2021 Annual Groundwater Monitoring and Corrective Action Report

Edgewater Generating Station Sheboygan, Wisconsin

Prepared for:

SCS ENGINEERS

25221068.00 | January 31, 2022

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830

OVERVIEW OF CURRENT STATUS

Edgewater Generating Station, Surface Impoundments 2021 Annual Report

In accordance with §257.90(e)(6), this section at the beginning of the annual report provides an overview of the current status of groundwater monitoring and corrective action programs for the coal combustion residual (CCR) units. The groundwater monitoring system at the Edgewater Generating Station is a multiunit system. Supporting information is provided in the text of the annual report.

Category	Rule Requirement	Site Status
Monitoring Status – Start of Year	(i) At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95;	Detection
Monitoring Status – End of Year	(ii) At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95;	Detection
Statistically Significant Increases (SSIs)	(iii) If it was determined that there was an SSI over background for one or more constituents listed in appendix III to this part pursuant to §257.94(e):	
	(A) Identify those constituents listed in appendix III to this part and the names of the monitoring wells associated with such an increase; and	April 2021 Boron: MW-301, MW-302,
	(B) Provide the date when the assessment monitoring program was initiated for the CCR unit.	Alternative Source Demonstrations prepared for October 2020 and April 2021 events during 2021. Assessment monitoring not required. Alternative sources for October 2021 SSIs will be evaluated in 2022.

Category	Rule Requirement	Site Status
Statistically Significant Levels (SSL) Above Groundwater Protection	(iv) If it was determined that there was an SSL above the GPS for one or more constituents listed in appendix IV to this part pursuant to §257.95(g) include all of the following:	Not applicable – Appendix IV parameter sampling not required
Standard (GPS)	(A) Identify those constituents listed in appendix IV to this part and the names of the monitoring wells associated with such an increase;	
	(B) Provide the date when the assessment of corrective measures was initiated for the CCR unit;	
	(C) Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and	
	(D) Provide the date when the assessment of corrective measures was completed for the CCR unit.	
Selection of Remedy	(v) Whether a remedy was selected pursuant to §257.97 during the current annual reporting period, and if so, the date of remedy selection; and	Not applicable – Site is in detection monitoring
Corrective Action	(vi) Whether remedial activities were initiated or are ongoing pursuant to §257.98 during the current annual reporting period.	Not applicable – Site is in detection monitoring

Table of Contents

Sect	ion		P	Page
Over	/iew o	f Currer	nt Status	i
1.0	Intro	duction.		1
2.0	Back	ground.		1
	2.1	Geolog	gic and Hydrogeologic Setting	1
		2.1.1	Regional Information	1
		2.1.2	Site Information	2
	2.2	CCR M	Ionitoring System	2
3.0	§257		Annual Report Requirements	
	3.1		90(e)(1) Site Map	
	3.2	•	90(e)(2) Monitoring System Changes	
	3.3	_	90(e)(3) Summary of Sampling Events	
	3.4	_	90(e)(4) Monitoring Transition Narrative	
	3.5	-	90(e)(5) Other Requirements	
		3.5.1	§257.90(e) General Requirements	
		3.5.2	§257.94(d) Alternative Detection Monitoring Frequency	
		3.5.3	§257.94(e)(2) Alternative Source Demonstration for Detection Monitoring	
		3.5.4	§257.95(c) Alternative Assessment Monitoring Frequency	
		3.5.5	§257.95(d)(3) Assessment Monitoring Results and Standards	
		3.5.6	§257.95(g)(3)(ii) Alternative Source Demonstration for Assessment Monitoring	
		3.5.7	§257.96(a) Extension of Time for Corrective Measures Assessment	_
	3.6		90(e)(6) Overview	
4.0		•		
			Tables	
Table	1	Gro	oundwater Monitoring Well Network	
Table	2		R Rule Groundwater Samples Summary	
Table			oundwater Elevations – State Monitoring Wells	
Table			oundwater Elevations – CCR Monitoring Wells	
Table			orizontal Gradients and Flow Velocity	
Table Table			oundwater Analytical Results Summary oundwater Field Data Summary	
Table	, 0	GIC	Junuwater Field Data Junimary	
			Figures	
			<u>-</u>	
Figur			e Location Map	
Figur			e Plan and Monitoring Well Locations	
Figure Figure		-	ril 2021 Water Table Map tober 2021 Water Table Map	
i iguli	C -	00	tobel 2021 Water Table Map	

Appendices

F2

Appendix A Appendix B	Summary of the Regional Hydrogeologic Stratigraph Boring Logs and Well Construction Documentation						
Appendix C	_	ry Reports					
	C1 A	pril 2021 Detection Monitoring					
		ctober 2021 Detection Monitoring					
Appendix D	Historical	Monitoring Results					
Appendix E	Statistica	I Evaluation					
Appendix F	Alternativ	re Source Demonstrations (ASDs)					
	F1 0	ctober 2020 ASD					

April 2021 ASD

1.0 INTRODUCTION

This 2021 Annual Groundwater Monitoring and Corrective Action Report was prepared to support compliance with the groundwater monitoring requirements of the Coal Combustion Residuals (CCR) Rule [40 Code of Federal Regulations (CFR) 257.50-107]. Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.90(e). The applicable sections of the Rule are provided below in italics, followed by applicable information relative to the 2021 Annual Groundwater Monitoring and Corrective Action Report for the CCR Units.

This report covers the period of groundwater monitoring from January 1, 2021, through December 31, 2021.

The groundwater monitoring system at the Edgewater Generating Station (EDG) is a multiunit system. EDG has four closed CCR units, which are contiguous:

- EDG Slag Pond (existing CCR surface impoundment)
- EDG North A-Pond (existing CCR surface impoundment)
- EDG South A-Pond (existing CCR surface impoundment)
- EDG B-Pond (existing surface CCR impoundment)

The system is designed to detect monitored constituents at the waste boundary of the CCR units as required by 40 CFR 257.91(d). The groundwater monitoring system consists of one upgradient and three downgradient monitoring wells (**Table 1**, **Figure 1**, and **Figure 2**).

Closure of the four ponds was completed in 2021. The Notification of Completion of Closure pursuant to 40 CFR 257.102(d) was entered into the EDG CCR Operating Record on August 10, 2021.

2.0 BACKGROUND

To provide context for the required annual report information, the following background information is provided in this section of the report, prior to the required information:

- Geologic and hydrogeologic setting
- CCR Rule monitoring system

2.1 GEOLOGIC AND HYDROGEOLOGIC SETTING

2.1.1 Regional Information

For the purposes of groundwater monitoring, the unconsolidated sand and gravel aquifer is considered to be the uppermost aquifer, as defined under 40 CFR 257.53, at the EDG ponds. A summary of the regional hydrogeologic stratigraphy and a regional geologic cross section are included in **Appendix A**.

The sand and gravel aquifer is present in some parts of Sheboygan County (Skinner and Borman, 1973). Boring logs from monitoring wells at the EDG ponds and for nearby private wells indicate that the unconsolidated material at and near the site contains a significant amount of sand. Private well logs from the surrounding area indicate that the sand and gravel aquifer has been used as a water

source; however, several older sand wells in the area have been replaced with bedrock water supply wells. In a search of area well records, SCS Engineers (SCS) did not find any records indicating that shallow wells are still being used in the area around EDG.

The dolomite aquifer underlies the unconsolidated material at the site. The total thickness of the dolomite aquifer at the site is unknown. The dolomite aquifer is underlain by the Maquoketa shale, which is a confining unit. The Maquoketa shale is underlain by the Cambrian-Ordovician sandstone aquifer. This sequence of sedimentary bedrock units is over 1,500 feet thick in the site vicinity. The sedimentary sequence is underlain by Precambrian crystalline rocks that are not considered an aquifer in eastern Wisconsin.

2.1.2 Site Information

The site consists of four CCR surface impoundments. Closure of the impoundments began in 2020 and was completed in 2021. Adjacent to the surface impoundments is an inactive CCR landfill that was closed prior to 2015 and is regulated by the Wisconsin Department of Natural Resources (License #2524). A groundwater monitoring network was installed at the site to meet state requirements prior to installation of additional monitoring wells to meet CCR Rule requirements. Soils at the site are primarily silt, sand, and some clay to a depth of approximately 80 to 140 feet and overlie dolomite bedrock. During drilling of CCR wells MW-301, MW-302, and MW-303, the unconsolidated materials were identified as consisting primarily of lean clay overlying sandy silt. The boring log for the previously installed background monitoring well 2R-OW shows lean clay as the primary unconsolidated material at this location. The boring logs for Ash Ponds CCR monitoring wells are provided in **Appendix B**. All CCR monitoring wells are screened within the unconsolidated glacial aquifer.

Shallow groundwater in the area of the EDG site generally flows to the south-southeast. There is some localized groundwater mounding associated with the topographic highs of the closed EDG landfill and ponds. The water table maps shown on **Figures 3** and **4** are based on groundwater levels measured in the unconsolidated deposits during the April 2021 and October 2021 detection monitoring events. A summary of the sampling events that occurred throughout 2021 is shown in **Table 2**. The water table maps show a generally southward flow direction, with localized groundwater mounding in the area of the closed EDG landfill and ponds. The groundwater elevations are summarized in **Table 3A** (state wells) and **Table 3B** (CCR wells). Horizontal gradients and flow velocities for each of the flow paths are provided in **Table 4**.

2.2 CCR MONITORING SYSTEM

The groundwater monitoring system established under the CCR Rule consists of one upgradient (background) monitoring well and three downgradient monitoring wells (**Table 1** and **Figure 2**). The upgradient monitoring well is 2R-OW. The downgradient monitoring wells include MW-301, MW-302, and MW-303. The CCR compliance monitoring wells were installed in the unconsolidated sediments with screens in the uppermost soil layer producing appreciable water, which was a sandy silt unit. Well depths range from approximately 14.5 to 40 feet, measured from the top of the well casing.

3.0 §257.90(E) ANNUAL REPORT REQUIREMENTS

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or

operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by §257.105(h)(1). At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

3.1 §257.90(E)(1) SITE MAP

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

A map of the site location is provided as **Figure 1**. A map with an aerial image showing the CCR units and all background (or upgradient) and downgradient monitoring wells with identification numbers for the groundwater monitoring program is provided as **Figure 2**.

3.2 §257.90(E)(2) MONITORING SYSTEM CHANGES

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No new monitoring wells were installed, and no wells were decommissioned as part of the groundwater monitoring program for the CCR units in 2021.

3.3 §257.90(E)(3) SUMMARY OF SAMPLING EVENTS

In addition to all the monitoring data obtained under §257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

Two semiannual groundwater sampling events were completed in April and October 2021 for Appendix III constituents. A summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection or assessment monitoring programs is included in **Table 2**.

The sampling results for Appendix III parameters in 2021 are summarized in **Table 5.** Field parameter results for the 2021 sampling events are provided in **Table 6.** The analytical laboratory reports for 2021 are provided in **Appendix C.** Historical results for each monitoring well are summarized in **Appendix D.**

3.4 §257.90(E)(4) MONITORING TRANSITION NARRATIVE

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels);

There were no transitions between monitoring programs in 2021. The EDG CCR units remained in the detection monitoring program.

In 2021, the monitoring results for the October 2020 and April 2021 monitoring events were evaluated for statistically significant increases (SSIs) in detection monitoring parameters relative to background. The comparison to background was based on a prediction limit approach, comparing the results to interwell upper prediction limits (UPLs) based on background monitoring results from the upgradient well (2R-OW). The interwell UPLs were most recently updated in January 2021 using background data collected through October 2020. The Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities (U.S. EPA, 2009; Section 5.3.1) recommends periodic updating of background for both intrawell and interwell analyses. For semiannual monitoring, an update interval of 2 to 3 years is recommended; therefore, the next UPL update is planned for 2023. The UPL calculations are included in **Appendix E**. The UPLs calculated in January 2021 were applied to the evaluation of the October 2020 and April 2021 monitoring results, completed in 2021, and will be applied to the evaluation of the October 2021 monitoring results, to be completed in 2022.

SSIs for boron and sulfate were identified for both the October 2020 and April 2021 events, and an additional SSI for fluoride was identified during the April 2021 event; however, alternative source demonstrations (ASDs) were completed, demonstrating that a source other than the CCR units was the likely cause of the observed concentrations. The ASD reports are provided in **Appendix F**.

3.5 §257.90(E)(5) OTHER REQUIREMENTS

Other information required to be included in the annual report as specified in §257.90 through 257.98.

Additional potentially applicable requirements for the annual report, and the location of the requirement within the Rule, are provided in the following sections. For each cited section of the Rule, the portion referencing the annual report requirement is provided below in italics, followed by applicable information relative to the 2021 Annual Groundwater Monitoring and Corrective Action Report for the CCR Units.

3.5.1 §257.90(e) General Requirements

For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year.

Status of Groundwater Monitoring and Corrective Action Program. The groundwater monitoring and corrective action program was in detection monitoring throughout 2021.

Summary of Key Actions Completed (2021):

- Statistical evaluation and determination of SSIs for the October 2020 and April 2021 monitoring events.
- ASD reports for the SSIs identified from the October 2020 and April 2021 monitoring events.
- Two semiannual groundwater sampling and analysis events (April and October 2021).

Description of Any Problems Encountered. No problems were encountered in 2021.

Discussion of Actions to Resolve the Problems. Not applicable.

Projection of Key Activities for the Upcoming Year (2022):

- Statistical evaluation and determination of any SSIs for the October 2021 and April 2022 monitoring events.
- If an SSI is determined, then within 90 days either:
 - Complete alternative source demonstration (if applicable), or
 - Establish an assessment monitoring program.
- Two semiannual groundwater sampling and analysis events (April and October 2022).

3.5.2 §257.94(d) Alternative Detection Monitoring Frequency

The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer in the annual groundwater monitoring and corrective action report required by §257.90(e).

Not applicable. No alternative detection monitoring frequency has been proposed.

3.5.3 §257.94(e)(2) Alternative Source Demonstration for Detection Monitoring

The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by §257.90(e), in addition to the certification by a qualified professional engineer.

The ASD reports prepared to address the SSIs observed for the October 2020 and April 2021 sampling events are provided in **Appendix F**. The ASD reports are certified by a qualified professional engineer.

3.5.4 §257.95(c) Alternative Assessment Monitoring Frequency

The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer in the annual groundwater monitoring and corrective action report required by §257.90(e).

Not applicable. Assessment monitoring has not been initiated.

3.5.5 §257.95(d)(3) Assessment Monitoring Results and Standards

Include the recorded concentrations required by paragraph (d)(1) of this section, identify the background concentrations established under §257.94(b), and identify the groundwater protection standards established under paragraph (d)(2) of this section in the annual groundwater monitoring and corrective action report required by §257.90(e).

Not applicable. Assessment monitoring has not been initiated.

3.5.6 §257.95(g)(3)(ii) Alternative Source Demonstration for Assessment Monitoring

The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by §257.90(e), in addition to the certification by a qualified professional engineer.

Not applicable. Assessment monitoring has not been initiated.

3.5.7 §257.96(a) Extension of Time for Corrective Measures Assessment

The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measure due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by §257.90(e), in addition to the certification by a qualified professional engineer.

Not applicable. Corrective measures assessment has not been initiated.

3.6 §257.90(E)(6) OVERVIEW

A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit.

The specific requirements for the overview under §257.90(e)(6) are listed and the information is provided at the beginning of this report, before the Table of Contents.

4.0 REFERENCES

Skinner, Earl L., and Borman, Ronald G., 1973, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigation Atlas HA-432.

U.S. EPA, 2009, The Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities.

Tables

- 1 Groundwater Monitoring Well Network
- 2 CCR Rule Groundwater Samples Summary
- 3A Groundwater Elevations State Monitoring Wells
- 3B Groundwater Elevations CCR Monitoring Wells
- 4 Horizontal Gradients and Flow Velocity
- 5 Groundwater Analytical Results Summary
- 6 Groundwater Field Data Summary

Table 1. Groundwater Monitoring Well Network Edgewater Closed Landfill SCS Engineers Project #25221068.00

Monitoring Well	Location in Monitoring Network	Role in Monitoring Network
2R-OW	Upgradient	Background
MW-301	Downgradient	Compliance
MW-302	Downgradient	Compliance
MW-303	Downgradient	Compliance

 Created by: RM
 Date: 12/14/2020

 Last revision by: RM
 Date: 1/7/2021

 Checked by: NDK
 Date: 1/7/2021

Table 2. CCR Rule Groundwater Samples Summary Edgewater Generating Station SCS Engineers Project #25221068.00

Sample Dates	Co	Background Well		
	MW-301	MW-302	MW-303	2R-OW
4/14/2021	D	D	D	D
10/26/2021	D	D	D	D
Total Samples	2	2	2	2

Abbreviations:

D = Required by Detection Monitoring Program

D-R = Detection Monitoring Retest Sample

 Created by:
 MDB
 Date: 12/14/2021

 Last revision by:
 MDB
 Date: 12/14/2021

 Checked by:
 RM
 Date: 12/22/2021

 $\label{thm:likelihood} $$1.25221068.00\end{times} $$1.25221068.00\end{tim$

Table 3A. Groundwater Elevations - State Monitoring Wells Edgewater 1-4 Closed Ash Disposal Facility / SCS Engineers Project #25221068.00

Ground Water Elevation in feet above mean sea level (amsl)																						
Well Number	1-OW	2R-OW	3R-OW	4R-OW	5-OW	W-5A	6AR	6R-OW	7A-OW	7-OW	18-OW	29-OW	29-A	30-OW	31-OW	32-OW	36-OW	37-OW	38R-OW	39R-OW	40-OW	SG-01
Top of Casing Elevation (feet amsl)	591.72	612.72	591.32	595.60	600.72	601.84	591.32	590.98	593.41	592.51	586.47	588.86	589.25	590.81	589.00	589.07	614.63	615.02	620.98	614.04	587.42	
Total Depth (ft from top of casing)	11.10	17.53	15.82	16.48	10.65	21.51	19.86	10.37	20.21	9.93	14.25	19.96	43.12	14.88	14.98	14.95	21.01	18.55	29.00	22.29	17.3	
Measurement Date																						
October 24, 2012	588.11	607.82	582.64	585.24	595.63	596.69	587.42	587.40	591.71	589.56	583.49	585.16	586.60	586.40	582.58	583.63	599.77	599.42	599.38	598.05		597.60
April 8, 2013	588.50	609.92	588.37	586.35	596.66	597.65	588.40	587.34	592.79	589.95	583.97	585.78	588.07	588.57	584.35	584.50	600.79	600.24	600.16	598.30		597.9
October 22, 2013	584.88	601.15	580.90	584.46	594.23	595.64	582.64	584.83	591.23	587.24	NM (1)	584.70	586.76	582.19	580.40	580.76	599.13	598.22	598.42	596.56		598.0
April 22, 2014	588.05	609.22	587.99	586.11	595.18	597.10	587.00	587.37	589.27	589.51	NM ⁽¹⁾	585.38	588.22	587.53	583.75	583.75	NM (1)	599.67	599.38	598.56		597.8
October 28, 2014	586.14	607.27	586.30	585.08	595.33	596.51	587.68	586.99	591.92	589.29	NM ⁽¹⁾	585.00	587.84	585.48	582.88	582.68	600.07	599.81	599.26	598.37		595.85
April 7 - 9, 2015	587.90	608.47	587.44	585.52	595.66			587.50			ABAND	585.44	587.55			583.87	599.69	599.21	599.21	597.46	583.77	597.6
October 8, 2015	584.78	604.22	583.34	584.52	594.76	594.47	582.65	585.67	591.23	589.71	ABAND	584.69	587.27	584.26	581.60	582.52	600.29	599.47	599.70	598.09	583.01	
April 4-5, 2016	588.40	610.02	587.72	586.69	596.70	597.81	584.52	585.68	592.41	587.93	ABAND	582.95	587.25	586.91	584.35	584.47	601.05	601.37	601.18	601.13	579.28	599
October 17, 2016 ⁽²⁾	587.50	607.27	586.71	585.15	595.41	596.82	584.34	586.61	592.01	587.65	ABAND	581.25	586.10	586.23	583.02	583.83	600.87	600.70	600.74	599.49	579.42	
April 12-13, 2017	588.23	609.80	587.95	586.31	596.08	597.69	586.77	587.32	592.19	587.06	ABAND	583.74	585.43	585.36	583.68	584.52	602.01	602.11	602.08	601.29	584.02	
October 9, 2017	584.14	600.87	581.00	584.49	594.68	596.04	583.03	583.51	590.50	585.96	ABAND	583.01	584.88	582.76	580.93		600.18	598.48	599.65	598.07	583.05	
April 2, 2018	587.79	607.87	586.63	586.68		596.88	586.80		591.76	589.62	ABAND	585.51	587.11		582.95		600.71	600.00	600.04	597.99	583.64	
June 19, 2018	NM	605.70	585.49	585.20		NM	NM	NM	NM	587.20	ABAND	585.43	585.79	584.96	582.29	NM	NM (1)	600.44	600.68	599.61	583.07	NM
October 1, 2018	585.37	604.61	584.18	584.86		596.44	586.10	586.86		588.75	ABAND	585.04	584.94	584.79	582.11	582.81	600.30	600.12	600.27	599.79	583.17	
April 8, 2019	588.57	609.50	588.01	591.93		597.33		587.35		590.06	ABAND	585.76	586.75	587.83	584.18	584.85	600.21	599.60	599.74	598.49	583.75	
October 9-10, 2019	587.85	609.39		585.99	595.68		586.42	587.24	591.66	587.53	ABAND	585.14	585.10	587.15	583.63	584.48	599.92	600.25	600.01	599.82	583.08	
April 8-9, 2020	588.03	608.97	587.70	586.05	595.57	596.89	585.74	586.95		587.76	ABAND			587.29	583.70		599.40		599.48	599.38	583.01	
October 14-15, 2020	584.62	604.37	582.20	584.54		594.86	582.71	583.45		586.53	ABAND	583.95	586.83	583.83	582.60	582.82	ABAND		NM	594.72	583.26	NM
April 14, 2021	587.95	608.50		585.42			586.53	587.29		589.89	ABAND		587.64	587.06	583.46		ABAND	DRY	596.34	593.95	583.08	NM
October 27-28, 2021	584.53	603.62	580.74	584.47	593.06	594.70	579.90	584.60	590.45	587.39	ABAND	584.60	586.65	582.89	581.88	582.02	ABAND	DRY	595.33	592.34	582.74	ABAND
Bottom of Well Elevation (ft)	580.62	595.19	575.50	579.12	590.07	580.33	571.46	580.61	573.20	582.58	572.22	568.90	546.13	575.93	574.02	574.12	593.62	596.47	591.98	591.75	570.12	0.00

 Notes:
 Created by:
 MDB
 Date:
 5/6/2013

 NM = not measured
 Last revision by:
 REO
 Date:
 11/8/2021

 ABAND = abandoned
 Checked by:
 MDB
 Date:
 11/8/2021

\\Mad-fs01\data\Projects\25221068.00\Data and Calculations\Tables\[wlstat_Edgewater_Closed.xls]levels

^{1:} Well broken

^{2:} Well casings at 7-OW, 7A, and 29-OW were cut down to allow the protective covers to close. 7-OW was cut down by 0.22 ft, 7A was cut down by 0.29 ft, and 29-OW was cut down by 0.17 ft. Top of casing elevations in this table were adjusted accordingly.

^{*:} Well was frozen

Table 3B. Groundwater Elevations - CCR Monitoring Wells WPL - Edgewater 1-4 (Closed) Ash Disposal Facility / SCS Engineers Project #25221068.00

Ground Water Elevation in feet above mean sea level (amsl)										
Well Number	MW-301	MW-302	MW-303	2R-OW						
Top of Casing Elevation (feet amsl)	604.42	615.15	611.99	612.72						
Screen Length (ft)	5.00	5.00	5.00	10.00						
Total Depth (ft from top of casing)	27.47	40.00	33.26	14.50						
Top of Well Screen Elevation (ft)	581.95	580.15	579.60	608.22						
Measurement Date										
April 8, 2016	599.75	596.19	589.04	609.68						
June 20, 2016	598.30	595.68	587.22	606.70						
August 9, 2016	598.00	595.53	587.72	605.74						
October 20, 2016	598.50	595.46	588.37	607.27						
January 23-24, 2017	597.10	596.30	588.84	609.64						
April 6, 2017	600.04	593.57	589.04	609.72						
June 6, 2017	598.77	595.86	588.44	607.63						
August 1, 2017	597.40	595.22	587.36	604.59						
October 24, 2017	597.20	595.25	587.97	601.74						
April 2, 2018	598.54	595.71	588.77	607.87						
October 1, 2018	597.60	595.28	588.17	604.61						
April 8, 2019	598.92	595.68	588.88	609.50						
October 7, 2019	599.56	595.58	588.77	609.39						
June 26, 2020	597.89	NM	NM	NM						
October 15, 2020	595.10	598.56	593.19	604.27						
April 14, 2021	595.17	600.56	595.01	608.50						
October 26, 2021	590.68	599.82	594.07	604.04						
Bottom of Well Elevation (ft)	576.95	575.15	578.73	598.22						

Notes:	Created by:	MDB	Date: 6/27/2016
NM = not measured	Last rev. by:	REO	Date: 11/8/2021
	Checked by:	MDB	Date: 12/14/2021
	Scientist QA/QC: $\overline{}$	MDB	Date: 12/14/2021

Table 4. Horizontal Gradients and Flow Velocity Edgewater Closed Landfill SCS Engineers Project #25221068.00 January - December 2021

	South								
Sampling Dates	h1 (ft)	h2 (ft)	ΔI (ft)	Δh/Δl (ft/ft)	V (ft/d)				
4/14/2021	595.0	590.0	65	0.08	0.05				
10/26-28/2021	595.0	585.0	374	0.03	0.02				

	Southeast								
Sampling Dates	h1 (ft)	h2 (ft)	ΔI (ft)	Δh/Δl (ft/ft)	V (ft/d)				
4/14/2021	600.6	589.9	207	0.05	0.04				
10/26-28/2021	599.8	587.4	209	0.06	0.04				

	Sampling Dates	K (ff/d)	n	Average Δh/Δl (ft/ft)	V (ft/d)
Ī	4/14/2021	0.274	0.40	0.064	0.044
Ī	10/26-28/2021	0.274	0.40	0.043	0.030

	K Value	
Wells	(cm/sec)	K Value (ft/d)
MW-301	2.1E-05	0.060
MW-302	4.0E-04	1.139
MW-303	1.1E-04	0.304
Geometric	9.7E-05	0.274

Assumed Porosity, n

Groundwater flow velocity equation: $V = [K^*(\Delta h/\Delta I)] / n$

ft = feet

ft/d = feet per day

K = hydraulic conductivity

n = effective porosity

V = groundwater flow velocity

h1, h2 = point interpreted

groundwater elevation at locations 1

 ΔI = distance between location 1 and 2

 $\Delta h/\Delta l$ = hydraulic gradient

 Created by: RM
 Date: 12/29/2020

 Last revision by: MDB
 Date: 1/4/2022

 Checked by: RM
 Date: 1/4/2022

Table 5. Groundwater Analytical Results Summary Edgewater Generating Station / SCS Engineers Project #25221068.00

		Backgro	ound Well			Compli	ance Wells		
		2R	-OW	MV	V-301	M\	W-302	MV	V-303
Parameter Name	UPL	4/14/2021	10/26/2021	4/14/2021	10/26/2021	4/14/2021	10/26/2021	4/14/2021	10/26/2021
Appendix III									
Boron, μg/L	86	45.7	47.2	7,200	6,710	1,550	1,580	4,600	3,650
Calcium, µg/L	200,000	154,000	192,000	118,000	102,000	81,200	78,200	176,000	148,000
Chloride, mg/L	400	116	493	13.5	13.8 M0	20.6	20.7	22.5	21.6
Fluoride, mg/L	0.2	<0.095	<4.8 D3	0.25 J	0.24 J, M0	0.88	0.88	<0.095	<0.48 D3
Field pH, Std. Units	8.57	7.52	7.01	7.96	7.01	8.19	7.60	7.27	6.92
Sulfate, mg/L	36	15.3	35.7 J, D3	195	203 M0	70.5	71.2	0.54 J	<2.2 D3
Total Dissolved Solids, mg/L	1,190	737	1,170	614	538	342	290	710	640

4.4

Blue shaded cell indicates the compliance well result exceeds the UPL (background) and the Limit of Quantitation (LOQ).

Abbreviations:

UPL = Upper Prediction Limit

-- = Not Applicable

LOD = Limit of Detection

LOQ = Limit of Quantitation

mg/L = milligrams per liter µg/L = micrograms per liter

Lab Notes:

D3 = Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

J = Estimated concentration at or above the LOD and below the LOQ.

M0 = Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

Notes

- 1. An individual result above the UPL does not constitute an SSI above background. See the accompanying report text for identification of statistically significant results.
- 2. Interwell UPLs calculated based on results from background well 2R-OW. Interwell UPLs based on 1-of-2 retesting approach. The interwell UPLs were updated in January 2021 using data from April 2016 through October 2020.

