likely the cause of the observed SSIs for boron, fluoride, and sulfate.

4.1 POTENTIAL CAUSES OF SSI

4.1.1 Natural Variation

The statistical analysis was completed using an interwell approach, comparing the April 2023 detection monitoring results to the upper prediction limits (UPLs) calculated based on the sampling of the background well (2R-OW). If concentrations of a constituent that is naturally present in the aquifer vary spatially, then the potential exists that the downgradient concentrations may be higher than upgradient concentrations due to natural variation.

Although natural variation is present in the shallow aquifer, it does not appear likely that natural variation is the primary source causing the boron and sulfate SSIs. These parameters were detected at higher concentrations than would likely be present naturally.

Natural variation may have caused or contributed to the SSI for fluoride at MW-302. Elevated natural fluoride concentrations significantly higher than those reported for the downgradient wells (above 2 milligrams per liter [mg/L]) have been observed in a region in eastern Wisconsin extending along the Lake Michigan shoreline from Kewaunee County in the north to the Illinois border in the south, as described in Luczaj, J., and Masarik, K., 2015, *Groundwater Quantity and Quality Issues in a Water-Rich Region: Examples from Wisconsin, USA*. The authors note that most of the wells with elevated fluoride appear to be drawing from the Pleistocene glacial sediments and Silurian dolomite units. Skinner and Borman (1973) and Kammerer (1995) also identify the Lake Michigan shoreline area of eastern Wisconsin as having somewhat elevated fluoride concentrations in groundwater.

The fluoride concentrations reported for MW-302 for October 2017 through April 2020 and April 2021 through October 2022 were just above the laboratory's limit of quantitation (LOQ), ranging from 0.75 mg/L in April 2023 to 0.88 mg/L in October 2021. These results are within the range of fluoride results at MW-302 during background monitoring for the CCR rule prior to October 2017 (**Table 2**). The result at MW-302 is within the range of reported regional natural concentrations, indicating that the fluoride concentration observed in this well is potentially due to natural variability in the glacial sediments and shallow groundwater. As discussed below, there is also a potential that fluoride in MW-302 is associated with impacts from the closed CCR landfill.

4.1.2 Man-Made Alternative Sources

Man-made alternative sources that could potentially contribute to the boron, fluoride, and sulfate SSIs could include the closed CCR landfill, the coal storage area, or other plant operations. Based on the groundwater flow directions and previous investigations at the site, the closed landfill appears to be the most likely cause of the SSIs for wells MW-301, MW-302, and MW-303.

4.2 LINES OF EVIDENCE

The lines of evidence indicating that the SSIs for boron, fluoride, and sulfate in compliance wells MW-301, MW-302, and MW-303, relative to the background well, are due to an alternative source include:

- 1. A previous study of the CCR ponds and the closed CCR landfill determined that the landfill was the primary source of groundwater impacts in the area, based on multiple lines of evidence.
- 2. Past and current monitoring performed under the state monitoring program shows that boron, fluoride, and sulfate are present in the CCR landfill leachate.
- 3. Past and current monitoring performed under the state monitoring program shows that the highest boron and sulfate concentrations are in the monitoring wells near and downgradient from the CCR landfill.

Lines of evidence regarding natural variability as an additional alternative source of the fluoride SSIs are discussed above in **Section 4.1.1**.

Each of these lines of evidence and the supporting data were discussed in detail in the ASD for the October 2017 detection monitoring event (SCS, 2018b). The lines of evidence are discussed briefly below, focusing on any updated information collected since the previous ASDs.

4.2.1 Previous CCR Pond and Landfill Study

A previous investigation titled *Field Investigation Report: Edgewater Closed Ash Disposal Facility*, completed by BT² in 1993, found that groundwater impacts were likely due to the closed landfill (**Figure 2**) located immediately west of the ponds (BT², 1993). The purpose of the 1993 investigation was to investigate the likely impact on groundwater quality of lining or abandoning the CCR impoundments (referred to in the report as the Wisconsin Pollutant Discharge Elimination System [WPDES] lagoons). The results from the investigation indicated that the CCR impoundments were not the primary source of downgradient groundwater impacts, and that closure or lining was not warranted at that time. The WDNR concurred with that finding in a letter dated April 20, 1994.

The primary lines of evidence from the 1993 report that supported this finding, and support the ASD for boron, fluoride, and sulfate, included:

- Water samples collected from each of the ponds met the Wisconsin groundwater enforcement standards established under NR 140, Wisconsin Administrative Code.
- Soil borings installed in the material below the larger ash pond, where the slag pond and the WDPES lagoons (North Pond A and South Pond A) were constructed, indicated that material below the ponds was almost entirely slag material. Water leaking out of the lagoons and moving downward would encounter primarily slag, which is relatively inert, and not fly ash.

Alternative Source Demonstration

- Results for water leach testing of site-wide composite samples of fly ash and slag confirmed that the fly ash had a higher potential than slag to impact groundwater. Water leach test results for the fly ash composite sample were higher for boron, sulfate, and fluoride in comparison to the slag composite sample.
- Ash disposal in the closed landfill was primarily fly ash. For seven borings in the landfill, the percent fly ash ranged from 60 to 86 percent.
- Water leach testing for individual boring samples of fly ash and/or slag also confirmed that fly ash leachate had significantly higher concentrations of boron and sulfate than slag leachate. For example, boron leach test results for seven samples from borings within the landfill, consisting mainly of fly ash, ranged from 624 to 3,370 micrograms per liter (μ g/L), with most results over 2,000 μ g/L. Boron leach test results for nine samples from borings around and between the ponds, consisting mainly of slag, ranged from less than 16 to 206 μ g/L.
- Water sampling within the landfill and pond area, in CCR above the native soil, documented that groundwater/leachate within the landfill had significantly higher concentrations of boron than the groundwater/leachate within the slag berms immediately adjacent to and between the Slag Pond, North/South Pond A, and Pond B.
- Groundwater monitoring results indicated that the highest concentrations of boron and sulfate were in monitoring wells downgradient from the landfill, including 18-OW and 29-OW. Elevated boron and sulfate were also reported for samples from wells 4-OW and 5-OW, located near the southwest and northwest corners of the landfill. Monitoring wells 6-OW and 7-OW, located east and southeast of the ponds, had much lower concentrations of boron and sulfate.

In the April 1994 approval letter, the WDNR approved the 1993 investigation of the WPDES lagoons/CCR impoundments and concurred with the findings of the report. The WDNR requested additional monitoring from the four new monitoring wells installed within the CCR (36-OW, 37-OW, 38R-OW, and 39R-OW) and requested the addition of fluoride and arsenic to the monitoring program for these groundwater/leachate head wells.

The results of the additional monitoring were reported to the WDNR in a Groundwater Assessment Report dated September 30, 1997. The WDNR responded to the 1997 report in a letter dated April 16, 1998, which stated, "We agree with the report's finding that the WPDES ponds [Slag Pond, North Pond A, and South Pond A] do not appear to be significantly contributing to the contaminant plume downgradient of the facility. No further remedial action concerning the influence of the ponds on the landfill is warranted at this time." The WDNR also noted that the leachable constituents migrating from the saturated portion of the closed landfill have stabilized or also decreased since the landfill's closure and capping.

4.2.2 CCR Constituents in Landfill Leachate

Past and current monitoring performed under the state monitoring program shows that boron and sulfate are present in the CCR landfill leachate. Recent groundwater and leachate monitoring results for boron and sulfate in samples from the state monitoring program wells are summarized in **Table 4** (April 2016 through April 2023). The leachate head wells monitoring conditions within the CCR landfill are 37-OW, 38R-OW, and 39R-OW, listed near the end of the table. Beginning in October 2020, one or more of these wells have not been sampled because they were dry, or did not have

7

Alternative Source Demonstration

enough water in the well for sample collection; however, historical results can be used to characterize the leachate. Water levels within the landfill have decreased in response to the pond closures.

Boron: Boron concentrations in samples from leachate head wells 37-OW, 38R-OW, and 39R-OW have generally exceeded those reported for the CCR monitoring wells.

Sulfate: Sulfate concentrations in samples from leachate head wells 37-OW, 38R-OW, and 39R-OW have generally exceeded those reported for the CCR monitoring wells.

Fluoride: Fluoride is not part of the routine state monitoring program for the closed CCR landfill, but was sampled from the leachate wells (37-OW, 38R-OW, and 39R-OW) and the pond berm well (36-OW) from 1994 to 1997, as requested by the WDNR. The fluoride concentrations ranged from 0.25 to 0.97 mg/L (**Table 5**). The fluoride concentration for the sample collected at MW-302 (0.75 mg/L) was less than the highest observed concentration at the leachate wells.

Based on these results, fly ash disposal in the closed CCR landfill is a likely historical source of elevated boron and sulfate in groundwater, and is a potential source of fluoride.

4.2.3 State Program Groundwater Monitoring Results

Current monitoring performed under the state monitoring program continues to show that the highest boron and sulfate concentrations are in the monitoring wells near and downgradient from the CCR landfill. State program monitoring results for the CCR Rule detection monitoring parameters that overlap with the state program are summarized in **Table 4**, and well locations are on **Figure 2**.

Consistent with the conditions observed at the time of the 1993 report, the recent groundwater monitoring results indicate that the highest concentrations of boron are in monitoring wells downgradient from the landfill, including 40-OW (replaced former 18-OW) and 29-OW. Sulfate concentrations at 29-OW have decreased since 1993, but remain elevated at downgradient well 40-OW. Elevated boron and sulfate also continue to be reported for samples from wells 4R-OW (replacement well for 4-OW) and 5-OW, located near the southwest and northwest corners of the landfill. Concentrations of boron and sulfate in the CCR program monitoring wells are lower than in the downgradient state program wells, consistent with the closed CCR landfill as the primary source.

5.0 ALTERNATIVE SOURCE DEMONSTRATION CONCLUSIONS

The lines of evidence discussed above regarding the SSIs reported for boron, fluoride, and sulfate concentrations in downgradient monitoring wells MW-301, MW-302, and/or MW-303 demonstrate that the SSIs are likely primarily due to leachate from the closed landfill, which is not subject to the requirements of 40 CFR 257.50-107. The landfill is regulated by the WDNR under the solid waste program. Natural variation may also contribute to the SSI reported for fluoride in downgradient monitoring well MW-302.

6.0 SITE GROUNDWATER MONITORING RECOMMENDATIONS

In accordance with section 257.94(e)(2) of the CCR Rule, the EDG pond site may continue with detection monitoring based on this ASD. The ASD report will be included in the 2023 Annual Report due January 31, 2024.

7.0 **REFERENCES**

BT², Inc., 1993, Field Investigation Report, Edgewater Closed Ash Disposal Facility, Wisconsin Power & Light Company, WDNR License #2524, June 1993.

Krammerer, P.A. Jr., 1995, Ground-Water Flow and Quality in Wisconsin's Shallow Aquifer System, U.S. Geological Survey, Water-Resources Investigations Report 90-4171.

Luczaj, J., and Masarik, K, 2015, Groundwater Quantity and Quality Issues in a Water-Rich Region: Examples from Wisconsin, USA: Resources, 2015, 4, 323-357.

RMT, Inc., 1997, Groundwater Assessment Report, Edgewater Closed Ash Disposal Facility, September 30, 1997.

SCS Engineers, 2016, Biennial Groundwater Monitoring Report for 2014-2015, Wisconsin Power and Light Company – Edgewater 1-4 (Closed) Ash Disposal Facility, Sheboygan, WI, License #02524, March 2016.

SCS Engineers, 2018a, Alternative Source Demonstration, October 2017 Monitoring Event, Edgewater Generating Station, April 2018.

SCS Engineers, 2018b, 2017 Annual Groundwater Monitoring and Corrective Action Report, Edgewater Generating Station, January 2018.

Skinner, Earl L., and Borman, Ronald G., 1973, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigation Atlas HA-432.

U.S. Environmental Protection Agency, 2015, Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities, Final Rule, April 2015.

Tables

- 1 Groundwater Analytical Results Summary April 2023
- 2 Historical Analytical Results for Parameters with SSIs
- 3A Groundwater Elevations State Monitoring Wells
- 3B Groundwater Elevations CCR Rule Monitoring Wells
- 4 2016-2023 Groundwater Analytical Results Closed Landfill State Monitoring Program Wells
- 5 Analytical Results Closed Landfill Leachate Fluoride Monitoring

		Backgro Well		Compliance Wells			ells
Dama da Nama		2R-O\	N	MW-30)1	MW-302	MW-303
Parameter Name		4/26/20	023	4/25/20	23	4/26/2023	4/25/2023
Groundwater Elevation, ft amsl	UPL	607.7	4	597.77	7	593.63	587.99
Appendix III							
Boron, µg/L	78.4	32.0		6,770		1,450	4,870
Calcium, µg/L	201,000	91,800	P6	87,900		46,900	128,000
Chloride, mg/L	456	53.4		17.9		16.5	22.3
Fluoride, mg/L	0.200	0.11	J	0.21	J	0.75	<0.095
Field pH, Std. Units	8.57	7.30		7.63		7.85	6.87
Sulfate, mg/L	36.7	7.5		168		75.4	0.5 J
Total Dissolved Solids, mg/L	1,220	512		554		344	740

Table 1. Groundwater Analytical Results Summary Edgewater Generating Station / SCS Engineers Project #25223068.00

4.4

Blue shaded cell indicates the compliance well result exceeds the UPL (background) and the Limit of Quantitation (LOQ).

Abbreviations:

UPL = Upper Prediction Limit -- = Not Applicable

LOD = Limit of Detection mg/L = milligrams per liter LOQ = Limit of Quantitation

 $\mu g/L = micrograms per liter$

Lab Notes:

J = Estimated concentration at or above the LOD and below the LOQ.

Notes:

1. An individual result above the UPL does not constitute an SSI above background. See the accompanying report text for identification of statistically significant results.

2. Interwell UPLs calculated based on results from background well 2R-OW. Interwell UPLs based on a 1-of-2 retesting approach. The interwell UPLs were updated in July 2023 using data from April 2016 through April 2023.

Created by: NDK	Date: 1/7/2021
Last revision by: SCC	Date: 7/28/2023
Checked by: RM	Date: 7/31/2023
Scientist/PM QA/QC: TK	Date: 7/31/2023

Well Group	Well	Collection Date	Boron (µg/L)	Field pH (Std. Units)	Fluoride (mg/L)	Sulfate (mg/L)
		4/8/2016	100	7.34	<0.20	19.5
		6/20/2016	22.4	7.02	<0.20	28.0
		8/9/2016	32.6	6.10	<0.20	25.4
		10/20/2016	43.1	6.98	<0.10	21.6
		1/24/2017	31.2 70.6	7.15	<0.10 <0.10	23.9 17.6
		4/6/2017 6/6/2017	45.2	6.86	<0.10	17.6
		8/1/2017	35.7	7.00	<0.10	28.8
p		10/23/2017	55.9	7.23	<0.10	29.3
Background		4/2/2018	19.7	7.29	0.12 J	17.2
ğ	2R-OW	10/1/2018	34.7	7.03	<0.10	37.2
Ď		4/8/2019	35.8	8.57	<0.10	10.6
ĕ		10/7/2019	58.8	6.88	<0.10	13.2
		4/8/2020	52.3	7.08	<0.095	11.6
		10/15/2020	29.9	7.20	<0.096 J	20.3
		4/14/2021	45.7	7.52	< 0.095	15.3
		10/27/2021	47.2	7.01	<4.8 D3	35.7 J, D3
		4/13/2022	27.9 lq	7.20	<0.95 D3	18.5 J, D3
		10/6/2022	49.0 32.0	7.08 7.30	< 0.095	28.0
		4/26/2023	32.0	7.30	0.11 J	7.0
		4/11/2016	8,550	7.91	0.33 J	372
		6/20/2016	8,190	7.48	0.36 J	343
		8/9/2016	8,450	6.47	0.33 J	368
		10/20/2016	8,620	7.68	0.34	369
	MW-301	1/23/2017	9,280	8.03	0.42	372
		4/6/2017	8,370	7.98	0.21 J	367
		6/6/2017	9,160	7.70	<0.10	362
		8/2/2017 10/24/2017	8,610 8,820	7.58 7.43	0.32	340
		4/2/2018	7,950	8.02	0.25 J	332
		10/1/2018	8,230	7.71	0.20 J	318
		4/8/2019	7,310	8.18	0.29 J	322
		10/7/2019	7,220	7.56	0.24 J	312
		4/8/2020	7,450	7.82	0.39 MO	298
		10/15/2020	6,550	7.64	<0.48 D3, M0	293
		4/14/2021	7,200	7.96	0.25 J	195
		10/26/2021	6,710	7.01	0.24 J, M0	203 MC
		4/13/2022	7,240	7.38	<0.095	212
		10/6/2022	6,230	7.56	0.21 J	213
Compliance		4/25/2023	6,770	7.63	0.21 J	168
iar		4/8/2016	1,950	8.01	0.83	75.1
du		6/20/2016	2,010	7.73	1.3 J	89.6
õ		8/9/2016	2,000	6.55	0.80	80.7
0		10/20/2016	2,150	7.89 7.98	0.80 J 89.0	77.2
		1/24/2017 4/6/2017	2,000 1,970	7.98	0.89 J	71.1 85.8
		6/6/2017	1,970	7.84	0.78	88.5
		8/2/2017	1,890	7.76	0.78	80.2
		10/24/2017	1,760	7.60	0.84	72.2
		4/2/2018	1,800	7.78	0.78	72.7
	MW-302	10/1/2018	1,570	7.99	0.81	59.2
		4/8/2019	1,670	7.98	0.87	71.7
		10/7/2019	1,730	7.86	0.85	55.7
		4/8/2020	1,570	7.56	0.97	65.3
		10/15/2020	1,410	7.90	1.0 J, D3	73.
		4/14/2021	1,550	8.19	0.88	70.5
		10/26/2021	1,580	7.60	0.88	71.2
					0.88	
		4/13/2022	1,460	7.70		68.5
		10/6/2022	1,610	7.89	0.87	70.5
		4/26/2023	1,450	7.85	0.75	75.4

Table 2. Historical Analytical Results for Parameters with SSIs Edgewater Generating Station, Sheboygan, Wisconsin SCS Engineers Project #25223068.00

Well Group	Well	Collection Date	Boron (µg/L)	Field pH (Std. Units)	Fluoride (mg/L)	Sulfate (mg/L)
		4/8/2016	4,210	7.04	<0.20	3.0 J
		6/20/2016	3,360	6.79	<1.0	11.4 J
		8/9/2016	3,860	6.09	<0.20	2.4 J
		10/20/2016	3,740	6.94	<0.50	5.6 J
		1/24/2017	4,210	6.94	<0.50	<5.0
		4/6/2017	4,170	6.88	<0.50	<5.0
		6/6/2017	4,570	7.00	<0.50	<5.0
		8/2/2017	3,780	6.94	<0.50	<5.0
e		10/24/2017	3,480	7.14	<0.50	<5.0
Compliance		4/2/2018	3,040	6.86	<0.50	<5.0
ild	MW-303	10/1/2018	2,360	6.93	<0.10	<1.0
Cor		4/8/2019	2,930	7.15	<0.50	<5.0
0		10/7/2019	2,830	6.90	<0.50	<5.0
		4/8/2020	3,380	6.70	<0.48	<2.2
		10/15/2020	3,310	7.11	<0.48 D3	<2.2 D3
		4/14/2021	4,600	7.27	<0.095	0.54 J
		10/26/2021	3,650	6.92	<0.48 D3	<2.2 D3
		4/13/2022	4,360	6.78	<0.48 D3	<2.2 D3
		10/6/2022	3,650	6.92	<0.095	<0.44
		4/25/2023	4,870	6.87	<0.095	0.50 J

Table 2. Historical Analytical Results for Parameters with SSIs Edgewater Generating Station, Sheboygan, Wisconsin SCS Engineers Project #25223068.00

Abbreviations:

 μ g/L = micrograms per liter or parts per billion (ppb)

mg/L = milligrams per liter or parts per million (ppm)

-- = not analyzed

J = Estimated value below laboratory's limit of quantitation (LOQ)

M0 = Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

D3 = Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

1q = Analyte was measured in the associated method blank at -3.1 µg/L.

