2022 Annual Groundwater Monitoring and Corrective Action Report

Edgewater Generating Station Sheboygan, Wisconsin

Prepared for:

25222068.00 | January 31, 2023

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830

OVERVIEW OF CURRENT STATUS

Edgewater Generating Station, Surface Impoundments 2022 Annual Report

In accordance with §257.90(e)(6), this section at the beginning of the annual report provides an overview of the current status of groundwater monitoring and corrective action programs for the coal combustion residual (CCR) units. The groundwater monitoring system at the Edgewater Generating Station is a multiunit system. Supporting information is provided in the text of the annual report.

Category	Rule Requirement	Site Status
Monitoring Status – Start of Year	(i) At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95;	Detection
Monitoring Status – End of Year	(ii) At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95;	Detection
Statistically Significant Increases (SSIs)	(iii) If it was determined that there was an SSI over background for one or more constituents listed in appendix III to this part pursuant to §257.94(e):	
	(A) Identify those constituents listed in appendix III to this part and the names of the monitoring wells associated with such an increase; and	<u>October 2021</u> Boron: MW-301, MW-302, MW-303 Fluoride: MW-302 Sulfate: MW-301, MW-302 <u>April 2022</u> Boron: MW-301, MW-302, MW-303 Fluoride: MW-302 Sulfate: MW-301, MW-302
	(B) Provide the date when the assessment monitoring program was initiated for the CCR unit.	Alternative Source Demonstrations prepared for October 2021 and April 2022 events during 2022. Assessment monitoring not required.

i

Category	Rule Requirement	Site Status
Statistically Significant Levels (SSL) Above Groundwater Protection	(iv) If it was determined that there was an SSL above the GPS for one or more constituents listed in appendix IV to this part pursuant to §257.95(g) include all of the following:	Not applicable – Appendix IV parameter sampling not required
Standard (GPS)	(A) Identify those constituents listed in appendix IV to this part and the names of the monitoring wells associated with such an increase;	
	(B) Provide the date when the assessment of corrective measures was initiated for the CCR unit;	
	(C) Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and	
	(D) Provide the date when the assessment of corrective measures was completed for the CCR unit.	
Selection of Remedy	(v) Whether a remedy was selected pursuant to §257.97 during the current annual reporting period, and if so, the date of remedy selection; and	Not applicable – Site is in detection monitoring
Corrective Action	(vi) Whether remedial activities were initiated or are ongoing pursuant to §257.98 during the current annual reporting period.	Not applicable – Site is in detection monitoring

Table of Contents

Sect	ion		Pa	ge
Over	view o	f Currer	nt Status	i
1.0				
2.0	Back	ground		1
	2.1	Geolog	ic and Hydrogeologic Setting	1
		2.1.1	Regional Information	1
		2.1.2	Site Information	2
	2.2	CCR M	onitoring System	2
3.0	§257	7.90(e)	Annual Report Requirements	2
	3.1	§257.9	90(e)(1) Site Map	3
	3.2	§257.9	90(e)(2) Monitoring System Changes	3
	3.3	§257.9	90(e)(3) Summary of Sampling Events	3
	3.4	§257.9	90(e)(4) Monitoring Transition Narrative	4
	3.5	§257.9	90(e)(5) Other Requirements	4
		3.5.1	§257.90(e) General Requirements	4
		3.5.2	§257.94(d) Alternative Detection Monitoring Frequency	5
		3.5.3	§257.94(e)(2) Alternative Source Demonstration for Detection Monitoring	
		3.5.4	§257.95(c) Alternative Assessment Monitoring Frequency	5
		3.5.5	§257.95(d)(3) Assessment Monitoring Results and Standards	6
		3.5.6	§257.95(g)(3)(ii) Alternative Source Demonstration for Assessment Monitoring	6
		3.5.7	§257.96(a) Extension of Time for Corrective Measures Assessment	6
	3.6	§257.9	90(e)(6) Overview	6
4.0	Refe	rences.		6

Tables

- Table 2CCR Rule Groundwater Samples Summary
- Table 3AGroundwater Elevations State Monitoring Wells
- Table 3BGroundwater Elevations CCR Monitoring Wells
- Table 4
 Horizontal Gradients and Flow Velocity
- Table 5Groundwater Analytical Results Summary
- Table 6Groundwater Field Data Summary

Figures

- Figure 1 Site Location Map
- Figure 2 Site Plan and Monitoring Well Locations
- Figure 3 April 2022 Water Table Map
- Figure 4 October 2022 Water Table Map

Appendices

- Appendix A Summary of the Regional Hydrogeologic Stratigraphy
- Appendix B Boring Logs and Well Construction Documentation
- Appendix C Laboratory Reports
- Appendix D Historical Monitoring Results
- Appendix E Alternative Source Demonstrations (ASDs)
 - E1 October 2021 ASD
 - E2 April 2022 ASD

I:\25222068.00\Deliverables\2022 Fed CCR Annual Report\230131_2022 Annual CCR GW Report_EGS_Final.docx

1.0 INTRODUCTION

This 2022 Annual Groundwater Monitoring and Corrective Action Report was prepared to support compliance with the groundwater monitoring requirements of the Coal Combustion Residuals (CCR) Rule [40 Code of Federal Regulations (CFR) 257.50-107]. Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.90(e). The applicable sections of the Rule are provided below in italics, followed by applicable information relative to the 2022 Annual Groundwater Monitoring and Corrective Action Report for the CCR Units.

This report covers the period of groundwater monitoring from January 1, 2022, through December 31, 2022.

The groundwater monitoring system at the Edgewater Generating Station (EDG) is a multiunit system. EDG has four closed CCR units, which are contiguous:

- EDG Slag Pond (existing CCR surface impoundment)
- EDG North A-Pond (existing CCR surface impoundment)
- EDG South A-Pond (existing CCR surface impoundment)
- EDG B-Pond (existing surface CCR impoundment)

The system is designed to detect monitored constituents at the waste boundary of the CCR units as required by 40 CFR 257.91(d). The groundwater monitoring system consists of one upgradient and three downgradient monitoring wells (**Table 1**, **Figure 1**, and **Figure 2**).

Closure of the four ponds was completed in 2021. The Notification of Completion of Closure pursuant to 40 CFR 257.102(d) was entered into the EDG CCR Operating Record on August 10, 2021.

2.0 BACKGROUND

To provide context for the required annual report information, the following background information is provided in this section of the report, prior to the required information:

- Geologic and hydrogeologic setting
- CCR Rule monitoring system

2.1 GEOLOGIC AND HYDROGEOLOGIC SETTING

2.1.1 Regional Information

For the purposes of groundwater monitoring, the unconsolidated sand and gravel aquifer is considered to be the uppermost aquifer, as defined under 40 CFR 257.53, at the EDG ponds. A summary of the regional hydrogeologic stratigraphy and a regional geologic cross section are included in **Appendix A**.

The sand and gravel aquifer is present in some parts of Sheboygan County (Skinner and Borman, 1973). Boring logs from monitoring wells at the EDG ponds and for nearby private wells indicate that the unconsolidated material at and near the site contains a significant amount of sand. Private well logs from the surrounding area indicate that the sand and gravel aquifer has been used as a water

source; however, several older sand wells in the area have been replaced with bedrock water supply wells. In a search of area well records, SCS Engineers (SCS) did not find any records indicating that shallow wells are still being used in the area around EDG.

The dolomite aquifer underlies the unconsolidated material at the site. The total thickness of the dolomite aquifer at the site is unknown. The dolomite aquifer is underlain by the Maquoketa shale, which is a confining unit. The Maquoketa shale is underlain by the Cambrian-Ordovician sandstone aquifer. This sequence of sedimentary bedrock units is over 1,500 feet thick in the site vicinity. The sedimentary sequence is underlain by Precambrian crystalline rocks that are not considered an aquifer in eastern Wisconsin.

2.1.2 Site Information

The site consists of four closed CCR surface impoundments that are monitored as a single Closure Area. Closure of the impoundments began in 2020 and was completed in 2021. Adjacent to the surface impoundments is an inactive CCR landfill that was closed prior to 2015 and the area as a whole is regulated by the Wisconsin Department of Natural Resources (Edgewater 1-4 Closed Ash Disposal Facility, License #2524). A groundwater monitoring network of 19 wells was installed at the site to meet state requirements prior to installation of additional monitoring wells to meet CCR Rule requirements. Soils at the site are primarily silt, sand, and some clay to a depth of approximately 80 to 140 feet and overlie dolomite bedrock. During drilling of CCR wells MW-301, MW-302, and MW-303, the unconsolidated materials were identified as consisting primarily of lean clay overlying sandy silt. The boring log for the previously installed background monitoring well 2R-OW shows lean clay as the primary unconsolidated material at this location. The boring logs for Ash Ponds CCR monitoring wells are provided in **Appendix B**. All CCR monitoring wells are screened within the unconsolidated glacial aquifer.

Shallow groundwater in the area of the EDG site generally flows to the south-southeast. There is some localized groundwater mounding associated with the topographic highs of the closed EDG landfill and ponds. The water table maps shown on **Figures 3** and **4** are based on groundwater levels measured in the unconsolidated deposits during the April 2022 and October 2022 detection monitoring events. A summary of the sampling events that occurred throughout 2022 is shown in **Table 2**. The water table maps show a generally southward flow direction. The localized groundwater mounding in the area of the closed EDG landfill and ponds has decreased since closure of the ponds. The groundwater elevations are summarized in **Table 3A** (state wells) and **Table 3B** (CCR wells). Horizontal gradients and flow velocities for each of the flow paths are provided in **Table 4**.

2.2 CCR MONITORING SYSTEM

The groundwater monitoring system established under the CCR Rule consists of one upgradient (background) monitoring well and three downgradient monitoring wells (**Table 1** and **Figure 2**). The upgradient monitoring well is 2R-OW. The downgradient monitoring wells include MW-301, MW-302, and MW-303. The CCR compliance monitoring wells were installed in the unconsolidated sediments with screens in the uppermost soil layer producing appreciable water, which was a sandy silt unit. Well depths range from approximately 14.5 to 40 feet, measured from the top of the well casing.

3.0 §257.90(E) ANNUAL REPORT REQUIREMENTS

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR

landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by §257.105(h)(1). At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

3.1 §257.90(E)(1) SITE MAP

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

A map of the site location is provided as **Figure 1**. A map with an aerial image showing the CCR units and all background (or upgradient) and downgradient monitoring wells with identification numbers for the groundwater monitoring program is provided as **Figure 2**.

3.2 §257.90(E)(2) MONITORING SYSTEM CHANGES

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No new monitoring wells were installed, and no wells were decommissioned as part of the groundwater monitoring program for the CCR units in 2022.

3.3 §257.90(E)(3) SUMMARY OF SAMPLING EVENTS

In addition to all the monitoring data obtained under §257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

Two semiannual groundwater sampling events were completed in April and October 2022 for Appendix III constituents. A summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection or assessment monitoring programs is included in **Table 2**.

The validation and evaluation of the April 2022 monitoring event data was completed and transmitted to WPL on July 29, 2022. The validation and evaluation of the October 2022 monitoring event data was in progress at the end of 2022 and will be transmitted to WPL in 2023; therefore, the October 2022 monitoring results and analytical report will be included in the 2023 annual report. The groundwater elevations are included in this report.

The sampling results for Appendix III parameters in April 2022 are summarized in **Table 5.** Field parameter results for the April 2022 sampling event are provided in **Table 6**. The analytical

laboratory reports for April 2022 are provided in **Appendix C**. Historical results for each monitoring well through April 2022 are summarized in **Appendix D**.

3.4 §257.90(E)(4) MONITORING TRANSITION NARRATIVE

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels);

There were no transitions between monitoring programs in 2022. The EDG CCR units remained in the detection monitoring program.

In 2022, the monitoring results for the October 2021 and April 2022 monitoring events were evaluated for statistically significant increases (SSIs) in detection monitoring parameters relative to background. The comparison to background was based on a prediction limit approach, comparing the results to interwell upper prediction limits (UPLs) based on background monitoring results from the upgradient well (2R-OW). The interwell UPLs were most recently updated in January 2021 using background data collected through October 2020. The January 2021 Statistical Analysis was included as an appendix in the 2021 Annual Groundwater Monitoring Report. The Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities (U.S. EPA, 2009; Section 5.3.1) recommends periodic updating of background for both intrawell and interwell analyses. For semiannual monitoring, an update interval of 2 to 3 years is recommended; therefore, the next UPL update is planned for 2023.

SSIs for boron, fluoride, and sulfate were identified for both the October 2021 and April 2022 events; however, alternative source demonstrations (ASDs) were completed, demonstrating that a source other than the CCR units was the likely cause of the observed concentrations. The ASD reports are provided in **Appendix E**.

3.5 §257.90(E)(5) OTHER REQUIREMENTS

Other information required to be included in the annual report as specified in §257.90 through 257.98.

Additional potentially applicable requirements for the annual report, and the location of the requirement within the Rule, are provided in the following sections. For each cited section of the Rule, the portion referencing the annual report requirement is provided below in italics, followed by applicable information relative to the 2022 Annual Groundwater Monitoring and Corrective Action Report for the CCR Units.

3.5.1 §257.90(e) General Requirements

For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year.

Status of Groundwater Monitoring and Corrective Action Program. The groundwater monitoring and corrective action program was in detection monitoring throughout 2022.

Summary of Key Actions Completed (2022):

- Statistical evaluation and determination of SSIs for the October 2021 and April 2022 monitoring events.
- ASD reports for the SSIs identified from the October 2021 and April 2022 monitoring events.
- Two semiannual groundwater sampling and analysis events (April and October 2022).

Description of Any Problems Encountered. No problems were encountered in 2022.

Discussion of Actions to Resolve the Problems. Not applicable.

Projection of Key Activities for the Upcoming Year (2023):

- Statistical evaluation and determination of any SSIs for the October 2022 and April 2023 monitoring events.
- If an SSI is determined, then within 90 days either:
 - Complete alternative source demonstration (if applicable), or
 - Establish an assessment monitoring program.
- Two semiannual groundwater sampling and analysis events (April and October 2023).

3.5.2 §257.94(d) Alternative Detection Monitoring Frequency

The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer in the annual groundwater monitoring and corrective action report required by §257.90(e).

Not applicable. No alternative detection monitoring frequency has been proposed.

3.5.3 §257.94(e)(2) Alternative Source Demonstration for Detection Monitoring

The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by §257.90(e), in addition to the certification by a qualified professional engineer.

The ASD reports prepared to address the SSIs observed for the October 2021 and April 2022 sampling events are provided in **Appendix E**. The ASD reports are certified by a qualified professional engineer.

3.5.4 §257.95(c) Alternative Assessment Monitoring Frequency

The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer in the annual groundwater monitoring and corrective action report required by §257.90(e).

Not applicable. Assessment monitoring has not been initiated.

3.5.5 §257.95(d)(3) Assessment Monitoring Results and Standards

Include the recorded concentrations required by paragraph (d)(1) of this section, identify the background concentrations established under §257.94(b), and identify the groundwater protection standards established under paragraph (d)(2) of this section in the annual groundwater monitoring and corrective action report required by §257.90(e).

Not applicable. Assessment monitoring has not been initiated.

3.5.6 §257.95(g)(3)(ii) Alternative Source Demonstration for Assessment Monitoring

The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by §257.90(e), in addition to the certification by a qualified professional engineer.

Not applicable. Assessment monitoring has not been initiated.

3.5.7 §257.96(a) Extension of Time for Corrective Measures Assessment

The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measure due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by §257.90(e), in addition to the certification by a qualified professional engineer.

Not applicable. Corrective measures assessment has not been initiated.

3.6 §257.90(E)(6) OVERVIEW

A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit.

The specific requirements for the overview under $\S257.90(e)(6)$ are listed and the information is provided at the beginning of this report, before the Table of Contents.

4.0 **REFERENCES**

Skinner, Earl L., and Borman, Ronald G., 1973, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigation Atlas HA-432.

U.S. EPA, 2009, The Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities.

Tables

- 1 Groundwater Monitoring Well Network
- 2 CCR Rule Groundwater Samples Summary
- 3A Groundwater Elevations State Monitoring Wells
- 3B Groundwater Elevations CCR Monitoring Wells
- 4 Horizontal Gradients and Flow Velocity
- 5 Groundwater Analytical Results Summary
- 6 Groundwater Field Data Summary

Table 1. Groundwater Monitoring Well NetworkEdgewater 1-4 Closed Ash Disposal FacilitySCS Engineers Project #25222068.00

Monitoring Well	Location in Monitoring Network	Role in Monitoring Network
2R-OW	Upgradient	Background
MW-301	Downgradient	Compliance
MW-302	Downgradient	Compliance
MW-303	Downgradient	Compliance

Created by:	NDK
Last revision by:	NDK
Checked by:	RM

Date:	9/19/2022
Date:	9/19/2022
Date:	12/20/2022

Table 2. CCR Rule Groundwater Samples SummaryEdgewater 1-4 Closed Ash Disposal FacilitySCS Engineers Project #25222068.00

Sample Dates	C	ompliance We	ells	Background Well
	MW-301	MW-302	MW-303	2R-OW
4/13/2022	D	D	D	D
10/6/2022	D	D	D	D
Total Samples	2	2	2	2

Abbreviations:

D = Required by Detection Monitoring Program

Created by:	NDK	Date: 9/19/2022
Last revision by:	NDK	Date: 10/18/2022
Checked by:	RM	Date: 12/20/2022

I:\25222068.00\Deliverables\2022 Fed CCR Annual Report\Tables\[Table 2 - Groundwater Samples Summary.xlsx]GW Summary

Table 3A. Groundwater Elevations - State Monitoring WellsEdgewater 1-4 Closed Ash Disposal Facility / SCS Engineers Project #25222068.00

	Ground Water Elevation in feet above mean sea level (amsl)																					
Well Number	1-OW	2R-OW	3R-OW	4R-OW	5-OW	W-5A	6-AR	6R-OW	7A-OW	7-OW	18-OW	29-OW	29-A	30-OW	31-OW	32-OW	36-OW	37-OW	38R-OW	39R-OW	40-OW	SG-01
Top of Casing Elevation (ft amsl)^	592.18	611.85	591.59	594.68	600.94	600.66	590.78	591.74	593.45	593.19	ABAND	588.72	588.43	591.13	589.22	589.21	ABAND	615.30	620.24	614.27	586.69	ABAND
Total Depth (ft from top of casing)	11.10	17.53	15.82	16.48	10.65	21.51	19.86	10.37	20.21	9.93	14.25	19.96	43.12	14.88	14.98	14.95	21.01	18.55	29.00	22.29	17.3	
Measurement Date																						
October 24, 2012	588.11	607.82	582.64	585.24	595.63	596.69	587.42	587.40	592.00	589.78	583.49	585.33	586.60	586.40	582.58	583.63	599.77	599.42	599.38	598.05		597.60
April 18, 2012					595.89	597.13	587.33	587.35	592.35	589.79		585.32	588.39									
October 24, 2012					595.63	596.69	587.42	587.40	592.00	589.78		585.33	586.60									
April 8, 2013	588.50	609.92	588.37	586.35	596.66	597.65	588.40	587.34	592.79	589.95	583.97	585.78	588.07	588.57	584.35	584.50	600.79	600.24	600.16	598.30		597.9
October 22, 2013	584.88	601.15	580.90	584.46	594.23	595.64	582.64	584.83	591.23	587.24	NM ⁽¹⁾	584.70	586.76	582.19	580.40	580.76	599.13	598.22	598.42	596.56		598.0
April 22, 2014	588.05	609.22	587.99	586.11	595.18	597.10	587.00	587.37	589.27	589.51	NM ⁽¹⁾	585.38	588.22	587.53	583.75	583.75	NM ⁽¹⁾	599.67	599.38	598.56		597.8
October 28, 2014	586.14	607.27	586.30	585.08	595.33	596.51	587.68	586.99	591.92	589.29	NM ⁽¹⁾	585.00	587.84	585.48	582.88	582.68	600.07	599.81	599.26	598.37		595.85
April 7 - 9, 2015	587.90	608.47	587.44	585.52	595.66	596.76	586.99	587.50	591.95	588.50	ABAND	585.44	587.55	586.29	583.21	583.87	599.69	599.21	599.21	597.46	583.77	597.6
October 8, 2015	584.78	604.22	583.34	584.52	594.76	594.47	582.65	585.67	591.23	589.71	ABAND	584.69	587.27	584.26	581.60	582.52	600.29	599.47	599.70	598.09	583.01	
April 4-5, 2016	588.40	610.02	587.72	586.69	596.70	597.81	584.52	585.68	592.41	587.93	ABAND	582.95	587.25	586.91	584.35	584.47	601.05	601.37	601.18	601.13	579.28	599
October 17, 2016 ⁽²⁾	587.50	607.27	586.71	585.15	595.41	596.82	584.34	586.61	592.01	587.65	ABAND	581.25	586.10	586.23	583.02	583.83	600.87	600.70	600.74	599.49	579.42	
April 12-13, 2017	588.23	609.80	587.95	586.31	596.08	597.69	586.77	587.32	592.19	587.06	ABAND	583.74	585.43	585.36	583.68	584.52	602.01	602.11	602.08	601.29	584.02	
October 9, 2017	584.14	600.87	581.00	584.49	594.68	596.04	583.03	583.51	590.50	585.96	ABAND	583.01	584.88	582.76	580.93	581.18	600.18	598.48	599.65	598.07	583.05	
April 2, 2018	587.79	607.87	586.63	586.68	595.73	596.88	586.80	587.44	591.76	589.62	ABAND	585.51	587.11	585.68	582.95	582.85	600.71	600.00	600.04	597.99	583.64	
June 19, 2018	NM	605.70	585.49	585.20	595.41	NM	NM	NM	NM	587.20	ABAND	585.43	585.79	584.96	582.29	NM	NM (1)	600.44	600.68	599.61	583.07	NM
October 1, 2018	585.37	604.61	584.18	584.86	595.24	596.44	586.10	586.86	591.01	588.75	ABAND	585.04	584.94	584.79	582.11	582.81	600.30	600.12	600.27	599.79	583.17	
April 8, 2019	588.57	609.50	588.01	591.93	596.03	597.33	584.61	587.35	591.92	590.06	ABAND	585.76	586.75	587.83	584.18	584.85	600.21	599.60	599.74	598.49	583.75	
October 9-10, 2019	587.85	609.39	587.39	585.99	595.68	596.92	586.42	587.24	591.66	587.53	ABAND	585.14	585.10	587.15	583.63	584.48	599.92	600.25	600.01	599.82	583.08	
April 8-9, 2020	588.03	608.97	587.70	586.05	595.57	596.89	585.74	586.95	591.61	587.76	ABAND	584.98	587.35	587.29	583.70	584.59	599.40	599.52	599.48	599.38	583.01	
October 14-15, 2020	584.62	604.37	582.20	584.54	593.27	594.86	582.71	583.45	588.81	586.53	ABAND	583.95	586.83	583.83	582.60	582.82	ABAND	596.87	NM	594.72	583.26	NM
April 14, 2021	587.95	608.50	587.64	585.42	594.87	596.13	586.53	587.29	591.28	589.89	ABAND	585.16	587.64	587.06	583.46	584.25	ABAND	DRY	596.50	593.95	583.08	NM
October 27-28, 2021	584.53	603.62	580.74	584.47	593.06	594.70	579.90	584.60	590.45	587.39	ABAND	584.60	586.65	582.89	581.88	582.02	ABAND	DRY	595.49	592.34	582.74	ABAND
February 28, 2022	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	ABAND	NM	NM	NM	NM	NM	ABAND	DRY	595.25	NM	NM	ABAND
April 13, 2022	588.64	608.63	588.30	585.06	595.72	595.11	586.08	588.15	591.60	590.70	ABAND	584.69	584.82	588.02	584.10	585.09	ABAND	DRY	594.43	DRY	583.09	ABAND
October 6, 2022	584.39	601.93	580.62	583.52	593.16	593.41	582.43	584.86	590.02	587.38	ABAND	583.21	584.18	583.09	581.55	581.98	ABAND	DRY	594.62	593.36	582.60	ABAND

Notes:	Created by:	MDB	Date:	5/6/2013
NM = not measured	Last revision by:	MDB	Date:	1/30/2023
ABAND = abandoned	Checked by:	LMH	Date:	1/30/2023

1: Well broken

2: Well casings at 7-OW, 7A, and 29-OW were cut down to allow the protective covers to close. 7-OW was cut down by 0.22 ft, 7A was cut down by 0.29 ft, and 29-OW was cut down by 0.17 ft. Top of casing elevations in this table were adjusted ac *: Well was frozen

A: Monitoring well adjustments and resurveys:

Monitoring well 38R-OW was extended on October 30, 2020 during repairs following well damage by pond c losure construction equipment. Monitoring Well 40-OW cut down to have a top of casing elevation of 586.05 famsl on December 3, 2021. All active monitoring wells were resurveyed in January 2023. These elevations are retroactively applied to 2022 monitoring events.

I:\25222068.00\Deliverables\2022 Fed CCR Annual Report\Tables\[Table 3A - wlstat_Edgewater_Closed.xls]levels

Ground Water Elevation in feet above mean sea level (amsl)									
Well Number	MW-301	MW-302	MW-303	2R-OW					
Top of Casing Elevation (feet AMSL) ^(1,2,4)	606.90	607.70	604.78	611.85					
Screen Length (ft)	5.00	5.00	5.00	10.00					
Total Depth (ft from top of casing)	27.47	40.00	33.26	14.50					
Top of Well Screen Elevation (ft)	581.95	580.15	579.60	608.22					
Measurement Date									
April 8, 2016	599.75	596.19	589.04	609.68					
June 20, 2016	598.30	595.68	587.22	606.70					
August 9, 2016	598.00	595.53	587.72	605.74					
October 20, 2016	598.50	595.46	588.37	607.27					
January 23-24, 2017	597.10	596.30	588.84	609.64					
April 6, 2017	600.04	593.57	589.04	609.72					
October 24, 2017	598.77	595.86	588.44	607.63					
August 1, 2017	597.40	595.22	587.36	604.59					
October 24, 2017	597.20	595.25	587.97	601.74					
April 2, 2018	598.54	595.71	588.77	607.87					
October 1, 2018	597.60	595.28	588.17	604.61					
April 8, 2019	598.92	595.68	588.88	609.50					
October 7, 2019	599.56	595.58	588.77	609.39					
June 26, 2020	597.89	NM	NM	NM					
October 15, 2020	595.10	590.18	585.07	604.27					
April 14, 2021 ⁽³⁾	596.81	592.18	586.89	608.50					
October 26, 2021 ⁽³⁾	592.32	591.44	585.95	604.04					
April 13, 2022	597.37	593.05	587.99	608.63					
October 6, 2022	592.69	591.96	586.42	601.93					
Bottom of Well Elevation (ft)	576.95	575.15	578.73	598.22					

Table 3B. Groundwater Elevations - CCR Monitoring Wells Edgewater 1-4 Closed Ash Disposal Facility / SCS Engineers Project #25222068.00

Notes:

NM = not measured

(1): MW-302 and MW-303 were shortened in September 2020 due to site regrading during pond closure. The wells were resurveyed in November 2020.

(2): MW-301 was extended in November 2020 due to site regrading during pond closure. The well was resurveyed in November 2020.

(3): April and October 2021 groundwater elevations for MW-301, MW-302, and MW-303 were reported based on the original top of casing elevations in the April 2021 Annual Report. Groundwater elevations for these events are corrected in this table to reflect top of casing elevations surveyed in November 2020.

(4): All site wells were re-surveyed in January 2023, and elevations were tied to NGS benchmark PID #DE7593. Top of Casing elevations surveyed in January 2023 are shown in this table and were used to calculated April and October 2022 groundwater elevations.

Notes:	Created by:	MDB	Date: 6/27/2016
NM = not measured	Last rev. by:	MDB	Date: 1/30/2023
	Checked by:	LMH	Date: 1/30/2023
	Scientist QA/QC:	MDB	Date: 1/30/2023

I:\25222068.00\Deliverables\2022 Fed CCR Annual Report\Tables\[Table 3B - EGS_wlstat_CCR.xls]levels

Table 4. Horizontal Gradients and Flow Velocity - CCR Monitoring Wells Edgewater 1-4 Closed Ash Disposal Facility SCS Engineers Project #25222068.00 January - December 2022

	Flow Path A - South					
Sampling Dates	h1 (ff)	h2 (ft)	∆l (ft)	∆h/∆l (ft/ft)	V (ft/d)	
4/13/2022	590.00	587.99	300.31	0.01	0.00	
10/6/2022	586.42	585.00	83.71	0.02	0.01	

	Flow Path B - Southeast					
Sampling Dates	h1 (ff)	h2 (ft)	∆l (ft)	∆h/∆l (ft/ft)	V (ft/d)	
10/6/2022	591.96	587.38	204.81	0.02	0.02	

	K Value	
Wells	(cm/sec)	K Value (ft/d)
MW-301	2.1E-05	0.060
MW-302	4.0E-04	1.139
MW-303	1.1E-04	0.304
Geometric	9.7E-05	0.274

	Assumed Porosity, n
l	0.40

Groundwater flow velocity equation: $V = [K^*(\Delta h/\Delta I)] / n$

ft = feet ft/d = feet per day K = hydraulic conductivity n = effective porosityV = groundwater flow velocity h1, h2 = point interpreted groundwater elevation at locations 1 ΔI = distance between location 1 and 2 $\Delta h/\Delta I =$ hydraulic gradient

<u>Note:</u>

1. See Figures 3 and 4 for velocity calculation flow path locations

Created by:	NDK	Date:	9/19/2022
Last revision by:	RM	Date:	1/13/2022
Checked by:	TK	Date:	1/14/2023

Table 5. Groundwater Analytical Results Summary - CCR Monitoring WellsEdgewater 1-4 Closed Ash Disposal Facility / SCS Engineers Project #25222068.00

		Backgro We		Compliance Wells			
		2R-OW		MW-301	MW-302	MW-303	
Parameter Name	UPL	4/13/2	022	4/13/2022	4/13/2022	4/13/2022	
Appendix III						-	
Boron, µg/L	86	27.9	lq	7,240	1,460	4,360	
Calcium, µg/L	200,000	160,000		89,300	61,500	139,000	
Chloride, mg/L	400	275		14.0	21.2	23.4	
Fluoride, mg/L	0.2	<0.95	D3	<0.095	0.91	<0.48 D3	
Field pH, Std. Units	8.57	7.20		7.38	7.70	6.78	
Sulfate, mg/L	36	18.5	J, D3	212	68.5	<2.2 D3	
Total Dissolved Solids, mg/L	1,190	866		560	318	722	

4.4

Blue shaded cell indicates the compliance well result exceeds the UPL (background) and the Limit of Quantitation (LOQ).

Abbreviations:

UPL = Upper Prediction Limit -- = Not Applicable LOD = Limit of Detecmg/L = milligrams per liter LOQ = Limit of Quar μ g/L = micrograms per liter

Lab Notes:

D3 = Sample was diluted due to the presence of high levels of non-target analytes

J = Estimated concentration at or above the LOD and below the LOQ.

1q = Analyte was measured in the associated method blank at -3.1 ug/L.

Notes:

1. An individual result above the UPL does not constitute an SSI above background. See the accompanying report text for identification of statistically significant results.

2. Interwell UPLs calculated based on results from background well 2R-OW. Interwell UPLs based on 1-of-2 retesting approach. The interwell UPLs were updated in January 2021 using data from April 2016 through October 2020.

Created by: NDK Last revision by: RM Checked by: NDK Scientist/PM QA/QC: NDK

Date:	9/19/2022
Date:	11/22/2022
Date:	11/22/2022
Date:	11/22/2022

Table 6. Groundwater Field Data Summary - CCR Monitoring WellsEdgewater 1-4 Closed Ash Disposal Facility / SCS Engineers Project #25222068.00

Well	Sample Date	Groundwater Elevation (feet)	Field Temperature (deg C)	Field pH (Std. Units)	Oxygen, Dissolved (mg/L)	Field Specific Conductance (umhos/cm)	Field Oxidation Potential (mV)	Turbidity (NTU)
MW-301	4/13/2022	594.89	9.0	7.38	2.82	777	417.1	25.6
MW-302	4/13/2022	600.50	8.7	7.70	1.39	488	337.4	26.2
MW-303	4/13/2022	595.20	8.6	6.78	1.98	1,224	330.2	75.1
2R-OW	4/13/2022	609.50	7.5	7.20	6.72	1,549	425.6	205

Abbreviations:

mg/L = milligrams per liter

ft amsl = feet above mean sea level

µmhos/cm = micromhos per centimeter ORP = Oxidation-reduction potential mV = millivolts

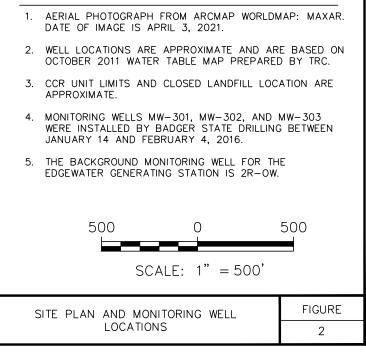
Created by:	NDK
Last revision by:	AJR
Checked by:	NDK

Date:	9/19/2022
Date:	10/19/2022
Date:	11/18/2022

Figures

- 1 Site Location Map
- 2 Site Plan and Monitoring Well Locations
- 3 April 2022 Water Table Map
- 4 October 2022 Water Table Map

\25222068.00\Drawings\Site Location Map.dwg, 1/16/2023 1:42:33 PM



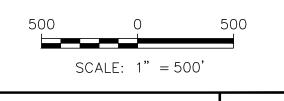
Mad-fs01\data\Projects\25222068.00\Drawings\Site Plan and Monitoring Well Locations.dwg, 1/16/2023 1:43:35 PM

•	CCR RULE MONITORING WELL
•	CCR RULE BACKGROUND MONITORING WELL
•	ADDITIONAL MONITORING WELL
۲	ADDITIONAL PIEZOMETER
\oplus	ABANDONED MONITORING WELL
Ф	ABANDONED STAFF GAUGE
	CCR UNITS
	CLOSED LANDFILL LIMITS

N

NOTES:

:\25222068.00\Drawings\Water Tables.dwg, 1/30/2023 4:45:20 PM


LEGEND

\oplus	ABANDONED MONITORING WELL
•	CCR MONITORING WELL
•	MONITORING WELL
۲	PIEZOMETER
Ф	ABANDONED STAFF GAUGE
	CCR UNITS
←←	FLOW PATH FOR VELOCITY CALCULATION (SEE TABLE 4)
	CLOSED LANDFILL LIMITS
	DESIGN MANAGEMENT ZONE
598.54	WATER TABLE ELEVATION (APRIL 13, 2022)
	WATER TABLE CONTOUR (5' INTERVAL)
-	APPROXIMATE GROUNDWATER FLOW DIRECTION

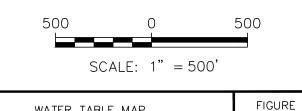
Ν

NOTES:

- 1. AERIAL PHOTOGRAPH FROM ARCMAP WORLDMAP: MAXAR. DATE OF IMAGE IS APRIL 3, 2021.
- EXISTING WELL LOCATIONS ARE APPROXIMATE AND ARE BASED ON OCTOBER 2011 WATER TABLE MAP PREPARED BY TRC.
- 3. DESIGN MANAGEMENT ZONE LOCATION IS APPROXIMATE
- 4. NEW MONITORING WELL LOCATIONS WERE SURVEYED BY CQM, INC. ON FEBRUARY 12, 2016.
- 5. MW-301, MW-302, AND MW-303 ARE NOT INCLUDED IN THE WDNR-APPROVED SITE-SPECIFIC MONITORING PLAN
- 6. GROUNDWATER ELEVATIONS COLLECTED FROM MONITORING WELLS ON APRIL 13, 2022.