 Created by: MDB
 Date: 12/22/2021

 Last revision by: MDB
 Date: 12/22/2021

 Checked by: RM
 Date: 12/22/2021

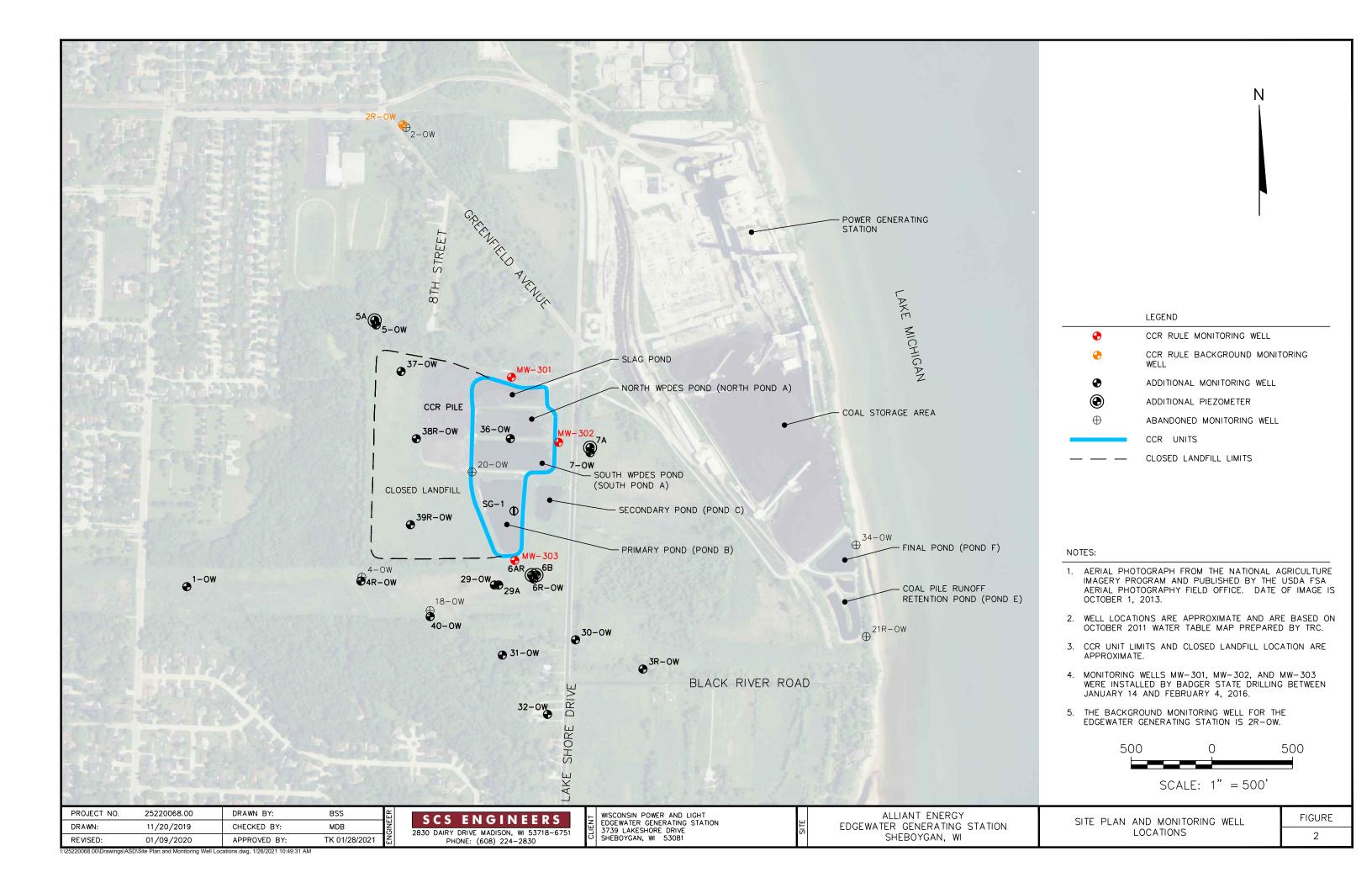
 Scientist/PM QA/QC: TK
 Date: 1/5/2022

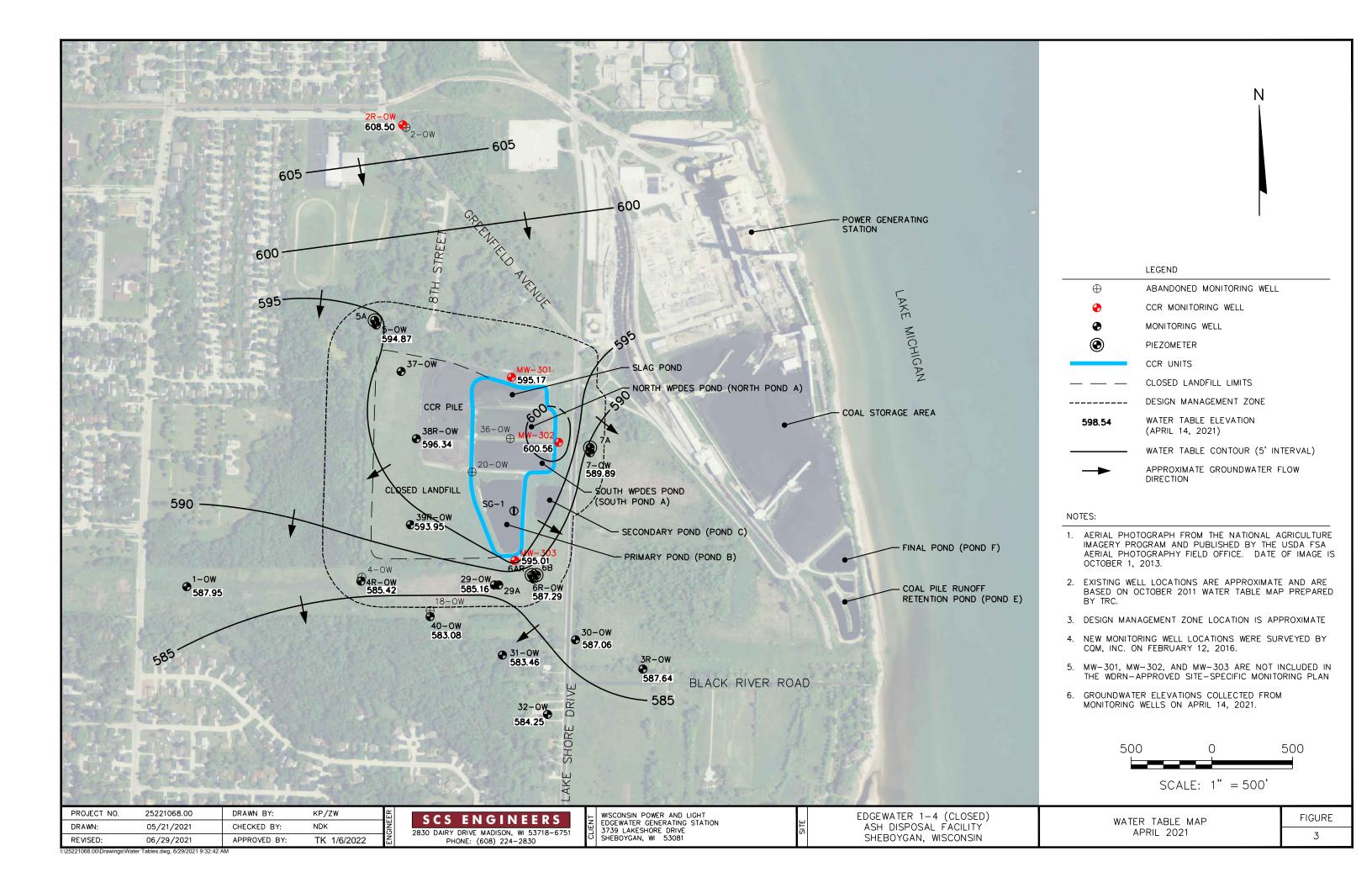
Table 6. Groundwater Field Data Summary Edgewater 1-4 (Closed) Ash Disposal Facility / SCS Engineers Project #25221068.00

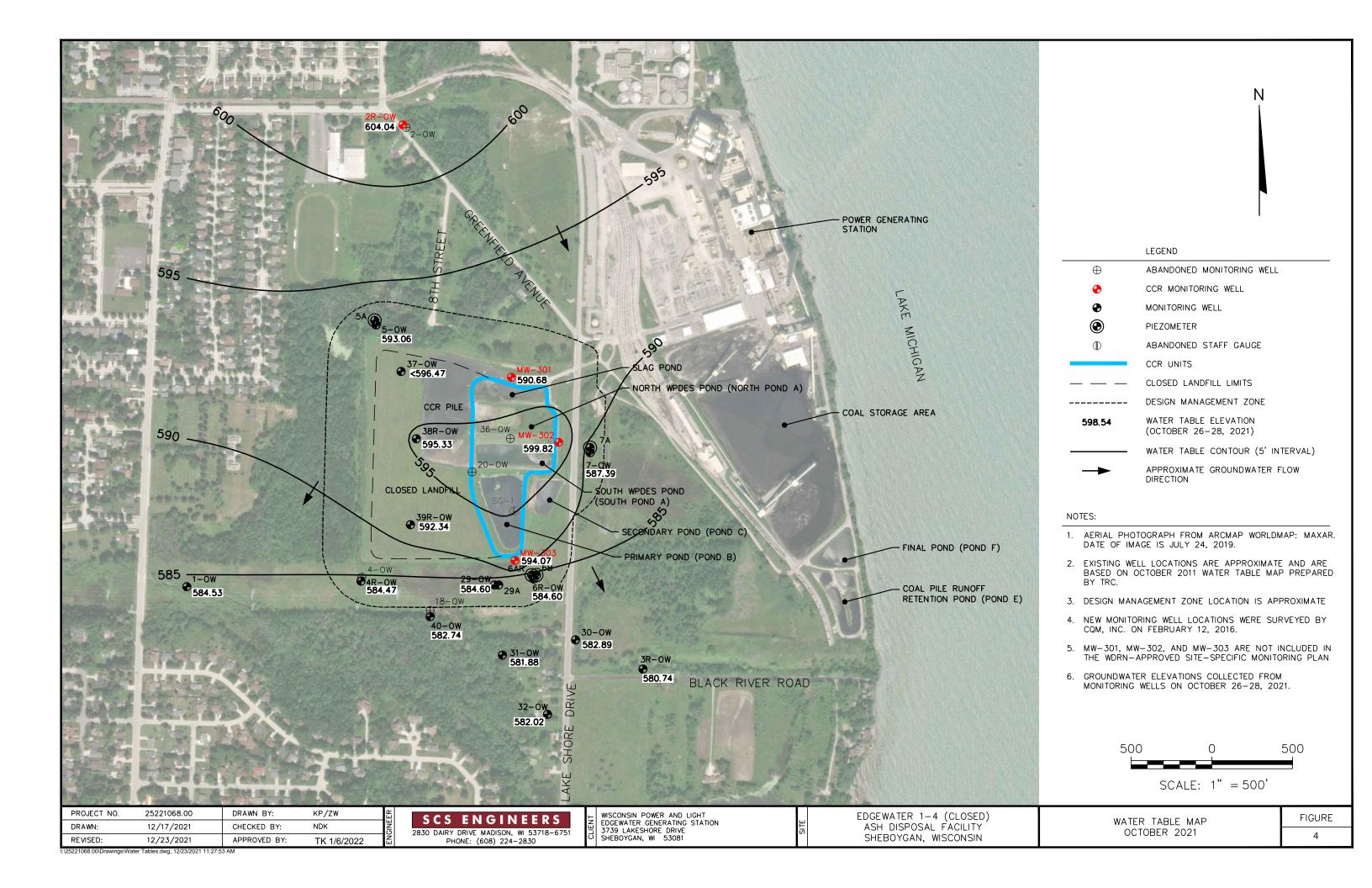
Well	Sample Date	Groundwater Elevation	Field Temperature	Field pH	Oxygen, Dissolved	Field Specific Conductance	Field Oxidation Potential	Turbidity
		(feet)	(deg C)	(Std. Units)	(mg/L)	(umhos/cm)	(mV)	(NTU)
MW-301	4/14/2021	595.17	7.8	7.96	8.2	815	226	124
	10/26/2021	590.68	11.2	7.01	5.4	811	196	88.4
MW-302	4/14/2021	600.56	7.5	8.19	1.8	517	41	252
	10/26/2021	599.82	11.1	7.60	0.1	496	134	69.8
MW-303	4/14/2021	595.01	7.7	7.27	2.3	1,222	-41	408
	10/26/2021	594.07	12.3	6.92	1.6	1,171	170	88.4
2R-OW	4/14/2021	608.50	6.6	7.52	6.9	1,229	282	413
	10/26/2021	604.04	14.0	7.01	0.6	2,290	242	95.2

 Created by:
 MDB
 Date:
 12/14/2021

 Last revision by:
 MDB
 Date:
 12/14/2021


 Checked by:
 RM
 Date:
 12/22/2021


I:\25221068.00\Deliverables\2021 Fed CCR Annual Report\Tables\[Table 6 - EGS_2021 Field Parameters.xlsx]Sheet1


Figures

- 1 Site Location Map
- 2 Site Plan and Monitoring Well Locations
- 3 Water Table Map, April 2021
- 4 Water Table Map, October 2021

Appendix A

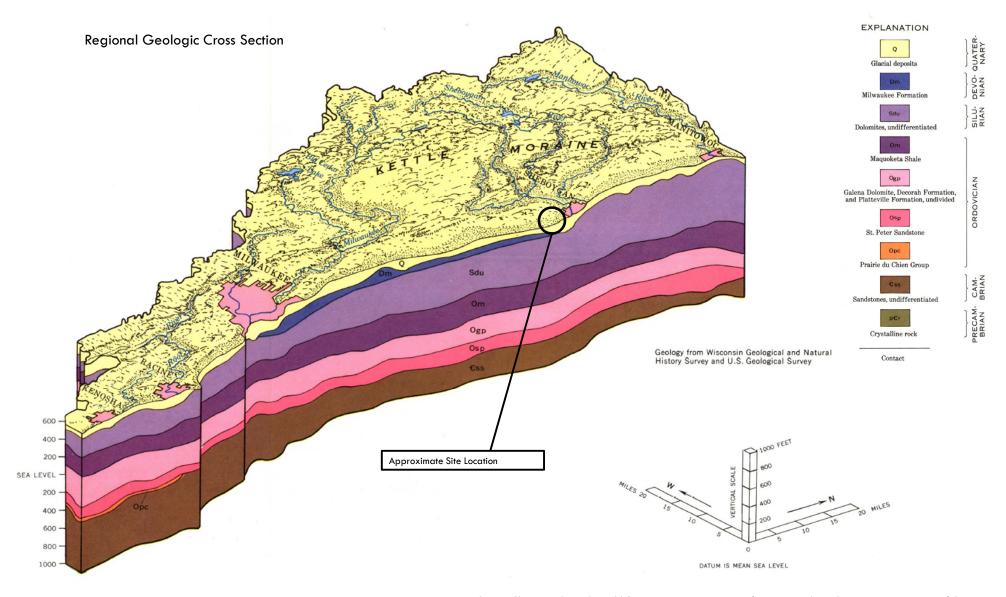
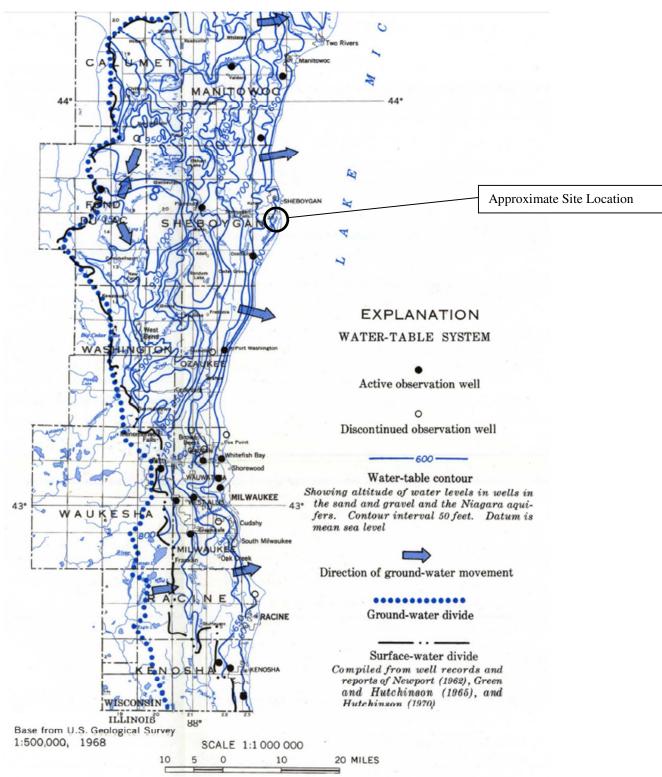

Summary of the Regional Hydrogeologic Stratigraphy

Table EGS-3. Regional Hydrogeologic Stratigraphy Edgewater Generating Station / SCS Engineers Project #25215053

Age	Hydrogeologic Unit	General Thickness (feet)	Name of Rock Unit*	Predominant Lithology
Quaternary	Sand and Gravel	0 to 235	Surface sand and gravel	Sand and Gravel
	Aquifer	0 to 300	Buried sand and gravel	
Devonian	Niagara Dolomite	0 to 750	Dolomite	Dolomite
Silurian	Aquifer	0 10 7 30	(undifferentiated)	Dolonne
	Confining Unit	0 to 400	Maquoketa Shale	Shale and dolomite
Ordovician		100 to 340	Galena Decorah Platteville	Dolomite
		0 to 330	St. Peter	Sandstone
	Sandstone Aquifer	0 to 140	Prairie du Chien	Dolomite
Cambrian		0 to 3,500?	Trempeleau Franconia Galesville Eau Claire Mt. Simon	Sandstone, some Dolomite and Shale
Precambrian	Not an Aquifer	Unknown	Crystalline Rocks	lgneous and metamorphic rocks


Source:

Skinner, Earl L. and Ronald G. Borman, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigations Atlas HA-432, 1973.

Source: Skinner, Earl L. and Ronald G. Borman, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigations Atlas HA-432, 1973.

Regional Groundwater Flow Map - Uppermost Aquifer

Source: Skinner, Earl L. and Ronald G. Borman, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigations Atlas HA-432, 1973.

Appendix B

Boring Logs and Well Construction Documentation

State of Departr	Wiscornent of	isin Natura	l Resour	rces p_y	Route To	Waste	Пн			.				om 440	_	og mi	Jimai	7-91
					☐ Emer	rgency Respons	_	-	round ' Resourc			-				-		_
					#rasi		o	ther							Page		of	1
Facility/	Project	Name						•		mit/Mor	nitoring	Numbe	r	Boring 1				
Mon	itoring	g Wel	ll Insta	llation				025		g Starte	d	Date	Drilling			Drilling	Meth	od
M&I	K Env	ironn	m name nental	and name of o	crew chie Chief Di	i) riller Micha	el	Date		29/98	•		04/2			HSA		
-	ardle.		lssn	Unique Well	No	Common Well	l Name	Final	Static	Water I	_evel	Surfa	ce Elev	ation	Во	rehole	Diame	ter
DNR F	acility V	veli No). WI	Omque wen	110.	Conminent			607	.2 Feet	MSL	,	10.3				8.0	Inches
Boring :	Location	n							Lat	0 , 11		Loca	l Grid L	ocation		icable)		Øε
NW	1/4 c	f NE	E 1/4	4 of Section	2	т 14 N.R	23E	L	ong	o , "			72 Fee			600		□ w
County	BOY	GAN					DNR Cou	inty C	ode		BOYG		Hage	Soil	Proper	ies		
Sam	ple		eet										- C	3011	, i	ues	<u> </u>	1
	(in)	Counts	In Fe	I .		ck Descriptio logic Origin			Ø	Ö	,am	OI.		rure ent	p ₊	t ic	8	RQD/ Comments
Number	Length (i Recovered	Blow C	Depth		Each	Major Unit			o s n	Graphic Log	Well Diagram	PIO/FID	Standard Penetrat	Moisture Content	Liquid Limit	Plast Limit	P 200	RaD/ Comm
<u> ź</u>	Le Re	В		TOPSOIL	·				TS				-					
1	18	12	1 2 3 4	LEAN C. brown (1	LAY - : 0YR 5/	moist, stiff, 6), silty sand	yellowish d seams.		CL		¥		12	23.6				
3	18	22 46	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	very st	iff.								46	16.8				
4	18	26	10 11 11 12	4/3), occ	casional	f, dark brows	n (10YR						26	19.7			98.4	4
5	18	15	13	NOTES: 1) End o 2) Monit at compl	of boring V	g at 14.5 fee Vell 2R-OW	t. construct	ed										
I here	by certif	fy that	the info	rmation on thi	s form is	true and correc	t to the best	of my	know	edge.								
Signat			h					Firm	n	Mille	South 12	2th Stre -6164	& Sci et, Sheb Fax: (9	oygan, 20)458-	0369		nor mo	ore .

This form is authorized by Chapters 144, 147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$5,000 for each violation. Fined not less than \$10 or more than \$100 or imprisoned not less than 30 days, or both for each violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06, Wis. Stats.

State of Wisconsin Department of Natural Resources

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

		Re	oute To:	Watershed/W	astewater	Wast	e Manag	gement								
				Remediation/	Redevelopment	Othe	r 🗌									
													Pag	ge 1	of	2
Facility/Pro	ject Na	me				Licens	e/Permit	/Monito	ring Ni	ımber		Boring	-	,		
WPL-Ed	lgewat	er Gene	rating St	ation	SCS#: 25215135.10)								MV	W-30)1
Boring Dril	led By:	Name o	of crew ch	ief (first, last) ar	nd Firm	Date I	Orilling S	started		Da	te Drilli	ng Con	npleted			ing Method
Kevin I							4 /4 .	1/001				1 /1 4 /0	016			ollow stem
Badger			DAID V	Well ID No.	Common Well Name	- Einel G	1/12 Static Wa	1/2016		Coorfee	e Eleva	1/14/2	2016	D.		ger Diameter
WI Unique	Weii N V862		DINK	veil ID No.	MW-301	rinais	13.7		ei	Surrac		95 Fe	et	BO		.5 in.
Local Grid			stimated:	O or Bor	ring Location		13.7				Local C				0	.5 111.
State Plane	-			2,573,429]	Lat	o — —	<u>'</u>				□N	ſ		Feet \square E
NE 1.	/4 of]	W	1/4 of Sect	tion 2,	T 14 N, R 23 E	Lo	ng	o 	<u>'</u>	"			\Box s			□ w
Facility ID				County		County (Code	Civil T		-	Village					
		-		Shawano		59		Sheb	oygan							
Sample												Soil	Prope	erties		
· &	(iii)	et		Soil/R	ock Description											
e Att.	ount	η Fe		And Ge	ologic Origin For						ion	a a		>		nts
Typ gth	Blow Counts	th Ir		Eac	h Major Unit		CS	ohic	1 gran	/FIL	dare	stur	bit it	ticit	0)/ Ime
Number and Type Length Att. &	Blov	Depth In Feet					S O	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
		E	Boring	already cleared	to 8' bgs by hydrovac				MK							
		<u>_</u> 1														
		Ē,														
		-2														
		F														
-		-3	Standin	g water at 3' in	existing hydrovac hol	e and										Standing water at 3 ft bgs in
		Ė.		at toe of berm.												existing hole and
		F-4	-													boring at toe of berm.
		_5														
		= 3														
		F ₋₆														
		E - 7														
		_7														
		E														
П		F-8	SILTY	CLAY, brown	(7.5YR 4/6).											
	5.7	E														2000 1200
S1 22	5 7 9 13	- 9									3.5	M				water @ 11.9 ft bgs after sitting
Ц		-10														an hour with augers at 20 ft
		E														bgs.
		-11					CL-ML									
		E														
		-12														
		Ē														
П		-13	=													
	7 13	- 14									2.75	117				
S2 20	23 21	F 14	SANDY	SILT, grey bro	own (10YR 4/2).		ML				2.75	W				
Ц		E-15														
hereby cert	ify that		rmation or	n this form is tri	ue and correct to the b	est of my l	knowled	ge.								terson titalin kaserumus in puningan makeruman makeruman m
Signature					T-si	CS Engin									Tel: (6	08) 224-2830
-3//1/	200		1		1 50	~									(0	00, 22 1 2000

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

2830 Dairy Drive Madison, WI 53718

Borin	g Num	ber	MV	V-301 Use only as an attachment to Form 440	0-122.									ge 2	of	2
Sar	nple											Soil	Prope	erties		
	t. &	nts	eet	Soil/Rock Description												70
er	h Att	Cou	In F	And Geologic Origin For Each Major Unit	S	ic			am	Œ	ard ration	ure	-	city		nents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each Major Onit	nsc	Graphic	Log	Well	Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
_ < ~		Щ	F -		1	П				<u>н</u>	S H	20		HI	Д	<u> </u>
			<u>-</u> 16	CANDY OH T												
			E	SANDY SILT, grey brown.												
			F 17													
П			18													
	20	5.7	E 10									***				
S3	20	5 7 18 13	- 19									W				
Ш			20	Same as above, except brown (7.5 YR 4/6).												
			= 22					E								
			22					E								
П			23													
S4	22	2 2 3 4	- -24									W				
34	22	3 4	E					E				**				
Н			- 25		ML				1							
S5	20	3 3 4 9	26									W				screen 20-25 ft
		49	_ 27													bgs.
			- 21						1							2
П			28					200								
S6	24	2 2 2 2	E -29									W				
	21	2 2	E						3							
Н			-30				0	2								
S7	24	2 2 4 8	_31				0					W				
		70	-32				0									
- 11							0	2	3G							
S8	16	2 3 4 5	33				0	8				W				
Н			_ 34				Q									
- II		2.2	-				0	2								
S9	24	2 2 2 2	- 35	GLANI (7 SVD 4/C)		Ш			頸		1.0	M				water at 16.8 ft bgs with augers at 34 ft bgs.
Ц			-36	CLAY, grey (7.5YR 4/6). End of boring at 36 ft bgs.	CL		0		XX							at 54 it ogs.
				2									9			
ı		ŀ	ı 1		I .		1		1		1		1	I		ı

State of Wisconsin Department of Natural Resources

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Ro	oute To:	Watershed/W				ement								
					Remediation	Redevelopment	Other										
														Pag	ge 1	of	2
	y/Proje						License	Permit	/Monito	ring N	umbe	r	Boring	Numb			
				rating S		SCS#: 25215135.10		.11: 0	1		150	D 111		1 . 1	M۱	V-30	
		-	Name o	f crew ch	hief (first, last) a	ind Firm	Date Dr	illing S	tarted			Date Drill	ing Con	npleted			ing Method
	vin Du lger S							1/14	5/2016				1/15/2	016			ollow stem ger
	ique W).	DNR	Well ID No.	Common Well Name	Final Sta				Surfa	ace Eleva		2010	Во		Diameter
	_	V861				MW-302		Fe					.65 Fe	et			.5 in.
Local	Grid O	rigin				ring Location 🖂	1 -		0	,	,	Local C	Grid Lo	cation			
State					, 2,573,726		La	at				-	Feet	\square N			Feet \square E
SE		of N	W 1	/4 of Sec		T 14 N, R 23 E	Lon		0			-		\Box s			□ W
Facilit	y ID				County		County Co	ode				Village					
Carr	1.		_		Shawano		59 .	Т	Sheb	oygai T	1		Cail	Prope			<u> </u>
San	nple	1			0.11/5								3011	Prope	rues		
	t. & l (in)	nts	eet			Rock Description											
er 7pe	At ered	Cou	In F			eologic Origin For		S	. <u>2</u>	E	le	urd atio	ıre		ity		ents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		Eac	ch Major Unit		SC	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	200	RQD/ Comments
Z g	Le R	Bl	De					D	Grap	N N	P P	Sta	≥ ວັ	1 1 1	Pla	Д	<u> </u>
			1	Boring	g already cleared	to 8' bgs by hydrovac.											
			-1														
			E														
			-2														
			_3														
			E														
			_4														
			E														
			<u>-</u> 5														
			E														
			F-6														
			E ₇														
			= '														
п			E ₈	CAND	STOLAN .	(C11)											
			E	SAND	OY CLAY, vario	us colors (1111).											
S1	16	6 8 11 10	<u>-</u> 9									2.5/1.7:	5 M				
		1110															
			-10														
			=11														
			= 11					CL									
			- ₁₂														
			E														
П			13														
			E														
S2	16	5 6 11 19	- 14									3.5	M				
			E														
		l ·	-15				at of1										
nereb	y certif	y mat t	ine intor	manon c	ni uns form is tr	ue and correct to the be	st of my Kr	iowied	gc.								

Firm **SCS** Engineers for Joe Larson 2830 Dairy Drive Madison, WI 53718

Tel: (608) 224-2830 Fax:

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A

Number and Type I Length Att. & Soil Properties Number Att. & Soil Properties Nowell Diagram Moisture Content I Liquid	RQD/ Comments
Number and Type Length Att. & Recovered (in Blow Counts) Blow Counts Blow Counts U S C S U Standard Moisture Content Liquid Limit Plasticity Index P 200	RQD/ Comments
Number and Type Length A Recoverer Blow Co Orabhic Log Well Moisture Content Liquid Limit Plasticity Index P 200	RQD/ Commen
Num and	RQI Con
SANDY CLAY, (fill).	
S3 1 16 67 = 19 3.25 M	
S3 16 67 19 3.25 M 3.25 M CLAY, dark brown, some gravel and fill (topsoil).	
E 22 LEAN CLAY brown (7.5VP 4/6)	
LEAN CLAT, brown (7.31 R 4/6).	
S4 24 47 -24 2.75 M	
S5 24 6 6 7 8 = 29 SANDY SILT, brown (7.5YR 4/6).	
S6 1 12 57 = 31	
87 22 22 33	
S8 24 2 35 6 inch sandier zone at 35-35.5 ft bgs, soil less	
cohesive, more water.	
S9 24 22 = 37 W	
S10 24 22 = 39 w	vater at 17.8 ft gs after well nstallation.
End of boring at 40 ft bgs.	istallation.

State of Wisconsin Department of Natural Resources

should be sent.

SOIL BORING LOG INFORMATION

Form 4400-122

Rev. 7-98

Fax:

			Ro	ute To:	Watershed/			Wast Othe		gement								
					Remediatio	n/Redeve	lopment \square	Otne	. П									_
Facilit	-/D:-	at Niam						Licens	/Damasir	/Monito	win a Ni	an deem		Boring	Pag		of	2
				rating St	ation	SCS#	: 25215135.10	- 1	e/Permi	AVIONIC	oring in	umber		Boring	Numbe		W-30)3
					ief (first, last)				rilling S	started		Da	ate Drilli	ing Con	npleted			ing Method
	in Du																	ollow stem
	ger S			DMD	V II ID V	Ic	337 11 N	F' 10		/2016		C C	El	2/4/2	016	lp.		<u>Diameter</u>
WI Un	_	7860		DNR V	Well ID No.		on Well Name MW-303	Final S		eter Lev	eı	Surrac	e Eleva	tion 73 Fe	et	Bo		.5 in.
Local			(es	stimated:) or B				1 (Grid Lo				.5 111.
State 1			631	,609 N,	2,573,49		S/C/N]]	_at					Feet	\square N			Feet E
SE		of N	W 1	/4 of Sec		т 14	N, R 23 E		ng	0	<u>'</u>				\Box s			□ w
Facility	y ID				County			County 0	Code	1	Town/C	-	Village					
San	nla		T		Shawano			39		Shed	oygar	<u>1</u>	T	Soil	Prope	ortios		
San					C -:1	/D = =1= D==								5011	Порс	lics		
	tt. & d (in)	ınts	Feet			Rock Des	Origin For						E					83
er ype	h A1 /ered	Con	l In I			ach Majo	-		S	ic	am	Ð	ard	ure	75	city		, nent
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		ь	acii iviajoi	Oill		SC	Graphic	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
Za	N K		<u> </u>	Boring	already cleare	ed to 8' bg	s by hydrovac.		<u> </u>	1////		<u></u>	S	20	HH	P		- C - M
			1															
			E 1															
			_2															
			E															
			- 3															
			_4															
			- '															
			_5															
			=															
			- 6															
			E ₇														ı	
			E															
П			8	SAND	Y LEAN CL	Y. vellov	vish brown (10	YR 5/4)										
		5.0	Ε .	9111.12		, ,												
S1	15	5 9 9 12	<u>-9</u>										3.0	W				
Ц			10															
			-11															
			=						CL									
			_12															
			- ₁₃				, ,,,	(4.0===										
				Same as 3/2).	s above excep	t, very da	rk grayish brov	vn (10YR						77				
S2	18	11 11 12 14	14	,									>4.5	W				
		1 4 14																
Lharat	, cortic	u that t	-15 he info	mation :	n this form: !-	true and -	correct to the be	act of my. 1	nowla-1	ge.								
Signatu		y mat t	HE HHOL	mation of	ı uns torii is	uuc anu c	In:			gc.							T-1 (C	00) 224 2020
8.14.14	-/	0//	10	0	1 / /		30	S Engin	CCIS								1 el: (6	08) 224-2830

For Kyle Kramer This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form

SCS Engineers

2830 Dairy Drive Madison, WI 53718

	g Num	ber	MV	V-303 Use only as an attachment to Form 4400-	122.	-			_			ge 2	of	2
San	nple									Soil	Prope	erties		
	. & (ii)	ıts	eet	Soil/Rock Description										
er pe	Att	Cour	In F	And Geologic Origin For	S	ပ	[rd	ire		ity		ents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each Major Unit	USC	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
<u> </u>	R. C.	BI	Lä		D	Grap	≥ i	PI	St	∑ ວັ	I I	Pl II	Ъ	<u>× 2</u>
			=											
			16											
			E -17											
			-											
П			- 18	Same as above except, yellowish brown (10YR 5/4).										
S3	20	6 8 13 14	- -19						2.0	W				
33	20	13 14	E	***	CL				2.0	**				
Ш			= 20											
			- -21											
			E											
			-22											
				G I I I I I I I I I I I I I I I I I I I										
			E	Same as above except, very dark grayish brown (10YR 3/2).										
S4	22	5 8 8 12	24	SANDY SILT, yellowish brown (10YR 5/4).		m			1.75	W				
Н														
			E											
S5	16	8 12 14 17	- 26							W				
Н			E -27											
			E											
S6	24	4 5 3 3	<u>-</u> 28							W				9
			- -29		ML									
			=											
S7	24	3 6 9 14	-30							W				
Ц			_ 31											
			=											
			32											
			_ 33	F 1 C1 :										
				End of boring at 33 ft bgs.										
-														

State of Wisconsin Route to: Solid Waste	Haz. Waste Wastewater	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 4-90		
Desertment of Natural Resources Env Perronce & Renai	Underground (units L) Other L)	hv. n N		
	nd Location of Well	Well Name 2 A - D(1)		
West Fracusty Site 1/11.	87 J. OS. /37/.07 T. DW	21100		
Grid Ori	gin Location	Wis Unique Wall Number DNK Well Number		
Facility License, 1 dring of months	~			
		Date Well Installed 4 29.00		
Type of Well Water Table Observation Well 11 St. Plan	·	1/2/1/8		
Discounter D2 Carrier	Location of Waste/Source			
Discourse Wall Is From WasterSource Boundary 1/6 a.u.	ENEW 25 Cm Z T 14 N R 23 H W	Well installed By: (Person's Name and rum)		
DBME 114	01/16 1/4 01 3 ct 11 11, 11 11.	MIRE MILE HIDE		
	n of Well Relative to Waste/Source			
Is Well A Point of Enforcement Stat. Application?		MIK ENVIORMENTAL		
- 12 80 ft MSL		•		
		ver pipe:		
6/2 72 ft MSL	Inside diarr	neter:in.		
D. With the sile of	1111/			
a Land surface elevation 6/03 ft. MSL	_ 11 11			
C. Danter	C Maignail			
Remitted Water Flack productions Remitted Colored Form 4400-1134 Rem, 4.50				
	d Additional	protection? Yes 🖾 No		
12. USCS classification of soil near screen:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•		
SM SC ML MH CL CH CH	3 Surface seal			
		Concrete 24 01		
12 Since malveis attached? The Tho		Other 🛘 🎆		
1	W W V V V V V V V V V V V V V V V V V V			
14. Drilling method used: Rotary 1 30	4. Maletal Cell			
Hollow Stem Auger 🖾 4.1		20		
Other [1]		Armular space seal 🔲 💯		
		Other 🗖 💥		
. W. E.O. W. E.O.				
15. Drilling fluid used: Water LI 02 Arr LI 01	5. Armular space	te seal:		
Drilling Mud 03 None 2 99	bLbs/	'gal mud weight Benionite-sand shirty []		
	Lbs.	'gal mud weight Bentonite slurry 🔲 3 1		
16 Drilling additives used? TYES No	96 B	entonite Bentonite-cement grout \(\Pi \) 50		
10. Diming	4 %2	Et 3 volume added for my of the above		
	c			
-	£ How inst	aliui.		
17. Source of water (attach analysis):		Tremie pumped 🔲 02		
		Gravity 🛛 03		
		Personite manufer 64 33		
	6. Benionite se			
F. Residence Ion ft. MSL or	16 29 22 / 5, 417-1			
E Bentonite seat, up		Other 🔲 🚉		
6 NG - 2 S	7 Fine sand m	sterial: Manufacturer, product name & mesh size		
F. Fine sand, top R. Mal or 2.2	" Received	Mise 15-75		
C. Ethernek ton ft. MSL or 3 3	it. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ೂರರಣೆ ಗ್ ^೨		
•	3 Filter pack	material: Manufacturer, product name and mesh size		
6 NG - 4 5				
H. Screen joint, top R. MSL or Z.	- Lary	<u></u>		
	b. Volume			
ft MSL or 143	ft. 9. Well casing			
1. Well bottom		Flush threaded PVC schedule 80 🔲 24		
. vo. : , U 5				
J. Filter pack, bottom ft. MSL or _ ZZ .~				
	10. Screen mau			
ft MSL or 145	fl. Screen t	ype: Factory cut 🔯 11		
K. Borehole, bottom				
		Out == [7]		
L. Borchole, diameter 80 in.		Park Ta		
	b. Manufac	THET DEDITION TAN.		
V 00 Warding 238 =	c. Slot size	: 0.075 m		
M. O.D. well casing -2.22 m.	d Slotted	length:ft.		
_	`			
Remark and Color Remark				
State of Wisconsists Second Water 1972 Second Water 1974				
Brittle Soles which I have been a series of North Properties and Protection Protection Properties and Protection Properties and Protection Properties and Protection Protectio				
	Miller France	els + Scientists		
the full				
		mi as recomed by Cas. 144, 147 and 100, 17 is office.		