Notes:

1. Complete laboratory reports are included in the Annual Groundwater Monitoring and Corrective Action Reports, Edgewater Generating Station.

Created by:	NDK	Date:	3/2/2018
Last revision by:	RM	Date:	9/20/2023
Checked by:	NLB	Date:	9/20/2023

I:\25223068.00\Deliverables\2023 April ASD Edg Closed\Tables\[Tables 2 and 4 - Analytical CCR and State Monitoring.xlsx]Table 2. CCR Analytical

								Ground	Water Ele	evation in	feet abo	ve mear	n sea leve	el (amsl)								
Well Number	1-OW	2R-OW	3R-OW	4R-OW	5-OW	W-5A	6-AR	6R-OW	7A-OW	7-OW	18-OW	29-OW	29-A	30-OW	31-OW	32-OW	36-OW	37-OW	38R-OW	39R-OW	40-OW	SG-01
Top of Casing Elevation (ft amsl)^	592.18	611.85	591.59	594.68	600.94	600.66	590.78	591.74	593.45	593.19	ABAND	588.72	588.43	591.13	589.22	589.21	ABAND	615.30	620.24	614.27	586.69	ABAND
Screen Length (ft)																						
Total Depth (ft from top of casing)	11.10	17.53	15.82	16.48	10.65	21.51	19.86	10.37	20.21	9.93	14.25	19.96	43.12	14.88	14.98	14.95	21.01	18.55	29.00	22.29	17.3	
Top of Well Screen Elevation (ft)	580.62	595.19	575.50	579.12	590.07	580.33	571.46	580.61	573.20	582.58	572.22	568.90	546.13	575.93	574.02	574.12	593.62	596.47	591.98	591.75		0.00
Measurement Date																						
October 24, 2012	588.11	607.82	582.64	585.24	595.63	596.69	587.42	587.40	592.00	589.78	583.49	585.33	586.60	586.40	582.58	583.63	599.77	599.42	599.38	598.05		597.60
April 18, 2012					595.89	597.13	587.33	587.35	592.35	589.79		585.32	588.39									
October 24, 2012					595.63	596.69	587.42	587.40	592.00	589.78		585.33	586.60									
April 8, 2013	588.50	609.92	588.37	586.35	596.66	597.65	588.40	587.34	592.79	589.95	583.97	585.78	588.07	588.57	584.35	584.50	600.79	600.24	600.16	598.30		597.9
October 22, 2013	584.88	601.15	580.90	584.46	594.23	595.64	582.64	584.83	591.23	587.24	NM ⁽¹⁾	584.70	586.76	582.19	580.40	580.76	599.13	598.22	598.42	596.56		598.0
April 22, 2014	588.05	609.22	587.99	586.11	595.18	597.10	587.00	587.37	589.27	589.51	NM ⁽¹⁾	585.38	588.22	587.53	583.75	583.75	NM ⁽¹⁾	599.67	599.38	598.56		597.8
October 28, 2014	586.14	607.27	586.30	585.08	595.33	596.51	587.68	586.99	591.92	589.29	NM ⁽¹⁾	585.00	587.84	585.48	582.88	582.68	600.07	599.81	599.26	598.37		595.85
April 7 - 9, 2015	587.90	608.47	587.44	585.52	595.66	596.76	586.99	587.50	591.95	588.50	ABAND	585.44	587.55	586.29	583.21	583.87	599.69	599.21	599.21	597.46	583.77	597.6
October 8, 2015	584.78	604.22	583.34	584.52	594.76	594.47	582.65	585.67	591.23	589.71	ABAND	584.69	587.27	584.26	581.60	582.52	600.29	599.47	599.70	598.09	583.01	
April 4-5, 2016	588.40	610.02	587.72	586.69	596.70	597.81	584.52	585.68	592.41	587.93	ABAND	582.95	587.25	586.91	584.35	584.47	601.05	601.37	601.18	601.13	579.28	599
October 17, 2016 ⁽²⁾	587.50	607.27	586.71	585.15	595.41	596.82	584.34	586.61	592.01	587.65	ABAND	581.25	586.10	586.23	583.02	583.83	600.87	600.70	600.74	599.49	579.42	
April 12-13, 2017	588.23	609.80	587.95	586.31	596.08	597.69	586.77	587.32	592.19	587.06	ABAND	583.74	585.43	585.36	583.68	584.52	602.01	602.11	602.08	601.29	584.02	
October 9, 2017	584.14	600.87	581.00	584.49	594.68	596.04	583.03	583.51	590.50	585.96	ABAND	583.01	584.88	582.76	580.93	581.18	600.18	598.48	599.65	598.07	583.05	
April 2, 2018	587.79	607.87	586.63	586.68	595.73	596.88	586.80	587.44	591.76	589.62	ABAND	585.51	587.11	585.68	582.95	582.85	600.71	600.00	600.04	597.99	583.64	
June 19, 2018	NM	605.70	585.49	585.20	595.41	NM	NM	NM	NM	587.20	ABAND	585.43	585.79	584.96	582.29	NM	NM (1)	600.44	600.68	599.61	583.07	NM
October 1, 2018	585.37	604.61	584.18	584.86	595.24	596.44	586.10	586.86	591.01	588.75	ABAND	585.04	584.94	584.79	582.11	582.81	600.30	600.12	600.27	599.79	583.17	
April 8, 2019	588.57	609.50	588.01	591.93	596.03	597.33	584.61	587.35	591.92	590.06	ABAND	585.76	586.75	587.83	584.18	584.85	600.21	599.60	599.74	598.49	583.75	
October 9-10, 2019	587.85	609.39	587.39	585.99	595.68	596.92	586.42	587.24	591.66	587.53	ABAND	585.14	585.10	587.15	583.63	584.48	599.92	600.25	600.01	599.82	583.08	
April 8-9, 2020	588.03	608.97	587.70	586.05	595.57	596.89	585.74	586.95	591.61	587.76	ABAND	584.98	587.35	587.29	583.70	584.59	599.40	599.52	599.48	599.38	583.01	
October 14-15, 2020	584.62	604.37	582.20	584.54	593.27	594.86	582.71	583.45	588.81	586.53	ABAND	583.95	586.83	583.83	582.60	582.82	ABAND	<u>596.87</u>	NM	594.72	583.26	NM
April 14, 2021	587.95	608.50	587.64	585.42	594.87	596.13	586.53	587.29	591.28	589.89	ABAND	585.16	587.64	587.06	583.46	584.25	ABAND	DRY	596.50	593.95	583.08	NM
October 27-28, 2021	584.53	603.62	580.74	584.47	593.06	594.70	579.90	584.60	590.45	587.39	ABAND	584.60	586.65	582.89	581.88	582.02	ABAND	DRY	595.49	592.34	582.74	ABAND
February 28, 2022	NM F00 (4	NM (09.(2	NM	NM	NM	NM	NM	NM 500.15	NM 501 (0	NM	ABAND	NM	NM FR4 82	NM	NM FRA 10	NM	ABAND	DRY	595.25	NM	NM	ABAND
April 13, 2022	588.64	608.63	588.30	585.06	595.72	595.11	586.08	588.15	591.60	590.70 587.38	ABAND ABAND	584.69	584.82	588.02	584.10	585.09		DRY DRY	594.43	DRY	583.09	ABAND
October 6, 2022	584.39	601.93	580.62	583.52	593.16	593.41	582.43	584.86	590.02			583.21	584.18	583.09	581.55	581.98	ABAND		594.62	593.36		ABAND
April 25-26, 2023	588.51	607.74	588.00	585.15	595.48	595.22	588.13	588.18	591.90	590.13	ABAND	584.92	586.46	587.94	583.60	584.62	ABAND	597.35	596.81	598.09		ABAND
Bottom of Well Elevation (ft)	591.72	612.72	591.32	595.60	600.72	601.84	591.32	590.98	573.20	582.58	572.22	568.90	546.13	575.93	574.02	574.12	593.62	596.47	592.14	591.75	568.75	0.00

Table 3A. Groundwater Elevations - State Monitoring Wells Edgewater 1-4 Closed Ash Disposal Facility / SCS Engineers Project #25223068.00

Notes:	Created by:	MDB	Date:	5/6/2013
NM = not measured	Last revision by:	MDB	Date:	5/3/2023
ABAND = abandoned	Checked by:	REO	Date:	5/4/2023

1: Well broken

2: Well casings at 7-OW, 7A, and 29-OW were cut down to allow the protective covers to close. 7-OW was cut down by 0.22 ft, 7A was cut down by 0.29 ft, and 29-OW was cut down by 0.17 ft. Top of casing elevations in this table were adjusted accordingly.

*: Well was frozen

^: Monitoring well adjustments and resurveys:

Monitoring well 38R-OW was extended on October 30, 2020 during repairs following well damage by pond closure construction equipment. Monitoring Well 40-OW cut down to have a top of casing elevation of 586.05 famsl on December 3, 2021. All active monitoring wells were resurveyed in January 2023. These elevations are retroactively applied to 2022 monitoring events.

I:\25223068.00\Deliverables\2023 April ASD Edg Closed\Tables\[Table 3A - GW Elevations State.xls]levels

Ground Water Elevation in	n feet above	mean sea lev	vel (amsl)	
Well Number	MW-301	MW-302	MW-303	2R-OW
Top of Casing Elevation (feet AMSL) ^(1,2,3)	606.90	607.70	604.78	611.85
Screen Length (ft)	5.00	5.00	5.00	10.00
Total Depth (ft from top of casing)	27.47	40.00	33.26	14.50
Top of Well Screen Elevation (ft)	581.95	580.15	579.60	608.22
Measurement Date				
April 8, 2016	599.75	596.19	589.04	609.68
June 20, 2016	598.30	595.68	587.22	606.70
August 9, 2016	598.00	595.53	587.72	605.74
October 20, 2016	598.50	595.46	588.37	607.27
January 23-24, 2017	597.10	596.30	588.84	609.64
April 6, 2017	600.04	593.57	589.04	609.72
October 24, 2017	598.77	595.86	588.44	607.63
August 1, 2017	597.40	595.22	587.36	604.59
October 24, 2017	597.20	595.25	587.97	601.74
April 2, 2018	598.54	595.71	588.77	607.87
October 1, 2018	597.60	595.28	588.17	604.61
April 8, 2019	598.92	595.68	588.88	609.50
October 7, 2019	599.56	595.58	588.77	609.39
June 26, 2020	597.89	NM	NM	NM
October 15, 2020	595.10	590.18	585.07	604.27
April 14, 2021	596.81	592.18	586.89	608.50
October 26, 2021	592.32	591.44	585.95	604.04
April 13, 2022	597.37	593.05	587.99	608.63
October 6, 2022	592.69	591.96	586.42	601.93
April 25-26, 2023	597.77	593.63	587.99	607.74
Bottom of Well Elevation (ft)	576.95	575.15	578.73	598.22

Table 3B. Groundwater Elevations - CCR Monitoring Wells WPL - Edgewater 1-4 (Closed) Ash Disposal Facility / SCS Engineers Project #25223068.00

Notes:

NM = not measured

(1): MW-302 and MW-303 were shortened in September 2020 due to site regrading during pond closure. The wells were resurveyed in November 2020.

(2): MW-301 was extended in November 2020 due to site regrading during pond closure. The well was resurveyed in November 2020.

(3): All site wells were re-surveyed in January 2023, and elevations were tied to NGS benchmark PID #DE7593.

Created by:	MDB	Date:	6/27/2016
Last rev. by:	MDB	Date:	5/2/2023
Checked by:	REO	Date:	5/4/2023
Scientist QA/QC:	TK	Date:	10/24/2023

I:\25223068.00\Deliverables\2023 April ASD Edg Closed\Tables\[Table 3B - GW Elevations CCR.xlsx]levels

Table 4. 2016 - 2023 Groundwater Analytical Results -Closed Landfill State Monitoring Program Wells WPL - Edgewater Generating Station / SCS Project #25223068.00 Sheboygan, Wisconsin

Point Name	Reporting Period	pH-Field (Standard Units)	Boron, dissolved (µg/L as B)	Sulfate, dissolved (mg/L as SO4)
Monitoring Wells	·	·	·	
2R-OW	2016-Apr	7.45	26.6	30.9
2R-OW	2016-Oct	6.98	40.4	22.9
2R-OW	2017-Apr	7.30	69.3 J	28.6
2R-OW	2017-Oct	7.66	35.2	32.9
2R-OW	2018-Apr	7.29	23.3	18.2
2R-OW	2018-Oct	7.03	41.8	35.5
2R-OW	2019-Apr	8.57	40.6	12.2
2R-OW	2019-Oct	6.76	88.5	29.3
2R-OW	2020-Apr	7.40	45.8	16.9
2R-OW	2020-Oct	7.40	29.9	21.8
2R-OW	2021-Apr	7.52	31.1	22.7
2R-OW	2021-Oct	8.12	39.2	26
2R-OW	2022-Apr	7.20	25.7	14.1 M0
2R-OW	2022-Oct	7.08	36.3	28.0
2R-OW	2023-Apr	7.30	34.9	7.9 M0
3R-OW	2016-Apr	7.41	392	533
3R-OW	2016-Oct	7.32	468	372
3R-OW	2017-Apr	7.35	400	409
3R-OW	2017-Oct	7.39	389	637
3R-OW	2018-Apr	7.24	351	498
3R-OW	2018-Oct	7.03	462	495
3R-OW	2019-Apr	7.70	337	279
3R-OW	2019-Oct	6.45	454	299
3R-OW	2020-Apr	7.21	473	498
3R-OW	2020-Oct	7.57	339	654
3R-OW	2021-Apr	7.76	316	172
3R-OW	2021-Oct	7.21	260	497
3R-OW	2022-Apr	7.45	234	126
3R-OW	2022-Oct	7.19	272	567
3R-OW	2023-Apr	7.27	387	392
4R-OW	2016-Apr	7.69	7,710	120
4R-OW	2016-Oct	7.71	17,300	252
4R-OW	2017-Apr	7.44	12,600	180
4R-OW	2017-Oct	7.31	15,700	178
4R-OW	2018-Apr	7.51	12,700	164
4R-OW	2018-Oct	7.22	8,630	129
4R-OW	2019-Apr	6.67	10,200	158
4R-OW	2019-Oct	7.51	9,200	161
4R-OW	2020-Apr	7.40	9,320	90.9
4R-OW	2020-Oct	7.57	10,200	134
4R-OW	2020-OCT 2021-Apr	8.16	10,800	191
4R-OW	2021-Apr	7.62	10,400	140
4R-OW	2021-OCT 2022-Apr	7.67	8,930	76
4R-OW	2022-Apr 2022-Oct	7.47	8,840	112
4R-OW	2022-OCT 2023-Apr	7.28	8,200	95.5
5-OW	2016-Apr	7.64	4,330	215
5-OW	2016-Oct	7.75	5,970	210
5-OW	2017-Apr	7.51	5,490	258
5-OW	2017-Oct	7.54	6,040	230
5-OW	2018-Apr	7.90	3,900	143
5-OW	2018-Oct	7.43	6,180	226
5-OW	2019-Apr	6.74	4,140	197
5-OW	2019-Oct	7.19	4,680	179
5-OW	2020-Apr		4,610	199
5-OW	2020-Oct	7.78	4,870	161
5-OW	2021-Apr	8.31	2,670	111
5-OW	2021-Oct	7.82	3,250	100
5-OW	2022-Apr	7.75	2,280	82.1
5-OW	2022-Oct	7.62	3,830	101
5-OW	2023-Apr	7.99	1,550	21.0

Table 4. 2016 - 2023 Groundwater Analytical Results -Closed Landfill State Monitoring Program Wells WPL - Edgewater Generating Station / SCS Project #25223068.00 Sheboygan, Wisconsin

Point Name	Reporting Period	pH-Field (Standard Units)	Boron, dissolved (µg/L as B)	Sulfate, dissolvec (mg/L as SO4)
Monitoring Wells (co	ontinued)			
7-OW	2016-Apr	8.14	610	255
7-OW	2016-Oct	7.59	964	251
7-OW	2017-Apr	8.10	761	259
7-OW	2017-Oct	7.73	1,130	246
7-OW	2018-Apr	8.08	818	243
7-OW	2018-Oct	7.69	1150	218
7-OW	2019-Apr	7.85	914	254
7-OW	2019-Oct	7.47	1,200	224
7-OW	2020-Apr	8.01	928	214
7-OW	2020-Apr 2020-Oct	7.74	1,290	242
7-OW	2020-OCT 2021-Apr	8.12	961	242
7-OW	2021-Oct	7.94	1,350	224
7-OW	2022-Apr	7.47	1,110	225
7-OW	2022-Oct	7.80	1,210	189
7-OW	2023-Apr	7.69	1,090	213
29-A	2016-Apr	9.07	357	40.9
29-A	2016-Oct	8.54	264	39.6
29-A	2017-Apr	9.09	365	41.5
29-A	2017-Oct	8.97	278	42.1
29-A	2018-Apr	8.72	264	39.4
29-A	2018-Oct	8.38	268	39.2
29-A	2019-Apr	8.10	292	44.2
29-A	2019-Oct	8.81	258	39.1
29-A	2020-Apr	8.82	268	37.5
29-A	2020-Oct	8.90	263	42.9
29-A	2021-Apr	8.62	262	214
29-A	2021-Oct	9.35	233	40.8
29-A	2022-Apr	7.94	250	39.6
29-A	2022-Oct	8.82	495	44.3
29-A	2023-Apr	8.86	268	44.1
29-OW	2016-Apr	8.03	10,600	120
27-OW 29-OW	2016-Oct	7.69	10,900	85.7
27-OW 29-OW				
	2017-Apr	8.49	9,500	77.0
29-OW	2017-Oct	8.15	9,060	62.0
29-OW	2018-Apr	7.97	8,640	102
29-OW	2018-Oct	7.84	11,000	109
29-OW	2019-Apr	7.89	10,600	190
29-OW	2019-Oct	7.57	10,800	114
29-OW	2020-Apr	7.90	9,160	69.9
29-OW	2020-Oct	8.09	8,480	73.3
29-OW	2021-Apr	8.2	7,120	66.4
29-OW	2021-Oct	8.59	8,700	86.7
29-OW	2022-Apr	7.55	9,160	77.2
29-OW	2022-Oct	7.76	9,160	70.2
29-OW	2023-Apr	8.10	8,570	69.2
30-OW	2016-Apr	8.26	79.1	1 00
30-OW	· · · · · · · · · · · · · · · · · · ·	7.56	113	4.80 4.60
	2016-Oct			
30-OW	2017-Apr	8.47	176	7.50
30-OW	2017-Oct	7.44	135	16.7
30-OW	2018-Apr	7.96	94.5	21.5
30-OW	2018-Oct	7.47	115	11.4
30-OW	2019-Apr	8.07	52.1	2.40 J
30-OW	2019-Oct	7.37	84.9	5.60
30-OW	2020-Apr	7.61	54.4	2.80
30-OW	2020-Oct	7.24	118	15.2
30-OW	2021-Apr	8.26	42.3	5.5
30-OW	2021-Oct	7.52	108	14.9
30-OW	2022-Apr	7.91	35.9	3.6
30-OW	2022-Oct	7.48	93.1	10.7
		7.78	27.5	5.0

Table 4. 2016 - 2023 Groundwater Analytical Results -Closed Landfill State Monitoring Program Wells WPL - Edgewater Generating Station / SCS Project #25223068.00 Sheboygan, Wisconsin