WATER TABLE MAP APRIL 2022

:\25222068.00\Drawings\Water Tables.dwg, 1/30/2023 4:45:22 PM


LEGEND

\oplus	ABANDONED MONITORING WELL
•	CCR MONITORING WELL
•	MONITORING WELL
۲	PIEZOMETER
Ф	ABANDONED STAFF GAUGE
	CCR UNITS
~~~ ~~	FLOW PATH FOR VELOCITY CALCULATION (SEE TABLE 4)
	CLOSED LANDFILL LIMITS
	DESIGN MANAGEMENT ZONE
598.54	WATER TABLE ELEVATION (OCTOBER 6, 2022)
	WATER TABLE CONTOUR (5' INTERVAL)
-	APPROXIMATE GROUNDWATER FLOW DIRECTION

Ν

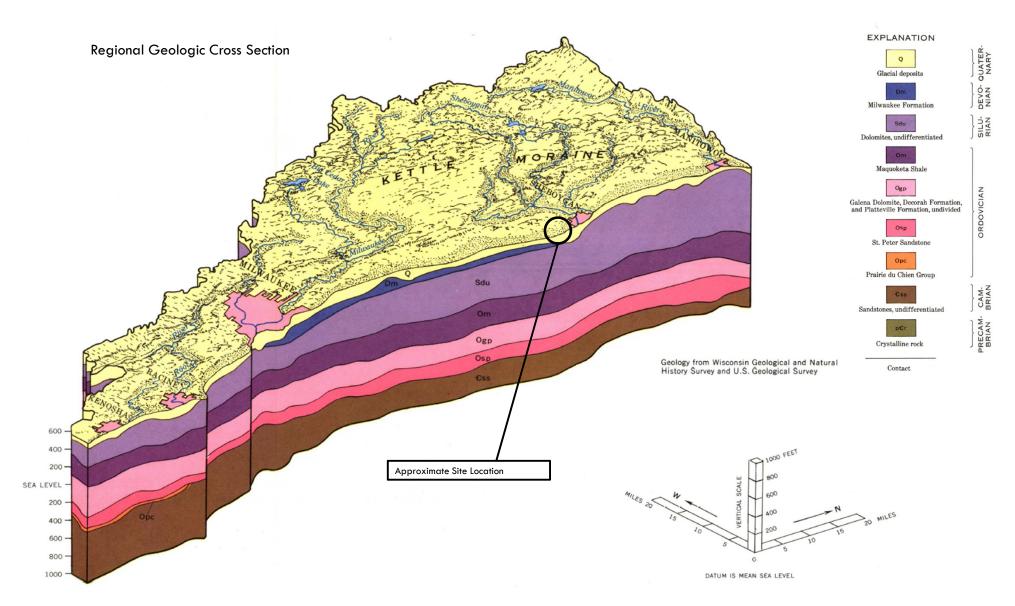
NOTES:

- 1. AERIAL PHOTOGRAPH FROM ARCMAP WORLDMAP: MAXAR. DATE OF IMAGE IS APRIL 3, 2021.
- 2. EXISTING WELL LOCATIONS ARE APPROXIMATE AND ARE BASED ON OCTOBER 2011 WATER TABLE MAP PREPARED BY TRC.
- 3. DESIGN MANAGEMENT ZONE LOCATION IS APPROXIMATE
- 4. NEW MONITORING WELL LOCATIONS WERE SURVEYED BY CQM, INC. ON FEBRUARY 12, 2016.
- 5. MW-301, MW-302, AND MW-303 ARE NOT INCLUDED IN THE WDNR-APPROVED SITE-SPECIFIC MONITORING PLAN
- 6. GROUNDWATER ELEVATIONS COLLECTED FROM MONITORING WELLS ON OCTOBER 6, 2022.

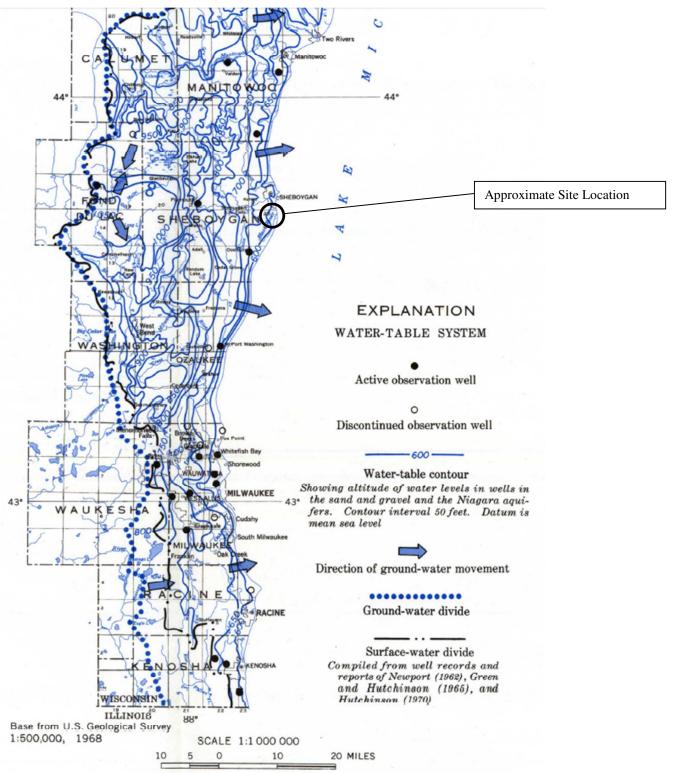
WATER TABLE MAP OCTOBER 2022

Appendix A

Summary of the Regional Hydrogeologic Stratigraphy


Table EGS-3. Regional Hydrogeologic StratigraphyEdgewater Generating Station / SCS Engineers Project #25215053

Age	Hydrogeologic Unit	General Thickness (feet)	Name of Rock Unit*	Predominant Lithology
Quaternary	Sand and Gravel	0 to 235	Surface sand and gravel	Sand and Gravel
	Aquifer	0 to 300	Buried sand and gravel	
Devonian	Niagara Dolomite	0 to 750	Dolomite	Dolomite
Silurian	Aquifer	0 10 7 50	(undifferentiated)	Dolomine
	Confining Unit	0 to 400	Maquoketa Shale	Shale and dolomite
Ordovician		100 to 340	Galena Decorah Platteville	Dolomite
		0 to 330	St. Peter	Sandstone
	Sandstone Aquifer	0 to 140	Prairie du Chien	Dolomite
Cambrian		0 to 3,500?	Trempeleau Franconia Galesville Eau Claire Mt. Simon	Sandstone, some Dolomite and Shale
Precambrian	Not an Aquifer	Unknown	Crystalline Rocks	Igneous and metamorphic rocks


Source:

Skinner, Earl L. and Ronald G. Borman, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigations Atlas HA-432, 1973.

 $l:\25215053\Reports\Report\ 6\ -\ EGS\Table_2\Regional_Hydrogeologic_Stratigraphy_143.doc$

Source: Skinner, Earl L. and Ronald G. Borman, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigations Atlas HA-432, 1973.

Regional Groundwater Flow Map - Uppermost Aquifer

Source: Skinner, Earl L. and Ronald G. Borman, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigations Atlas HA-432, 1973. Appendix B

Boring Logs and Well Construction Documentation

State of Wisconsin	Route to: Soli	d Waste 🛛	Haz. Waste 🛛	Wastewater [כ	MONITORING W Form 4400-113A	ELL CONSTRU	СТЮ 7.4	
Department of Natural Resources	Env. Response	& Repair 🗆	Underground	iTanka 🛛 🔿	Xher []				
Facility/Project Name		Land Cod	Location of We	11		Well Name 7A-0	11		
INPH Fracuate	· Sife	171.8	Z_ft. OS	1399.69	fr_ diw				
Facility License, Permit or Monisori	ng Number	Grid Origin			•	Wis Unique Well Num	or DNR Well f	Jumb	
Fichily Electron - Electron	02524	Lat	L	.ong	ar	· · · · · · · · · · · · · · · · · · ·			
Type of Well Water Table Observa	tion Well M 11	St. Plane	fi	L N,	ft. E.	Date Well Installed	4,29,90	R	
Type of well Water Table Outland Piezometer			ation of Waste			m	mddy	v	
Distance Well Is From Waste/Source	Boundary	Section Loc		2 - 14x	B 72 0 E	Well Installed By: (Pe	rson's Name and I	im)	1
Distance well B Fluin W Balobala	fL	<u>1/4 of/</u>	N = 1/4 of Sec.	<u> </u>	, <u>k. <u>-</u> U w.</u>	Mike I	IL APOIC	:	
Is Well A Point of Enforcement Std		Location of u Upg	Well Relative	io Waste/Souri	ce dient	milar		1	1
Is Well A Point of Enforcement Sur	No No		wngradient 1			M+K En	y <i>ironma</i>		/
					. Cap and lock?	?	Ya I	N D	6
A. Protective pipe, top elevation	_614.89	L MSL		/	. Protective cov		~		
	_612.221	i MSL —		R	a. Inside diam			_·-	in.
D. How warmen Br P			· 1		b. Length:			 	
C. Land surface elevation	_610.3 1	i MSL			c. Material:		Sieel J		
	6 1/ST or '	10fr.			C. Malcia.		Other		
D. Surface seal, bouom	_ IL MOLOI	<u></u> \				protection?			
12. USCS classification of soil ne	ar screen:		J	N		-	, Dia	- 10	~
GP GM GC GM SM GC GM ML GM		SP []			If yes, desc			-	30
		СНЦ			Surface seal:		Bentonite	_	
Barrock 🗆			i i i i i i i i i i i i i i i i i i i				Concrete		01
13. Sieve analysis anached?	lYa 🛛	No					Other	u i	
14. Drilling method used:	Rotary 🗖	50	日本		I. Material berw	een well casing and prot			• •
	Stem Auger		鬫				Bentonite		30
	Other 🛛				/	ע א	rmular space seal		22
							Other		2
15. Drilling fluid used: Water	02 Air 🗆	01		·	S. Arnular spac	e scal: • L Gr	anular Bentonite	8	33
Drilling Mud	03 None 🖾	99	巖		r Lbs/	gal mud weight Beni	ionite-sand shirry		35
			諁		c Lbs/	gal mud weight	Bentonite slurry		31
16. Drilling additives used?	lYes 🕅	No		x	d % Be	monite Bentor	nite-cement grout		50
	•			8	•	_Ft ³ volume added for :	any of the above		
Describe					f. How insta		Tremie	X	01
17. Source of water (attach analysi	s):				L 1104 104		Tremie pumped	Έ	02
11.0020001							Gravity		0 8
					6. Bentonite set	al-	entonite granules	73	33
· ·		10.	Đ.			. /21 3/8 in. 🗖 1/2 in.			32
E. Bentonite seal, top	_ ft. MSL or	- Z . Q II.		፼ /	o. ⊡1/+ u		Other		
		25.			C	aterial: Manufacturer, p			
F. Fine sand, top	_ fL MSL or	2.2 m	\checkmark \checkmark	鬫 / /					
•		26				Mine 65-		-	10.177 10.177
G. Filter pack, top	_ fl. MSL or	îl			b. Volume a	dded	_ft ³		
-						naterial: Manufacturer,	- 7	mesi	
H. Screen joint, top	_ fL MSL or	_ <u>7.2</u> fr.					-75	-	<u>88</u> 2
			11		b. Volume		fi ³		
I. Well bottom	_ ft. MSL or	14 5 fi.			9. Well casing		VC schedule 40		23
						Flush threaded P	VC schedule 80		24
J. Filter pack, bouom	ft. MSL or	14 5 fr.					Other		<u>.</u>
			277		0. Screen mate	rial: PYC.			22
K. Borehole, bottom	fr MSL or	14 5 fr			L Screen n		Factory cut	Ø	11
K. Borchole, bottom	_ 11. 11.02 01 _ :						Continuous slot		01
				×			Other		8 23
L Borchole, diameter _8.1	Ų in.			$\mathbf{\lambda}$	h Manufa-	nurer Beolock	Ino.		
	a			· · \	c. Slot size		0	. <u>0</u> 1	10 in.
M. O.D. well casing 232	in.				d Slotted l				fi.
-							None	M	14
N. I.D. well casing 200	0 in.]	11. Backtuli mai	erial (below filter pack):			8 2
	-							<u> </u>	<u> </u>
I hereby certify that the info	ormation on th	is form is	s true and co	prrect to the	a best of my	knowledge.			
Signature		Fir	m	1/0. 1	- anina	-15 + 500	inficts	;	
15 / /		ł			11911100	~ ~ ~ ~	2111212		

Please complete both sides of this form and return to the appropriate DNR office listed at the top of this form as required by chs. 144, 147 and 160, Wis. Stats., and ch. NR 141, Wis. Ad. Code. In accordance with ch. 144, Wis Stats., failure to file this form may result in a forfeiture of not less than \$10,000 for each \$5000 for each day of violation. In accordance with ch. 147, Wis. Stats., failure to file this form may result in a forfeiture of not more than \$10,000 for each day of violation. NOTE: Shaded areas are for DNR use only. See instructions for more information including where the completed form should be sent.

SCS #25215135.10

Facility/Project NameMell AnaleProfiling Learner, Permit or Meaturing No.Lead Grid JordinThe Call Grid OrdinThe Call Grid Decision of Wall Call Control Control Call Call Control Call Control Call Call Control Call Call Control Call Control Call Call Control Call Call Control Call Call Call Control Call Call Control Call Call Call Control Call Call Call Control Call Call Call Call Call Call Call Ca		Watershed/Wastewater	Waste Manag	gemen	MONITORING WELI Form 4400-113A	CONSTRUCTION Rev. 7-98
Facility License, Permit or Monitoring No. Local Grid Ordgin Learning and the second seco	Facility/Project Name	Local Grid Location of Well				
Facility ID 	Facility License, Permit or Monitoring No.	Local Grid Origin (estir	mated:) or `	Well Location	<u>VV862</u>	DNR Well ID No.
10022 [300]Section Location of Waite/SourceWell Code1 / 2 / PZNone (fert, lun) and FirmSourceA protective pipe, low aldEnc. (Fert, lun) and FirmSourceA protective pipe, low aldEnc. (Fert, lun) and FirmA Protective pipe, up elevation- 604- 61 / 42 ft. MSLA Protective pipe, up elevation- 604- 61 / 42 ft. MSLC Land surface seal, bottom- 601- 95 ft. MSLD. Surface seal, bottom- 601- 95 ft. MSLI 2. USCS chardingtion of gain are green:- 0.5 ft.I 3. Surface seal; bottom- 601- 95 ft. MSLI 4. Drilling method used:Return (D)Material herwean well casing and protective pipe;- 00 ftrI 4. Drilling method used:RotaryJ 5. Drilling fuld used:Water (attach analysis, if frequired):None- 95 ft. MSL orJ 5. Drilling duditives used?Yes (NoJ 5. Drilling duditives used?Yes (NoJ 5. Drilling statives of water (attach analysis, if frequired):- 10 ft.None- 563.95 ft. MSL or- 16 ft.J 5. State of the information on this form is true and correct to the bost of my knowledge 11 analysis, if required):None- 573.95 ft. MSL or- 16 ft.J 5. State of the information on this form is true and correct to the bost of my knowledge 10 ft.J 5. Drilling wake the information on this form is true and correct to the bost of my knowledge 10 ft.J 6. Drilling wake the case of the material:- 20 ft.<				<u>8.5</u> ft. E. S/C/N	1/	15/2016
Distance from Waster $[n]$, Apply $[n]$, $[n]$ (and Downgradient $[n]$ Nor Known $[n]$ (and Downgradient $[n]$ (and D	And a state of the	Section Location of Waste/Section	ource	22 × E	m	dd vvvv
Distance from Waster $f_{\rm R}$ Apply $radicat is a standard for any of the Abitive in Cardinal Poince in the Standard for the Apply radicat is a standard fore$	10	NE1/4 of NW 1/4 of Sev	c. 02. T. 14	N, R Ŵ		
A. Protective pipe, top elevation $= 604$, $= 61$ ft. MSL 1. Cup and lock? \boxtimes Yes No B. Wall earing, top elevation $= 604$, $= 624$, ft. MSL 2. Protective cover pipe: $= 601$, $= 95$ ft. MSL D. Surface seal, botom $= 501$, $= 45$ ft. MSL or $= 0.5$ ft. $= 0.5$ ft. $= 0.5$ ft. 12. USC2 elassification of foil mear screen: $= 0.5$ ft. $= 0.5$ ft. $= 0.5$ ft. $= 0.5$ ft. 13. Sive analysis performed? \subseteq Yes No $= 0.5$ ft. $= 0.5$ ft. $= 0.5$ ft. 14. Drilling method used: Rotary $= 50$ $= 0.5$ ft. $= 0.5$ ft. $= 0.5$ ft. 15. Drilling find used: Waterial between well casing and protective pipe: $= 0.5$ ft. $= 0.5$ ft. 16. Drilling additives used? \subseteq Yes No $= 0.5$ ft. $= 0.5$ ft. 17. Source of water (attach analysis, if required): None $= 9.5$ $= 0.5$ ft. $= 0.5$ ft. 16. Drilling additives used? $= 565.95$ ft. $= 0.5$ ft. $= 0.5$ ft. $= 0.5$ ft. 17. Source of water (attach analysis, if required): $= 0.5$ ft. $= 0.5$ ft. $= 0.5$ ft. 17. Source of water (attach analysis, if required): </td <td>Distance from Waste/ Enf. Stds.</td> <td>u Upgradient s</td> <td>Sidegradient</td> <td>Gov. Lot Number</td> <td></td> <td>ling</td>	Distance from Waste/ Enf. Stds.	u Upgradient s	Sidegradient	Gov. Lot Number		ling
B. Well easing, top elevation $-\frac{604}{2}$ ft. MSL C. Land surface clevation $-\frac{601}{2}$ 95 ft. MSL D. Surface seal, bottom $-\frac{601}{2}$ 45 ft. MSL or -2.5 ft. 12. USCS cleasification of poil near screene: C. Land surface clevation $-\frac{601}{2}$ 45 ft. MSL or -2.5 ft. 13. Sive analysis performed? Ves \boxtimes No Hollow Stem ML \bigotimes MH \bigotimes HI CL CH Hollow Stem Auger 45 ft. 14. Drilling fluid used: Rotary 5 0 Hollow Stem Auger 5 0 Hollow Stem Auger 9 9 16. Drilling fluid used: Water 0 2 Air 0 1 Drilling fluid used: Water 0 3 Nome 9 99 16. Drilling additives used? Yes \bigotimes No Describe F. Fine sand, top $-\frac{601}{2}$ 45 ft. MSL or $-\frac{0.5}{2}$ ft. K. Borchole, diameter $-\frac{8.5}{2}$ ft. MSL or $-\frac{25}{2}$ ft. K. Borchole, bottom $-\frac{573.95}{2}$ ft. MSL or $-\frac{25}{2}$ ft. K. Borchole, diameter $-\frac{8.5}{2}$ in. M. O.D. well easing $-\frac{2.0}{2}$ in. N. D. well casing $-\frac{2.0}{2}$ in. M. O.D. well easing $-\frac{2.0}{2}$ in. M. D. D.	A. Protective pipe, top elevation $- \underline{60}$					X Yes No
C. Land sufface deviation $1 = 0 \le 0$	60	11		a. Inside diameter		$-\frac{6.0}{5.0}$ in.
D. Surface seal, bottom -601 , 45 ft. MSL or -25 ft. 12. USCS classification of soil near screen: GP $_$ CM $_$ CC $_$ GP $_$ CM $_$ CC $_$ CH $_$ SP $_$ No Bedrock $_$ Concrete $_$ 31 Bentonite \boxtimes 30 13. Surface seal: $_$ Concrete \bigcirc 01 13. Sive analysis performed? $_$ Yes \boxtimes No 14. Drilling method used: Rotary $_$ 50 14. Drilling fuid used: Water $_$ 0.2 Air $_$ 0.1 Drilling Mud $_$ 0.3 None \boxtimes 9.9 16. Drilling dditives used? $_$ Yes \boxtimes No $_$ Drilling Mud weight Bentonite center group $_$ 30 $_$ $_$ Drilling Mud weight Bentonite center group $_$ 31 $=$ Bentonite seal: $_$ Granular/Clipped Bentonite $_$ 0.1 None $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$ $_$	C. Land surface elevation60	1. 95 ft. MSL		•		
12. USCS classification of soil near serven: GP CM GC GW SW SW SP SP (CH GC CH SW SV	D. Surface seal bottom 601. 45 ft. MS	SLor 0.5 ft.		c. Material:		1. A
Image: content of the set o				d Additional pro	tection?	6100.0000
Bedrock Image: Second Sec						
13. Sieve analysis performed? Yes No 14. Drilling method used: Rotary 5.0 14. Drilling method used: Rotary 5.0 15. Drilling fluid used: Rotary 5.0 15. Drilling fluid used: Water 0.1 16. Drilling additives used? QYes No 17. Source of water (attach malysis, if required): None 5.0 17. Source of water (attach malysis, if required): None 1.0 17. Source of water (attach malysis, if required): None 1.0 18. Bentonite seal, top		л Сн 🗌 🛛 🕺		Surface people		Bentonite 🗙 30
14. Drilling method used: Rotary 5 0 Hollow Stem Auger 3 0 Atr 14. Drilling method used: Rotary 5 0 Hollow Stem Auger 3 1 Dother 15. Drilling fluid used: Water [0 2 Air 0 1 Drilling Mud 3 0 Other 15. Drilling fluid used: Water [0 2 Air 0 1 Drilling Mud 3 0 Other 16. Drilling additives used? Yes None 5 0 Creative Bentonite 3 3 D 16. Drilling additives used? Yes None 5 0 Creative Bentonite 3 3 D 17. Source of water (attach analysis, if required): None Termic pumped 0 1 Creative 1 0 Creative 1 1 Creative 1 1 Creative <td></td> <td></td> <td></td> <td>, Surface sear:</td> <td></td> <td></td>				, Surface sear:		
Hollow Stem Auger $\boxed{2}$ 4 1 Other $\boxed{3}$ Hollow Stem Auger $\boxed{2}$ 4 1 Other $\boxed{3}$ Other $\boxed{3}$ 15. Drilling fluid used: Water $\boxed{0}$ 2 Air $\boxed{0}$ 1 Drilling Mud $\boxed{0}$ 3 None $\boxed{99}$ 16. Drilling additives used? $\boxed{1}$ Yes $\boxed{N0}$ Describe $_$ 15. $\boxed{Drilling additives used?}$ $\boxed{1}$ Air $\boxed{1}$ 0 1 Drive $\boxed{1}$ Air $\boxed{1}$ 0 1 Describe $_$ \boxed{Driver} $\boxed{1}$ Air $\boxed{1}$ 0 1 $\boxed{1}$ 0 1 $\boxed{1}$ Air $\boxed{1}$ 0 1 $\boxed{1}$ 0 1 				Manufallhadanaan		
Ohio #5 SandOher15. Drilling fluid used: Water0.2Air0.1Drilling fluid used: Water0.2Air0.1Drilling fluid used: Water0.2Air0.1Drilling additives used? \bigcirc Source scal:a. Granular/Chipped Beutonite16. Drilling additives used? \bigcirc YesNone17. Source of water (attach analysis, if required):None \bigcirc How installed:17. Source of water (attach analysis, if required):Tremie pumped0.2None \bigcirc 601.45 ft. MSL or05 ft. \bigcirc 61.45 ft. MSL or16 ft.F. Fine sand, top \bigcirc 563.95 ft. MSL or16 ft. \bigcirc filter pack notice:G. Filter pack, top \bigcirc 563.95 ft. MSL or26 ft. \bigcirc filter pack material:Muell bottom \bigcirc 576.95 ft. MSL or26 ft. \bigcirc filter pack material:M. Well bottom \bigcirc 576.95 ft. MSL or26 ft. \bigcirc filter pack material:M. Well bottom \bigcirc 576.95 ft. MSL or26 ft. \bigcirc filter pack material:M. O.D. well casing \bigcirc filter pack, bottom \bigcirc filter pack, bottom \bigcirc filter pack, bottom \bigcirc 565.95 ft.MSL or26 ft. \bigcirc filter pack material: \bigcirc full hreaded PVC schedule 80A. Moula casing \bigcirc filter pack material: \bigcirc full hreaded PVC schedule 80 \bigcirc filter pack bottom \bigcirc filter pack material: \bigcirc full hreaded PVC schedule 80 \bigcirc filter pack material: \bigcirc full filter pack material: \bigcirc full filter pack filter pack): $0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0$	5		4.		wen casing and protect	
15. Drilling fluid used: Water0 2Air0 1Drilling Mud0 3None9 916. Drilling additives used?YesNoDescribeBentonite sand stury3117. Source of water (attach analysis, if required):None6NoneBentonite sand:a. Bentonite cement group17. Source of water (attach analysis, if required):None6NoneE. Bentonite seal, top6. Filter pack, top576.95 ft. MSL or18. K. Borehole, bottom576.95 ft. MSL or28. Filter pack, bottom576.95 ft. MSL or29. K. Borehole, bottom56.95 ft. MSL or19. Well casing20. Storeen type:6. Bortonite casing11. Borehole, diameter6. J. Divell casing6. J. Divell casing7. Fine sand, top6. Filter pack, bottom576.95 ft. MSL or28. Filter pack, bottom565.95 ft. MSL or29. Well casing10. Screen material:21. Borehole, bottom565.95 ft. MSL or20. More				Ohi	io #5 Sand	
15. Drilling fluid used: Water $\begin{bmatrix} 0 & 2 & Air \\ 0 & 3 & None \\ \hline & 9 & 9 \end{bmatrix}$ 16. Drilling Mud $\begin{bmatrix} 0 & 3 & None \\ \hline & 9 & 9 \\ \hline & 0 & 3 \\ \hline & 0 & 1 \\ \hline & $			5.	Annular space se		ed Bentonite 33
16. Drilling additives used? \Box Yes \boxtimes No Describe	15. Drilling fiuid used: Water 0 2		в 📓 — ь	Lbs/gal n	nud weight Bentonite	" Income
16. Drilling additives used? $\ \ \ \ \ \ \ \ \ \ \ \ \ $		None X 99				
DescribeTremie0117. Source of water (attach analysis, if required): NoneTremie pumped0217. Source of water (attach analysis, if required): NoneTremie pumped0218. Enternite seal: a. Ohio #7Seconder (attach analysis)Seconder (attach analysis)Seconder (attach analysis)19. Seconder (attach analysis)Seconder (attach analysis)Seconder (attach analysis)Seconder (attach analysis)Seconder (attach analysis)19. NellowoonSeconder (attach analysis)Seconder (attach analysis)Seconder (attach analysis)Seconder (attach analysis)19. Seconder (attach analysis)Seconder (attach analysis)Seconder (attach analysis)Seconder (attach analysis)Seconder (attach analysis)10. Seconder (attach analysis)Seconder (att	16. Drilling additives used?	Yes 🗙 No				
DescribeTremie pumped0 2 Gravity17. Source of water (attach analysis, if required): NoneNoneTremie pumped0 2 Gravity17. Source of water (attach analysis, if required): NoneNoneTremie pumped0 2 GravityI. Source of water (attach analysis, if required): NoneNoneGravity0 2 GravityE. Bentonite seal, top- 601.45 ft, MSL or- 0.5 ft.F. Fine sand, top- 583.95 ft, MSL or- 20 ft.F. Fine sand, top- 583.95 ft, MSL or- 20 ft.Steps of 583.95 ft, MSL or- 20 ft.New location $-$ - 583.95 ft. MSL or- 20 ft.New location $-$ - 583.95 ft. MSL or- 20 ft.New location $-$ - 576.95 ft. MSL or- 25 ft.New location $-$ - 573.95 ft. MSL or- 26 ft.New location $-$ - 573.95 ft. MSL or- 36 ft.New location $-$ - 565.95 ft. MSL or- 36 ft.New location $-$ - 565.95 ft. MSL or- 36 ft.I. Borehole, diameter- $-\frac{8.5}{10}$ ft. <t< td=""><td></td><td></td><td>2 000 C</td><td></td><td>•</td><td></td></t<>			2 000 C		•	
NoneOther38E. Bentonite seal, top $= 601.45$ ft. MSL or $= 0.5$ ft. $= 0.5$ ft.F. Fine sand, top $= 583.95$ ft. MSL or $= 16$ ft. $= 0.5$ ft.G. Filter pack, top $= 583.95$ ft. MSL or $= 18$ ft. $= 0.5$ ft.H. Screen joint, top $= 581.95$ ft. MSL or $= 20$ ft. $= 0.5$ ft.J. Well boutom $= 576.95$ ft. MSL or $= -25$ ft. $= 0.5$ ft.J. Filter pack, bottom $= 573.95$ ft. MSL or $= -25$ ft. $= 0.5$ ft.J. Filter pack, bottom $= 573.95$ ft. MSL or $= -28$ ft. $= 0.5$ ft.J. Filter pack, bottom $= 565.95$ ft. MSL or $= -28$ ft. $= 0.5$ ft.J. Filter pack, bottom $= 565.95$ ft. MSL or $= -28$ ft. $= 0.5$ ft.M. O.D. well casing $= -2.04$ in. $= 0.56$ ft.M. O.D. well casing $= -2.04$ in. $= 0.50$ ft.N. I.D. well casing $= -2.04$ in. $= 0.50$ ft.N. I.D. well casing $= -2.04$ in. $= 0.50$ ft.M. I.D. well casing $= -2.04$ in. $= 0.50$ ft.M. I.D. well casing $= -2.04$ in. $= 0.50$ ft.M. I.D. well casing $= -2.04$ in. $= 0.50$ ft.M. I.D. well casing $= -2.04$ in. $= 0.50$ ft.M. I.D. well casing $= -2.04$ in. $= 0.50$ ft.M. I.D. well casing $= -2.04$ in. $= 0.50$ ft.M. I.D. well casing $= -2.04$ in. $= 0.50$ ft.M. I.D. well casing $= -2.04$ in. $= 0.50$ ft.M. I.D. well casing $= -2.04$ in. $= 0.50$ ft.M. I.D. well casing $= -2.04$ in. <td></td> <td></td> <td></td> <td>•</td> <td></td> <td>nie pumped 🔲 02</td>				•		nie pumped 🔲 02
LE. Bentonite seal, top $= 601.45 \text{ ft}$, MSL or $= 0.5 \text{ ft}$.F. Fine sand, top $= 583.95 \text{ ft}$, MSL or $= 16 \text{ ft}$.G. Filter pack, top $= 583.95 \text{ ft}$, MSL or $= 16 \text{ ft}$.H. Screen joint, top $= 581.95 \text{ ft}$, MSL or $= 20 \text{ ft}$.J. Well bottom $= 576.95 \text{ ft}$, MSL or $= 25 \text{ ft}$.J. Well bottom $= 573.95 \text{ ft}$, MSL or $= 25 \text{ ft}$.J. Filter pack, bottom $= 573.95 \text{ ft}$, MSL or $= 28 \text{ ft}$.J. Filter pack, bottom $= 565.95 \text{ ft}$, MSL or $= 28 \text{ ft}$.K. Borehole, bottom $= 565.95 \text{ ft}$, MSL or $= 36 \text{ ft}$.M. O.D. well casing $= -2.04 \text{ in.}$ $= 36 \text{ ft}$.N. I.D. well casing $= 22.0 \text{ in.}$ $= 11.8 \text{ actifiil material} (below filter pack): OtherN. I.D. well casing= 22.0 \text{ in.}= 11.8 \text{ actifiil material} (below filter pack): OtherM. O.D. well casing= 22.0 \text{ in.}= 14 \text{ in.} (38 \text{ Bentonite Chips})N. I.D. well casing= 22.0 \text{ in.}= 14 \text{ in.} (38 \text{ Bentonite Chips})N. I.D. well casing= 22.0 \text{ in.}= 14 \text{ in.} (38 \text{ Bentonite Chips})$		ired):			Deste	
E. Bentonite seal, top $= \frac{601.45}{1.45}$ ft. MSL or $= 0.5$ ft. F. Fine sand, top $= \frac{585.95}{1.45}$ ft. MSL or $= -\frac{16}{1.6}$ ft. G. Filter pack, top $= \frac{583.95}{1.45}$ ft. MSL or $= -\frac{16}{1.6}$ ft. H. Screen joint, top $= \frac{581.95}{1.45}$ ft. MSL or $= -\frac{20}{1.6}$ ft. H. Screen joint, top $= \frac{576.95}{1.45}$ ft. MSL or $= -\frac{25}{1.6}$ ft. H. Well bottom $= \frac{576.95}{1.45}$ ft. MSL or $= -\frac{25}{1.6}$ ft. H. Well bottom $= \frac{576.95}{1.45}$ ft. MSL or $= -\frac{25}{1.6}$ ft. H. Borehole, bottom $= \frac{573.95}{1.45}$ ft. MSL or $= -\frac{28}{1.6}$ ft. H. Borehole, diameter $= -\frac{8.5}{1.6}$ in. M. O.D. well casing $= -\frac{2.04}{1.6}$ in. M. I.D. well casing $= -\frac{2.0}{1.6}$ in. H. I.D. well casing $= -\frac{2.0}{1.6}$ in. Hereby certify that the information on this form is true and correct to the best of my knowledge. Hirm		🐰	8 100 D.	presentation of the second sec		
P. Fine sand, top $=$ 1 1 MSL of $=$ 11.G. Filter pack, top $=$ 583.95 ft. MSL or $=$ 18 ft.H. Screen joint, top $=$ 581.95 ft. MSL or $=$ 20 ft.I. Well bottom $=$ 576.95 ft. MSL or $=$ 25 ft.J. Filter pack, bottom $=$ 573.95 ft. MSL or $=$ 28 ft.J. Filter pack, bottom $=$ 573.95 ft. MSL or $=$ 28 ft.J. Filter pack, bottom $=$ 565.95 ft. MSL or $=$ 36 ft.J. Filter pack, bottom $=$ 565.95 ft. MSL or $=$ 36 ft.J. Borehole, diameter $=$ $=$ $=$ 6.5 in.M. O.D. well casing $=$ 2.04 in.N. I.D. well casing $=$ 2.04 in.N. I.D. well casing $=$ 2.04 in.I. Hereby certify that the information on this form is true and correct to the best of my knowledge.Strattform $=$ 6.5 in.I. Hereby certify that the information on this form is true and correct to the best of my knowledge.	E. Bentonite seal, top $- 601.45$ ft. MS	$L \text{ or } _ _ _ 0.5 \text{ ft.}$		c		
H. Screen joint, top $= \frac{581.95}{1.95}$ ft. MSL or $= \frac{20}{1.5}$ ft. I. Well bottom $\frac{576.95}{1.05}$ ft. MSL or $= \frac{25}{1.5}$ ft. J. Filter pack, bottom $= \frac{573.95}{1.05}$ ft. MSL or $= \frac{28}{1.5}$ ft. K. Borehole, bottom $= \frac{565.95}{1.05}$ ft. MSL or $= \frac{36}{1.5}$ ft. L. Borehole, diameter $= \frac{8.5}{1.5}$ in. M. O.D. well casing $= \frac{2.04}{1.5}$ in. M. D.D. well casing $= \frac{2.04}{1.5}$ in. H. LD. well casing $= \frac{2.04}{1.5}$ in. H. D. well casing $= \frac{2.04}{1.5}$ in. H. D. well casing $= \frac{2.0}{1.5}$ in. H. D. well casing $= \frac{2.04}{1.5}$ in. Hereby certify that the information on this form is true and correct to the best of my knowledge. H. Birm the information on this form is true and correct to the best of my knowledge. H. Birm the information on this form is true and correct to the best of my knowledge. H. Birm the information on this form is true and correct to the best of my knowledge. H. Birm the information on this form is true and correct to the best of my knowledge. H. Birm the information on this form is true and correct to the best of my knowledge. H. Birm the information on this form is true and correct to the best of my knowledge. H. Birm the information on this form is true and correct to the best of my knowledge. H. Birm the information on this form is true and correct to the best of my knowledge.	F. Fine sand, top ft. MS	$L \text{ or } _ _ _ _ \stackrel{16}{_} \text{ft.}$	7	. Fine sand materia		ct name & mesh size
H. Screen joint, top $= \frac{581.95}{1.95}$ ft. MSL or $= \frac{20}{1.95}$ ft. MSL or $= \frac{25}{1.95}$ ft. MSL or $= \frac{28}{1.95}$ ft. MSL or $= \frac{26}{1.95}$ ft. MSL or $= \frac{26}{1.95}$ ft. MSL or $= \frac{26}{1.95}$ ft. MSL or $= \frac{36}{1.95}$ ft. MS	G. Filter pack, top 583.95 ft. MS	L or <u>18</u> ft.				
I. Well bottom $576.95 \text{ ft.} \text{ MSL or}$ 25 ft. 26 ft. 27 ft. 27 ft. 28 ft. 28 ft. $24 \text{ Flush threaded PVC schedule 40}$ $23 \text{ Flush threaded PVC schedule 80}$ $24 \text{ Flush threaded PVC schedule 80}$ K. Borehole, bottom $565.95 \text{ ft.} \text{ MSL or}$ 36 ft. 36 ft. 36 ft. $11 \text{ Continuous slot}$ $01 \text{ flush threaded PVC schedule 80}$ M. O.D. well casing -2.04 in. -2.04 in. -2.00 in. -5.0 ft. -5.0 ft. N. I.D. well casing -2.0 in. -2.0 in. -3.0 ft. -5.0 ft. M. the information on this form is true and correct to the best of my knowledge. $3/8 \text{ Bentonite Chips}$ 0 ther M. the information on this form is true and correct to the best of my knowledge. $3/8 \text{ Bentonite Chips}$ 0 ther		20	8	. Filter pack mater		ict name & mesh size
I. Well boutom 576.95 ft. MSL or25 ft. 9. Well casing: Flush threaded PVC schedule 40 × 2.3 J. Filter pack, bottom 573.95 ft. MSL or28 ft. 9. Well casing: Flush threaded PVC schedule 80 × 2.4 K. Borehole, bottom 565.95 ft. MSL or36 ft. 10. Screen material: $2"$ dia PVC Sch 40 × 10 a. Screen type: Factory cut × 11 L. Borehole, diameter $-\frac{8.5}{$	H. Screen joint, top581.95 ft. MS	$L \text{ or } _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ $		a		<u> </u>
J. Filter pack, bottom 573.95 ft. MSL or 28 ft. 24 K. Borehole, bottom 565.95 ft. MSL or 36 ft. 10. Screen material: 2" dia PVC Sch 40 a. Screen type: Factory cut 11 L. Borehole, diameter - - - 6ft. M. O.D. well casing - 2.04 in. 0.010 N. I.D. well casing - 2.04 in. 0.010 I. Backfill material (below filter pack): 0.010 in. M. O.D. well casing - 2.04 in. 11. Backfill material (below filter pack): None M. I.D. well casing - 2.0 in. 11. Backfill material (below filter pack): None 14 Storauffer 4 - 3/8 Bentonite Chips Other 14	L Well bottom 576.95 ft. MS	Lor 25ft.	9			-
K. Borehole, bottom 565.95 ft. MSL or 36 ft. L. Borehole, diameter - - M. O.D. well casing - 2.04 in. N. I.D. well casing - 2.0 I. Borehole, diameter - 0.010 in. M. O.D. well casing - 2.04 in. N. I.D. well casing - 2.0 in. I. Hereby certify that the information on this form is true and correct to the best of my knowledge. None Signature 14						
K. Borehole, bottom	J. Filter pack, bottom 573.95 ft. MS	$L \text{ or } _ _ _ 28 \text{ ft.} _$				
K. Holehole, diameter	565.95	36 .	10		2" dia PVC Sc	and the second s
L. Borehole, diameter $-\frac{8.5}{-1}$ in. M. O.D. well casing $-\frac{2.04}{-1}$ in. N. I.D. well casing $-\frac{2.0}{-1}$ in. I. Backfill material (below filter pack): 0.010 in. d. Slotted length: -5.0 ft. 11. Backfill material (below filter pack): 0.010 in. 3/8 Bentonite Chips Other 14 Other 14 Signature 14 Difference 14 Differe	K. Borehole, bottom It. MS	L or 11.		a. Screen type:	Con	
M. O.D. well casing 2.04 in. c. Slot size: 0. 010 in. N. I.D. well casing 2.0 in. 11. Backfill material (below filter pack): None 14 I hereby certify that the information on this form is true and correct to the best of my knowledge. 0.010 in. 14 Signature 0.010 0.010 0.010 in. 0.010 in.	L. Borehole, diameter $-\frac{8.5}{-1}$ in.					
N. I.D. well casing 2 0 11. Backfill material (below filter pack): 3/8 Bentonite Chips None 14 I hereby certify that the information on this form is true and correct to the best of my knowledge. Other X Image: Correct to the best of my knowledge.	M. O.D. well casing -2.04 in.			c. Slot size:		
3/8 Bentonite Chips Other X I hereby certify that the information on this form is true and correct to the best of my knowledge. Other X Signature Firm	N. LD. well casing 2.0		ÌII			
Signature A a	u			3/8		
Signature for Kyle Kamer Scs ENGINEERS, 2830 Dairy Drive, Madison, WI 53718-6751			e best of my know	wledge.		
	Signaphre for Kyle	Krames Firm SCS F	ENGINEERS, 28	830 Dairy Drive,	Madison, WI 53718-	6751

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

SCS #25215135.10

	Natershed/Wastewater		Managemen	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
	Local Grid Location of We			Well Name
WPL-Edgewater Generating Station	ft		ft. W	MW-302
Facility License, Permit or Monitoring No.	Local Grid Origin (est	timated:)	or Well Location X	Wis. Unique Well No. DNR Well ID No.
02524	Lat	"Long		VV861
P. 111. ITS			2726 2 5 5 5/0/01	Date Well Installed
460021980			3726.3 ft. E. S/C/N	$ \underbrace{\begin{array}{c} -1 \\ m \\ m \\ m \\ m \\ d \\ d \\ y \\ y$
Type of Well	Section Location of Waste/	Source	14 23 🖾 E	Well Installed By: Name (first, last) and Firm
Well Code <u>12</u> / PZ	$\frac{\text{Section Location of Waster}}{\text{SE}_{1/4 \text{ of } NW} 1/4 \text{ of SE}}$	ec. <u>02</u> , T	$\underline{14}$ N, R. $\underline{20}$ W	Kevin Durst
Distance from Waste/ Enf. Stds.	Location of Well Relative t	o waste/Sourc	Ce Gov. Lot Number	
				Badger State Drilling
	$d \times Downgradient n$		I. Cap and lock?	X Yes No
A. Protective pipe, top elevation $_$ $_$ $_$ $_$			2. Protective cover	