Please complete both sides of this form and return to the appropriate DNR office listed at the top of this form as required by chs. 144, 147 and 160, Wis. Stats and ch. NR 141, Wis. Ad. Code. In accordance with ch.144, Wis Stats, failure to file this form may result in a forfeiture of not less than \$10, nor more than \$5000 for each day of violation. In accordance with ch. 147, Wis. Stats, failure to file this form may result in a forfeiture of not more than \$10,000 for each day of violation. NOTE: Shaded areas are for DNR use only. See instructions for more information including where the completed form should be sent.

			nagemen	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Facility/Project Name	Local Grid Location of Well		, DE.	Well Name
Facility License, Permit or Monitoring No. 02524	Local Grid Origin (estin	mated:) or		Wis. Unique Well No. DNR Well ID No. VV862
Facility ID	St. Plane632740.8 ft.	N, 25734	28.5 ft. E. S/C/N	<u>1/15/2016</u>
AND ASSESSMENT OF THE PARTY OF			4 23 E.	Well Installed By: Name (first, last) and Firm
Well Code/				Kevin Durst
Distance from Waste/ Sourceft.	u Upgradient s	Sidegradier	t	Badger State Drilling
	li li			∑ Yes ∐ No
B. Well casing, top elevation $= -\frac{60}{2}$)442 ft. MSL			$= \frac{6.0}{1}$ in.
C. Land surface elevation 60	11. 95 ft. MSL		b. Length:	_ <u>5.0</u> ft.
	-		c. Material:	Steel 🔀 0 4
	\$22.757.50.34.51	1.3	d Additional pro	
GP GM GC GW S				
	ст 🗌 сн 🔲 🖊		3 Surface seal:	Bentonite 🔀 3 0
	Yes ☑No			20,000
, . L		 	4. Material between	
	100			Bentonite 30
o	ther			- 4 4-4 1 1 - 1 0 0
15. Drilling fluid used: Water 0 2	Air 01		5. Annular space se	
V2 1111 2 4 1	None 99		cLbs/gal r	nud weight Bentonite slurry 31
16 Drilling additives used?	Yes XINo		d % Bentor	ite Bentonite-cement grout 50
			v. ———	m · —
Describe			f. How installed	Tremie pumped 0 2
	ıired):			Gravity 08
None				
E. Bentonite seal, top601.45 ft. MS	L or <u>0</u> .5 ft.		c	Other Other
F. Fine sand, top 585.95 ft. MS	SL or 16 ft.		7. Fine sand materi	al: Manufacturer, product name & mesh size Ohio #7
G. Filter pack, top 583.95 ft. MS	L or18 ft.		b. Volume adde	0.5 ft ³
504.05	L or 20 ft.		8. Filter pack mater	
, , ,	Š.		b. Volume adde	d2 ft ³
I. Well bottom 576.95 ft. MS	L or 25 ft.		9. Well casing:	
J. Filter pack, bottom 573.95 ft. MS	SL or 28 ft.			Other
K. Borehole, bottomf65.95 ft. MS	SL or 36 ft.		 Screen material: a. Screen type: 	Factory cut X 11
L. Borehole, diameter8.5 in.				Other
M. O.D. well casing2.04 in.			c. Slot size:	0. <u>010</u> in.
N ID well casing 2.0		\	-	
Department of Natural Resource Continued of Natural Resour				
		ne best of my kn	owledge.	
Signature of the Kyle		ENGINEERS.	2830 Dairy Drive,	Madison, WI 53718-6751

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

	Vatershed/Wastewater Remediation/Redevelopment	Waste Manag		MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
	Local Grid Location of Well-	N.	ft. BE.	Well Name MW-302
Facility License, Permit or Monitoring No. 02524	Local Grid Origin (estim	nated:) or \ Long	Well Location	Wis. Unique Well No. DNR Well ID No. VV861
Facility ID 460021980	St. Plane 632342.6 ft. N	v, <u>2573726</u>	6.3 ft. E. S/C/N	Date Well Installed
Type of Well Well Code/_ PZ	Section Location of Waste/So SE _{1/4} of NW 1/4 of Sec	urce 02.T14_1	N, R23	Well Installed By: Name (first, last) and Firm Kevin Durst
Distance from Waste/ Enf. Stds.	u Upgradient s	Sidegradient	Gov. Lot Number	Badger State Drilling
Sourceft. Apply	d X Downgradient n 5. 35 ft. MSL		Cap and lock?	Yes No
	515 ft, MSL	11.57	Protective cover p a. Inside diameter	6.0 in.
	265 ft. MSL		b. Length: c. Material:	$ \begin{array}{c} $
D. Surface seal, bottom61215 ft. MS 12. USCS classification of soil near screen	8243000347		d. Additional pro	tection? Other No
GP GM GC GW S	SW SP CH		If yes, describe	0
Bedrock 🗆		3.	Surface scal:	Concrete 01
· · ·	Yes ⊠No ary □ 50	4.	Material between	well casing and protective pipe:
Hollow Stem Av	ıger 🔀 4 1 💢 ther 💮		Ohi	o #5 Sand Bentonite 30
15. Drilling fluid used: Water 0 2	Air 01	Calculation and the contract of the contract o	Annular space sea	al; a. Granular/Chipped Bentonite 3 3 3 and weight Bentonite-sand slurry 3 5
	None 99		Lbs/gal n	nud weight Bentonite slurry 31 ite Bentonite-cement grout 50
16. Drilling additives used?	Yes ⊠No	e	Ft	volume added for any of the above
Describe	nited).	f.	How installed:	Tremie pumped 0 2
None		688á	Bentonite seal:	Gravity 0 8 a. Bentonite granules 33
E. Bentonite seal, top 612.15 ft. MS	L or0.5 ft.		b/4 in. [X]	3/8 in. 1/2 in. Bentonite chips 3 2 Other
F. Fine sand, top 584.15 ft. MS	L or 28.5 ft.	7.	Fine sand materia	al: Manufacturer, product name & mesh size Ohio #7 sand
G. Filter pack, top582.15 ft. MS	L or 30.5 ft.		b. Volume added	10.5_ft ³
H. Screen joint, top580.15 ft. MS	L or 32.5 ft.	_ /	a	ial: Manufacturer, product name & mesh size Ohio #5 sand
I. Well bottom 575.15 ft. MS	L or 37.5 ft.		b. Volume addedWell casing:	Flush threaded PVC schedule 40 🔀 23
J. Filter pack, bottom572.65 ft. MS	L or40 ft.			Flush threaded PVC schedule 80 2 4 Other 24
K. Borehole, bottomft. MS	E-3	7777	Screen material: a. Screen type:	Factory cut X 1 1
L. Borehole, diameter 8.5 in.				Continuous slot 0 1 dia sch 40 PVC Other 0
M. O.D. well casing 2.4 in.			b. Manufacturerc. Slot size:d. Slotted length	0. <u>.010</u> in.
N. I.D. well casing $\frac{2.0}{1.0}$ in.		•		(below filter pack): None 1 4 Other 1
I hereby certify that the information on this		best of my know	vledge.	Other
Signature for Hyle	Kramer SCS E	NGINEERS, 28	330 Dairy Drive,	Madison, WI 53718-6751

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

				MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Facility/Project Name	Local Grid Location of Well		ft E.	Well Name MW-303
	Local Grid Origin (estin			Wis. Unique Well No. DNR Well ID No. VV860
Department of Nameral Resource Water Department Water Department Water Department Prom. Adolf Department Prom.		2 / 4 / 2016		
Department of Nameral Remotes Route State Stat		Well Installed By: Name (first, last) and Firm		
Distance from Waste/ Enf. Stds.	u Upgradient s	Sidegradient	Gov. Lot Number	13 7
Tti Tti			1. Cap and lock?	Yes No
Department of Namaria Remonses Route for Namaria Remonses Route for Namaria Remonses Remons				
B. Well casing, top elevation = = =				_
	Silvery Co.		c. Material:	
	1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		d. Additional pro	tection? Yes No
GP GM GC GW	sw SP 🔲 🗎		If yes, describe	
			3. Surface scal:	Domonius III
Department of Namaria Resource Routite for Water Local Grid Location of Well Name Nam		377.775		
	160		4. Material between	
	- T XX			
15. Drilling fluid used: Water 0 2	Air 01		5. Annular space se	
	None 99		cLbs/gal n	nud weight Bentonite slurry 3 1
16. Drilling additives used?	Yes 🛛 No		IT4	
Describe				Tremie 0 1
	uired):			`. `. 🛏 `*
None				
E. Bentonite seal, top609.23 ft, MS	SL or <u>0.5</u> ft.		с	Other 🗌 🊃
F. Fine sand, top 587.73 ft. MS	SL or 22 ft.		7. Fine sand materia	
G. Filter pack, top 585.73 ft. Ms	SL or 24 ft.		a b. Volume added	1 0.5 ft ³
H. Screen joint, top 583.73 ft. Ms	SL or 26 ft.		a	Ohio #5
I. Well bottom578.73 ft. MS	SL or 31 ft.			Flush threaded PVC schedule 40 🔀 23
J. Filter pack, bottom 576.73 ft. M	SL or 33 ft.			Other
Department of Nameria Resources Source Sou		Factory cut X 11		
L. Borehole, diameter $-\frac{8.5}{100}$ in.				The state of the s
M. O.D. well casing2.04 in.			c. Slot size:	0. <u>010</u> in.
N. I.D. well casing $\frac{2.0}{10.0}$ in.		1	_	(below filter pack): None X 14
I hereby certify that the information on thi	s form is true and correct to th	he best of my kno	owledge.	Otto S
Signature/ 2/2	Firm			Madison, WI 53718-6751

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10\$ and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

Route to: Solid Env. Response &	Waste□ Haz.Wa : Repair□ Unde	ste 🗌 Wastewater 🛭 rground Tanks 🗎 Od	=	
Facility/Project Name WPIL Engewater Site	County Name	vgan	Well Name ZB-C	
Facility License, Permit or Monitoring Number 2321	County Code	Wis Unique Wall N	imber DNR We	II Number
1. Can this well be purged dry?	Ys DNo	11. Depth to Water	Before Development	After Development
2. Well development method surged with bailer and bailed surged with bailer and pumped	41 .	(from top of well casing)		
surged with block and bailed surged with block and pumped surged with block, bailed and pumped	42 62 70	Date	b_3104128 mm ddyy	1
compressed air bailed only	20 10	Time 12. Sediment in well	c. <u>[]</u> : <u>05</u> p.m.	
pumped only pumped slowly Other	51	bottom 13. Water clarity	Clear 10 Turbid 215	Clear pd 20 Turbid II 25
2, 1200 - 1 - 1	<u> 20 min.</u>		(Describe)	(Describe)
	16.5 ft.		5	
6. Volume of water in filter pack and well	gal	En in if drilling flui	ds were used and well is a	at solid waste facility:
7. Yolding of Wall Tunes of London	<u>O.O.</u>	14. Total suspended solids		
Volume of water added (if any) 9. Source of water added	<u>O</u> . <u>O</u> gal.	15. COD	ng/l	mg/l
10. Analysis performed on water added? (If yes, attach results) 16. Additional comments on development Well were peveloped Volume of water results the three pevelopment	Yes No O Ver moved 13	3 Days D	ove to slow	w recovery.
Well developed by: Person's Name and Firm		I hereby certify that of my knowledge.	the above information is	true and correct to the best
Name: Buan Leicham Firm: Miller Engineers +	6: 4:A	Print Initials:		
Firm: Miller Engineers L.	XICATISIS			is phientists

State of Wisconsin Department of Natural Resources

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/Wastev	vater	Waste Management			
Remediation/Rede	velopment	Other X			
Facility/Project Name	County Name		Well Name	***************************************	
WPL-Edgewater Generating Station		eyboygan			MW-301
Facility License, Permit or Monitoring Number	County Code	Wis. Unique Well Nu	mber		ell ID Number
FID 460021980, License #02524	<u>59</u>				
1. Can this well be purged dry? 2. Well development method surged with bailer and bailed surged with block and bailed surged with block and bailed surged with block and pumped surged with block, bailed and pumped surged with block, bailed and pumped	s	11. Depth to Water (from top of well casing) Date	Before Dev a. $\frac{5}{m m} / \frac{1}{d c}$ c. $\frac{12}{00} \cdot \frac{0}{c}$ Clear $\boxed{1}$	23 ft. 5 /3a.minches	After Development $ \begin{array}{cccccccccccccccccccccccccccccccccc$
	60 min.		Turbid 1 (Describe)	5	Turbid 🔀 2 5 (Describe)
4. Depth of well (from top of well casisng) $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$					
5. Inside diameter of well2	0 in.				
6. Volume of water in filter pack and well casing	5 gal.				at solid waste facility:
8. Volume of water added (if any) 9. Source of water added NA	. — gai.	solids 15. COD		mg/l	mg/l
		0		6/1	
-		16. Well developed by	: Name (first, l	ast) and Firn	1
10. Analysis performed on water added? Yes (If yes, attach results)	No No	First Name: Kyle Firm: SCS ENGIN	NEERS	Last Nam	_{e:} Kramer
17. Additional comments on development:				er en der konsuleren konsul die den er en en	
Name and Address of Facility Court (C)	Davis				
Name and Address of Facility Contact /Owner/Responsible First Name: Last Name: Jim Name: Jakubiak	Party	I hereby certify that of my knowledge.	the above inf	ormation i	s true and correct to the best
Facility/Firm: Wisconsin Power and Light		Signature:	m Hy	2	
Street: 3739 Lakeshore Drive	and the second s	Print Name:	ghan Bl	odgett	for Kyle Kramer
City/State/Zip: Sheyboygan,WI 53081		Firm: SCS EN	GINEERS	<u>, , , , , , , , , , , , , , , , , , , </u>	The desired

State of Wisconsin Department of Natural Resources

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/Wastew	ater	Waste Management	:			
Remediation/Redev	velopment	Other	-			
Facility/Project Name	County Name		Well Name			-
WPL-Edgewater Generating Station		eyboygan		J	MW-302	
Facility License, Permit or Monitoring Number	County Code	Wis. Unique Well N	umber	DNR Wel	ll ID Number	
FID 460021980, License #02524	<u>59</u>	<u>VV86</u>	1	<u></u>		
 Can this well be purged dry? Well development method surged with bailer and bailed 		11. Depth to Water (from top of well casing)			After Development	
surged with bailer and pumped surged with block and bailed surged with block and pumped surged with block, bailed and pumped compressed air bailed only pumped only pumped slowly Other	1 2 2 2 0 0 0 0 1		c1 : 35	a.m. x p.m. inches	Clear 2 0 Turbid 2 5	<u>2016</u> у у
3. Time spent developing well15	50 min.		(Describe)		(Describe)	
4. Depth of well (from top of well casisng) $= \frac{36}{2}$.	15 ft.					
5. Inside diameter of well $\frac{2}{2}$.	<u>0</u> in.					
6. Volume of water in filter pack and well casing 9	_6 gal.					
7. Volume of water removed from well135.	_0 gal.	Fill in if drilling fluid			•	
8. Volume of water added (if any)	gal.	 Total suspended solids 		· mg/l	mg/l	
9. Source of water addedNA		15. COD		mg/l	mg/l	
10. Analysis performed on water added? Yes (If yes, attach results)		16. Well developed b First Name: Kyle Firm: SCS ENGI		ast) and Firm Last Name		
17. Additional comments on development:						
Name and Address of Facility Contact /Owner/Responsible First	Party	I hereby certify tha of my knowledge.	t the above inf	ormation is	true and correct to the bes	t
Facility/Firm: Wisconsin Power and Light		Signature: M	RUG			
Street: 3739 Lakeshore Drive		Print Name: Meg	han Blo	reget	For Kyle Krans	V
City/State/Zip: Sheyboygan,WI 53081		Firm: SCS EN	NGINEERS	<u> </u>	•	

State of Wisconsin Department of Natural Resources

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/Wastev	vater	Waste Management				
Remediation/Rede	velopment	Other				
Facility/Project Name	County Name		Well Name			-
WPL-Edgewater Generating Station		eyboygan		N	/IVV-303	
Facility License, Permit or Monitoring Number	County Code	Wis. Unique Well Nu	mber		ID Number	
FID 460021980, License #02524	59	<u>VV860</u>				
1. Can this well be purged dry? 2. Well development method surged with bailer and bailed		11. Depth to Water (from top of well casing)			After Develop	
surged with bailer and pumped surged with block and bailed surged with block and pumped surged with block, bailed and pumped compressed air bailed only pumped only pumped slowly 6 7 7 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9	2 2 0 0 0 0	17	c1:00_		016 m m d d] a.m.]p.m.
Other		13. Water clarity	Clear 1	0	Clear 20	
3. Time spent developing well	70 min.		Turbid X 1 (Describe)	5	Turbid 🔀 2 5 (Describe)	
4. Depth of well (from top of well casisng) $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	<u>. 15</u> ft.					
5. Inside diameter of well2,	<u>0</u> in.	,				
6. Volume of water in filter pack and well casing 8_	. <u>03</u> gal.	Fill in if drilling fluids	were used as	ad well is at	solid waste facili	hu-
7. Volume of water removed from well <u>23</u>	_0 gal.	14. Total suspended				
8. Volume of water added (if any)	gal.	solids				mg/1
9. Source of water addedNA		15. COD		mg/l		mg/l
		Well developed by	: Name (first, la	ast) and Firm		
10. Analysis performed on water added? Yes (If yes, attach results)	No No	First Name: Kyle		Last Name:	Kramer	
1/9 A 131. 1		Firm: SCS ENGIN	IEERS			
17. Additional comments on development:						
Name and Address of Facility Contact/Owner/Responsible	Party	T11	.1 1			
First Jim Last Jakubiak Name:		I hereby certify that of my knowledge.	the above infe	ormation is	true and correct to	the best
Facility/Firm: Wisconsin Power and Light		Signature: 79/0	~ Belg			
Street: 3739 Lakeshore Drive		Print Name: Med		dgett	for Kyle	Kraner
City/State/Zip: Sheyboygan,WI 53081		Firm: SCS EN	GINEERS			Months

Appendix C

Laboratory Reports

C1	April 2021 Detection Monitoring
C2	October 2021 Detection Monitoring

C1 April 2021 Detection Monitoring

May 24, 2021

Meghan Blodgett SCS ENGINEERS 2830 Dairy Drive Madison, WI 53718

RE: Project: 25216068 CCR RULE EDGEWATER

Pace Project No.: 40225280

Dear Meghan Blodgett:

Enclosed are the analytical results for sample(s) received by the laboratory on April 16, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

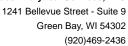
The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Green Bay

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436


Lan Mileny

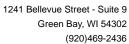
Project Manager

Enclosures

cc: Tom Karwoski, SCS ENGINEERS Nicole Kron, SCS ENGINEERS Jeff Maxted, ALLIANT ENERGY Marc Morandi, ALLIANT ENERGY

CERTIFICATIONS

Project: 25216068 CCR RULE EDGEWATER


Pace Project No.: 40225280

Pace Analytical Services Green Bay

North Dakota Certification #: R-150

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 Virginia VELAP ID: 460263

South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: 25216068 CCR RULE EDGEWATER

Pace Project No.: 40225280

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40225280001	2R-OW	Water	04/14/21 13:05	04/16/21 07:45
40225280002	MW-301	Water	04/14/21 09:45	04/16/21 07:45
40225280003	MW-302	Water	04/14/21 09:15	04/16/21 07:45
40225280004	MW-303	Water	04/14/21 10:20	04/16/21 07:45
40225280005	FIELD BLANK	Water	04/14/21 13:25	04/16/21 07:45

SAMPLE ANALYTE COUNT

Project: 25216068 CCR RULE EDGEWATER

Pace Project No.: 40225280

Lab ID	Sample ID	Method	Analysts	Analytes Reported
40225280001	2R-OW	EPA 6020	KXS	2
			VGC	7
		SM 2540C	JXM	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40225280002	MW-301	EPA 6020	KXS	2
			VGC	7
	SM 2540C	JXM	1	
		EPA 9040	ALY	1
	EPA 300.0	HMB	3	
40225280003	MW-302	EPA 6020	KXS	2
			VGC	7
		SM 2540C	JXM	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40225280003 MW-302 40225280004 MW-303	EPA 6020	KXS	2	
			VGC	7
		SM 2540C	JXM	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40225280005	FIELD BLANK	EPA 6020	KXS	2
		SM 2540C	JXM	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3

PASI-G = Pace Analytical Services - Green Bay

ANALYTICAL RESULTS

Project: 25216068 CCR RULE EDGEWATER

Pace Project No.: 40225280

Date: 05/24/2021 11:02 AM

Sample: 2R-OW	Lab ID:	40225280001	Collected:	04/14/21	13:05	Received: 04/	/16/21 07:45 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	ation Metho	od: EPA	A 3010			
	Pace Ana	lytical Services	- Green Bay						
Boron	45.7	ug/L	20.0	6.1	2	04/20/21 06:26	04/22/21 14:03	7440-42-8	
Calcium	154000	ug/L	508	152	2	04/20/21 06:26	04/22/21 14:03	7440-70-2	
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Green Bay						
Field pH	7.52	Std. Units			1		04/14/21 13:05		
Field Specific Conductance	1229	umhos/cm			1		04/14/21 13:05		
Oxygen, Dissolved	6.9	mg/L			1		04/14/21 13:05	7782-44-7	
REDOX	282	mV			1		04/14/21 13:05		
Turbidity	413	NTU			1		04/14/21 13:05		
Static Water Level	608.50	feet			1		04/14/21 13:05		
Temperature, Water (C)	6.6	deg C			1		04/14/21 13:05		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
	Pace Ana	lytical Services	- Green Bay						
Total Dissolved Solids	737	mg/L	33.3	14.5	1		04/20/21 15:04		
9040 pH	Analytical	Method: EPA 9	040						
	Pace Ana	lytical Services	- Green Bay						
pH at 25 Degrees C	7.4	Std. Units	0.10	0.010	1		04/19/21 10:31		H6
300.0 IC Anions	Analytical	Method: EPA 3	0.00						
	Pace Ana	lytical Services	- Green Bay						
Chloride	116	mg/L	20.0	4.3	10		04/30/21 22:43	16887-00-6	
Fluoride	<0.095	mg/L	0.32	0.095	1		04/30/21 19:36	16984-48-8	
Sulfate	15.3	mg/L	2.0	0.44	1		04/30/21 19:36	14808-79-8	

ANALYTICAL RESULTS

Project: 25216068 CCR RULE EDGEWATER

Pace Project No.: 40225280

Date: 05/24/2021 11:02 AM

Sample: MW-301	Lab ID:	40225280002	Collected:	04/14/2	09:45	Received: 04/	16/21 07:45 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	•	Method: EPA 6	•	ition Meth	od: EPA	A 3010			
Boron Calcium	7200 118000	ug/L ug/L	100 2540	30.3 762	10 10	04/20/21 06:26 04/20/21 06:26	04/22/21 14:10 04/22/21 14:10		
Field Data	Analytical Pace Ana	Method: llytical Services	- Green Bay						
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	7.96 815 8.2 226 124 595.17	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1 1		04/14/21 09:45 04/14/21 09:45 04/14/21 09:45 04/14/21 09:45 04/14/21 09:45 04/14/21 09:45 04/14/21 09:45	7782-44-7	
2540C Total Dissolved Solids	-	Method: SM 29							
Total Dissolved Solids 9040 pH	•	mg/L Method: EPA 9 lytical Services		8.7	1		04/20/21 15:04		
pH at 25 Degrees C 300.0 IC Anions	,	Std. Units Method: EPA 3 llytical Services		0.010	1		04/19/21 10:32		H6
Chloride Fluoride Sulfate	13.5 0.25J 195	mg/L mg/L mg/L	2.0 0.32 20.0	0.43 0.095 4.4	1 1 10		04/30/21 19:50 04/30/21 19:50 05/03/21 10:27	16984-48-8	

ANALYTICAL RESULTS

Project: 25216068 CCR RULE EDGEWATER

Pace Project No.: 40225280

Date: 05/24/2021 11:02 AM

Sample: MW-302	Lab ID:	40225280003	Collected:	04/14/2	1 09:15	Received: 04/	/16/21 07:45 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	•	I Method: EPA 6	•	ition Meth	od: EPA	A 3010			
Boron Calcium	1550 81200	ug/L ug/L	20.0 508	6.1 152	2 2		04/22/21 14:17 04/22/21 14:17		
Field Data	Analytical Pace Ana	l Method: llytical Services	- Green Bay						
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	8.19 517 1.8 41 252 600.56 7.5	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1 1		04/14/21 09:15 04/14/21 09:15 04/14/21 09:15 04/14/21 09:15 04/14/21 09:15 04/14/21 09:15 04/14/21 09:15	7782-44-7	
2540C Total Dissolved Solids	•	l Method: SM 2							
Total Dissolved Solids 9040 pH	•	mg/L I Method: EPA 9 alytical Services		8.7	1		04/20/21 15:04		
pH at 25 Degrees C 300.0 IC Anions	,	Std. Units I Method: EPA 3 Ilytical Services		0.010	1		04/19/21 10:33		H6
Chloride Fluoride Sulfate	20.6 0.88 70.5	mg/L mg/L mg/L	2.0 0.32 10.0	0.43 0.095 2.2	1 1 5		04/30/21 20:05 04/30/21 20:05 05/03/21 10:41	16984-48-8	

ANALYTICAL RESULTS

Project: 25216068 CCR RULE EDGEWATER

Pace Project No.: 40225280

Date: 05/24/2021 11:02 AM

Sample: MW-303	Lab ID:	40225280004	Collected:	04/14/2	1 10:20	Received: 04/	16/21 07:45 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	•	Method: EPA	•	tion Meth	od: EPA	A 3010			
_		llytical Services	,			/	/		
Boron Calcium	4600 176000	ug/L ug/L	100 2540	30.3 762	10 10		04/22/21 14:23 04/22/21 14:23		
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Green Bay						
Field pH	7.27	Std. Units			1		04/14/21 10:20		
Field Specific Conductance	1222	umhos/cm			1		04/14/21 10:20		
Oxygen, Dissolved	2.3	mg/L			1		04/14/21 10:20	-	
REDOX	-41	mV			1		04/14/21 10:20		
Turbidity	408	NTU			1		04/14/21 10:20		
Static Water Level	595.01	feet			1		04/14/21 10:20		
Temperature, Water (C)	7.7	deg C			1		04/14/21 10:20		
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C						
	Pace Ana	lytical Services	- Green Bay						
Total Dissolved Solids	710	mg/L	20.0	8.7	1		04/20/21 15:05		
9040 pH	Analytical	Method: EPA 9	9040						
·	Pace Ana	lytical Services	- Green Bay						
pH at 25 Degrees C	7.1	Std. Units	0.10	0.010	1		04/19/21 10:34		H6
300.0 IC Anions	Analytical	Method: EPA	300.0						
	Pace Ana	lytical Services	- Green Bay						
Chloride	22.5	mg/L	2.0	0.43	1		04/30/21 20:19	16887-00-6	
Fluoride	<0.095	mg/L	0.32	0.095	1		04/30/21 20:19	16984-48-8	
Sulfate	0.54J	mg/L	2.0	0.44	1		04/30/21 20:19	14808-79-8	

ANALYTICAL RESULTS

Project: 25216068 CCR RULE EDGEWATER

Pace Project No.: 40225280

Date: 05/24/2021 11:02 AM

Sample: FIELD BLANK	Lab ID:	40225280005	Collected	d: 04/14/2 ⁻	1 13:25	Received: 04/	/16/21 07:45 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	•	Method: EPA 6 ytical Services	•		od: EPA	A 3010			
Boron Calcium	<3.0 81.2J	ug/L ug/L	10.0 254	3.0 76.2	1 1	04/21/21 06:55 04/21/21 06:55			
2540C Total Dissolved Solids	•	Method: SM 25 lytical Services		/					
Total Dissolved Solids	18.0J	mg/L	20.0	8.7	1		04/20/21 15:05		
9040 pH	•	Method: EPA 9 lytical Services		/					
pH at 25 Degrees C	6.8	Std. Units	0.10	0.010	1		04/19/21 10:37		H6
300.0 IC Anions	•	Method: EPA 3 ytical Services		/					
Chloride Fluoride Sulfate	0.63J <0.095 <0.44	mg/L mg/L mg/L	2.0 0.32 2.0	0.43 0.095 0.44	1 1 1		04/30/21 20:33 04/30/21 20:33 04/30/21 20:33	16984-48-8	

QUALITY CONTROL DATA

25216068 CCR RULE EDGEWATER Project:

Pace Project No.: 40225280

Date: 05/24/2021 11:02 AM

QC Batch: 382877 Analysis Method: EPA 6020 QC Batch Method: EPA 3010 Analysis Description: 6020 MET

> Laboratory: Pace Analytical Services - Green Bay

40225280001, 40225280002, 40225280003, 40225280004 Associated Lab Samples:

METHOD BLANK: Matrix: Water

Associated Lab Samples: 40225280001, 40225280002, 40225280003, 40225280004

> Blank Reporting Qualifiers Parameter Units Result Limit Analyzed <3.0 10.0 04/22/21 12:26

Boron ug/L Calcium <76.2 254 04/22/21 12:26 ug/L

LABORATORY CONTROL SAMPLE: 2208604

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Boron 500 476 95 80-120 ug/L Calcium 5000 5040 101 80-120 ug/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2208605 2208606 MS MSD 40225338001 Spike Spike MS MSD MS MSD % Rec Max Conc. Parameter Units Result Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Boron ug/L 299 500 500 747 742 90 75-125 20 Calcium 138000 5000 5000 144000 144000 110 75-125 20 P6 ug/L 128

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 25216068 CCR RULE EDGEWATER

Pace Project No.: 40225280

QC Batch: 383007 QC Batch Method: EPA 3010 Analysis Method: EPA 6020 Analysis Description: 6020 MET

Laboratory:

Pace Analytical Services - Green Bay

Associated Lab Samples: 40225280005

METHOD BLANK: 2209295

Date: 05/24/2021 11:02 AM

Matrix: Water

Associated Lab Samples: 40225280005

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

ua/L <3.0 10.0 04/21/21 18:28

Boron ug/L <3.0 10.0 04/21/21 18:28 Calcium ug/L <76.2 254 04/21/21 18:28

LABORATORY CONTROL SAMPLE: 2209296

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Boron 500 486 97 80-120 ug/L Calcium 5000 4980 100 80-120 ug/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2209297 2209298 MS MSD 40225276001 Spike Spike MS MSD MS MSD % Rec Max Conc. Parameter Units Result Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Boron ug/L 22.2 500 500 519 512 99 75-125 20 Calcium 117000 5000 5000 122000 120000 104 75-125 2 20 P6 ug/L 64

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 25216068 CCR RULE EDGEWATER

Pace Project No.: 40225280

QC Batch: 382972 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40225280001, 40225280002, 40225280003, 40225280004, 40225280005

METHOD BLANK: 2209087 Matrix: Water

Associated Lab Samples: 40225280001, 40225280002, 40225280003, 40225280004, 40225280005

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <8.7 20.0 04/20/21 14:59

LABORATORY CONTROL SAMPLE: 2209088

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids mg/L 564 554 98 80-120

SAMPLE DUPLICATE: 2209089

40225276001 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 472 **Total Dissolved Solids** mg/L 486 3 10

SAMPLE DUPLICATE: 2209090

Date: 05/24/2021 11:02 AM

40225343004 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 850 mg/L 808 5 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 25216068 CCR RULE EDGEWATER

Pace Project No.: 40225280

QC Batch: 382737 Analysis Method: EPA 9040 QC Batch Method: EPA 9040 Analysis Description: 9040 pH

> Laboratory: Pace Analytical Services - Green Bay

 $40225280001,\,40225280002,\,40225280003,\,40225280004,\,40225280005$ Associated Lab Samples:

SAMPLE DUPLICATE: 2207896

Date: 05/24/2021 11:02 AM

40225270004 Dup Max Parameter Units Result RPD RPD Qualifiers Result pH at 25 Degrees C 6.3 20 H6 Std. Units 6.4

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 25216068 CCR RULE EDGEWATER

Pace Project No.: 40225280

QC Batch: 383892 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40225280001, 40225280002, 40225280003, 40225280004, 40225280005

METHOD BLANK: 2214475 Matrix: Water

Associated Lab Samples: 40225280001, 40225280002, 40225280003, 40225280004, 40225280005

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed Chloride mg/L < 0.43 2.0 04/30/21 17:21 Fluoride mg/L < 0.095 0.32 04/30/21 17:21 Sulfate mg/L 04/30/21 17:21 < 0.44 2.0

LABORATORY CONTROL SAMPLE: 2214476

Date: 05/24/2021 11:02 AM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
	Office					Qualificity
Chloride	mg/L	20	20.3	102	90-110	
Fluoride	mg/L	2	2.0	100	90-110	
Sulfate	mg/L	20	20.1	101	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2213	291		2213292							
			MS	MSD								
		40225302001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	437	400	400	844	857	102	105	90-110	1	15	
Fluoride	mg/L	<1.9	40	40	32.6	31.7	77	75	90-110	3	15	M0
Sulfate	mg/L	171	400	400	594	597	106	106	90-110	0	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 25216068 CCR RULE EDGEWATER

Pace Project No.: 40225280

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

WORKORDER QUALIFIERS

WO: 40225280

[1] Revised Report: The client provided a new groundwater elevation value to 2R-OW.

ANALYTE QUALIFIERS

Date: 05/24/2021 11:02 AM

H6 Analysis initiated outside of the 15 minute EPA required holding time.