Point Name	Reporting Period	pH-Field (Standard Units)	Boron, dissolved (µg/L as B)	Sulfate, dissolved (mg/L as SO4)
Monitoring Wells (co	ontinued)		1	1
31-OW	2016-Apr	7.63	114	91.2
31-OW	2016-Oct	7.68	34.7	63.3
31-OW	2017-Apr	7.99	76.9	82.4
31-OW	2017-Oct	7.79	190	70.3
31-OW	2018-Apr	7.71	30.8	51.5
31-OW	2018-Oct	7.64	36.7	62.7
31-OW	2019-Apr	7.95	18.5	68.6
31-OW	2019-Oct	7.41	38.6	57.5
31-OW	2020-Apr	7.54	25.8	39.1
31-OW	2020-Oct	7.69	30.8	58.5
31-OW	2021-Apr	8.33	51	59.5
31-OW	2021-Oct	7.47	39.5	35
31-OW	2022-Apr	7.94	32.2	26.5
31-OW	2022-Oct	7.66	48.3	30.4
31-OW	2023-Apr	7.72	30.7	35.2
40-OW	2016-Apr	8.04	8,030	731
40-OW	2016-Oct	7.91	29,400	768
40-OW	2017-Apr	7.97	8,680	849
40-OW	2017-Oct	7.91	8,800	873
40-OW	2018-Apr	7.93	9,790	771
40-OW	2018-Oct	7.51	11,300	797
40-OW	2019-Apr	6.80	8,620	636
40-OW	2019-Oct	7.53	10,600	836
40-OW	2020-Apr	7.83	10,900	836
40-OW	2020-Oct	8.03	9,870	818
40-OW	2021-Apr	8.23	8,010	827
40-OW	2021-Oct	8.53	9,180	839
40-OW	2022-Apr	7.68	10,000	807
40-OW	2022-Oct	8.03	8,840	748
40-OW	2023-Apr	8.01	7,670	709
eachate Monitorin	a Wells			
37-OW	2016-Apr	7.49	19,100	759
37-OW	2016-Oct	7.31	12,500	439
37-OW	2017-Apr	8.01	15,900	633
37-OW	2017-Oct	7.24	9,440	264
37-OW	2018-Apr	7.68	5,890	159
37-OW	2018-Oct	7.42	16,600	555
37-OW	2019-Apr	7.57	15,800	492
37-OW	2019-Oct	7.13	16,300	798
37-OW	2020-Apr	7.70	20,200	769
37-OW	2020-Apr			
37-OW	2020-OCT 2021-Apr			
37-OW	2021-Oct			
37-OW	2022-Apr			
37-OW	2022-Oct			
37-OW	2023-Apr			
38R-OW	2016-Apr	8.00	33,800	1,000
38R-OW	2016-Oct	7.71	17,100	514
38R-OW	2017-Apr	7.86	21,100	932
38R-OW	2017-Apr	7.72	10,800	364
38R-OW	2017-OCT 2018-Apr	7.72	4,250	123
38R-OW	2018-Oct	7.98	32,400	956
38R-OW	2018-OCT 2019-Apr	7.64	9,720	330
38R-OW	2017-Apr 2019-Oct	8.06	30,400	1,020
38R-OW	2019-001 2020-Apr	8.20	51,800	1,520
38R-OW 38R-OW	2020-Oct 2021-Apr	7.65	37,400	1,380
38R-OW	2021-Apr 2021-Oct	7.48	38,400	1,310
38R-OW	2021-OCT 2022-Apr			
38R-OW	2022-Apr 2022-Oct	7.40	41,700	1,420
JOK-0 W				

Table 4. 2016 - 2023 Groundwater Analytical Results -Closed Landfill State Monitoring Program Wells WPL - Edgewater Generating Station / SCS Project #25223068.00 Sheboygan, Wisconsin

Point Name	Reporting Period	pH-Field (Standard Units)	Boron, dissolved (µg/L as B)	Sulfate, dissolved (mg/L as SO ₄)
Leachate Monitoring	g Wells (continued)			
39R-OW	2016-Apr	7.26	10,100	534
39R-OW	2016-Oct	7.32	29,900	1,390
39R-OW	2017-Apr	7.44	22,400	1,150
39R-OW	2017-Oct	7.52	32,800	1,400
39R-OW	2018-Apr		28,800	772
39R-OW	2018-Oct	7.40	24,700	1,160
39R-OW	2019-Apr	7.14	26,000	1,520
39R-OW	2019-Oct	7.13	17,100	601
39R-OW	2020-Apr	7.42	19,100	1,160
39R-OW	2020-Oct	7.69	34,200	1,190
39R-OW	2021-Apr	7.95	24,800	1,140
39R-OW	2021-Oct			
39R-OW	2022-Apr			
39R-OW	2022-Oct			
39R-OW	2023-Apr	7.4	16,800	261
1	1	1		

Abbreviations:

µg/L = micrograms per liter or parts per billion (ppb) mg/L = milligrams per liter or parts per million (ppm)

<u>Notes:</u> -- : not measured

 $\label{eq:laboratory Notes:} J = \text{Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.}$

M0 = Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

Created by:	SCC	Date:	2/24/2014
Last revision by:	RM	Date:	9/20/2023
Checked by:	NLB	Date:	9/20/2023

I:\25223068.00\Deliverables\2023 April ASD Edg Closed\Tables\[Tables 2 and 4 - Analytical CCR and State Monitoring.xlsx]Table 4. GW quality Data

Table 5. Analytical Results - Closed Landfill Leachate Fluoride MonitoringEdgewater Generating Station, Sheboygan, WisconsinSCS Engineers Project #25222068.00

Collection Date		Fluoride		
	36-OW	37-OW	38R-OW	39R-OW
9/8/1994	0.25	0.62	0.57	0.79
9/14/1995	0.38	0.51	0.71	0.87
9/17/1996	0.56	0.42	0.71	0.97
9/16/1997	0.60	0.44	0.73	0.97

Abbreviations:

mg/L = milligrams per liter or parts per million (ppm)

Notes:

1. Data compiled from WDNR Groundwater Environmental Monitoring System (GEMS) website.

Created by:	NDK	Date:	3/5/2018
Last revision by:	NDK	Date:	3/5/2018
Checked by:	AJR	Date:	4/5/2018

I:\25222068.00\Deliverables\2022 Apr ASD Edg Closed\Tables\[Table 5 - EDG - closed-Leachate Fluoride Monitoring.xlsx]Table 5- Fl results

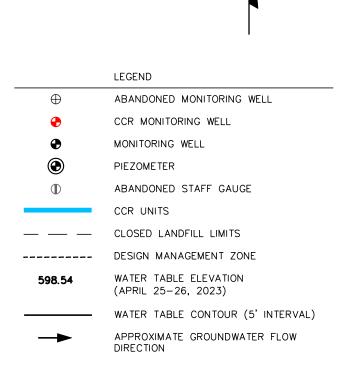
Figures

- 1 Site Location Map
- 2 Site Plan and Monitoring Well Locations
- 3 Water Table Map April 2023

02/26/2024 - Classification: Internal - ECRM13238693

LEGEN	D
-------	---

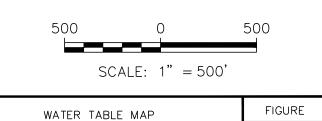
•	CCR RULE MONITORING WELL
•	CCR RULE BACKGROUND MONITORING WELL
•	ADDITIONAL MONITORING WELL
۲	ADDITIONAL PIEZOMETER
\oplus	ABANDONED MONITORING WELL
\oplus	ABANDONED STAFF GAUGE
	CCR UNITS
	CLOSED LANDFILL LIMITS


N

NOTES:

1.	AERIAL PHOTOGRAPH FROM ARCMAP WORLDN DATE OF IMAGE IS APRIL 3, 2021.	IAP: MAXAR.			
2.	WELL LOCATIONS ARE APPROXIMATE AND AR OCTOBER 2011 WATER TABLE MAP PREPARED				
3.	CCR UNIT LIMITS AND CLOSED LANDFILL LOC APPROXIMATE.	ATION ARE			
4.	MONITORING WELLS MW-301, MW-302, AND WERE INSTALLED BY BADGER STATE DRILLING JANUARY 14 AND FEBRUARY 4, 2016.				
5. THE BACKGROUND MONITORING WELL FOR THE EDGEWATER GENERATING STATION IS 2R-OW.					
500 0 500					
SCALE: 1" = 500'					
SITE PLAN AND MONITORING WELL FIGURE					
	200	2			

02/26/2024 - Classification: Internal - ECRM13238693

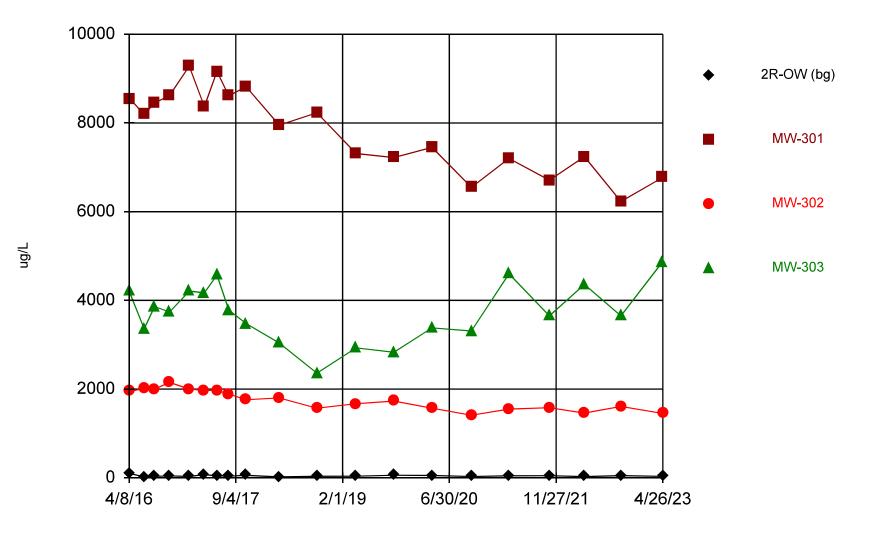


Ν

NOTES:

- 1. AERIAL PHOTOGRAPH FROM ARCMAP WORLDMAP: MAXAR. DATE OF IMAGE IS APRIL 3, 2021.
- EXISTING WELL LOCATIONS ARE APPROXIMATE AND ARE BASED ON OCTOBER 2011 WATER TABLE MAP PREPARED BY TRC.
- 3. DESIGN MANAGEMENT ZONE LOCATION IS APPROXIMATE
- 4. NEW MONITORING WELL LOCATIONS WERE SURVEYED BY CQM, INC. ON FEBRUARY 12, 2016.
- 5. MW-301, MW-302, AND MW-303 ARE NOT INCLUDED IN THE WDNR-APPROVED SITE-SPECIFIC MONITORING PLAN
- 6. GROUNDWATER ELEVATIONS COLLECTED FROM MONITORING WELLS ON APRIL 25-26, 2023.

APRIL 2023

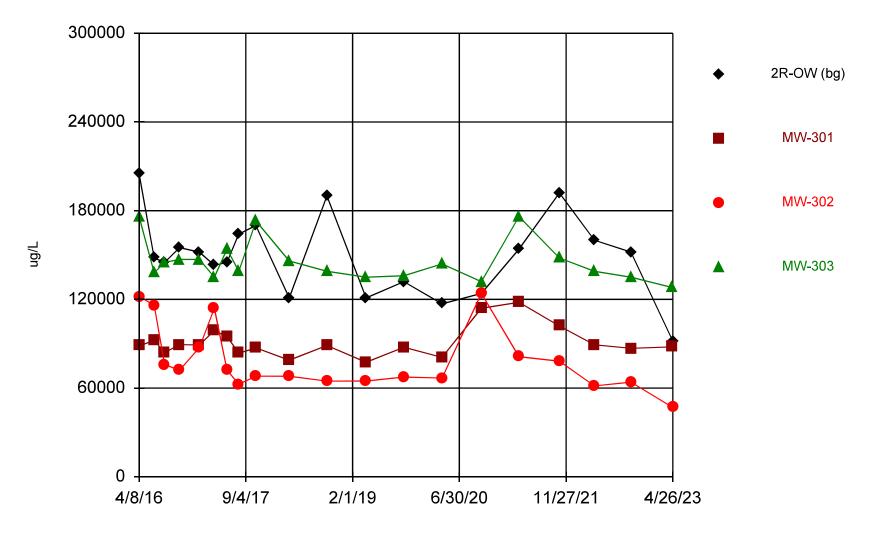

3

Appendix A

Trend Plots for CCR Wells

Alternative Source Demonstration

Boron

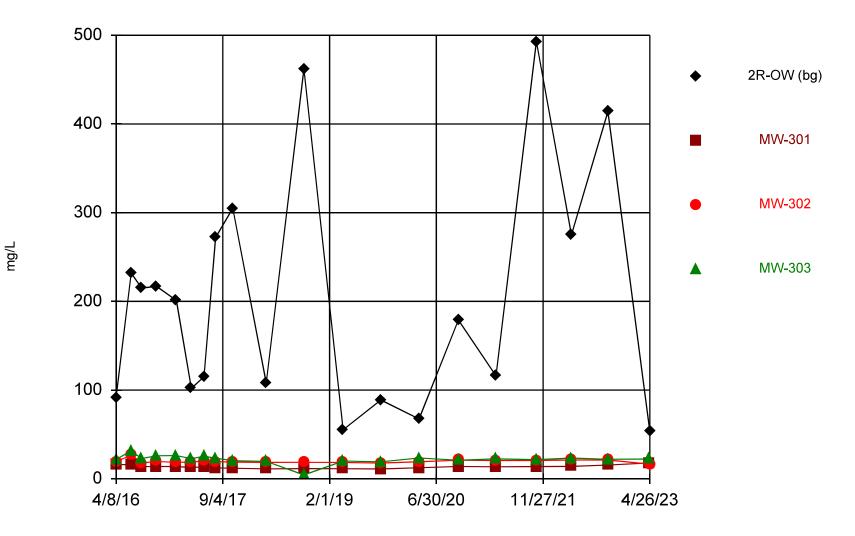


Time Series Analysis Run 9/19/2023 2:48 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Constituent: Boron (ug/L) Analysis Run 9/19/2023 2:49 PM View: CCR - UPL - 2020

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	100		1950	4210
4/11/2016		8550		
6/20/2016	22.4	8190	2010	3360
8/9/2016	32.6	8450	2000	3860
10/20/2016	43.1	8620	2150	3740
1/23/2017		9280		
1/24/2017	31.2		2000	4210
4/6/2017	70.6	8370	1970	4170
6/6/2017	45.2	9160	1970	4570
8/1/2017	35.7			
8/2/2017		8610	1890	3780
10/23/2017	55.9			
10/24/2017		8820	1760	3480
4/2/2018	19.7	7950	1800	3040
10/1/2018	34.7	8230	1570	2360
4/8/2019	35.8	7310	1670	2930
10/7/2019	58.8	7220	1730	2830
4/8/2020	52.3	7450	1570	3380
10/15/2020	29.9	6550	1410	3310
4/14/2021	45.7	7200	1550	4600
10/26/2021	47.2	6710	1580	3650
4/13/2022	27.9	7240	1460	4360
10/6/2022	49	6230	1610	3650
4/25/2023		6770		4870
4/26/2023	32		1450	

Calcium

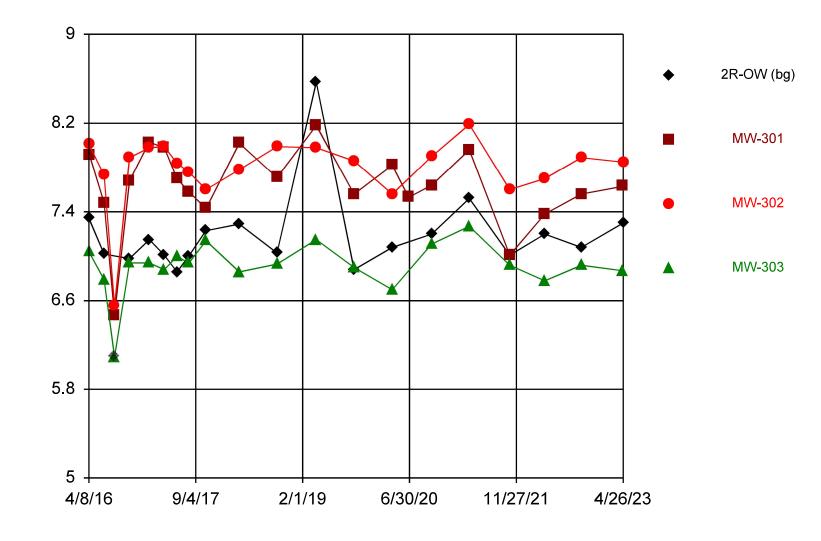


Time Series Analysis Run 9/19/2023 2:48 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Constituent: Calcium (ug/L) Analysis Run 9/19/2023 2:49 PM View: CCR - UPL - 2020

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	205000		122000	176000
4/11/2016		88700		
6/20/2016	148000	92200	116000	138000
8/9/2016	145000	84000	75900	145000
10/20/2016	155000	89400	72100	147000
1/23/2017		89200		
1/24/2017	152000		87400	147000
4/6/2017	143000	98800	114000	135000
6/6/2017	145000	94900	72200	154000
8/1/2017	164000			
8/2/2017		83600	62600	139000
10/23/2017	170000			
10/24/2017		87200	68100	173000
4/2/2018	121000	78900	68000	146000
10/1/2018	190000	88800	64700	139000
4/8/2019	121000	77500	64800	135000
10/7/2019	132000	87600	67500	136000
4/8/2020	117000	80800	66800	144000
10/15/2020	124000	114000	124000	132000
4/14/2021	154000	118000	81200	176000
10/26/2021	192000	102000	78200	148000
4/13/2022	160000	89300	61500	139000
10/6/2022	152000	86900	64000	135000
4/25/2023		87900		128000
4/26/2023	91800		46900	

Chloride



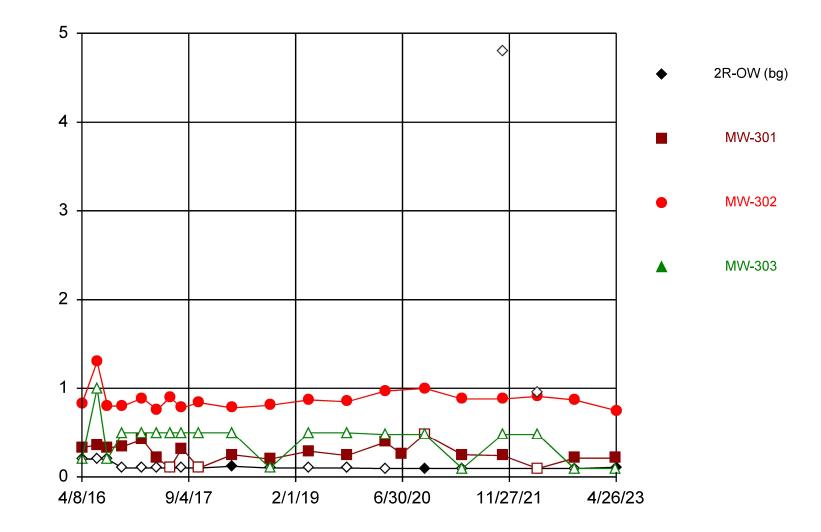
Time Series Analysis Run 9/19/2023 2:48 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Constituent: Chloride (mg/L) Analysis Run 9/19/2023 2:49 PM View: CCR - UPL - 2020