B. Well casing, top elevation $-\frac{61}{-1}$	5. 15 ft. MSL	ݱロᆙᡐ╱	a. Inside diamete	60
0.1	2 05			-5.0 ft.
C. Land surface elevation	2. 65 ft. MSL	1 100000	b. Length:	Steel $\boxed{\times}$ 04
D. Surface seal, bottom61215 ft. MS	SL or 0.5 ft.		c. Material:	
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			
12. USCS classification of soil near screen			d. Additional pr	
			If yes, describ	
SM SC MLX MH C Bedrock			3, Surface scal:	Bentonite \times 30
13. Sieve analysis performed?	Yes No		\	Other
14. Drilling method used: Rot	tary 50		 Material between 	n well casing and protective pipe:
Hollow Stem Au	$1ger \times 41$			Bentonite 30
0	ther		Oł	nio #5 Sand Other
			5. Annular space se	eal: a. Granular/Chipped Bentonite X 33
15. Drilling fiuid used: Water 0 2	Air 01		bLbs/gal:	mud weight Bentonite-sand slurry 35
Drilling Mud 0 3 N	None 99	XX XX	c. Lbs/gal	mud weight Bentonite slurry 21
		×		nite Bentonite-cement grout 50
16. Drilling additives used?	Yes 🗙 No	×	e Ft	³ volume added for any of the above
			f. How installed	Tremie \mathbf{X} 0 1
Describe		88 I 88		Tremie pumped 0 2
17. Source of water (attach analysis, if requ	lired):	×		Gravity 08
None		総 総	6. Bentonite seal:	a. Bentonite granules 33
		X		$3/8$ in. $1/2$ in. Bentonite chips $\sqrt{32}$
E. Bentonite seal, top612.15 ft. MS	L or 0.5 ft.	X X X	/ c	Other
-		XX XX /		
F. Fine sand, top584.15 ft. MS	Lor 28.5 ft.	▩ ▩ ∕	7. Fine sand mater	ial: Manufacturer, product name & mesh size
		₩ ₩/		Ohio #7 sand
G. Filter pack, top582.15 ft. MS	Lor 30.5 ft.		h Volume adde	dft ³
O. Fillel pack, top				rial: Manufacturer, product name & mesh size
H. Screen joint, top580.15 ft. MS	32.5 ft	89 89 . Fe 59 .	B. Ther pack made	Ohio #5 sand
H. Scielen joint, top			a b. Volume adde	2
575.15 ft MS	L or 37.5 ft.		9. Well casing:	Flush threaded PVC schedule 40 \times 23
I. Well bottom	L 011.		9. Wen casing.	Flush threaded PVC schedule $30 \square 24$
J. Filter pack, bottom 572.65 ft. MS	40.0			
J. Filter pack, bottom	L or 11.		<u> </u>	Other 📘 🚚
K. Borehole, bottom572.65 ft. MS	40ft		10. Screen material	
K. Borehole, bottomft. MS	L or		 Screen type: 	Factory cut X 1 1
85			01	Continuous slot 01
L. Borehole, diameter $-\frac{8.5}{-1}$ in.				dia sch 40 PVC Other
0.4			b. Manufacturer	Monoflex 0.010 to
M. O.D. well casing -2.4 in.		```	c. Slot size:	0. <u>.010</u> in.
2.0			\ d. Slotted lengt	
N. I.D. well casing $- \frac{2.0}{-}$ in.			11. Backfill materia	I (below filter pack): None X 14
				Other
I hereby certify that the information on this		the best of my	knowledge.	
Signature ~	Firm			

Man	3	for Kyle	Kramer	SCS ENGINEERS, 2830 Dairy Drive, Madison, WI 53718-6751
Λ		/		

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

SCS #25215135.10

	Vatershed/Wastewater	Waste Mans	agemen	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Facility/Project Name	Local Grid Location of We		_ ШЕ.	Well Name
WPL-Edgewater Generating Station	ft		ft. 🗌 W.	MW-303
Facility License, Permit or Monitoring No. 02524	Local Grid Origin (es	timated:) or Long	Well Location X	Wis. Unique Well No. DNR Well ID No. VV860
Facility ID	St. Plane 631609.4 f		6.7 ft. E. S/C/N	Date Well Installed 2/4/2016
460021980	Service Legenier of Wester	15 auroa		mmdd v v v y
Type of Well	$\frac{\text{SECNON Location of Waster}}{\text{SE}_{1/4 \text{ of } NW} 1/4 \text{ of SE}}$	Sec. 02.T. 14	N.R. ²³	Well Installed By: Name (first, last) and Firm
Well Code <u>12</u> / <u>PZ</u>	Location of Well Relative t	to Waste/Source	Gov. Lot Number	Kevin Durst
Distance from Waste/ Enf. Stds.	u Upgradient s	Sidegradient		Badger State Drilling
Sourceft. Apply	d X Downgradient n			
A. Protective pipe, top elevation $- 61$	2 _ 19 ft. MSL		. Cap and lock?	. Yes No
B. Well casing, top elevation $-\frac{61}{2}$	199 ft. MSL	サᆷᡰᡐ╱╯	a. Inside diamete	· -
er	19 73 c MCI		b. Length:	
C. Land surface elevation	973 ft. MSL	a la constant	c. Material:	Steel X 04
D. Surface seal, bottom60923 ft. MS	Lor 0.5 ft.		01 10200011011	Other
12. USCS classification of soil near scree			d. Additional pro	
	sw sp i		If yes, describ	e: Steel Posts-3
				Bentonite X 30
Bedrock			 Surface scal: 	Concrete 0 1
13. Sieve analysis performed?	Yes No			Other
14. Drilling method used: Ro	tary 50		4. Material between	well casing and protective pipe:
Hollow Stem At				Bentonite 30
	ther states		Oh	io #5 sand Other 🗌 🌉
			5. Annular space se	
15. Drilling fiuid used: Water 0 2	Air 🗌 01		ь Lbs/gal r	nud weight Bentonite-sand slurry 35
Drilling Mud 0 3	None X 99		c. Lbs/gal r	nud weight Bentonite slurry 🛄 31
			d % Bentor	ite Bentonite-cement grout 50
16. Drilling additives used?	Yes X No		eFt	³ volume added for any of the above
			f. How installed	Tremie 01
Describe				Tremie pumped 🔲 02
17. Source of water (attach analysis, if requ	lirea):			Gravity 08
None			6. Bentonite seal:	a. Bentonite granules 33
	0.5.0		b/4 in. 🗙	$3/8$ in. $1/2$ in. Bentonite chips \checkmark 3 2
E. Bentonite seal, top $-$ <u>609.23</u> ft. MS	$L \text{ or } _ _ _ 0.5 \text{ ft.}$		c	Other 🔲 🏭
587 73	SL or $_$ $_$ $22 ft.$		7. Fine sand materi	al: Manufacturer, product name & mesh size
F. Fine sand, top $ -$ ft. MS	$L \text{ or } _ _ _ _ _ _ \square \square$	図 図/ /		Ohio #7 sand
585.73 fr Mrs	SL or 24 ft.		a b. Volume adde	
G. Filter pack, top ft. M				ial: Manufacturer, product name & mesh size
H. Screen joint, top583.73 ft. MS	SL or $_$ $_$ $\frac{26}{10}$ ft.		b. Filler pack mater	Ohio #5
			a b. Volume adde	
I. Well bottom 578.73 ft. MS	SL or 31 ft .		9. Well casing:	Flush threaded PVC schedule 40 🗙 23
			Ŭ	Flush threaded PVC schedule 80 24
J. Filter pack, bottom576.73 ft. MS	$L \text{ or } = \frac{33}{100} \text{ft.}$			Other 🗖 🚛
			0. Screen material:	
K. Borehole, bottom ft. MS	SL or $_$ $_$ $33 ft.$		a. Screen type:	Factory cut 🔀 11
				Continuous slot 🚺 01
L. Borehole, diameter $-\frac{8.5}{-1}$ in.				Other 🗌 🎆
			b. Manufacturer	Monoflex
M. O.D. well casing 2.04 in.		\backslash	c. Slot size:	0. <u>010</u> in.
-		1	d. Slotted length	
N. I.D. well casing $-\frac{2.0}{-1}$ in.		1	1. Backfill material	I (below filter pack): None X 14
-				Other
I hereby certify that the information on this	NAMES OF TAXABLE PARTY OF TAXABLE PARTY.	the best of my kno	wledge.	
Signature 7/10 Gall	Firm SOC			Madiaan MI E2749 6754
The WH Par IC	yle Kramen scs	ENGINEERS, 2	2030 Dairy Drive,	Madison, WI 53718-6751

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

14h

State of Wisconsin Department of Natural Resources

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 4-90

Route to: Solid Waste Haz. Waste Wastewater

Facility/Project Name Well Name Well Name Well Name $MPL \ Lorge Well & Sift \ Decision Mell Name \ Zh - OW Mell Name \ Zh - OW 1. Can this will be purged dry? G Ye \Box No Nice Unique Well Name \ Zh - OW 2. Well development method Mell Name \ Development After Development arraget with baller and pumped 61 J \subseteq J \subseteq L, Z \subseteq L J \subseteq J \subseteq L, Z \subseteq L arraget with baller and pumped 62 Time \ Show Development J \subseteq J \subseteq L, Z \subseteq L arraget with block and pumped 62 Time \ Show Development J \subseteq L \subseteq L \subseteq Z \subseteq L pumped in block baller and pumped 63 Time \ Compression (Can U = D) O Can U = D D D D D D D D D D D D D D D D D D$	Env. Response & R	epair 🛛 Under	ground lanks [] Out				
Image: Control of Mentions Number Directions of Mentions Number Directions of Mentions Number Directions of Mentions Number 1. Can this well be purged dry? Ø Yes No No <t< td=""><td>Facility/Project Name</td><td colspan="2">ie County Name Well Name</td><td>Well Name 78-C</td><td colspan="3">'-<i>ow</i></td></t<>	Facility/Project Name	ie County Name Well Name		Well Name 78-C	'- <i>ow</i>		
Facility License, Permit of Mainting (1997) Car this well be purged day? Data Defore Development After Development 1. Can this well be purged day? g Yes No 11. Depth to Warr (from top of a single with balled and purged in block radiated radiated and purged in block radiated radiated radiated and purged in block radiated radiated and purged in block radiated	IIPIL EDgewater SITE	51000	Vgan				
Before Development After Development 1. Can this well be purged day?	Facility License, Permit or Monitoring Number	County Code	Wis. Unque Well Nu				
Before Development After Development 1. Can this well be purged day?	02327						
1. Can this well be purged dy? p 1 B 1 B				Refore Development	After Development		
2. Well development method surged with baler and pumped arruged with baler and pumped arruged with block and balled arruged with arruged	1. Can this well be purged dry?		11 Depth to Water				
surged with baller and balled 41 surged with baller and pumped 61 surged with block and pumped 62 surged with block and pumped 61 pumped city 50 pumped showly 50 Other 10 13. Water clarity Class 14. Depth of well (from top of well casing) $\angle d \le 5t$. 5. Inside diameter of well $\angle 2 . O_{in}$ 6. Volume of water in filter pack and well $\angle 2 . O_{in}$ 7. Volume of water added (if any) $\bigcirc 0.02 sll$ 9. Source of water added $\Box = 0.02 sll$ 10. Analysis performed on water added? Yer filt No (If yes, stack results) $\Box = 0.02 sll$ 10. Analysis performed on water added? Yer filt No (If yes, stack results) $\Box = 0.02 sll$ 16. Additional comments on development $\partial = 0.02 sll$ $A colume = 0.02 sln = 0.02 sln = 0.02 $			(from top of	5.57t	<u>_15.42</u> ±		
$\frac{\operatorname{surged}}{\operatorname{surged}} = \frac{\operatorname{surged}}{\operatorname{surged}} = \frac{\operatorname{surged}}{s$	2. Well development method	1	well casing)				
Image with block and bailed 42 Date $\sum_{n=1}^{\infty} \frac{(f_n)^n f_n^n}{(f_n)^n} \frac{(f_n)^n f_n^n}{(f_n)$					_		
surged with block hold pumped in the back and pumped in the back hold and pumped in the back hold and pumped is build and pum			Date	5,04,28	3,08,98		
surged with block build and pumped 70 compressed is: 20 bailed only 10 pumped only 551 bottom 12. Sediment in well Δ . Sinches Δ . Sinches $-Q$. Quackes $Dottom 13. Water clurity \Box 10 Time spent developing well -Z. Qmin. \Box. Sinches -Q. Quackes \Delta. Depth of well (from top of well casisng) -\angle E. Sinches -\angle Q. Quackes \Delta. Depth of well (from top of well casisng) -\angle E. Sinches -\angle Q. Quackes \Delta. Notice of water in filter pack and well Z. Q in \Box. \Box. \Delta. Volume of water in filter pack and well Z. Q gal. \Box. \Box. \Delta. Volume of water added (if stry) -\bigcirc Q. Q gal. \Box. \Box. \Box. \Delta. Source of water added (if stry) -\bigcirc Q. Q gal. \Box. \Box. \Box. \Box. \Delta. Analysis performed on water added? \Box Yes \Box No \Box. \Box. \Box. \Delta. Analysis performed on water added? \Box Yes \Box No \Box. \Box. \Box. \Box. \Box. $				mm dd yy	mm dd yy		
compressed ar 10 bailed only 10 pumped only 51 bottom 13. Water clarity Cler 10 3. Time spent developing well				11 A Bam	in un		
bailed only I 10 pumped only I 51 pumped solwly 50 Other I 3. Time spent developing well			Time	с. <u>/_:03</u> р.т.	<u>20</u> :220 pm		
bottom pumped slowly pumped slowly pumped slowly clear	-	0		0 5.	000		
pumped slowly 0 50 0		1	1	inches			
Other Image:		0					
3. Time spent developing well	X8		13. Water clarity				
3. Time spent developing well		• •		•			
A. Depth of well (10th depth well of well control) Image: Control of well of well (10th depth well of we	3. Time spent developing wellZ	Q_{\min}		(Decnoe)			
A. Depth of well (10th depth well of well control) Image: Control of well of well (10th depth well of we	14	5		المستقد العام المستقد المن المانية اليواني عادة فالمستورين الم			
S. Induct during of white	4. Depth of well (from top of well casisng) $- \frac{1}{2}Q$.⊇¤					
S. Induct during of white	7	0 :=					
casing gal 7. Volume of water removed from well gal 8. Volume of water added (if any)	5. Inside diameter of well				<i></i>		
casing gal 7. Volume of water removed from well gal 8. Volume of water added (if any)	a set a set of the set of set of set						
7. Volume of water removed from well		vs].					
7. Volume of water removed from well		_ · 8	Fill in if drilling fluid	s were used and well is a	it solid waste facility:		
8. Volume of water added (if any) Q.Qgal. 9. Source of water added 10. Analysis performed on water added? R 11. Cold suspended	7 Volume of water removed from well	O_{gal}					
9. Source of water added 15. COD mgA 10. Analysis performed on water added? I Yes IN No 10. Analysis performed on water added? I Yes IN No 16. Additional comments on development: Well were Developed over 3 Days Due to slow recovery. Well were Developed over 3 Days Due to slow recovery. Volume of water removed is total admost removed buring the three Developments. Well developed by: Person's Name and Firm Name: Brian Leicham Name: Brian Leicham Multo En operation Signature: Multo En operation Frint Initials: BJL			14. Total suspended	mg/l	mg/l		
9. Source of water added 15. COD mgA 10. Analysis performed on water added? I Yes IN No 110. Analysis performed on water added? I Yes IN No 110. Analysis performed on water added? I Yes IN No 110. Analysis performed on water added? I Yes IN No 110. Analysis performed on water added? I Yes IN No 110. Analysis performed on water added? I Yes IN No 110. Additional comments on development: <i>Well Were Developed over 3 Days Due to slow recovery. Well developed of water removed is total admost removed burning the three Developments.</i> Well developed by: Person's Name and Firm Name: <i>Biran Leicharm</i> Name: <i>Biran Leicharm</i> Name: <i>Biran Leicharm</i> Name: <i>Biran Leicharm</i> Print Initials: <i>BJL</i>	8. Volume of water added (if any)	. <u>O</u> gal.	solids				
9. Source of water added [1. COD [ngt]				A			
16. Additional comments on development: Well were Developed over 3 Days Due to slow recovery. Well were Developed over 3 Days Due to slow recovery. Volume of water removed is total admout removed buring He three Developments. Well developed by: Person's Name and Firm Name: Brian Leicham Multo E. Signature Multo E. Print Initials: BJL	9. Source of water added		15. COD	mg/i	·_		
16. Additional comments on development: Well were Developed over 3 Days Due to slow recovery. Well were Developed over 3 Days Due to slow recovery. Volume of water removed is total admout removed buring He three Developments. Well developed by: Person's Name and Firm Name: Brian Leicham Multo E. Signature Multo E. Print Initials: BJL							
16. Additional comments on development: Well were Developed over 3 Days Due to slow recovery. Well were Developed over 3 Days Due to slow recovery. Volume of water removed is total admout removed buring He three Developments. Well developed by: Person's Name and Firm Name: Brian Leicham Multo E. Signature Multo E. Print Initials: BJL					, I		
16. Additional comments on development: Well were Developed over 3 Days Due to slow recovery. Volume of water removed is total admout removed During the three Developments. Well developed by: Person's Name and Firm Name: Brian Leicham mille Finan Leicham Print Initials: BJL	10. Filmijin paronine en alle	s palNo			· .		
# the three Developments. Well developed by: Person's Name and Firm Name: Brian Leicham Name: Brian Leicham Signature: Bit Mile For issues in Scientists	(If yes, anach results)						
# the three Developments. Well developed by: Person's Name and Firm Name: Brian Leicham Name: Brian Leicham Signature: Bit Mile For issues in Scientists							
# the three Developments. Well developed by: Person's Name and Firm Name: Brian Leicham Name: Brian Leicham Signature: Bit Mile For issues in Scientists	16. Additional comments on development	- · ·	3 Davie A	us to stal	" recovery.		
# the three Developments. Well developed by: Person's Name and Firm Name: Brian Leicham Name: Brian Leicham Signature: Bit Mile For issues in Scientists	Well were Developed	over	Jugs		A AUGINA		
# the three Developments. Well developed by: Person's Name and Firm Name: Brian Leicham Name: Brian Leicham Signature: Bit Mile For issues in Scientists	Value of water rem	oreo 13	total a	omout /en	noved Dury		
Well developed by: Person's Name and Firm I hereby certify that the above information is true and correct to the best of my knowledge. Name: Brian Leicham Signature: Multiple Finit initials: BJL	YOTOME O POWOLOAMEN	<i>ts</i>					
Well developed by: Person's Name and Firm I hereby certify that the above information is true and correct to the best of my knowledge. Name: Brian Leicham Signature: Multiple Finit initials: BJL	the three Devery	•					
Name: Brian Leicham Signature: Brian Leicham Print Initials: BJL							
Name: Brian Leicham Signature: Brian Leicham Print Initials: BJL	Well developed bar Person's Name and Film		I hereby certify that	he above information is t	rue and correct to the best		
Name: <u>Dhan Leionan</u> Mille En inaction Grine Histor Print Initials: <u>BJC</u>	Well developer of. I dones thank and i and		of my knowledge.		·		
Name: <u>Dhan Leionan</u> Mille En inaction Grine Histor Print Initials: <u>BJC</u>			Simon /	la la			
Mille Fri install Scientists Print Initials: DJL	Name: Brian Leicham						
Firm: <u>Miller Engineers + Scientists</u> Firm: <u>Miller Engineers + Scientists</u>		<u> </u>	Print Initials:	16			
Firm: <u>Miller Engineers + Scientists</u>	Fim: Miller Engineers + 2	cientists	· ···································		1.1.1.		
			Firm: MI	ille Engineer	15 + Scientists		

NOTE: Shaded areas are for DNR use only. See instructions for more information including a list of county codes.

State of Wisconsin Department of Natural Resources

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

00-113B	Rev. 7-

						1011, 90	
Route to: Water	shed/Waste	water	Waste Management				
Reme	diation/Red	evelopment	Other X				
Facility/Project Name		County Name		Well Name			-
WPL-Edgewater Generating Sta		Sh	eyboygan			MW-301	
Facility License, Permit or Monitoring Num	nber	County Code	Wis. Unique Well N	umber	DNR We	11 ID Number	
FID 460021980, License #025	24	59	<u>VV862</u>	2			
 Can this well be purged dry? Well development method surged with bailer and bailed surged with bailer and pumped surged with block and bailed surged with block and pumped surged with block, bailed and pumped compressed air bailed only pumped only pumped slowly 	□ 6 □ 4 □ 6 ×1 ⊠ 7 □ 2 □ 1 □ 5			a5. b2 /1 c12 : 00		After Development $- 27 - 62 \text{ ft.}$ $2016 - 3 / - 7 / - 9 \text{ mm}^{-3} / - 9 \text{ mm}^{-3} / - 7 / - $	<u>2016</u> y y
Other3. Time spent developing well		<u>60 min.</u>	13. Water clarity	Clear 1 Turbid X 1 (Describe)	5	Clear 20 Turbid 25 (Describe)	
 Depth of well (from top of well casisng) Inside diameter of well 	<u>28</u> 2						
6. Volume of water in filter pack and well casing	10 12	. <u>93</u> gal.	Fill in if drilling fluid	is were used ar	nd well is a	t solid waste facility:	
7. Volume of water removed from well8. Volume of water added (if any)			14. Total suspended solids		mg/l	mg/l	
9. Source of water added	NA		15. COD		ma/l	mmg/l	
10. Analysis performed on water added? (If yes, attach results)	☐ Ye	s 🗌 No	16. Well developed b First Name: Kyle Firm: SCS ENGI	y: Name (first, la			

17. Additional comments on development:

Name and Address of Facility Contact /Owner/Responsible Party First Jim Name:	I hereby certify that the above information is true and correct to the best of my knowledge.
Facility/Firm: Wisconsin Power and Light	Signature: Mh Rh
Street: 3739 Lakeshore Drive	Print Name: Meghan Blodgett For Kyle Kvamer
City/State/Zip:	Firm: SCS ENGINEERS

NOTE: See instructions for more information including a list of county codes and well type codes.

State of Wisconsin Department of Natural Resources

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/Was	tewater	Waste Management	L .			
Remediation/Redevelopment Other						
Facility/Project Name	County Name		Well Name			
WPL-Edgewater Generating Station	She	eyboygan		1	MW-302	
Facility License, Permit or Monitoring Number	County Code	Wis. Unique Well N	umber	DNR Wel	11 ID Number	
FID 460021980, License #02524	59	VV86	1			
	Yes X No 41 61 42 62 70 20 10 51 50	 Depth to Water (from top of well casing) 	Before Dev a19 b2/1 c1:35		After Development After Development 	
	150 min.		(Describe)		(Describe)	
4. Depth of well (from top of well casisng)3	<u>86 ₁₅ ft.</u>		-			
5. Inside diameter of well $-\frac{2}{-}$.	<u> </u>					
	9 . <u>6</u> gal. 35 . <u>0</u> gal.	Fill in if drilling fluid	is were used ar	nd well is a	t solid waste facility:	
8. Volume of water added (if any)	gal.	14. Total suspended solids		mg/l	mg/l	
9. Source of water added NA		15. COD		mg/l	mg/l	
		16. Well developed by: Name (first, last) and Firm				
10. Analysis performed on water added?	les 🗌 No	First Name: Kyle	y	Last Name		
		Firm: SCS ENGINEERS				

17. Additional comments on development:

Name and Address of Facility Contact /Owner/Responsible Party First Last Name: Name:	I hereby certify that the above information is true and correct to the best of my knowledge.
Facility/Firm: Wisconsin Power and Light	Signature: 7/ R
Street:3739 Lakeshore Drive	Print Name: Meghen Blodget for Kyle Kraver
City/State/Zip:	Firm:

NOTE: See instructions for more information including a list of county codes and well type codes.

State of Wisconsin Department of Natural Resources

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed,	/Wastewater	Waste Management			
Remediatio	on/Redevelopment	Other			
Facility/Project Name	County Name	Language	Well Name		
WPL-Edgewater Generating Station		eyboygan		MW-303	
Facility License, Permit or Monitoring Number	County Code	Wis. Unique Well Nu	imber D	NR Well ID Numbe	r
FID 460021980, License #02524	<u>59</u>	<u>VV860</u>			
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	 Depth to Water (from top of well casing) Date 	Before Develo	_a.m. x p.m10 : 1	$\frac{1}{d} = \frac{1}{d} \text{ ft.}$ $\frac{7}{d} = \frac{2016}{y \text{ y y y y y}}$ $\frac{5}{\text{ memory m.}}$ $\frac{1}{d} = \frac{1}{2} \text{ m.}$ $\frac{1}{d} = \frac{1}{2} \text{ m.}$
 Time spent developing well Depth of well (from top of well casisng) 	70_min. 3315_ft.		(Describe)	(Describe)	
1	$\frac{2}{2}$, $\frac{0}{2}$ in.				
	$-\frac{8}{23} \cdot \frac{03}{23} \text{ gal.}$	Fill in if drilling fluid:	s were used and v	well is at solid waste	facility:
_	gal.	14. Total suspended solids	·	_ mg/l	mg/l
9. Source of water added NA		15. COD		_ mg/l	mg/l
10. Analysis performed on water added? (If yes, attach results)	Yes No	16. Well developed by First Name: Kyle Firm: SCS ENGIN	La	and Firm ast Name: Kramer	
1/1 + 1 1					

17. Additional comments on development:

Name and Address of Facility Contact /Owner/Responsible Party First Jim Name: Jakubiak	I hereby certify that the above information is true and correct to the best of my knowledge.
Facility/Firm:	Signature: M/h RVP
	Print Name: Medren Blodgett for Kyle Kramer
City/State/Zip:	Firm: SCS ENGINEERS

NOTE: See instructions for more information including a list of county codes and well type codes.

State of Departu	Wiscon	isin Natural	Resour	Route T		□н □∪		'aste round '	Tanks				oil Bor orm 440		og Info	ormati	on 7-91
				U Was		۳ ۳	ater I	Resourd			-			Page	1	of	L
						0 []		nse/Per	mit/Moi	nitoring	Numbe	r	Boring 1				
Facility/	Project itoring	Name 1 Well	Insta	llation			025						2R-0				
Boring	Drilled H	3v (Fin	m name	and name of crew chi	ef)		Date	Drillin	g Starte	d	Date	Drilling	Comple		Drilling	Metho	хđ
M&1	K Envi	ironm	ental	Drilling. Chief D	riller Michael			04/2	29/98			04/2	9/98		HSA		
DNR F	ardle.		w	Unique Well No.	Common Well 1	Name	Fina	I Static	Water I	.evel	Surfa	ce Elev:	ation	Bo	orehole		
DIKP	acting to	i en 100	•					607	.2 Feel	MSL	-	-	Feet MS ocation			8.0 1	nches
Boring	Location	ı						Lat	0 9 11		Loca	l Gna L			icaule)		×Е
NW	1/4 0	f NE	1/4	t of Section 2	T 14 N.R 2	3E	L	ong	0 , 11						600 H	Feet] w
County	1/4 0		17-			DNR Cou	inty C	ode		own/Cit BOYG		illage					
	BOY	GAN		1		60			SIL				Soil	Propert	ties		<u> </u>
Sam		ú	eet									ion		΄,			
	(in) ed	Counts	In F		ck Description			S	0	E	0	ati	9 - +		U.		1ts
Ļ	h ,er	Ŝ		1	logic Origin F Major Unit	or		ບ ບ	hi d	gra!	É	ada tr	s tu ten	uid itd	+- +-	200	mer
Number	Length (i Recovered	Blow	Depth	Each			1	S	Graphic Log	Well Diagram	PID/FID	Standard Penetrati	Moisture Content	Liquid Limit	Plas [.]	ы В	RQD/ Comments
_ <u>_</u>	3 %			L TOPSOIL							<u> </u>	0,12					1
			1 1 2 3 4 5 6 7 8	LEAN CLAY -	moist, stiff, ve	ellowish		CL									
			E_2	brown (10YR 5/	6), silty sand	seams.											
1	18	12	Ē,							Y		12	23.6				
															ŀ		
<u> </u>			Ē								· · · · · · ·						
2	18	22	E-5	very stiff.								22	16.6				
			Ē							目							
			E7							目		46	16.8				
3	18	46		hard.													
			E-9														
. 🖬			E_10	wet, very stif	f dark brown	(10YR						26	19.7			98.4	
4	18	26	E-11	4/3), occasional	sand seams.	、		-									
L	1	ĺ	E ₁₂														
5	18	15		moist.							1	15	22.8				
2			10 10 11 11 12 13 14														
L.	1		F ¹⁴	NOTES:				·			1						
				1) End of borin	g at 14.5 feet.		_										
				2) Monitoring	Well 2R-OW c	onstruct	ed										
				at completion.													
								<u> </u>	<u> </u>			<u> </u>				1	
There	by certif	fy that t	the info	rmation on this form is	true and correct t	to the best	of my	know	leage.								

Firm Signature hiph ŀ

Miller Engineers & Scientists 5308 South 12th Street, Sheboygan, WI 53081 Tel: (920)458-6164 Fax: (920)458-0369

This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$5,000 for each violation. Fined not less than \$10 or more than \$100 or imprisoned not less than 30 days, or both for each violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06, Wis. Stats.

Route To:

Watershed/Wastewater Remediation/Redevelopment

Waste Management Other

SOIL BORING LOG INFORMATION Form 4400-122

Rev. 7-98

													Pag		of	2
	y/Proje			ating Station	8084. 25215125 10	License/	Permit	/Monitc	oring N	umber		Boring	Numb		W-3(71
				ating Station f crew chief (first, last) ar	SCS#: 25215135.10	Date Dr	illing S	tarted		Da	te Drill	ing Cor	npleted			ling Method
	in Du	•		(, , , , , , , , , , , , , , , , , , ,			0					0	1			ollow stem
	lger S				1			/2016				1/14/2	2016		a	ıger
WI Ui	nique W	/ell No /862		DNR Well ID No.	Common Well Name MW-301	Final Sta	atic Wa 13.7		el	Surfac	e Eleva	tion 95 Fe	at	В		Diameter 3.5 in.
Local	Grid O		(es	timated: 🗌) or Bori			13.7					Jrid Lo			C	
	Plane	8		741 N, 2,573,429		La	at	o 	<u> </u>					I		Feet 🗌 E
NE		of N	W 1.		t 14 n, r 23 e	Lon		o 	<u>'</u>				S			🗆 W
Facilit	y ID		1	County		County Co 59	ode	Civil T			Village					
Sor	nple			Shawano		39	Т	Sheb	oygai	1	1	Soil	Prope	artion		
Sal				Soll/D	ock Description											-
	tt. & d (in	unts	Feet		ologic Origin For						uo					ts
ber	th A vere	Col	h In		h Major Unit		CS	hic	ram	FID	lard trati	ture	t d	icity		u/ men
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet				U S O	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid	Plasticity Index	P 200	RQD/ Comments
~ 0				Boring already cleared	to 8' bgs by hydrovac.				N R		U H					
			1													
			E I													
			-2													
			E, I													
			-3	Standing water at 3' in boring at toe of berm.	existing hydrovac hole a	and										Standing water at 3 ft bgs in existing hole and
			E-4	borning at the or berni.												boring at toe of berm.
			E													
			5													
			6													
			Ē													
			-7													
			E													
Π				SILTY CLAY, brown ((7.5YR 4/6).											
S1	22	57	-9								3.5	М				water @ 11.9 ft
		9 13	E													bgs after sitting an hour with
U			= 10													augers at 20 ft bgs.
							CL-ML									
			-12													
П			-13													
S2	20	7 13	-14	SANDY SILT, grey bro	(10 VR 4/2)						2.75	w				
		23 21		SANDI SILI, grey bit	Jwn (101 K 4/2).		ML									
			-15													
		y that t	he infor	mation on this form is tru				ge.								
Signat	h B	1A-	- f	ar Jue Laso		Engine Dairy Dri		dison, V	WI 537	18					Tel: (6	508) 224-2830 Fax:

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A

Borin	g Numl	ber	MW	V-301 Use only as an attachment to Form 4400-1	22.							Pag	ge 2	of	2
the second se	nple										Soil	Prope			
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic	Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
S3	20	57 1813	16	SANDY SILT, grey brown.							w				
		1015	20 21 22 23	Same as above, except brown (7.5 YR 4/6).						×					
S4 -	22	2 2 3 4	24		ML						w				
S5	20	33 49	26								w				screen 20-25 ft bgs.
S6	24	2 2 2 2	28 29 30				<u>A 64 64 64 64 6</u>		-		w				
S7 -	24	2 2 4 8	-31				54 K34 K34 K3				W				
S8	16	23 45	33 34				1854854854				W				
S9	24	2 2 2 2	-35	CLAY, grey (7.5YR 4/6).	CL		CA CA CA CA			1.0	М				water at 16.8 ft bgs with augers at 34 ft bgs.
				End of boring at 36 ft bgs.											

State of Wisconsin Department of Natural Resources

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

Route To: Watershed/Wastewater Remediation/Redevelopment Waste Management
Other

		e													Pag		of	2
		ct Nam						Licens	e/Permit	/Monito	ring N	umber		Boring	Numb		W 21)2
				rating St f crew ch		last) an	SCS#: 25215135.10	Date F	rilling S	tarted		D	ate Drill	ing Cor	nnleted		W-30	12 lingMethod
	vin Du		vanie o		ner (mat	, 1431) 411	a i iiii	Date L	innig c	lanca				ing Coi	npieteu			ollow stem
	lger S								1/15	5/2016	9 (1/15/2	2016			iger
WI Ur	ique W	/ell No.		DNR V	Well ID N	No.	Common Well Name	Final S	tatic Wa	ter Lev	el	Surfa	ce Eleva	tion		E	Borehole	Diameter
		/861					MW-302		Fe	et				.65 Fe			8	.5 in.
Local State	Grid O	rigin		stimated: ,343 N,			ng Location 🖂 E S/C/N	1	_at	o	,	"	Local (
State		of N		,545 IN, /4 of Sec			T 14 N, R 23 E		ng	0	,			Feet				Feet 🗌 E
Facilit		01 11	<u>vv 1</u>		County	۷,	1 14 N, K 25 E	County (Civil T	'own/C	City/ or	Village					
					Shawa	no		59		Sheb			0					
San	nple													Soil	Prope	erties		