M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

P6 Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the

spike level.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 25216068 CCR RULE EDGEWATER

Pace Project No.: 40225280

Date: 05/24/2021 11:02 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40225280001	2R-OW	EPA 3010	382877	EPA 6020	382963
40225280002	MW-301	EPA 3010	382877	EPA 6020	382963
40225280003	MW-302	EPA 3010	382877	EPA 6020	382963
40225280004	MW-303	EPA 3010	382877	EPA 6020	382963
40225280005	FIELD BLANK	EPA 3010	383007	EPA 6020	383093
40225280001	2R-OW				
40225280002	MW-301				
40225280003	MW-302				
40225280004	MW-303				
40225280001	2R-OW	SM 2540C	382972		
40225280002	MW-301	SM 2540C	382972		
40225280003	MW-302	SM 2540C	382972		
40225280004	MW-303	SM 2540C	382972		
40225280005	FIELD BLANK	SM 2540C	382972		
40225280001	2R-OW	EPA 9040	382737		
40225280002	MW-301	EPA 9040	382737		
40225280003	MW-302	EPA 9040	382737		
40225280004	MW-303	EPA 9040	382737		
40225280005	FIELD BLANK	EPA 9040	382737		
40225280001	2R-OW	EPA 300.0	383892		
40225280002	MW-301	EPA 300.0	383892		
40225280003	MW-302	EPA 300.0	383892		
40225280004	MW-303	EPA 300.0	383892		
40225280005	FIELD BLANK	EPA 300.0	383892		

(P	Please Print Clearly)	1						•			UPPER	MIDWE	EST RE	GION		Page 1	of
Company Name:	SCS Engirees	7	1 1 1					_			MN: 61	12-607 - 1	1700	WI: 920-469-2436	1		_
Branch/Location:	Madison WI		/	//	ace	Ana	lytic	al®							402	25281	7
Project Contact:	Meghan Blodge	514-	- /			www.pc	celabs.c	OIII						Quote #:		-	
Phone:	668-216-73			C	HA	IN	OF	Cl	JST	ΓΟΙ	DY			Mail To Contact:			
Project Number:	25216068		A=Nor		ICL C=	:	Preserva	tion Code	98		ol G=Na	ЮН		Mail To Company:		:	
Project Name:	CCR Role Edgen	relet		dium Bisuli				n Thiosulfa		Other				Mail To Address:			
Project State:	WI		FILTER (YES/		Y/N	N	N	N									
Sampled By (Print):		4	PRESERY	VATION	Pick Latter	G	A	A						Invoice To Contact:			
Sampled By (Sign);			(00)	,,,	13.00									Invoice To Company:	SCS	S Engin	205
PO#:	R.	egulatory			sted	+10		30%			-	l	ł	Invoice To Address:	2830	Dary	<u> </u>
Data Package O		rogram: Matri	x Codes		Analyses Requested	CA		1		-			. [M-1.	son, WI S	72718
(billable)	On your sample	Air V	W = Water DW = Drinkin		88			7				.			1 acc	son, ω_1	,316
☐ EPA Leve	(billable) C=	Charcoal C	GW ≈ Ground SW = Surface	d Water e Water	lyse	بط	二					.		Invoice To Phone:			
	your sample S = SI =		WW = Waste WP = Wipe		Ana	Metals-	02							CLIENT		OMMENTS	Profile #
PACE LAB #	CLIENT FIELD ID	DATE	TIME	MATRIX								:		COMMENTS	(Lab L	Jse Only)	
$ \infty $	2 ROW	4/14	1305	GW		\geq	\boxtimes	\searrow									
002	MW-301	1	945	1		X	X	X									
003	MW-302		915		2.5				•								
	MW-303		1020	V		\leq			•								
005 F	Field Blank		1325	2		\Leftrightarrow			•								
003	TELE ISLANCE		مردر		en de												
							 										
,																	
					3199												
					3470 (84)												· .
					7.00												
					7.7												
			h		17												
Rush Turnaro	ound Time Requested - Prelims	Reling	yshold By:	A 11	/	_	Da	ite#Time:/			Received	Bv:	<u> </u>	Date/Time:		PACE Pr	oject No.
(Rush TAT s	ubject to approval/surcharge)		119	16	57			te/Time:/	1 80	(لا	41	Jary	Yas	m 4/15/21	8.35	4822	5280
	te Needed: sh Results by (complete what you wan	/	uished By:	ے ا	Fan	_		te/Time:	14	00	Received	rBy:		Vate/Time:		<u> </u>	
Email #1:	on results by (complete what you wan		µishod By:	1	in		, I, Da	e/Time:	//		Received	F/\ _ /	$ \mathcal{V} $	Date/Time:		Receipt Temp =	<i>S</i> ° ° ° °
Emall #2:			15/0	12/198	<u> 221</u>		4116	14	071	15	\mathcal{L}	11/2	<u>1/V</u>	Date/Time:	6745	Sample R	
Telephone:		Relinq	uished By:	J			Da	te/Time:			Received	i By:		Date/Time:		6ky A	
Fax:								<u> </u>		-						Cooler Cu	stody Seal lot Present
	s on HOLD are subject to icing and release of liability	Relinq	uished By:		÷.		Da	ite/Time:	·		Received	з Ву:		Date/Time:		Intact/ N	lot Progret 17 of

	All	conta	iners i	needir	ng pre:	servat	ion h	ave b	een c	hecke Lal	d and Lot#							b Std	#ID of	prese	ervatio	n (if p	H adju	sted):						when leted:		Date/ Time:	
				Gl	ass						Plas	tic				Vi	als				J	ars		G	enera	al	* (>6mm) *	52	Act pH ≥9	212	25	justed	Volume
Pace Lab#	AG10	BG1U	AG1H	AG4S	AG4U	AG5U	AG2S	BG3U	BP1	BP3U	BP3B	BP3N	BP3S	VG9A	DG9T	VG9U	VG9H	VG9M	VG9D	JGFU	JG9U	WGFU	WPFU	SP5T	ZPLC	GN	VOA Vials	H2SO4 pH ≤2	NaOH+Zn Act pH ≥9	NaOH pH ≥12	HNO3 pH ≤2	pH after adjusted	(mL)
001	45.00 Ap.	. Portugio			Comparing to	1 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2			1	Z		1																			×		2.5 / 5 / 10
002	141						TC15			2						140					静觀										×		2.5/5/10
003	September		N. P. S. P. W. L.	50-18.17	1787020					2		1																			×		2.5 / 5 / 10
004		17 ST 223			dia.	2 4 1 1 2 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3.5			2			i de la							Strategy Strategy Strategy											X	251	2.5/5/10
005	150.000	The age	Santai, s	ļ				72000	_	2							<u> </u>														X		2.5 / 5 / 10
006				3.14																									(Mai)				2.5/5/10
007	14 Feb. 2	del es rive			o 6 min																												2.5 / 5 / 10
008	iar			district.			V1			7000	d best.	Constant Service									15 m					See 1					Tokk to		2.5/5/10
009	25cm 50	40000000	SPECTAL TARE	Allege Se	Academies of																												2.5 / 5 / 10
010	ES?			V.499		191,4	in c	diction.						N.		EL.						The Land								Park			2.5/5/10
011	best Pat	an interior	2012/01/2/2/2/2/2	Jan Corposi	\$190 A\$40,000.00	22.1 W/W. to	Karpore	g Toggress reper	M Contract	1 47 34 20 12	<u> </u>	L						<u> </u>															2.5 / 5 / 10
012	Kij	ATTENDED		15,415		1000		7.00	i ligari							1000	對議				BEN BEN			H.	1100								2.5/5/10
013	\$358-73K	A LIACUS	Service of the	or Section 85														Commence of the		April 100 to proceedings							17776						2.5 / 5 / 10
014	high			17.64 P	Assertation of the second		12141			102		1.33	ANTON SECTION				Miles	Maria Maria	17.5.5.10 17.5.11 17.5.11										1451	Transfer of the transfer of th	anger in		2.5/5/10
015	Mr. Notice	i sautad	See of		Vice-Picas	Editor P						<u> </u>		<u> </u>					<u> </u>										$\lfloor \cdot \rfloor$	\mathcal{N}			2.5/5/10
016	Mary and			100	ESS	H.N	10.00	1814	2.5	1000												1400				175 h	12.42 h		NO		7	1000	2.5/5/10
017	fatile to	1 1	V10.11.11		45 a. 34 a.	2													į									0	4	1			2.5 / 5 / 10
018			1000		Check	B.	1.45						TOTAL OF			Rec	\$ 274 d. C. J. 278	强热								8346 8241	以基础						2.5/5/10
019	istalii l	:Necestra	SESSIVE CHE	aiza.uai	Shallan Grano		E 1752		<u> </u>																								2.5 / 5 / 10
020		12.73	yenem.										Maria Maria Maria		Trans						Make 1	71 DEC		数は対			Wil			Real	Transfer of the second		2.5 / 5 / 10
Excep	lions	to pre	eserva	ition c	heck:	VOA,	Coli	form.	TOC	TOX.	TOH.	O&G	ם וש	RO P	henoli	ics O	ther			Hear	denace	e in V	ΩΔ Vis	ie />6	imm) ·	πVos	No	-kt/Δ	*If vo	s look	in boar	lenace	column
AG1U									21U		er plas							40	1 -1-				571 116					,			in near	space	1
BG1U	1 lite	r cle	ar gla	SS					23U		mL p						39A 39T				corbid Ia Th				SFU S9U			-	unpre				
AG1H	1 lite	r am	ber gl	lass I	HCL			BF	23B		mL p						39U				al unp				3FU				npres				
AG4S	125	mL a	mber	glass	H2S	604			P3N	250	mL pl	lastic	HNO	3		1	9H	40 m	ıL cle	ar via	I HCI	<u>_</u>							unpre				
AG4U AG5U	120 I	mLa mla	mber mbor	glass	unp	res		BF	28	250	mL p	astic	H2S(04		4	9M				al MeC	ЭН			25T	120	mL p	lastic	Na T		lfate		1
AG2S	500 i	m∟a. mLa	mber	giass	unpi	ies Na										_ VC	39D	40 m	L cle	ar via	II DI				LC	ziplo	c ba	g					
BCSU	200	a	11001	giass	1123	,04		l																G	SN	1							

BG3U 250 mL clear glass unpres

Pace Analytical®
1241 Bellevue Street, Green Bay, WI 54302

Document Name:

Sample Condition Upon Receipt (SCUR)

Document No.:

ENV-FRM-GBAY-0014-Rev.00

Document Revised: 26Mar2020

Author:

Pace Green Bay Quality Office

Sample Condition Upon Receipt Form (SCUR)

^ / '		:			Projec	+ #.			
Client Name: SCS MMNee	šς	1			1 10,60		ПОЩ	10005000	
Courier: ScS Logistics Fed Ex Speed		LID	_ s\	Maltα	0		MO#	40225280	
Client Pace Other:	.00 1.	. Oi (J 1 V	vailo	0			i i iii i i ii i iii	
Tracking #:		- :		-			40225280		
Custody Seal on Cooler/Box Present: yes	∕no	Sea	ls intaci		ves 🗖 no	,			
Custody Seal on Samples Present: yes	no	Sea	ls intact	t: Г	ves 🗀 no				
Packing Material: Bubble Wrap Bubble Wrap	ble Ba	gs 🗄	Γ. Νοπ	ne J	Other				
Thermometer Used SR - U	Type	of Ice	: (Vet) Blue	Dry Non	ne D	Samples o	n ice, cooling process has begui	า
Cooler Temperature Uncorr: /Corr:	<u>,5 </u>		_					Person examining conter	ıts:
Temp Blank Present: yes no		Biol	ogical '	Tissu	e is Froze	n: 🗔 ye	es 🗔 no	Date: Ulle 21/Initials:	P
Temp should be above freezing to 6°C. Biota Samples may be received at ≤ 0°C if shipped on D	ny Ice							. Ac	
Chain of Custody Present:		□No	□n/a	1				Labeled By Initials:	$\stackrel{\checkmark}{\smile}$
Chain of Custody Filled Out:	□Yes			 	nac).	Natt		4/16/2	<u> </u>
Chain of Custody Relinquished:	D≪es				really	() - J-14-		0 4 2	1/50
Sampler Name & Signature on COC:	[∑X es			 					
Samples Arrived within Hold Time:	∏Yes	□No		5.					
- VOA Samples frozen upon receipt	☐Yes			1	Time:				
Short Hold Time Analysis (<72hr):	□Yes	(ZKVo		6.		· · · · · · · · · · · · · · · · · · ·			
Rush Turn Around Time Requested:	□Yes	ĎÑ₀		7.					
Sufficient Volume:				8.			**		
For Analysis: Kes □No MS/MSD:	Yes	DNG	□N/A	ĺ					
Correct Containers Used:	D/Yes	□No		9.			****		
-Pace Containers Used:	X¥es	□No	□n/a						Ī
-Pace IR Containers Used:	□Yes	□No	DOMA						1
Containers Intact:	Ø₹es	□No		10.					
Filtered volume received for Dissolved tests	Ves	□No	□n/a	11.					
Sample Labels match COC:	□Yes	5 %	□n/a	12.	_	1			
-Includes date/time/ID/Analysis Matrix:	W_			N	10 Date	2/+11	ue	4/16/21 1-	اص
rip Blank Present:	□Yes	□No	XXV/A					/	
rip Blank Custody Seals Present	□Yes	□No	DWTA						
Pace Trip Blank Lot # (if purchased):						<u></u>			
Client Notification/ Resolution: Person Contacted:			Dete/T	r:		If checke	d, see attache	ed form for additional comments	
Comments/ Resolution:			Date/T	ıme:					
						· · · · · · · · · · · · · · · · · · ·			

PM Review is documented electronically in LIMs. By releasing the project, the PM acknowledges they have reviewed the sample logic

C2 October 2021 Detection Monitoring

November 16, 2021

Meghan Blodgett SCS ENGINEERS 2830 Dairy Drive Madison, WI 53718

RE: Project: CCR RULE EDGEWATER I-4 CLOSED

Pace Project No.: 40235999

Dear Meghan Blodgett:

Enclosed are the analytical results for sample(s) received by the laboratory on October 29, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

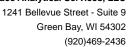
The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Green Bay

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436


Lan Mileny

Project Manager

Enclosures

cc: Sherren Clark, SCS Engineers Tom Karwoski, SCS ENGINEERS Nicole Kron, SCS ENGINEERS Ryan Matzuk, SCS Engineers Jeff Maxted, ALLIANT ENERGY Marc Morandi, ALLIANT ENERGY

CERTIFICATIONS

Project: CCR RULE EDGEWATER I-4 CLOSED

Pace Project No.: 40235999

Pace Analytical Services Green Bay

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150

Virginia VELAP ID: 460263

South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: CCR RULE EDGEWATER I-4 CLOSED

Pace Project No.: 40235999

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40235999001	MW-301	Water	10/26/21 10:55	10/29/21 07:20
40235999002	MW-302	Water	10/26/21 09:35	10/29/21 07:20
40235999003	MW-303	Water	10/26/21 10:15	10/29/21 07:20
40235999004	FIELD BLANK	Water	10/26/21 10:50	10/29/21 07:20
40235999005	2R-OW	Water	10/26/21 11:55	10/29/21 07:20

SAMPLE ANALYTE COUNT

Project: CCR RULE EDGEWATER I-4 CLOSED

Pace Project No.: 40235999

Lab ID	Sample ID	Method	Analysts	Analytes Reported
40235999001	MW-301	EPA 6020B	DS1, KXS	2
			MEA	7
		SM 2540C	TMK	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40235999002	MW-302	EPA 6020B	DS1, KXS	2
			MEA	7
		SM 2540C	TMK	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40235999003	MW-303	EPA 6020B	DS1, KXS	2
			MEA	7
		SM 2540C	TMK	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	:
40235999004	FIELD BLANK	EPA 6020B	KXS	2
		SM 2540C	TMK	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40235999005	2R-OW	EPA 6020B	KXS	2
			MEA	7
		SM 2540C	TMK	1
		EPA 9040	ALY	
		EPA 300.0	HMB	(

PASI-G = Pace Analytical Services - Green Bay

ANALYTICAL RESULTS

Project: CCR RULE EDGEWATER I-4 CLOSED

Pace Project No.: 40235999

Date: 11/16/2021 04:55 PM

Sample: MW-301	Lab ID:	40235999001	Collected	: 10/26/2	1 10:55	Received: 10	/29/21 07:20 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical Method: EPA 6020B Preparation Method: EPA 3010A								
	Pace Ana	alytical Services	- Green Bay						
Boron	6710	ug/L	200	60.6	20	11/03/21 05:24	11/12/21 13:02	7440-42-8	
Calcium	102000	ug/L	254	76.2	1	11/03/21 05:24	11/11/21 19:51	7440-70-2	
Field Data	Analytical Method:								
	Pace Analytical Services - Green Bay								
Field pH	7.01	Std. Units			1		10/26/21 10:55		
Field Specific Conductance	811	umhos/cm			1		10/26/21 10:55		
Oxygen, Dissolved	5.4	mg/L			1		10/26/21 10:55	7782-44-7	
REDOX	196	mV			1		10/26/21 10:55		
Turbidity	88.4	NTU			1		10/26/21 10:55		
Static Water Level	590.68	feet			1		10/26/21 10:55		
Temperature, Water (C)	11.2	deg C			1		10/26/21 10:55		
2540C Total Dissolved Solids	Analytical Method: SM 2540C								
	Pace Analytical Services - Green Bay								
Total Dissolved Solids	538	mg/L	20.0	8.7	1		11/01/21 00:53		
9040 pH	Analytical Method: EPA 9040								
	Pace Analytical Services - Green Bay								
pH at 25 Degrees C	7.1	Std. Units	0.10	0.010	1		11/05/21 09:58		H6
300.0 IC Anions	Analytical Method: EPA 300.0								
	Pace Analytical Services - Green Bay								
Chloride	13.8	mg/L	2.0	0.43	1		11/16/21 05:58	16887-00-6	MO
Fluoride	0.24J	mg/L	0.32	0.095	1		11/16/21 05:58	16984-48-8	M0
Sulfate	203	mg/L	20.0	4.4	10		11/16/21 13:22	14808-79-8	MO
	-	3			-				-

ANALYTICAL RESULTS

Project: CCR RULE EDGEWATER I-4 CLOSED

Pace Project No.: 40235999

Date: 11/16/2021 04:55 PM

Sample: MW-302	Lab ID:	40235999002	Collected:	10/26/2	09:35	Received: 10/	29/21 07:20 M	atrix: Water		
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual	
6020B MET ICPMS	Analytical Method: EPA 6020B Preparation Method: EPA 3010A Pace Analytical Services - Green Bay									
Boron Calcium	1580 78200	ug/L ug/L	100 254	30.3 76.2	10 1	11/03/21 05:24 11/03/21 05:24	11/12/21 13:10 11/11/21 19:59			
Field Data	Analytical Pace Ana	Method: llytical Services	- Green Bay							
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	7.60 496 0.1 134 69.8 599.82	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1 1		10/26/21 09:35 10/26/21 09:35 10/26/21 09:35 10/26/21 09:35 10/26/21 09:35 10/26/21 09:35 10/26/21 09:35	7782-44-7		
2540C Total Dissolved Solids	Analytical Method: SM 2540C Pace Analytical Services - Green Bay									
Total Dissolved Solids 9040 pH	•	mg/L Method: EPA 9 Ilytical Services		8.7	1		11/01/21 00:53			
pH at 25 Degrees C 300.0 IC Anions	7.8 Analytical	Std. Units Method: EPA 3	0.10	0.010	1		11/05/21 10:02		H6	
Chloride Fluoride Sulfate	20.7 0.88 71.2	mg/L mg/L mg/L	2.0 0.32 10.0	0.43 0.095 2.2	1 1 5		11/16/21 06:41 11/16/21 06:41 11/16/21 08:50	16984-48-8		

ANALYTICAL RESULTS

Project: CCR RULE EDGEWATER I-4 CLOSED

Pace Project No.: 40235999

Date: 11/16/2021 04:55 PM

Sample: MW-303	Lab ID:	40235999003	Collected	: 10/26/2	1 10:15	Received: 10/	/29/21 07:20 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	•	I Method: EPA 6	•		hod: El	PA 3010A			
	Pace Ana	lytical Services	- Green Bay						
Boron	3650	ug/L	200	60.6	20	11/03/21 05:24	11/12/21 13:17	7440-42-8	
Calcium	148000	ug/L	254	76.2	1	11/03/21 05:24	11/11/21 20:06	7440-70-2	
Field Data	Analytica	l Method:							
	Pace Ana	alytical Services	- Green Bay						
Field pH	6.92	Std. Units			1		10/26/21 10:15		
Field Specific Conductance	1,171	umhos/cm			1		10/26/21 10:15		
Oxygen, Dissolved	1.6	mg/L			1		10/26/21 10:15	7782-44-7	
REDOX	170	mV			1		10/26/21 10:15		
Turbidity	88.4	NTU			1		10/26/21 10:15		
Static Water Level	594.07	feet			1		10/26/21 10:15		
Temperature, Water (C)	12.3	deg C			1		10/26/21 10:15		
2540C Total Dissolved Solids	Analytica	l Method: SM 25	540C						
	Pace Ana	alytical Services	- Green Bay						
Total Dissolved Solids	640	mg/L	20.0	8.7	1		11/01/21 00:54		
9040 pH	Analytica	l Method: EPA 9	040						
	Pace Ana	alytical Services	- Green Bay						
pH at 25 Degrees C	7.0	Std. Units	0.10	0.010	1		11/05/21 10:04		H6
300.0 IC Anions	Analytica	l Method: EPA 3	00.0						
	Pace Ana	alytical Services	- Green Bay						
Chloride	21.6	mg/L	10.0	2.2	5		11/13/21 13:02	16887-00-6	
Fluoride	<0.48	mg/L	1.6	0.48	5		11/13/21 13:02		D3
Sulfate	<2.2	mg/L	10.0	2.2	5		11/13/21 13:02	14808-79-8	D3
		J							

ANALYTICAL RESULTS

Project: CCR RULE EDGEWATER I-4 CLOSED

Pace Project No.: 40235999

Date: 11/16/2021 04:55 PM

Sample: FIELD BLANK	Lab ID:	40235999004	Collected	d: 10/26/2°	1 10:50	Received: 10/	/29/21 07:20 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	•	Method: EPA 6	•		hod: El	PA 3010A			
Boron Calcium	<3.0 <76.2	ug/L ug/L	10.0 254	3.0 76.2	1 1	11/03/21 05:24 11/03/21 05:24	11/11/21 18:30 11/11/21 18:30		
2540C Total Dissolved Solids	•	Method: SM 25 lytical Services		y					
Total Dissolved Solids	<8.7	mg/L	20.0	8.7	1		11/01/21 00:54		
9040 pH	•	Method: EPA 9 lytical Services		y					
pH at 25 Degrees C	7.6	Std. Units	0.10	0.010	1		11/05/21 10:05		H6
300.0 IC Anions	•	Method: EPA 3 lytical Services		y					
Chloride Fluoride Sulfate	<0.43 <0.095 <0.44	mg/L mg/L mg/L	2.0 0.32 2.0	0.43 0.095 0.44	1 1 1		11/15/21 13:47 11/15/21 13:47 11/15/21 13:47		

ANALYTICAL RESULTS

Project: CCR RULE EDGEWATER I-4 CLOSED

Pace Project No.: 40235999

Date: 11/16/2021 04:55 PM

Sample: 2R-OW	Lab ID:	40235999005	Collected	: 10/26/21	11:55	Received: 10/	/29/21 07:20 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	•	l Method: EPA 6	•		hod: Ef	PA 3010A			
	Pace Ana	alytical Services	- Green Bay						
Boron	47.2	ug/L	10.0	3.0	1	11/03/21 05:24	11/11/21 20:14	7440-42-8	
Calcium	192000	ug/L	254	76.2	1	11/03/21 05:24	11/11/21 20:14	7440-70-2	
Field Data	Analytica	l Method:							
	Pace Ana	alytical Services	- Green Bay						
Field pH	7.01	Std. Units			1		10/26/21 11:55		
Field Specific Conductance	2,290	umhos/cm			1		10/26/21 11:55		
Oxygen, Dissolved	0.6	mg/L			1		10/26/21 11:55	7782-44-7	
REDOX	242	mV			1		10/26/21 11:55		
Turbidity	95.2	NTU			1		10/26/21 11:55		
Static Water Level	604.04	feet			1		10/26/21 11:55		
Temperature, Water (C)	14.0	deg C			1		10/26/21 11:55		
2540C Total Dissolved Solids	Analytica	l Method: SM 25	540C						
	Pace Ana	alytical Services	- Green Bay						
Total Dissolved Solids	1170	mg/L	20.0	8.7	1		11/01/21 00:54		
9040 pH	Analytica	l Method: EPA 9	040						
•	Pace Ana	alytical Services	- Green Bay						
pH at 25 Degrees C	7.2	Std. Units	0.10	0.010	1		11/05/21 10:07		H6
300.0 IC Anions	Analytica	l Method: EPA 3	0.00						
	Pace Ana	alytical Services	- Green Bay						
Chloride	493	mg/L	100	21.6	50		11/15/21 14:01	16887-00-6	
Fluoride	<4.8	mg/L	15.8	4.8	50		11/15/21 14:01	16984-48-8	D3
Sulfate	35.7J	mg/L	100	22.2	50		11/15/21 14:01	14808-79-8	D3
		•							

(920)469-2436

QUALITY CONTROL DATA

Project: CCR RULE EDGEWATER I-4 CLOSED

Pace Project No.: 40235999

Boron

Calcium

Date: 11/16/2021 04:55 PM

QC Batch: 400458 Analysis Method: EPA 6020B
QC Batch Method: EPA 3010A Analysis Description: 6020B MET

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40235999001, 40235999002, 40235999003, 40235999004, 40235999005

METHOD BLANK: 2312698 Matrix: Water

Associated Lab Samples: 40235999001, 40235999002, 40235999003, 40235999004, 40235999005

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed <3.0 10.0 11/11/21 18:23 ug/L <76.2 254 11/11/21 18:23 ug/L

LABORATORY CONTROL SAMPLE: 2312699

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Boron 250 243 97 80-120 ug/L Calcium 10000 10200 102 80-120 ug/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2312700 2312701 MS MSD 40235995001 Spike Spike MS MSD MS MSD % Rec Max Conc. RPD Parameter Units Result Conc. Result Result % Rec % Rec Limits **RPD** Qual Boron ug/L 1040 250 250 1240 1250 84 75-125 0 20 Calcium 65600 10000 10000 74200 75300 86 98 75-125 20 ug/L 1

QUALITY CONTROL DATA

Project: CCR RULE EDGEWATER I-4 CLOSED

Pace Project No.: 40235999

QC Batch: 400145 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

> Laboratory: Pace Analytical Services - Green Bay

> > 384

10

10

40235999001, 40235999002, 40235999003, 40235999004, 40235999005 Associated Lab Samples:

METHOD BLANK: 2311329 Matrix: Water

Associated Lab Samples: 40235999001, 40235999002, 40235999003, 40235999004, 40235999005

> Blank Reporting

Qualifiers Parameter Units Result Limit Analyzed

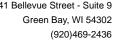
Total Dissolved Solids <8.7 20.0 11/01/21 00:50 mg/L

mg/L

LABORATORY CONTROL SAMPLE: 2311330

Spike LCS LCS % Rec Result Conc. % Rec Limits Qualifiers Parameter Units mg/L **Total Dissolved Solids** 575 534 93 80-120

SAMPLE DUPLICATE: 2311331


40235907001 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 346

SAMPLE DUPLICATE: 2311332

Total Dissolved Solids

Date: 11/16/2021 04:55 PM

40235999001 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 538 2 mg/L 548 10

QUALITY CONTROL DATA

Project: CCR RULE EDGEWATER I-4 CLOSED

Pace Project No.: 40235999

QC Batch: 400795 Analysis Method: EPA 9040
QC Batch Method: EPA 9040 Analysis Description: 9040 pH

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40235999001, 40235999002, 40235999003, 40235999004, 40235999005

SAMPLE DUPLICATE: 2314419

Date: 11/16/2021 04:55 PM

 Parameter
 Units
 40235873001 Result
 Dup Result
 Max RPD
 Max RPD
 Qualifiers

 pH at 25 Degrees C
 Std. Units
 7.3
 7.4
 1
 20
 H6

QUALITY CONTROL DATA

Project: CCR RULE EDGEWATER I-4 CLOSED

Pace Project No.: 40235999

Date: 11/16/2021 04:55 PM

QC Batch: 401294 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40235999003, 40235999004, 40235999005

METHOD BLANK: 2316943 Matrix: Water

Associated Lab Samples: 40235999003, 40235999004, 40235999005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Chloride	mg/L	<0.43	2.0	11/13/21 10:50	
Fluoride	mg/L	< 0.095	0.32	11/13/21 10:50	
Sulfate	mg/L	< 0.44	2.0	11/13/21 10:50	

LABORATORY CONTROL SAMPLE:	2316944					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L		18.8	94	90-110	
Fluoride	mg/L	2	1.8	91	90-110	
Sulfate	mg/L	20	18.3	92	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2316	945		2316946							
		40235999003	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	21.6	100	100	127	132	106	110	90-110	4	15	
Fluoride	mg/L	< 0.48	10	10	10.0	10.6	100	106	90-110	6	15	
Sulfate	mg/L	<2.2	100	100	101	108	101	108	90-110	6	15	

MATRIX SPIKE & MATRIX SP	IKE DUPL	LICATE: 2316	947		2316948							
			MS	MSD								
		40236058005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	5.4	20	20	28.2	28.2	114	114	90-110	0	15	MO
Fluoride	mg/L	1.2	2	2	3.4	3.4	109	109	90-110	0	15	
Sulfate	mg/L	75.2	100	100	183	183	108	108	90-110	0	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(920)469-2436

QUALITY CONTROL DATA

Project: CCR RULE EDGEWATER I-4 CLOSED

Pace Project No.: 40235999

QC Batch: 401491 QC Batch Method: EPA 300.0 Analysis Method: EPA 300.0

Analysis Description: 300.0 IC Anions

Laboratory:

Pace Analytical Services - Green Bay

Associated Lab Samples: 40235999001, 40235999002

METHOD BLANK: 2318065

Date: 11/16/2021 04:55 PM

Chloride

Fluoride

Sulfate

Matrix: Water

Associated Lab Samples: 40235999001, 40235999002

Blank Reporting Limit Qualifiers Parameter Units Result Analyzed mg/L < 0.43 2.0 11/16/21 05:29 mg/L < 0.095 0.32 11/16/21 05:29 mg/L 2.0 11/16/21 05:29 < 0.44

LABORATORY CONTROL SAMPLE: 2321189

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	20	20.0	100	90-110	
Fluoride	mg/L	2	1.9	97	90-110	
Sulfate	mg/L	20	19.5	98	90-110	

MATRIX SPIKE & MATRIX SF	PIKE DUPL	ICATE: 2318	067		2318068							
			MS	MSD								
		40235999001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	13.8	20	20	36.7	36.6	114	114	90-110	0	15	MO
Fluoride	mg/L	0.24J	2	2	2.5	2.5	112	111	90-110	0	15	M0
Sulfate	mg/L	203	200	200	434	428	115	112	90-110	1	15	M0

QUALIFIERS

Project: CCR RULE EDGEWATER I-4 CLOSED

Pace Project No.: 40235999

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 11/16/2021 04:55 PM

D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

H6 Analysis initiated outside of the 15 minute EPA required holding time.