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	91.7		18.9	21.8
4/11/2016		16.2		
6/20/2016	232	15.9	27.2	31.5
8/9/2016	215	13.7	18	22.8
10/20/2016	217	13.9	19.5	26
1/23/2017		13.8		
1/24/2017	201		18.6	26.2
4/6/2017	102	12.7	18.9	22.7
6/6/2017	115	13.5	20	25.4
8/1/2017	272			
8/2/2017		12.3	19.3	23.2
10/23/2017	305			
10/24/2017		11.9	18.9	20.4
4/2/2018	108	11.2	18.5	19.7
10/1/2018	462	11.5	18.6	4.3
4/8/2019	55.3	11.4	18.4	20
10/7/2019	88.8	11.1	17.8	19.1
4/8/2020	67.5	12.5	19.2	23.5
10/15/2020	179	13.9	20.9	20.9
4/14/2021	116	13.5	20.6	22.5
10/26/2021	493	13.8	20.7	21.6
4/13/2022	275	14	21.2	23.4
10/6/2022	414	15.5	21.2	22
4/25/2023		17.9		22.3
4/26/2023	53.4		16.5	

Field pH

Time Series Analysis Run 9/19/2023 2:48 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

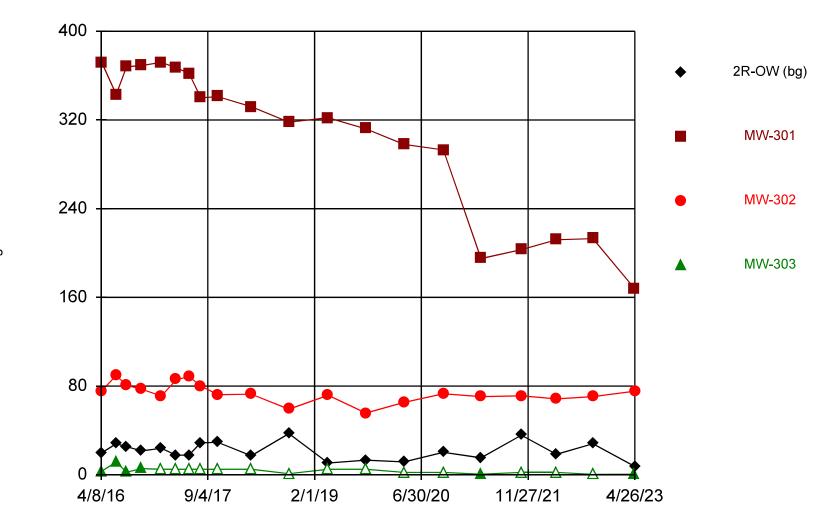

Std. Units

Constituent: Field pH (Std. Units) Analysis Run 9/19/2023 2:49 PM View: CCR - UPL - 2020

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	7.34		8.01	7.04
4/11/2016		7.91		
6/20/2016	7.02	7.48	7.73	6.79
8/9/2016	6.1 (X)	6.47	6.55	6.09
10/20/2016	6.98	7.68	7.89	6.94
1/23/2017		8.03		
1/24/2017	7.15		7.98	6.94
4/6/2017	7.01	7.98	7.99	6.88
6/6/2017	6.86	7.7	7.84	7
8/1/2017	7			
8/2/2017		7.58	7.76	6.94
10/23/2017	7.23			
10/24/2017		7.43	7.6	7.14
4/2/2018	7.29	8.02	7.78	6.86
10/1/2018	7.03	7.71	7.99	6.93
4/8/2019	8.57	8.18	7.98	7.15
10/7/2019	6.88	7.56	7.86	6.9
4/8/2020	7.08	7.82	7.56	6.7
6/26/2020		7.53		
10/15/2020	7.2	7.64	7.9	7.11
4/14/2021	7.52	7.96	8.19	7.27
10/26/2021	7.01	7.01	7.6	6.92
4/13/2022	7.2	7.38	7.7	6.78
10/6/2022	7.08	7.56	7.89	6.92
4/25/2023		7.63		6.87
4/26/2023	7.3		7.85	

Sanitas[™] v.9.6.37 Software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Time Series Analysis Run 9/19/2023 2:48 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

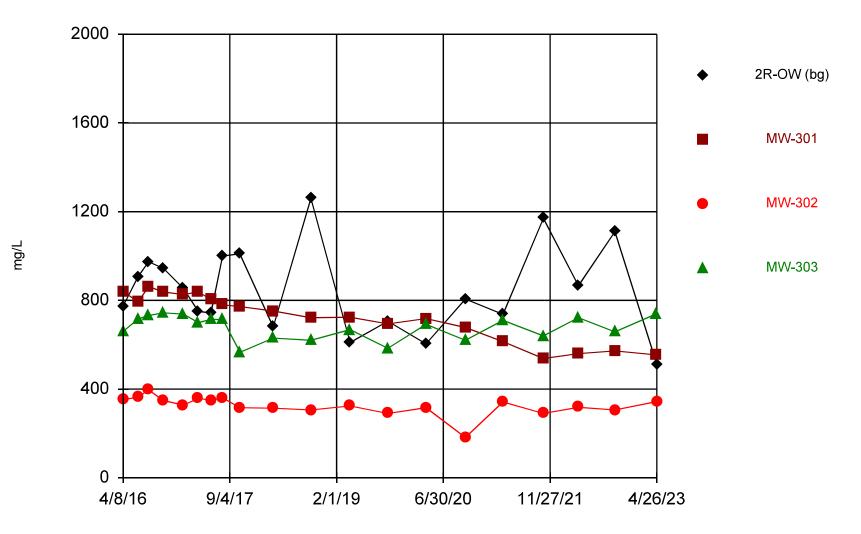

mg/L

Constituent: Fluoride (mg/L) Analysis Run 9/19/2023 2:49 PM View: CCR - UPL - 2020

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	<0.2 (U)		0.83	<0.2 (U)
4/11/2016		0.33 (J)		
6/20/2016	<0.2 (U)	0.36 (J)	1.3 (J)	<1 (U)
8/9/2016	<0.2 (U)	0.33 (J)	0.8	<0.2 (U)
10/20/2016	<0.1 (U)	0.34	0.8	<0.5 (U)
1/23/2017		0.42		
1/24/2017	<0.1 (U)		0.89 (J)	<0.5 (U)
4/6/2017	<0.1 (U)	0.21 (J)	0.76	<0.5 (U)
6/6/2017	<0.1 (U)	<0.1 (U)	0.9	<0.5 (U)
8/1/2017	<0.1 (U)			
8/2/2017		0.32	0.78	<0.5 (U)
10/23/2017	<0.1 (U)			
10/24/2017		<0.1 (U)	0.84	<0.5 (U)
4/2/2018	0.12 (J)	0.25 (J)	0.78	<0.5 (U)
10/1/2018	<0.1 (U)	0.2 (J)	0.81	<0.1 (U)
4/8/2019	<0.1 (U)	0.29 (J)	0.87	<0.5 (U)
10/7/2019	<0.1 (U)	0.24 (J)	0.85	<0.5 (U)
4/8/2020	<0.095 (U)	0.39	0.97	<0.48 (U)
6/26/2020		0.26 (J)		
10/15/2020	0.096 (J)	<0.48 (U)	1 (J)	<0.48 (U)
4/14/2021	<0.095 (U)	0.25 (J)	0.88	<0.095
10/26/2021	<4.8 (UX)	0.24 (J)	0.88	<0.48
4/13/2022	<0.95 (UX)	<0.095 (U)	0.91	<0.48 (U)
10/6/2022	<0.095 (U)	0.21 (J)	0.87	<0.095 (U)
4/25/2023		0.21 (J)		<0.095 (U)
4/26/2023	0.11 (J)		0.75	

Sanitas[™] v.9.6.37 Software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Sulfate



Time Series Analysis Run 9/19/2023 2:48 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

mg/L

Constituent: Sulfate (mg/L) Analysis Run 9/19/2023 2:49 PM View: CCR - UPL - 2020

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	19.5		75.1	3 (J)
4/11/2016		372		
6/20/2016	28	343	89.6	11.4 (J)
8/9/2016	25.4	368	80.7	2.4 (J)
10/20/2016	21.6	369	77.2	5.6 (J)
1/23/2017		372		
1/24/2017	23.9		71.1	<5 (U)
4/6/2017	17.6	367	85.8	<5 (U)
6/6/2017	17.8	362	88.5	<5 (U)
8/1/2017	28.8			
8/2/2017		340	80.2	<5 (U)
10/23/2017	29.3			
10/24/2017		341	72.2	<5 (U)
4/2/2018	17.2	332	72.7	<5 (U)
10/1/2018	37.2	318	59.2	<1 (U)
4/8/2019	10.6	322	71.7	<5 (U)
10/7/2019	13.2	312	55.7	<5 (U)
4/8/2020	11.6	298	65.3	<2.2 (U)
10/15/2020	20.3	293	73.1	<2.2 (U)
4/14/2021	15.3	195	70.5	0.54 (J)
10/26/2021	35.7 (J)	203	71.2	<2.2 (U)
4/13/2022	18.5 (J)	212	68.5	<2.2 (U)
10/6/2022	28	213	70.5	<0.44 (U)
4/25/2023		168		0.5 (J)
4/26/2023	7.5		75.4	

Total Dissolved Solids

Time Series Analysis Run 9/19/2023 2:49 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Constituent: Total Dissolved Solids (mg/L) Analysis Run 9/19/2023 2:49 PM View: CCR - UPL - 2020

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	774		352	660
4/11/2016		838		
6/20/2016	908	794	364	716
8/9/2016	974	862	396	732
10/20/2016	944	838	348	744
1/23/2017		826		
1/24/2017	854		328	738
4/6/2017	750	838	358	700
6/6/2017	744	804	350	714
8/1/2017	1000			
8/2/2017		780	360	714
10/23/2017	1010			
10/24/2017		772	316	566
4/2/2018	680	752	314	630
10/1/2018	1260	722	306	620
4/8/2019	610	724	324	668
10/7/2019	706	694	290	584
4/8/2020	604	718	316	692
10/15/2020	806	678	182	620
4/14/2021	737	614	342	710
10/26/2021	1170	538	290	640
4/13/2022	866	560	318	722
10/6/2022	1110	572	306	658
4/25/2023		554		740
4/26/2023	512		344	

Appendix F July 2023 UPL Update Memorandum

SCS ENGINEERS

July 28, 2023 File No. 25223068.00

TECHNICAL MEMORANDUM

- SUBJECT: Statistical Evaluation of Groundwater Monitoring Results UPL Update Edgewater Generating Station
- PREPARED BY: Ryan Matzuk
- CHECKED BY: Sherren Clark

STATISTICAL METHOD

Groundwater monitoring data for the multiunit system at the Edgewater Generating Station (EDG), is evaluated in accordance with 40 CFR 257.93(f)(3), using a prediction interval procedure, in which an interval for each constituent is established from the distribution of the background data, and the level of each constituent in each compliance well is compared to the upper prediction limit.

Statistical evaluation is performed using commercially available software (Sanitas for Groundwater[®] or similar) in general accordance with the USEPA's Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities dated March 2009 (Unified Guidance) (USEPA, 2009) and generally accepted procedures.

The EDG monitoring data includes one background monitoring well, 2R-OW, and three compliance monitoring wells, MW-301, MW-302, and MW-303. The statistical analysis includes an interwell evaluation for the Appendix III parameters.

The initial UPLs were calculated based on eight rounds of background monitoring performed prior to the initiation of compliance monitoring for the EDG CCR units, from April 2016 through August 2017. Since then, additional rounds of monitoring for Appendix III parameters have been performed at the background well. As part of the evaluation of the April 2023 monitoring results, the background data set for the UPL calculations is being updated to include data from the background well collected through October 2020. This memo addresses updated UPLs for Appendix III parameters.

TIME SERIES PLOTS

Time series plots are prepared for the required monitoring parameters to show the concentration variations over time. Time series graphs are included in **Attachment 1**.

OUTLIER ANALYSIS - INTERWELL

For interwell analysis, an outlier evaluation is performed for background monitoring results at the upgradient wells. A statistical outlier is a value that is extremely different from the other values in the data set. The Sanitas outlier tests identify data points that do not appear to fit the distribution of the

rest of the data set and determine if they differ significantly from the rest of the data. The outlier analysis performed in Sanitas includes the following steps:

- 1) Run normality test (Shapiro Wilk/Francia).
- 2) If normally distributed, run USEPA's 1989 Outlier Test to identify suspected outliers.
 - a) If number of background samples is less than or equal to 25, run Dixon's test for suspected outliers.
 - b) If number of background samples is more than 25, run Rosner's test for suspected outliers.
- 3) If not normally distributed, run Tukey's test for outliers.
- 4) Review data flagged as possible outliers to evaluate whether they should be removed from the background data set. Also review time series plots for possible outliers that were not picked up in the statistical evaluation (e.g., outlier test may not identify outliers when two values are similar to each other, but very different from all other data).

Results identified as statistical outliers are checked for possible lab instrument failure, field collection problems, or data entry errors; however, outliers may exist naturally in the data if there is an extremely wide inherent or temporal variability in the data. The Unified Guidance states that unless a likely error can be identified, the outlier should not be removed.

For the interwell evaluation of the April 2023 sampling event, the following background values were identified as potential outliers and handled as described:

- Field pH. Two results from the August 2016 and April 2019 events were flagged as statistical outliers. The low result (August 2016) was removed from the dataset because all field pH results for that event at the background and compliance wells were low, suggesting a likely field measurement issue or calibration error. The high result (April 2019) was not removed from the dataset because there was no known explanation for the higher result and it appeared to be within the range of potential natural variation.
- Fluoride. Two results from the October 2021 and April 2022 events were flagged as statistical outliers. Both the October 2021 and April 2022 results were removed from the dataset because they are non-detects and with unusually high detection limits due to high laboratory dilution factors.

Outlier analysis output from Sanitas is included in Attachment 2.

BACKGROUND UPDATE

The background data pool was updated in accordance with the Unified Guidance, which recommends updating background every 2 to 3 years for semiannual sampling. Prior to expanding the data pool, the original background data set (4/2016 through 10/2020) and the data to be added (4/2021 through 4/2023) were compared. The Unified Guidance states that recently collected measurements from the background wells can be added to the existing pool if a Student's t-test or Wilcoxon rank-sum test finds no significant difference between the two groups at the 1% level of significance.

TECHNICAL MEMORANDUM July 28, 2023 Page 3

The Sanitas background group comparison for the EDG background data sets, included in **Attachment 3**, indicated no significant difference at the 1% level; therefore, the more recent data can be added to the background pool. The comparison uses Welch's t-test for normally distributed data and the Mann-Whitney test for non-normal data. (Note: The Sanitas output labels the earlier background dataset as "Background" and the later background dataset as "Compliance," but all data from background well 2R-OW is background data.)

INTERWELL PREDICTION LIMITS

Interwell prediction limits are calculated using background data from the upgradient monitoring well (2R-OW) for each monitored constituent, with outliers removed as noted above. During this evaluation of compliance monitoring, groundwater results from April 2016 through April 2023 were included to calculate the interwell prediction limits. The prediction limit analysis performed in Sanitas includes the following steps:

- 1) If 100% of the background values are non-detect, the Double Quanitification rule applies and no prediction limit is calculated.
- 2) If more than 50% of results are non-detect, then a non-parametric prediction limit is calculated.
- 3) If 50% or fewer of the results are non-detect, run normality test (Shapiro Wilk/Francia) to assess whether the data fit a normal distribution or can be transformed to fit a normal distribution (e.g., lognormal).
- 4) If normal or transformed normal, calculate parametric prediction limit.
- 5) If not normal or transformed normal, calculate non-parametric prediction limit.

Consistent with the Unified Guidance, parametric prediction limits are calculated based on a 1-of-2 retesting protocol and a 10 percent site-wide false positive rate. Sanitas establishes the per-test significance level based on user inputs of the number of events per year, number of constituents being evaluated, and number of compliance wells. For the April 2023 event, the following values were used:

Parameter	Value	Comments
Evaluations per year	2	Spring and Fall events
Constituents analyzed	7	Appendix III parameters
Compliance wells	3	MW-301, MW-302, MW-303

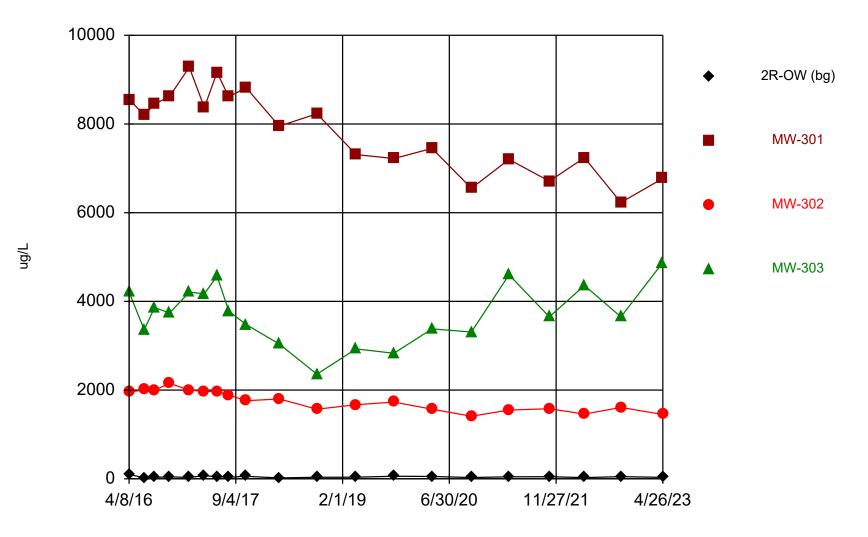
Non-parametric prediction limits are also based on a 1-of-2 retesting protocol. The non-parametric limit is the highest value in the background dataset. Due to the small sample size, the false positive rate for the non-parametric tests is higher than for the parametric tests, but will go down as more background data are obtained.

For results with 100 percent non-detects in the background data, evaluation under the Double Quantification Rule means that a statistically significant increase (SSI) has not occurred for a compliance well unless two sample results from the well exceed the laboratory's reporting limit or

quanitification limit. For the current background dataset, none of the Appendix III parameters had 100 percent non-detects, so the Double Quantification rule was not applied.

For evaluation of parameters with less than 100 percent non-detects in the background sampling, the non-detects were adjusted using the Kaplan-Meier technique, unless the non-detects represent less than 15 percent of the total samples, in which case one-half of the detection limit was used.

Interwell prediction limit analysis results are included in Attachment 4.