	& (in)		t			Soil/Ro	ock Description											
1)	Att. 8 ed (i	unts	Fee				logic Origin For						on					Its
lber Гуре	tth A vere	, Co	h In				Major Unit		CS	hic	ram	FD	dard	sture	id	icity		0/ mer
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet				5		U S	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
<u> </u>				Boring	already	cleared t	o 8' bgs by hydrovac.			1		3				<u> </u>		
			-1															
			-2															
			-															
			$\frac{-3}{-3}$															
			5															
			-															
			_6															
			= /															
			-8				1 (011)											
			-	SAND	Y CLAY	, various	s colors (fill).											
S 1	16	68 1110	_9										2.5/1.7	\$ M				
		11 10	10															
			$\frac{-10}{2}$															
			-11															
		-	= 1						CL	22%								
		-	-12															
		-	-															
П		-	-13															
		5.6	- 14															
S2	16	56 1119	-14										3.5	М				
L		-	-15					la La										

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature	Firm SCS Engineers 2830 Dairy Drive Madison, WI 53718	Tel: (608) 224-2830 Fax:
-----------	--	-----------------------------

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A

Borin	g Num	ber	MV	V-302 Use only as an attachment to Form 4400)-122.							Pa	ge 2	of	2
Sar	nple										Soil	Prop	erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic	Log	Well	Diagram	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
Π			16	SANDY CLAY, (fill).	CL										
S3	16	67 912	-19 -20 -21 -22	CLAY, dark brown, some gravel and fill (topsoil).	CL					3.25	М				
S4	24	4 7 10 13	23	LEAN CLAY, brown (7.5YR 4/6).	CL					2.75	М				
S5 –	24	66 78	27 28 29 30	SANDY SILT, brown (7.5YR 4/6).						1.5	W				
S6 _	12	57 88	-31 -32												
S7 _	22	2 2 4 9	-33 -34		ML										
S8 _	24	÷ /	35	6 inch sandier zone at 35-35.5 ft bgs, soil less cohesive, more water.											
S9 _	24	2 2 2 4	-37								W				
S10	24	22 46		End of boring at 40 ft bgs.	_										water at 17.8 ft bgs after well installation.

State of Wisconsin Department of Natural Resources

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

Route To: Water

Watershed/Wastewater

Waste Management
Other

1 of 2 Page Facility/Project Name License/Permit/Monitoring Number Boring Number **MW-303** WPL-Edgewater Generating Station SCS#: 25215135.10 Boring Drilled By: Name of crew chief (first, last) and Firm Date Drilling Started Date Drilling Completed Drilling Method Hollow stem Kevin Durst 2/4/2016 2/4/2016 **Badger State** auger DNR Well ID No. Final Static Water Level Surface Elevation Borehole Diameter WI Unique Well No. Common Well Name VV860 **MW-303** Feet 609.73 Feet 8.5 in. Local Grid Origin 🗌 (estimated: 🗌) or Boring Location 🖂 Local Grid Location 0 , ... Lat 631,609 N, 2,573,497 E S/C/N State Plane Feet 🗌 N Feet 🗌 E 0 SE 1/4 of NW T 14 N, R 23 E \Box s □ W 1/4 of Section 2, Long Civil Town/City/ or Village Facility ID County Code County Shawano 59 Sheboygan Soil Properties Sample Length Att. & Recovered (in) Soil/Rock Description Depth In Feet Blow Counts Standard Penetration And Geologic Origin For Comments Number and Type Diagram PID/FID SCS Moisture Plasticity Graphic Content Liquid Each Major Unit RQD/ Limit Index P 200 Well Log D Boring already cleared to 8' bgs by hydrovac. - 1 2 .3 4 5 6 7 8 SANDY LEAN CLAY, yellowish brown (10YR 5/4). 59 912 9 **S**1 15 3.0 W 10 11 CL 12 13 Same as above except, very dark grayish brown (10YR 3/2). 11 11 14 >4.5 W S2 18 12 14 15

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature 200	0 16 1 16	Firm	SCS Engineers	Tel: (608) 224-2830
- Mun Kell	tar Kyle Krame		2830 Dairy Drive Madison, WI 53718	Fax:

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A

Borin	g Num	ber	MV	V-303 Use only as an attachment to Form 4400-	122.							Pa	ge 2	of	2
Contrast of the Contrast of th	nple					Τ					Soil	Prop			
Number and Type	t. &	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic	Log	Well	PID/FID	Standard Penetration			ý	P 200	RQD/ Comments
S3	20	6 8 13 14	16 17 18 19 20 21 22	Same as above except, yellowish brown (10YR 5/4).	CL					2.0	w				
S4	22	58 812	-23	Same as above except, very dark grayish brown (10YR 3/2). SANDY SILT, yellowish brown (10YR 5/4).						1.75	w				
S5	16		-25 -26								w				
-			27												
S6 -	24	45 33	-28 -29		ML						W				
S7	24	36 914	-30 -31 -32								w				
			-33	End of boring at 33 ft bgs.					_				•		

Appendix C

Laboratory Reports

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

May 02, 2022

Meghan Blodgett SCS ENGINEERS 2830 Dairy Drive Madison, WI 53718

RE: Project: 25216068 CCR RULE EDGWATER Pace Project No.: 40243424

Dear Meghan Blodgett:

Enclosed are the analytical results for sample(s) received by the laboratory on April 14, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Green Bay

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Day Milery

Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: Sherren Clark, SCS Engineers Tom Karwoski, SCS ENGINEERS Nicole Kron, SCS ENGINEERS Ryan Matzuk, SCS Engineers Jeff Maxted, ALLIANT ENERGY Marc Morandi, ALLIANT ENERGY

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: 25216068 CCR RULE EDGWATER

Pace Project No.: 40243424

Pace Analytical Services Green Bay

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 Virginia VELAP ID: 460263 South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: 25216068 CCR RULE EDGWATER

Pace Project No.: 40243424

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40243424001	MW-301	Water	04/13/22 09:25	04/14/22 07:50
40243424002	FIELD BLANK	Water	04/13/22 09:45	04/14/22 07:50
40243424003	MW-303	Water	04/13/22 10:30	04/14/22 07:50
40243424004	MW-302	Water	04/13/22 11:37	04/14/22 07:50
40243424005	2R-OW	Water	04/13/22 12:45	04/14/22 07:50

SAMPLE ANALYTE COUNT

Project: 25216068 CCR RULE EDGWATER

Pace Project No.: 40243424

Lab ID	Sample ID	Method	Analysts	Analytes Reported
40243424001		EPA 6020B	кхs	2
			KPR	7
		SM 2540C	SRK	1
		EPA 9040	YER	1
		EPA 300.0	HMB	3
40243424002	FIELD BLANK	EPA 6020B	KXS	2
		SM 2540C	SRK	1
		EPA 9040	YER	1
		EPA 300.0	HMB	3
40243424003	MW-303	EPA 6020B	KXS	2
			KPR	7
		SM 2540C	SRK	1
		EPA 9040	YER	1
		EPA 300.0	HMB	3
40243424004	MW-302	EPA 6020B	KXS	2
			KPR	7
		SM 2540C	SRK	1
		EPA 9040	YER	1
		EPA 300.0	HMB	3
40243424005	2R-OW	EPA 6020B	KXS	2
			KPR	7
		SM 2540C	SRK	1
		EPA 9040	YER	1
		EPA 300.0	HMB	3

PASI-G = Pace Analytical Services - Green Bay

Project: 25216068 CCR RULE EDGWATER

Pace Project No.: 40243424

Sample: MW-301	Lab ID:	40243424001	Collected	d: 04/13/2	2 09:25	Received: 04/	/14/22 07:50 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	-	l Method: EPA			hod: E	PA 3010A			
Boron Calcium	7240 89300	ug/L ug/L	500 254	152 76.2	50 1		04/29/22 19:11 04/28/22 17:08		
Field Data	Analytica Pace Ana	l Method: Ilytical Services	s - Green Bay	/					
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	7.38 777 2.82 417.1 25.6 594.89 9.0	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1 1		04/13/22 09:25 04/13/22 09:25 04/13/22 09:25 04/13/22 09:25 04/13/22 09:25 04/13/22 09:25 04/13/22 09:25	7782-44-7	
2540C Total Dissolved Solids	,	l Method: SM 2 Ilytical Services		/					
Total Dissolved Solids	560	mg/L	20.0	8.7	1		04/15/22 15:13		
9040 pH		Method: EPA		/					
pH at 25 Degrees C	7.5	Std. Units	0.10	0.010	1		04/15/22 11:30		H6
300.0 IC Anions	,	I Method: EPA		/					
Chloride Fluoride Sulfate	14.0 <0.095 212	mg/L mg/L mg/L	2.0 0.32 20.0	0.43 0.095 4.4	1 1 10		04/26/22 19:49 04/26/22 19:49 04/27/22 08:11	16984-48-8	

Project: 25216068 CCR RULE EDGWATER

1 10,000

Pace Project No.: 40243424

Sample: FIELD BLANK	Lab ID:	40243424002	Collected	d: 04/13/22	2 09:45	Received: 04/	14/22 07:50 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Met	hod: EF	PA 3010A			
	Pace Ana	lytical Services	- Green Bay	/					
Boron	<3.0	ug/L	10.0	3.0	1	04/18/22 06:44	04/28/22 15:25	7440-42-8	1q
Calcium	<76.2	ug/L	254	76.2	1	04/18/22 06:44	04/28/22 15:25	7440-70-2	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
	Pace Ana	lytical Services	- Green Bay	/					
Total Dissolved Solids	<8.7	mg/L	20.0	8.7	1		04/15/22 15:13		
9040 pH	Analytical	Method: EPA 9	040						
-	Pace Ana	lytical Services	- Green Bay	/					
pH at 25 Degrees C	5.7	Std. Units	0.10	0.010	1		04/15/22 12:37		H6
300.0 IC Anions	Analytical	Method: EPA 3	00.0						
	Pace Ana	lytical Services	- Green Bay	/					
Chloride	<0.43	mg/L	2.0	0.43	1		04/26/22 20:04	16887-00-6	
Fluoride	<0.095	mg/L	0.32	0.095	1		04/26/22 20:04	16984-48-8	
Sulfate	<0.44	mg/L	2.0	0.44	1		04/26/22 20:04	14808-79-8	

Project: 25216068 CCR RULE EDGWATER

Pace Project No.: 40243424

Sample: MW-303	Lab ID:	40243424003	Collected	I: 04/13/2	2 10:30	Received: 04/	14/22 07:50 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS		l Method: EPA 6 Ilytical Services	•		hod: El	PA 3010A			
Boron Calcium	4360 139000	ug/L ug/L	200 254	60.6 76.2	20 1	04/18/22 06:44 04/18/22 06:44	04/29/22 23:08 04/28/22 17:23		
Field Data	Analytical Pace Ana	l Method: Ilytical Services	- Green Bay	1					
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	6.78 1224 1.98 330.2 75.1 595.20 8.6	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1 1		04/13/22 10:30 04/13/22 10:30 04/13/22 10:30 04/13/22 10:30 04/13/22 10:30 04/13/22 10:30 04/13/22 10:30	7782-44-7	
2540C Total Dissolved Solids	,	l Method: SM 2 Ilytical Services		/					
Total Dissolved Solids	722	mg/L	20.0	8.7	1		04/15/22 15:13		
9040 pH		l Method: EPA S Ilytical Services		/					
pH at 25 Degrees C	6.8	Std. Units	0.10	0.010	1		04/15/22 12:39		H6
300.0 IC Anions	,	I Method: EPA 3		1					
Chloride Fluoride Sulfate	23.4 <0.48 <2.2	mg/L mg/L mg/L	10.0 1.6 10.0	2.2 0.48 2.2	5 5 5		04/26/22 20:19 04/26/22 20:19 04/26/22 20:19	16984-48-8	D3 D3

Project: 25216068 CCR RULE EDGWATER

Pace Project No.: 40243424

Sample: MW-302	Lab ID:	40243424004	Collected	: 04/13/22	2 11:37	Received: 04/	14/22 07:50 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	-	Method: EPA 6			hod: El	PA 3010A			
Boron Calcium	1460 61500	ug/L ug/L	100 254	30.3 76.2	10 1	04/18/22 06:44 04/18/22 06:44	04/29/22 23:15 04/28/22 17:30		
Field Data	Analytical Pace Ana	Method: Ilytical Services	- Green Bay						
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	7.70 488 1.39 337.4 26.2 600.50 8.7	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1 1		04/13/22 11:37 04/13/22 11:37 04/13/22 11:37 04/13/22 11:37 04/13/22 11:37 04/13/22 11:37 04/13/22 11:37	7782-44-7	
2540C Total Dissolved Solids		Method: SM 2 Iytical Services							
Total Dissolved Solids	318	mg/L	20.0	8.7	1		04/15/22 15:14		
9040 pH		Method: EPA S							
pH at 25 Degrees C	7.7	Std. Units	0.10	0.010	1		04/15/22 12:42		H6
300.0 IC Anions		Method: EPA 3							
Chloride Fluoride Sulfate	21.2 0.91 68.5	mg/L mg/L mg/L	2.0 0.32 10.0	0.43 0.095 2.2	1 1 5		04/26/22 23:31 04/26/22 23:31 04/27/22 09:10	16984-48-8	

Project: 25216068 CCR RULE EDGWATER

Pace Project No.: 40243424

Sample: 2R-OW	Lab ID:	40243424005	Collecte	d: 04/13/2	2 12:45	Received: 04/	14/22 07:50 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS		Method: EPA 6	•		hod: El	PA 3010A			
Boron Calcium	27.9 160000	ug/L ug/L	10.0 254	3.0 76.2	1 1	04/18/22 06:44 04/18/22 06:44			1q
Field Data	Analytical Pace Ana	Method: lytical Services	- Green Ba	у					
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	7.20 1549 6.72 425.6 205 609.50 7.5	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1 1		04/13/22 12:45 04/13/22 12:45 04/13/22 12:45 04/13/22 12:45 04/13/22 12:45 04/13/22 12:45 04/13/22 12:45	7782-44-7	
2540C Total Dissolved Solids		Method: SM 25		у					
Total Dissolved Solids	866	mg/L	20.0	8.7	1		04/15/22 15:14		
9040 pH		Method: EPA 9		у					
pH at 25 Degrees C	7.2	Std. Units	0.10	0.010	1		04/15/22 12:44		H6
300.0 IC Anions	,	Method: EPA 3		у					
Chloride Fluoride Sulfate	275 <0.95 18.5J	mg/L mg/L mg/L	20.0 3.2 20.0	4.3 0.95 4.4	10 10 10		04/26/22 23:46 04/26/22 23:46 04/26/22 23:46	16984-48-8	D3 D3

Project:	25216068 CCR R	JLE EDGWATER										
Pace Project No.:	40243424											
QC Batch:	413363		Analy	sis Method	d:	EPA 6020B						
QC Batch Method:	EPA 3010A		Analy	sis Descrip	ption:	6020B MET						
			Labo	ratory:		Pace Analyt	ical Service	es - Green	Bay			
Associated Lab Sar	mples: 40243424	001, 4024342400	2, 4024342	4003, 4024	43424004,	4024342400	05					
METHOD BLANK:	2380558			Matrix: Wa	ater							
Associated Lab Sar	nples: 40243424	001, 4024342400	2, 4024342	4003, 4024	43424004,	4024342400	05					
			Blar	nk F	Reporting							
Parar	neter	Units	Res	ult	Limit	Analy	/zed	Qualifiers	S			
		ug/L		<3.0	10.	0 04/28/22	2 15:11					
Boron												
Boron Calcium		ug/L		<76.2	25	4 04/28/22	2 15:11					
		0	Spike Conc.		S	4 04/28/22 LCS % Rec	2 15:11 % Re Limit		Qualifiers			
Calcium LABORATORY CO Parar Boron		ug/L 2380559 Units ug/L	Conc. 25	<76.2 LC Res	S Sult	LCS % Rec 93	% Re 	ts (30-120	Qualifiers			
Calcium LABORATORY CO Parar		ug/L 2380559 Units	Conc.	<76.2 LC Res	S sult	LCS % Rec	% Re 	ts (Qualifiers	_		
Calcium LABORATORY CO Parar Boron	neter	ug/L 2380559 Units ug/L ug/L	Conc. 25 1000	<76.2 LC Res	S Sult	LCS % Rec 93 95	% Re 	ts (30-120	Qualifiers	_		
Calcium LABORATORY CO Parar Boron Calcium	neter	ug/L 2380559 Units ug/L ug/L	Conc. 25 1000	<76.2 LC Res	S Sult 233 9490	LCS % Rec 93 95	% Re 	ts (30-120	Qualifiers	_		
Calcium LABORATORY CO Parar Boron Calcium	neter	ug/L 2380559 Units ug/L ug/L	Conc. 25 1000 560	<76.2 LC Res 0 0	S Sult 233 9490	LCS % Rec 93 95	% Re 	ts (30-120	Qualifiers % Rec	_	Max	
Calcium LABORATORY CO Parar Boron Calcium	neter IATRIX SPIKE DUP	ug/L 2380559 Units ug/L ug/L LICATE: 2380 40243427001	Conc. 25 1000 560 MS	<76.2 LC Res 0 0 MSD	S Sult 233 9490 2380561	LCS % Rec 93 95	% Re Limit 3 8 5 8	ts (30-120 30-120		RPD	Max RPD	Qual
Calcium LABORATORY CO Parar Boron Calcium MATRIX SPIKE & M	neter IATRIX SPIKE DUP	ug/L 2380559 Units ug/L ug/L LICATE: 2380 40243427001	Conc. 25 1000 560 MS Spike	<76.2 LC Res 0 0 MSD Spike	S Sult 233 9490 2380561 MS	LCS % Rec 93 95	% Re Limit 3 8 5 8 MS	ts (30-120 30-120 MSD	% Rec		RPD	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:		ULE EDGWATER						
Pace Project No.:	40243424		Analusia M	a the a sh	CM 05400			
QC Batch:	413332		Analysis Mo		SM 2540C			
QC Batch Method:	SM 2540C		Analysis De	•	2540C Total Di		_	
Assasiated Lab Car	4004040	4001, 40243424002	Laboratory:			I Services - Gre	en Bay	/
Associated Lab Sar	npies: 40243424	1001, 40243424002	2, 40243424003,	40243424004,	40243424005			
METHOD BLANK:	2380052		Matrix	: Water				
Associated Lab Sar	nples: 40243424	4001, 40243424002	2, 40243424003,	40243424004,	40243424005			
			Blank	Reporting				
Paran	neter	Units	Result	Limit	Analyze	d Quali	fiers	
Total Dissolved Soli	ds	mg/L	<8.7	20	0 04/15/22 1	5:10		-
LABORATORY CO		2380053						
		2000000	Spike	LCS	LCS	% Rec		
Parar	neter	Units	Conc.	Result	% Rec	Limits	Qua	lifiers
Total Dissolved Soli	ds	mg/L	555	510	92	80-120		
SAMPLE DUPLICA	TE: 2380054							
	12. 2000004		40243353001	Dup		Мах		
Parar	neter	Units	Result	Result	RPD	RPD		Qualifiers
Total Dissolved Soli	ds	mg/L	602	2 62	.0	3	10	
		č						
SAMPLE DUPLICA	TE: 2380055							
			40243379003	Dup		Max		
Parar	neter	Units	Result	Result	RPD	RPD		Qualifiers
Total Dissolved Soli	ds	mg/L	118	3 11	2	5	10	
		-						

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	25216068 CCR R	ULE EDGWATER					
Pace Project No.:	40243424						
QC Batch:	413287		Analysis Meth	od: I	EPA 9040		
QC Batch Method:	EPA 9040		Analysis Desc	ription:	9040 pH		
			Laboratory:	I	Pace Analytical	Services - Gr	een Bay
Associated Lab Sa	mples: 40243424	001, 4024342400	2, 40243424003, 40	243424004,	40243424005		
	ATE: 0070700						
SAMPLE DUPLICA	ATE: 2379732		10604043001	Dup		Мах	
				•			
Para	meter	Units	Result	Result	RPD	RPD	Qualifiers
		Units Std. Units	_ <u>Result</u>	Result 8.4			
Para pH at 25 Degrees (20 2q,H6
	C					 1	
pH at 25 Degrees (C					1 Max	
pH at 25 Degrees (SAMPLE DUPLICA	C		8.3	8.		1	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	40243424	RRU	ILE EDGWATER										
QC Batch:	413910			Anal	ysis Metho	d: E	PA 300.0						
QC Batch Method:	EPA 300.0			Anal	ysis Descri	ption: 3	00.0 IC An	ions					
				Labo	oratory:	F	Pace Analy	ical Service	es - Green	Bay			
Associated Lab Sar	nples: 40243	34240	001, 4024342400	2, 4024342	24003, 402	43424004, 4	102434240	05					
METHOD BLANK:	2383323				Matrix: W	ater							
Associated Lab Sar	nples: 40243	34240	001, 4024342400	2, 4024342	24003, 402	43424004, 4	102434240	05					
				Bla	nk	Reporting							
Paran	neter		Units	Res	ult	Limit	Anal	yzed	Qualifiers	S			
Chloride			mg/L		<0.43	2.0	0 04/26/2	2 17:06					
Fluoride			mg/L		<0.095	0.32	2 04/26/2	2 17:06					
Sulfate			mg/L		<0.44	2.0	04/26/2	2 17:06					
		F .	0000004										
LABORATORY COI	NI KUL SAMPL	.=:	2383324	Spike	LC	S	LCS	% R	20				
Paran	neter		Units	Conc.	Res		% Rec	Limi		Qualifiers			
Chloride					20	20.9	10		90-110		_		
Fluoride			mg/L mg/L	4	20	20.9	10		90-110 90-110				
Sulfate			mg/L	2	20	21.1	10		90-110				
MATRIX SPIKE & M	IATRIX SPIKE	DUPI	LICATE: 2383	325 MS	MSD	2383326							
			40243405002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	. ι	Jnits	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride		ng/L		100	100	184	180	105	101	90-110	3		
Fluoride		ng/L	<0.48	100	100	104	180	105	101		2	-	MO
Sulfate		ng/L	10.6	100	100	129	124	118	113	90-110	4		MO
				007		0000000							
MATRIX SPIKE & M	IAI KIA SPIKE	DUPI	LICATE: 2383	327 MS	MSD	2383328							
			40243448003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	· เ	Jnits	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD		Qual
Chloride	r	mg/L	1340	2000	2000	3590	3650	113	115	90-110	1	15	M0
Fluoride		mg/L	191	1000	1000	1280	1310	109	112	90-110	2	15	M0
riuonue				2000	2000	2380	2390	110	110	90-110	0	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALIFIERS

Project: 25216068 CCR RULE EDGWATER

Pace Project No.: 40243424

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- 1q Analyte was measured in the associated method blank at -3.1 ug/L
- 2q Due to the sample matrix, DI water was added to this sample on a one to one basis and the sample was stirred before analysis.
- D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
- H6 Analysis initiated outside of the 15 minute EPA required holding time.
- M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
- P6 Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 25216068 CCR RULE EDGWATER

2R-OW

Pace Project No.: 40243424

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40243424001	MW-301	EPA 3010A	413363	EPA 6020B	413523
40243424002	FIELD BLANK	EPA 3010A	413363	EPA 6020B	413523
40243424003	MW-303	EPA 3010A	413363	EPA 6020B	413523
40243424004	MW-302	EPA 3010A	413363	EPA 6020B	413523
40243424005	2R-OW	EPA 3010A	413363	EPA 6020B	413523
40243424001	MW-301				
40243424003	MW-303				
40243424004	MW-302				
40243424005	2R-OW				
40243424001	MW-301	SM 2540C	413332		
40243424002	FIELD BLANK	SM 2540C	413332		
40243424003	MW-303	SM 2540C	413332		
40243424004	MW-302	SM 2540C	413332		
40243424005	2R-OW	SM 2540C	413332		
40243424001	MW-301	EPA 9040	413287		
40243424002	FIELD BLANK	EPA 9040	413287		
40243424003	MW-303	EPA 9040	413287		
40243424004	MW-302	EPA 9040	413287		
40243424005	2R-OW	EPA 9040	413287		
40243424001	MW-301	EPA 300.0	413910		
40243424002	FIELD BLANK	EPA 300.0	413910		
40243424003	MW-303	EPA 300.0	413910		
40243424004	MW-302	EPA 300.0	413910		

EPA 300.0

413910

REPORT OF LABORATORY ANALYSIS

40243424005

Pace Analytical*	CHAIN- Chain-o	5. 19- 19-	is a LEGAL	DOCUMEN	•			•		LAB U	SE ONLY- Aff			oel Here or Lis Number Here	Pace Workorder N 4024	umber or 13424
Company: SLS Sna	ineers		Billing Info	ormation:							ALL S	HADED	AREAS	are for LA	B USE ONLY	
Address: 2830 DAIR	\	3718						u	u		iner Preserva	ative Type *	*	Lab Projec	t Manager:	
Report To: Mcg Blodg	jett	t taget t an Article A	Email To: Site Collec	nblod	geHC adress:	scsen	ginzers.	(C) (C)	methan	ol, (7) sodi		8) sodium thi	iosulfate, (9) h	exane, (A) ascor	odium hydroxide, (5) z bic acid, (B) ammonium -	
Customer Project Name/Number: CCR Rule Elgewerthe Phone:	(252	1663)		County/Ci	ty: Ti	me Zone Co					Analyse	es			mple Receipt Ch	/
mail:		n de la composition d La composition de la c			Complian [] Yes	ce Monitor [] No	÷							Custod Collec	y Seals Present y Signatures Pr tor Signature P s Intact	esent YNNA
Michael Klaut	Purchase Order Quote #:	r#: ()				ion Code:			$\left \widetilde{\mathcal{O}} \right $			1.00		Correc	t Bottles	Cel Y N NA Y N NA
offerted By (signature):	Turnaround Da	te Require	ed:		Immediat [] Yes	ely Packed [] No								USDA F	s Received on Headspace Accep egulated Søils s in Holding Tj	Y N NA
ample Disposal: Dispose as appropriate [] Return] Archive:] Hold:	[] 2 Day [] 3 Day	[] Next D [] 4 Day Irges Apply)		[]Yes	red (if appl		-	G, F	s (Ci				Residu Cl Str	al Chlorine Pre ips: pH Addepteble ips: Cruesent cetate Stylps:	Y N NA
Matrix Codes (Insert in Matrix bo Product (P), Soil/Solid (SL), Oil (OL								- FI	V	421					cetate Strips:	
ustomer Sample ID	Matrix *	Comp / Grab	1 St. 1	ted (or site Start) Time	Compo Date	osite End		t of Ctns	44 F	W.					mple # / Commen	ts:
MW-301	Gw	6	4/13	925		Time		$3 \times$	\mathbf{r}					∞		
Freld Blank MW-303	Sw Gw			9:45		┢━──		+R	\aleph	Ø				-00	2	
MW-302	<u> </u>		$\left \right $	11:37				ΗS	拎	Ŕ				00) 	
2R-OW	¥	Y	· •	1245				×X	$\mathbf{\tilde{\mathbf{X}}}$	X				00	5	
· · · · · · · · · · · · · · · · · · ·							· · · ·									
<u> </u>								200 1903 1210								
	(2.11)		Time of la	o Head	14/24							-72			Hab Sample Tempe	aratura lafar
ustomer Remarks / Special Conditi	ions / Possible F	lazaros:	Type of Ic Packing M	aterial Use		Blue D	ry None		1997	Tracking	DS PRESENT (#:		4136	and the second second	Temp Blank Red Therm ID#:	ceived: Y N NA
			Radchem	sample(s) s	creened (<	500 cpm):	Y N	NA	Sam	ples rece FEDEX	ived via: UPS Cl	lient Co	urier Pac	e Courier	Cooler 1 Temp Cooler 1 Therm Cooler 1 Correc	Corr. Factor:oC
elinduighed by Company: (Signatu	re) - SCS		e/Time:	1630	Received b	oy/Compan	y: (Signatur	e)		Date/Tin	ne:	Table	100 10 10 10 10 10 10 10 10 10 10 10 10	SEONLY	Comments:	
	Company: (Signature) Date/Time: Received by/Company: (Signature) 4/14/22-0750									Date/Tir W/U/	ne: 122 079	Acctin Temp Prelo	late:		Trip Blank Becei HCL MeOH	ived: Y N NA TSP Other
elinquished by/Company: (Signatu	re)	Date	e/Time:		Received b	oy/Compan	y: (Signatur	e)		Date/Tir	ne:	PM: PB:			Non Conformanc YES / NO	

DC#_Title: ENV-FRM-GBAY-0035 v01_Sample Preservation Receipt Form Revision: 3 | Effective Date: | Issued by: Green Bay

Clie	nf	Mai	mo.	4	(5	Ţ	_	<u> </u>				S	Sam	ple	Pr	ese	erva	atio 1	n Re 107	ece \ l	ipt J2	For	m	4									
One					ng pres					ecked	and n	oted I	- pelow:	XYe	s		D		Ά											when	An	(Date/	
	_									Lab	Lot# c	of pH	paper:	101	<u>יצט</u>	(1)	L-La	ab Std	#ID of	prese	rvatio	n (if pł	l adju	sted):					comp	pleted	<u>11</u>	Time:	
				GI	ass						Plas	tic				Vi	als]		J	ars		L	nera	I	s (>6mm) *	cH ≤2	NaOH+Zn Act oH 29	>12	5	adjusted	Volume (mL)
Pace Lab #	AG1U	BG1U	AG1H	AG4S	AG4U	AG5U	AG2S	BG3U	BP1U	BP3U	BP3B	BP3N	BP3S	VG9A	DG9T	VG9U	НЬЭЛ	VG9M	VG9D	JGFU	JG9U	WGFU	WPFU	SP5T	ZPLC	GN	VOA Vials	H2SO4 p	NaOH+Z	NaOH oH >12	HNO3 pH ≤2	pH after adjusted	
001										3		1																			\bigtriangledown		2.5/5/10
002										D.			Rob-11												1.00						>		2.5/5/10
003										2																					>		2.5/5/10
004										2					130																\geq		2.5/5/10
005										2		1																			\geq		2.5/5/10
006									n der også Der konsta							(<u>52</u> ,12)						始まれ、			345.5		79.66						2.5/5/10
007					<	10.00000		7 0004200777		a transfer als	and the set		and contracts		22.13804964	i se inclui	1 29400 526	1000000								2700010.0	ing codes		1.1.1.1.1.1.1.1.1.1	- Archarteritur	2200.0000046375		2.5/5/10
008				100					2.5	1.000	1.5 650		22882 (200) (361 - 22)	26. 26. 8		1996/2019							的感	的關鍵			1915X	5.00			RAP AND BOARD	2053	2.5/5/10
009					C.C. BEN	-		Contraction of the second			11.11.1011	1.8414		hor			1 (224-27-27)			1	120.200	- Sec. 1.1.		× 1	. water to		7032.375	6333 464	Accession of	and the second second	10. Co.858 (5.1)		2.5/5/10
010	4916													13pat		- Kitti		12020	e da la la		(SEID)		运用集	ÇERE).	13080			201000				1000	2.5/5/10
011		1. Z x tatu				1.561005				\vdash		255526011		Sec. A Market	3-16-688		. Stanica	N CELEVAN		RANDINA			1000000	UK MADA	ik Staan De	1985.76734	evin des	Card Addate	0000000			C D AR GARN	2.5/5/10
012	1.9614	10000		12,913,	h chí trấn				P Q198	9418 1	6.28%	1969		CREEKE STORE 20		19	$\downarrow \uparrow$	FIN D	12	9-						Contraction Contraction Contraction			1.6.0				2.5/5/10
013	1	1. mg 2 Mile	1212.24	121 592		132800	088,1188	1201211	. Barriel			20086.5.5					\mathbb{N}	Įμ	10	É		102.2-3	: Event	131.21CP	S AUX - C L	reset tok	S	1.505		2010/10/2	08000389276		2.5/5/10
014	12565					12.5		a Balanda	8.06			5.04(c))		976-528	8-810n					14	117	4					9. A 64		19 mar 1	2.5.53			2.5/5/10
015	12 5	-			Served No.	- and sta	. Start		- 14 ve 1	S. LANKING					-	0.0000000			a Zerona			<u> </u>	anitzitzen	10000	30 6 653535		14. J.X.		-	Deservine	active and the	1.02.1.2.2	2.5/5/10
016 017							19980				0.0000	A STREET		R. Correction	SUSTERNAL D	小型新行	192677		10/200	ioguage -	ananika	國際常	利用的	Sector	OVIDENCIAL S	國際的	11	A DECRET		128082429 12804-209		100	2.5/5/10
017			NEXPLUX	100000			1.1040.01		2.1.4.2		100000				- inter		1	5 K876-9189	c. In standings		niátelání		100 AV	Inc. 1	-Shiliphor 2	196365	Moleka	- 1455			1900-191 9 21		2.5/5/10
018		a alabelet (102.4		11446			t golganna	1.0570208			190320	C BOOMSE		n na heatai		i isenitai	6 29 20 33	6 15 19 39	ele generation:	* 200 M 2 12 200 M 2 12 200 M 2 13 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10	ALC: NO	ALC: A CARD	Sunces Pro-		124-049	19.0100	1.4.2.5	n Alphi		1921 (SSE4)		2.5/5/10 2.5/5/10
020				i i i i i i i						f. helpfild				12.00								物的重					14-555	10058	a de la compañía de l				2.5/5/10
020			Sector sec	1979K 1989	2 - 20 - 10 2 5 (10	19936997	TELEVEL N	190 YE - 28	8 <i>8</i> 99733	00/00030		121200010			<u> </u>		19593-3	0.046613141	11,413,650	, KAKACANA C	2004	865,2123	0.04-308	12.98	2000123		T.	10.0 00000	SKINED.		10440010	19993549889	
Exce	ption	s to pi	eserv	ation	check:	VOA	, Coli	iform,	тос,	TOX,	тон,	0&G,	WI DF	RO, PI	henoli	cs, Ot	her:			Head	dspac	e in V	OA Via	als (>6	imm) :	ΠYε	s E	∃No	J aia	*If ye	es look i	n head:	space column
AG1L	1 lit	er an	ber g	lass				BF	·1U	1 lite	er pla	stic u	npres			ν	39A	40 r	nL cle	ar as	corbi	с		JG	FU	4 oz	amb	oer jar	unpr	es			1
BG1L	1 lit	er cle	ear gla	ass				BF	3 U	250	mL p	lastic	unpre	es		D	G9T	40 r	nL an	nber N	Va Th	io		JG	9U				unpr				
AG1F									°3B		•		NaO				39U		nL cle						GFU				Inpre				
AG4S				-					23N				HNO				G9H		nL cle						PFU	_			unpr		16-1-		4
AG4L				-					235	250	mL p	lastic	H2S	<u>J4</u>			39M 39D	1	nL cle nL cle			UH			25T PLC		mL p ic ba		: Na T	hiosu	irate		
AGSU AG2S				-	•											<u> </u>	390	401		ai vič				4	SN SN		ic ba	y					

Qualtrax Document ID: 41307

BG3U 250 mL clear glass unpres

Pace Analytical Services, LLC

Page 1 of 2

DC#_Title: ENV-FRM-GBAY-0014 v02_SCUR Revision: 3 | Effective Date: | Issued by: Green Bay

Sample Condition Upon R	eceipt Form (SCUR)
Client Name: <u>SSEngineers</u> Courier: CS Logistics Fed Ex Speedee UPS Walto	Project #: WO#:40243424
Client Pace Other:	
Tracking #:	40243424
Custody Seal on Cooler/Box Present: _ yes And eals intact: _	yes 🗖 no
Custody Seal on Samples Present: Dyes X no Seals intact: D	
Packing Material: 🕅 Bubble Wrap 🗆 Bubble Bags 🗖 None	
Thermometer Used SR - 07 Type of Ice: Web Blu	e Dry None Samples on ice, cooling process has begun Person examining contents:
Cooler Temperature Uncorr: 5,5 /Corr: 5,3	
Temp Blank Present: 🕵 yes 🔲 no Biological Tiss	Je is Frozen: Dyes no Date: 4/4/22 Unitials:
Temp should be above freezing to 6°C. Biota Samples may be received at ≤ 0°C if shipped on Dry Ice.	Labeled By Initials:
Chain of Custody Present: Xes DNo DN/A 1.	+LC M Mat UN
Chain of Custody Filled Out: DYes 🖾 DN/A 2.4	to billing phone 4/4/22 all
Chain of Custody Relinquished: Xes DNo DN/A 3.	
Sampler Name & Signature on COC: Xes DNo DN/A 4.	
Samples Arrived within Hold Time: XYes DNo 5.	
- VOA Samples frozen upon receipt	e/Time:
Short Hold Time Analysis (<72hr):	
Rush Turn Around Time Requested:	
Sufficient Volume: 8.	
For Analysis: Xeres INo MS/MSD: Ires Xero In/A	
Correct Containers Used: KYes DNo 9.	
-Pace Containers Used: XIYes □No □N/A	
-Pace IR Containers Used:	
Containers Intact: Xes DNo 10.	
Filtered volume received for Dissolved tests	
Sample Labels match COC: XYes DNo DN/A 12.	
-Includes date/time/ID/Analysis Matrix:	
Trip Blank Present: DYes DNo XNA 13.	
Trip Blank Custody Seals Present	
Pace Trip Blank Lot # (if purchased):	
Client Notification/ Resolution:	If checked, see attached form for additional comments
Person Contacted: Date/Time Comments/ Resolution	
Comments/Resolution Drust, seal present, not 3	WIPONDUTTER - VITUALE UN

PM Review is documented electronically in LIMs. By releasing the project, the PM acknowledges they have reviewed the sample login

Page 2 of 2

Qualtrax Document ID: 41292

Pace Analytical Services, LLC

Appendix D

Historical Monitoring Results

Number of Sampling Dates Parameter Name	Units	4/8/2016	6/20/2016	8/9/2016	10/20/2016	1/24/2017	4/6/2017	6/6/2017	8/1/2017	10/23/2017	4/2/2018	10/1/2018	4/8/2019	10/7/2019	4/8/2020	10/15/2020	4/14/2021	10/26/2021	4/13/2022
Boron	ug/L	100	22.4	32.6	43.1	31.2	70.6	45.2	35.7	55.9	19.7	34.7	35.8	58.8	52.3	29.9	45.7	47.2	27.9
Calcium	ug/L	205000	148000	145000	155000	152000	143000	145000	164000	170000	121000	190000	121000	132000	117000	124000	154000	192000	160000
Chloride	mg/L	91.7	232	215	217	201	102	115	272	305	108	462	55.3	88.8	67.5	179	116	493	275
Fluoride	mg/L	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.12	<0.1	<0.1	<0.1	<0.095	0.096	<0.095	<4.8	<0.95