M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: CCR RULE EDGEWATER I-4 CLOSED

Pace Project No.: 40235999

Date: 11/16/2021 04:55 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40235999001	MW-301	EPA 3010A	400458	EPA 6020B	400581
40235999002	MW-302	EPA 3010A	400458	EPA 6020B	400581
40235999003	MW-303	EPA 3010A	400458	EPA 6020B	400581
40235999004	FIELD BLANK	EPA 3010A	400458	EPA 6020B	400581
40235999005	2R-OW	EPA 3010A	400458	EPA 6020B	400581
40235999001	MW-301				
40235999002	MW-302				
40235999003	MW-303				
40235999005	2R-OW				
40235999001	MW-301	SM 2540C	400145		
40235999002	MW-302	SM 2540C	400145		
40235999003	MW-303	SM 2540C	400145		
40235999004	FIELD BLANK	SM 2540C	400145		
40235999005	2R-OW	SM 2540C	400145		
40235999001	MW-301	EPA 9040	400795		
40235999002	MW-302	EPA 9040	400795		
40235999003	MW-303	EPA 9040	400795		
40235999004	FIELD BLANK	EPA 9040	400795		
40235999005	2R-OW	EPA 9040	400795		
40235999001	MW-301	EPA 300.0	401491		
40235999002	MW-302	EPA 300.0	401491		
40235999003	MW-303	EPA 300.0	401294		
40235999004	FIELD BLANK	EPA 300.0	401294		
40235999005	2R-OW	EPA 300.0	401294		

			ALL SAM		12	=	10	9	8	7	6	55	4	ω	N	_	ITEM#	7	Reques	Phone:	Email:	Madison.	Compar	Require	Section A
			ALL SAMPLES UNFILTERED, metals=Calcium/boron	ADDITIONAL COMMENTS								2R-OW	FIELD BLANK	MW-303	MVV-302	MW-301	SAMPLE ID One Character per box. (A-Z, 0-9/, -) Sample Ids must be unique		Requested Due Date:	608-216-7362 Fax	Email: mblodgett@scsengineers.com	Madison, WI 53718	TY SCS ENGINEERS	Required Client Information:	Pace Analytical
		S	SSS	RELIN								WT	WT	WT	WT	WT	MATRIX CODE MATRIX Diriking Water DW Water Water WI Vasile Water WW Product SL OIL OIL Other OT Tissue MATRIX CODE MATRIX CODE MATRIX CODE	t)	Project #:	Project Name:	Purchase Order #:	Copy	Report To: Meg	Required Project Information:	Section B
SIGNATUR	SAMPLER NAM	Legistics	Mor	RELINQUISHED BY I AFFILIATION							1155	9		1015	735	1624/055	SAMPLE TYPE (G=GRAB C C) COLLECTED START E DATE DATE DATE)		CCR Rule Edgewater I-4 Closed (25216068)			han Blodgett	Information:	CH/ The C
SIGNATURE of SAMPLER:	SAMPLER NAME AND SIGNATURE	12/2/21		DATE													SAMPLE TEMP AT COLLECTION # OF CONTAINERS				Pa	Ad	C At	lnv	\IN-OF-CL hain-of-Custody
ACH WATSON		OTRO WILL CONTROL	<u>.</u> €	TIME ACCEPTED B													Unpreserved H2SO4 HNO3 HCI NaOH Na2S2O3 Methanol Other			Pace Project Manager: dan.milewsky	ce Quote:	Address:	Attention:	Invoice Information:	CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.
DATE Signed: /// -28-3		PAICK		ED BY / AFFILIATION								× ×	× ×	×	×××	×	Analyses Test Y/N Metals pH TDS, CI, F, SO4	Requested Analysis Filtered (Y/N)		ewsky@pacelabs.com,					Request Documo
16-82	A Company	10/29/21 0 /20		DATE TIME	╁													Filtered (Y/N)					<u></u>	<u>ا</u> آ	ent pleted accurately
Receive Ice (Y/N)	d on	- '- - '-		SAMPLE CONDITIONS								Ca/B only	Ca/B only	Ca/B only	Ca/B only	Ca/B only	Residual Chlorine (Y/N)			State / Location		Regulatory Agency		Page: 1 C	100 X
Sealed Cooler (Y/N) Sample: Intact (Y/N)			<	IDITIONS			-					005	004	200	202	00]								으로 -	799

CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A Section B Section C Required Client Information: Required Project Information: Invoice Information: Page: Of Company: SCS ENGINEERS Report To: Meghan Blodgett Attention: Address: 2830 Dairy Drive Copy To: Company Name: Address: Madison, WI 53718 Regulatory Agency Email: Purchase Order #: Pace Quote: mblodgett@scsengineers.com Phone: 608-216-7362 Fax: Project Name: CCR Rule Edgewater I-4 Closed (25216068) Pace Project Manager: dan.milewsky@pacelabs.com, State / Location Requested Due Date: Pace Profile #: 3946 Project #: Requested Analysis Filtered (Y/N) (see valid codes to left) valid codes to left) λN Preservatives COLLECTED MATRIX CODE SAMPLE TEMP AT COLLECTION Drinking Water Water Waste Water ww **Analyses Test** Product SAMPLE ID SL OL WP AR OT Soil/Solid START END Oil Cl, F, SO4 One Character per box. Wipe Air SAMPLE TYPE MATRIX CODE (A-Z, 0-9/, -) Other Na2S203 Sample Ids must be unique Tissue H2S04 ITEM HN03 HCI Ę, DATE TIME DATE TIME Ca/B only MW-301 wt Ca/B only MW-302 wT 3 Ca/B only MW-303 WT FIELD BLANK WT Ca/B only Ca/B only 5 2R-OW WT 6 8 9 10 11 12 SAMPLE CONDITIONS ADDITIONAL COMMENTS RELINQUISHED BY / AFFILIATION DATE TIME **ACCEPTED BY I AFFILIATION** DATE TIME ALL SAMPLES UNFILTERED, metals=Calcium/boron SAMPLER NAME AND SIGNATURE TEMP in C PRINT Name of SAMPLER: SIGNATURE of SAMPLER: DATE Signed:

Addresses Order By: Order			Pa	ace C	ontainer O	rder	#869	9034	10235	599
Company SCS ENGINEERS Conjust Blodgitt, Meghan Corlated Blodgitt, Meghan Address 2830 Daily Drive Address 2830 Daily Drive Address 2830 Daily Drive Address 2 Address 2 Suite 9 Address 2 Suite 9 City Memorrance Falls City Memorrance Falls City Memorrance Falls City Groen Blog Will Zip 54302 Phone 608216-7382 Phone 608216-7382 Phone 608216-7382 Phone 608216-7382 Project Manager Milewsky, Dan Return Date Corlain Project Manager Milewsky, Dan Return Date Carriar FadEx Ground Location Trip Blanks Bottle Labels Blank Pre-Printed With Sample IDs Will Ripper With Shipper Society Sample ID/Matrix Misc Coolers With Trap, Blanks Pre-Printed With Sample IDs With Melais Society Sample ID/Matrix Misc Coolers With Melais Society Sample ID/Matrix With Trap, S.D. F, SO4 Somplar cooking hours are bycically Base Spin, but may differ by location. Please check with your Pace Project Manager. Prepared By: With Trap, Co. F, SO4 Somplar cooking hours are bycically Base Spin, but may differ by location. Please check with your Pace Project Manager. Prepared By: Mill Yor He Verified By: Prepared By: Mill Yor He Verified By: Prepared By: Mill Yor He Verified By: Date Rec'd: Received By:				Shin	To:	1		Ratur	n To:	
Contact Blodgatt, Meghan Email mibiodgatt@sceenpheers.com Email mibiodgatt@sceenpheers.com Email contact Zach Watson Email mibiodgatt@sceenpheers.com Email contact Zach Watson Email mibiodgatt@sceenpheers.com Address 2390 Darly Drive Address 22 Address 22 Address 22 Address 22 Address 22 Address 22 City Maddison City Medison City Memoranee Falls City Green Bay State WI 2/p 539718 State WI 2/p 539718 State WI 2/p 539718 Phone 6080 245-7392 Pho		_	NEERS							en Bav
Email mblodget(@sceengineers.com	• •									
Address 2 830 Dairy Drive Address 2 Address 2 Address 2 Address 2 Suite 9 Address 2 Address 2 Address 2 Suite 9 City Medison Gity Menomonee Falls City Green Bay State WI Zip 53718 State WI Zip 53051 State WI Zip 54302 Phone 608-216-7382 Phone (608) 226-2972 Phone (920)459-2438 Info Project Name (28710089) Project Manager Mieveky, Dan Return Date Carrier FedEx Ground Location Trip Blanks Blank Blank Blank Pre-Printed No Sample IDs With Shipper Shipping Labels Sample ID/Malrix With Shipper Shipping Labels Shipping Labels Syringes With Shipper Shipping Labels Syringes With Shipper Shipping Labels Syringes Syringes Syringes Shipping Labels With Sample IDs With Sample IDs With Shipper Shipping Labels Shipping Short Hold/Flush Stickers Shipping Short Hold/Flush Shipping Shipping Shipping Shipping Shipping Shipping Shipping Shipping Shipping Shi						oore co	m			alahe com
Address 2 Gity Madison City Menomones Falls City Green Bay State Wi Zip 53718 State Wi Zip 53051 State Wi Zip 53051 Phone 608-216-7362 Phone (608) 225-2972 Phone (608) 245-2972 Phone (608)		***************************************					-			
State Wi Zip 53718 State Wi Zip 53051 State Wi Zip 54302			Dilve				· · · · · · · · · · · · · · · · · · ·			
State WI Zip 53718 State WI Zip 53051 State WI Zip 53051 Phone 608-216-7362 Phone 608										
Phone 608-216-7352 Phone (608) 225-2972 Phone (920)469-2436 Info Project Name CRR lute Edgewater 1-4 Closed Project Manager Milewatsy, Dan Return Date Garfor FedEx Ground Location Trip Blanks Blanks Blanks Blank Blanks Blank Blank Grouped By Sample IDs Grouped By Sample ID/Matrix Return Shipping Labels Blanks Blank Grouped By Sample ID/Matrix Return Shipping Labels Blanks Blank Grouped By Sample ID/Matrix Return Shipping Labels Blanks Blank Grouped By Sample ID/Matrix Return Shipping Labels Blanks Blank Grouped By Sample ID/Matrix Return Shipping Labels Blanks Grouped By Sample ID/Matrix Misc Blanks Grouped By Sample ID/Matrix Return Shipping Labels Blanks Guerre Grouped By Sample ID/Matrix With Shipper Glanks Grouped By Sample ID/Matrix COC Options Grouped By Sample ID/Matrix Famp, Blanks Grouped By Sample ID/Matrix Coclers Grouped By Sample ID/Matrix For June Blanks Disping Water [Liter(b)] Worder [Liter(b)] USDA Regulated Solis With Total # of Lot # Notes For June Blanks Disping Placard In Place : NA Hazard Shipping Placard In Place	•			•						· · · · · · · · · · · · · · · · · · ·
Info					·	51)2
Project Name CCR Rule Biggevater I-4 Closed Due Date 10/22/2021 Profile 3846 Quote Project Managor Milewsky, Dan Return Date Carrier FedEx Ground Location Trip Blanks Blank Blank Blank Blank Blank Grouped By Sample IDs Grouped By Sample ID/Matrix Return Shipping Labels Sampling Instructions Sample IDs Sampling Instructions Sample IDs Grouped By Sample ID/Matrix Return Shipping Labels Sampling Instructions Sample IDs Sampling Instructions Sampling Instructions Shipper Short Hold/Rush Stickers Short Hold/Rush Stickers Syringes Short Hold/Rush Stickers Short Hold/Rush Stickers Syringes Short Hold/Rush Stickers Short Hold/Rush Stic	Phone	608-216-73	362	Phone	(608) 225-2972			Phone	(920)469-2436	
Project Manager Milewelsy, Dan Return Date Carrier FedEx Ground Location Trip Blanks Blank Blan		C	CR Rule Edgewater I-4 Closed			·				
Trip Blanks Bottle Labels Blank Boxed Cases Individually Wrapped Grouped By Sample ID/Matrix Return Shipping Labels No Shipper With Shipper COC Options Number of Blanks Pre-Printed With Shipper COC Options Number of Blanks Pre-Printed With Shipper Coulstody Seal Syringes Syringes WIT Motals Syringes WIT Total # of Lot # Notes Cafb only Somple Matrix Test Container Total # of Lot # Notes Cafb only Somple Matrix Total Misc Coolers Syringes Syringes Cafb only LAB USE: Ship Date: Ship Date: Notes Caracy Analytical reserves the right to return hazardous, toxic, or radioactive samples to you. Prepared By: Ware Heave Analytical reserves the right to charge for unused bottles, as well as cost associated with sample storage/disposal. CLIENT USE (Optional): Date Rec'dt: Received By:	Proje	ect Name (2	25216068)	Due Date	10/22/2021	Prof	ile <u>3946</u>		Quote	
Include Trip Blanks	Project	Manager M	filewsky, Dan F	Return Date		Carr	ier FedE	x Ground	Location	
No Shipper With Shipper Sampling Instructions Custody Seal Short Hold/Rush Stickers DI Water Liter(s) USDA Regulated Soils USDA Regulated Soils USDA Regulated Soils WIT Metals Z50mL plastic withNO3 5 0 M-1-203-04BB Ca/B only Short Hold/Rush Stickers Syringes USDA Regulated Soils USDA R	In	nclude Trip B			Blank Pre-Printed I X Pre-Printed I	No Sam			Boxed Cases Individually Wrappe	
# of Samples Matrix Test Container Total # of Lot # Notes WT Metals 250mL plastic w/HNO3 5 0 M-1-203-04BB Ca/B only		o Shipper Vith Shipper Options			Sampling Ins Custody Sea Temp. Blank X Coolers	ıi	is		Short Hold/Rus	sh Stickers ter(s)
S WT Metals 250mL plastic w/HNO3 5 0 0 M-1-203-04BB Ca/B only 5 WT pH 250mL plastic unpres 5 0 0 M-1-203-03BB 5 V V V V Example receiving hours are typically 8am-5pm, but may differ by location. Please check with your Pace Project anager. Prepared By:	# of Sample	es Matrix	Test	Containe	er	Total	# of	Lot #	Notes	***************************************
Hazard Shipping Placard In Place: NA Hazard Shipping National In Place: Natio	· ·		Motals	250ml play	stic w/HNO3	5	0	M-1-203-04BB	Ca/B only	
Hazard Shipping Placard In Place: NA Sample receiving hours are typically 8am-5pm, but may differ by location. Please check with your Pace Project Prepared By: Wai Yer He Sample Sample CLIENT USE (Optional): Bate Received By: CLIENT USE (Optional): Received By: Received By: CLIENT USE (Optional): Received By: CRIENT USE (Optional): Received By: CRIENT USE (Optional): CRIEN								M-1-203-03BB		
Hazard Shipping Placard In Place: NA sample receiving hours are typically 8am-5pm, but may differ by location. Please check with your Pace Project Prepared By: Wai Yer He varies include the proposal number on the chain of custody to insure proper billing. Sample CLIENT USE (Optional): Date Rec'd: Received By:					·		-	M-1-203-03BB		
Sample receiving hours are typically 8am-5pm, but may differ by location. Please check with your Pace Project Ship Date: 10/20/2021 Prepared By: Wai Yer He Verified By: Page Analytical reserves the right to charge for unused bottles, as well as cost associated with Payment term are net 30 days. Please include the proposal number on the chain of custody to insure proper billing. Sample CLIENT USE (Optional): Date Rec'd: Received By:										
Sample receiving hours are typically 8am-5pm, but may differ by location. Please check with your Pace Project Ship Date: 10/20/2021 Prepared By: Wai Yer He Pace Analytical reserves the right to return hazardous, toxic, or radioactive samples to you. Pace Analytical reserves the right to charge for unused bottles, as well as cost associated with Prepared By: Verified By: Prepared By: Wai Yer He Pace Analytical reserves the right to charge for unused bottles, as well as cost associated with sample storage/disposal. Prepared By: Verified By:	На	zard Sh	ipping Placard In I	Place : 1	NA			LAB		
Pace Analytical reserves the right to return hazardous, toxic, or radioactive samples to you. Pace Analytical reserves the right to charge for unused bottles, as well as cost associated with Payment term are net 30 days. Please include the proposal number on the chain of custody to insure proper billing. Sample CLIENT USE (Optional): Date Rec'd: Received By:	ample recei					with yo	ur Pace F	roject	·	
Pace Analytical reserves the right to charge for unused bottles, as well as cost associated with sample storage/disposal. Payment term are net 30 days. Please include the proposal number on the chain of custody to insure proper billing. Sample CLIENT USE (Optional): Date Rec'd: Received By:		cal recensor	the right to return hazardous	toxic or rec	lioactive samples to v	ou.				Mai Yer Her
Date Rec'd: ALL SAMPLES UNFILTERED, metals=Calcium/boron Received By:	ace Analyti ayment terr	cal reserves m are net 30	the right to charge for unused days.	i bottles, as	well as cost associate	ed with	sample st	orage/disposal.	Verified By:	
ALL SAMPLES UNFILTERED, metals=Calcium/boron Received By:	•							CLIENT	USE (Optional):	
ALL SAMPLES UNFILTERED, metals=Calcium/boron Received By:	S	ample						7		
Verified By:	ALL SAMPL	ES UNFILTI	ERED, metals=Calcium/boron	ı					Received By:	
Page 1 of 1									Verified By:	

UL 10/29/21

Sample Preservation Receipt Form
Project # 1

Pace Analytical Services, LLC 1241 Bellevue Street, Suite 9 Green Bay, WI 54302

Client Name: SCS Engineers All containers needing preservation have been checked and noted below:

✓es □No □N/A Date/ Initial when completed: Time: Lab Lot# of pH paper: 1000104 Lab Std #ID of preservation (if pH adjusted): laOH+Zn Act pH ≥9 Vials (>6mm) adjusted Glass **Plastic** Vials Jars General 12SO4 pH ≤2 IaOH pH ≥12 Volume Ä (mL) WPFU AG5U /G9M AG10 BG1U **AG1H** AG2S **BG3U** VG9A VG9H VG9D BP1U **BP3U BP3B BP3N BP3S** VG9U JGFU JG9D **ZPLC** DG9T **SP5T** HN03 Pace S Ø Lab # 001 2.5 / 5 / 10 002 2.5 / 5 / 10 003 2.5 / 5 / 10 2 004 2.5 / 5 / 10 005 2.5 / 5 / 10 006 2.5 / 5 / 10 007 2.5 / 5 / 10 800 2.5 / 5 / 10 009 2.5 / 5 / 10 010 2.5 / 5 / 10 2.5 / 5 / 10 011 2.5/5/10 012 013 2.5 / 5 / 10 2.5/5/10 014 015 2.5 / 5 / 10 016 2.5 / 5 / 10 017 2.5 / 5 / 10 018 2,5/5/10 019 2.5 / 5 / 10 2.5/5/10 020 Headspace in VOA Vials (>6mm) : □Yes □No 💅 N/A *If yes look in headspace column Exceptions to preservation check: VOA, Coliform, TOC, TOX, TOH, O&G, WI DRO, Phenolics, Other: AG1U 1 liter amber glass BP1U **JGFU** 4 oz amber jar unpres 1 liter plastic unpres VG9A 40 mL clear ascorbic BG1U 1 liter clear glass BP3U JG9U 9 oz amber jar unpres 250 mL plastic unpres DG9T 40 mL amber Na Thio AG1H 1 liter amber glass HCL BP3B 250 mL plastic NaOH VG9U 40 mL clear vial unpres WGFU 4 oz clear jar unpres AG4S 125 mL amber glass H2SO4 BP3N 250 mL plastic HNO3 VG9H 40 mL clear vial HCL **WPFU** 4 oz plastic jar unpres AG4U 120 mL amber glass unpres BP3S 250 mL plastic H2SO4 SP5T 120 mL plastic Na Thiosulfate VG9M 40 mL clear vial MeOH 40 mL clear vial DI AG5U 100 mL amber glass unpres **ZPLC** ziploc bag VG9D AG2S 500 mL amber glass H2SO4 GN BG3U 250 mL clear glass unpres

Pace	e Analytical [®]
1241 Pollovius Stra	ot Groop Bay WI 5430

Document Name: Sample Condition Upon Receipt (SCUR)

Document No.:

Author:

ENV-FRM-GBAY-0014-Rev.00

Pace Green Bay Quality Office

Document Revised: 26Mar2020

Sample Condition Upon Receipt Form (SCUR)

				Project #:		
Client Name: SCS Engine C				-	 LIO# · /	10235999
Courier: CS Logistics Fed Ex Speedee	. П	UPS	□ w	altco	MOH · -	FUZ3333
☐ Client ☐ Pace Other:						
Tracking #:					40235999	
Custody Seal on Cooler/Box Present: yes	no	Seals	intact:	yes 🗖 no		
Custody Seal on Samples Present:		Seals	intact:	☐ yes ☐ no		
Packing Material: Bubble Wrap Bubble		s 7	None	e ☐ Other _	,	
Thermometer Used SR - 113	Туре о	f lce:	Wey!	Blue Dry None	Samples or	ice, cooling process has begun
Cooler Temperature Uncorr: 4,0 /Corr: 4,	1-				•	Person examining contents:
Temp Blank Present: 🗖 yes 🇖 no		Biolo	gical T	issue is Frozen:	☐ yes ☐ no	Date: 10/29/21 /Initials: 4
Temp should be above freezing to 6°C. Biota Samples may be received at ≤ 0°C if shipped on Dry	Ice.					Labeled By Initials:
Chain of Custody Present:	Yes	□No	□n/a	1.		
Chain of Custody Filled Out:	Yes	□No	□n/a	2.		
Chain of Custody Relinquished:	Yes	□No	□n/a	3.		
Sampler Name & Signature on COC:	Yes	□No	□n/a	4.		
Samples Arrived within Hold Time: ~	Yes	□No		5.		
- VOA Samples frozen upon receipt	□Yes	□No		Date/Time:		
Short Hold Time Analysis (<72hr):	Yes	□No		6.		
Rush Turn Around Time Requested:	⊟Yes ເ	No		7.		
Sufficient Volume:	•	1,		8.		
For Analysis: ☐Yes ☐No MS/MSD:	□Yes	No	□n/a			
Correct Containers Used:	Yes	No		9.		
-Pace Containers Used:	Yes	No	□Ņ/A			
-Pace IR Containers Used:	□Yes	ŮNo	N/A			
Containers Intact:	Yes	ŮNo		10.		
Filtered volume received for Dissolved tests	□yes	No	□n/a	11.		
Sample Labels match COC:	Yes	□No	□n/a	12.		
-Includes date/time/ID/Analysis Matrix:	ĬT_		_			
Trip Blank Present:	□Yes	□No	ZN/A	13.		
Trip Blank Custody Seals Present	□Yes	DNo	N/A			
Pace Trip Blank Lot # (if purchased):						
Client Notification/ Resolution:					checked, see attach	ned form for additional comments
Person Contacted:		-	Date/	lime:		
Comments/ Resolution:		1				
		+				
		†				

PM Review is documented electronically in LIMs. By releasing the project, the PM acknowledges they have reviewed the sample logir

Appendix D Historical Monitoring Results

Name: WPL - Edgewater Closed

Number of Sampling Dates Parameter Name	Units	4/8/2016	6/20/2016	8/9/2016	10/20/2016	1/24/2017	4/6/2017	6/6/2017	8/1/2017	10/23/2017	4/2/2018	10/1/2018	4/8/2019	10/7/2019	4/8/2020	10/15/2020	4/14/2021	10/26/2021
Boron	ug/L	100	22.4	32.6	43.1	31.2	70.6	45.2	35.7	55.9	19.7	34.7	35.8	58.8	52.3	29.9	45.7	47.2
Calcium	ug/L	205000	148000	145000	155000	152000	143000	145000	164000	170000	121000	190000	121000	132000	117000	124000	154000	192000
Chloride	mg/L	91.7	232	215	217	201	102	115	272	305	108	462	55.3	88.8	67.5	179	116	493
Fluoride	mg/L	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.12	<0.1	<0.1	<0.1	<0.095	0.096	<0.095	<4.8
Field pH	Std. Units	7.34	7.02	6.1	6.98	7.15	7.01	6.86	7	7.23	7.29	7.03	8.57	6.88	7.08	7.2	7.52	7.01
Sulfate	mg/L	19.5	28	25.4	21.6	23.9	17.6	17.8	28.8	29.3	17.2	37.2	10.6	13.2	11.6	20.3	15.3	35.7
Total Dissolved Solids	mg/L	774	908	974	944	854	750	744	1000	1010	680	1260	610	706	604	806	737	1170
Antimony	ug/L	0.3	<0.073	<0.073	<0.073	0.073	<0.073	0.32	<0.15									
Arsenic	ug/L	5.2	0.34	0.39	0.39	0.65	0.35	0.71	1.2									
Barium	ug/L	344	110	155	189	158	150	172	154									
Beryllium	ug/L	0.83	<0.13	<0.13	<0.13	<0.13	<0.13	<0.18	<0.18									
Cadmium	ug/L	0.21	<0.089	<0.089	<0.089	<0.089	<0.089	0.2	<0.081									
Chromium	ug/L	23.6	3.1	2.9	1.7	2.6	2.2	1.6	4.3									
Cobalt	ug/L	6	0.081	0.05	0.21	0.22	0.28	0.7	1.7									
Lead	ug/L	13	0.17	0.14	0.074	0.38	0.48	0.4	1.2									
Lithium	ug/L	19.6	9.6	9	8.2	8.2	5.3	6.2	15.1									
Molybdenum	ug/L	0.58	0.28	0.32	0.25	0.28	0.5	0.54	0.44									
Selenium	ug/L	2.2	<0.21	<0.21	<0.21	<0.21	<0.21	0.34	<0.32									
Thallium	ug/L	0.19	<0.14	<0.14	<0.14	<0.14	<0.14	0.45	<0.14									
Mercury	ug/L	<0.18	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13									
Total Radium	pCi/L	0.945	0.815	0.432	0.896	0.627	1.02	1.58	2.12									
pH at 25 Degrees C	Std. Units	7.4	7.4	7	7.4	7.4	7.1	6.9	7.1	7.1	7.4	7	7.5	7.1	7.1	7.4	7.4	7.2
Radium-226	pCi/L	0.304	0.433	0.0836	0.193	0	0.418	0.531	0.658									
Radium-228	pCi/L	0.641	0.382	0.348	0.703	0.627	0.605	1.05	0.502									
Field Specific Conductance	umhos/cm	1332	1277	1697	1533	1579	1387	1294	1651	1864	1177	2202	1077	1261	1081	1490	1229	2290
Oxygen, Dissolved	mg/L	4.6	0.9	1	0.6	1	0.5	0.1	0	4.9	6.7	1.6	0.6	2.5	1.5	3.5	6.9	0.6
Field Oxidation Potential	mV	130	82	140	117	87	120	-20	-22	131	85	180	75	148	43.7	282	282	242
Groundwater Elevation	feet	610.02	606.7	605.74	607.27	609.64	609.27	607.63	604.59	601.74	607.87	604.61	609.5	609.39	608.97	604.27	608.5	604.04
Temperature, Water (C)	deg C	5.6	10.6	13.9	14.1	7.5	7	10.1	13	13	5.2	13.4	6.7	14	6.1	13.6	6.6	14
Turbidity	NTU	612.3	10.97	3.64	3.32	11.71	16.46	0.55	41.3	2.24	6.38	7.09	8.59		15.24	28.74	413	95.2

Page 1 12/14/2021 8:13:40 PM

Name: WPL - Edgewater Closed

umber of Sampling Dates Parameter Name	Units	4/11/2016	6/20/2016	8/9/2016	10/20/2016	1/23/2017	4/6/2017	6/6/2017	8/2/2017	10/24/2017	4/2/2018	10/1/2018	4/8/2019	10/7/2019	4/8/2020	6/26/2020	10/15/2020	4/14/2021	10/26/2021
Boron	ug/L	8550	8190	8450	8620	9280	8370	9160	8610	8820	7950	8230	7310	7220	7450		6550	7200	6710
Calcium	ug/L	88700	92200	84000	89400	89200	98800	94900	83600	87200	78900	88800	77500	87600	80800		114000	118000	102000
Chloride	mg/L	16.2	15.9	13.7	13.9	13.8	12.7	13.5	12.3	11.9	11.2	11.5	11.4	11.1	12.5		13.9	13.5	13.8
Fluoride	mg/L	0.33	0.36	0.33	0.34	0.42	0.21	<0.1	0.32	<0.1	0.25	0.2	0.29	0.24	0.39	0.26	<0.48	0.25	0.24
Field pH	Std. Units	7.91	7.48	6.47	7.68	8.03	7.98	7.7	7.58	7.43	8.02	7.71	8.18	7.56	7.82	7.53	7.64	7.96	7.01
Sulfate	mg/L	372	343	368	369	372	367	362	340	341	332	318	322	312	298		293	195	203
Total Dissolved Solids	mg/L	838	794	862	838	826	838	804	780	772	752	722	724	694	718		678	614	538
Antimony	ug/L	0.49	0.21	<0.073	0.083	0.2	<0.15	0.33	<0.15									-	-
Arsenic	ug/L	4.3	2.4	2.3	4.2	1.8	2.8	1.9	1.5										-
Barium	ug/L	48.7	32.6	30.5	31.4	32.2	53.8	30.3	28.2									-	-
Beryllium	ug/L	0.18	<0.13	<0.13	<0.13	0.28	<0.25	<0.18	<0.18										-
Cadmium	ug/L	0.2	0.22	<0.089	<0.089	0.17	<0.18	<0.081	<0.081									-	-
Chromium	ug/L	3.5	0.55	<0.39	0.86	1.1	6.4	<1	<1										-
Cobalt	ug/L	1.2	0.39	0.38	0.39	0.24	1.5	0.24	0.2									-	-
Lead	ug/L	2.2	0.3	<0.04	0.29	0.47	2.1	0.28	0.29									-	-
Lithium	ug/L	21.4	14.2	15.6	15.8	16.3	20.6	17	15.8										-
Molybdenum	ug/L	2200	2040	2160	2300	2210	2090	2460	2070										
Selenium	ug/L	0.52	<0.21	<0.21	<0.21	<0.21	<0.42	<0.32	<0.32										
Thallium	ug/L	0.31	<0.14	<0.14	<0.14	0.22	<0.29	0.17	<0.14										
Mercury	ug/L	<0.18	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13										
Total Radium	pCi/L	0.41	1.62	0.456	0.729	1.09	1.51	0.494	1.67										
pH at 25 Degrees C	Std. Units	7.9	7.6	7.4	7.5	7.9	7.9	7.7	7.5	7.5	7.8	7.7	7.9	7.8	7.9		7.6	7.7	7.1
Radium-226	pCi/L	0.32	0.958	-0.17	0.193	0.136	0.734	0.179	0.548										
Radium-228	pCi/L	0.0904	0.661	0.456	0.536	0.951	0.774	0.315	0.296										
ield Specific Conductance	umhos/cm	1206	1173	1230	1214	1198	1213	1147	1111	1096	1071	1086	1022	1052	977	983	996	815	811
Oxygen, Dissolved	mg/L	4.8	1.6	0.1	0.2	7.4	5.5	3	0.5	0	6.5	4.5	6.2	2.7	6.9	5.47	8.0	8.2	5.4
Field Oxidation Potential	mV	5.2	89	-31	-24	173	51	-15	-13	-18	44	53	55	146	17.1	49.1	140	226	196
Groundwater Elevation	feet	599.94	598.3	598	598.5	597.1	600.04	598.77	597.4	597.2	598.54	597.6	598.92	599.56	599.17	597.89	595.1	595.17	590.68
Temperature, Water (C)	deg C	7.2	10.1	10.5	10.8	8.8	8.9	9.5	11.6	10.7	7.8	11	9	12.2	8.5	16.8	11.2	7.8	11.2
Turbidity	NTU	10.88	3.13	2.42	46.07	21.84	168.6	16.11	6.51	11.58	12.19	13.32	32.91	79.44	37.12	62.57	130	124	88.4

Page 1 12/14/2021 8:14:08 PM

Name: WPL - Edgewater Closed

Number of Sampling Dates																	T	
Parameter Name	Units	4/8/2016	6/20/2016	8/9/2016	10/20/2016	1/24/2017	4/6/2017	6/6/2017	8/2/2017	10/24/2017	4/2/2018	10/1/2018	4/8/2019	10/7/2019	4/8/2020	10/15/2020	4/14/2021	10/26/2021
Boron	ug/L	1950	2010	2000	2150	2000	1970	1970	1890	1760	1800	1570	1670	1730	1570	1410	1550	1580
Calcium	ug/L	122000	116000	75900	72100	87400	114000	72200	62600	68100	68000	64700	64800	67500	66800	124000	81200	78200
Chloride	mg/L	18.9	27.2	18	19.5	18.6	18.9	20	19.3	18.9	18.5	18.6	18.4	17.8	19.2	20.9	20.6	20.7
Fluoride	mg/L	0.83	1.3	8.0	0.8	0.89	0.76	0.9	0.78	0.84	0.78	0.81	0.87	0.85	0.97	1	0.88	0.88
Field pH	Std. Units	8.01	7.73	6.55	7.89	7.98	7.99	7.84	7.76	7.6	7.78	7.99	7.98	7.86	7.56	7.9	8.19	7.6
Sulfate	mg/L	75.1	89.6	80.7	77.2	71.1	85.8	88.5	80.2	72.2	72.7	59.2	71.7	55.7	65.3	73.1	70.5	71.2
Total Dissolved Solids	mg/L	352	364	396	348	328	358	350	360	316	314	306	324	290	316	182	342	290
Antimony	ug/L	0.3	0.085	<0.073	<0.073	0.86	<0.36	0.16	<0.15								-	
Arsenic	ug/L	10.3	9.7	10.2	8.4	10.9	9.6	8.7	9									
Barium	ug/L	152	109	66.7	57.2	90.1	104	58.4	50.9									
Beryllium	ug/L	0.59	0.35	<0.13	<0.13	0.78	<0.63	<0.18	<0.18									
Cadmium	ug/L	0.24	<0.089	<0.089	<0.089	0.49	<0.44	<0.081	<0.081									
Chromium	ug/L	18.7	11.1	3.5	2.5	7.1	10	6.6	1.1									
Cobalt	ug/L	6.2	3.6	1.1	0.84	2.6	3.2	1.5	0.53									
Lead	ug/L	5.5	3.3	0.84	0.71	2.3	5.2	0.7	0.44									
Lithium	ug/L	58.1	62.3	55.4	51.8	54.8	58.7	52.3	52.2									
Molybdenum	ug/L	610	640	652	685	674	654	631	649									
Selenium	ug/L	1.3	0.76	<0.21	0.22	<1	<1	<0.32	<0.32									
Thallium	ug/L	0.35	<0.14	<0.14	<0.14	1.6	<0.71	<0.14	<0.14									
Mercury	ug/L	<0.18	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13									
Total Radium	pCi/L	1.47	0.505	0.0999	0.771	1.9	1.18	1.66	1.08									
pH at 25 Degrees C	Std. Units	7.3	7.8	7.7	7.8	7.7	7.9	7.5	7.7	7.7	7.8	7.6	7.8	7.6	7.8	7.7	7.8	7.8
Radium-226	pCi/L	0.843	-0.408	-0.153	0.331	0.37	0.371	0.706	0.474									
Radium-228	pCi/L	0.623	0.505	0.0999	0.44	1.53	0.813	0.95	0.604									
Field Specific Conductance	umhos/cm	531	564	539	525	519	552	465	532	505	517	504	519	487	476	523	517	496
Oxygen, Dissolved	mg/L	1	0.2	0.1	1	0.1	0	0.5	0	0	0.6	0.8	1.6	1.3	0.4	0.3	1.8	0.1
Field Oxidation Potential	mV	-41	-123	-123	-111	-87	-517	-40	-121	-118	-123	-96	-95	124	-107.6	-83	41	134
Groundwater Elevation	feet	596.39	595.68	595.53	595.46	596.3	593.57	595.86	595.22	595.25	595.71	595.28	595.68	595.58	595.33	598.56	600.56	599.82
Temperature, Water (C)	deg C	9	13.1	13.2	11.2	9.3	9.6	12.2	12.6	11.1	10.3	11.6	11.9	13.5	11.3	11.2	7.5	11.1
Turbidity	NTU	885.4	369.4	108.3	62.99	161.1	367.5	94.92	39.69	42.45	24.89	55.15	59.51	32.69	69.22	161.8	252	69.8