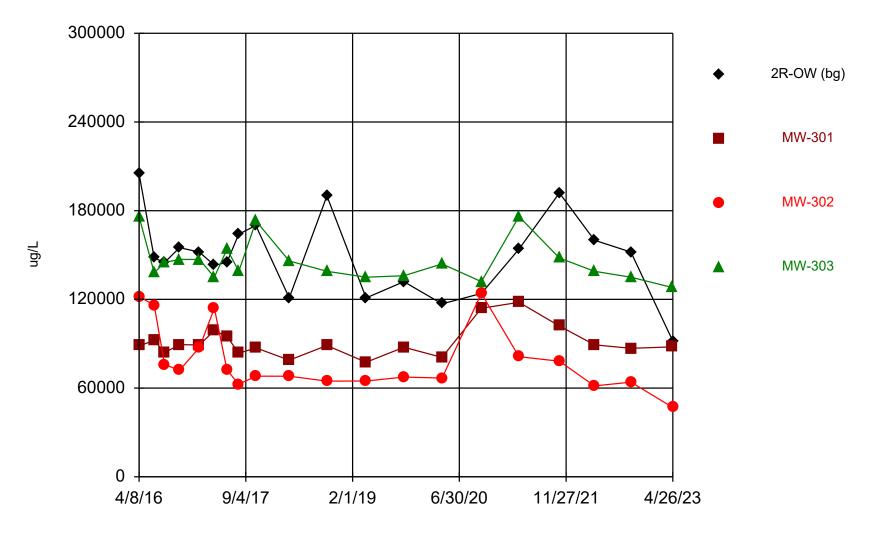

RM/SCC

I:\25223068.00\Data and Calculations\Sanitas\EDG Closed CCR Stats Memo\Edg Closed CCR Stats Memo.docx

Attachment 1

Times Series Graphs

Boron

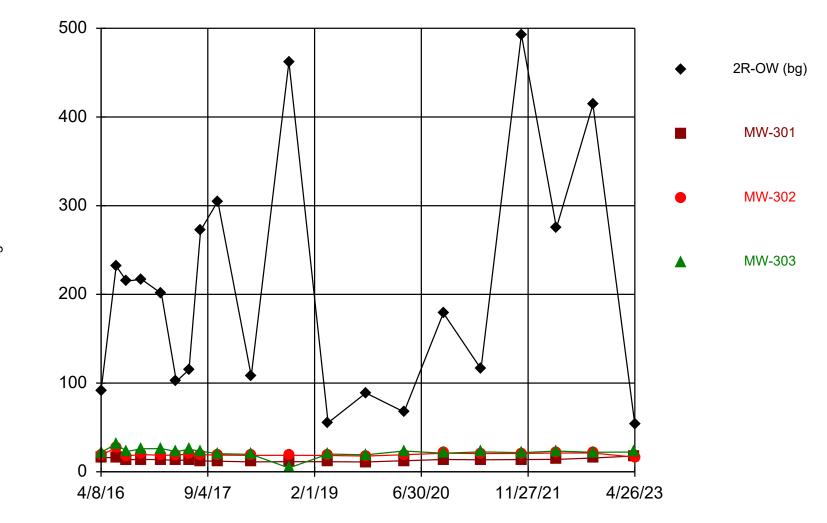


Time Series Analysis Run 7/28/2023 9:17 AM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Constituent: Boron (ug/L) Analysis Run 7/28/2023 9:18 AM View: CCR - UPL - 2020

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	100		1950	4210
4/11/2016		8550		
6/20/2016	22.4	8190	2010	3360
8/9/2016	32.6	8450	2000	3860
10/20/2016	43.1	8620	2150	3740
1/23/2017		9280		
1/24/2017	31.2		2000	4210
4/6/2017	70.6	8370	1970	4170
6/6/2017	45.2	9160	1970	4570
8/1/2017	35.7			
8/2/2017		8610	1890	3780
10/23/2017	55.9			
10/24/2017		8820	1760	3480
4/2/2018	19.7	7950	1800	3040
10/1/2018	34.7	8230	1570	2360
4/8/2019	35.8	7310	1670	2930
10/7/2019	58.8	7220	1730	2830
4/8/2020	52.3	7450	1570	3380
10/15/2020	29.9	6550	1410	3310
4/14/2021	45.7	7200	1550	4600
10/26/2021	47.2	6710	1580	3650
4/13/2022	27.9	7240	1460	4360
10/6/2022	49	6230	1610	3650
4/25/2023		6770		4870
4/26/2023	32		1450	

Calcium

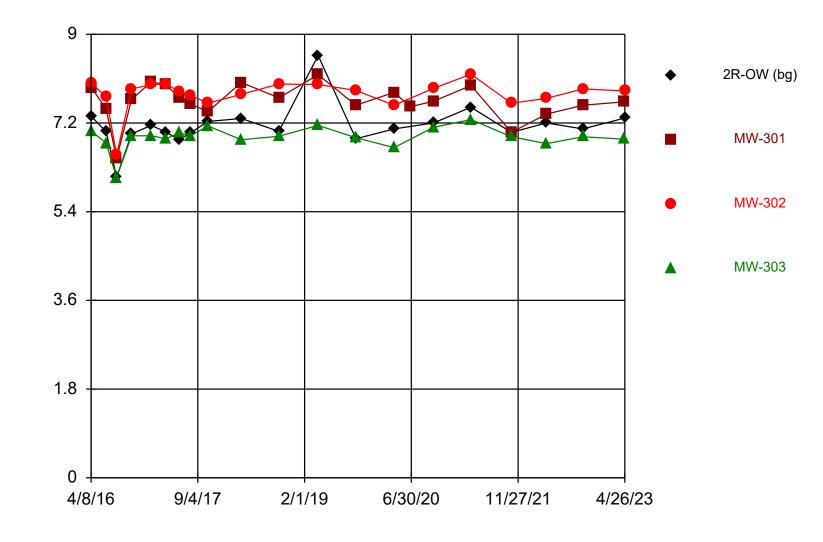


Time Series Analysis Run 7/28/2023 9:17 AM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Constituent: Calcium (ug/L) Analysis Run 7/28/2023 9:18 AM View: CCR - UPL - 2020

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	205000		122000	176000
4/11/2016		88700		
6/20/2016	148000	92200	116000	138000
8/9/2016	145000	84000	75900	145000
10/20/2016	155000	89400	72100	147000
1/23/2017		89200		
1/24/2017	152000		87400	147000
4/6/2017	143000	98800	114000	135000
6/6/2017	145000	94900	72200	154000
8/1/2017	164000			
8/2/2017		83600	62600	139000
10/23/2017	170000			
10/24/2017		87200	68100	173000
4/2/2018	121000	78900	68000	146000
10/1/2018	190000	88800	64700	139000
4/8/2019	121000	77500	64800	135000
10/7/2019	132000	87600	67500	136000
4/8/2020	117000	80800	66800	144000
10/15/2020	124000	114000	124000	132000
4/14/2021	154000	118000	81200	176000
10/26/2021	192000	102000	78200	148000
4/13/2022	160000	89300	61500	139000
10/6/2022	152000	86900	64000	135000
4/25/2023		87900		128000
4/26/2023	91800		46900	

Chloride


Time Series Analysis Run 7/28/2023 9:17 AM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

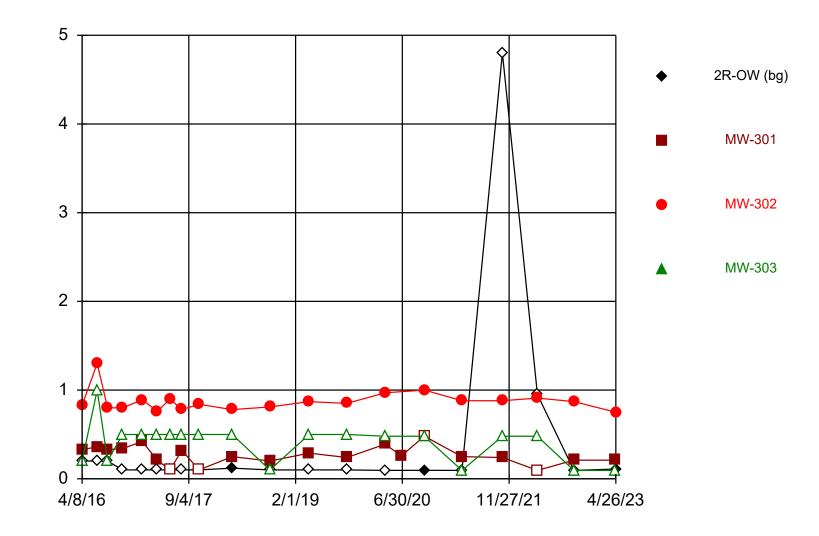
mg/L

Constituent: Chloride (mg/L) Analysis Run 7/28/2023 9:18 AM View: CCR - UPL - 2020

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	91.7		18.9	21.8
4/11/2016		16.2		
6/20/2016	232	15.9	27.2	31.5
8/9/2016	215	13.7	18	22.8
10/20/2016	217	13.9	19.5	26
1/23/2017		13.8		
1/24/2017	201		18.6	26.2
4/6/2017	102	12.7	18.9	22.7
6/6/2017	115	13.5	20	25.4
8/1/2017	272			
8/2/2017		12.3	19.3	23.2
10/23/2017	305			
10/24/2017		11.9	18.9	20.4
4/2/2018	108	11.2	18.5	19.7
10/1/2018	462	11.5	18.6	4.3
4/8/2019	55.3	11.4	18.4	20
10/7/2019	88.8	11.1	17.8	19.1
4/8/2020	67.5	12.5	19.2	23.5
10/15/2020	179	13.9	20.9	20.9
4/14/2021	116	13.5	20.6	22.5
10/26/2021	493	13.8	20.7	21.6
4/13/2022	275	14	21.2	23.4
10/6/2022	414	15.5	21.2	22
4/25/2023		17.9		22.3
4/26/2023	53.4		16.5	

Field pH

Time Series Analysis Run 7/28/2023 9:17 AM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020


Std. Units

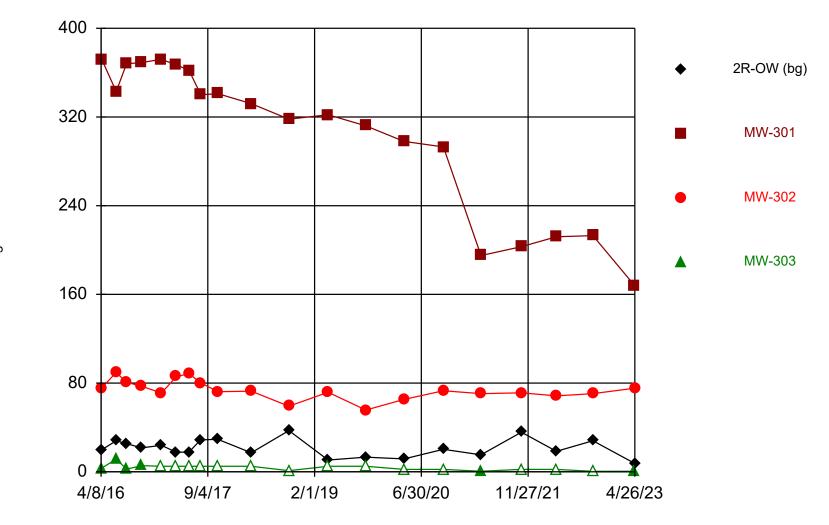
Constituent: Field pH (Std. Units) Analysis Run 7/28/2023 9:18 AM View: CCR - UPL - 2020

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	7.34		8.01	7.04
4/11/2016		7.91		
6/20/2016	7.02	7.48	7.73	6.79
8/9/2016	6.1 (X)	6.47	6.55	6.09
10/20/2016	6.98	7.68	7.89	6.94
1/23/2017		8.03		
1/24/2017	7.15		7.98	6.94
4/6/2017	7.01	7.98	7.99	6.88
6/6/2017	6.86	7.7	7.84	7
8/1/2017	7			
8/2/2017		7.58	7.76	6.94
10/23/2017	7.23			
10/24/2017		7.43	7.6	7.14
4/2/2018	7.29	8.02	7.78	6.86
10/1/2018	7.03	7.71	7.99	6.93
4/8/2019	8.57	8.18	7.98	7.15
10/7/2019	6.88	7.56	7.86	6.9
4/8/2020	7.08	7.82	7.56	6.7
6/26/2020		7.53		
10/15/2020	7.2	7.64	7.9	7.11
4/14/2021	7.52	7.96	8.19	7.27
10/26/2021	7.01	7.01	7.6	6.92
4/13/2022	7.2	7.38	7.7	6.78
10/6/2022	7.08	7.56	7.89	6.92
4/25/2023		7.63		6.87
4/26/2023	7.3		7.85	

Sanitas[™] v.9.6.37 Software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Time Series Analysis Run 7/28/2023 9:17 AM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

mg/L

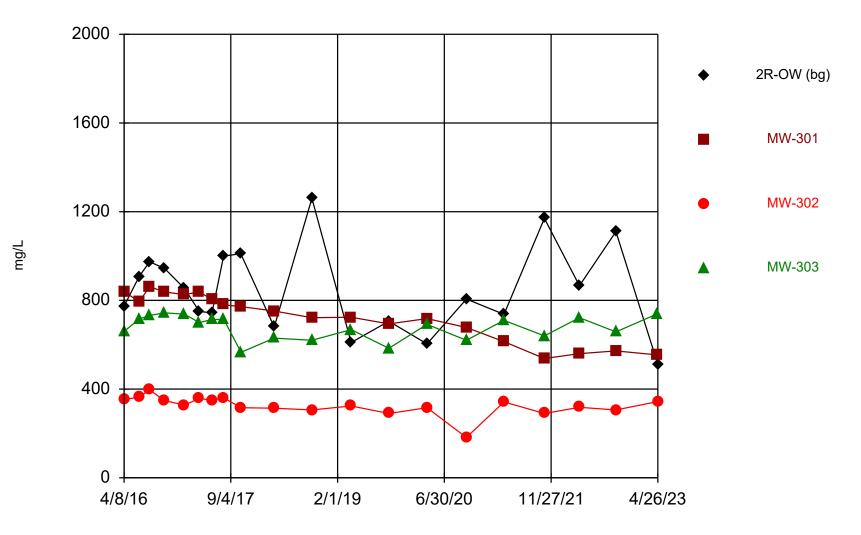

Time Series

Constituent: Fluoride (mg/L) Analysis Run 7/28/2023 9:18 AM View: CCR - UPL - 2020

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	<0.2 (U)		0.83	<0.2 (U)
4/11/2016		0.33 (J)		
6/20/2016	<0.2 (U)	0.36 (J)	1.3 (J)	<1 (U)
8/9/2016	<0.2 (U)	0.33 (J)	0.8	<0.2 (U)
10/20/2016	<0.1 (U)	0.34	0.8	<0.5 (U)
1/23/2017		0.42		
1/24/2017	<0.1 (U)		0.89 (J)	<0.5 (U)
4/6/2017	<0.1 (U)	0.21 (J)	0.76	<0.5 (U)
6/6/2017	<0.1 (U)	<0.1 (U)	0.9	<0.5 (U)
8/1/2017	<0.1 (U)			
8/2/2017		0.32	0.78	<0.5 (U)
10/23/2017	<0.1 (U)			
10/24/2017		<0.1 (U)	0.84	<0.5 (U)
4/2/2018	0.12 (J)	0.25 (J)	0.78	<0.5 (U)
10/1/2018	<0.1 (U)	0.2 (J)	0.81	<0.1 (U)
4/8/2019	<0.1 (U)	0.29 (J)	0.87	<0.5 (U)
10/7/2019	<0.1 (U)	0.24 (J)	0.85	<0.5 (U)
4/8/2020	<0.095 (U)	0.39	0.97	<0.48 (U)
6/26/2020		0.26 (J)		
10/15/2020	0.096 (J)	<0.48 (U)	1 (J)	<0.48 (U)
4/14/2021	<0.095 (U)	0.25 (J)	0.88	<0.095
10/26/2021	<4.8 (U)	0.24 (J)	0.88	<0.48
4/13/2022	<0.95 (U)	<0.095 (U)	0.91	<0.48 (U)
10/6/2022	<0.095 (U)	0.21 (J)	0.87	<0.095 (U)
4/25/2023		0.21 (J)		<0.095 (U)
4/26/2023	0.11 (J)		0.75	

Sanitas[™] v.9.6.37 Software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Sulfate


Time Series Analysis Run 7/28/2023 9:17 AM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

mg/L

Time Series

Constituent: Sulfate (mg/L) Analysis Run 7/28/2023 9:18 AM View: CCR - UPL - 2020

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	19.5		75.1	3 (J)
4/11/2016		372		
6/20/2016	28	343	89.6	11.4 (J)
8/9/2016	25.4	368	80.7	2.4 (J)
10/20/2016	21.6	369	77.2	5.6 (J)
1/23/2017		372		
1/24/2017	23.9		71.1	<5 (U)
4/6/2017	17.6	367	85.8	<5 (U)
6/6/2017	17.8	362	88.5	<5 (U)
8/1/2017	28.8			
8/2/2017		340	80.2	<5 (U)
10/23/2017	29.3			
10/24/2017		341	72.2	<5 (U)
4/2/2018	17.2	332	72.7	<5 (U)
10/1/2018	37.2	318	59.2	<1 (U)
4/8/2019	10.6	322	71.7	<5 (U)
10/7/2019	13.2	312	55.7	<5 (U)
4/8/2020	11.6	298	65.3	<2.2 (U)
10/15/2020	20.3	293	73.1	<2.2 (U)
4/14/2021	15.3	195	70.5	0.54 (J)
10/26/2021	35.7 (J)	203	71.2	<2.2 (U)
4/13/2022	18.5 (J)	212	68.5	<2.2 (U)
10/6/2022	28	213	70.5	<0.44 (U)
4/25/2023		168		0.5 (J)
4/26/2023	7.5		75.4	

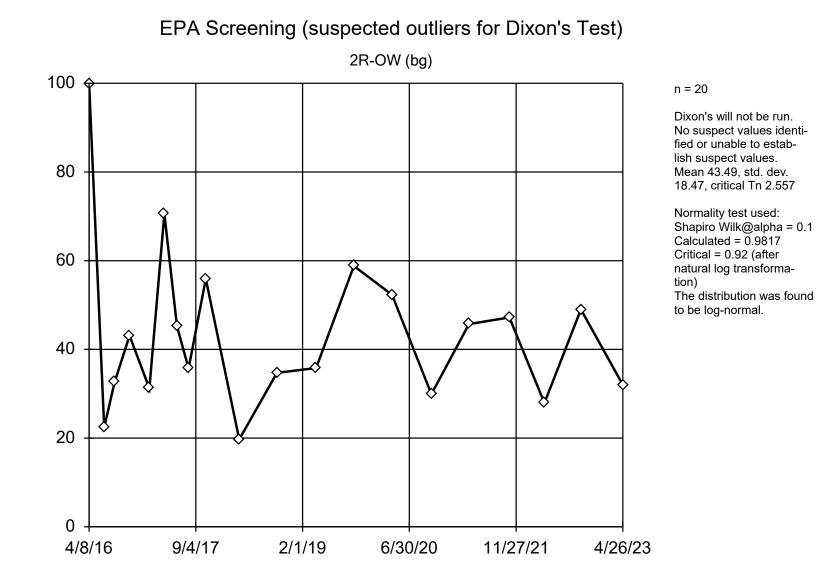
Total Dissolved Solids

Time Series Analysis Run 7/28/2023 9:17 AM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Time Series

Constituent: Total Dissolved Solids (mg/L) Analysis Run 7/28/2023 9:18 AM View: CCR - UPL - 2020

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	774		352	660
4/11/2016		838		
6/20/2016	908	794	364	716
8/9/2016	974	862	396	732
10/20/2016	944	838	348	744
1/23/2017		826		
1/24/2017	854		328	738
4/6/2017	750	838	358	700
6/6/2017	744	804	350	714
8/1/2017	1000			
8/2/2017		780	360	714
10/23/2017	1010			
10/24/2017		772	316	566
4/2/2018	680	752	314	630
10/1/2018	1260	722	306	620
4/8/2019	610	724	324	668
10/7/2019	706	694	290	584
4/8/2020	604	718	316	692
10/15/2020	806	678	182	620
4/14/2021	737	614	342	710
10/26/2021	1170	538	290	640
4/13/2022	866	560	318	722
10/6/2022	1110	572	306	658
4/25/2023		554		740
4/26/2023	512		344	

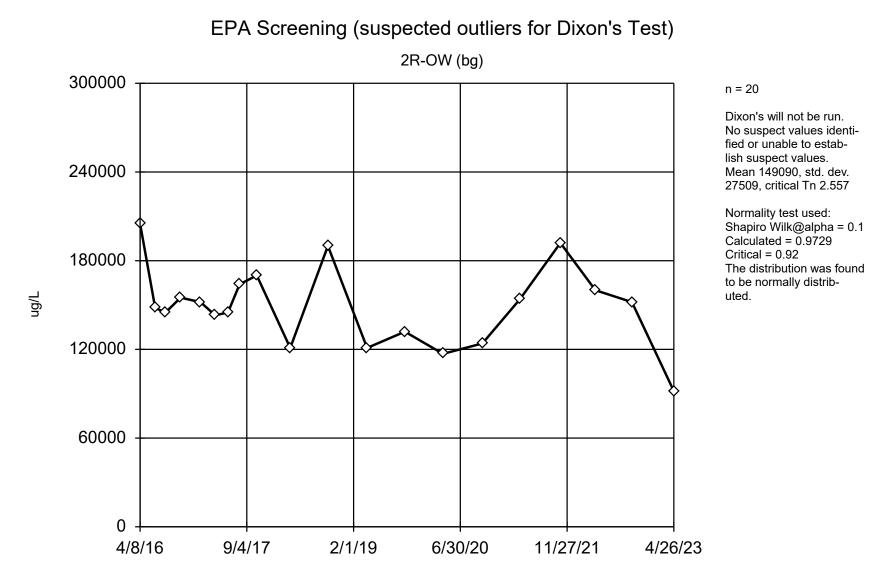

Attachment 2

Outlier Analysis

Outlier Analysis

Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020 Printed 7/28/2023, 9:32 AM