Field pH	Std. Units	7.34	7.02	6.1	6.98	7.15	7.01	6.86	7	7.23	7.29	7.03	8.57	6.88	7.08	7.2	7.52	7.01	7.2
Sulfate	mg/L	19.5	28	25.4	21.6	23.9	17.6	17.8	28.8	29.3	17.2	37.2	10.6	13.2	11.6	20.3	15.3	35.7	18.5
Total Dissolved Solids	mg/L	774	908	974	944	854	750	744	1000	1010	680	1260	610	706	604	806	737	1170	866
Antimony	ug/L	0.3	<0.073	<0.073	<0.073	0.073	<0.073	0.32	<0.15										
Arsenic	ug/L	5.2	0.34	0.39	0.39	0.65	0.35	0.71	1.2										
Barium	ug/L	344	110	155	189	158	150	172	154										
Beryllium	ug/L	0.83	<0.13	<0.13	<0.13	<0.13	<0.13	<0.18	<0.18										
Cadmium	ug/L	0.21	<0.089	<0.089	<0.089	<0.089	<0.089	0.2	<0.081										
Chromium	ug/L	23.6	3.1	2.9	1.7	2.6	2.2	1.6	4.3										
Cobalt	ug/L	6	0.081	0.05	0.21	0.22	0.28	0.7	1.7										
Lead	ug/L	13	0.17	0.14	0.074	0.38	0.48	0.4	1.2										
Lithium	ug/L	19.6	9.6	9	8.2	8.2	5.3	6.2	15.1										
Molybdenum	ug/L	0.58	0.28	0.32	0.25	0.28	0.5	0.54	0.44										
Selenium	ug/L	2.2	<0.21	<0.21	<0.21	<0.21	<0.21	0.34	<0.32										
Thallium	ug/L	0.19	<0.14	<0.14	<0.14	<0.14	<0.14	0.45	<0.14										
Mercury	ug/L	<0.18	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13										
Total Radium	pCi/L	0.945	0.815	0.432	0.896	0.627	1.02	1.58	2.12										
pH at 25 Degrees C	Std. Units	7.4	7.4	7	7.4	7.4	7.1	6.9	7.1	7.1	7.4	7	7.5	7.1	7.1	7.4	7.4	7.2	7.2
Radium-226	pCi/L	0.304	0.433	0.0836	0.193	0	0.418	0.531	0.658										
Radium-228	pCi/L	0.641	0.382	0.348	0.703	0.627	0.605	1.05	0.502										
ield Specific Conductance	umhos/cm	1332	1277	1697	1533	1579	1387	1294	1651	1864	1177	2202	1077	1261	1081	1490	1229	2290	1549
Oxygen, Dissolved	mg/L	4.6	0.9	1	0.6	1	0.5	0.1	0	4.9	6.7	1.6	0.6	2.5	1.5	3.5	6.9	0.6	6.72
Field Oxidation Potential	mV	130	82	140	117	87	120	-20	-22	131	85	180	75	148	43.7	282	282	242	425.6
Groundwater Elevation	feet	610.02	606.7	605.74	607.27	609.64	609.27	607.63	604.59	601.74	607.87	604.61	609.5	609.39	608.97	604.27	608.5	604.04	609.5
Temperature, Water (C)	deg C	5.6	10.6	13.9	14.1	7.5	7	10.1	13	13	5.2	13.4	6.7	14	6.1	13.6	6.6	14	7.5
Turbidity	NTU	612.3	10.97	3.64	3.32	11.71	16.46	0.55	41.3	2.24	6.38	7.09	8.59		15.24	28.74	413	95.2	205

Number of Sampling Dates Parameter Name	Units	4/11/2016	6/20/2016	8/9/2016	10/20/2016	1/23/2017	4/6/2017	6/6/2017	8/2/2017	10/24/2017	4/2/2018	10/1/2018	4/8/2019	10/7/2019	4/8/2020	6/26/2020	10/15/2020	4/14/2021	10/26/2021	4/13/2022
Boron	ug/L	8550	8190	8450	8620	9280	8370	9160	8610	8820	7950	8230	7310	7220	7450		6550	7200	6710	7240
Calcium	ug/L	88700	92200	84000	89400	89200	98800	94900	83600	87200	78900	88800	77500	87600	80800		114000	118000	102000	89300
Chloride	mg/L	16.2	15.9	13.7	13.9	13.8	12.7	13.5	12.3	11.9	11.2	11.5	11.4	11.1	12.5		13.9	13.5	13.8	14
Fluoride	mg/L	0.33	0.36	0.33	0.34	0.42	0.21	<0.1	0.32	<0.1	0.25	0.2	0.29	0.24	0.39	0.26	<0.48	0.25	0.24	<0.095
Field pH	Std. Units	7.91	7.48	6.47	7.68	8.03	7.98	7.7	7.58	7.43	8.02	7.71	8.18	7.56	7.82	7.53	7.64	7.96	7.01	7.38
Sulfate	mg/L	372	343	368	369	372	367	362	340	341	332	318	322	312	298		293	195	203	212
Total Dissolved Solids	mg/L	838	794	862	838	826	838	804	780	772	752	722	724	694	718		678	614	538	560
Antimony	ug/L	0.49	0.21	<0.073	0.083	0.2	<0.15	0.33	<0.15											
Arsenic	ug/L	4.3	2.4	2.3	4.2	1.8	2.8	1.9	1.5											
Barium	ug/L	48.7	32.6	30.5	31.4	32.2	53.8	30.3	28.2											
Beryllium	ug/L	0.18	<0.13	<0.13	<0.13	0.28	<0.25	<0.18	<0.18											
Cadmium	ug/L	0.2	0.22	<0.089	<0.089	0.17	<0.18	<0.081	<0.081											
Chromium	ug/L	3.5	0.55	<0.39	0.86	1.1	6.4	<1	<1											
Cobalt	ug/L	1.2	0.39	0.38	0.39	0.24	1.5	0.24	0.2											
Lead	ug/L	2.2	0.3	<0.04	0.29	0.47	2.1	0.28	0.29											
Lithium	ug/L	21.4	14.2	15.6	15.8	16.3	20.6	17	15.8											
Molybdenum	ug/L	2200	2040	2160	2300	2210	2090	2460	2070											
Selenium	ug/L	0.52	<0.21	<0.21	<0.21	<0.21	<0.42	<0.32	<0.32											
Thallium	ug/L	0.31	<0.14	<0.14	<0.14	0.22	<0.29	0.17	<0.14											
Mercury	ug/L	<0.18	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13											
Total Radium	pCi/L	0.41	1.62	0.456	0.729	1.09	1.51	0.494	1.67											
pH at 25 Degrees C	Std. Units	7.9	7.6	7.4	7.5	7.9	7.9	7.7	7.5	7.5	7.8	7.7	7.9	7.8	7.9		7.6	7.7	7.1	7.5
Radium-226	pCi/L	0.32	0.958	-0.17	0.193	0.136	0.734	0.179	0.548											
Radium-228	pCi/L	0.0904	0.661	0.456	0.536	0.951	0.774	0.315	0.296											
Field Specific Conductance	umhos/cm	1206	1173	1230	1214	1198	1213	1147	1111	1096	1071	1086	1022	1052	977	983	996	815	811	777
Oxygen, Dissolved	mg/L	4.8	1.6	0.1	0.2	7.4	5.5	3	0.5	0	6.5	4.5	6.2	2.7	6.9	5.47	0.8	8.2	5.4	2.82
Field Oxidation Potential	mV	5.2	89	-31	-24	173	51	-15	-13	-18	44	53	55	146	17.1	49.1	140	226	196	417.1
Groundwater Elevation	feet	599.94	598.3	598	598.5	597.1	600.04	598.77	597.4	597.2	598.54	597.6	598.92	599.56	599.17	597.89	595.1	595.17	590.68	594.89
Temperature, Water (C)	deg C	7.2	10.1	10.5	10.8	8.8	8.9	9.5	11.6	10.7	7.8	11	9	12.2	8.5	16.8	11.2	7.8	11.2	9
Turbidity	NTU	10.88	3.13	2.42	46.07	21.84	168.6	16.11	6.51	11.58	12.19	13.32	32.91	79.44	37.12	62.57	130	124	88.4	25.6

Parameter Name	Units	4/8/2016	6/20/2016	8/9/2016	10/20/2016	1/24/2017	4/6/2017	6/6/2017	8/2/2017	10/24/2017	4/2/2018	10/1/2018	4/8/2019	10/7/2019	4/8/2020	10/15/2020	4/14/2021	10/26/2021	4/13/2022
Boron	ug/L	1950	2010	2000	2150	2000	1970	1970	1890	1760	1800	1570	1670	1730	1570	1410	1550	1580	1460
Calcium	ug/L	122000	116000	75900	72100	87400	114000	72200	62600	68100	68000	64700	64800	67500	66800	124000	81200	78200	61500
Chloride	mg/L	18.9	27.2	18	19.5	18.6	18.9	20	19.3	18.9	18.5	18.6	18.4	17.8	19.2	20.9	20.6	20.7	21.2
Fluoride	mg/L	0.83	1.3	0.8	0.8	0.89	0.76	0.9	0.78	0.84	0.78	0.81	0.87	0.85	0.97	1	0.88	0.88	0.91
Field pH	Std. Units	8.01	7.73	6.55	7.89	7.98	7.99	7.84	7.76	7.6	7.78	7.99	7.98	7.86	7.56	7.9	8.19	7.6	7.7
Sulfate	mg/L	75.1	89.6	80.7	77.2	71.1	85.8	88.5	80.2	72.2	72.7	59.2	71.7	55.7	65.3	73.1	70.5	71.2	68.5
Total Dissolved Solids	mg/L	352	364	396	348	328	358	350	360	316	314	306	324	290	316	182	342	290	318
Antimony	ug/L	0.3	0.085	<0.073	<0.073	0.86	<0.36	0.16	<0.15										
Arsenic	ug/L	10.3	9.7	10.2	8.4	10.9	9.6	8.7	9										
Barium	ug/L	152	109	66.7	57.2	90.1	104	58.4	50.9										
Beryllium	ug/L	0.59	0.35	<0.13	<0.13	0.78	<0.63	<0.18	<0.18										
Cadmium	ug/L	0.24	<0.089	<0.089	<0.089	0.49	<0.44	<0.081	<0.081										
Chromium	ug/L	18.7	11.1	3.5	2.5	7.1	10	6.6	1.1										
Cobalt	ug/L	6.2	3.6	1.1	0.84	2.6	3.2	1.5	0.53										
Lead	ug/L	5.5	3.3	0.84	0.71	2.3	5.2	0.7	0.44										
Lithium	ug/L	58.1	62.3	55.4	51.8	54.8	58.7	52.3	52.2										
Molybdenum	ug/L	610	640	652	685	674	654	631	649										
Selenium	ug/L	1.3	0.76	<0.21	0.22	<1	<1	<0.32	<0.32										
Thallium	ug/L	0.35	<0.14	<0.14	<0.14	1.6	<0.71	<0.14	<0.14										
Mercury	ug/L	<0.18	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13										
Total Radium	pCi/L	1.47	0.505	0.0999	0.771	1.9	1.18	1.66	1.08										
pH at 25 Degrees C	Std. Units	7.3	7.8	7.7	7.8	7.7	7.9	7.5	7.7	7.7	7.8	7.6	7.8	7.6	7.8	7.7	7.8	7.8	7.7
Radium-226	pCi/L	0.843	-0.408	-0.153	0.331	0.37	0.371	0.706	0.474										
Radium-228	pCi/L	0.623	0.505	0.0999	0.44	1.53	0.813	0.95	0.604										
eld Specific Conductance	umhos/cm	531	564	539	525	519	552	465	532	505	517	504	519	487	476	523	517	496	488
Oxygen, Dissolved	mg/L	1	0.2	0.1	1	0.1	0	0.5	0	0	0.6	0.8	1.6	1.3	0.4	0.3	1.8	0.1	1.39
Field Oxidation Potential	mV	-41	-123	-123	-111	-87	-517	-40	-121	-118	-123	-96	-95	124	-107.6	-83	41	134	337.4
Groundwater Elevation	feet	596.39	595.68	595.53	595.46	596.3	593.57	595.86	595.22	595.25	595.71	595.28	595.68	595.58	595.33	598.56	600.56	599.82	600.5
Temperature, Water (C)	deg C	9	13.1	13.2	11.2	9.3	9.6	12.2	12.6	11.1	10.3	11.6	11.9	13.5	11.3	11.2	7.5	11.1	8.7
Turbidity	NTU	885.4	369.4	108.3	62.99	161.1	367.5	94.92	39.69	42.45	24.89	55.15	59.51	32.69	69.22	161.8	252	69.8	26.2

lumber of Sampling Dates Parameter Name	Units	4/8/2016	6/20/2016	8/9/2016	10/20/2016	1/24/2017	4/6/2017	6/6/2017	8/2/2017	10/24/2017	4/2/2018	10/1/2018	4/8/2019	10/7/2019	4/8/2020	10/15/2020	4/14/2021	10/26/2021	4/13/2022
Boron	ug/L	4210	3360	3860	3740	4210	4170	4570	3780	3480	3040	2360	2930	2830	3380	3310	4600	3650	4360
Calcium	ug/L	176000	138000	145000	147000	147000	135000	154000	139000	173000	146000	139000	135000	136000	144000	132000	176000	148000	139000
Chloride	mg/L	21.8	31.5	22.8	26	26.2	22.7	25.4	23.2	20.4	19.7	4.3	20	19.1	23.5	20.9	22.5	21.6	23.4
Fluoride	mg/L	<0.2	<1	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.1	<0.5	<0.5	<0.48	<0.48	<0.095	<0.48	<0.48
Field pH	Std. Units	7.04	6.79	6.09	6.94	6.94	6.88	7	6.94	7.14	6.86	6.93	7.15	6.9	6.7	7.11	7.27	6.92	6.78
Sulfate	mg/L	3	11.4	2.4	5.6	<5	<5	<5	<5	<5	<5	<1	<5	<5	<2.2	<2.2	0.54	<2.2	<2.2
Total Dissolved Solids	mg/L	660	716	732	744	738	700	714	714	566	630	620	668	584	692	620	710	640	722
Antimony	ug/L	0.14	<0.073	<0.073	<0.073	<0.073	<0.073	0.32	0.25										
Arsenic	ug/L	12.8	9.7	10.7	18.1	25.3	21.8	25.2	21.9										
Barium	ug/L	229	189	195	180	186	142	143	144										
Beryllium	ug/L	0.3	<0.13	<0.13	<0.13	<0.13	<0.13	0.33	0.21										
Cadmium	ug/L	<0.089	<0.089	<0.089	<0.089	<0.089	<0.089	0.17	0.14										
Chromium	ug/L	14.1	1.5	2	1.8	1.4	1.5	2.1	1.7										
Cobalt	ug/L	8.7	5.3	5	4.4	4.3	3	3.4	3.2										
Lead	ug/L	4.7	0.28	0.35	0.21	0.19	0.16	0.56	0.66										
Lithium	ug/L	17.6	9.1	10.4	8.9	8.3	8.3	9.3	10.7										
Molybdenum	ug/L	25.1	11.6	12.7	9	7.7	5.1	4.5	5.9										
Selenium	ug/L	1.2	0.48	0.31	0.55	0.71	0.38	0.5	0.6										
Thallium	ug/L	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14	0.36	0.26										
Mercury	ug/L	<0.18	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13										
Total Radium	pCi/L	1.44	1.93	1.22	1.48	1.16	1.31	1.2	1.81										
pH at 25 Degrees C	Std. Units	7.2	7	6.9	7.2	7	6.8	6.9	7	6.8	7	6.8	6.9	7	6.8	7	7.1	7	6.8
Radium-226	pCi/L	0.239	1.03	0.651	0.521	0.386	0.123	0.276	0.772										
Radium-228	pCi/L	1.2	0.898	0.567	0.962	0.772	1.19	0.926	1.04										
eld Specific Conductance	umhos/cm	1273	1196	1220	1313	1335	1320	1112	1218	1095	1131	1105	1196	1127	1241	1123	1222	1171	1224
Oxygen, Dissolved	mg/L	0.49	0.9	0.1	0	0	0	0.8	0	0	0.3	0.2	0.3	0.2	0.2	0.2	2.3	1.6	1.98
Field Oxidation Potential	mV	-48	-71	-81	-102	-89	-20	-58	-116	-108	-97	-93	-85	122	-102.9	-32	-41	170	330.2
Groundwater Elevation	feet	589.24	587.22	587.72	588.37	588.84	589.04	588.44	587.36	587.97	588.77	588.17	588.88	588.77	588.66	593.19	595.01	594.07	595.2
Temperature, Water (C)	deg C	9.1	11.6	11.9	10.7	10.5	10	10.2	10.4	11	9.8	10.7	10.3	11.8	10	10.9	7.7	12.3	8.6
Turbidity	NTU	409.5	18.26	48.39	16.45	12.58	9.61	186.4	28.41	563	233.5	107.1	61.84	94.01	87.6	70.42	408	88.4	75.1

Appendix E

Alternative Source Demonstrations (ASDs)

- E1 October 2021 ASD
- E2 April 2022 ASD

E1 October 2021 ASD

Alternative Source Demonstration October 2021 Detection Monitoring

Edgewater Generating Station Sheboygan, Wisconsin

Prepared for:

25222068.00 | April 15, 2022

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830 Table of Contents

Sect	ion		Pag	je
PE C	ertifica	ation		. iii
1.0	Intro	duction.		1
	1.1	§257.9	04(E)(2) Alternative Source Demonstration Requirements	1
	1.2		ormation and Map	
	1.3	Statisti	cally Significant Increases Identified	2
	1.4	Overvie	ew of Alternative Source Demonstration	2
2.0	Back	-		
	2.1	Region	al Geology and Hydrogeology	3
	2.2	CCR M	onitoring System	3
	2.3	Other N	Aonitoring Wells	3
	2.4		Iwater Flow Direction	-
3.0	Meth		and Analysis Review	
	3.1	•	ng and Field Analysis Review	
	3.2		tory Analysis Review	
	3.3		cal Evaluation Review	-
	3.4		ary of Methodology and Analysis Review Findings	
4.0			ources	
	4.1		al Causes of SSI	
		4.1.1	Natural Variation	-
		4.1.2	Man-Made Alternative Sources	
	4.2		f Evidence	
		4.2.1	Previous CCR Pond and Landfill Study	
		4.2.2	CCR Constituents in Landfill Leachate	
		4.2.3	State Program Groundwater Monitoring Results	
5.0			ource Demonstration Conclusions	
6.0			vater Monitoring Recommendations	
7.0	Refe	rences		9

Tables

Table 1	Groundwater Analytical Results Summary – October 2021
Table 2	Historical Analytical Results for Parameters with SSIs
Table 3A	Groundwater Elevations – State Monitoring Wells
Table 3B	Groundwater Elevations – CCR Rule Monitoring Wells
Table 4	2016 2021 - Groundwater Analytical Results – Closed Landfill State Monitoring Program Wells
Table 5	Analytical Results – Closed Landfill Leachate Fluoride Monitoring

Figures

Figure 1. Site Location Map

- Figure 2. Site Plan and Monitoring Well Locations
- Figure 3. Water Table Map October 2021

Appendix

Appendix A Trend Plots for CCR Wells

I:\25222068.00\Deliverables\2021 Oct ASD Edg Closed\220415_EDG CLSD_Oct_ASD_Final.docx

PE CERTIFICATION

Sherren C. Clark E-29863 Madison, Wis	I, Sherren Clark, hereby certify that that the information in this alternate source demonstration is accurate and meets the requirements of 40 CFR 257.94(e)(2). This certification is based on my review of the groundwater data and related site information available for the Edgewater Generating Station Ash Ponds. I am a duly licensed Professional Engineer under the laws of the State of Wisconsin. 1-12-2022 (signature) (date) Sherren Clark, PE (printed or typed name)
SOONAL ENGINE	License number E-29863
	My license renewal date is July 31, 2022.
	Pages or sheets covered by this seal: Alternative Source Demonstration – October 2021 Detection
	Monitoring, Edgewater Generating Station, Sheboygan Wisconsin (Entire Document)

[This page left blank intentionally]

1.0 INTRODUCTION

This Alternative Source Demonstration (ASD) was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" published by the U.S. Environmental Protection Agency (USEPA) in the *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule,* dated April 17, 2015 (USEPA, 2015), and subsequent amendments. Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.94(e)(2). The applicable sections of the Rule are provided below in *italics*.

1.1 §257.94(E)(2) ALTERNATIVE SOURCE DEMONSTRATION REQUIREMENTS

The owner and operator may demonstrate that a source other than the CCR Unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels.

An ASD is completed when there are exceedances of one or more benchmarks established within the groundwater monitoring program. The ASD is completed to determine if any other sources are likely causes of the identified exceedance(s) of the established benchmark(s) at the site. This ASD was performed in response to results indicating a statistically significant increase (SSI) over background levels during detection monitoring under the CCR Rule.

This ASD report is evaluating the SSIs observed in the statistical evaluation of the October 2021 detection monitoring event at the Edgewater Generating Station (EDG). The first ASD was prepared for this facility evaluating the SSIs observed in the statistical evaluation of the October 2017 detection monitoring event (SCS Engineers [SCS], 2018b). The October 2017 ASD and subsequent semiannual updates have concluded that several lines of evidence demonstrate that SSIs reported for boron, fluoride, and sulfate concentrations in the downgradient monitoring wells (MW-301, MW-302, and MW-303) were likely due to leachate from the closed landfill, which is not subject to the requirements of 40 CFR 257.50-107.

As discussed in more detail in **Section 4.2** of this ASD, the findings for the October 2021 monitoring event were consistent with those for the previous events.

1.2 SITE INFORMATION AND MAP

EDG is located at 3739 Lakeshore Drive in Sheboygan, Sheboygan County, Wisconsin (**Figure 1**). EDG is an active coal-burning generating station. The EDG property includes a closed landfill and a series of CCR settling ponds, located on the opposite side of Lakeshore Drive from the plant itself (**Figure 1**). The EDG landfill is closed and no longer receives CCR. The groundwater monitoring system at EDG is a multi-unit system monitoring four former existing CCR Units which were contiguous:

- EDG Slag Pond (existing CCR surface impoundment)
- EDG North A-Pond (existing CCR surface impoundment)
- EDG South A-Pond (existing CCR surface impoundment)
- EDG B-Pond (existing CCR surface impoundment)

Closure of the four CCR surface impoundments was initiated in 2020, the cover was in place in June 2021, and the closure was certified on August 9, 2021. The existing monitoring system will be used to monitor the closure area. A map showing the CCR Units and all background (or upgradient) and downgradient monitoring wells with identification numbers for the groundwater monitoring program is provided on **Figure 2**.

The closed CCR landfill (Wisconsin Department of Natural Resources [WDNR] Permit No. 2524) is located immediately west of the former ponds location. The landfill contains primarily fly ash with some slag and was closed in 1987. Because this CCR landfill did not accept CCR after October 19, 2015, the landfill is not subject to the requirements of 40 CFR 257.50-107. The closed landfill is unlined and is known to be impacting groundwater at the site (SCS, 2016). Previous investigations done at the site (BT², Inc., 1993; RMT, 1997) concluded that the groundwater impacts downgradient of the landfill and ponds were attributable to groundwater interaction with the landfill, rather than leakage from the ponds.

1.3 STATISTICALLY SIGNIFICANT INCREASES IDENTIFIED

SSIs were identified for boron, fluoride, and sulfate at one or more wells based on the October 2021 detection monitoring event. A summary of the October 2021 constituent concentrations and the established benchmark concentrations are provided in **Table 1**. The constituent concentrations with SSIs above the background concentration are highlighted in the table.

1.4 OVERVIEW OF ALTERNATIVE SOURCE DEMONSTRATION

This ASD report includes:

- Background information (Section 2.0)
- Evaluation of potential that SSIs are due to methodology or analysis (Section 3.0)
- Evaluation of potential that SSIs are due to natural sources or man-made sources other than the CCR Units (Section 4.0)
- ASD conclusions (Section 5.0)
- Monitoring recommendations (Section 6.0)

The boron, fluoride, and sulfate results from background and compliance sampling are provided in **Table 2**. The laboratory report for the October 2021 detection monitoring event was included in the 2021 annual groundwater monitoring and corrective action report completed in January 2022. Complete laboratory reports for the background monitoring events and previous detection monitoring events were included in the previous annual groundwater monitoring and corrective action reports.

2.0 BACKGROUND

To provide context for the ASD evaluation, the following background information is provided in this section of the report, prior to the ASD evaluation sections:

- Geologic and hydrogeologic setting
- CCR Rule monitoring system
- Other monitoring wells
- Groundwater Flow Direction

A more detailed discussion of the background information for the site is provided in the ASD for the October 2017 event (SCS, 2018a).

2.1 REGIONAL GEOLOGY AND HYDROGEOLOGY

For the purposes of groundwater monitoring, the unconsolidated sand and gravel aquifer is considered to be the uppermost aquifer, as defined under 40 CFR 257.53, at the EDG ponds. The sand and gravel aquifer is present in some parts of Sheboygan County (Skinner and Borman, 1973). Boring logs from monitoring wells at the EDG ponds and for nearby private wells indicate that the unconsolidated material at, and near, the site contains a significant amount of sand. Private well logs from the surrounding area indicate that the sand and gravel aquifer has been used as a water source; however, several older sand wells in the area have been replaced with bedrock water supply wells.

The dolomite aquifer underlies the unconsolidated material at the site. The total thickness of the dolomite aquifer at the site is unknown. The dolomite aquifer is underlain by the Maquoketa shale, which is a confining unit. The Maquoketa shale is underlain by the Cambrian-Ordovician sandstone aquifer. This sequence of sedimentary bedrock units is over 1,500 feet thick in the site vicinity.

The regional groundwater flow in the unconsolidated sand and gravel aquifer in the vicinity of the site is to the east and slightly southeast.

2.2 CCR MONITORING SYSTEM

The groundwater monitoring system established under the CCR Rule consists of one upgradient (background) monitoring well and three downgradient monitoring wells, as shown on **Figure 2**. The upgradient monitoring well is 2R-OW. The downgradient monitoring wells include MW-301, MW-302, and MW-303. The CCR compliance monitoring wells were installed in the unconsolidated sediments with screens in the uppermost soil layer producing appreciable water, which was a sandy silt unit. Well depths range from approximately 14.5 to 40 feet, measured from the top of the well casing.

2.3 OTHER MONITORING WELLS

Sixteen groundwater monitoring wells currently exist at the EDG site as part of the monitoring system developed for the state monitoring program for the closed landfill. The well locations are shown on **Figure 2**. These monitoring wells are used to monitor groundwater conditions at the site under the WDNR state monitoring program.

Monitoring wells for the state monitoring program are installed in the unconsolidated material at the site. This shallow monitoring system includes water table wells and piezometers. Well depths range from approximately 9 to 43 feet, measured from the top of the well casing.

2.4 GROUNDWATER FLOW DIRECTION

Shallow groundwater in the area of the EDG site generally flows to the south-southeast, toward Fish Creek, which discharges into Lake Michigan. There is some localized groundwater mounding associated with the EDG ponds. The water table map shown on **Figure 3** represents the site conditions of the unconsolidated deposits during the October 2021 detection monitoring event. The water table map shows a generally southward flow direction, with localized groundwater mounding in the area of the former EDG ponds. The groundwater elevations at the CCR and state monitoring wells during the October 2021 detection monitoring event are in **Tables 3A** and **3B**. Water levels measured in October 2021 were lower than in previous monitoring events, likely reflecting both the relatively dry year and effects of the pond closure; however, the general flow directions were consistent with prior results.

3.0 METHODOLOGY AND ANALYSIS REVIEW

To evaluate the potential that an SSI is due to a source other than the regulated CCR Unit, SCS used a two-step evaluation process. First, the sample collection, field and laboratory analysis, and statistical evaluation were reviewed to identify any potential error or analysis that led to the exceedance of the benchmark. Second, potential alternative sources, including natural variation and man-made sources other than the CCR Unit, were evaluated. This section of the report provides the findings of the methodology and analysis review. **Section 4.0** of the report addresses the potential alternative sources.

3.1 SAMPLING AND FIELD ANALYSIS REVIEW

Field notes and sampling results were reviewed to determine if any sampling error may have caused or contributed to the observed SSIs. Potential field sampling errors or issues could include mislabeling of samples, improper sample handling, missed holding times, cross-contamination during sampling, or another field error. Field blank sample results were also reviewed for any indication of potential contamination from sampling equipment or containers. Based on the review of the field notes and results, SCS did not identify any indication that the SSI concentrations were due to a sampling error.

Because boron, fluoride, and sulfate are laboratory parameters, there is little potential for a field analysis error to contribute to an SSI.

3.2 LABORATORY ANALYSIS REVIEW

The laboratory report for the October 2021 detection monitoring was reviewed to evaluate whether any laboratory analysis error or issue may have caused or contributed to the observed SSIs for boron, fluoride, or sulfate. The laboratory report review included reviewing the laboratory quality control flags and narrative, verifying that correct methods were used and desired detection limits were achieved, and checking the field and laboratory blank sample results. Laboratory reports for the background monitoring events were reviewed for the October 2017 ASD. Laboratory reports for subsequent detection monitoring events were reviewed as part of the ASD preparation for each event.

The October 2021 fluoride and sulfate results for wells 2R-OW and MW-303 were reported with D3 flags, indicating that the samples were diluted due to the presence of high levels of non-target analytes or other matrix interference. The fluoride and sulfate detection limits shown in **Table 1** are the lowest the laboratory could achieve for the samples and the dilutions do not affect the usability of the data for determining compliance. The elevated detection limit for fluoride at upgradient well 2R-OW, due to the high chloride concentration, was higher than previous detection limits and previously detected fluoride concentrations at this well, and resulted in a non-detect result that will be evaluated as an outlier for future statistical analysis (**Appendix A**).

Chloride, fluoride, and sulfate results for compliance well MW-301 were reported with MO flags, indicating that the matrix spike recovery and/or matrix spike duplicate (MS/MSD) recovery for the associated quality control sample was outside laboratory control limits. The MS/MSD recoveries were slightly higher than the upper control limits, indicating that the sample results may be slightly biased high. These MS/MSD results do not affect the usability of the data.

Based on the review of the laboratory reports, SCS did not identify any indication that the SSI concentrations were due to a laboratory analysis error. There were no laboratory quality control flags

or issues identified in the laboratory reports that affect the usability of the data for detection monitoring.

Time series plots of the analytical data were also reviewed for any anomalous results that might indicate a possible sampling or laboratory error (e.g., dilution error or incorrect sample labeling). Time series plots for the parameters with SSIs are provided in **Appendix A**. No indications of sampling or laboratory errors were noted based on the time series review. With the exception of the recent high fluoride detection limit at background well 2R-OW discussed above, the October 2021 boron, fluoride, and sulfate results for MW-301, MW-302, and MW-303 are consistent with the historical data.

3.3 STATISTICAL EVALUATION REVIEW

The review of the statistical results and methods includes a quality control check of the following:

- Input analytical data vs. laboratory analytical reports
- Review statistical method and outlier concentration lists for each monitoring well/CCR unit

Based on the review of the statistical evaluation, SCS did not identify any errors or issues in the statistical evaluation that caused or contributed to the determination of interwell SSIs for the October 2021 detection monitoring event.

3.4 SUMMARY OF METHODOLOGY AND ANALYSIS REVIEW FINDINGS

In summary, there were no changes to the SSI determinations for the October 2021 monitoring event based on the methodology and analysis review, and no errors or issues causing or contributing to the reported SSIs were identified.

4.0 ALTERNATIVE SOURCES

This section of the report discusses the potential alternative sources for the boron, fluoride, and sulfate SSIs at MW-301, MW-302, and MW-303; identifies the most likely alternative source(s); and presents the lines of evidence indicating that an alternative source is most likely the cause of the observed SSIs for boron, fluoride, and sulfate.

4.1 POTENTIAL CAUSES OF SSI

4.1.1 Natural Variation

The statistical analysis was completed using an interwell approach, comparing the October 2021 detection monitoring results to the upper prediction limits (UPLs) calculated based on the sampling of the background well (2R-OW). If concentrations of a constituent that is naturally present in the aquifer vary spatially, then the potential exists that the downgradient concentrations may be higher than upgradient concentrations due to natural variation.

Although natural variation is present in the shallow aquifer, it does not appear likely that natural variation is the primary source causing the boron and sulfate SSIs. These parameters were detected at higher concentrations than would likely be present naturally.

Natural variation may have caused or contributed to the SSI for fluoride at MW-302. Elevated natural fluoride concentrations significantly higher than those reported for the downgradient wells (above 2 milligrams per liter [mg/L]) have been observed in a region in eastern Wisconsin extending along the Lake Michigan shoreline from Kewaunee County in the north to the Illinois border in the south, as described in Luczaj, J., and Masarik, K, 2015, *Groundwater Quantity and Quality Issues in a Water-Rich Region: Examples from Wisconsin, USA*. The authors note that most of the wells with elevated fluoride appear to be drawing from the Pleistocene glacial sediments and Silurian dolomite units. Skinner and Borman (1973) and Kammerer (1995) also identify the Lake Michigan shoreline area of eastern Wisconsin as having somewhat elevated fluoride concentrations in groundwater.