Page 1 12/14/2021 8:14:48 PM

Name: WPL - Edgewater Closed

Number of Sampling Dates		4/0/0045	0/00/0045	0/0/0045	40/00/0045	4/04/004=	4/0/004=	0/0/004=	0/0/004=	40/04/00/=	4/0/0045	40/4/0045	4/0/0045	40/7/0045	4/0/0000	40/45/0000	4/4 4/00001	40/00/0001
Parameter Name	Units	4/8/2016	6/20/2016	8/9/2016	10/20/2016	1/24/2017	4/6/2017	6/6/2017	8/2/2017	10/24/2017	4/2/2018	10/1/2018	4/8/2019	10/7/2019	4/8/2020	10/15/2020	4/14/2021	10/26/2021
Boron	ug/L	4210	3360	3860	3740	4210	4170	4570	3780	3480	3040	2360	2930	2830	3380	3310	4600	3650
Calcium	ug/L	176000	138000	145000	147000	147000	135000	154000	139000	173000	146000	139000	135000	136000	144000	132000	176000	148000
Chloride	mg/L	21.8	31.5	22.8	26	26.2	22.7	25.4	23.2	20.4	19.7	4.3	20	19.1	23.5	20.9	22.5	21.6
Fluoride	mg/L	<0.2	<1	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.1	<0.5	<0.5	<0.48	<0.48	<0.095	<0.48
Field pH	Std. Units	7.04	6.79	6.09	6.94	6.94	6.88	7	6.94	7.14	6.86	6.93	7.15	6.9	6.7	7.11	7.27	6.92
Sulfate	mg/L	3	11.4	2.4	5.6	<5	<5	<5	<5	<5	<5	<1	<5	<5	<2.2	<2.2	0.54	<2.2
Total Dissolved Solids	mg/L	660	716	732	744	738	700	714	714	566	630	620	668	584	692	620	710	640
Antimony	ug/L	0.14	<0.073	<0.073	<0.073	<0.073	<0.073	0.32	0.25									
Arsenic	ug/L	12.8	9.7	10.7	18.1	25.3	21.8	25.2	21.9									
Barium	ug/L	229	189	195	180	186	142	143	144									
Beryllium	ug/L	0.3	<0.13	<0.13	<0.13	<0.13	<0.13	0.33	0.21									
Cadmium	ug/L	<0.089	<0.089	<0.089	<0.089	<0.089	<0.089	0.17	0.14									
Chromium	ug/L	14.1	1.5	2	1.8	1.4	1.5	2.1	1.7									
Cobalt	ug/L	8.7	5.3	5	4.4	4.3	3	3.4	3.2									
Lead	ug/L	4.7	0.28	0.35	0.21	0.19	0.16	0.56	0.66									
Lithium	ug/L	17.6	9.1	10.4	8.9	8.3	8.3	9.3	10.7									
Molybdenum	ug/L	25.1	11.6	12.7	9	7.7	5.1	4.5	5.9									
Selenium	ug/L	1.2	0.48	0.31	0.55	0.71	0.38	0.5	0.6									
Thallium	ug/L	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14	0.36	0.26									
Mercury	ug/L	<0.18	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13									
Total Radium	pCi/L	1.44	1.93	1.22	1.48	1.16	1.31	1.2	1.81									
pH at 25 Degrees C	Std. Units	7.2	7	6.9	7.2	7	6.8	6.9	7	6.8	7	6.8	6.9	7	6.8	7	7.1	7
Radium-226	pCi/L	0.239	1.03	0.651	0.521	0.386	0.123	0.276	0.772									
Radium-228	pCi/L	1.2	0.898	0.567	0.962	0.772	1.19	0.926	1.04									
Field Specific Conductance	umhos/cm	1273	1196	1220	1313	1335	1320	1112	1218	1095	1131	1105	1196	1127	1241	1123	1222	1171
Oxygen, Dissolved	mg/L	0.49	0.9	0.1	0	0	0	0.8	0	0	0.3	0.2	0.3	0.2	0.2	0.2	2.3	1.6
Field Oxidation Potential	mV	-48	-71	-81	-102	-89	-20	-58	-116	-108	-97	-93	-85	122	-102.9	-32	-41	170
Groundwater Elevation	feet	589.24	587.22	587.72	588.37	588.84	589.04	588.44	587.36	587.97	588.77	588.17	588.88	588.77	588.66	593.19	595.01	594.07
Temperature, Water (C)	deg C	9.1	11.6	11.9	10.7	10.5	10	10.2	10.4	11	9.8	10.7	10.3	11.8	10	10.9	7.7	12.3
Turbidity	NTU	409.5	18.26	48.39	16.45	12.58	9.61	186.4	28.41	563	233.5	107.1	61.84	94.01	87.6	70.42	408	88.4

Page 1 12/14/2021 8:15:06 PM

Appendix E Statistical Evaluation

SCS ENGINEERS

January 14, 2021 File No. 25220068.00

TECHNICAL MEMORANDUM

SUBJECT: Statistical Evaluation of Groundwater Monitoring Results – UPL Update

Edgewater Generating Station

PREPARED BY: Nicole Kron

CHECKED BY: Sherren Clark

STATISTICAL METHOD

Groundwater monitoring data for the multiunit system at the Edgewater Generating Station (EDG), is evaluated in accordance with 40 CFR 257.93(f)(3), using a prediction interval procedure, in which an interval for each constituent is established from the distribution of the background data, and the level of each constituent in each compliance well is compared to the upper prediction limit.

Statistical evaluation is performed using commercially available software (Sanitas for Groundwater® or similar) in general accordance with the USEPA's *Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities* dated March 2009 (Unified Guidance) (USEPA, 2009) and generally accepted procedures.

The EDG monitoring data includes one background monitoring well, 2R-OW, and three compliance monitoring wells, MW-301, MW-302, and MW-303. The statistical analysis includes an interwell evaluation for the Appendix III parameters.

The initial UPLs were calculated based on eight rounds of background monitoring performed prior to the initiation of compliance monitoring for the EDG CCR units, from April 2016 through August 2017. Since then, additional rounds of monitoring for Appendix III parameters have been performed at the background well. As part of the evaluation of the October 2020 monitoring results, the background data set for the UPL calculations is being updated to include data from the background well collected through October 2020. This memo addresses updated UPLs for Appendix III parameters.

TIME SERIES PLOTS

Time series plots are prepared for the required monitoring parameters to show the concentration variations over time. Time series graphs are included in **Attachment 1**.

OUTLIER ANALYSIS - INTERWELL

For interwell analysis, an outlier evaluation is performed for background monitoring results at the upgradient wells. A statistical outlier is a value that is extremely different from the other values in the data set. The Sanitas outlier tests identify data points that do not appear to fit the distribution of the

rest of the data set and determine if they differ significantly from the rest of the data. The outlier analysis performed in Sanitas includes the following steps:

- 1) Run normality test (Shapiro Wilk/Francia).
- 2) If normally distributed, run USEPA's 1989 Outlier Test to identify suspected outliers.
 - a) If number of background samples is less than or equal to 25, run Dixon's test for suspected outliers.
 - b) If number of background samples is more than 25, run Rosner's test for suspected outliers.
- 3) If not normally distributed, run Tukey's test for outliers.
- 4) Review data flagged as possible outliers to evaluate whether they should be removed from the background data set. Also review time series plots for possible outliers that were not picked up in the statistical evaluation (e.g., outlier test may not identify outliers when two values are similar to each other, but very different from all other data).

Results identified as statistical outliers are checked for possible lab instrument failure, field collection problems, or data entry errors; however, outliers may exist naturally in the data if there is an extremely wide inherent or temporal variability in the data. The Unified Guidance states that unless a likely error can be identified, the outlier should not be removed.

For the interwell evaluation of the October 2020 sampling event, the following background values were identified as potential outliers and handled as described:

• Field pH. Two results from the August 2016 and April 2019 events were flagged as statistical outliers. The low result (August 2016) was removed from the dataset because all field pH results for that event at the background and compliance wells were low, suggesting a likely field measurement issue or calibration error. The high result (April 2019) was not removed from the dataset because there was no known explanation for the higher result and it appeared to be within the range of potential natural variation.

Outlier analysis output from Sanitas is included in Attachment 2.

BACKGROUND UPDATE

The background data pool was updated in accordance with the Unified Guidance, which recommends updating background every 2 to 3 years for semiannual sampling. Prior to expanding the data pool, the original background data set (4/2016 through 8/2017) and the data to be added (10/2017 through 10/2020) were compared. The Unified Guidance states that recently collected measurements from the background wells can be added to the existing pool if a Student's t-test or Wilcoxon rank-sum test finds no significant difference between the two groups at the 1% level of significance.

The Sanitas background group comparison for the EDG background data sets, included in **Attachment 3**, indicated no signficant difference at the 1% level; therefore, the more recent data can be added to the background pool. The comparison uses Welch's t-test for normally distributed data and the Mann-Whitney test for non-normal data. (Note: The Sanitas output labels the earlier

background dataset as "Background" and the later background dataset as "Compliance," but all data from background well 2R-OW is background data.)

INTERWELL PREDICTION LIMITS

Interwell prediction limits are calculated using background data from the upgradient monitoring well (2R-OW) for each monitored constituent, with outliers removed as noted above. During this evaluation of compliance monitoring, groundwater results from April 2016 through October 2020 were included to calculate the interwell prediction limits. The prediction limit analysis performed in Sanitas includes the following steps:

- 1) If 100% of the background values are non-detect, the Double Quanitification rule applies and no prediction limit is calculated.
- 2) If more than 50% of results are non-detect, then a non-parametric prediction limit is calculated.
- 3) If 50% or fewer of the results are non-detect, run normality test (Shapiro Wilk/Francia) to assess whether the data fit a normal distribution or can be transformed to fit a normal distribution (e.g., lognormal).
- 4) If normal or transformed normal, calculate parametric prediction limit.
- 5) If not normal or transformed normal, calculate non-parametric prediction limit.

Consistent with the Unified Guidance, parametric prediction limits are calculated based on a 1-of-2 retesting protocol and a 10 percent site-wide false positive rate. Sanitas establishes the per-test significance level based on user inputs of the number of events per year, number of constituents being evaluated, and number of compliance wells. For the October 2020 event, the following values were used:

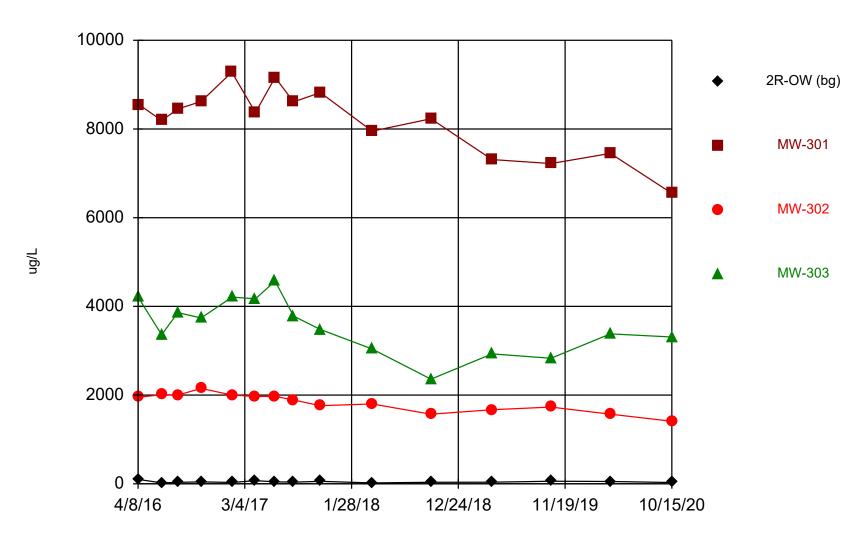
Parameter	Value	Comments
Evaluations per year	2	Spring and Fall events
Constituents analyzed	7	Appendix III parameters
Compliance wells	3	MW-301, MW-302, MW-303

Non-parametric prediction limits are also based on a 1-of-2 retesting protocol. The non-parametric limit is the highest value in the background dataset. Due to the small sample size, the false positive rate for the non-parametric tests is higher than for the parametric tests, but will go down as more background data are obtained.

For results with 100 percent non-detects in the background data, evaluation under the Double Quantification Rule means that a statistically significant increase (SSI) has not occurred for a compliance well unless two sample results from the well exceed the laboratory's reporting limit or quantification limit. For the current background dataset, none of the Appendix III parameters had 100 percent non-detects, so the Double Quantification rule was not applied.

TECHNICAL MEMORANDUM January 14, 2021 Page 4

For evaluation of parameters with less than 100 percent non-detects in the background sampling, the non-detects were adjusted using the Kaplan-Meier technique, unless the non-detects represent less than 15 percent of the total samples, in which case one-half of the detection limit was used.

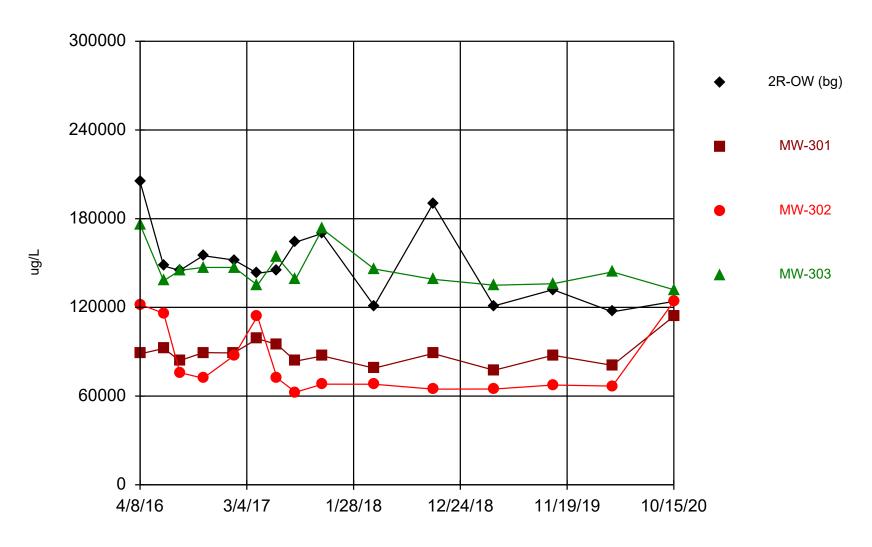

Interwell prediction limit analysis results are included in **Attachment 4**.

NDK/SCC

I:\25220068.00\Data and Calculations\Sanitas\EDG_Clsd - UPL calcs\Edg Closed CCR Stats Memo.docx

Attachment 1 Times Series Graphs

Boron

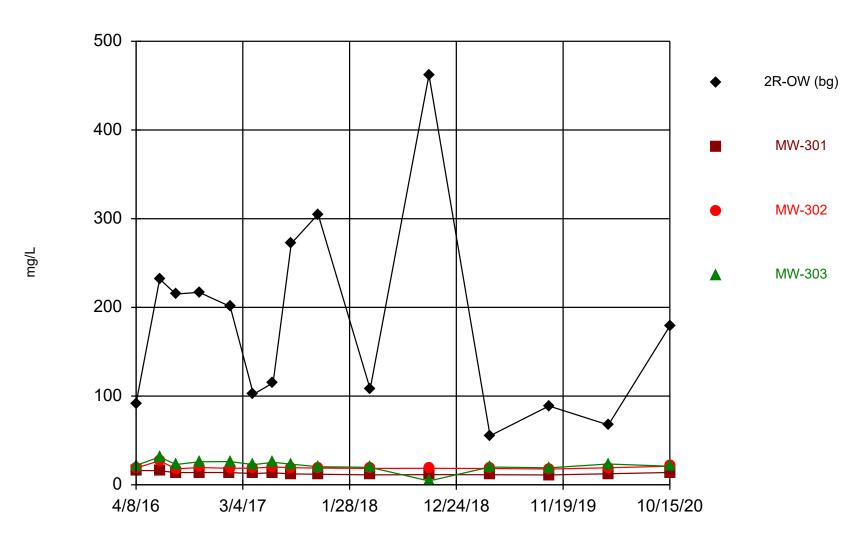

Time Series Analysis Run 12/21/2020 5:35 PM

Time Series

Constituent: Boron (ug/L) Analysis Run 12/21/2020 5:36 PM

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	100		1950	4210
4/11/2016		8550		
6/20/2016	22.4	8190	2010	3360
8/9/2016	32.6	8450	2000	3860
10/20/2016	43.1	8620	2150	3740
1/23/2017		9280		
1/24/2017	31.2		2000	4210
4/6/2017	70.6	8370	1970	4170
6/6/2017	45.2	9160	1970	4570
8/1/2017	35.7			
8/2/2017		8610	1890	3780
10/23/2017	55.9			
10/24/2017		8820	1760	3480
4/2/2018	19.7	7950	1800	3040
10/1/2018	34.7	8230	1570	2360
4/8/2019	35.8	7310	1670	2930
10/7/2019	58.8	7220	1730	2830
4/8/2020	52.3	7450	1570	3380
10/15/2020	29.9	6550	1410	3310

Calcium

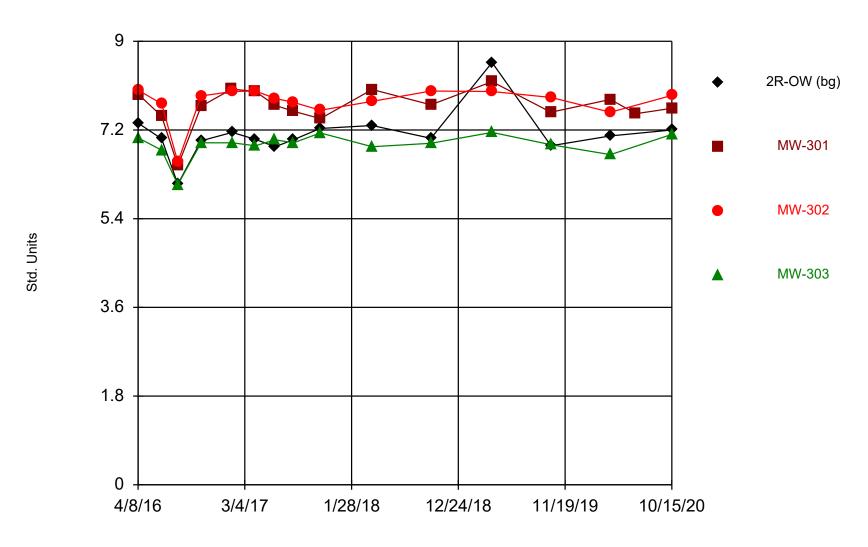

Time Series Analysis Run 12/21/2020 5:35 PM

Time Series

Constituent: Calcium (ug/L) Analysis Run 12/21/2020 5:36 PM

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	205000		122000	176000
4/11/2016		88700		
6/20/2016	148000	92200	116000	138000
8/9/2016	145000	84000	75900	145000
10/20/2016	155000	89400	72100	147000
1/23/2017		89200		
1/24/2017	152000		87400	147000
4/6/2017	143000	98800	114000	135000
6/6/2017	145000	94900	72200	154000
8/1/2017	164000			
8/2/2017		83600	62600	139000
10/23/2017	170000			
10/24/2017		87200	68100	173000
4/2/2018	121000	78900	68000	146000
10/1/2018	190000	88800	64700	139000
4/8/2019	121000	77500	64800	135000
10/7/2019	132000	87600	67500	136000
4/8/2020	117000	80800	66800	144000
10/15/2020	124000	114000	124000	132000

Chloride

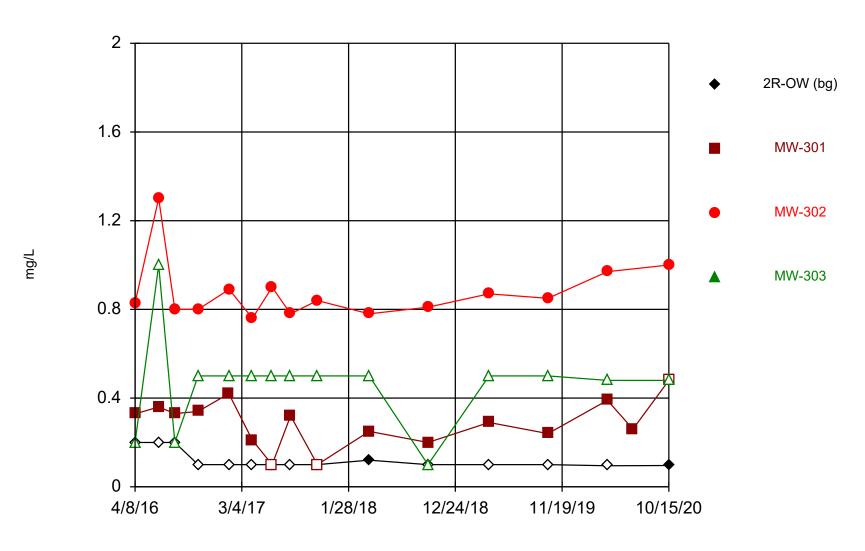

Time Series Analysis Run 12/21/2020 5:35 PM

Time Series

Constituent: Chloride (mg/L) Analysis Run 12/21/2020 5:36 PM

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	91.7		18.9	21.8
4/11/2016		16.2		
6/20/2016	232	15.9	27.2	31.5
8/9/2016	215	13.7	18	22.8
10/20/2016	217	13.9	19.5	26
1/23/2017		13.8		
1/24/2017	201		18.6	26.2
4/6/2017	102	12.7	18.9	22.7
6/6/2017	115	13.5	20	25.4
8/1/2017	272			
8/2/2017		12.3	19.3	23.2
10/23/2017	305			
10/24/2017		11.9	18.9	20.4
4/2/2018	108	11.2	18.5	19.7
10/1/2018	462	11.5	18.6	4.3
4/8/2019	55.3	11.4	18.4	20
10/7/2019	88.8	11.1	17.8	19.1
4/8/2020	67.5	12.5	19.2	23.5
10/15/2020	179	13.9	20.9	20.9

Field pH

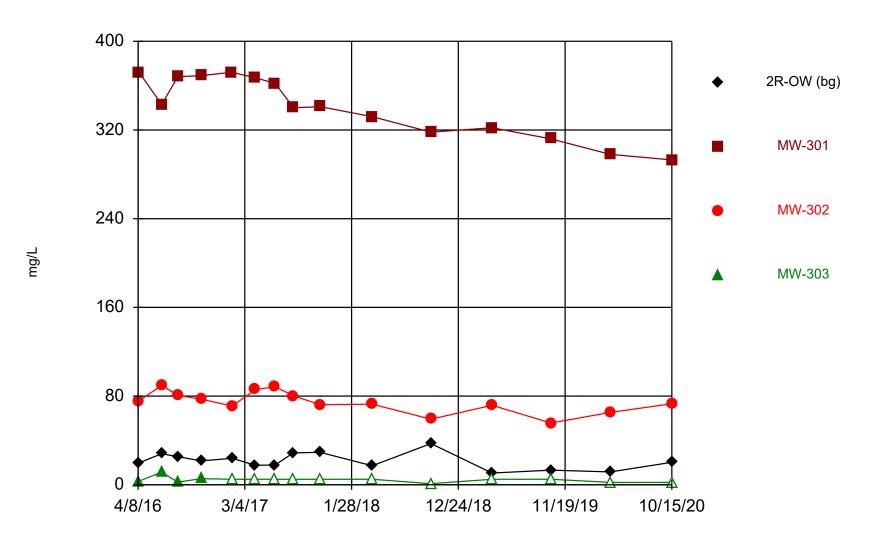

Time Series Analysis Run 12/21/2020 5:35 PM

Time Series

Constituent: Field pH (Std. Units) Analysis Run 12/21/2020 5:36 PM

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	7.34		8.01	7.04
4/11/2016		7.91		
6/20/2016	7.02	7.48	7.73	6.79
8/9/2016	6.1	6.47	6.55	6.09
10/20/2016	6.98	7.68	7.89	6.94
1/23/2017		8.03		
1/24/2017	7.15		7.98	6.94
4/6/2017	7.01	7.98	7.99	6.88
6/6/2017	6.86	7.7	7.84	7
8/1/2017	7			
8/2/2017		7.58	7.76	6.94
10/23/2017	7.23			
10/24/2017		7.43	7.6	7.14
4/2/2018	7.29	8.02	7.78	6.86
10/1/2018	7.03	7.71	7.99	6.93
4/8/2019	8.57	8.18	7.98	7.15
10/7/2019	6.88	7.56	7.86	6.9
4/8/2020	7.08	7.82	7.56	6.7
6/26/2020		7.53		
10/15/2020	7.2	7.64	7.9	7.11

Fluoride

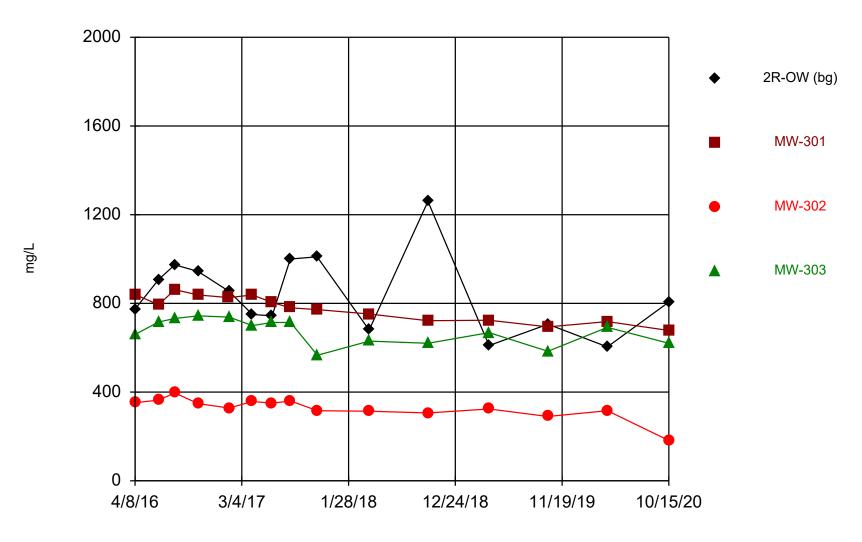

Time Series Analysis Run 12/21/2020 5:35 PM

Time Series

Constituent: Fluoride (mg/L) Analysis Run 12/21/2020 5:36 PM

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	<0.2 (U)		0.83	<0.2 (U)
4/11/2016		0.33 (J)		
6/20/2016	<0.2 (U)	0.36 (J)	1.3 (J)	<1 (U)
8/9/2016	<0.2 (U)	0.33 (J)	0.8	<0.2 (U)
10/20/2016	<0.1 (U)	0.34	0.8	<0.5 (U)
1/23/2017		0.42		
1/24/2017	<0.1 (U)		0.89 (J)	<0.5 (U)
4/6/2017	<0.1 (U)	0.21 (J)	0.76	<0.5 (U)
6/6/2017	<0.1 (U)	<0.1 (U)	0.9	<0.5 (U)
8/1/2017	<0.1 (U)			
8/2/2017		0.32	0.78	<0.5 (U)
10/23/2017	<0.1 (U)			
10/24/2017		<0.1 (U)	0.84	<0.5 (U)
4/2/2018	0.12 (J)	0.25 (J)	0.78	<0.5 (U)
10/1/2018	<0.1 (U)	0.2 (J)	0.81	<0.1 (U)
4/8/2019	<0.1 (U)	0.29 (J)	0.87	<0.5 (U)
10/7/2019	<0.1 (U)	0.24 (J)	0.85	<0.5 (U)
4/8/2020	<0.095 (U)	0.39	0.97	<0.48 (U)
6/26/2020		0.26 (J)		
10/15/2020	0.096 (J)	<0.48 (U)	1 (J)	<0.48 (U)

Sulfate


Time Series Analysis Run 12/21/2020 5:35 PM

Time Series

Constituent: Sulfate (mg/L) Analysis Run 12/21/2020 5:36 PM

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	19.5		75.1	3 (J)
4/11/2016		372		
6/20/2016	28	343	89.6	11.4 (J)
8/9/2016	25.4	368	80.7	2.4 (J)
10/20/2016	21.6	369	77.2	5.6 (J)
1/23/2017		372		
1/24/2017	23.9		71.1	<5 (U)
4/6/2017	17.6	367	85.8	<5 (U)
6/6/2017	17.8	362	88.5	<5 (U)
8/1/2017	28.8			
8/2/2017		340	80.2	<5 (U)
10/23/2017	29.3			
10/24/2017		341	72.2	<5 (U)
4/2/2018	17.2	332	72.7	<5 (U)
10/1/2018	37.2	318	59.2	<1 (U)
4/8/2019	10.6	322	71.7	<5 (U)
10/7/2019	13.2	312	55.7	<5 (U)
4/8/2020	11.6	298	65.3	<2.2 (U)
10/15/2020	20.3	293	73.1	<2.2 (U)

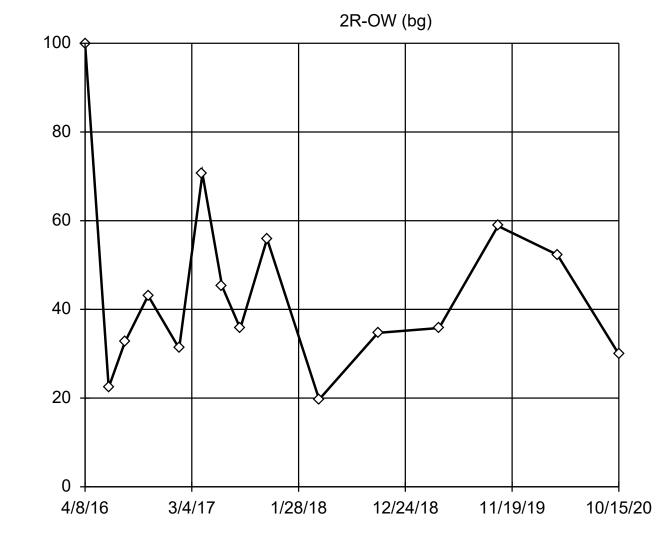
Total Dissolved Solids

Time Series Analysis Run 12/21/2020 5:35 PM

Time Series

Constituent: Total Dissolved Solids (mg/L) Analysis Run 12/21/2020 5:36 PM

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	774		352	660
4/11/2016		838		
6/20/2016	908	794	364	716
8/9/2016	974	862	396	732
10/20/2016	944	838	348	744
1/23/2017		826		
1/24/2017	854		328	738
4/6/2017	750	838	358	700
6/6/2017	744	804	350	714
8/1/2017	1000			
8/2/2017		780	360	714
10/23/2017	1010			
10/24/2017		772	316	566
4/2/2018	680	752	314	630
10/1/2018	1260	722	306	620
4/8/2019	610	724	324	668
10/7/2019	706	694	290	584
4/8/2020	604	718	316	692
10/15/2020	806	678	182	620


Attachment 2

Outlier Analysis

Outlier Analysis

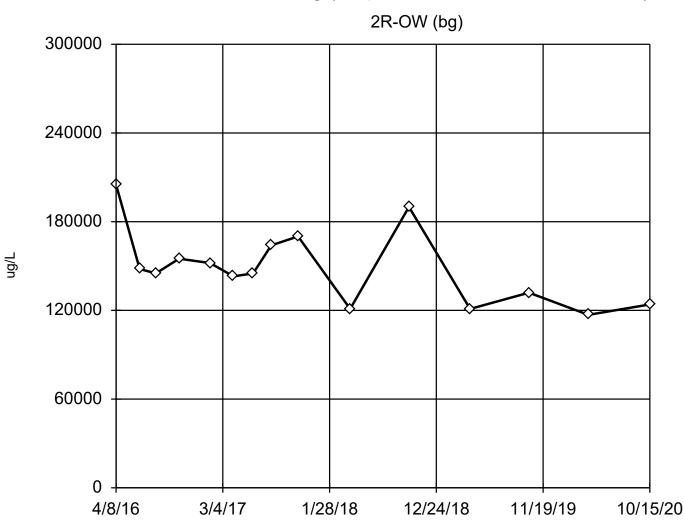
	Edgewater Clo	sed Generating	Station Clie	ent: SCS Engineers	Data: EDG_Clsd - C	them- export-Dec202	20 P	rinted 12/28	/2020, 6:04 F	PM	
Constituent	Well	<u>Outlier</u>	Value(s)	Date(s)	Method	<u>Alpha</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	<u>Distribution</u>	Normality Test
Boron (ug/L)	2R-OW (bg)	No	n/a	n/a	EPA 1989	0.05	15	44.53	20.78	ln(x)	ShapiroWilk
Calcium (ug/L)	2R-OW (bg)	No	n/a	n/a	EPA 1989	0.05	15	148800	25498	normal	ShapiroWilk
Chloride (mg/L)	2R-OW (bg)	No	n/a	n/a	EPA 1989	0.05	15	180.8	109.9	ln(x)	ShapiroWilk
Field pH (Std. Units)	2R-OW (bg)	Yes	8.57,6.1	4/8/2019,	Dixon`s	0.05	15	7.116	0.495	normal	ShapiroWilk
Sulfate (mg/L)	2R-OW (bg)	No	n/a	n/a	EPA 1989	0.05	15	21.47	7.379	normal	ShapiroWilk
Total Dissolved Solids (mg/L)	2R-OW (bg)	No	n/a	n/a	EPA 1989	0.05	15	841.6	177.2	normal	ShapiroWilk

EPA Screening (suspected outliers for Dixon's Test)

n = 15

Dixon's will not be run.
No suspect values identified or unable to establish suspect values.
Mean 44.53, std. dev.
20.78, critical Tn 2.409

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9789 Critical = 0.901 (after natural log transformation) The distribution was found to be log-normal.