<u>Constituent</u>	Well	<u>Outlier</u>	<u>Value(s)</u>	<u>Date(s)</u>	Method	<u>Alpha</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	Distribution	Normality Test
Boron (ug/L)	2R-OW (bg)	No	n/a	n/a	EPA 1989	0.05	20	43.49	18.47	ln(x)	ShapiroWilk
Calcium (ug/L)	2R-OW (bg)	No	n/a	n/a	EPA 1989	0.05	20	149090	27509	normal	ShapiroWilk
Chloride (mg/L)	2R-OW (bg)	No	n/a	n/a	EPA 1989	0.05	20	203.1	133.8	ln(x)	ShapiroWilk
Field pH (Std. Units)	2R-OW (bg)	Yes	8.57,6.1	4/8/2019,	Dixon`s	0.05	20	7.143	0.4373	normal	ShapiroWilk
Fluoride (mg/L)	2R-OW (bg)	Yes	4.8,0.95	10/26/202	NP (nrm)	NaN	20	0.3931	1.054	unknown	ShapiroWilk
Sulfate (mg/L)	2R-OW (bg)	No	n/a	n/a	EPA 1989	0.05	20	21.35	8.109	normal	ShapiroWilk
Total Dissolved Solids (mg/L)	2R-OW (bg)	No	n/a	n/a	EPA 1989	0.05	20	851	197	normal	ShapiroWilk

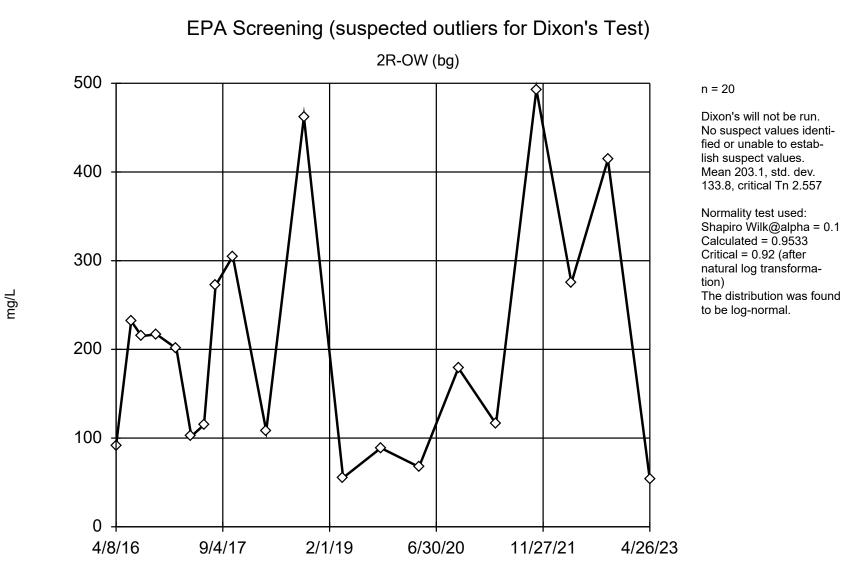

Constituent: Boron Analysis Run 7/28/2023 9:32 AM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

ng/L

EPA 1989 Outlier Screening

Constituent: Boron (ug/L) Analysis Run 7/28/2023 9:32 AM View: CCR - UPL - 2020

	2R-OW (bg)
4/8/2016	100
6/20/2016	22.4
8/9/2016	32.6
10/20/2016	43.1
1/24/2017	31.2
4/6/2017	70.6
6/6/2017	45.2
8/1/2017	35.7
10/23/2017	55.9
4/2/2018	19.7
10/1/2018	34.7
4/8/2019	35.8
10/7/2019	58.8
4/8/2020	52.3
10/15/2020	29.9
4/14/2021	45.7
10/26/2021	47.2
4/13/2022	27.9
10/6/2022	49
4/26/2023	32

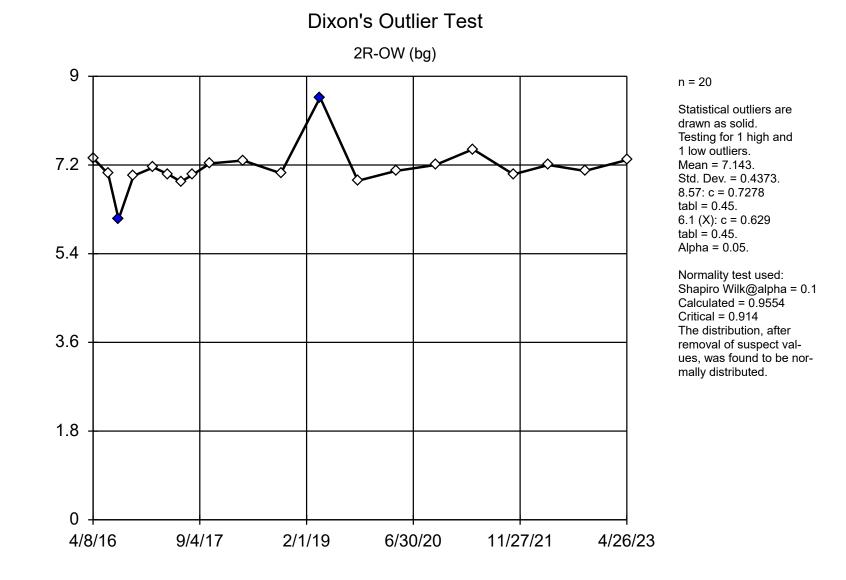


Constituent: Calcium Analysis Run 7/28/2023 9:32 AM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

EPA 1989 Outlier Screening

Constituent: Calcium (ug/L) Analysis Run 7/28/2023 9:33 AM View: CCR - UPL - 2020

4/8/2016 6/20/2016	205000 148000
	148000
8/9/2016	145000
10/20/2016	155000
1/24/2017	152000
4/6/2017	143000
6/6/2017	145000
8/1/2017	164000
10/23/2017	170000
4/2/2018	121000
10/1/2018	190000
4/8/2019	121000
10/7/2019	132000
4/8/2020	117000
10/15/2020	124000
4/14/2021	154000
10/26/2021	192000
4/13/2022	160000
10/6/2022	152000
4/26/2023	91800

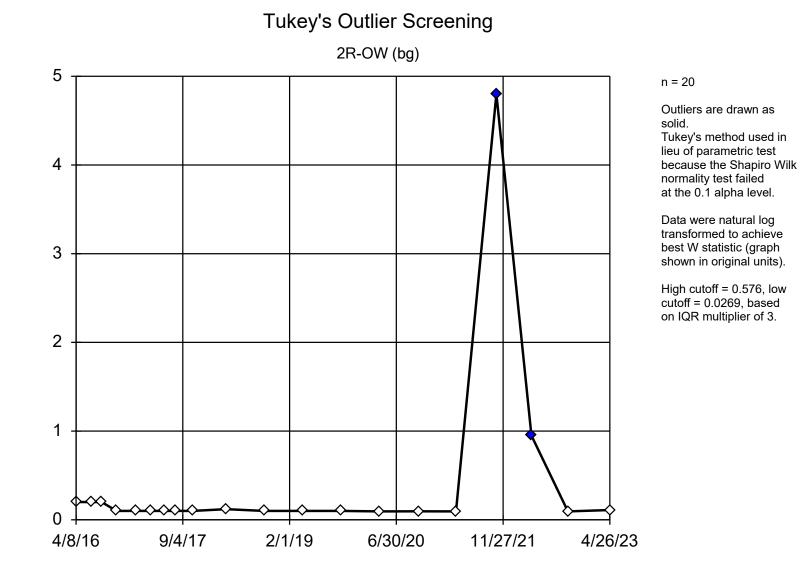


Constituent: Chloride Analysis Run 7/28/2023 9:32 AM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

EPA 1989 Outlier Screening

Constituent: Chloride (mg/L) Analysis Run 7/28/2023 9:33 AM View: CCR - UPL - 2020

	2R-OW (bg)
4/8/2016	91.7
6/20/2016	232
8/9/2016	215
10/20/2016	217
1/24/2017	201
4/6/2017	102
6/6/2017	115
8/1/2017	272
10/23/2017	305
4/2/2018	108
10/1/2018	462
4/8/2019	55.3
10/7/2019	88.8
4/8/2020	67.5
10/15/2020	179
4/14/2021	116
10/26/2021	493
4/13/2022	275
10/6/2022	414
4/26/2023	53.4

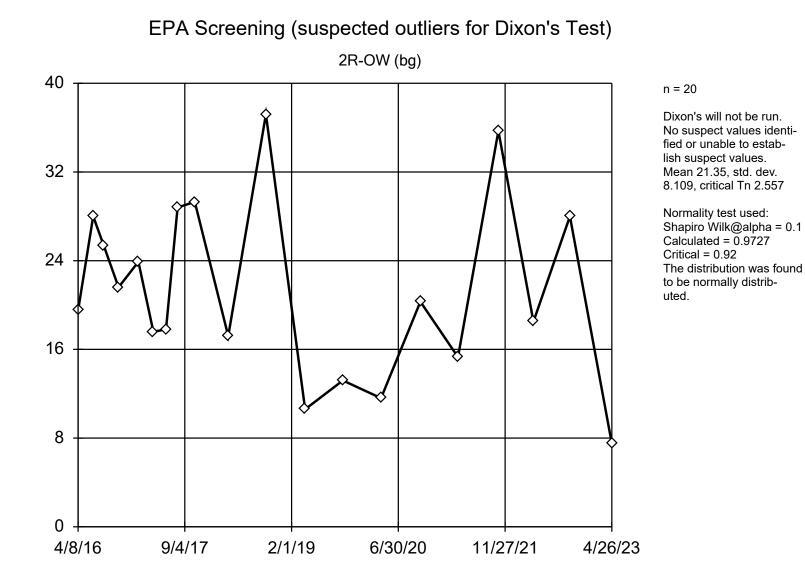

Constituent: Field pH Analysis Run 7/28/2023 9:32 AM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Std. Units

Dixon's Outlier Test

Constituent: Field pH (Std. Units) Analysis Run 7/28/2023 9:33 AM View: CCR - UPL - 2020

	2R-OW (bg)
4/8/2016	7.34
6/20/2016	7.02
8/9/2016	6.1 (XO)
10/20/2016	6.98
1/24/2017	7.15
4/6/2017	7.01
6/6/2017	6.86
8/1/2017	7
10/23/2017	7.23
4/2/2018	7.29
10/1/2018	7.03
4/8/2019	8.57 (O)
10/7/2019	6.88
4/8/2020	7.08
10/15/2020	7.2
4/14/2021	7.52
10/26/2021	7.01
4/13/2022	7.2
10/6/2022	7.08
4/26/2023	7.3

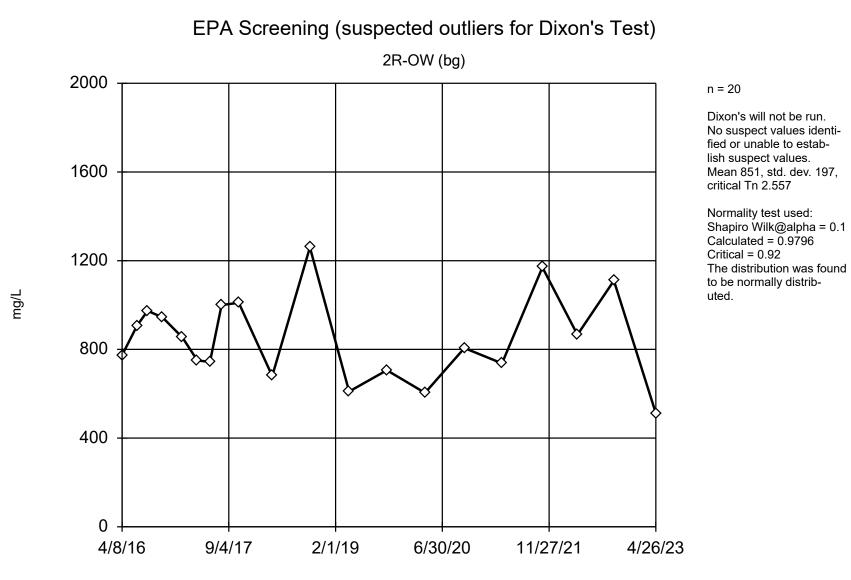

Constituent: Fluoride Analysis Run 7/28/2023 9:32 AM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

mg/L

Tukey's Outlier Screening

Constituent: Fluoride (mg/L) Analysis Run 7/28/2023 9:33 AM View: CCR - UPL - 2020

	2R-OW (bg)
4/8/2016	<0.2 (U)
6/20/2016	<0.2 (U)
8/9/2016	<0.2 (U)
10/20/2016	<0.1 (U)
1/24/2017	<0.1 (U)
4/6/2017	<0.1 (U)
6/6/2017	<0.1 (U)
8/1/2017	<0.1 (U)
10/23/2017	<0.1 (U)
4/2/2018	0.12 (J)
10/1/2018	<0.1 (U)
4/8/2019	<0.1 (U)
10/7/2019	<0.1 (U)
4/8/2020	<0.095 (U)
10/15/2020	0.096 (J)
4/14/2021	<0.095 (U)
10/26/2021	<4.8 (UXO)
4/13/2022	<0.95 (UXO)
10/6/2022	<0.095 (U)
4/26/2023	0.11 (J)


Constituent: Sulfate Analysis Run 7/28/2023 9:32 AM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

mg/L

EPA 1989 Outlier Screening

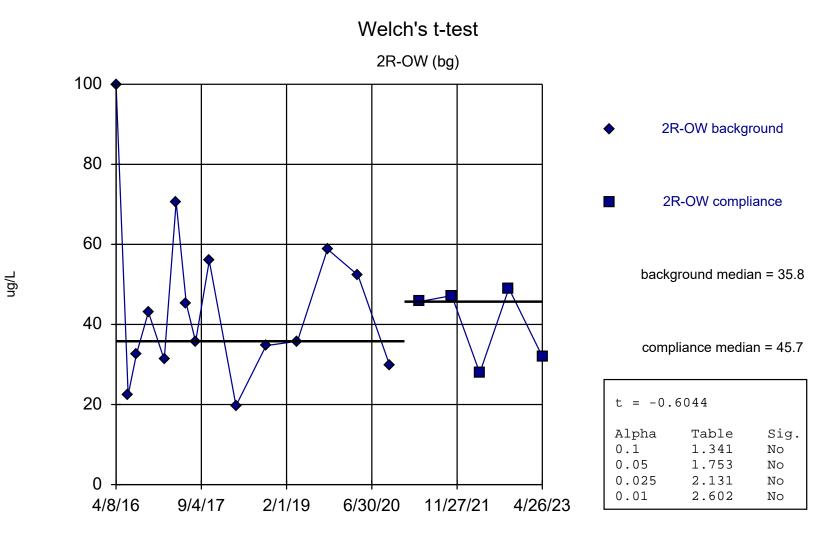
Constituent: Sulfate (mg/L) Analysis Run 7/28/2023 9:33 AM View: CCR - UPL - 2020

	2R-OW (bg)
4/8/2016	19.5
6/20/2016	28
8/9/2016	25.4
10/20/2016	21.6
1/24/2017	23.9
4/6/2017	17.6
6/6/2017	17.8
8/1/2017	28.8
10/23/2017	29.3
4/2/2018	17.2
10/1/2018	37.2
4/8/2019	10.6
10/7/2019	13.2
4/8/2020	11.6
10/15/2020	20.3
4/14/2021	15.3
10/26/2021	35.7 (J)
4/13/2022	18.5 (J)
10/6/2022	28
4/26/2023	7.5

Constituent: Total Dissolved Solids Analysis Run 7/28/2023 9:32 AM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

EPA 1989 Outlier Screening

Constituent: Total Dissolved Solids (mg/L) Analysis Run 7/28/2023 9:33 AM View: CCR - UPL - 2020

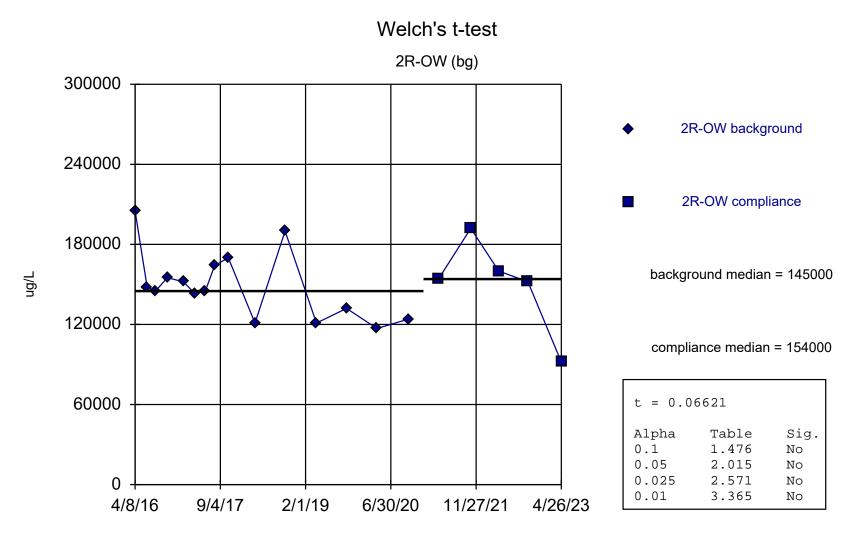

	2R-OW (bg)
4/8/2016	774
6/20/2016	908
8/9/2016	974
10/20/2016	944
1/24/2017	854
4/6/2017	750
6/6/2017	744
8/1/2017	1000
10/23/2017	1010
4/2/2018	680
10/1/2018	1260
4/8/2019	610
10/7/2019	706
4/8/2020	604
10/15/2020	806
4/14/2021	737
10/26/2021	1170
4/13/2022	866
10/6/2022	1110
4/26/2023	512

Attachment 3

Welch's/Mann-Whitney Comparison

Welch's t-test/Mann-Whitney

	Edgewater Closed Ge	nerating Stati	on Clie	ent: SCS E	ngineers	Data: ED	DG_Clsd - Ch	nem- expo	rt-Dec2020	Printed 7/28/2023, 9:36 AM
Constituent	Well	<u>Calc.</u>	<u>0.1</u>	<u>0.05</u>	<u>0.025</u>	<u>0.01</u>	<u>Alpha</u>	<u>Sig.</u>	<u>Bg. Wells</u>	Method
Boron (ug/L)	2R-OW (bg)	-0.6044	No	No	No	No	0.01	No	(intrawell)	Welch`s
Calcium (ug/L)	2R-OW (bg)	0.06621	No	No	No	No	0.01	No	(intrawell)	Welch`s
Chloride (mg/L)	2R-OW (bg)	1.01	No	No	No	No	0.01	No	(intrawell)	Welch's
Field pH (Std. Units)	2R-OW (bg)	1.18	No	No	No	No	0.01	No	(intrawell)	Mann-W (normality)
Fluoride (mg/L)	2R-OW (bg)	0.3673	No	No	No	No	0.01	No	(intrawell)	Mann-W (NDs)
Sulfate (mg/L)	2R-OW (bg)	-0.0883	No	No	No	No	0.01	No	(intrawell)	Welch's
Total Dissolved Solids (mg/L)	2R-OW (bg)	0.289	No	No	No	No	0.01	No	(intrawell)	Welch's

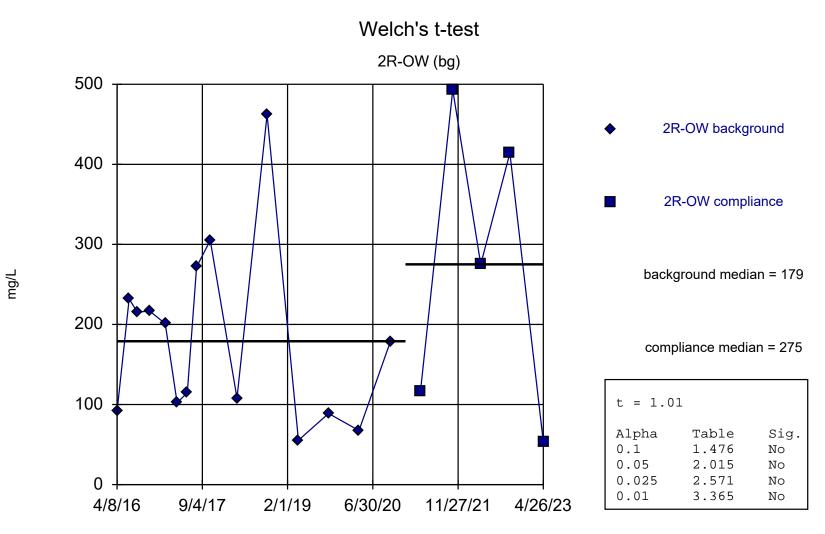

Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8829, critical = 0.881.