The fluoride concentrations reported for MW-302 for October 2017 through April 2020 and April 2021 through October 2021 were just above the laboratory's limit of quantitation (LOQ), ranging from 0.78 mg/L in April 2018 to 0.88 mg/L in October 2021. These results are within the range of fluoride results at MW-302 during background monitoring for the CCR rule prior to October 2017 (**Table 2**). The result at MW-302 is within the range of reported regional natural concentrations, indicating that the fluoride concentration observed in these wells is potentially due to natural variability in the glacial sediments and shallow groundwater. As discussed below, there is also a potential that fluoride in MW-302 is associated with impacts from the closed CCR landfill.

4.1.2 Man-Made Alternative Sources

Man-made alternative sources that could potentially contribute to the boron, fluoride, and sulfate SSIs could include the closed CCR landfill, the coal storage area, or other plant operations. Based on the groundwater flow directions and previous investigations at the site, the closed landfill appears to be the most likely cause of the SSIs for wells MW-301, MW-302, and MW-303.

4.2 LINES OF EVIDENCE

The lines of evidence indicating that the SSIs for boron and sulfate in compliance wells MW-301, MW-302, and MW-303, relative to the background well, are due to an alternative source include:

- 1. A previous study of the CCR ponds and the closed CCR landfill determined that the landfill was the primary source of groundwater impacts in the area, based on multiple lines of evidence.
- 2. Past and current monitoring performed under the state monitoring program shows that boron, fluoride, and sulfate are present in the CCR landfill leachate.
- 3. Past and current monitoring performed under the state monitoring program shows that the highest boron and sulfate concentrations are in the monitoring wells near and downgradient from the CCR landfill.

Lines of evidence regarding natural variability as an additional alternative source of the fluoride SSIs are discussed above in **Section 4.1.1**.

Each of these lines of evidence and the supporting data were discussed in detail in the ASD for the October 2017 detection monitoring event (SCS, 2018b). The lines of evidence are discussed briefly below, focusing on any updated information collected since the previous ASDs.

4.2.1 Previous CCR Pond and Landfill Study

A previous investigation titled *Field Investigation Report: Edgewater Closed Ash Disposal Facility*, completed by BT² in 1993, found that groundwater impacts were likely due to the closed landfill (**Figure 2**) located immediately west of the ponds (BT², 1993). The purpose of the 1993 investigation was to investigate the likely impact on groundwater quality of lining or abandoning the CCR impoundments (referred to in the report as the Wisconsin Pollutant Discharge Elimination System [WPDES] lagoons). The results from the investigation indicated that the CCR impoundments were not the primary source of downgradient groundwater impacts, and that closure or lining was not warranted at that time. The WDNR concurred with that finding in a letter dated April 20, 1994.

The primary lines of evidence from the 1993 report that supported this finding, and support the ASD for boron, fluoride, and sulfate, included:

- Water samples collected from each of the ponds met the Wisconsin groundwater enforcement standards established under NR 140, Wisconsin Administrative Code.
- Soil borings installed in the material below the larger ash pond, where the slag pond and the WDPES lagoons (North Pond A and South Pond A) were constructed, indicated that material below the ponds was almost entirely slag material. Water leaking out of the lagoons and moving downward would encounter primarily slag, which is relatively inert, and not fly ash. Additionally, results for water leach testing of site-wide composite samples of fly ash and slag confirmed that the fly ash had a higher potential than slag to impact groundwater. Water leach test results for the fly ash composite sample were higher for boron, sulfate, and fluoride in comparison to the slag composite sample.
- Ash disposal in the closed landfill is primarily fly ash. For seven borings in the landfill, the percent fly ash ranged from 60 to 86 percent.
- Results for water leach testing of site-wide composite samples of fly ash and slag confirmed that the fly ash had a higher potential than slag to impact groundwater. Water leach test results for the fly ash composite sample were higher for boron and sulfate in comparison to the slag composite sample.
- Water leach testing for individual boring samples of fly ash and/or slag also confirmed that fly ash leachate had significantly higher concentrations of boron and sulfate than slag leachate. For example, boron leach test results for seven samples from borings within the landfill, consisting mainly of fly ash, ranged from 624 to 3,370 micrograms per liter (μ g/L), with most results over 2,000 μ g/L. Boron leach test results for nine samples from borings around and between the ponds, consisting mainly of slag, ranged from less than 16 to 206 μ g/L.
- Water sampling within the landfill and pond area, in CCR above the native soil, documented that groundwater/leachate within the landfill had significantly higher concentrations of boron than the groundwater/leachate within the slag berms immediately adjacent to and between the Slag Pond, North/South Pond A, and Pond B.
- Groundwater monitoring results indicated that the highest concentrations of boron and sulfate were in monitoring wells downgradient from the landfill, including 18-OW and 29-OW. Elevated boron and sulfate were also reported for samples from wells 4-OW and 5-OW, located near the southwest and northwest corners of the landfill. Monitoring

wells 6-OW and 7-OW, located east and southeast of the ponds, had much lower concentrations of boron and sulfate.

In the April 1994 approval letter, the WDNR approved the 1993 investigation of the WPDES lagoons/CCR impoundments and concurred with the findings of the report. The WDNR requested additional monitoring from the four new monitoring wells installed within the CCR (36-OW, 37-OW, 38R-OW, and 39R-OW) and requested the addition of fluoride and arsenic to the monitoring program for these groundwater/leachate head wells.

The results of the additional monitoring were reported to the WDNR in a Groundwater Assessment Report dated September 30, 1997. The WDNR responded to the 1997 report in a letter dated April 16, 1998, which stated, "We agree with the report's finding that the WPDES ponds [Slag Pond, North Pond A, and South Pond A] do not appear to be significantly contributing to the contaminant plume downgradient of the facility. No further remedial action concerning the influence of the ponds on the landfill is warranted at this time." The WDNR also noted that the leachable constituents migrating from the saturated portion of the closed landfill have stabilized or also decreased since the landfill's closure and capping.

4.2.2 CCR Constituents in Landfill Leachate

Past and current monitoring performed under the state monitoring program shows that boron and sulfate are present in the CCR landfill leachate. Recent groundwater and leachate monitoring results for boron and sulfate in samples from the state monitoring program wells are summarized in **Table 4** (April 2016 through October 2021). The leachate head wells monitoring conditions within the CCR landfill are 37-OW, 38R-OW, and 39R-OW, listed near the end of the table.

Boron: Boron concentrations in samples from leachate head wells 37-OW, 38R-OW, and 39R-OW have generally exceeded those reported for the CCR monitoring wells.

Sulfate: Sulfate concentrations in samples from leachate head wells 37-OW, 38R-OW, and 39R-OW have generally exceeded those reported for the CCR monitoring wells.

Fluoride: Fluoride is not part of the routine state monitoring program for the closed CCR landfill, but was sampled from the leachate wells (37-OW, 38R-OW, and 39R-OW) and the pond berm well (36-OW) from 1994 to 1997, as requested by the WDNR. The fluoride concentrations ranged from 0.25 to 0.97 mg/L (**Table 5**). The fluoride concentration for the sample collected at MW-302 (0.88 mg/L) was less than the highest observed concentration at the leachate wells.

Based on these results, fly ash disposal in the closed CCR landfill is a likely historical source of elevated boron and sulfate in groundwater, and is a potential source of fluoride.

4.2.3 State Program Groundwater Monitoring Results

Current monitoring performed under the state monitoring program continues to show that the highest boron and sulfate concentrations are in the monitoring wells near and downgradient from the CCR landfill. State program monitoring results for the CCR Rule detection monitoring parameters that overlap with the state program are summarized in **Table 4**, and well locations are on **Figure 2**.

Consistent with the conditions observed at the time of the 1993 report, the recent groundwater monitoring results indicate that the highest concentrations of boron and sulfate are in monitoring wells downgradient from the landfill, including 40-OW (replaced former 18-OW) and 29-OW. Elevated boron and sulfate also continue to be reported for samples from wells 4R-OW (replacement well

for 4-OW) and 5-OW, located near the southwest and northwest corners of the landfill. Concentrations of boron and sulfate in the CCR program monitoring wells are lower than in the downgradient state program wells, consistent with the closed CCR landfill as the primary source.

5.0 ALTERNATIVE SOURCE DEMONSTRATION CONCLUSIONS

The lines of evidence discussed above regarding the SSIs reported for boron, fluoride, and sulfate concentrations in downgradient monitoring wells MW-301, MW-302, and/or MW-303 demonstrate that the SSIs are likely primarily due to leachate from the closed landfill, which is not subject to the requirements of 40 CFR 257.50-107. The landfill is regulated by the WDNR under the solid waste program. Natural variation may also contribute to the SSI reported for fluoride in downgradient monitoring well MW-302.

6.0 SITE GROUNDWATER MONITORING RECOMMENDATIONS

In accordance with section 257.94(e)(2) of the CCR Rule, the EDG pond site may continue with detection monitoring based on this ASD. The ASD report will be included in the 2022 Annual Report due January 31, 2023.

7.0 **REFERENCES**

BT², Inc., 1993, Field Investigation Report, Edgewater Closed Ash Disposal Facility, Wisconsin Power & Light Company, WDNR License #2524, June 1993.

Krammerer, P.A. Jr., 1995, Ground-Water Flow and Quality in Wisconsin's Shallow Aquifer System, U.S. Geological Survey, Water-Resources Investigations Report 90-4171.

Luczaj, J., and Masarik, K, 2015, Groundwater Quantity and Quality Issues in a Water-Rich Region: Examples from Wisconsin, USA: Resources, 2015, 4, 323-357.

RMT, Inc., 1997, Groundwater Assessment Report, Edgewater Closed Ash Disposal Facility, September 30, 1997.

SCS Engineers, 2016, Biennial Groundwater Monitoring Report for 2014-2015, Wisconsin Power and Light Company – Edgewater 1-4 (Closed) Ash Disposal Facility, Sheboygan, WI, License #02524, March 2016.

SCS Engineers, 2018a, Alternative Source Demonstration, October 2017 Monitoring Event, Edgewater Generating Station, April 2018.

SCS Engineers, 2018b, 2017 Annual Groundwater Monitoring and Corrective Action Report, Edgewater Generating Station, January 2018.

Skinner, Earl L., and Borman, Ronald G., 1973, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigation Atlas HA-432.

U.S. Environmental Protection Agency, 2015, Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities, Final Rule. April 2015.

Tables

- 1 Groundwater Analytical Results Summary October 2021
- 2 Historical Analytical Results for Parameters with SSIs
- 3A Groundwater Elevations State Monitoring Wells
- 3B Groundwater Elevations CCR Rule Monitoring Wells
- 4 2016-2021 Groundwater Analytical Results Closed Landfill State Monitoring Program Wells
- 5 Analytical Results Closed Landfill Leachate Fluoride Monitoring

		Backgro Wel		Compliance Wells				
		2R-O	W	MW-3	01	MW-302	MW-303	
Parameter Name	UPL	10/26/2	2021	10/26/2	021	10/26/2021	10/26/2021	
Appendix III								
Boron, µg/L	86	47.2		6,710		1,580	3,650	
Calcium, µg/L	200,000	192,000		102,000		78,200	148,000	
Chloride, mg/L	400	493		13.8	M0	20.7	21.6	
Fluoride, mg/L	0.2	<4.8	D3	0.24	J, M0	0.88	<0.48 D3	3
Field pH, Std. Units	8.57	7.01		7.01		7.60	6.92	
Sulfate, mg/L	36	35.7	J, D3	203	MO	71.2	<2.2 D3	3
Total Dissolved Solids, mg/L	1,190	1,170		538		290	640	

Table 1. Groundwater Analytical Results SummaryEdgewater Generating Station / SCS Engineers Project #25221068.00

Blue shaded cell indicates the compliance well result exceeds the UPL (background) and the Limit of Quantitation (LOQ).

Abbreviations:

UPL = Upper Prediction Limit -- = Not Applicable

4.4

LOD = Limit of Detection mg/L = milligrams per literLOQ = Limit of Quantitation $\mu g/L = micrograms per liter$

Lab Notes:

D3 = Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

J = Estimated concentration at or above the LOD and below the LOQ.

M0 = Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

Notes:

- 1. An individual result above the UPL does not constitute an SSI above background. See the accompanying report text for identification of statistically significant results.
- 2. Interwell UPLs calculated based on results from background well 2R-OW. Interwell UPLs based on a 1-of-2 retesting approach. The interwell UPLs were updated in January 2021 using data from April 2016 through October 2020.

Created by: NDK	Date: 1/7/2021
Last revision by: RM	Date: 11/18/2021
Checked by: MDB	Date: 12/8/2021
Scientist/PM QA/QC: MDB	Date: 12/8/2021

Well Group	Well	Collection Date	Boron (µg/L)	Fluoride (mg/L)	Sulfate (mg/L)
		4/8/2016	100	<0.20	19.5
		6/20/2016	22.4	<0.20	28.0
		8/9/2016	32.6	<0.20	25.4
		10/20/2016	43.1	<0.10	21.6
		1/24/2017	31.2	<0.10	23.9
		4/6/2017	70.6	<0.10	17.6
σ		6/6/2017	45.2	<0.10	17.8
un		8/1/2017	35.7	<0.10	28.8
gro	2R-OW	10/23/2017	55.9	<0.10	29.3
Background		4/2/2018	19.7	0.12 J	17.2
Ba		10/1/2018	34.7	<0.10	37.2
		4/8/2019	35.8	<0.10	10.6
		10/7/2019	58.8	<0.10	13.2
		4/8/2020	52.3	<0.095	11.6
		10/15/2020	29.9	<0.096 J	20.3
		4/14/2021	45.7	<0.095	15.3
		10/27/2021	47.2	<4.8 D3	35.7 J, D3
		4/11/2016	8,550	0.33 J	372
		6/20/2016	8,190	0.36 J	343
		8/9/2016	8,450	0.33 J	368
		10/20/2016	8,620	0.34	369
		1/23/2017	9,280	0.42	372
		4/6/2017	8,370	0.21 J	367
		6/6/2017	9,160	<0.10	362
		8/2/2017	8,610	0.32	340
	MW-301	10/24/2017	8,820	<0.10	341
		4/2/2018	7,950	0.25 J	332
		10/1/2018	8,230	0.20 J	318
		4/8/2019	7,310	0.29 J	322
		10/7/2019	7,220	0.24 J	312
		4/8/2020	7,450	0.39 M0	298
		10/15/2020	6,550	<0.48 D3, M0	293
e		4/14/2021	7,200	0.25 J	195
Compliance		10/26/2021	6,710	0.24 J,M0	203 M0
ild		4/8/2016	1,950	0.83	75.1
μc		6/20/2016	2,010	1.3 J	89.6
Ŭ		8/9/2016	2,000	0.80	80.7
		10/20/2016	2,150	0.80	77.2
		1/24/2017	2,000	0.89 J	71.1
		4/6/2017	1,970	0.76	85.8
		6/6/2017	1,970	0.9	88.5
		8/2/2017	1,890	0.78	80.2
	MW-302	10/24/2017	1,760	0.84	72.2
	11111-JUZ	4/2/2018	1,800	0.78	72.7
		10/1/2018	1,570	0.81	59.2
		4/8/2019	1,670	0.87	71.7
		10/7/2019	1,730	0.85	55.7
		4/8/2020	1,570	0.97	65.3
		10/15/2020	1,410	1.0 J, D3	73.1
		4/14/2021	1,550	0.88	70.5
		10/26/2021	1,580	0.88	70.3
		10/20/2021	1,000	0.00	, 1.2

Table 2. Historical Analytical Results for Parameters with SSIs Edgewater Generating Station, Sheboygan, Wisconsin SCS Engineers Project #25221068.00

Well Group	Well	Collection Date	Boron (µg/L)	Fluoride (mg/L)	Sulfate (mg/L)
		4/8/2016	4,210	<0.20	3.0 J
		6/20/2016	3,360	<1.0	11.4 J
		8/9/2016	3,860	<0.20	2.4 J
		10/20/2016	3,740	<0.50	5.6 J
		1/24/2017	4,210	<0.50	<5.0
		4/6/2017	4,170	<0.50	<5.0
۵.		6/6/2017	4,570	<0.50	<5.0
лč		8/2/2017	3,780	<0.50	<5.0
Compliance	MW-303	10/24/2017	3,480	<0.50	<5.0
Ĕ		4/2/2018	3,040	<0.50	<5.0
ů		10/1/2018	2,360	<0.10	<1.0
		4/8/2019	2,930	<0.50	<5.0
		10/7/2019	2,830	<0.50	<5.0
		4/8/2020	3,380	<0.48	<2.2
		10/15/2020	3,310	<0.48 D3	<2.2 D3
		4/14/2021	4,600	<0.095	0.54 J
		10/26/2021	3,650	<0.48 D3	<2.2 D3

Table 2. Historical Analytical Results for Parameters with SSIs Edgewater Generating Station, Sheboygan, Wisconsin SCS Engineers Project #25221068.00

Abbreviations:

 μ g/L = micrograms per liter or parts per billion (ppb)

mg/L = milligrams per liter or parts per million (ppm)

-- = not analyzed

J = Estimated value below laboratory's limit of quantitation (LOQ)

- M0 = Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
- D3 = Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

Notes:

1. Complete laboratory reports included in 2017 Annual Groundwater

Monitoring and Corrective Action Report, Edgewater Generating Station.

Created by:	NDK	Date:	3/2/2018
Last revision by:	RM	Date:	3/14/2022
Checked by:	JAO	Date:	3/14/2022

I:\25221068.00\Deliverables\2021 Oct ASD Edg Closed\Tables\[Tables 2 and 4 - Analytical CCR and State Monitoring.xlsx]Table 2. CCR Analytical

Depth to Water in feet below top of well casing 2R-OW 3R-OW 5-OW 6R-OW 7A-OW 7-OW 18-OW 29-OW 29-A 30-OW 31-OW 32-O 1-OW 4R-OW W-5A 6AR Raw Data **Measurement Date** 3.61 3.58 5.4 October 24, 2012 4.90 8.68 10.36 5.09 5.15 3.90 1.70 2.95 2.98 3.70 2.65 4.41 6.42 April 8, 2013 3.22 2.80 2.95 9.25 4.06 4.19 2.92 3.64 0.91 2.78 2.50 3.25 1.18 2.24 4.65 4.5 October 22, 2013 6.84 11.57 10.42 11.14 6.49 6.20 8.68 6.15 2.47 5.49 NM ⁽¹⁾ 4.33 2.49 8.62 8.60 8.3 4.74 4.32 5.3 April 22, 2014 3.67 3.50 3.33 9.49 5.54 3.61 4.43 3.22 NM (1) 3.65 1.03 3.28 5.25 5.58 5.45 5.02 10.52 5.39 5.33 3.99 1.78 3.44 1.41 5.33 October 28, 2014 3.64 $NM^{(1)}$ 4.03 6.12 6.3 April 7 - 9, 2015 3.82 4.25 3.88 10.08 5.06 5.08 4.33 3.48 1.75 4.23 ABAND 3.59 1.70 4.52 5.79 5.2 6.5 7.37 6.55 3.9 October 8, 2015 6.94 8.50 7.98 11.08 5.96 8.67 5.31 2.47 3.02 ABAND 4.34 1.98 7.40 4.03 2.70 3.6 8.91 4.02 5.30 2.0 April 4-5, 2016 3.32 6.80 1.29 4.8 ABAND 6.08 4.65 4. October 17, 2016⁽²⁾ 5.2 4.22 5.45 4.61 10.45 5.31 5.02 6.98 4.37 1.4 4.86 ABAND 7.61 3.15 4.58 5.98 April 12-13, 2017 3.49 2.92 3.37 9.29 4.64 4.15 4.55 3.66 1.22 5.45 ABAND 5.12 3.82 5.45 5.32 4.5 October 9, 2017 7.58 11.85 10.32 11.11 6.04 5.80 8.29 7.47 2.91 6.55 ABAND 5.85 4.37 8.05 8.07 7.8 April 2, 2018 3.93 4.85 4.69 8.92 4.99 4.96 4.52 3.54 1.65* 2.89 ABAND 3.35 2.14 5.13 6.05 6.2 NM 7.02 5.83 10.40 5.31 NM 5.31 ABAND 3.43 3.46 5.85 6.71 N٨ June 19, 2018 NM NM NM October 1, 2018 6.35 8.11 7.14 10.74 5.48 5.22 4.12 3.76 4.31 5.40 2.4 ABAND 3.82 6.02 6.89 6.2 April 8, 2019 3.15 3.22 3.31 3.67 4.69 4.51 6.71 3.63 1.49 2.45 ABAND 3.1 2.5 2.98 4.82 4.2 October 9-10, 2019 3.87 3.33 3.93 9.61 5.04 4.92 4.90 3.74 1.75 4.98 ABAND 3.72 4.15 3.66 5.37 4.5 April 8-9, 2020 3.69 3.75 3.62 9.55 5.15 4.95 5.58 4.03 1.80 4.75 ABAND 3.88 1.90 3.52 5.30 4.4 7.10 8.35 9.12 11.06 7.45 7.53 5.98 6.98 6.40 6.2 October 14-15, 2020 6.98 8.61 4.60 ABAND 4.91 2.42 April 14, 2021 3.77 4.22 3.68 10.18 5.85 5.71 4.79 3.69 2.13 2.62 ABAND 3.7 1.61 3.75 5.54 4.8 5.12 ABAND 10.58 7.14 11.42 6.38 4.26 October 27-28, 2021 7.19 9.10 11.13 7.66 2.96 2.6 7.92 7.12 7.0

Table 3A. Groundwater Elevations - State Monitoring Wells
Edgewater 1-4 Closed Ash Disposal Facility / SCS Engineers Project #25221068.00

Ground Water Elevation in feet above mean sea level (amsl)																						
Well Number	1-OW	2R-OW	3R-OW	4R-OW	5-OW	W-5A	6AR	6R-OW	7A-OW	7-OW	18-OW	29-OW	29-A	30-OW	31-OW	32-OW	36-OW	37-OW	38R-OW	39R-OW	40-OW	SG-01
Top of Casing Elevation (feet amsl)	591.72	612.72	591.32	595.60	600.72	601.84	591.32	590.98	593.41	592.51	586.47	588.86	589.25	590.81	589.00	589.07	614.63	615.02	620.98	614.04	587.42	
Screen Length (ft)																						
Total Depth (ft from top of casing)	11.10	17.53	15.82	16.48	10.65	21.51	19.86	10.37	20.21	9.93	14.25	19.96	43.12	14.88	14.98	14.95	21.01	18.55	29.00	22.29	17.3	
Top of Well Screen Elevation (ft)	580.62	595.19	575.50	579.12	590.07	580.33	571.46	580.61	573.20	582.58	572.22	568.90	546.13	575.93	574.02	574.12	593.62	596.47	591.98	591.75		0.00
Measurement Date																						
October 9, 2017	584.14	600.87	581.00	584.49	594.68	596.04	583.03	583.51	590.50	585.96	ABAND	583.01	584.88	582.76	580.93	581.18	600.18	598.48	599.65	598.07	583.05	
April 2, 2018	587.79	607.87	586.63	586.68	595.73	596.88	586.80	587.44	591.76	589.62	ABAND	585.51	587.11	585.68	582.95	582.85	600.71	600.00	600.04	597.99	583.64	
June 19, 2018	NM	605.70	585.49	585.20	595.41	NM	NM	NM	NM	587.20	ABAND	585.43	585.79	584.96	582.29	NM	NM (1)	600.44	600.68	599.61	583.07	NM
October 1, 2018	585.37	604.61	584.18	584.86	595.24	596.44	586.10	586.86	591.01	588.75	ABAND	585.04	584.94	584.79	582.11	582.81	600.30	600.12	600.27	599.79	583.17	
April 8, 2019	588.57	609.50	588.01	591.93	596.03	597.33	584.61	587.35	591.92	590.06	ABAND	585.76	586.75	587.83	584.18	584.85	600.21	599.60	599.74	598.49	583.75	
October 9-10, 2019	587.85	609.39	587.39	585.99	595.68	596.92	586.42	587.24	591.66	587.53	ABAND	585.14	585.10	587.15	583.63	584.48	599.92	600.25	600.01	599.82	583.08	
April 8-9, 2020	588.03	608.97	587.70	586.05	595.57	596.89	585.74	586.95	591.61	587.76	ABAND	584.98	587.35	587.29	583.70	584.59	599.40	599.52	599.48	599.38	583.01	
October 14-15, 2020	584.62	604.37	582.20	584.54	593.27	594.86	582.71	583.45	588.81	586.53	ABAND	583.95	586.83	583.83	582.60	582.82	ABAND	596.87	NM	594.72	583.26	NM
April 14, 2021	587.95	608.50	587.64	585.42	594.87	596.13	586.53	587.29	591.28	589.89	ABAND	585.16	587.64	587.06	583.46	584.25	ABAND	DRY	596.34	593.95	583.08	NM
October 27-28, 2021	584.53	603.62	580.74	584.47	593.06	594.70	579.90	584.60	590.45	587.39	ABAND	584.60	586.65	582.89	581.88	582.02	ABAND	DRY	595.33	592.34	582.74	ABANE
Bottom of Well Elevation (ft)	580.62	595.19	575.50	579.12	590.07	580.33	571.46	580.61	573.20	582.58	572.22	568.90	546.13	575.93	574.02	574.12	593.62	596.47	591.98	591.75	570.12	0.00

Notes:	Created by:	MDB	Date:	5/6/2013
NM = not measured	Last revision by:	JR	Date:	1/20/2022
ABAND = abandoned	Checked by:	RM	Date:	1/20/2022

1: Well broken

2: Well casings at 7-OW, 7A, and 29-OW were cut down to allow the protective covers to close. 7-OW was cut down by 0.22 ft, 7A was cut down by 0.29 ft, and 29-OW was cut down by 0.17 ft. Top of casing elevations in this table were adjusted accerts to close. 7-OW was frozen

Monitoring Well 40-OW cut down to have a top of casing elevation of 586.05 famsl on December 3, 2021.

I:\25221068.00\Deliverables\2021 Oct ASD Edg Closed\Tables\[Table 3A - GW Elevations State Wells.xls]levels

WO	36-OW	37-OW	38R-OW	39R-OW	40-OW	SG-01
44	14.86	15.60	21.60	15.99		
57	13.84	14.78	20.82	15.74		
31	15.50	16.80	22.56	17.48		
32	NM ⁽¹⁾	15.35	21.60	15.48		
39	14.56	15.21	21.72	15.67		
20	14.94	15.81	21.77	16.58	3.65	
55	14.34	15.55	21.28	15.95	4.41	
.6	13.58	13.65	19.80	12.91	8.14	
24	13.76	14.32	20.24	14.55	8.00	5
55	12.62	12.91	18.90	12.75	3.40	5
89	14.45	16.54	21.33	15.97	4.37	5
22	13.92	15.02	20.94	16.05	3.78	5
М	NM	14.58	20.30	14.43	4.35	NM
26	14.33	14.90	20.71	14.25	4.25	5.99
22	14.42	15.42	21.24	15.55	3.67	5
59	14.71	14.77	20.97	14.22	4.34	5.85
48	15.23	15.50	21.50	14.66	4.41	5.99
25	ABAND	18.15	NM	19.32	4.16	NM
82	ABAND	DRY	24.64	20.09	4.34	NM
05	ABAND	DRY	25.65	21.7	4.68	ABAND
00	7.87.11	BRI	20.00	21.7	1.00	7.07.110
WO	36-OW	37-OW	38R-OW	39R-OW	40-OW	SG-01
2.07	614.63	615.02	620.98	614.04	587.42	
.07	01 1.00	010.02	020.70	011.01	007.12	
.95	21.01	18.55	29.00	22.29	17.3	
./5 1.12	593.62	596.47	591.98	591.75	17.0	0.00
+. I Z	J7J.0Z	370.47	J71.70	J71./J		0.00
.18	600.18	598.48	599.65	598.07	583.05	
2.85	600.71	600.00	600.04	597.99	583.64	
M	NM (1)	600.44	600.68	599.61	583.07	NM
2.81	600.30	600.12	600.27	599.79	583.17	
4.85	600.21	599.60	599.74	598.49	583.75	
1.48	599.92	600.25	600.01	599.82	583.08	
4.59	599.40	599.52	599.48	599.38	583.01	N 11-4
2.82	ABAND	596.87	NM	594.72	583.26	NM
4.25 2.02	ABAND ABAND	DRY DRY	596.34 595.33	593.95 592.34	<u>583.08</u> 582.74	NM ABAND
2.0Z			575.55	J7Z.J4	JUZ./4	

Ground Water Elevat	tion in feet above	e mean sea le	evel (amsl)	
Well Number	MW-301	MW-302	MW-303	2R-OW
Top of Casing Elevation (feet ams	604.42	615.15	611.99	612.72
Screen Length (ft)	5.00	5.00	5.00	10.00
Total Depth (ft from top of casing)	27.47	40.00	33.26	14.50
Top of Well Screen Elevation (ft)	581.95	580.15	579.60	608.22
Measurement Date				
April 8, 2016	599.75	596.19	589.04	609.68
June 20, 2016	598.30	595.68	587.22	606.70
August 9, 2016	598.00	595.53	587.72	605.74
October 20, 2016	598.50	595.46	588.37	607.27
January 23-24, 2017	597.10	596.30	588.84	609.64
April 6, 2017	600.04	593.57	589.04	609.72
June 6, 2017	598.77	595.86	588.44	607.63
August 1, 2017	597.40	595.22	587.36	604.59
October 24, 2017	597.20	595.25	587.97	601.74
April 2, 2018	598.54	595.71	588.77	607.87
October 1, 2018	597.60	595.28	588.17	604.61
April 8, 2019	598.92	595.68	588.88	609.50
October 7, 2019	599.56	595.58	588.77	609.39
June 26, 2020	597.89	NM	NM	NM
October 15, 2020	595.10	598.56	593.19	604.27
April 14, 2021	595.17	600.56	595.01	608.50
October 26, 2021	590.68	599.82	594.07	604.04
Bottom of Well Elevation (ft)	576.95	575.15	578.73	598.22
Notes:	Created by:		-	6/27/2016
NM = not measured	Last rev. by:		Date:	
	Checked by:	MDB	Date:	12/14/2021
S	Scientist QA/QC:	MDB	Date:	12/14/2021

Table 3B. Groundwater Elevations - CCR Monitoring Wells WPL - Edgewater 1-4 (Closed) Ash Disposal Facility / SCS Engineers Project #25221068.00

I:\25221068.00\Deliverables\2021 Oct ASD Edg Closed\Tables\[Table 3B - GW Elevations CCR Wells.xls]levels

Point Name	Reporting Period	Boron, dissolved (µg/L as B)	Sulfate, dissolved (mg/L as SO₄)				
Monitoring Wells			(
2R-OW	2016-Apr	26.6	30.9				
2R-OW	2016-Oct	40.4	22.9				
2R-OW	2017-Apr	69.3 J	28.6				
2R-OW	2017-Oct	35.2	32.9				
2R-OW	2018-Apr	23.3	18.2				
2R-OW	2018-Oct	41.8	35.5				
2R-OW	2019-Apr	40.6	12.2				
2R-OW	2019-Oct	88.5	29.3				
2R-OW	2020-Apr	45.8	16.9				
2R-OW	2020-Oct	29.9	21.8				
2R-OW	2021-Apr	31.1	22.7				
2R-OW	2021-Oct	39.2	26				
28.014/	2017 Apr	392	533				
3R-OW 3R-OW	2016-Apr 2016-Oct	468	372				
3R-OW	2018-OCT 2017-Apr	400	409				
3R-OW	2017-Apr 2017-Oct	389	637				
3R-OW	2017-OCT 2018-Apr	351	498				
3R-OW	2018-Oct	462	498				
3R-OW	2018-OCT 2019-Apr	337	279				
3R-OW	2019-Apr 2019-Oct	454	279				
3R-OW	2019-OCT 2020-Apr	473	498				
3R-OW	2020-Apr 2020-Oct	339	654				
3R-OW	2020-OC1 2021-Apr	316	172				
3R-OW	2021-Apr 2021-Oct	260	497				
4R-OW	2016-Apr	7,710	120				
4R-OW	2016-Oct	17,300	252				
4R-OW	2017-Apr	12,600	180				
4R-OW	2017-Oct	15,700	178				
4R-OW	2018-Apr	12,700	164				
4R-OW	2018-Oct	8,630	129				
4R-OW	2019-Apr	10,200	158				
4R-OW	2019-Oct	9,200	161				
4R-OW	2020-Apr	9,320	90.9				
4R-OW	2020-Oct	10,200	134				
4R-OW	2021-Apr	10,800	191				
4R-OW	2021-Oct	10,400	140				
5-OW	2016-Apr	4,330	215				
5-OW	2016-Oct	5,970	210				
5-OW	2017-Apr	5,490	258				
5-OW	2017-Oct	6,040	230				
5-OW	2018-Apr	3,900	143				
5-OW	2018-Oct	6,180	226				
5-OW	2019-Apr	4,140	197				
5-OW	2019-Oct	4,680	179				
5-OW	2020-Apr	4,610	199				
5-OW	2020-Oct	4,870	161				
5-OW	2021-Apr	2,670	111				
5-OW	2021-Oct	3,250	100				

Point Name	Reporting Period	Boron, dissolved (µg/L as B)	Sulfate, dissolved (mg/L as SO₄)
Monitoring Wells (co	ntinued)		
7-ŎW	2016-Apr	610	255
7-OW	2016-Oct	964	251
7-OW	2017-Apr	761	259
7-OW	2017-Oct	1,130	246
7-OW	2018-Apr	818	243
7-OW	2018-Oct	1150	218
7-OW	2019-Apr	914	254
7-OW	2019-Oct	1,200	224
7-OW	2020-Apr	928	214
7-OW	2020-Oct	1,290	242
7-OW	2021-Apr	961	247
7-OW	2021-Oct	1,350	224
29-A	2016-Apr	357	40.9
29-A	2016-Oct	264	39.6
29-A	2017-Apr	365	41.5
29-A	2017-Oct	278	42.1
29-A	2018-Apr	264	39.4
29-A	2018-Oct	268	39.2
29-A	2019-Apr	292	44.2
29-A	2019-Oct	258	39.1
29-A	2020-Apr	268	37.5
29-A	2020-Oct	263	42.9
29-A	2021-Apr	262	214
29-A	2021-Oct	233	40.8
29-OW	2016-Apr	10,600	120
29-OW	2016-Oct	10,900	85.7
29-OW	2017-Apr	9,500	77.0
29-OW	2017-Oct	9,060	62.0
29-OW	2018-Apr	8,640	102
29-OW	2018-Oct	11,000	109
29-OW	2019-Apr	10,600	190
29-OW	2019-Oct	10,800	114
29-OW	2020-Apr	9,160	69.9
29-OW	2020-Oct	8,480	73.3
29-OW	2021-Apr	7,120	66.4
29-OW	2021-Oct	8,700	86.7
30-OW	2016-Apr	79.1	4.80
30-OW	2016-Oct	113	4.60
30-OW	2017-Apr	176	7.50
30-OW	2017-Oct	135	16.7
30-OW	2018-Apr	94.5	21.5
30-OW	2018-Oct	115	11.4
30-OW	2019-Apr	52.1	2.40 J
30-OW	2019-Oct	84.9	5.60
30-OW	2020-Apr	54.4	2.80
30-OW	2020-Oct	118	15.2
30-OW	2021-Apr	42.3	5.5
30-OW	2021-Oct	108	14.9

Point Name	Reporting Period	Boron, dissolved (µg/L as B)	Sulfate, dissolved (mg/L as SO4)
Monitoring Wells (cc	ontinued)		
31-OW	2016-Apr	114	91.2
31-OW	2016-Oct	34.7	63.3
31-OW	2017-Apr	76.9	82.4
31-OW	2017-Oct	190	70.3
31-OW	2018-Apr	30.8	51.5
31-OW	2018-Oct	36.7	62.7
31-OW	2019-Apr	18.5	68.6
31-OW	2019-Oct	38.6	57.5
31-OW	2020-Apr	25.8	39.1
31-OW	2020-Oct	30.8	58.5
31-OW	2021-Apr	51	59.5
31-OW	2021-Oct	39.5	35
40-OW	2016-Apr	8,030	731
40-OW	2016-Oct	29,400	768
40-OW	2017-Apr	8,680	849
40-OW	2017-Oct	8,800	873
40-OW	2018-Apr	9,790	771
40-OW	2018-Oct	11,300	797
40-OW	2019-Apr	8,620	636
40-OW	2019-Oct	10,600	836
40-OW	2020-Apr	10,900	836
40-OW	2020-Oct	9,870	818
40-OW	2021-Apr	8,010	827
40-OW	2021-Oct	9,180	839
Leachate Monitorin	g Wells		
37-OW	2016-Apr	19,100	759
37-OW	2016-Oct	12,500	439
37-OW	2017-Apr	15,900	633
37-OW	2017-Oct	9,440	264
37-OW	2018-Apr	5,890	159
37-OW	2018-Oct	16,600	555
37-OW	2019-Apr	15,800	492
37-OW	2019-Oct	16,300	798
37-OW	2020-Apr	20,200	769
37-OW	2020-Oct		
37-OW	2021-Apr		
37-OW	2021-Oct		
38R-OW	2016-Apr	33,800	1,000
38R-OW	2016-Oct	17,100	514
38R-OW	2017-Apr	21,100	932
38R-OW	2017-Oct	10,800	364
38R-OW	2018-Apr	4,250	123
38R-OW	2018-Oct	32,400	956
38R-OW	2019-Apr	9,720	330
38R-OW	2019-Oct	30,400	1,020
38R-OW	2020-Apr	51,800	1,520
38R-OW	2020-Oct		
38R-OW	2021-Apr	37400	1380
			1310

Point Name	Reporting Period	Boron, dissolved (µg/L as B)	Sulfate, dissolved (mg/L as SO ₄)
Leachate Monitoring	Wells (continued)		
39R-OW	2016-Apr	10,100	534
39R-OW	2016-Oct	29,900	1,390
39R-OW	2017-Apr	22,400	1,150
39R-OW	2017-Oct	32,800	1,400
FIELD BLANK	2018-Apr		
39R-OW	2018-Oct	24,700	1,160
39R-OW	2019-Apr	26,000	1,520