Constituent: Boron Analysis Run 12/28/2020 6:03 PM View: CCR - UPL - 2020

EPA 1989 Outlier Screening

Constituent: Boron (ug/L) Analysis Run 12/28/2020 6:04 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

	2R-OW (bg)
4/8/2016	100
6/20/2016	22.4
8/9/2016	32.6
10/20/2016	43.1
1/24/2017	31.2
4/6/2017	70.6
6/6/2017	45.2
8/1/2017	35.7
10/23/2017	55.9
4/2/2018	19.7
10/1/2018	34.7
4/8/2019	35.8
10/7/2019	58.8
4/8/2020	52.3
10/15/2020	29.9

EPA Screening (suspected outliers for Dixon's Test)

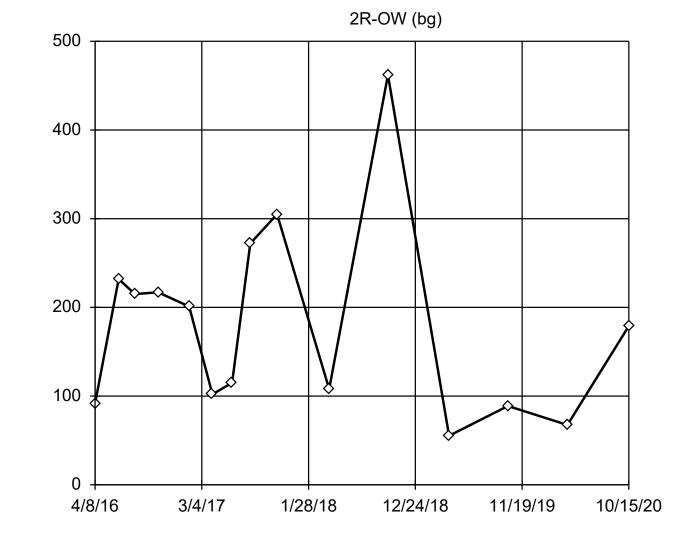
n = 15

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 148800, std. dev. 25498, critical Tn 2.409

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9279 Critical = 0.901 The distribution was found to be normally distributed.

Constituent: Calcium Analysis Run 12/28/2020 6:03 PM View: CCR - UPL - 2020

EPA 1989 Outlier Screening


Constituent: Calcium (ug/L) Analysis Run 12/28/2020 6:04 PM View: CCR - UPL - 2020

Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

	2R-OW (bg)
4/8/2016	205000
6/20/2016	148000
8/9/2016	145000
10/20/2016	155000
1/24/2017	152000
4/6/2017	143000
6/6/2017	145000
8/1/2017	164000
10/23/2017	170000
4/2/2018	121000
10/1/2018	190000
4/8/2019	121000
10/7/2019	132000
4/8/2020	117000
10/15/2020	124000

mg/L

EPA Screening (suspected outliers for Dixon's Test)

n = 15

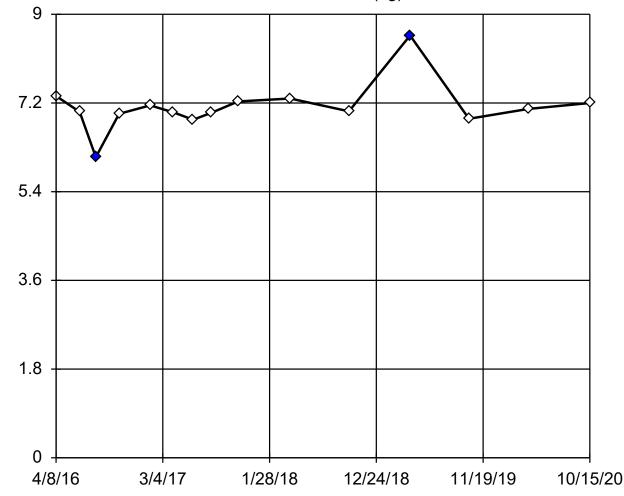
Dixon's will not be run.
No suspect values identified or unable to establish suspect values.
Mean 180.8, std. dev.
109.9, critical Tn 2.409

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9641 Critical = 0.901 (after natural log transformation) The distribution was found to be log-normal.

Constituent: Chloride Analysis Run 12/28/2020 6:03 PM View: CCR - UPL - 2020

EPA 1989 Outlier Screening

Constituent: Chloride (mg/L) Analysis Run 12/28/2020 6:04 PM View: CCR - UPL - 2020


Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

	2R-OW (bg)
4/8/2016	91.7
6/20/2016	232
8/9/2016	215
10/20/2016	217
1/24/2017	201
4/6/2017	102
6/6/2017	115
8/1/2017	272
10/23/2017	305
4/2/2018	108
10/1/2018	462
4/8/2019	55.3
10/7/2019	88.8
4/8/2020	67.5
10/15/2020	179

Std. Units

Dixon's Outlier Test

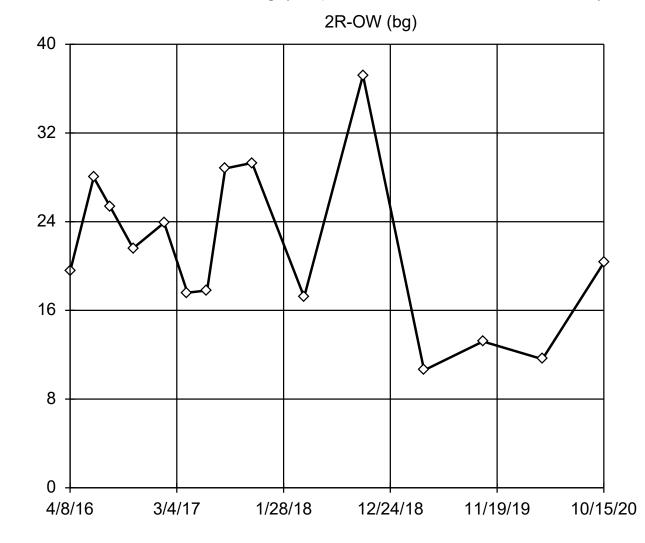
2R-OW (bg)

n = 15

Statistical outliers are drawn as solid.
Testing for 1 high and 1 low outliers.
Mean = 7.116.
Std. Dev. = 0.495.
8.57: c = 0.7574
tabl = 0.525.
6.1: c = 0.6555
tabl = 0.525.
Alpha = 0.05.

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9533 Critical = 0.889 The distribution, after removal of suspect values, was found to be normally distributed.

Constituent: Field pH Analysis Run 12/28/2020 6:03 PM View: CCR - UPL - 2020


Dixon's Outlier Test

Constituent: Field pH (Std. Units) Analysis Run 12/28/2020 6:04 PM View: CCR - UPL - 2020

Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

	2R-OW (bg)
4/8/2016	7.34
6/20/2016	7.02
8/9/2016	6.1 (O)
10/20/2016	6.98
1/24/2017	7.15
4/6/2017	7.01
6/6/2017	6.86
8/1/2017	7
10/23/2017	7.23
4/2/2018	7.29
10/1/2018	7.03
4/8/2019	8.57 (O)
10/7/2019	6.88
4/8/2020	7.08
10/15/2020	7.2

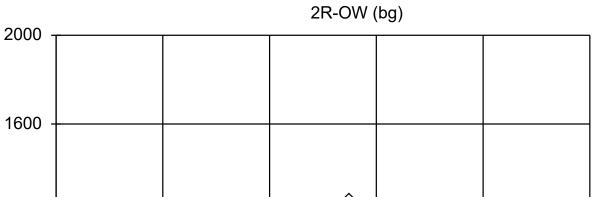
EPA Screening (suspected outliers for Dixon's Test)

n = 15

Dixon's will not be run.
No suspect values identified or unable to establish suspect values.
Mean 21.47, std. dev.
7.379, critical Tn 2.409

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9672 Critical = 0.901 The distribution was found to be normally distributed.

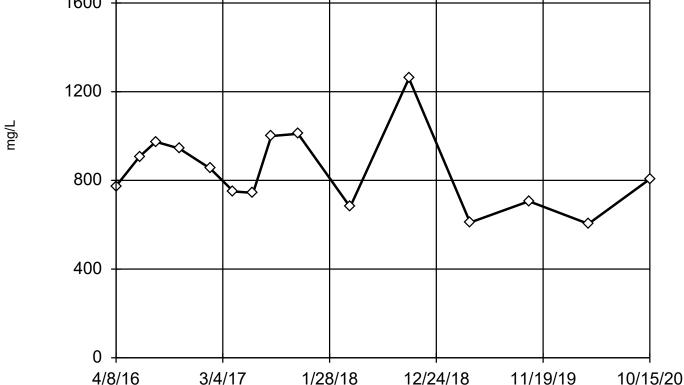
Constituent: Sulfate Analysis Run 12/28/2020 6:03 PM View: CCR - UPL - 2020


EPA 1989 Outlier Screening

Constituent: Sulfate (mg/L) Analysis Run 12/28/2020 6:04 PM View: CCR - UPL - 2020

Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

	2R-OW (bg)
4/8/2016	19.5
6/20/2016	28
8/9/2016	25.4
10/20/2016	21.6
1/24/2017	23.9
4/6/2017	17.6
6/6/2017	17.8
8/1/2017	28.8
10/23/2017	29.3
4/2/2018	17.2
10/1/2018	37.2
4/8/2019	10.6
10/7/2019	13.2
4/8/2020	11.6
10/15/2020	20.3


EPA Screening (suspected outliers for Dixon's Test)

n = 15

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 841.6, std. dev. 177.2, critical Tn 2.409

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9458 Critical = 0.901 The distribution was found to be normally distributed.

Constituent: Total Dissolved Solids Edgewater Closed Generating Station Analysis Run 12/28/2020 6:03 PM View: CCR - UPL - 2020

Client: SCS Engineers

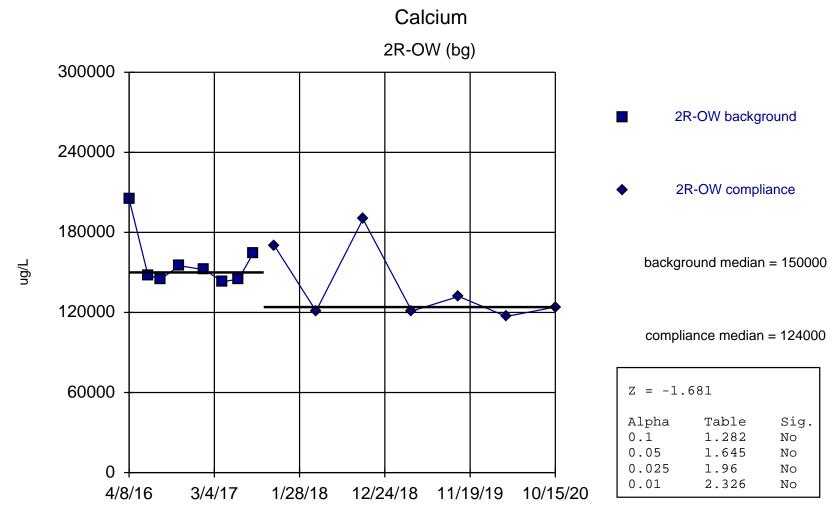
Data: EDG_Clsd - Chem- export-Dec2020

EPA 1989 Outlier Screening

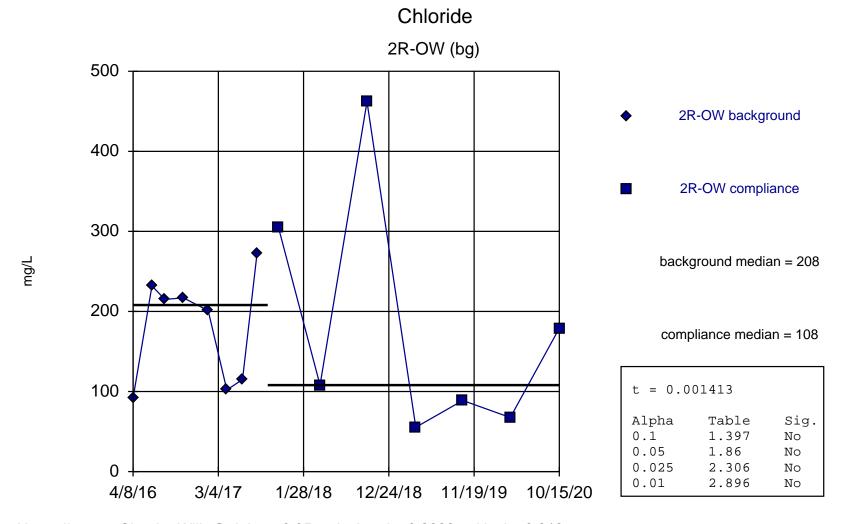

Constituent: Total Dissolved Solids (mg/L) Analysis Run 12/28/2020 6:04 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

	2R-OW (bg)
4/8/2016	774
6/20/2016	908
8/9/2016	974
10/20/2016	944
1/24/2017	854
4/6/2017	750
6/6/2017	744
8/1/2017	1000
10/23/2017	1010
4/2/2018	680
10/1/2018	1260
4/8/2019	610
10/7/2019	706
4/8/2020	604
10/15/2020	806

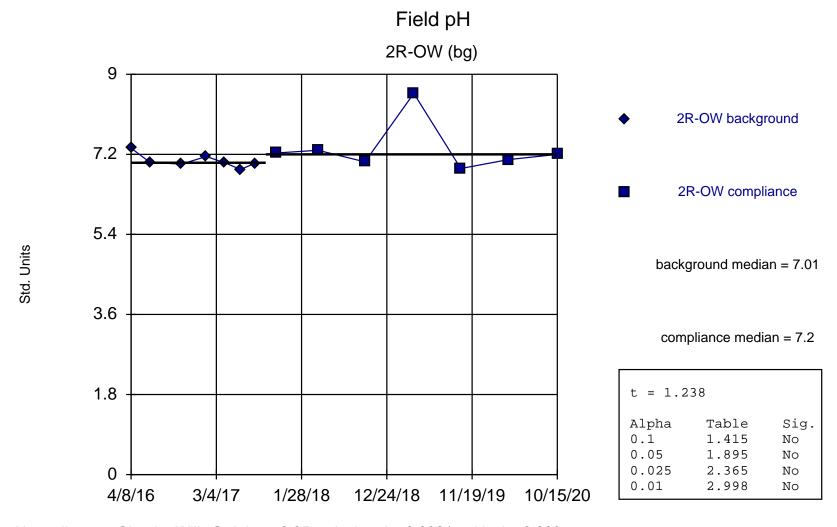
Attachment 3 Welch's/Mann-Whitney Comparison


Welch's t-test/Mann-Whitney

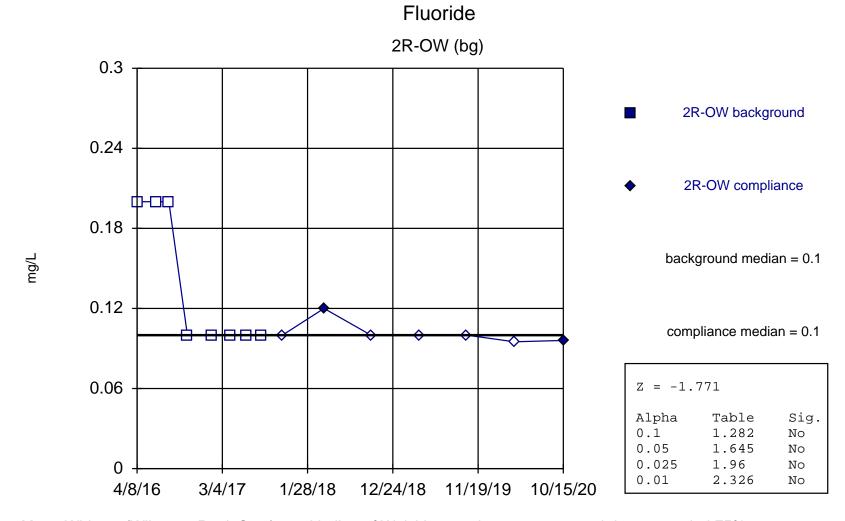
	Edgewater Closed Generating Station		Client: SCS Engineers		Data: EDG_Clsd - Chem- export-Dec2020				Printed 1/3/2021, 4:20 PM	
Constituent	<u>Well</u>	Calc.	0.1	0.05	0.025	0.01	<u>Alpha</u>	Sig.	Bg. Wells	<u>Method</u>
Boron (ug/L)	2R-OW (bg)	-0.62	No	No	No	No	0.01	No	(intrawell)	Welch`s
Calcium (ug/L)	2R-OW (bg)	-1.681	No	No	No	No	0.01	No	(intrawell)	Mann-W (normality)
Chloride (mg/L)	2R-OW (bg)	0.0	No	No	No	No	0.01	No	(intrawell)	Welch`s
Field pH (Std. Units)	2R-OW (bg)	1.238	No	No	No	No	0.01	No	(intrawell)	Welch`s
Fluoride (mg/L)	2R-OW (bg)	-1.771	No	No	No	No	0.01	No	(intrawell)	Mann-W (NDs)
Sulfate (mg/L)	2R-OW (bg)	-0	No	No	No	No	0.01	No	(intrawell)	Welch`s
Total Dissolved Solids (mg/L)	2R-OW (bg)	-0	No	No	No	No	0.01	No	(intrawell)	Welch's


Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.842, critical = 0.818.

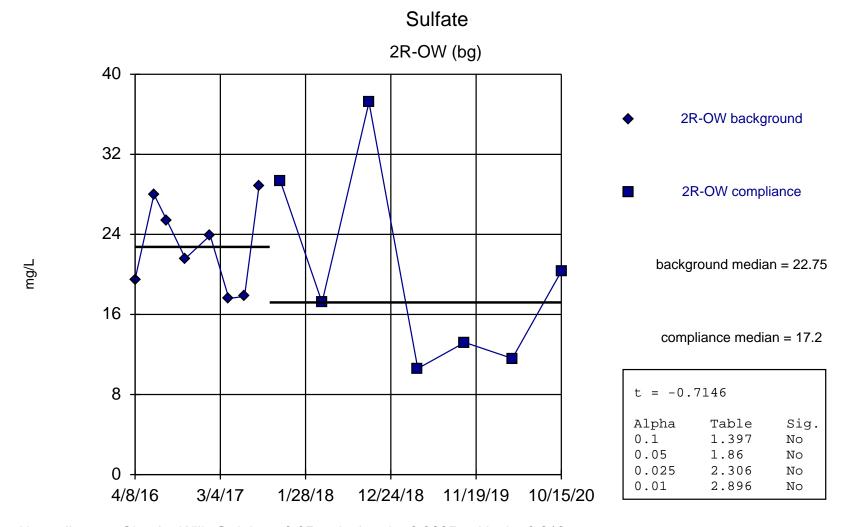
Welch's t-test Analysis Run 1/3/2021 4:19 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020


Mann-Whitney (Wilcoxon Rank Sum) used in lieu of Welch's t-test because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level.

Mann-Whitney (Wilcoxon Rank Sum) Analysis Run 1/3/2021 4:19 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

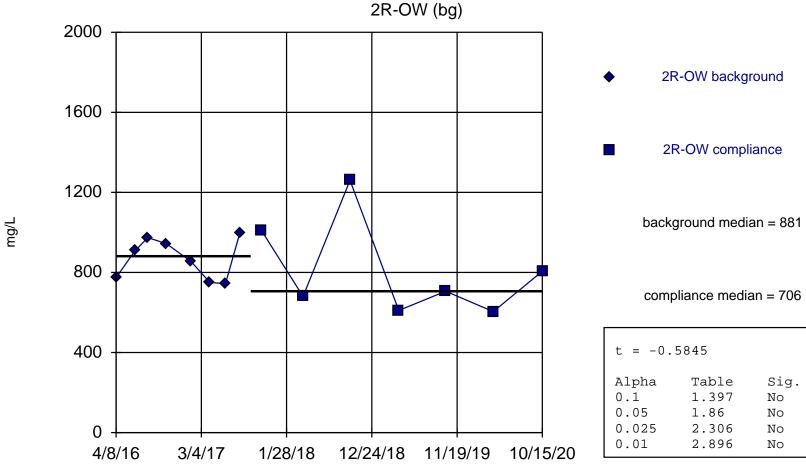

Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8822, critical = 0.818.

Welch's t-test Analysis Run 1/3/2021 4:19 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020


Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8921, critical = 0.803.

Welch's t-test Analysis Run 1/3/2021 4:19 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Mann-Whitney (Wilcoxon Rank Sum) used in lieu of Welch's t-test because censored data exceeded 75%.


Mann-Whitney (Wilcoxon Rank Sum) Analysis Run 1/3/2021 4:19 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9205, critical = 0.818.

Welch's t-test Analysis Run 1/3/2021 4:19 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Total Dissolved Solids 2R-OW (ba)

Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8983, critical = 0.818.

Welch's t-test Analysis Run 1/3/2021 4:19 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Attachment 4 Interwell Prediction Limit Analysis

Prediction Limit

		Edgewate	r Closed Gene	erating Station	Client:	SCS I	Engin	eers Data: EDG_0	Clsd - Chem-	export-De	ec2020	Printed	1/14/2021, 8:04	ł PM	
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg I	N Bg Wells	Bg Mean	Std. Dev	<u>/. %NDs</u>	ND Adj	. Transform	<u>Alpha</u>	Method
Boron (ug/L)	MW-301	86	n/a	10/15/2020	6550	Yes	15	2R-OW	44.53	20.78	0	None	No	0.002505	Param Inter 1 of 2
Boron (ug/L)	MW-302	86	n/a	10/15/2020	1410	Yes	15	2R-OW	44.53	20.78	0	None	No	0.002505	Param Inter 1 of 2
Boron (ug/L)	MW-303	86	n/a	10/15/2020	3310	Yes	15	2R-OW	44.53	20.78	0	None	No	0.002505	Param Inter 1 of 2
Calcium (ug/L)	MW-301	200000	n/a	10/15/2020	114000	No	15	2R-OW	148800	25498	0	None	No	0.002505	Param Inter 1 of 2
Calcium (ug/L)	MW-302	200000	n/a	10/15/2020	124000	No	15	2R-OW	148800	25498	0	None	No	0.002505	Param Inter 1 of 2
Calcium (ug/L)	MW-303	200000	n/a	10/15/2020	132000	No	15	2R-OW	148800	25498	0	None	No	0.002505	Param Inter 1 of 2
Chloride (mg/L)	MW-301	400	n/a	10/15/2020	13.9	No	15	2R-OW	180.8	109.9	0	None	No	0.002505	Param Inter 1 of 2
Chloride (mg/L)	MW-302	400	n/a	10/15/2020	20.9	No	15	2R-OW	180.8	109.9	0	None	No	0.002505	Param Inter 1 of 2
Chloride (mg/L)	MW-303	400	n/a	10/15/2020	20.9	No	15	2R-OW	180.8	109.9	0	None	No	0.002505	Param Inter 1 of 2
Field pH (Std. Units)	MW-301	8.57	n/a	10/15/2020	7.64	No	14	2R-OW	n/a	n/a	0	n/a	n/a	0.008038	NP Inter (normality)
Field pH (Std. Units)	MW-302	8.57	n/a	10/15/2020	7.9	No	14	2R-OW	n/a	n/a	0	n/a	n/a	0.008038	NP Inter (normality)
Field pH (Std. Units)	MW-303	8.57	n/a	10/15/2020	7.11	No	14	2R-OW	n/a	n/a	0	n/a	n/a	0.008038	NP Inter (normality)
Fluoride (mg/L)	MW-301	0.200	n/a	10/15/2020	0.48ND	No	15	2R-OW	n/a	n/a	86.67	n/a	n/a	0.007081	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	MW-302	0.200	n/a	10/15/2020	1J	No	15	2R-OW	n/a	n/a	86.67	n/a	n/a	0.007081	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	MW-303	0.200	n/a	10/15/2020	0.48ND	No	15	2R-OW	n/a	n/a	86.67	n/a	n/a	0.007081	NP Inter (NDs) 1 of 2
Sulfate (mg/L)	MW-301	36.2	n/a	10/15/2020	293	Yes	15	2R-OW	21.47	7.379	0	None	No	0.002505	Param Inter 1 of 2
Sulfate (mg/L)	MW-302	36.2	n/a	10/15/2020	73.1	Yes	15	2R-OW	21.47	7.379	0	None	No	0.002505	Param Inter 1 of 2
Sulfate (mg/L)	MW-303	36.2	n/a	10/15/2020	2.2ND	No	15	2R-OW	21.47	7.379	0	None	No	0.002505	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	MW-301	1190	n/a	10/15/2020	678	No	15	2R-OW	841.6	177.2	0	None	No	0.002505	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	MW-302	1190	n/a	10/15/2020	182	No	15	2R-OW	841.6	177.2	0	None	No	0.002505	Param Inter 1 of 2

No 15 2R-OW

841.6

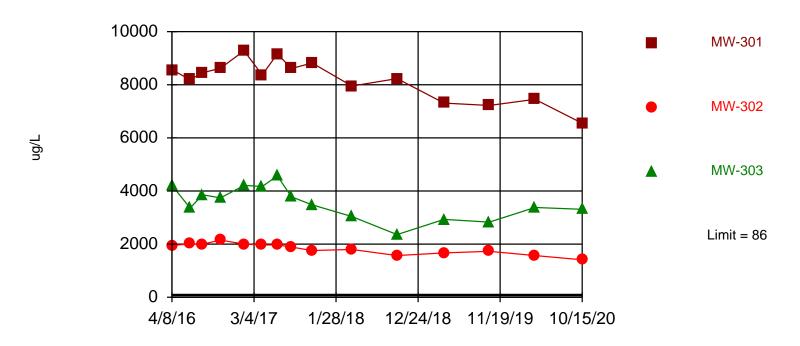
177.2 0

None No

0.002505 Param Inter 1 of 2

Total Dissolved Solids (mg/L)

MW-303


1190

n/a

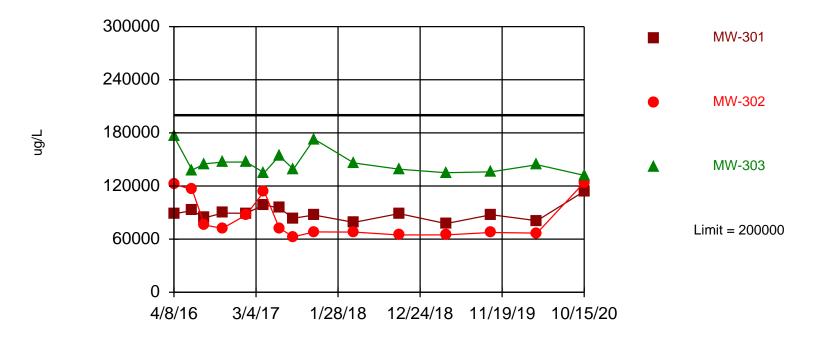
10/15/2020 620

Exceeds Limit: MW-301, MW-302, MW-303

Boron Interwell Parametric

Background Data Summary: Mean=44.53, Std. Dev.=20.78, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8829, critical = 0.835. Kappa = 1.994 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Comparing 3 points to limit.

Prediction Limit Analysis Run 1/14/2021 8:01 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020


Prediction Limit

Constituent: Boron (ug/L) Analysis Run 1/14/2021 8:04 PM View: CCR - UPL - 2020

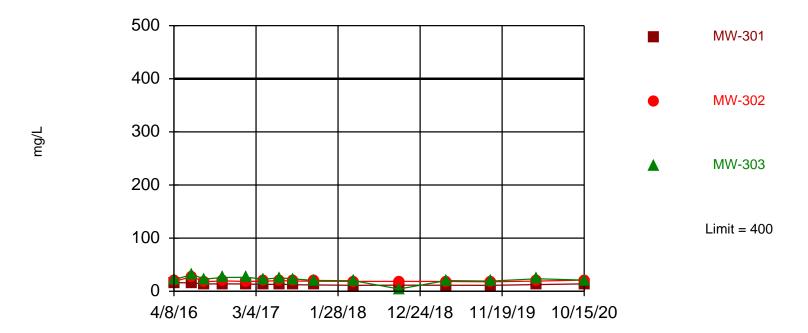
	2R-OW (bg)	MW-302	MW-303	MW-301
4/8/2016	100	1950	4210	
4/11/2016				8550
6/20/2016	22.4	2010	3360	8190
8/9/2016	32.6	2000	3860	8450
10/20/2016	43.1	2150	3740	8620
1/23/2017				9280
1/24/2017	31.2	2000	4210	
4/6/2017	70.6	1970	4170	8370
6/6/2017	45.2	1970	4570	9160
8/1/2017	35.7			
8/2/2017		1890	3780	8610
10/23/2017	55.9			
10/24/2017		1760	3480	8820
4/2/2018	19.7	1800	3040	7950
10/1/2018	34.7	1570	2360	8230
4/8/2019	35.8	1670	2930	7310
10/7/2019	58.8	1730	2830	7220
4/8/2020	52.3	1570	3380	7450
10/15/2020	29.9	1410	3310	6550

Within Limit Calcium

Interwell Parametric

Background Data Summary: Mean=148800, Std. Dev.=25498, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9279, critical = 0.835. Kappa = 1.994 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Comparing 3 points to limit.

Prediction Limit Analysis Run 1/14/2021 8:01 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020


Prediction Limit

Constituent: Calcium (ug/L) Analysis Run 1/14/2021 8:04 PM View: CCR - UPL - 2020

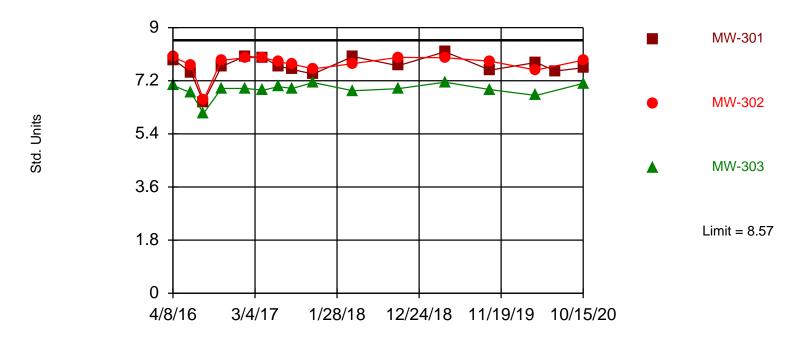
	2R-OW (bg)	MW-302	MW-303	MW-301
4/8/2016	205000	122000	176000	
4/11/2016				88700
6/20/2016	148000	116000	138000	92200
8/9/2016	145000	75900	145000	84000
10/20/2016	155000	72100	147000	89400
1/23/2017				89200
1/24/2017	152000	87400	147000	
4/6/2017	143000	114000	135000	98800
6/6/2017	145000	72200	154000	94900
8/1/2017	164000			
8/2/2017		62600	139000	83600
10/23/2017	170000			
10/24/2017		68100	173000	87200
4/2/2018	121000	68000	146000	78900
10/1/2018	190000	64700	139000	88800
4/8/2019	121000	64800	135000	77500
10/7/2019	132000	67500	136000	87600
4/8/2020	117000	66800	144000	80800
10/15/2020	124000	124000	132000	114000

Within Limit Chloride

Interwell Parametric

Background Data Summary: Mean=180.8, Std. Dev.=109.9, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.8933, critical = 0.835. Kappa = 1.994 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Comparing 3 points to limit.

Prediction Limit Analysis Run 1/14/2021 8:01 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020


Prediction Limit

Constituent: Chloride (mg/L) Analysis Run 1/14/2021 8:04 PM View: CCR - UPL - 2020

	2R-OW (bg)	MW-302	MW-303	MW-301
4/8/2016	91.7	18.9	21.8	
4/11/2016				16.2
6/20/2016	232	27.2	31.5	15.9
8/9/2016	215	18	22.8	13.7
10/20/2016	217	19.5	26	13.9
1/23/2017				13.8
1/24/2017	201	18.6	26.2	
4/6/2017	102	18.9	22.7	12.7
6/6/2017	115	20	25.4	13.5
8/1/2017	272			
8/2/2017		19.3	23.2	12.3
10/23/2017	305			
10/24/2017		18.9	20.4	11.9
4/2/2018	108	18.5	19.7	11.2
10/1/2018	462	18.6	4.3	11.5
4/8/2019	55.3	18.4	20	11.4
10/7/2019	88.8	17.8	19.1	11.1
4/8/2020	67.5	19.2	23.5	12.5
10/15/2020	179	20.9	20.9	13.9

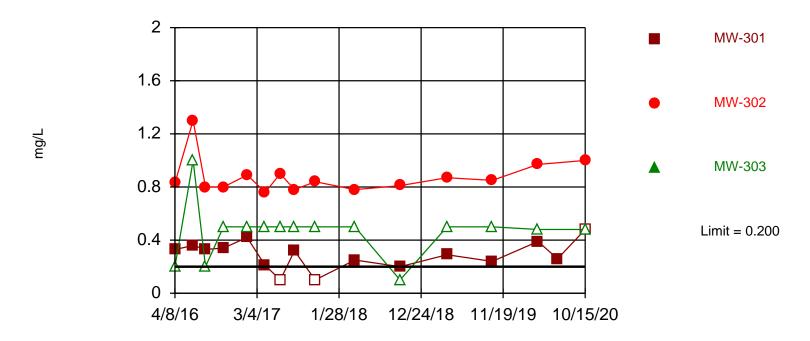
Within Limit Field pH

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 14 background values. Annual per-constituent alpha = 0.04727. Individual comparison alpha = 0.008038 (1 of 2). Comparing 3 points to limit.