Constituent: Boron Analysis Run 7/28/2023 9:33 AM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Welch's t-test

Constituent: Boron (ug/L) Analysis Run 7/28/2023 9:36 AM View: CCR - UPL - 2020

	2R-OW	2R-OW
4/8/2016	100	
6/20/2016	22.4	
8/9/2016	32.6	
10/20/2016		
1/24/2017	31.2	
4/6/2017	70.6	
6/6/2017	45.2	
8/1/2017	45.2 35.7	
10/23/2017	55.9	
4/2/2018	19.7	
10/1/2018	34.7	
4/8/2019	35.8	
10/7/2019	58.8	
4/8/2020	52.3	
10/15/2020	29.9	
4/14/2021		45.7
10/26/2021		47.2
4/13/2022		27.9
10/6/2022		49
4/26/2023		32

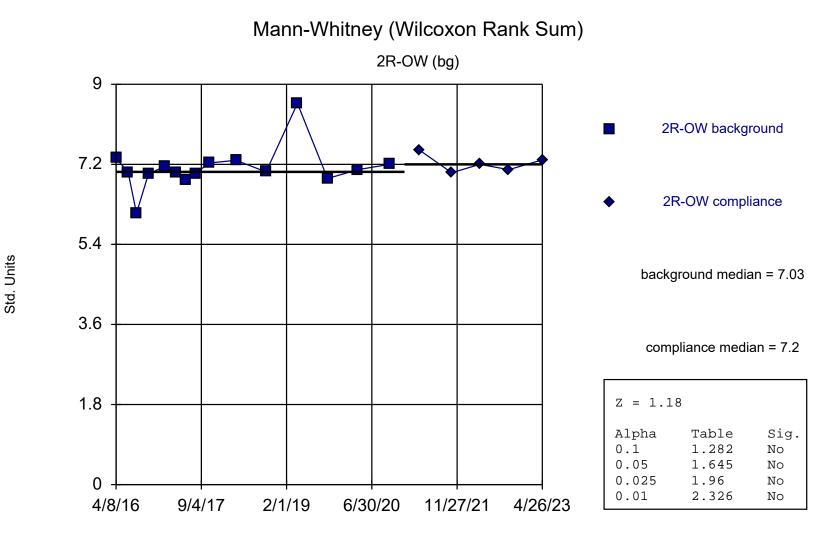

Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9279, critical = 0.881.

Constituent: Calcium Analysis Run 7/28/2023 9:33 AM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Welch's t-test

Constituent: Calcium (ug/L) Analysis Run 7/28/2023 9:37 AM View: CCR - UPL - 2020

	2R-OW	2R-OW
4/8/2016	205000	
6/20/201	6 148000	
8/9/2016	6 145000	
10/20/20	16 155000	
1/24/201	7 152000	
4/6/2017	143000	
6/6/2017	145000	
8/1/2017	164000	
10/23/20	17 170000	
4/2/2018	121000	
10/1/201	8 190000	
4/8/2019	121000	
10/7/201	9 132000	
4/8/2020	117000	
10/15/20	124000	
4/14/202	21	154000
10/26/20	021	192000
4/13/202	22	160000
10/6/202	22	152000
4/26/202	23	91800


Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8933, critical = 0.881.

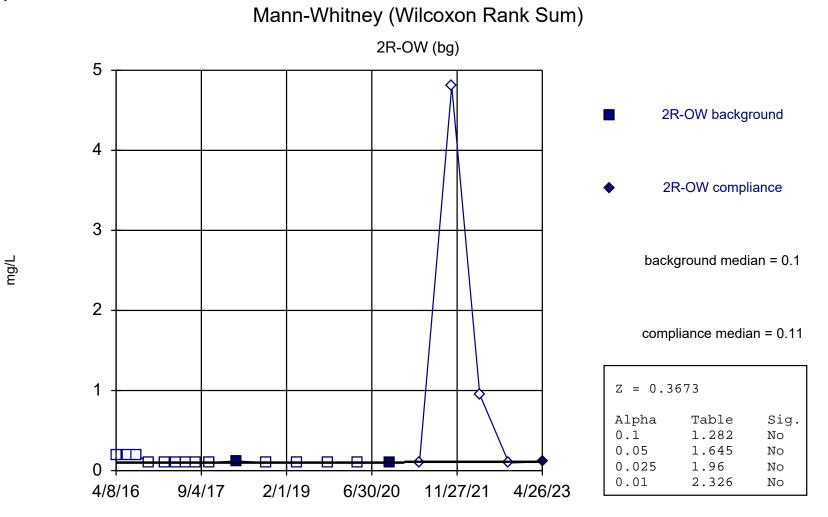
Constituent: Chloride Analysis Run 7/28/2023 9:33 AM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Welch's t-test

Constituent: Chloride (mg/L) Analysis Run 7/28/2023 9:37 AM View: CCR - UPL - 2020

	2R-OW	2R-OW
4/8/2016	91.7	
6/20/2016	232	
8/9/2016	215	
10/20/2016	217	
1/24/2017	201	
4/6/2017	102	
6/6/2017	115	
8/1/2017	272	
10/23/2017	305	
4/2/2018	108	
10/1/2018	462	
4/8/2019	55.3	
10/7/2019	88.8	
4/8/2020	67.5	
10/15/2020	179	
4/14/2021		116
10/26/2021		493
4/13/2022		275
10/6/2022		414
4/26/2023		53.4

Mann-Whitney (Wilcoxon Rank Sum) used in lieu of Welch's t-test because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level.

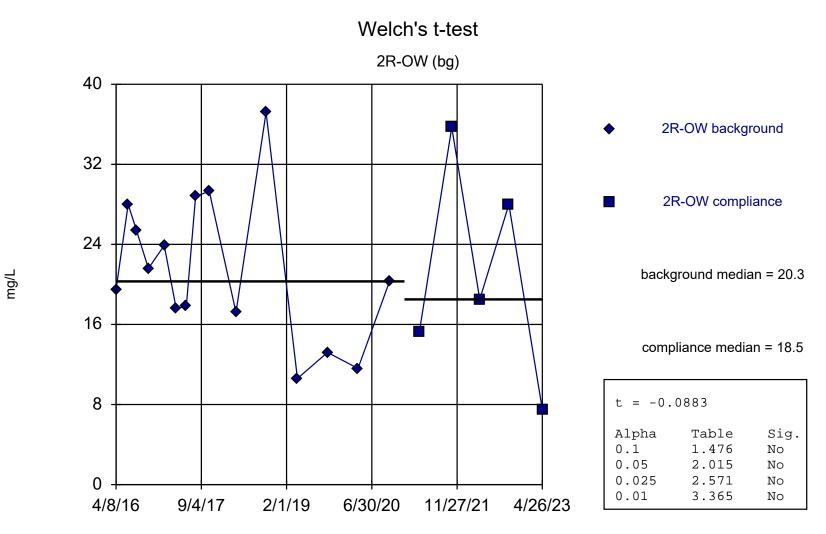

Constituent: Field pH Analysis Run 7/28/2023 9:33 AM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Mann-Whitney (Wilcoxon Rank Sum)

Constituent: Field pH (Std. Units) Analysis Run 7/28/2023 9:37 AM View: CCR - UPL - 2020

	2R-OW	2R-OW
4/8/2016	7.34	
6/20/2016	7.02	
8/9/2016	6.1 (X)	
10/20/2016	6.98	
1/24/2017	7.15	
4/6/2017	7.01	
6/6/2017	6.86	
8/1/2017	7	
10/23/2017	7.23	
4/2/2018	7.29	
10/1/2018	7.03	
4/8/2019	8.57	
10/7/2019	6.88	
4/8/2020	7.08	
10/15/2020	7.2	
4/14/2021		7.52
10/26/2021		7.01
4/13/2022		7.2
10/6/2022		7.08
4/26/2023		7.3

Sanitas[™] v.9.6.37 Software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

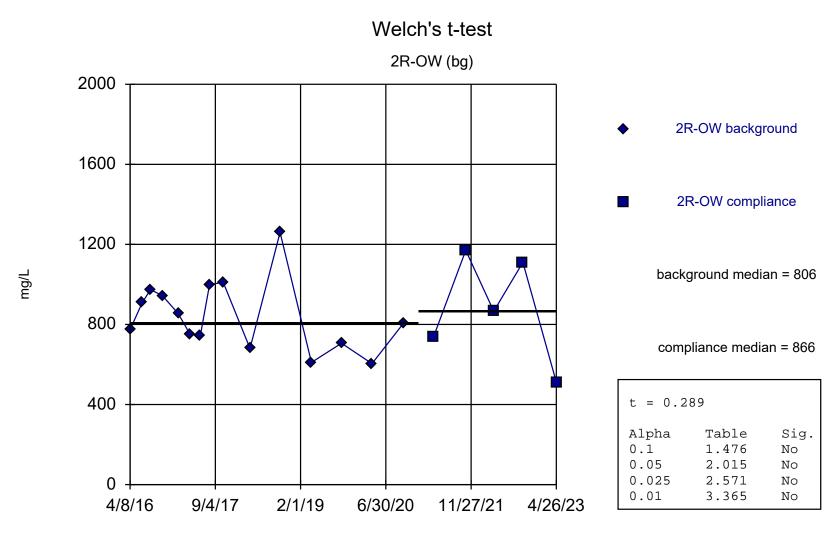

Mann-Whitney (Wilcoxon Rank Sum) used in lieu of Welch's t-test because censored data exceeded 75%.

Constituent: Fluoride Analysis Run 7/28/2023 9:33 AM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Mann-Whitney (Wilcoxon Rank Sum)

Constituent: Fluoride (mg/L) Analysis Run 7/28/2023 9:37 AM View: CCR - UPL - 2020

	2R-OW	2R-OW
4/8/2016	<0.2 (U)	
6/20/2016	<0.2 (U)	
8/9/2016	<0.2 (U)	
10/20/2016	<0.1 (U)	
1/24/2017	<0.1 (U)	
4/6/2017	<0.1 (U)	
6/6/2017	<0.1 (U)	
8/1/2017	<0.1 (U)	
10/23/2017	<0.1 (U)	
4/2/2018	0.12 (J)	
10/1/2018	<0.1 (U)	
4/8/2019	<0.1 (U)	
10/7/2019	<0.1 (U)	
4/8/2020	<0.095 (U)	
10/15/2020	0.096 (J)	
4/14/2021		<0.095 (U)
10/26/2021		<4.8 (UX)
4/13/2022		<0.95 (UX)
10/6/2022		<0.095 (U)
4/26/2023		0.11 (J)


Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9672, critical = 0.881.

Constituent: Sulfate Analysis Run 7/28/2023 9:33 AM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Welch's t-test

Constituent: Sulfate (mg/L) Analysis Run 7/28/2023 9:37 AM View: CCR - UPL - 2020

	2R-OW	2R-OW
4/8/2016	19.5	
6/20/2016	28	
8/9/2016	25.4	
10/20/2016	21.6	
1/24/2017	23.9	
4/6/2017	17.6	
6/6/2017	17.8	
8/1/2017	28.8	
10/23/2017	29.3	
4/2/2018	17.2	
10/1/2018	37.2	
4/8/2019	10.6	
10/7/2019	13.2	
4/8/2020	11.6	
10/15/2020	20.3	
4/14/2021		15.3
10/26/2021		35.7 (J)
4/13/2022		18.5 (J)
10/6/2022		28
4/26/2023		7.5

Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9458, critical = 0.881.

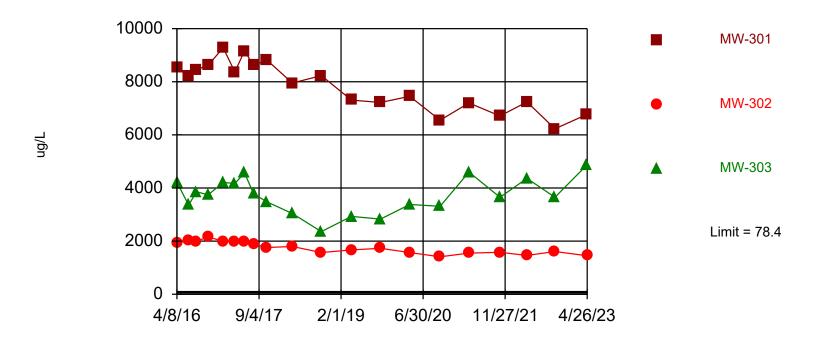
Constituent: Total Dissolved Solids Analysis Run 7/28/2023 9:34 AM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Welch's t-test

Constituent: Total Dissolved Solids (mg/L) Analysis Run 7/28/2023 9:37 AM View: CCR - UPL - 2020

2R-OW 2R-OW 4/8/2016 774 6/20/2016 908 8/9/2016 974 10/20/2016 944 1/24/2017 854 4/6/2017 750 6/6/2017 744 8/1/2017 1000 10/23/2017 1010 10/23/2017 1010 4/8/2018 680 10/1/2018 1260 10/1/2019 706 4/8/2020 604 10/15/2020 806 4/14/2021 737 10/26/2021 1170 4/13/2022 866 10/6/2022 1110 4/26/2023 512			
6/20/2016 908 8/9/2016 974 10/20/2016 944 1/24/2017 854 4/6/2017 750 6/6/2017 744 8/1/2017 1000 10/23/2017 1010 4/2/2018 680 10/1/2018 1260 4/8/2019 610 10/7/2019 706 4/8/2020 604 10/15/2020 806 4/14/2021 737 10/26/2021 1170 4/13/2022 866 10/6/2022 1110		2R-OW	2R-OW
8/9/2016 974 10/20/2016 944 1/24/2017 854 4/6/2017 750 6/6/2017 744 8/1/2017 1000 10/23/2017 1010 4/2/2018 680 10/1/2018 1260 4/8/2019 610 10/7/2019 706 4/8/2020 604 10/15/2020 806 4/14/2021 737 10/26/2021 11170 4/13/2022 866 10/6/2022 1110	4/8/2016		
10/20/2016 944 1/24/2017 854 4/6/2017 750 6/6/2017 744 8/1/2017 1000 10/23/2017 1010 4/2/2018 680 10/1/2018 1260 4/8/2019 610 10/7/2019 706 4/8/2020 604 10/15/2020 806 4/14/2021 737 10/26/2021 1170 4/13/2022 866 10/6/2022 1110	6/20/2016	908	
1/24/2017 854 4/6/2017 750 6/6/2017 744 8/1/2017 1000 10/23/2017 1010 4/2/2018 680 10/1/2018 1260 4/8/2019 610 10/7/2019 706 4/8/2020 604 10/15/2020 806 4/14/2021 737 10/26/2021 1170 4/13/2022 866 10/6/2022 1110	8/9/2016	974	
4/6/2017 750 6/6/2017 744 8/1/2017 1000 10/23/2017 1010 4/2/2018 680 10/1/2018 1260 4/8/2019 610 10/7/2019 706 4/8/2020 604 10/15/2020 806 4/14/2021 737 10/26/2021 1170 4/13/2022 866 10/6/2022 1110	10/20/2016	944	
6/6/2017 744 8/1/2017 1000 10/23/2017 1010 4/2/2018 680 10/1/2018 1260 4/8/2019 610 10/7/2019 706 4/8/2020 604 10/15/2020 806 4/14/2021 737 10/26/2021 1170 4/13/2022 866 10/6/2022 1110			
6/6/2017 744 8/1/2017 1000 10/23/2017 1010 4/2/2018 680 10/1/2018 1260 4/8/2019 610 10/7/2019 706 4/8/2020 604 10/15/2020 806 4/14/2021 737 10/26/2021 1170 4/13/2022 866 10/6/2022 1110	4/6/2017	750	
8/1/2017 1000 10/23/2017 1010 4/2/2018 680 10/1/2018 1260 4/8/2019 610 10/7/2019 706 4/8/2020 604 10/15/2020 806 4/14/2021 737 10/26/2021 1170 4/13/2022 866 10/6/2022 1110			
10/23/2017 1010 4/2/2018 680 10/1/2018 1260 4/8/2019 610 10/7/2019 706 4/8/2020 604 10/15/2020 806 4/14/2021 737 10/26/2021 1170 4/13/2022 866 10/6/2022 1110			
4/2/2018 680 10/1/2018 1260 4/8/2019 610 10/7/2019 706 4/8/2020 604 10/15/2020 806 4/14/2021 737 10/26/2021 1170 4/13/2022 866 10/6/2022 1110			
10/1/2018 1260 4/8/2019 610 10/7/2019 706 4/8/2020 604 10/15/2020 806 4/14/2021 737 10/26/2021 1170 4/13/2022 866 10/6/2022 1110			
4/8/2019 610 10/7/2019 706 4/8/2020 604 10/15/2020 806 4/14/2021 737 10/26/2021 1170 4/13/2022 866 10/6/2022 1110			
10/7/2019 706 4/8/2020 604 10/15/2020 806 4/14/2021 737 10/26/2021 1170 4/13/2022 866 10/6/2022 1110			
4/8/2020 604 10/15/2020 806 4/14/2021 737 10/26/2021 1170 4/13/2022 866 10/6/2022 1110			
10/15/2020 806 4/14/2021 737 10/26/2021 1170 4/13/2022 866 10/6/2022 1110			
4/14/2021 737 10/26/2021 1170 4/13/2022 866 10/6/2022 1110			
10/26/202111704/13/202286610/6/20221110			737
10/6/2022 1110	10/26/2021		1170
10/6/2022 1110			

Attachment 4


Interwell Prediction Limit Analysis

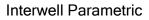
Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020 Printed 7/28/2023, 3:36 PM