39R-OW	2019-Oct	17,100	601
39R-OW	2020-Apr	19,100	1,160
39R-OW	2020-Oct	34,200	1,190
39R-OW	2021-Apr	24,800	1,140
39R-OW	2021-Oct		

Abbreviations:

 μ g/L = micrograms per liter or parts per billi(-- : not measured mg/L = milligrams per liter or parts per million (ppm)

Notes:

-- : not measured

Laboratory Notes:

J: Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

Created by:	SCC	Date:	2/24/2014
Last revision by:	RM	Date:	3/14/2022
Checked by:	JAO	Date:	3/14/2022

 $\label{eq:loss} $$ 10.2.18.8 data\Projects\25221068.00\Deliverables\2021\Oct\ASD\Edg\Closed\Tables\[Tables 2 and 4 - Analytical\CCR\ and\ State\ Monitoring.xlsx]Table 4. GW\ quality\ Data$

Table 5. Analytical Results - Closed Landfill Leachate Fluoride MonitoringEdgewater Generating Station, Sheboygan, WisconsinSCS Engineers Project #25221068.00

Collection Date		Fluoride	luoride (mg/L)		
	36-OW	37-OW	38R-OW	39R-OW	
9/8/1994	0.25	0.62	0.57	0.79	
9/14/1995	0.38	0.51	0.71	0.87	
9/17/1996	0.56	0.42	0.71	0.97	
9/16/1997	0.60	0.44	0.73	0.97	

Abbreviations:

mg/L = milligrams per liter or parts per million (ppm)

Notes:

1. Data compiled from WDNR Groundwater Environmental Monitoring System (GEMS) website.

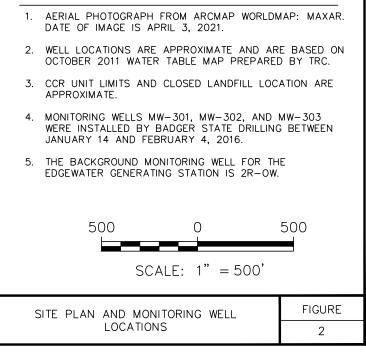
Created by:	NDK	Date:	3/5/2018
Last revision by:	NDK	Date:	3/5/2018
Checked by:	AJR	Date:	4/5/2018

I:\25221068.00\Deliverables\2021 Oct ASD Edg Closed\Tables\[Table 5 - EDG - closed-Leachate Fluoride Monitoring.xlsx]Table 5- Fl results

Figures

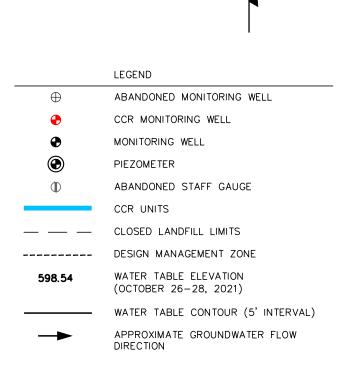
- 1 Site Location Map
- 2 Site Plan and Monitoring Well Locations
- 3 Water Table Map October 2021

I:\25220068.00\Drawings\ASD\Site Location Map.dwg, 4/12/2020 8:05:44 PM

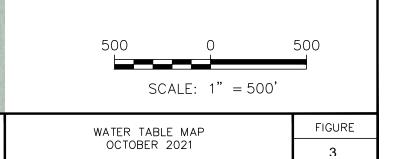


:\25222068.00\Drawings\Site Plan and Monitoring Well Locations.dwg, 4/18/2022 5:22:14 PM

•	CCR RULE MONITORING WELL
•	CCR RULE BACKGROUND MONITORING WELL
•	ADDITIONAL MONITORING WELL
۲	ADDITIONAL PIEZOMETER
\oplus	ABANDONED MONITORING WELL
Ф	ABANDONED STAFF GAUGE
	CCR UNITS
	CLOSED LANDFILL LIMITS

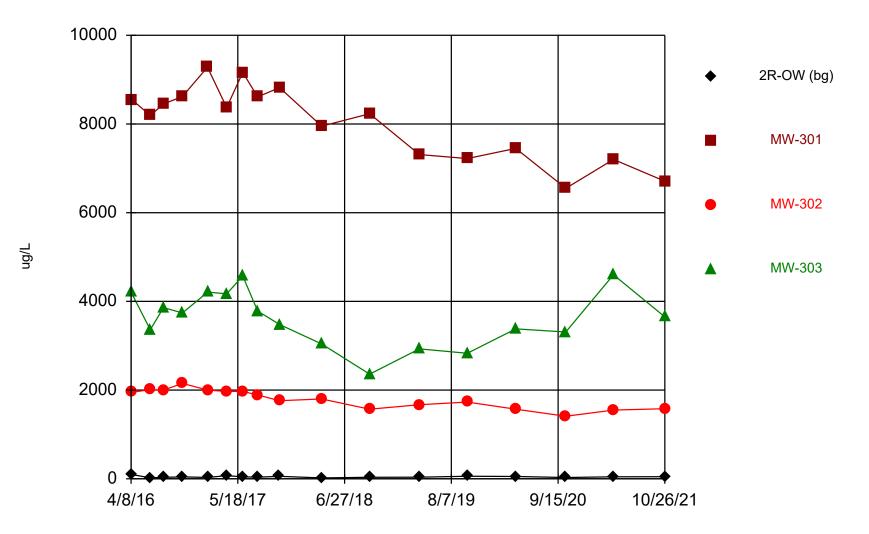

N

NOTES:


\Mad-fs01\data\Projects\25222068.00\Drawings\Water Tables.dwg, 4/19/2022 8:47:03 AM

Ν

NOTES:


- 1. AERIAL PHOTOGRAPH FROM ARCMAP WORLDMAP: MAXAR. DATE OF IMAGE IS APRIL 3, 2021.
- EXISTING WELL LOCATIONS ARE APPROXIMATE AND ARE BASED ON OCTOBER 2011 WATER TABLE MAP PREPARED BY TRC.
- 3. DESIGN MANAGEMENT ZONE LOCATION IS APPROXIMATE
- 4. NEW MONITORING WELL LOCATIONS WERE SURVEYED BY CQM, INC. ON FEBRUARY 12, 2016.
- 5. MW-301, MW-302, AND MW-303 ARE NOT INCLUDED IN THE WDRN-APPROVED SITE-SPECIFIC MONITORING PLAN
- 6. GROUNDWATER ELEVATIONS COLLECTED FROM MONITORING WELLS ON OCTOBER 26-28, 2021.

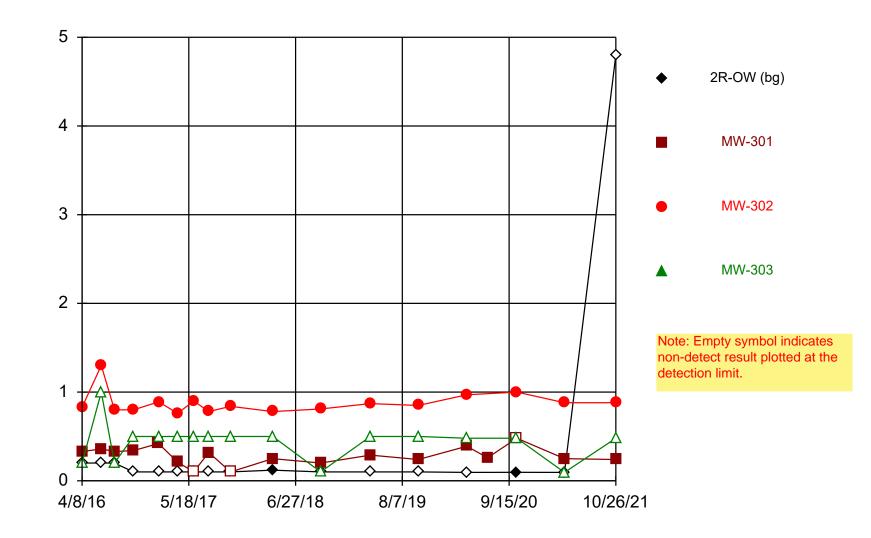
Appendix A

Trend Plots for CCR Wells

Boron

Time Series Analysis Run 3/14/2022 11:52 AM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Time Series


Constituent: Boron (ug/L) Analysis Run 3/14/2022 11:54 AM View: CCR - UPL - 2020

Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

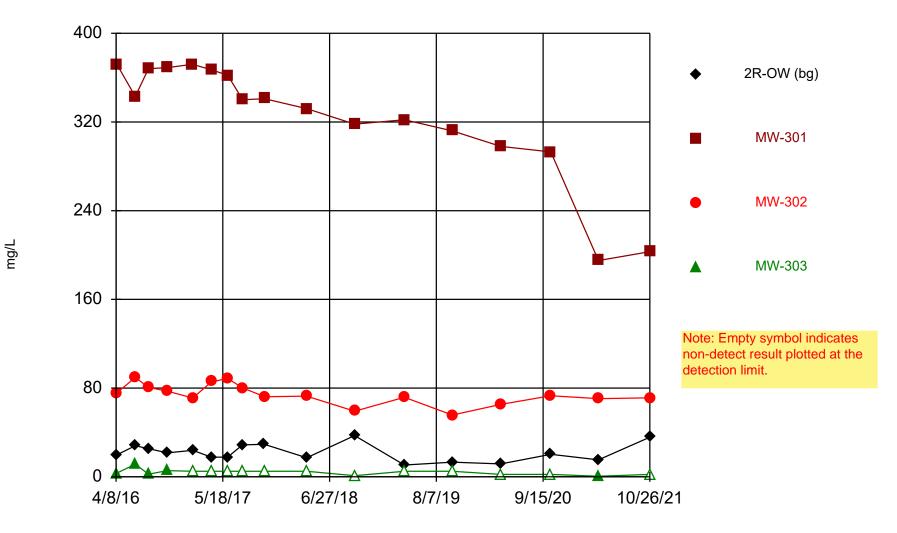
	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	100		1950	4210
4/11/2016		8550		
6/20/2016	22.4	8190	2010	3360
8/9/2016	32.6	8450	2000	3860
10/20/2016	43.1	8620	2150	3740
1/23/2017		9280		
1/24/2017	31.2		2000	4210
4/6/2017	70.6	8370	1970	4170
6/6/2017	45.2	9160	1970	4570
8/1/2017	35.7			
8/2/2017		8610	1890	3780
10/23/2017	55.9			
10/24/2017		8820	1760	3480
4/2/2018	19.7	7950	1800	3040
10/1/2018	34.7	8230	1570	2360
4/8/2019	35.8	7310	1670	2930
10/7/2019	58.8	7220	1730	2830
4/8/2020	52.3	7450	1570	3380
10/15/2020	29.9	6550	1410	3310
4/14/2021	45.7	7200	1550	4600
10/26/2021	47.2	6710	1580	3650

Sanitas[™] v.9.6.32 Software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Time Series Analysis Run 3/14/2022 11:52 AM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

mg/L

Time Series


Constituent: Fluoride (mg/L) Analysis Run 3/14/2022 11:54 AM View: CCR - UPL - 2020

Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	<0.2 (U)		0.83	<0.2 (U)
4/11/2016		0.33 (J)		
6/20/2016	<0.2 (U)	0.36 (J)	1.3 (J)	<1 (U)
8/9/2016	<0.2 (U)	0.33 (J)	0.8	<0.2 (U)
10/20/2016	<0.1 (U)	0.34	0.8	<0.5 (U)
1/23/2017		0.42		
1/24/2017	<0.1 (U)		0.89 (J)	<0.5 (U)
4/6/2017	<0.1 (U)	0.21 (J)	0.76	<0.5 (U)
6/6/2017	<0.1 (U)	<0.1 (U)	0.9	<0.5 (U)
8/1/2017	<0.1 (U)			
8/2/2017		0.32	0.78	<0.5 (U)
10/23/2017	<0.1 (U)			
10/24/2017		<0.1 (U)	0.84	<0.5 (U)
4/2/2018	0.12 (J)	0.25 (J)	0.78	<0.5 (U)
10/1/2018	<0.1 (U)	0.2 (J)	0.81	<0.1 (U)
4/8/2019	<0.1 (U)	0.29 (J)	0.87	<0.5 (U)
10/7/2019	<0.1 (U)	0.24 (J)	0.85	<0.5 (U)
4/8/2020	<0.095 (U)	0.39	0.97	<0.48 (U)
6/26/2020		0.26 (J)		
10/15/2020	0.096 (J)	<0.48 (U)	1 (J)	<0.48 (U)
4/14/2021	<0.095	0.25 (J)	0.88	<0.095
10/26/2021	<4.8 (U)	0.24 (J)	0.88	<0.48

Sanitas[™] v.9.6.32 Software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Time Series Analysis Run 3/14/2022 11:52 AM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Time Series

Constituent: Sulfate (mg/L) Analysis Run 3/14/2022 11:54 AM View: CCR - UPL - 2020

Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	19.5		75.1	3 (J)
4/11/2016		372		
6/20/2016	28	343	89.6	11.4 (J)
8/9/2016	25.4	368	80.7	2.4 (J)
10/20/2016	21.6	369	77.2	5.6 (J)
1/23/2017		372		
1/24/2017	23.9		71.1	<5 (U)
4/6/2017	17.6	367	85.8	<5 (U)
6/6/2017	17.8	362	88.5	<5 (U)
8/1/2017	28.8			
8/2/2017		340	80.2	<5 (U)
10/23/2017	29.3			
10/24/2017		341	72.2	<5 (U)
4/2/2018	17.2	332	72.7	<5 (U)
10/1/2018	37.2	318	59.2	<1 (U)
4/8/2019	10.6	322	71.7	<5 (U)
10/7/2019	13.2	312	55.7	<5 (U)
4/8/2020	11.6	298	65.3	<2.2 (U)
10/15/2020	20.3	293	73.1	<2.2 (U)
4/14/2021	15.3	195	70.5	0.54 (J)
10/26/2021	35.7 (J)	203	71.2	<2.2 (U)

E2 April 2022 ASD

Alternative Source Demonstration April 2022 Detection Monitoring

Edgewater Generating Station Sheboygan, Wisconsin

Prepared for:

25222068.00 | October 13, 2022

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830

Table of Contents

Sect	ion		Pag	je
PE Ce	ertifica	ation		iii
1.0	Intro	duction.		.1
	1.1	§257.9	94(E)(2) Alternative Source Demonstration Requirements	.1
	1.2		ormation and Map	
	1.3	Statisti	cally Significant Increases Identified	.2
	1.4	Overvie	ew of Alternative Source Demonstration	.2
2.0	Back	ground.		.2
	2.1	Geolog	ic and Hydrogeologic Setting	.3
	2.2	CCR Ru	Ile Monitoring System	.3
	2.3	Other M	Nonitoring Wells	.3
	2.4	Ground	Iwater Flow Direction	.3
3.0	Meth	odology	and Analysis Review	.4
	3.1	Sampli	ng and Field Analysis Review	.4
	3.2	Labora	tory Analysis Review	.4
	3.3	Statisti	cal Evaluation Review	.5
	3.4	Summa	ary of Methodology and Analysis Review Findings	.5
4.0	Alteri		ources	
	4.1	Potenti	al Causes of SSI	.5
		4.1.1	Natural Variation	.5
		4.1.2	Man-Made Alternative Sources	.6
	4.2	Lines c	f Evidence	.6
		4.2.1	Previous CCR Pond and Landfill Study	
		4.2.2	CCR Constituents in Landfill Leachate	.8
		4.2.3	State Program Groundwater Monitoring Results	.8
5.0	Alteri	native S	ource Demonstration Conclusions	.9
6.0	Site (Groundv	vater Monitoring Recommendations	.9
7.0	Refe	rences		.9

Tables

Table 1	Groundwater Analytical Results Summary – April 2022
---------	---

- Table 2Historical Analytical Results for Parameters with SSIs
- Table 3A
 Groundwater Elevations State Monitoring Wells
- Table 3BGroundwater Elevations CCR Rule Monitoring Wells
- Table 42016 2022 Groundwater Analytical Results Closed Landfill State Monitoring
Program Wells
- Table 5
 Analytical Results Closed Landfill Leachate Fluoride Monitoring

Figures

- Figure 1. Site Location Map
- Figure 2. Site Plan and Monitoring Well Locations
- Figure 3. Water Table Map April 2022

Appendix

Appendix A Trend Plots for CCR Wells

I:\25222068.00\Deliverables\2022 Apr ASD Edg Closed\221013_EDG CLSD_Apr_ASD_Final.docx

PE CERTIFICATION

* Sherren C. Clark E-29863 Madison, Wis.	I, Sherren Clark, hereby certify that that the information in this alternate source demonstration is accurate and meets the requirements of 40 CFR 257.94(e)(2). This certification is based on my review of the groundwater data and related site information available for the Edgewater Generating Station Ash Ponds. I am a duly licensed Professional Engineer under the laws of the State of Wisconsin. (signature) (date) Sherren Clark, PE
SCIONAL ENGINEER	(printed or typed name)
	License number E-29863
	My license renewal date is July 31, 2024.
	Pages or sheets covered by this seal:
	Alternative Source Demonstration - April 2022 Detection
	Monitoring, Edgewater Generating Station, Sheboygan Wisconsin
	(Entire Document)

[This page left blank intentionally]

1.0 INTRODUCTION

This Alternative Source Demonstration (ASD) was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" published by the U.S. Environmental Protection Agency (U.S. EPA) in the *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule,* dated April 17, 2015 (U.S. EPA, 2015), and subsequent amendments. Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.94(e)(2). The applicable sections of the Rule are provided below in *italics*.

1.1 §257.94(E)(2) ALTERNATIVE SOURCE DEMONSTRATION REQUIREMENTS

The owner and operator may demonstrate that a source other than the CCR Unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels.

An ASD is completed when there are exceedances of one or more benchmarks established within the groundwater monitoring program to determine if any other sources are likely causes of the identified exceedance(s) of the established benchmark(s) at the site. This ASD was performed in response to results indicating a statistically significant increase (SSI) over background levels during detection monitoring under the CCR Rule.

This ASD report evaluates the SSIs observed in the statistical evaluation of the April 2022 detection monitoring event at the Edgewater Generating Station (EDG). The first ASD was prepared for this facility evaluated the SSIs observed in the statistical evaluation of the October 2017 detection monitoring event (SCS Engineers [SCS], 2018b). The October 2017 ASD and subsequent semiannual updates included several lines of evidence demonstrating that SSIs reported for boron, fluoride, and sulfate concentrations in the downgradient monitoring wells (MW-301, MW-302, and MW-303) were likely due to leachate from the closed landfill, which is not subject to the requirements of 40 CFR 257.50-107.

As discussed in more detail in **Section 4.2** of this ASD, the findings for the April 2022 monitoring event are consistent with those for the previous events.

1.2 SITE INFORMATION AND MAP

EDG is located at 3739 Lakeshore Drive in Sheboygan, Sheboygan County, Wisconsin (**Figure 1**). EDG is an active coal-burning generating station. The EDG property includes a closed landfill and a series of closed CCR settling ponds, located on the opposite side of Lakeshore Drive from the plant itself (**Figure 1**). The EDG landfill is closed and no longer receives CCR. The groundwater monitoring system at EDG is a multi-unit system monitoring four former existing CCR Units which were contiguous:

- EDG Slag Pond (existing CCR surface impoundment)
- EDG North A-Pond (existing CCR surface impoundment)
- EDG South A-Pond (existing CCR surface impoundment)
- EDG B-Pond (existing CCR surface impoundment)

Closure of the four CCR surface impoundments was initiated in 2020, the cover was in place in June 2021, and the completion of closure was certified on August 9, 2021. The existing monitoring system will be used to monitor the closure area. A map showing the CCR Units and all background (or upgradient) and downgradient monitoring wells with identification numbers for the groundwater monitoring program is provided on **Figure 2**.

The closed CCR landfill (Wisconsin Department of Natural Resources [WDNR] Permit No. 2524) is located immediately west of the former ponds location. The landfill contains primarily fly ash with some slag and was closed in 1987. Because this CCR landfill did not accept CCR after October 19, 2015, the landfill is not subject to the requirements of 40 CFR 257.50-107. The closed landfill is unlined and is known to be impacting groundwater at the site (SCS, 2016). Previous investigations done at the site (BT², Inc., 1993; RMT, 1997) concluded that the groundwater impacts downgradient of the landfill and ponds were attributable to groundwater interaction with the landfill, rather than leakage from the ponds.

1.3 STATISTICALLY SIGNIFICANT INCREASES IDENTIFIED

SSIs were identified for boron, fluoride, and sulfate at one or more wells based on the April 2022 detection monitoring event. A summary of the April 2022 constituent concentrations and the established benchmark concentrations are provided in **Table 1**. The constituent concentrations with SSIs above the background concentration are highlighted in the table.

1.4 OVERVIEW OF ALTERNATIVE SOURCE DEMONSTRATION

This ASD report includes:

- Background information (Section 2.0)
- Evaluation of potential that SSIs are due to methodology or analysis (Section 3.0)
- Evaluation of potential that SSIs are due to natural sources or man-made sources other than the CCR Units (Section 4.0)
- ASD conclusions (Section 5.0)
- Monitoring recommendations (**Section 6.0**)

The boron, fluoride, and sulfate results from historical background and compliance sampling are provided in **Table 2**. The laboratory report for the April 2022 detection monitoring event will be included in the 2022 annual groundwater monitoring and corrective action report completed in January 2023. Complete laboratory reports for the background monitoring events and previous detection monitoring events were included in the previous annual groundwater monitoring and corrective action reports.

2.0 BACKGROUND

To provide context for the ASD evaluation, the following background information is provided in this section of the report, prior to the ASD evaluation sections:

- Geologic and hydrogeologic setting
- CCR Rule monitoring system
- Other monitoring wells
- Groundwater flow direction

A more detailed discussion of the background information for the site is provided in the ASD for the October 2017 event (SCS, 2018a).

2.1 GEOLOGIC AND HYDROGEOLOGIC SETTING

For the purposes of groundwater monitoring, the unconsolidated sand and gravel aquifer is considered to be the uppermost aquifer, as defined under 40 CFR 257.53, at the EDG ponds. The sand and gravel aquifer is present in some parts of Sheboygan County (Skinner and Borman, 1973). Boring logs from monitoring wells at the EDG ponds and for nearby private wells indicate that the unconsolidated material at, and near, the site contains a significant amount of sand. Private well logs from the surrounding area indicate that the sand and gravel aquifer has been used as a water source; however, several older sand wells in the area have been replaced with bedrock water supply wells.

The dolomite aquifer underlies the unconsolidated material at the site. The total thickness of the dolomite aquifer at the site is unknown. The dolomite aquifer is underlain by the Maquoketa shale, which is a confining unit. The Maquoketa shale is underlain by the Cambrian-Ordovician sandstone aquifer. This sequence of sedimentary bedrock units is over 1,500 feet thick in the site vicinity.

The regional groundwater flow in the unconsolidated sand and gravel aquifer in the vicinity of the site is to the east and slightly southeast.

2.2 CCR RULE MONITORING SYSTEM

The groundwater monitoring system established under the CCR Rule consists of one upgradient (background) monitoring well and three downgradient monitoring wells, as shown on **Figure 2**. The upgradient monitoring well is 2R-OW. The downgradient monitoring wells include MW-301, MW-302, and MW-303. The CCR compliance monitoring wells were installed in the unconsolidated sediments with screens in the uppermost soil layer producing appreciable water, which was a sandy silt unit. Well depths range from approximately 14.5 to 40 feet, measured from the top of the well casing.

2.3 OTHER MONITORING WELLS

Seventeen groundwater monitoring wells currently exist at the EDG site as part of the monitoring system developed for the state monitoring program for the closed landfill. The well locations are shown on **Figure 2**. These monitoring wells are used to monitor groundwater conditions at the site under the WDNR state monitoring program.

Monitoring wells for the state monitoring program are installed in the unconsolidated material at the site. This shallow monitoring system includes water table wells and piezometers. Well depths range from approximately 9 to 43 feet, measured from the top of the well casing.

2.4 GROUNDWATER FLOW DIRECTION

Shallow groundwater in the area of the EDG site generally flows to the south-southeast, toward Fish Creek, which discharges into Lake Michigan. There has historically been localized groundwater mounding associated with the EDG ponds, which are now closed. The water table map shown on **Figure 3** represents the site conditions of the unconsolidated deposits during the April 2022 detection monitoring event. The water table map shows a generally southward flow direction. The groundwater elevations at the CCR and state monitoring wells during the April 2022 detection monitoring event are in **Tables 3A** and **3B**.

3.0 METHODOLOGY AND ANALYSIS REVIEW

To evaluate the potential that an SSI is due to a source other than the regulated CCR Unit, SCS used a two-step evaluation process. First, the sample collection, field and laboratory analysis, and statistical evaluation were reviewed to identify any potential error or analysis that led to the exceedance of the benchmark. Second, potential alternative sources, including natural variation and man-made sources other than the CCR Unit, were evaluated. This section of the report provides the findings of the methodology and analysis review. **Section 4.0** of the report addresses the potential alternative sources.

3.1 SAMPLING AND FIELD ANALYSIS REVIEW

Field notes and sampling results were reviewed to determine if any sampling error may have caused or contributed to the observed SSIs. Potential field sampling errors or issues could include mislabeling of samples, improper sample handling, missed holding times, cross-contamination during sampling, or another field error. Field blank sample results were also reviewed for any indication of potential contamination from sampling equipment or containers. Based on the review of the field notes and results, SCS did not identify any indication that the SSI concentrations were due to a sampling error.

Because boron, fluoride, and sulfate are laboratory parameters, there is little potential for a field analysis error to contribute to an SSI.

3.2 LABORATORY ANALYSIS REVIEW

The laboratory report for the April 2022 detection monitoring was reviewed to evaluate whether any laboratory analysis error or issue may have caused or contributed to the observed SSIs for boron, fluoride, or sulfate. The laboratory report review included reviewing the laboratory quality control flags and narrative, verifying that correct methods were used and desired detection limits were achieved, and checking the field and laboratory blank sample results. Laboratory reports for the background monitoring events were reviewed for the October 2017 ASD. Laboratory reports for subsequent detection monitoring events were reviewed as part of the ASD preparation for each event.

The April 2022 fluoride and sulfate results for wells 2R-OW and MW-303 were reported with D3 flags, indicating that the samples were diluted due to the presence of high levels of non-target analytes or other matrix interference. The fluoride and sulfate detection limits shown in **Table 1** are the lowest the laboratory could achieve for the samples and the dilutions do not affect the usability of the data for determining compliance.

The boron results for the field blank and for well 2R-OW were reported with 1q flags, indicating that the analyte was measured in the associated method blank at -3.1 micrograms per liter (μ g/L). These results do not affect the usability of the data.

Both of the matrix spike/matrix spike duplicate (MS/MSD) quality control analyses included with the sample batch had one of the two spike recoveries slightly exceeding the allowable limits, indicating a possible slight high bias in the fluoride results. One of the MS/MSD analyses also had high recovery for sulfate. The samples were accepted based on the acceptable laboratory control sample recoveries and were not flagged in the laboratory report.

Based on the review of the laboratory reports, SCS did not identify any indication that the SSI concentrations were due to a laboratory analysis error. Although there were some quality control issues noted, there were no laboratory quality control flags or issues identified in the laboratory reports that appeared to have a significant impact on the usability of the data for detection monitoring.

Time series plots of the analytical data were also reviewed for any anomalous results that might indicate a possible sampling or laboratory error (e.g., dilution error or incorrect sample labeling). Time series plots for the parameters with SSIs are provided in **Appendix A**. No indications of sampling or laboratory errors were noted based on the time series review. The April 2022 boron, fluoride, and sulfate results for MW-301, MW-302, and MW-303 are consistent with the historical data.

3.3 STATISTICAL EVALUATION REVIEW

The review of the statistical results and methods includes a quality control check of the following:

- Input analytical data vs. laboratory analytical reports
- Review statistical method and outlier concentration lists for each monitoring well/CCR unit

Based on the review of the statistical evaluation, SCS did not identify any errors or issues in the statistical evaluation that caused or contributed to the determination of interwell SSIs for the April 2022 detection monitoring event.

3.4 SUMMARY OF METHODOLOGY AND ANALYSIS REVIEW FINDINGS

In summary, there were no changes to the SSI determinations for the April 2022 monitoring event based on the methodology and analysis review, and no errors or issues causing or contributing to the reported SSIs were identified.

4.0 ALTERNATIVE SOURCES

This section of the report discusses the potential alternative sources for the boron, fluoride, and sulfate SSIs at MW-301, MW-302, and MW-303; identifies the most likely alternative source(s); and presents the lines of evidence indicating that an alternative source is most likely the cause of the observed SSIs for boron, fluoride, and sulfate.

4.1 POTENTIAL CAUSES OF SSI

4.1.1 Natural Variation

The statistical analysis was completed using an interwell approach, comparing the April 2022 detection monitoring results to the upper prediction limits (UPLs) calculated based on the sampling of the background well (2R-OW). If concentrations of a constituent that is naturally present in the aquifer vary spatially, then the potential exists that the downgradient concentrations may be higher than upgradient concentrations due to natural variation.

Although natural variation is present in the shallow aquifer, it does not appear likely that natural variation is the primary source causing the boron and sulfate SSIs. These parameters were detected at higher concentrations than would likely be present naturally.

Natural variation may have caused or contributed to the SSI for fluoride at MW-302. Elevated natural fluoride concentrations significantly higher than those reported for the downgradient wells (above 2 milligrams per liter [mg/L]) have been observed in a region in eastern Wisconsin extending along the Lake Michigan shoreline from Kewaunee County in the north to the Illinois border in the south, as described in Luczaj, J., and Masarik, K, 2015, *Groundwater Quantity and Quality Issues in a Water-Rich Region: Examples from Wisconsin, USA*. The authors note that most of the wells with elevated fluoride appear to be drawing from the Pleistocene glacial sediments and Silurian dolomite units. Skinner and Borman (1973) and Kammerer (1995) also identify the Lake Michigan shoreline area of eastern Wisconsin as having somewhat elevated fluoride concentrations in groundwater.

The fluoride concentrations reported for MW-302 for October 2017 through April 2020 and April 2021 through April 2022 were just above the laboratory's limit of quantitation (LOQ), ranging from 0.78 mg/L in April 2018 to 0.91 mg/L in April 2022. These results are within the range of fluoride results at MW-302 during background monitoring for the CCR rule prior to October 2017 (**Table 2**). The result at MW-302 is within the range of reported regional natural concentrations, indicating that the fluoride concentration observed in this well is potentially due to natural variability in the glacial sediments and shallow groundwater. As discussed below, there is also a potential that fluoride in MW-302 is associated with impacts from the closed CCR landfill.

4.1.2 Man-Made Alternative Sources

Man-made alternative sources that could potentially contribute to the boron, fluoride, and sulfate SSIs could include the closed CCR landfill, the coal storage area, or other historical plant operations. Based on the groundwater flow directions and previous investigations at the site, the closed landfill appears to be the most likely cause of the SSIs for wells MW-301, MW-302, and MW-303.

4.2 LINES OF EVIDENCE

The lines of evidence indicating that the SSIs for boron, fluoride, and/or sulfate, relative to the background well, are due to an alternative source include:

- 1. A previous study of the CCR ponds and the closed CCR landfill determined that the landfill was the primary source of groundwater impacts in the area, based on multiple lines of evidence.
- 2. Past and current monitoring performed under the state monitoring program shows that boron, fluoride, and sulfate are present in the CCR landfill leachate.
- 3. Past and current monitoring performed under the state monitoring program shows that the highest boron and sulfate concentrations are in monitoring wells near and downgradient from the CCR landfill.

Lines of evidence regarding natural variability as an additional alternative source of the fluoride SSIs are discussed above in **Section 4.1.1**.

Each of these lines of evidence and the supporting data were discussed in detail in the ASD for the October 2017 detection monitoring event (SCS, 2018b). The lines of evidence are discussed briefly below, focusing on any updated information collected since the previous ASD.

4.2.1 Previous CCR Pond and Landfill Study

A previous investigation titled *Field Investigation Report: Edgewater Closed Ash Disposal Facility,* completed by BT² in 1993, found that groundwater impacts were likely due to the closed landfill (**Figure 2**) located immediately west of the ponds (BT², 1993). The purpose of the 1993 investigation was to investigate the likely impact on groundwater quality of lining or abandoning the CCR impoundments (referred to in the report as the Wisconsin Pollutant Discharge Elimination System [WPDES] lagoons). The results from the investigation indicated that the CCR impoundments were not the primary source of downgradient groundwater impacts, and that closure or lining was not warranted at that time. The WDNR concurred with that finding in a letter dated April 20, 1994.

The primary lines of evidence from the 1993 report that supported this finding, and support the ASD for boron, fluoride, and sulfate, included:

- Water samples collected from each of the ponds met the Wisconsin groundwater enforcement standards established under NR 140, Wisconsin Administrative Code.
- Soil borings installed in the material below the larger ash pond, where the slag pond and the WPDES lagoons (North Pond A and South Pond A) were constructed, indicated that material below the ponds was almost entirely slag material. Water leaking out of the lagoons and moving downward would encounter primarily slag, which is relatively inert, and not fly ash. Additionally, results for water leach testing of site-wide composite samples of fly ash and slag confirmed that the fly ash had a higher potential than slag to impact groundwater. Leach test results for the fly ash composite sample were higher for boron, sulfate, and fluoride in comparison to the slag composite sample (ASTM Method D3987-85 and the EP toxicity method at a pH of 7).
- Ash disposal in the closed landfill is primarily fly ash. For seven borings in the landfill, the percent fly ash ranged from 60 to 86 percent.
- Water leach testing (ASTM method) for individual boring samples of fly ash and/or slag also confirmed that fly ash leachate had significantly higher concentrations of boron and sulfate than slag leachate. For example, boron leach test results for seven samples from borings within the landfill, consisting mainly of fly ash, ranged from 624 to 3,370 µg/L, with most results over 2,000 µg/L. Boron leach test results for nine samples from borings around and between the ponds, consisting mainly of slag, ranged from less than 16 to 206 µg/L.
- Water sampling within the landfill and pond area, in CCR above the native soil, documented that groundwater/leachate within the landfill had significantly higher concentrations of boron than the groundwater/leachate within the slag berms immediately adjacent to and between the Slag Pond, North/South Pond A, and Pond B.
- Groundwater monitoring results indicated that the highest concentrations of boron and sulfate were in monitoring wells downgradient from the landfill, including 18-OW and 29-OW. Elevated boron and sulfate were also reported for samples from wells 4-OW and 5-OW, located near the southwest and northwest corners of the landfill. Monitoring wells 6-OW and 7-OW, located east and southeast of the ponds, had much lower concentrations of boron and sulfate.

In the April 1994 approval letter, the WDNR approved the 1993 investigation of the WPDES lagoons/CCR impoundments and concurred with the findings of the report. The WDNR requested additional monitoring from the four new monitoring wells installed within the CCR (36-OW, 37-OW, 38R-OW, and 39R-OW) and requested the addition of fluoride and arsenic to the monitoring program for these groundwater/leachate head wells.

The results of the additional monitoring were reported to the WDNR in a Groundwater Assessment Report dated September 30, 1997. The WDNR responded to the 1997 report in a letter dated April 16, 1998, which stated, "We agree with the report's finding that the WPDES ponds [Slag Pond, North Pond A, and South Pond A] do not appear to be significantly contributing to the contaminant plume downgradient of the facility. No further remedial action concerning the influence of the ponds on the landfill is warranted at this time." The WDNR also noted that the leachable constituents migrating from the saturated portion of the closed landfill have stabilized or also decreased since the landfill's closure and capping.

4.2.2 CCR Constituents in Landfill Leachate

Past and current monitoring performed under the state monitoring program shows that boron and sulfate are present in the CCR landfill leachate. Recent groundwater and leachate monitoring results for boron and sulfate in samples from the state monitoring program wells are summarized in **Table 4** (April 2016 through April 2022). The leachate head wells monitoring conditions within the CCR landfill are 37-OW, 38R-OW, and 39R-OW, listed near the end of the table.

Boron: Boron concentrations in samples from leachate head wells 37-OW, 38R-OW, and 39R-OW have generally exceeded those reported for the CCR monitoring wells.

Sulfate: Sulfate concentrations in samples from leachate head wells 37-OW, 38R-OW, and 39R-OW have generally exceeded those reported for the CCR monitoring wells.

Fluoride: Fluoride is not part of the routine state monitoring program for the closed CCR landfill, but was sampled from the leachate wells (37-OW, 38R-OW, and 39R-OW) and the pond berm well (36-OW) from 1994 to 1997, as requested by the WDNR. The fluoride concentrations ranged from 0.25 to 0.97 mg/L (**Table 5**). The fluoride concentration for the sample collected at MW-302 (0.88 mg/L) was less than the highest observed concentration at the leachate wells.

Based on these results, fly ash disposal in the closed CCR landfill is a likely historical source of elevated boron and sulfate in groundwater, and is a potential source of fluoride.

4.2.3 State Program Groundwater Monitoring Results

Current monitoring performed under the state monitoring program continues to show that the highest boron and sulfate concentrations are in the monitoring wells near and downgradient from the CCR landfill. State program monitoring results for the CCR Rule detection monitoring parameters that overlap with the state program are summarized in **Table 4**, and well locations are on **Figure 2**.

Consistent with the conditions observed at the time of the 1993 report, the recent groundwater monitoring results indicate that the highest concentrations of boron and sulfate are in monitoring wells downgradient from the landfill, including 40-OW (replaced former 18-OW) and 29-OW. While 29-OW appears to be downgradient from both the landfill and the ponds, 40-OW has the highest concentrations and does not appear to be downgradient from the ponds. Elevated boron and sulfate also continue to be reported for samples from wells 4R-OW (replacement well for 4-OW) and 5-OW,

which are located near the southwest and northwest corners of the landfill and not downgradient from the ponds. Concentrations of boron and sulfate in the CCR program monitoring wells are lower than in the downgradient state program wells, consistent with the closed CCR landfill as the primary source.

5.0 ALTERNATIVE SOURCE DEMONSTRATION CONCLUSIONS

The lines of evidence discussed above regarding the SSIs reported for boron, fluoride, and sulfate concentrations in downgradient monitoring wells MW-301, MW-302, and/or MW-303 demonstrate that the SSIs are likely primarily due to leachate from the closed landfill, which is not subject to the requirements of 40 CFR 257.50-107. The landfill is regulated by the WDNR under the solid waste program. Natural variation may also contribute to the SSI reported for fluoride in downgradient monitoring well MW-302.

6.0 SITE GROUNDWATER MONITORING RECOMMENDATIONS

In accordance with section 257.94(e)(2) of the CCR Rule, the EDG pond site may continue with detection monitoring based on this ASD. The ASD report will be included in the 2022 Annual Report due January 31, 2023.

7.0 **REFERENCES**

BT², Inc., 1993, Field Investigation Report, Edgewater Closed Ash Disposal Facility, Wisconsin Power & Light Company, WDNR License #2524, June 1993.

Krammerer, P.A. Jr., 1995, Ground-Water Flow and Quality in Wisconsin's Shallow Aquifer System, U.S. Geological Survey, Water-Resources Investigations Report 90-4171.

Luczaj, J., and Masarik, K, 2015, Groundwater Quantity and Quality Issues in a Water-Rich Region: Examples from Wisconsin, USA: Resources, 2015, 4, 323-357.

RMT, Inc., 1997, Groundwater Assessment Report, Edgewater Closed Ash Disposal Facility, September 30, 1997.

SCS Engineers, 2016, Biennial Groundwater Monitoring Report for 2014-2015, Wisconsin Power and Light Company – Edgewater 1-4 (Closed) Ash Disposal Facility, Sheboygan, WI, License #02524, March 2016.

SCS Engineers, 2018a, Alternative Source Demonstration, October 2017 Monitoring Event, Edgewater Generating Station, April 2018.

SCS Engineers, 2018b, 2017 Annual Groundwater Monitoring and Corrective Action Report, Edgewater Generating Station, January 2018.

Skinner, Earl L., and Borman, Ronald G., 1973, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigation Atlas HA-432.

U.S. Environmental Protection Agency, 2015, Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities, Final Rule. April 2015.

[This page left blank intentionally.]

Tables

- 1 Groundwater Analytical Results Summary April 2022
- 2 Historical Analytical Results for Parameters with SSIs
- 3A Groundwater Elevations State Monitoring Wells
- 3B Groundwater Elevations CCR Rule Monitoring Wells
- 4 2016-2022 Groundwater Analytical Results Closed Landfill State Monitoring Program Wells
- 5 Analytical Results Closed Landfill Leachate Fluoride Monitoring

		Backgro Wel		Compliance Wells				
		2R-O	W	MW-301	MW-302	MW-303		
Parameter Name	UPL	4/13/20	022	4/13/2022	4/13/2022	4/13/2022		
Appendix III					-			
Boron, µg/L	86	27.9	١q	7,240	1,460	4,360		
Calcium, µg/L	200,000	160,000		89,300	61,500	139,000		
Chloride, mg/L	400	275		14.0	21.2	23.4		
Fluoride, mg/L	0.2	<0.95	D3	<0.095	0.91	<0.48 D3		
Field pH, Std. Units	8.57	7.20		7.38	7.70	6.78		
Sulfate, mg/L	36	18.5	J, D3	212	68.5	<2.2 D3		
Total Dissolved Solids, mg/L	1,190	866		560	318	722		

Table 1. Groundwater Analytical Results Summary Edgewater Generating Station / SCS Engineers Project #25222068.00

Blue shaded cell indicates the compliance well result exceeds the UPL (background) and the Limit of Quantitation (LOQ).

Abbreviations:

UPL = Upper Prediction Limit -- = Not Applicable

4.4

LOD = Limit of Detection mg/L = milligrams per literLOQ = Limit of Quantitation $\mu g/L = micrograms per liter$

Lab Notes:

D3 = Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

J = Estimated concentration at or above the LOD and below the LOQ.

1g = Analyte was measured in the associated method blank at -3.1 ug/L.

Notes:

1. An individual result above the UPL does not constitute an SSI above background. See the accompanying report text for identification of statistically significant results.

2. Interwell UPLs calculated based on results from background well 2R-OW. Interwell UPLs based on a 1-of-2 retesting approach. The interwell UPLs were updated in January 2021 using data from April 2016 through October 2020.

Created by: NDK	Date: 1/7/2021
Last revision by: RM	Date: 5/6/2022
Checked by: JJK	Date: 5/16/2022
Scientist/PM QA/QC: TK	Date: 9/23/2022

Well Group	Well	Collection Date	Boron (µg/L)	Fluoride (mg/L)	Sulfate (mg/L)
		4/8/2016	100	<0.20	19.5
		6/20/2016	22.4	<0.20	28.0
		8/9/2016	32.6	<0.20	25.4
		10/20/2016	43.1	<0.10	21.6
		1/24/2017	31.2	<0.10	23.9
		4/6/2017	70.6	<0.10	17.6
7		6/6/2017	45.2	<0.10	17.8
our		8/1/2017	35.7	<0.10	28.8
Background	2R-OW	10/23/2017	55.9	< 0.10	29.3
ско ХС	21-077	4/2/2018	19.7	0.12 J	17.2
gaa		10/1/2018	34.7	< 0.10	37.2
ш		4/8/2019	35.8	< 0.10	10.6
		10/7/2019	58.8	< 0.10	13.2
		4/8/2020	52.3	< 0.095	11.6
		10/15/2020	29.9	<0.096 J	20.3
		4/14/2021	45.7	< 0.095	15.3
		10/27/2021	47.2	<4.8 D3	35.7 J, D3
		4/13/2022	27.9 lq	<0.95 D3	18.5 J, D3
		4/11/2016	8,550	0.33 J	372
		6/20/2016	8,190	0.36 J	343
		8/9/2016	8,450	0.33 J	368
		10/20/2016	8,620	0.34	369
		1/23/2017	9,280	0.42	372
		4/6/2017	8,370	0.21 J	367
		6/6/2017	9,160	<0.10	362
		8/2/2017	8,610	0.32	340
	MW-301	10/24/2017	8,820	<0.10	341
	10100-301	4/2/2018	7,950	0.25 J	332
		10/1/2018	8,230	0.20 J	318
		4/8/2019	7,310	0.29 J	322
		10/7/2019	7,220	0.24 J	312
		4/8/2020	7,450	0.39 MO	298
		10/15/2020	6,550	<0.48 D3, M0	293
		4/14/2021	7,200	0.25 J	195
e		10/26/2021	6,710	0.24 J, M0	203 M0
Compliance		4/13/2022	7,240	<0.095	212
plic		4/8/2016	1,950	0.83	75.1
Ш		6/20/2016	2,010	1.3 J	89.6
Ŭ		8/9/2016	2,000	0.80	80.7
		10/20/2016	2,150	0.80	77.2
		1/24/2017	2,000	0.89 J	71.1
		4/6/2017	1,970	0.76	85.8
		6/6/2017	1,970	0.9	88.5
		8/2/2017	1,890	0.78	80.2
		10/24/2017	1,760	0.84	72.2
	MW-302	4/2/2018	1,800	0.78	72.7
		10/1/2018	1,570	0.81	59.2
		4/8/2019	1,670	0.87	71.7
		10/7/2019	1,730	0.85	55.7
		4/8/2020	1,570	0.97	65.3
		10/15/2020	1,410	1.0 J, D3	73.1
		4/14/2021	1,550	0.88	70.5
		10/26/2021	1,580	0.88	71.2
		4/13/2022	1,360	0.80	68.5
		+/ 10/ 2022	1,400	0.71	00.0

Table 2. Historical Analytical Results for Parameters with SSIsEdgewater Generating Station, Sheboygan, WisconsinSCS Engineers Project #25222068.00

Well Group	Well	Collection Date	Boron (µg/L)	Fluoride (mg/L)	Sulfate (mg/L)
		4/8/2016	4,210	<0.20	3.0 J
		6/20/2016	3,360	<1.0	11.4 J
		8/9/2016	3,860	<0.20	2.4 J
		10/20/2016	3,740	<0.50	5.6 J
		1/24/2017	4,210	<0.50	<5.0
		4/6/2017	4,170	<0.50	<5.0
		6/6/2017	4,570	<0.50	<5.0
0 U		8/2/2017	3,780	<0.50	<5.0
Compliance		10/24/2017	3,480	<0.50	<5.0
ildr	MW-303	4/2/2018	3,040	<0.50	<5.0
Lon Con		10/1/2018	2,360	<0.10	<1.0
0		4/8/2019	2,930	<0.50	<5.0
		10/7/2019	2,830	<0.50	<5.0
		4/8/2020	3,380	<0.48	<2.2
		10/15/2020	3,310	<0.48 D3	<2.2 D3
		4/14/2021	4,600	<0.095	0.54 J
		10/26/2021	3,650	<0.48 D3	<2.2 D3
		4/13/2022	4,360	<0.48 D3	<2.2 D3

Table 2. Historical Analytical Results for Parameters with SSIs Edgewater Generating Station, Sheboygan, Wisconsin SCS Engineers Project #25222068.00

Abbreviations:

 μ g/L = micrograms per liter or parts per billion (ppb)

mg/L = milligrams per liter or parts per million (ppm)

-- = not analyzed

J = Estimated value below laboratory's limit of quantitation (LOQ)

M0 = Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

D3 = Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

1g = Analyte was measured in the associated method blank at -3.1 ug/L.

Notes:

1. Complete laboratory reports included in 2017 Annual Groundwater Monitoring and Corrective Action Report, Edgewater Generating

Station.

Created by:	NDK	Date:	3/2/2018
Last revision by:	RM	Date:	7/26/2022
Checked by:	JJK	Date:	8/3/2022

I:\25222068.00\Deliverables\2022 Apr ASD Edg Closed\Tables\[Tables 2 and 4 - Analytical CCR and State Monitoring.xlsx]Table 2. CCR Analytical

Table 3A. Groundwater Elevations - State Monitoring WellsEdgewater 1-4 Closed Ash Disposal Facility / SCS Engineers Project #25222068.00

							Grour	nd Water	Elevatior	in feet a	bove me	ean sea l	evel (am	sl)								
Well Number	1-OW	2R-OW	3R-OW	4R-OW	5-OW	W-5A	6-AR	6R-OW	7A-OW	7-OW	18-OW	29-OW	29-A	30-OW	31-OW	32-OW	36-OW	37-OW	38R-OW	39R-OW	40-OW	SG-01
Top of Casing (old)									593.7	592.73		589.03							620.98		587.42	
Top of Casing Elevation (feet amsl)	591.72	612.72	591.32	595.60	600.72	601.84	591.32	590.98	593.41	592.51	586.47	588.86	589.25	590.81	589.00	589.07	614.63	615.02	621.14	614.04	586.05	
Screen Length (ft)																						
Total Depth (ft from top of casing)	11.10	17.53	15.82	16.48	10.65	21.51	19.86	10.37	20.21	9.93	14.25	19.96	43.12	14.88	14.98	14.95	21.01	18.55	29.00	22.29	17.3	
Top of Well Screen Elevation (ft)	580.62	595.19	575.50	579.12	590.07	580.33	571.46	580.61	573.20	582.58	572.22	568.90	546.13	575.93	574.02	574.12	593.62	596.47	591.98	591.75		0.00
Measurement Date																						
October 24, 2012	588.11	607.82	582.64	585.24	595.63	596.69	587.42	587.40	592.00	589.78	583.49	585.33	586.60	586.40	582.58	583.63	599.77	599.42	599.38	598.05		597.60
April 18, 2012					595.89	597.13	587.33	587.35	592.35	589.79		585.32	588.39						1			
October 24, 2012					595.63	596.69	587.42	587.40	592.00	589.78		585.33	586.60									
April 8, 2013	588.50	609.92	588.37	586.35	596.66	597.65	588.40	587.34	592.79	589.95	583.97	585.78	588.07	588.57	584.35	584.50	600.79	600.24	600.16	598.30		597.9
October 22, 2013	584.88	601.15	580.90	584.46	594.23	595.64	582.64	584.83	591.23	587.24	NM ⁽¹⁾	584.70	586.76	582.19	580.40	580.76	599.13	598.22	598.42	596.56		598.0
April 22, 2014	588.05	609.22	587.99	586.11	595.18	597.10	587.00	587.37	589.27	589.51	NM ⁽¹⁾	585.38	588.22	587.53	583.75	583.75	NM ⁽¹⁾	599.67	599.38	598.56		597.8
October 28, 2014	586.14	607.27	586.30	585.08	595.33	596.51	587.68	586.99	591.92	589.29	NM ⁽¹⁾	585.00	587.84	585.48	582.88	582.68	600.07	599.81	599.26	598.37		595.85
April 7 - 9, 2015	587.90	608.47	587.44	585.52	595.66	596.76	586.99	587.50	591.95	588.50	ABAND	585.44	587.55	586.29	583.21	583.87	599.69	599.21	599.21	597.46	583.77	597.6
October 8, 2015	584.78	604.22	583.34	584.52	594.76	594.47	582.65	585.67	591.23	589.71	ABAND	584.69	587.27	584.26	581.60	582.52	600.29	599.47	599.70	598.09	583.01	
April 4-5, 2016	588.40	610.02	587.72	586.69	596.70	597.81	584.52	585.68	592.41	587.93	ABAND	582.95	587.25	586.91	584.35	584.47	601.05	601.37	601.18	601.13	579.28	599
October 17, 2016 ⁽²⁾	587.50	607.27	586.71	585.15	595.41	596.82	584.34	586.61	592.01	587.65	ABAND	581.25	586.10	586.23	583.02	583.83	600.87	600.70	600.74	599.49	579.42	
April 12-13, 2017	588.23	609.80	587.95	586.31	596.08	597.69	586.77	587.32	592.19	587.06	ABAND	583.74	585.43	585.36	583.68	584.52	602.01	602.11	602.08	601.29	584.02	
October 9, 2017	584.14	600.87	581.00	584.49	594.68	596.04	583.03	583.51	590.50	585.96	ABAND	583.01	584.88	582.76	580.93	581.18	600.18	598.48	599.65	598.07	583.05	
April 2, 2018	587.79	607.87	586.63	586.68	595.73	596.88	586.80	587.44	591.76	589.62	ABAND	585.51	587.11	585.68	582.95	582.85	600.71	600.00	600.04	597.99	583.64	
June 19, 2018	NM	605.70	585.49	585.20	595.41	NM	NM	NM	NM	587.20	ABAND	585.43	585.79	584.96	582.29	NM	NM (1)	600.44	600.68	599.61	583.07	NM
October 1, 2018	585.37	604.61	584.18	584.86	595.24	596.44	586.10	586.86	591.01	588.75	ABAND	585.04	584.94	584.79	582.11	582.81	600.30	600.12	600.27	599.79	583.17	
April 8, 2019	588.57	609.50	588.01	591.93	596.03	597.33	584.61	587.35	591.92	590.06	ABAND	585.76	586.75	587.83	584.18	584.85	600.21	599.60	599.74	598.49	583.75	┢────
October 9-10, 2019	587.85	609.39	587.39	585.99	595.68	596.92	586.42	587.24	591.66	587.53	ABAND	585.14	585.10	587.15	583.63	584.48	599.92	600.25	600.01	599.82	583.08	
April 8-9, 2020	588.03	608.97	587.70	586.05	595.57	596.89	585.74	586.95	591.61	587.76	ABAND	584.98	587.35	587.29	583.70	584.59	599.40	599.52	599.48	599.38	583.01	
October 14-15, 2020	584.62	604.37	582.20	584.54	593.27	594.86	582.71	583.45	588.81	586.53	ABAND	583.95	586.83	583.83	582.60	582.82	ABAND	596.87	NM	594.72	583.26	NM
April 14, 2021	<u>587.95</u> 584.53	608.50	587.64 580.74	585.42	594.87	596.13	586.53	587.29 584.60	591.28 590.45	589.89 587.39	ABAND	585.16 584.60	587.64	587.06 582.89	583.46 581.88	584.25 582.02	ABAND	DRY DRY	596.50	593.95 592.34	583.08 582.74	NM ABAND
October 27-28, 2021 February 28, 2022	<u> </u>	603.62 NM	580.74 NM	584.47 NM	593.06 NM	594.70 NM	579.90 NM	<u>584.60</u> NM	590.45 NM	<u>587.39</u> NM	ABAND ABAND	584.60 NM	586.65 NM	382.89 NM	001.88 NM	<u>582.02</u> NM	ABAND	DRY	595.49 595.25	592.34 NM	<u>582.74</u> NM	ABAND
April 13, 2022	588.18	609.50		585.98	595.50	596.29	586.62	587.39	591.56	1 11 1 1			585.64	587.70	583.88	1.0.11	ABAND		595.23	DRY		
Bottom of Well Elevation (ft)	580.62	595.19	575.50	579.12	590.07	580.33	571.46	580.61	573.20	582.58	572.22	568.90	546.13	575.93	574.02	574.12	593.62	596.47	592.14	591.75	568.75	0.00

	Created by:	MDB	Date:	5/6/2013
Notes:	Last revision by:	MDB	Date:	4/25/2022
NM = not measured	Checked by:	RM	Date:	8/1/2022

ABAND = abandoned

DRY = Well was dry during sampling event, and didn't contain sufficent water for a measurement.

1: Well broken

2: Well casings at 7-OW, 7A, and 29-OW were cut down to allow the protective covers to close. 7-OW was cut down by 0.22 ft, 7A was cut down by 0.29

ft, and 29-OW was cut down by 0.17 ft. Top of casing elevations in this table were adjusted accordingly.

*: Well was frozen

Monitoring well 38R-OW was extended on October 30, 2020 during repairs following well damage by pond closure construction equipment. Monitoring Well 40-OW cut down to have a top of casing elevation of 586.05 famsl on December 3, 2021.

I:\25222068.00\Deliverables\2022 Apr ASD Edg Closed\Tables\[Table 3A - GW Elevations State Wells.xls]levels

Ground Water Elevation	n in feet above	e mean sea le	evel (amsl)	
Well Number	MW-301	MW-302	MW-303	2R-OW
Top of Casing Elevation (feet amsl)	604.42	615.15	611.99	612.72
Screen Length (ft)	5.00	5.00	5.00	10.00
Total Depth (ft from top of casing)	27.47	40.00	33.26	14.50
Top of Well Screen Elevation (ft)	581.95	580.15	579.60	608.22
Measurement Date				
April 8, 2016	599.75	596.19	589.04	609.68
June 20, 2016	598.30	595.68	587.22	606.70
August 9, 2016	598.00	595.53	587.72	605.74
October 20, 2016	598.50	595.46	588.37	607.27
January 23-24, 2017	597.10	596.30	588.84	609.64
April 6, 2017	600.04	593.57	589.04	609.72
June 6, 2017	598.77	595.86	588.44	607.63
August 1, 2017	597.40	595.22	587.36	604.59
October 24, 2017	597.20	595.25	587.97	601.74
April 2, 2018	598.54	595.71	588.77	607.87
October 1, 2018	597.60	595.28	588.17	604.61
April 8, 2019	598.92	595.68	588.88	609.50
October 7, 2019	599.56	595.58	588.77	609.39
June 26, 2020	597.89	NM	NM	NM
October 15, 2020	595.10	598.56	593.19	604.27
April 14, 2021	595.17	600.56	595.01	608.50
October 26, 2021	590.68	599.82	594.07	604.04
April 13, 2022	594.89	600.50	595.20	609.50
Bottom of Well Elevation (ft)	576.95	575.15	578.73	598.22
Notes:	Created by:	MDB	Date:	6/27/2016
NM = not measured	Last rev. by:	RM	Date:	
	Checked by:	JAO	Date:	

Table 3B. Groundwater Elevations - CCR Monitoring Wells WPL - Edgewater 1-4 (Closed) Ash Disposal Facility / SCS Engineers Project #25222068.00

I:\25222068.00\Deliverables\2022 Apr ASD Edg Closed\Tables\[Table 3B - GW Elevations CCR Wells.xls]levels

Point Name	Reporting Period	Boron, dissolved (µg/L as B)	Sulfate, dissolved (mg/L as SO4)
Monitoring Wells			
2R-OW	2016-Apr	26.6	30.9
2R-OW	2016-Oct	40.4	22.9
2R-OW	2017-Apr	69.3 J	28.6
2R-OW	2017-Oct	35.2	32.9
2R-OW	2017-OCT 2018-Apr	23.3	18.2
2R-OW 2R-OW	2018-Oct	41.8	35.5
2R-OW 2R-OW	2018-OCT 2019-Apr	40.6	12.2
2R-OW	2017-Apr 2019-Oct	88.5	29.3
2R-OW	2019-0C1 2020-Apr	45.8	16.9
2R-OW	2020-Apr 2020-Oct	29.9	21.8
		31.1	21.8
2R-OW	2021-Apr		
2R-OW	2021-Oct	39.2	26
2R-OW	2022-Apr	25.7	14.1 M0
3R-OW	2016-Apr	392	533
3R-OW	2016-Oct	468	372
3R-OW	2017-Apr	400	409
3R-OW	2017-Oct	389	637
3R-OW	2018-Apr	351	498
3R-OW	2018-Oct	462	495
3R-OW	2019-Apr	337	279
3R-OW	2019-Oct	454	299
3R-OW	2020-Apr	473	498
3R-OW	2020-Oct	339	654
3R-OW	2021-Apr	316	172
3R-OW	2021-Oct	260	497
3R-OW	2022-Apr	234	126
4R-OW	2016-Apr	7,710	120
4R-OW	2016-Apr	17,300	252
4R-OW	2018-0C1 2017-Apr	12,600	180
4R-OW	2017-Apr 2017-Oct	12,800	178
			178
4R-OW 4R-OW	2018-Apr 2018-Oct	12,700	184
		8,630	129
4R-OW 4R-OW	2019-Apr	10,200	
	2019-Oct	9,200	161
4R-OW	2020-Apr	9,320	90.9
4R-OW	2020-Oct	10,200	134
4R-OW	2021-Apr	10,800	191
4R-OW	2021-Oct	10,400	140
4R-OW	2022-Apr	8,930	76
5-OW	2016-Apr	4,330	215
5-OW	2016-Oct	5,970	210
5-OW	2017-Apr	5,490	258
5-OW	2017-Oct	6,040	230
5-OW	2018-Apr	3,900	143
5-OW	2018-Oct	6,180	226
5-OW	2019-Apr	4,140	197
5-OW	2019-Oct	4,680	179
5-OW	2020-Apr	4,610	199
5-OW	2020-Oct	4,870	161
5-OW	2021-Apr	2,670	111
5-OW	2021-Oct	3,250	100
5-0W	2022-Apr	2,280	82.1
0-011	2022-7701	2,200	02.1

Point Name	Reporting Period	Boron, dissolved (µg/L as B)	Sulfate, dissolved (mg/L as SO₄)
Monitoring Wells (co	ontinued)		
7-OW	2016-Apr	610	255
7-OW	2016-Oct	964	251
7-OW	2017-Apr	761	259
7-OW	2017-Oct	1,130	246
7-OW	2018-Apr	818	243
7-OW	2018-Oct	1150	218
7-OW	2019-Apr	914	254
7-OW	2019-Oct	1,200	224
7-OW	2020-Apr	928	214
7-OW	2020-Oct	1,290	242
7-OW	2021-Apr	961	247
7-OW	2021-Oct	1,350	224
7-OW	2022-Apr	1,110	225
29-A	2016-Apr	357	40.9
29-A	2016-Oct	264	39.6
29-A	2017-Apr	365	41.5
29-A	2017-Oct	278	42.1
29-A	2018-Apr	264	39.4
29-A	2018-Oct	268	39.2
29-A	2019-Apr	292	44.2
29-A	2019-Oct	258	39.1
29-A	2020-Apr	268	37.5
29-A	2020-Oct	263	42.9
29-A	2021-Apr	262	214
29-A	2021-Oct	233	40.8
29-A	2022-Apr	250	39.6
29-OW	2016-Apr	10,600	120
27-OW 29-OW	2016-Apr	10,900	85.7
27-OW	2010-OCT 2017-Apr	9,500	77.0
27-OW	2017-Oct	9,060	62.0
27-OW	2017-OCT 2018-Apr	8,640	102
27-OW	2018-Oct	11,000	102
29-OW	2019-Apr	10,600	190
29-OW	2019-Oct	10,800	114
27-OW	2020-Apr	9,160	69.9
29-OW	2020-Oct	8,480	73.3
27-OW	2020-OCT 2021-Apr	7,120	66.4
29-OW	2021-Oct	8,700	86.7
29-OW	2022-Apr	9,160	77.2
30-OW	2016-Apr	79.1	4.80
30-OW	2016-Oct	113	4.60
30-OW	2017-Apr	176	7.50
30-OW	2017-Oct	135	16.7
30-OW	2018-Apr	94.5	21.5
30-OW	2018-Oct	115	11.4
30-OW	2019-Apr	52.1	2.40 J
30-OW	2019-Oct	84.9	5.60
30-OW	2020-Apr	54.4	2.80
30-OW	2020-Oct	118	15.2
30-OW	2021-Apr	42.3	5.5
30-OW	2021-Oct	108	14.9
30-OW	2022-Apr	35.9	3.6

Point Name	Reporting Period	Boron, dissolved (µg/L as B)	Sulfate, dissolved (mg/L as SO₄)
Monitoring Wells (co	ntinued)		
31-OW	2016-Apr	114	91.2
31-OW	2016-Oct	34.7	63.3
31-OW	2010-OCT 2017-Apr	76.9	82.4
31-OW	2017-Apr 2017-Oct	190	70.3
31-OW	2017-OCT 2018-Apr	30.8	51.5
31-OW	2018-Oct	36.7	62.7
31-OW	2018-OCT 2019-Apr	18.5	68.6
31-OW	2019-Apr 2019-Oct	38.6	57.5
		25.8	
31-OW	2020-Apr		39.1
31-OW	2020-Oct	30.8	58.5
31-OW	2021-Apr	51	59.5
31-OW	2021-Oct	39.5	35
31-OW	2022-Apr	32.2	26.5
40-OW	2016-Apr	8,030	731
40-OW	2016-Oct	29,400	768
40-OW	2017-Apr	8,680	849
40-OW	2017-Oct	8,800	873
40-OW	2018-Apr	9,790	771
40-OW	2018-Oct	11,300	797
40-OW	2019-Apr	8,620	636
40-OW	2019-Oct	10,600	836
40-OW	2020-Apr	10,900	836
40-OW	2020-Oct	9,870	818
40-OW	2020 OCT 2021-Apr	8.010	827
40-OW	2021-70pt	9,180	839
40-OW	2022-Apr	10,000	807
Leachate Monitoring	•		
37-OW	2016-Apr	19,100	759
37-OW	2016-Oct	12,500	439
37-OW	2017-Apr	15,900	633
37-OW	2017-Oct	9,440	264
37-OW	2017-OCT 2018-Apr	5,890	159
37-OW	2018-Oct	16,600	555
37-OW	2019-Apr	15,800	492
37-OW	2017-70pt	16,300	798
37-OW	2017-OCT 2020-Apr		769
37-OW	2020-Apr 2020-Oct	20,200	/ 0/
37-OW	2020-OCT 2021-Apr		
37-OW	2021-Apr 2021-Oct		
37-OW	2021-OC1 2022-Apr		
38R-OW		22 000	1,000
	2016-Apr	33,800	
38R-OW	2016-Oct	17,100	514
38R-OW	2017-Apr	21,100	932
38R-OW	2017-Oct	10,800	364
38R-OW	2018-Apr	4,250	123
38R-OW	2018-Oct	32,400	956
38R-OW	2019-Apr	9,720	330
38R-OW	2019-Oct	30,400	1,020
38R-OW	2020-Apr	51,800	1,520
38R-OW	2020-Oct		
38R-OW	2021-Apr	37400	1380
38R-OW	2021-Oct	38400	1310
38R-OW	2022-Apr		

Point Name	Reporting Period	Boron, dissolved (µg/L as B)	Sulfate, dissolved (mg/L as SO ₄)
Leachate Monitoring	Wells (continued)		
39R-OW	2016-Apr	10,100	534
39R-OW	2016-Oct	29,900	1,390
39R-OW	2017-Apr	22,400	1,150
39R-OW	2017-Oct	32,800	1,400
39R-OW	2018-Apr	28,800	772
39R-OW	2018-Oct	24,700	1,160
39R-OW	2019-Apr	26,000	1,520
39R-OW	2019-Oct	17,100	601
39R-OW	2020-Apr	19,100	1,160
39R-OW	2020-Oct	34,200	1,190
39R-OW	2021-Apr	24,800	1,140
39R-OW	2021-Oct		
39R-OW	2022-Apr		

Abbreviations:

µg/L = micrograms per liter or parts per billion (ppb) mg/L = milligrams per liter or parts per million (ppm) <u>Notes:</u>

--: not measured

Laboratory Notes:

J: Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

M0 = Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits

Created by:	SCC	Date:	2/24/2014
Last revision by:	RM	Date:	7/26/2022
Checked by:	JJK	Date:	8/3/2022

 $\label{eq:list} $$1222068.00\Deliverables\2022 Apr ASD Edg Closed\Tables\[Tables 2 and 4 - Analytical CCR and State Monitoring.xlsx]Table 4. GW quality Data$

Table 5. Analytical Results - Closed Landfill Leachate Fluoride MonitoringEdgewater Generating Station, Sheboygan, WisconsinSCS Engineers Project #25222068.00

Collection Date		Fluoride	Fluoride (mg/L)		
	36-OW	37-OW	38R-OW	39R-OW	
9/8/1994	0.25	0.62	0.57	0.79	
9/14/1995	0.38	0.51	0.71	0.87	
9/17/1996	0.56	0.42	0.71	0.97	
9/16/1997	0.60	0.44	0.73	0.97	

Abbreviations:

mg/L = milligrams per liter or parts per million (ppm)

Notes:

1. Data compiled from WDNR Groundwater Environmental Monitoring System (GEMS) website.

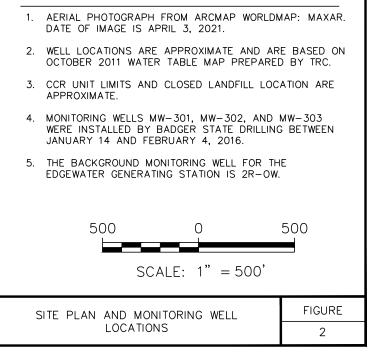
Created by:	NDK	Date:	3/5/2018
Last revision by:	NDK	Date:	3/5/2018
Checked by:	AJR	Date:	4/5/2018

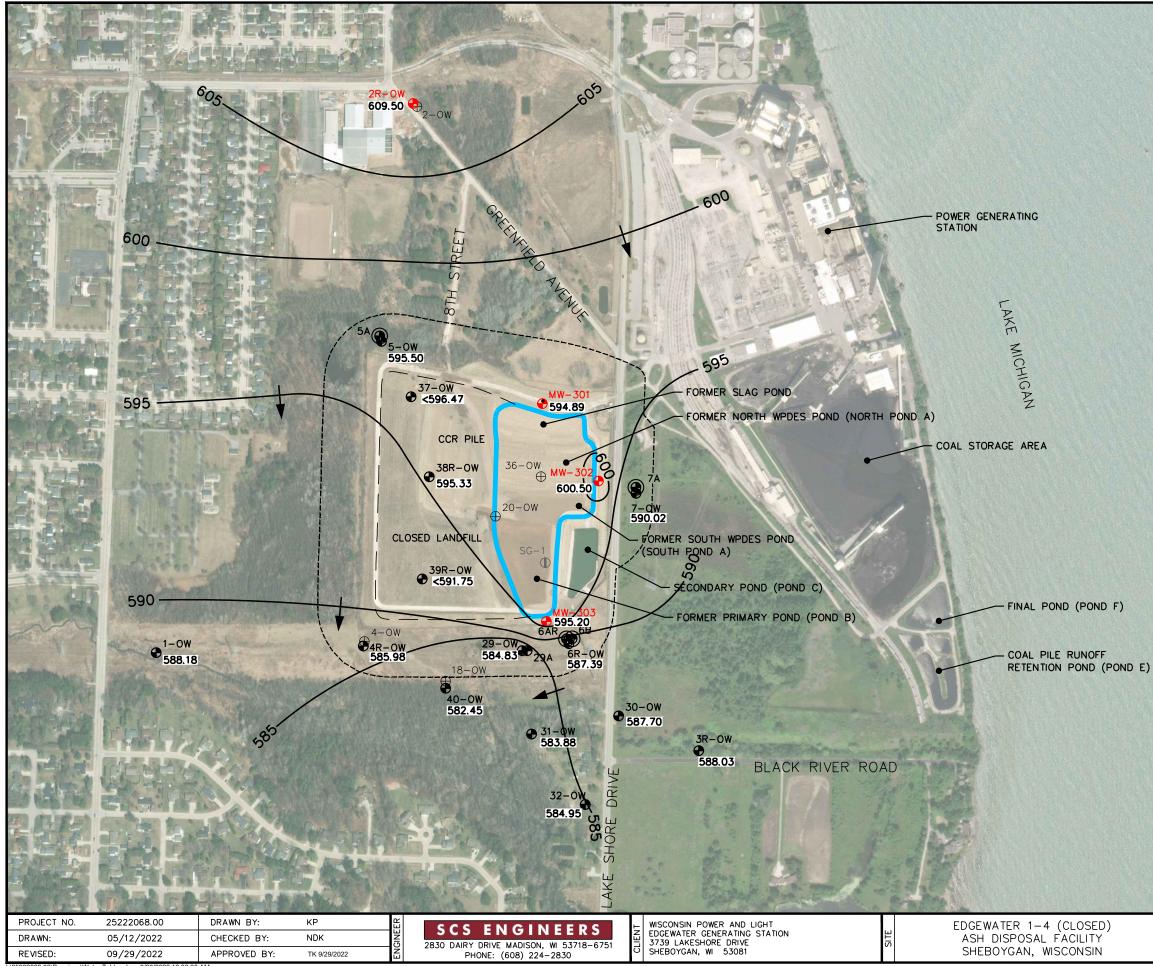
I:\25222068.00\Deliverables\2022 Apr ASD Edg Closed\Tables\[Table 5 - EDG - closed-Leachate Fluoride Monitoring.xlsx]Table 5- Fl results

Figures

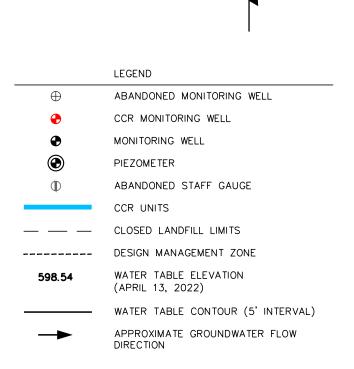
- 1 Site Location Map
- 2 Site Plan and Monitoring Well Locations
- 3 Water Table Map April 2022

I:\25220068.00\Drawings\ASD\Site Location Map.dwg, 4/12/2020 8:05:44 PM

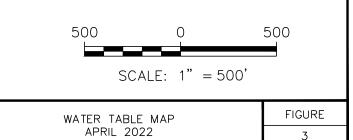


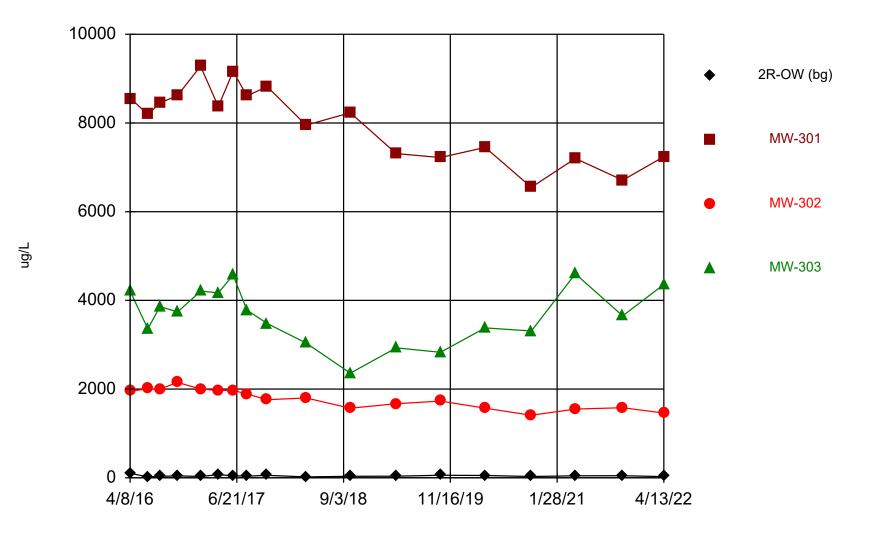

:\25222068.00\Drawings\Site Plan and Monitoring Well Locations.dwg, 4/18/2022 5:22:14 PM

•	CCR RULE MONITORING WELL
•	CCR RULE BACKGROUND MONITORING WELL
•	ADDITIONAL MONITORING WELL
۲	ADDITIONAL PIEZOMETER
\oplus	ABANDONED MONITORING WELL
Ф	ABANDONED STAFF GAUGE
	CCR UNITS
	CLOSED LANDFILL LIMITS


N

NOTES:


:\25222068.00\Drawings\Water Tables.dwg, 9/29/2022 10:33:36 AM


Ν

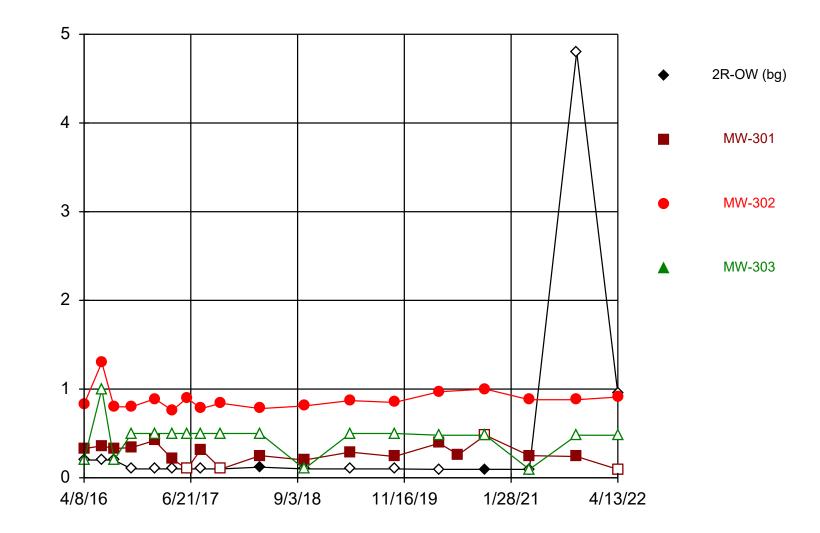
NOTES:

- 1. AERIAL PHOTOGRAPH FROM ARCMAP WORLDMAP: MAXAR. DATE OF IMAGE IS APRIL 3, 2021.
- EXISTING WELL LOCATIONS ARE APPROXIMATE AND ARE BASED ON OCTOBER 2011 WATER TABLE MAP PREPARED BY TRC.
- 3. DESIGN MANAGEMENT ZONE LOCATION IS APPROXIMATE
- 4. NEW MONITORING WELL LOCATIONS WERE SURVEYED BY CQM, INC. ON FEBRUARY 12, 2016.
- 5. MW-301, MW-302, AND MW-303 ARE NOT INCLUDED IN THE WDNR-APPROVED SITE-SPECIFIC MONITORING PLAN
- 6. GROUNDWATER ELEVATIONS COLLECTED FROM MONITORING WELLS ON APRIL 13, 2022.

Appendix A Trend Plots for CCR Wells Boron

Time Series Analysis Run 7/25/2022 2:54 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Time Series


Constituent: Boron (ug/L) Analysis Run 7/25/2022 2:55 PM View: CCR - UPL - 2020

Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

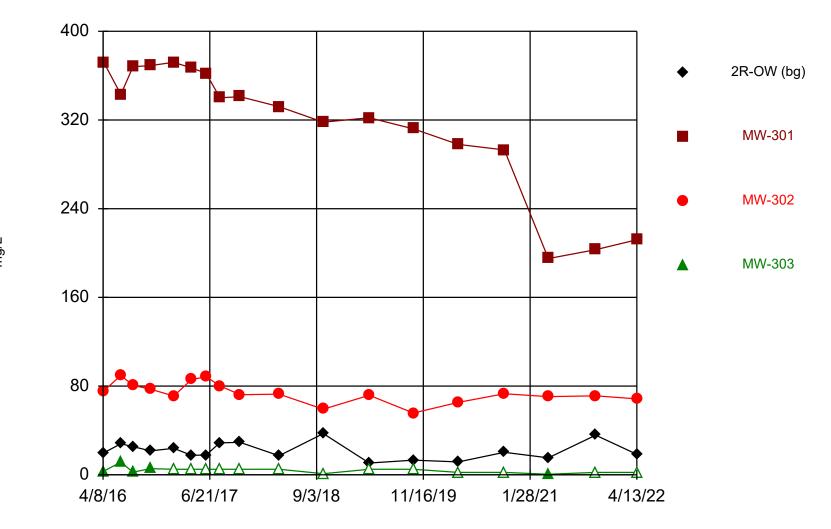
	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	100		1950	4210
4/11/2016		8550		
6/20/2016	22.4	8190	2010	3360
8/9/2016	32.6	8450	2000	3860
10/20/2016	43.1	8620	2150	3740
1/23/2017		9280		
1/24/2017	31.2		2000	4210
4/6/2017	70.6	8370	1970	4170
6/6/2017	45.2	9160	1970	4570
8/1/2017	35.7			
8/2/2017		8610	1890	3780
10/23/2017	55.9			
10/24/2017		8820	1760	3480
4/2/2018	19.7	7950	1800	3040
10/1/2018	34.7	8230	1570	2360
4/8/2019	35.8	7310	1670	2930
10/7/2019	58.8	7220	1730	2830
4/8/2020	52.3	7450	1570	3380
10/15/2020	29.9	6550	1410	3310
4/14/2021	45.7	7200	1550	4600
10/26/2021	47.2	6710	1580	3650
4/13/2022	27.9	7240	1460	4360

Sanitas[™] v.9.6.32 Software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Time Series Analysis Run 7/25/2022 2:54 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

mg/L

Time Series


Constituent: Fluoride (mg/L) Analysis Run 7/25/2022 2:55 PM View: CCR - UPL - 2020

Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	<0.2 (U)		0.83	<0.2 (U)
4/11/2016		0.33 (J)		
6/20/2016	<0.2 (U)	0.36 (J)	1.3 (J)	<1 (U)
8/9/2016	<0.2 (U)	0.33 (J)	0.8	<0.2 (U)
10/20/2016	<0.1 (U)	0.34	0.8	<0.5 (U)
1/23/2017		0.42		
1/24/2017	<0.1 (U)		0.89 (J)	<0.5 (U)
4/6/2017	<0.1 (U)	0.21 (J)	0.76	<0.5 (U)
6/6/2017	<0.1 (U)	<0.1 (U)	0.9	<0.5 (U)
8/1/2017	<0.1 (U)			
8/2/2017		0.32	0.78	<0.5 (U)
10/23/2017	<0.1 (U)			
10/24/2017		<0.1 (U)	0.84	<0.5 (U)
4/2/2018	0.12 (J)	0.25 (J)	0.78	<0.5 (U)
10/1/2018	<0.1 (U)	0.2 (J)	0.81	<0.1 (U)
4/8/2019	<0.1 (U)	0.29 (J)	0.87	<0.5 (U)
10/7/2019	<0.1 (U)	0.24 (J)	0.85	<0.5 (U)
4/8/2020	<0.095 (U)	0.39	0.97	<0.48 (U)
6/26/2020		0.26 (J)		
10/15/2020	0.096 (J)	<0.48 (U)	1 (J)	<0.48 (U)
4/14/2021	<0.095	0.25 (J)	0.88	<0.095
10/26/2021	<4.8 (U)	0.24 (J)	0.88	<0.48
4/13/2022	<0.95 (U)	<0.095 (U)	0.91	<0.48 (U)

Sanitas[™] v.9.6.32 Software licensed to SCS Engineers. UG Hollow symbols indicate censored values.

Sulfate

Time Series Analysis Run 7/25/2022 2:54 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

mg/L

Time Series

Constituent: Sulfate (mg/L) Analysis Run 7/25/2022 2:55 PM View: CCR - UPL - 2020

Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	19.5		75.1	3 (J)
4/11/2016		372		
6/20/2016	28	343	89.6	11.4 (J)
8/9/2016	25.4	368	80.7	2.4 (J)
10/20/2016	21.6	369	77.2	5.6 (J)
1/23/2017		372		
1/24/2017	23.9		71.1	<5 (U)
4/6/2017	17.6	367	85.8	<5 (U)
6/6/2017	17.8	362	88.5	<5 (U)
8/1/2017	28.8			
8/2/2017		340	80.2	<5 (U)
10/23/2017	29.3			
10/24/2017		341	72.2	<5 (U)
4/2/2018	17.2	332	72.7	<5 (U)
10/1/2018	37.2	318	59.2	<1 (U)
4/8/2019	10.6	322	71.7	<5 (U)
10/7/2019	13.2	312	55.7	<5 (U)
4/8/2020	11.6	298	65.3	<2.2 (U)
10/15/2020	20.3	293	73.1	<2.2 (U)
4/14/2021	15.3	195	70.5	0.54 (J)
10/26/2021	35.7 (J)	203	71.2	<2.2 (U)
4/13/2022	18.5 (J)	212	68.5	<2.2 (U)