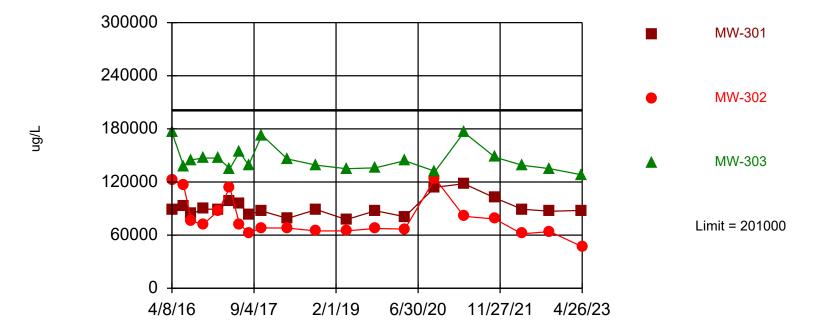
<u>Constituent</u>	Well	Upper Lim.	Lower Lim.	Date	Observ.	<u>Sig.</u>	Bg N	N Bg Wells	<u>Bg Mean</u>	Std. Dev	<u>v. %NDs</u>	<u>ND Adj</u>	<u>Transform</u>	<u>Alpha</u>	Method
Boron (ug/L)	MW-301	78.4	n/a	4/25/2023	6770	Yes	20	2R-OW	43.49	18.47	0	None	No	0.002505	Param Inter 1 of 2
Boron (ug/L)	MW-302	78.4	n/a	4/26/2023	1450	Yes	20	2R-OW	43.49	18.47	0	None	No	0.002505	Param Inter 1 of 2
Boron (ug/L)	MW-303	78.4	n/a	4/25/2023	4870	Yes	20	2R-OW	43.49	18.47	0	None	No	0.002505	Param Inter 1 of 2
Calcium (ug/L)	MW-301	201000	n/a	4/25/2023	87900	No	20	2R-OW	149090	27509	0	None	No	0.002505	Param Inter 1 of 2
Calcium (ug/L)	MW-302	201000	n/a	4/26/2023	46900	No	20	2R-OW	149090	27509	0	None	No	0.002505	Param Inter 1 of 2
Calcium (ug/L)	MW-303	201000	n/a	4/25/2023	128000	No	20	2R-OW	149090	27509	0	None	No	0.002505	Param Inter 1 of 2
Chloride (mg/L)	MW-301	456	n/a	4/25/2023	17.9	No	20	2R-OW	203.1	133.8	0	None	No	0.002505	Param Inter 1 of 2
Chloride (mg/L)	MW-302	456	n/a	4/26/2023	16.5	No	20	2R-OW	203.1	133.8	0	None	No	0.002505	Param Inter 1 of 2
Chloride (mg/L)	MW-303	456	n/a	4/25/2023	22.3	No	20	2R-OW	203.1	133.8	0	None	No	0.002505	Param Inter 1 of 2
Field pH (Std. Units)	MW-301	8.57	n/a	4/25/2023	7.63	No	19	2R-OW	n/a	n/a	0	n/a	n/a	0.004634	NP Inter (normality)
Field pH (Std. Units)	MW-302	8.57	n/a	4/26/2023	7.85	No	19	2R-OW	n/a	n/a	0	n/a	n/a	0.004634	NP Inter (normality)
Field pH (Std. Units)	MW-303	8.57	n/a	4/25/2023	6.87	No	19	2R-OW	n/a	n/a	0	n/a	n/a	0.004634	NP Inter (normality)
Fluoride (mg/L)	MW-301	0.200	n/a	4/25/2023	0.21J	No	18	2R-OW	n/a	n/a	83.33	n/a	n/a	0.005131	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	MW-302	0.200	n/a	4/26/2023	0.75	Yes	18	2R-OW	n/a	n/a	83.33	n/a	n/a	0.005131	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	MW-303	0.200	n/a	4/25/2023	0.095ND	No	18	2R-OW	n/a	n/a	83.33	n/a	n/a	0.005131	NP Inter (NDs) 1 of 2
Sulfate (mg/L)	MW-301	36.7	n/a	4/25/2023	168	Yes	20	2R-OW	21.35	8.109	0	None	No	0.002505	Param Inter 1 of 2
Sulfate (mg/L)	MW-302	36.7	n/a	4/26/2023	75.4	Yes	20	2R-OW	21.35	8.109	0	None	No	0.002505	Param Inter 1 of 2
Sulfate (mg/L)	MW-303	36.7	n/a	4/25/2023	0.5J	No	20	2R-OW	21.35	8.109	0	None	No	0.002505	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	MW-301	1220	n/a	4/25/2023	554	No	20	2R-OW	851	197	0	None	No	0.002505	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	MW-302	1220	n/a	4/26/2023	344	No	20	2R-OW	851	197	0	None	No	0.002505	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	MW-303	1220	n/a	4/25/2023	740	No	20	2R-OW	851	197	0	None	No	0.002505	Param Inter 1 of 2

Exceeds Limit: MW-301, MW-302, MW-303

Prediction Limit

Background Data Summary: Mean=43.49, Std. Dev.=18.47, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8775, critical = 0.868. Kappa = 1.888 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Comparing 3 points to limit.


Constituent: Boron Analysis Run 7/28/2023 3:34 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020


Constituent: Boron (ug/L) Analysis Run 7/28/2023 3:36 PM View: CCR - UPL - 2020

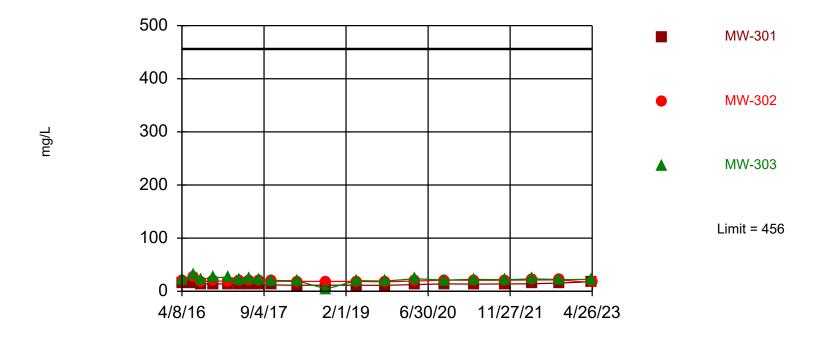
	2R-OW (bg)	MW-302	MW-303	MW-301
4/8/2016	100	1950	4210	
4/11/2016				8550
6/20/2016	22.4	2010	3360	8190
8/9/2016	32.6	2000	3860	8450
10/20/2016	43.1	2150	3740	8620
1/23/2017				9280
1/24/2017	31.2	2000	4210	
4/6/2017	70.6	1970	4170	8370
6/6/2017	45.2	1970	4570	9160
8/1/2017	35.7			
8/2/2017		1890	3780	8610
10/23/2017	55.9			
10/24/2017		1760	3480	8820
4/2/2018	19.7	1800	3040	7950
10/1/2018	34.7	1570	2360	8230
4/8/2019	35.8	1670	2930	7310
10/7/2019	58.8	1730	2830	7220
4/8/2020	52.3	1570	3380	7450
10/15/2020	29.9	1410	3310	6550
4/14/2021	45.7	1550	4600	7200
10/26/2021	47.2	1580	3650	6710
4/13/2022	27.9	1460	4360	7240
10/6/2022	49	1610	3650	6230
4/25/2023			4870	6770
4/26/2023	32	1450		

Within Limit

Prediction Limit

Background Data Summary: Mean=149090, Std. Dev.=27509, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9729, critical = 0.868. Kappa = 1.888 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Comparing 3 points to limit.

Constituent: Calcium Analysis Run 7/28/2023 3:34 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020


Constituent: Calcium (ug/L) Analysis Run 7/28/2023 3:36 PM View: CCR - UPL - 2020

	2R-OW (bg)	MW-302	MW-303	MW-301
4/8/2016	205000	122000	176000	
4/11/2016				88700
6/20/2016	148000	116000	138000	92200
8/9/2016	145000	75900	145000	84000
10/20/2016	155000	72100	147000	89400
1/23/2017				89200
1/24/2017	152000	87400	147000	
4/6/2017	143000	114000	135000	98800
6/6/2017	145000	72200	154000	94900
8/1/2017	164000			
8/2/2017		62600	139000	83600
10/23/2017	170000			
10/24/2017		68100	173000	87200
4/2/2018	121000	68000	146000	78900
10/1/2018	190000	64700	139000	88800
4/8/2019	121000	64800	135000	77500
10/7/2019	132000	67500	136000	87600
4/8/2020	117000	66800	144000	80800
10/15/2020	124000	124000	132000	114000
4/14/2021	154000	81200	176000	118000
10/26/2021	192000	78200	148000	102000
4/13/2022	160000	61500	139000	89300
10/6/2022	152000	64000	135000	86900
4/25/2023			128000	87900
4/26/2023	91800	46900		

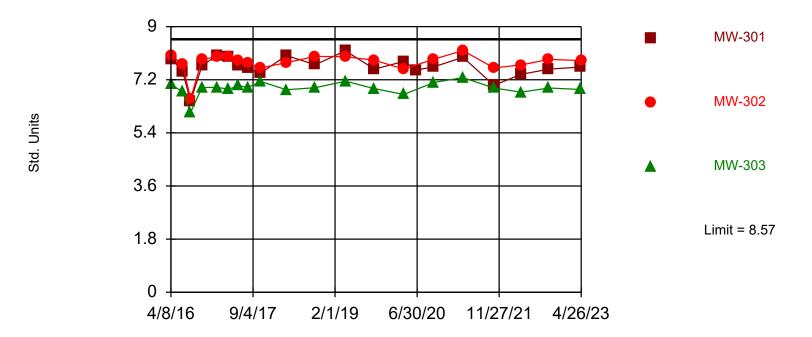
Within Limit

Prediction Limit

Interwell Parametric

Background Data Summary: Mean=203.1, Std. Dev.=133.8, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8906, critical = 0.868. Kappa = 1.888 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Comparing 3 points to limit.

Constituent: Chloride Analysis Run 7/28/2023 3:34 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020


Constituent: Chloride (mg/L) Analysis Run 7/28/2023 3:36 PM View: CCR - UPL - 2020

	2R-OW (bg)	MW-302	MW-303	MW-301
4/8/2016	91.7	18.9	21.8	
4/11/2016				16.2
6/20/2016	232	27.2	31.5	15.9
8/9/2016	215	18	22.8	13.7
10/20/2016	217	19.5	26	13.9
1/23/2017				13.8
1/24/2017	201	18.6	26.2	
4/6/2017	102	18.9	22.7	12.7
6/6/2017	115	20	25.4	13.5
8/1/2017	272			
8/2/2017		19.3	23.2	12.3
10/23/2017	305			
10/24/2017		18.9	20.4	11.9
4/2/2018	108	18.5	19.7	11.2
10/1/2018	462	18.6	4.3	11.5
4/8/2019	55.3	18.4	20	11.4
10/7/2019	88.8	17.8	19.1	11.1
4/8/2020	67.5	19.2	23.5	12.5
10/15/2020	179	20.9	20.9	13.9
4/14/2021	116	20.6	22.5	13.5
10/26/2021	493	20.7	21.6	13.8
4/13/2022	275	21.2	23.4	14
10/6/2022	414	21.2	22	15.5
4/25/2023			22.3	17.9
4/26/2023	53.4	16.5		

Sanitas™ v.9.6.37 Software licensed to SCS Engineers. UG

Within Limit

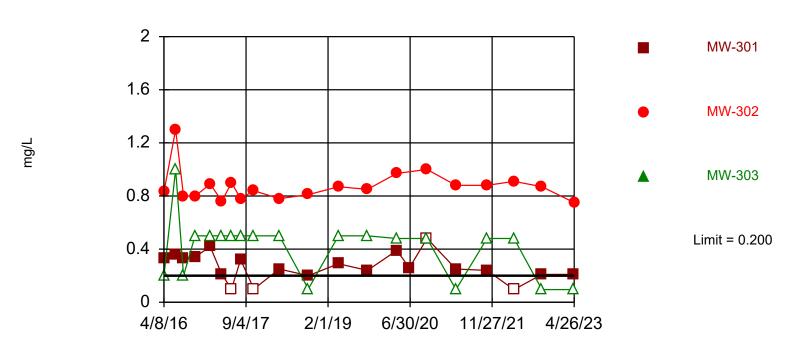
Prediction Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 19 background values. Annual per-constituent alpha = 0.02748. Individual comparison alpha = 0.004634 (1 of 2). Comparing 3 points to limit.

Constituent: Field pH Analysis Run 7/28/2023 3:34 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Constituent: Field pH (Std. Units) Analysis Run 7/28/2023 3:36 PM View: CCR - UPL - 2020


	2R-OW (bg)	MW-302	MW-303	MW-301
4/8/2016	7.34	8.01	7.04	
4/11/2016				7.91
6/20/2016	7.02	7.73	6.79	7.48
8/9/2016	6.1 (X)	6.55	6.09	6.47
10/20/2016	6.98	7.89	6.94	7.68
1/23/2017				8.03
1/24/2017	7.15	7.98	6.94	
4/6/2017	7.01	7.99	6.88	7.98
6/6/2017	6.86	7.84	7	7.7
8/1/2017	7			
8/2/2017		7.76	6.94	7.58
10/23/2017	7.23			
10/24/2017		7.6	7.14	7.43
4/2/2018	7.29	7.78	6.86	8.02
10/1/2018	7.03	7.99	6.93	7.71
4/8/2019	8.57	7.98	7.15	8.18
10/7/2019	6.88	7.86	6.9	7.56
4/8/2020	7.08	7.56	6.7	7.82
6/26/2020				7.53
10/15/2020	7.2	7.9	7.11	7.64
4/14/2021	7.52	8.19	7.27	7.96
10/26/2021	7.01	7.6	6.92	7.01
4/13/2022	7.2	7.7	6.78	7.38
10/6/2022	7.08	7.89	6.92	7.56
4/25/2023			6.87	7.63
4/26/2023	7.3	7.85		

Sanitas[™] v.9.6.37 Software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Exceeds Limit: MW-302

Prediction Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 18 background values. 83.33% NDs. Annual per-constituent alpha = 0.0304. Individual comparison alpha = 0.005131 (1 of 2). Comparing 3 points to limit.

Constituent: Fluoride Analysis Run 7/28/2023 3:34 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Constituent: Fluoride (mg/L) Analysis Run 7/28/2023 3:36 PM View: CCR - UPL - 2020

	2R-OW (bg)	MW-303	MW-302	MW-301
4/8/2016	<0.2 (U)	<0.2 (U)	0.83	
4/11/2016				0.33 (J)
6/20/2016	<0.2 (U)	<1 (U)	1.3 (J)	0.36 (J)
8/9/2016	<0.2 (U)	<0.2 (U)	0.8	0.33 (J)
10/20/2016	<0.1 (U)	<0.5 (U)	0.8	0.34
1/23/2017				0.42
1/24/2017	<0.1 (U)	<0.5 (U)	0.89 (J)	
4/6/2017	<0.1 (U)	<0.5 (U)	0.76	0.21 (J)
6/6/2017	<0.1 (U)	<0.5 (U)	0.9	<0.1 (U)
8/1/2017	<0.1 (U)			
8/2/2017		<0.5 (U)	0.78	0.32
10/23/2017	<0.1 (U)			
10/24/2017		<0.5 (U)	0.84	<0.1 (U)
4/2/2018	0.12 (J)	<0.5 (U)	0.78	0.25 (J)
10/1/2018	<0.1 (U)	<0.1 (U)	0.81	0.2 (J)
4/8/2019	<0.1 (U)	<0.5 (U)	0.87	0.29 (J)
10/7/2019	<0.1 (U)	<0.5 (U)	0.85	0.24 (J)
4/8/2020	<0.095 (U)	<0.48 (U)	0.97	0.39
6/26/2020				0.26 (J)
10/15/2020	0.096 (J)	<0.48 (U)	1 (J)	<0.48 (U)
4/14/2021	<0.095 (U)	<0.095	0.88	0.25 (J)
10/26/2021	<4.8 (UX)	<0.48	0.88	0.24 (J)
4/13/2022	<0.95 (UX)	<0.48 (U)	0.91	<0.095 (U)
10/6/2022	<0.095 (U)	<0.095 (U)	0.87	0.21 (J)
4/25/2023		<0.095 (U)		0.21 (J)
4/26/2023	0.11 (J)		0.75	

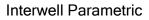
Sanitas[™] v.9.6.37 Software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

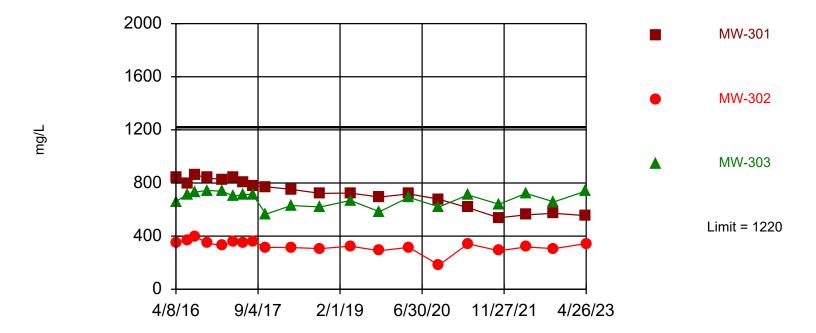
Exceeds Limit: MW-301, MW-302

Prediction Limit

Interwell Parametric

Background Data Summary: Mean=21.35, Std. Dev.=8.109, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9727, critical = 0.868. Kappa = 1.888 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Comparing 3 points to limit.


Constituent: Sulfate Analysis Run 7/28/2023 3:34 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020


Constituent: Sulfate (mg/L) Analysis Run 7/28/2023 3:36 PM View: CCR - UPL - 2020

	2R-OW (bg)	MW-302	MW-303	MW-301
4/8/2016	19.5	75.1	3 (J)	
4/11/2016				372
6/20/2016	28	89.6	11.4 (J)	343
8/9/2016	25.4	80.7	2.4 (J)	368
10/20/2016	21.6	77.2	5.6 (J)	369
1/23/2017				372
1/24/2017	23.9	71.1	<5 (U)	
4/6/2017	17.6	85.8	<5 (U)	367
6/6/2017	17.8	88.5	<5 (U)	362
8/1/2017	28.8			
8/2/2017		80.2	<5 (U)	340
10/23/2017	29.3			
10/24/2017		72.2	<5 (U)	341
4/2/2018	17.2	72.7	<5 (U)	332
10/1/2018	37.2	59.2	<1 (U)	318
4/8/2019	10.6	71.7	<5 (U)	322
10/7/2019	13.2	55.7	<5 (U)	312
4/8/2020	11.6	65.3	<2.2 (U)	298
10/15/2020	20.3	73.1	<2.2 (U)	293
4/14/2021	15.3	70.5	0.54 (J)	195
10/26/2021	35.7 (J)	71.2	<2.2 (U)	203
4/13/2022	18.5 (J)	68.5	<2.2 (U)	212
10/6/2022	28	70.5	<0.44 (U)	213
4/25/2023			0.5 (J)	168
4/26/2023	7.5	75.4		

Within Limit

Prediction Limit

Background Data Summary: Mean=851, Std. Dev.=197, n=20. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9796, critical = 0.868. Kappa = 1.888 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Comparing 3 points to limit.

Constituent: Total Dissolved Solids Analysis Run 7/28/2023 3:34 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Constituent: Total Dissolved Solids (mg/L) Analysis Run 7/28/2023 3:36 PM View: CCR - UPL - 2020

	2R-OW (bg)	MW-302	MW-303	MW-301
4/8/2016	774	352	660	
4/11/2016				838
6/20/2016	908	364	716	794
8/9/2016	974	396	732	862
10/20/2016	944	348	744	838
1/23/2017				826
1/24/2017	854	328	738	
4/6/2017	750	358	700	838
6/6/2017	744	350	714	804
8/1/2017	1000			
8/2/2017		360	714	780
10/23/2017	1010			
10/24/2017		316	566	772
4/2/2018	680	314	630	752
10/1/2018	1260	306	620	722
4/8/2019	610	324	668	724
10/7/2019	706	290	584	694
4/8/2020	604	316	692	718
10/15/2020	806	182	620	678
4/14/2021	737	342	710	614
10/26/2021	1170	290	640	538
4/13/2022	866	318	722	560
10/6/2022	1110	306	658	572
4/25/2023			740	554
4/26/2023	512	344		