Prediction Limit Analysis Run 1/14/2021 8:01 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG Clsd - Chem- export-Dec2020

Prediction Limit


Constituent: Field pH (Std. Units) Analysis Run 1/14/2021 8:04 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

	2R-OW (bg)	MW-303	MW-302	MW-301
4/8/2016	7.34	7.04	8.01	
4/11/2016				7.91
6/20/2016	7.02	6.79	7.73	7.48
8/9/2016	6.1 (X)	6.09	6.55	6.47
10/20/2016	6.98	6.94	7.89	7.68
1/23/2017				8.03
1/24/2017	7.15	6.94	7.98	
4/6/2017	7.01	6.88	7.99	7.98
6/6/2017	6.86	7	7.84	7.7
8/1/2017	7			
8/2/2017		6.94	7.76	7.58
10/23/2017	7.23			
10/24/2017		7.14	7.6	7.43
4/2/2018	7.29	6.86	7.78	8.02
10/1/2018	7.03	6.93	7.99	7.71
4/8/2019	8.57	7.15	7.98	8.18
10/7/2019	6.88	6.9	7.86	7.56
4/8/2020	7.08	6.7	7.56	7.82
6/26/2020				7.53
10/15/2020	7.2	7.11	7.9	7.64

Within Limit

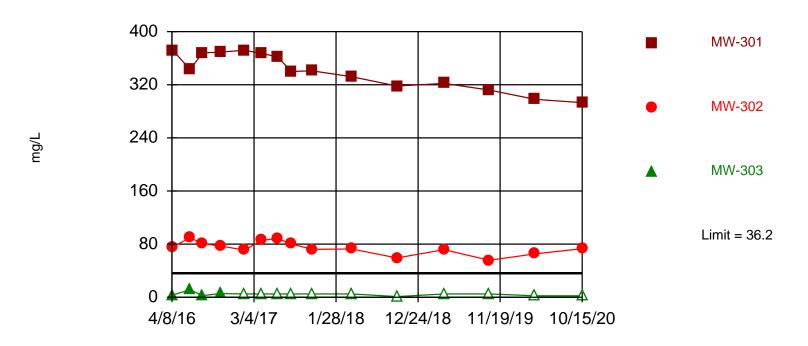
Interwell Non-parametric

Fluoride

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 15 background values. 86.67% NDs. Annual per-constituent alpha = 0.04174. Individual comparison alpha = 0.007081 (1 of 2). Comparing 3 points to limit.

Prediction Limit Analysis Run 1/14/2021 8:02 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG Clsd - Chem- export-Dec2020

Prediction Limit


Constituent: Fluoride (mg/L) Analysis Run 1/14/2021 8:04 PM View: CCR - UPL - 2020

Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

	2R-OW (bg)	MW-303	MW-302	MW-301
4/8/2016	<0.2 (U)	<0.2 (U)	0.83	
4/11/2016				0.33 (J)
6/20/2016	<0.2 (U)	<1 (U)	1.3 (J)	0.36 (J)
8/9/2016	<0.2 (U)	<0.2 (U)	8.0	0.33 (J)
10/20/2016	<0.1 (U)	<0.5 (U)	0.8	0.34
1/23/2017				0.42
1/24/2017	<0.1 (U)	<0.5 (U)	0.89 (J)	
4/6/2017	<0.1 (U)	<0.5 (U)	0.76	0.21 (J)
6/6/2017	<0.1 (U)	<0.5 (U)	0.9	<0.1 (U)
8/1/2017	<0.1 (U)			
8/2/2017		<0.5 (U)	0.78	0.32
10/23/2017	<0.1 (U)			
10/24/2017		<0.5 (U)	0.84	<0.1 (U)
4/2/2018	0.12 (J)	<0.5 (U)	0.78	0.25 (J)
10/1/2018	<0.1 (U)	<0.1 (U)	0.81	0.2 (J)
4/8/2019	<0.1 (U)	<0.5 (U)	0.87	0.29 (J)
10/7/2019	<0.1 (U)	<0.5 (U)	0.85	0.24 (J)
4/8/2020	<0.095 (U)	<0.48 (U)	0.97	0.39
6/26/2020				0.26 (J)
10/15/2020	0.096 (J)	<0.48 (U)	1 (J)	<0.48 (U)

Exceeds Limit: MW-301, MW-302

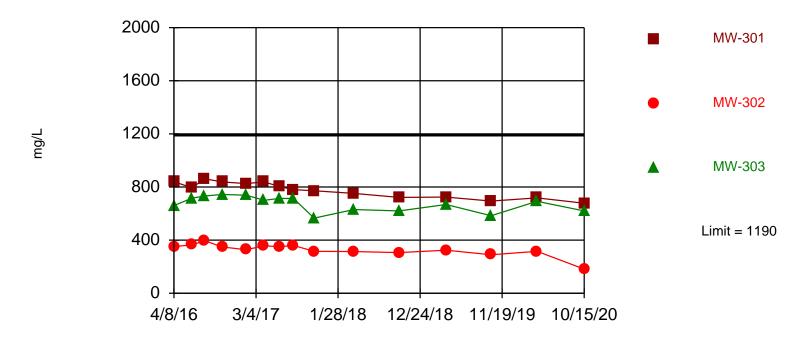
Sulfate Interwell Parametric

Background Data Summary: Mean=21.47, Std. Dev.=7.379, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9672, critical = 0.835. Kappa = 1.994 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Comparing 3 points to limit.

Prediction Limit Analysis Run 1/14/2021 8:02 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Prediction Limit

Constituent: Sulfate (mg/L) Analysis Run 1/14/2021 8:04 PM View: CCR - UPL - 2020


Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

	2R-OW (bg)	MW-302	MW-303	MW-301
4/8/2016	19.5	75.1	3 (J)	
4/11/2016				372
6/20/2016	28	89.6	11.4 (J)	343
8/9/2016	25.4	80.7	2.4 (J)	368
10/20/2016	21.6	77.2	5.6 (J)	369
1/23/2017				372
1/24/2017	23.9	71.1	<5 (U)	
4/6/2017	17.6	85.8	<5 (U)	367
6/6/2017	17.8	88.5	<5 (U)	362
8/1/2017	28.8			
8/2/2017		80.2	<5 (U)	340
10/23/2017	29.3			
10/24/2017		72.2	<5 (U)	341
4/2/2018	17.2	72.7	<5 (U)	332
10/1/2018	37.2	59.2	<1 (U)	318
4/8/2019	10.6	71.7	<5 (U)	322
10/7/2019	13.2	55.7	<5 (U)	312
4/8/2020	11.6	65.3	<2.2 (U)	298
10/15/2020	20.3	73.1	<2.2 (U)	293

Within Limit

Total Dissolved Solids

Interwell Parametric

Background Data Summary: Mean=841.6, Std. Dev.=177.2, n=15. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9458, critical = 0.835. Kappa = 1.994 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Comparing 3 points to limit.

Prediction Limit Analysis Run 1/14/2021 8:02 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG Clsd - Chem- export-Dec2020

Prediction Limit

Constituent: Total Dissolved Solids (mg/L) Analysis Run 1/14/2021 8:04 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

	2R-OW (bg)	MW-302	MW-303	MW-301
4/8/2016	774	352	660	
4/11/2016				838
6/20/2016	908	364	716	794
8/9/2016	974	396	732	862
10/20/2016	944	348	744	838
1/23/2017				826
1/24/2017	854	328	738	
4/6/2017	750	358	700	838
6/6/2017	744	350	714	804
8/1/2017	1000			
8/2/2017		360	714	780
10/23/2017	1010			
10/24/2017		316	566	772
4/2/2018	680	314	630	752
10/1/2018	1260	306	620	722
4/8/2019	610	324	668	724
10/7/2019	706	290	584	694
4/8/2020	604	316	692	718
10/15/2020	806	182	620	678

Appendix F

Alternative Source Demonstrations (ASDs)

F1 October 2020 ASD

F2 April 2021 ASD

F1 October 2020 ASD

Alternative Source Demonstration October 2020 Detection Monitoring

Edgewater Generating Station Sheboygan, Wisconsin

Prepared for:

SCS ENGINEERS

25221068.00 | April 15, 2021

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830

Table of Contents

Sect	ion			Page
PE Ce	ertifica	ation		ii
1.0	Intro	duction.		1
	1.1	§257.9	94(E)(2) Alternative Source Demonstration Requirements	1
	1.2	Site Inf	formation and Map	1
	1.3	Statisti	ically Significant Increases Identified	2
	1.4	Overvie	ew of Alternative Source Demonstration	2
2.0	Back	ground.		2
	2.1	Region	nal Geology and Hydrogeology	3
	2.2	CCR M	onitoring System	3
	2.3	Other I	Monitoring Wells	3
	2.4	Ground	dwater Flow Direction	3
3.0	Meth	odology	and Analysis Review	4
	3.1	Sampli	ing and Field Analysis Review	2
	3.2	Labora	atory Analysis Review	2
	3.3	Statisti	ical Evaluation Review	5
	3.4	Summa	ary of Methodology and Analysis Review Findings	5
4.0	Alter	native S	Sources	5
	4.1	Potent	ial Causes of SSI	5
		4.1.1	Natural Variation	5
		4.1.2	Man-Made Alternative Sources	5
	4.2	Lines o	of Evidences	5
		4.2.1	Previous CCR Pond and Landfill Study	6
		4.2.2	CCR Constituents in Landfill Leachate	
		4.2.3	State Program Groundwater Monitoring Results	8
5.0	Alter	native S	Source Demonstration Conclusions	8
6.0			water Monitoring Recommendations	
7.0	Refe	rences		8
			T 11	
			Tables	
Table Table Table Table Table	2 3A 3B	Ana Gro Gro	oundwater Analytical Results Summary – October 2020 alytical Results – CCR Ponds Detection Monitoring Program oundwater Elevations – State Monitoring Wells oundwater Elevations – CCR Rule Monitoring Wells oundwater Analytical Results – Closed Landfill State Monitoring Program We	ells

Figures

Figure 1. Site Location Map

Figure 2. Site Plan and Monitoring Well Locations

Figure 3. Water Table Map – October 2020

Appendix

Appendix A Trend Plots for CCR Wells

PE CERTIFICATION

I, Sherren Clark, hereby certify that that the information in this alternate source demonstration is accurate and meets the requirements of 40 CFR 257.94(e)(2). This certification is based on my review of the groundwater data and related site information available for the Edgewater Generating Station Ash Ponds. I am a duly licensed Professional Engineer under the laws of the State of Wisconsin.

(signature)

1-15-21

(date)

Sherren Clark, PE

(printed or typed name)

License number E-29863

My license renewal date is July 31, 2022.

Pages or sheets covered by this seal:

Alternative Source Demonstration - October 2020 Detection

Monitoring, Edgewater Generating Station, Sheboygan Wisconsin

(Entire Document)

[This page left blank intentionally]

1.0 INTRODUCTION

This Alternative Source Demonstration (ASD) was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" published by the U.S. Environmental Protection Agency (USEPA) in the *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule,* dated April 17, 2015 (USEPA, 2015), and subsequent amendments. Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.94(e)(2). The applicable sections of the Rule are provided below in *italics*.

1.1 §257.94(E)(2) ALTERNATIVE SOURCE DEMONSTRATION REQUIREMENTS

The owner and operator may demonstrate that a source other than the CCR Unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels.

An ASD is completed when there are exceedances of one or more benchmarks established within the groundwater monitoring program. The ASD is completed to determine if any other sources are likely causes of the identified exceedance(s) of established benchmark(s) at the site. This ASD was performed in response to results indicating a statistically significant increase (SSI) over background levels during detection monitoring under the CCR Rule.

This ASD report is evaluating the SSIs observed in the statistical evaluation of the October 2020 detection monitoring event at the Edgewater Generating Station (EDG). The first ASD was prepared for this facility evaluating the SSIs observed in the statistical evaluation of the October 2017 detection monitoring event (SCS Engineers [SCS], 2018b). The October 2017 ASD and subsequent semiannual updates have concluded that several lines of evidence demonstrate that SSIs reported for boron and sulfate concentrations in the downgradient monitoring wells (MW-301, MW-302, and MW-303) were likely due to leachate from the closed landfill, which is not subject to the requirements of 40 CFR 257.50-107.

As discussed in more detail in **Section 4.2** of this ASD, the findings for the October 2020 monitoring event were consistent with those for the previous events.

1.2 SITE INFORMATION AND MAP

EDG is located at 3739 Lakeshore Drive in Sheboygan, Sheboygan County, Wisconsin (**Figure 1**). EDG is an active coal-burning generating station. The EDG property includes a closed landfill and a series of CCR settling ponds, located on the opposite side of Lakeshore Drive from the plant itself (**Figure 1**). The EDG landfill is closed and no longer receives CCR. The groundwater monitoring system at EDG is a multi-unit system. EDG has four existing CCR Units which are contiguous:

- EDG Slag Pond (existing CCR surface impoundment)
- EDG North A-Pond (existing CCR surface impoundment)
- EDG South A- Pond (existing CCR surface impoundment)
- EDG B-Pond (existing CCR surface impoundment)

Closure of the four CCR surface impoundments was initiated in 2020 and will be completed in 2021. The existing monitoring system will be used to monitor the closure area. A map showing the CCR Units and all background (or upgradient) and downgradient monitoring wells with identification numbers for the groundwater monitoring program is provided as **Figure 2**.

The closed CCR landfill (Wisconsin Department of Natural Resources [WDNR] Permit No. 2524) is located immediately west of the ponds. The landfill contains primarily fly ash with some slag, and was closed in 1987. Because this CCR landfill did not accept CCR after October 19, 2015, the landfill is not subject to the requirements of 40 CFR 257.50-107. The closed landfill is unlined and is known to be impacting groundwater at the site (SCS, 2016). Previous investigations done at the site (BT², Inc., 1993; RMT, 1997) concluded that the groundwater impacts downgradient of the landfill and ponds were attributable to groundwater interaction with the landfill, rather than leakage from the ponds.

1.3 STATISTICALLY SIGNIFICANT INCREASES IDENTIFIED

SSIs were identified for boron and sulfate at one or more wells based on the October 2020 detection monitoring event. A summary of the October 2020 constituent concentrations and the established benchmark concentrations is provided in **Table 1**. The constituent concentrations with SSIs above the background concentration are highlighted in the table.

1.4 OVERVIEW OF ALTERNATIVE SOURCE DEMONSTRATION

This ASD report includes:

- Background information (Section 2.0)
- Evaluation of potential that SSIs are due to methodology or analysis (Section 3.0)
- Evaluation of potential that SSIs are due to natural sources or man-made sources other than the CCR Units (Section 4.0)
- ASD conclusions (**Section 5.0**)
- Monitoring recommendations (Section 6.0)

The boron and sulfate results from background and compliance sampling are provided in **Table 2**. The laboratory report for the October 2020 detection monitoring event was included in the 2020 annual groundwater monitoring and corrective action report submitted in January 2021. Complete laboratory reports for the background monitoring events and previous detection monitoring events were included in the previous annual groundwater monitoring and corrective action reports.

2.0 BACKGROUND

To provide context for the ASD evaluation, the following background information is provided in this section of the report, prior to the ASD evaluation sections:

- Geologic and hydrogeologic setting
- CCR Rule monitoring system
- Other monitoring wells
- Groundwater Flow Direction

A more detailed discussion of the background information for the site is provided in the ASD for the October 2017 event (SCS, 2018).

2.1 REGIONAL GEOLOGY AND HYDROGEOLOGY

For the purposes of groundwater monitoring, the unconsolidated sand and gravel aquifer is considered to be the uppermost aquifer, as defined under 40 CFR 257.53, at the EDG ponds. The sand and gravel aquifer is present in some parts of Sheboygan County (Skinner and Borman, 1973). Boring logs from monitoring wells at the EDG ponds and for nearby private wells indicate that the unconsolidated material at, and near, the site contains a significant amount of sand. Private well logs from the surrounding area indicate that the sand and gravel aquifer has been used as a water source; however, several older sand wells in the area have been replaced with bedrock water supply wells.

The dolomite aquifer underlies the unconsolidated material at the site. The total thickness of the dolomite aquifer at the site is unknown. The dolomite aquifer is underlain by the Maquoketa shale, which is a confining unit. The Maquoketa shale is underlain by the Cambrian-Ordovician sandstone aquifer. This sequence of sedimentary bedrock units is over 1,500 feet thick in the site vicinity.

The regional groundwater flow in the unconsolidated sand and gravel aquifer in the vicinity of the site, is to the east and slight southeast.

2.2 CCR MONITORING SYSTEM

The groundwater monitoring system established under the CCR Rule consists of one upgradient (background) monitoring well and three downgradient monitoring wells, as shown on **Figure 2**. The upgradient monitoring well is 2R-OW. The downgradient monitoring wells include MW-301, MW-302, and MW-303. The CCR compliance monitoring wells were installed in the unconsolidated sediments with screens in the uppermost soil layer producing appreciable water, which was a sandy silt unit. Well depths range from approximately 14.5 to 40 feet, measured from the top of the well casing.

To accommodate regrading due to pond closure construction activities occurring at the site, the casing of downgradient monitoring well MW-301 was extended during November 2020 and the casings of monitoring wells MW-302 and MW-303 were shortened during September 2020. A small amount of filter pack sand, originally placed above ground between the well casing and protective casing, fell into the well during the casing height reduction work. The sand was removed and the well was redeveloped prior to the October sampling event. The well casing elevations were resurveyed after the casing modifications were completed, as shown in **Table 3B**.

2.3 OTHER MONITORING WELLS

Sixteen groundwater monitoring wells currently exist at the EDG site as part of the monitoring system developed for the state monitoring program for the closed landfill. The well locations are shown on **Figure 2**. These monitoring wells are used to monitor groundwater conditions at the site under the WDNR state monitoring program.

Monitoring wells for the state monitoring program are installed in the unconsolidated material at the site. This shallow monitoring system includes water table wells and piezometers. Well depths range from approximately 9 to 43 feet, measured from the top of the well casing.

2.4 GROUNDWATER FLOW DIRECTION

Shallow groundwater in the area of the EDG site generally flows to the south-southeast, toward Fish Creek, which discharges into Lake Michigan. There is some localized groundwater mounding

associated with the EDG ponds. The water table map shown on **Figure 3** represents the site conditions of the unconsolidated deposits during the October 2020 detection monitoring event. The water table map shows a generally southward flow direction, with localized groundwater mounding in the area of the EDG ponds. The groundwater elevations at the CCR and state monitoring wells during the October 2020 detection monitoring event are in **Table 3A** and **3B**. Water levels measured in October 2020 were lower than in previous monitoring events as a result of the pond closure; however, the general flow directions were consistent with prior results.

3.0 METHODOLOGY AND ANALYSIS REVIEW

To evaluate the potential that an SSI is due to a source other than the regulated CCR Unit, SCS used a two-step evaluation process. First, the sample collection, field and laboratory analysis, and statistical evaluation were reviewed to identify any potential error or analysis that led to exceedance of the benchmark. Second, potential alternative sources, including natural variation and man-made sources other than the CCR Unit, were evaluated. This section of the report provides the findings of the methodology and analysis review. **Section 4.0** of the report addresses the potential alternative sources.

3.1 SAMPLING AND FIELD ANALYSIS REVIEW

Field notes and sampling results were reviewed to determine if any sampling error may have caused or contributed to the observed SSIs. Potential field sampling errors or issues could include mislabeling of samples, improper sample handling, missed holding times, cross contamination during sampling, or other field error. Field blank sample results were also reviewed for any indication of potential contamination from sampling equipment or containers. Based on the review of the field notes and results, SCS did not identify any indication that the SSI concentrations were due to a sampling error.

Because boron and sulfate are laboratory parameters, there is little potential for a field analysis error to contribute to an SSI.

3.2 LABORATORY ANALYSIS REVIEW

The laboratory report for the October 2020 detection monitoring was reviewed to evaluate whether any laboratory analysis error or issue may have caused or contributed to the observed SSIs for boron or sulfate. The laboratory report review included reviewing the laboratory quality control flags and narrative, verifying that correct methods were used and desired detection limits were achieved, and checking the field and laboratory blank sample results. Laboratory reports for the background monitoring events were reviewed for the October 2017 ASD. Laboratory reports for subsequent detection monitoring events were reviewed as part of the ASD preparation for each event.

Based on the review of the laboratory reports, SCS did not identify any indication that the SSI concentrations were due to a laboratory analysis error. There were no laboratory quality control flags or issues identified in the laboratory reports that affect the usability of the data for detection monitoring.

Time series plots of the analytical data were also reviewed for any anomalous results that might indicate a possible sampling or laboratory error (e.g., dilution error or incorrect sample labeling). Time series plots for the parameters with SSIs are provided in **Appendix A**. No indications of sampling or laboratory errors were noted based on the time series review. The October 2020 boron and sulfate results for MW-301, MW-302, and MW-303 are consistent with the historical data.

3.3 STATISTICAL EVALUATION REVIEW

The review of the statistical results and methods includes a quality control check of the following:

- Input analytical data vs. laboratory analytical reports
- Review statistical method and outlier concentration lists for each monitoring well/CCR Unit

Based on the review of the statistical evaluation, SCS did not identify any errors or issues in the statistical evaluation that caused or contributed to the determination of interwell SSIs for the October 2020 detection monitoring event.

3.4 SUMMARY OF METHODOLOGY AND ANALYSIS REVIEW FINDINGS

In summary, there were no changes to the SSI determinations for the October 2020 monitoring event based on the methodology and analysis review, and no errors or issues causing or contributing to the reported SSIs were identified.

4.0 ALTERNATIVE SOURCES

This section of the report discusses the potential alternative sources for the boron and sulfate SSIs at MW-301, MW-302, and MW-303; identifies the most likely alternative source(s); and presents the lines of evidence indicating that an alternative source is most likely the cause of the observed SSIs for boron and sulfate.

4.1 POTENTIAL CAUSES OF SSI

4.1.1 Natural Variation

The statistical analysis was completed using an interwell approach, comparing the October 2020 detection monitoring results to the UPLs calculated based on sampling of the background well (2R-OW). If concentrations of a constituent that is naturally present in the aquifer vary spatially, then the potential exists that the downgradient concentrations may be higher than upgradient concentrations due to natural variation.

Although natural variation is present in the shallow aquifer, it does not appear likely that natural variation is the primary source causing the boron and sulfate SSIs. These parameters were detected at higher concentrations than would likely be present naturally.

4.1.2 Man-Made Alternative Sources

Man-made alternative sources that could potentially contribute to the boron and sulfate SSIs could include the closed CCR landfill, the coal storage area, or other plant operations. Based on the groundwater flow directions and on previous investigations at the site, the closed landfill appears to be the most likely cause of the SSIs for wells MW-301, MW-302, and MW-303.

4.2 LINES OF EVIDENCES

The lines of evidence indicating that the SSIs for boron and sulfate in compliance wells MW-301, MW-302, and MW-303, relative to the background well, are due to an alternative source include:

- 1. A previous study of the CCR ponds and the closed CCR landfill determined that the landfill was the primary source of groundwater impacts in the area, based on multiple lines of evidence.
- 2. Past and current monitoring performed under the state monitoring program shows that boron and sulfate are present in the CCR landfill leachate.
- 3. Past and current monitoring performed under the state monitoring program shows that the highest boron and sulfate concentrations are in the monitoring wells near and downgradient from the CCR landfill.

Each of these lines of evidence and the supporting data were discussed in detail in the ASD for the October 2017 detection monitoring event (SCS, 2018). The lines of evidence are discussed briefly below, focusing on any updated information collected since the previous ASDs.

4.2.1 Previous CCR Pond and Landfill Study

A previous investigation titled *Field Investigation Report: Edgewater Closed Ash Disposal Facility*, completed by BT² in 1993, found that groundwater impacts were likely due to the closed landfill (**Figure 2**) located immediately west of the ponds (BT², 1993). The purpose of the 1993 investigation was to investigate the likely impact on groundwater quality of lining or abandoning the CCR impoundments (referred to in the report as the Wisconsin Pollutant Discharge Elimination System [WPDES] lagoons). The results from the investigation indicated that the CCR impoundments were not the primary source of downgradient groundwater impacts, and that closure or lining was not warranted at that time. The WDNR concurred with that finding in a letter dated April 20, 1994.

The primary lines of evidence from the 1993 report that supported this finding, and support the ASD for boron and sulfate, included:

- Water samples collected from each of the ponds met the Wisconsin groundwater enforcement standards established under NR 140, Wisconsin Administrative Code.
- Soil borings installed in the material below the larger ash pond, where the slag pond and the WDPES lagoons (North Pond A and South Pond A) were constructed, indicated that material below the ponds was almost entirely slag material. Water leaking out of the lagoons and moving downward would encounter primarily slag, which is relatively inert, and not fly ash.
- Ash disposal in the closed landfill is primarily fly ash. For seven borings in the landfill, the percent fly ash ranged from 60 to 86 percent.
- Results for water leach testing of site-wide composite samples of fly ash and slag confirmed that the fly ash had a higher potential than slag to impact groundwater. Water leach test results for the fly ash composite sample were higher for boron, sulfate, fluoride, and pH in comparison to the slag composite sample.
- Water leach testing for individual boring samples of fly ash and/or slag also confirmed that fly ash leachate had significantly higher concentrations of boron and sulfate than slag leachate. For example, boron leach test results for seven samples from borings within the landfill, consisting mainly of fly ash, ranged from 624 to 3,370 micrograms per liter (µg/L), with most results over 2,000 µg/L. Boron leach test results for nine samples

from borings around and between the ponds, consisting mainly of slag, ranged from less than 16 to 206 $\mu g/L$.

- Water sampling within the landfill and pond area, in CCR above the native soil, documented that groundwater/leachate within the landfill had significantly higher concentrations of boron than the groundwater/leachate within the slag berms immediately adjacent to and between the Slag Pond, North/South Pond A, and Pond B.
- Groundwater monitoring results indicated that the highest concentrations of boron and sulfate were in monitoring wells downgradient from the landfill, including 18-OW and 29-OW. Elevated boron and sulfate were also reported for samples from wells 4-OW and 5-OW, located near the southwest and northwest corners of the landfill. Monitoring wells 6-OW and 7-OW, located east and southeast of the ponds, had much lower concentrations of boron and sulfate.

In the April 1994 approval letter, the WDNR approved the 1993 investigation of the WPDES lagoons/CCR impoundments and concurred with the findings of the report. The WDNR requested additional monitoring from the four new monitoring wells installed within the CCR (36-OW, 37-OW, 38R-OW, and 39R-OW) and requested the addition of fluoride and arsenic to the monitoring program for these groundwater/leachate head wells.

The results of the additional monitoring were reported to the WDNR in a Groundwater Assessment Report dated September 30, 1997. The WDNR responded to the 1997 report in a letter dated April 16, 1998, which stated, "We agree with the report's finding that the WPDES ponds [Slag Pond, North Pond A, and South Pond A] do not appear to be significantly contributing to the contaminant plume downgradient of the facility. No further remedial action concerning the influence of the ponds on the landfill is warranted at this time." The WDNR also noted that the leachable constituents migrating from the saturated portion of the closed landfill have stabilized or also decreased since the landfill's closure and capping.

4.2.2 CCR Constituents in Landfill Leachate

Past and current monitoring performed under the state monitoring program shows that boron and sulfate are present in the CCR landfill leachate. Recent groundwater and leachate monitoring results for boron and sulfate in samples from the state monitoring program wells are summarized in **Table 4** (April 2016 through October 2020). The leachate head wells monitoring conditions within the CCR landfill are 37-OW, 38R-OW, and 39R-OW, listed near the end of the table.

Boron: Boron concentrations in samples from leachate head wells 37-OW, 38R-OW, and 39R-OW have generally exceeded those reported for the CCR monitoring wells.

Sulfate: Sulfate concentrations in samples from, leachate head wells 37-OW, 38R-OW, and 39R-OW have generally exceeded those reported for the CCR monitoring wells.

Based on these results, fly ash disposal in the closed CCR landfill is a likely historical source of elevated boron and sulfate.

4.2.3 State Program Groundwater Monitoring Results

Current monitoring performed under the state monitoring program continues to show that the highest boron and sulfate concentrations are in the monitoring wells near and downgradient from the CCR landfill. State program monitoring results for the CCR Rule detection monitoring parameters that overlap with the state program are summarized in **Table 4**, and well locations are on **Figure 2**.

Consistent with the conditions observed at the time of the 1993 report, the recent groundwater monitoring results indicate that the highest concentrations of boron and sulfate are in monitoring wells downgradient from the landfill, including 40-OW (replaced former 18-OW) and 29-OW. Elevated boron and sulfate also continue to be reported for samples from wells 4R-OW (replacement well for 4-OW) and 5-OW, located near the southwest and northwest corners of the landfill. Concentrations of boron and sulfate in the CCR program monitoring wells are lower than in these state program wells, consistent with the closed CCR landfill as the primary source.

5.0 ALTERNATIVE SOURCE DEMONSTRATION CONCLUSIONS

The lines of evidence discussed above regarding the SSIs reported for boron and sulfate concentrations in downgradient monitoring wells MW-301, MW-302, and/or MW-303 demonstrate that the SSIs are likely primarily due to leachate from the closed landfill, which is not subject to the requirements of 40 CFR 257.50-107. The landfill is regulated by the WDNR under the solid waste program.

6.0 SITE GROUNDWATER MONITORING RECOMMENDATIONS

In accordance with section 257.94(e)(2) of the CCR Rule, the EDG pond site may continue with detection monitoring based on this ASD. The ASD report will be included in the 2021 Annual Report due January 31, 2022.

7.0 REFERENCES

BT², Inc., 1993, Field Investigation Report, Edgewater Closed Ash Disposal Facility, Wisconsin Power & Light Company, WDNR License #2524, June 1993.

RMT, Inc., 1997, Groundwater Assessment Report, Edgewater Closed Ash Disposal Facility, September 30, 1997.

SCS Engineers, 2016, Biennial Groundwater Monitoring Report for 2014-2015, Wisconsin Power and Light Company – Edgewater 1-4 (Closed) Ash Disposal Facility, Sheboygan, WI, License #02524, March 2016.

SCS Engineers, 2018, Alternative Source Demonstration, October 2017 Monitoring Event, Edgewater Generating Station, April 2018.

Skinner, Earl L., and Borman, Ronald G., 1973, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigation Atlas HA-432.

Tables

- 1 Groundwater Analytical Results Summary October 2020
- 2 Analytical Results CCR Ponds Detection Monitoring Program
- 3A Groundwater Elevations State Monitoring Wells
- 3B Groundwater Elevations CCR Rule Monitoring Wells
- 4 Groundwater Analytical Results Closed Landfill State Monitoring Program Wells

Table 1. Groundwater Analytical Results Summary - October 2020 Edgewater Generating Station / SCS Engineers Project #25221068.00

		Background Well		Compliance Wells				
		2R-OW	MW-301	MW-302	MW-303			
Parameter Name	UPL	10/15/2020	10/15/2020	10/15/2020	10/15/2020			
Appendix III								
Boron, µg/L	86.0	29.9	6,550	1,410	3,310			
Calcium, µg/L	200,000	124,000	114,000	124,000	132,000			
Chloride, mg/L	400	179	13.9	20.9	20.9			
Fluoride, mg/L	0.200	0.096 J	<0.48 D3, M0	1.0 J, D3	<0.48 D3			
Field pH, Std. Units	8.57	7.20	7.64	7.90	7.11			
Sulfate, mg/L	36.2	20.3	293	73.1	<2.2 D3			
Total Dissolved Solids, mg/L	1,190	806	678	182	620			

4.4 Blue shaded cell indicates the compliance well result exceeds the UPL (background) and the Limit of Quantitation (LOQ).

Abbreviations:

Lab Notes:

D3 = Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

J = Estimated concentration at or above the LOD and below the LOQ.

M0 = Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

Notes

- 1. An individual result above the UPL does not constitute an SSI above background. See the accompanying report text for identification of statistically significant results.
- 2. Interwell UPLs calculated based on results from background well 2R-OW. Interwell UPLs based on 1-of-2 retesting approach. The interwell UPLs were updated in January 2021 using data from April 2016 through October 2020.

Date: 5/1/2018
Date: 1/15/2021
Date: 1/15/2021
Date: 1/15/2021

I:\25221068.00\Deliverables\2020 Oct ASD Edg Closed\Tables\[Table 1. CCR GW Screening Summary_EDG-Oct 2020.xlsx]Current Event Table- Upd

Table 2. Analytical Results - CCR Ponds Detection Monitoring Program Edgewater Generating Station, Sheboygan, Wisconsin SCS Engineers Project #25221068.00

Well Group	Well	Collection Date	Boron (μg/L)	Sulfate (mg/L)
		4/8/2016	100	19.5
		6/20/2016	22.4	28.0
		8/9/2016	32.6	25.4
		10/20/2016	43.1	21.6
		1/24/2017	31.2	23.9
و		4/6/2017	70.6	17.6
) J		6/6/2017	45.2	17.8
gro	2R-OW	8/1/2017	35.7	28.8
Background		10/23/2017	55.9	29.3
Вс		4/2/2018	19.7	17.2
		10/1/2018	34.7	37.2
		4/8/2019	35.8	10.6
		10/7/2019	58.8	13.2
		4/8/2020	52.3	11.6
		10/15/2020	29.9	20.3
		4/11/2016	8,550	372
		6/20/2016	8,190	343
		8/9/2016	8,450	368
		10/20/2016	8,620	369
		1/23/2017	9,280	372
		4/6/2017	8,370	367
		6/6/2017	9,160	362
	MW-301	8/2/2017	8,610	340
	,,,,,	10/24/2017	8,820	341
		4/2/2018	7,950	332
		10/1/2018	8,230	318
		4/8/2019	7,310	322
		10/7/2019	7,220	312
Φ		4/8/2020	7,450	298
Compliance		10/15/2020	6,550	293
i <u>o</u>		4/8/2016	1,950	75.1
L		6/20/2016	2,010	89.6
Ŭ		8/9/2016	2,000	80.7
		10/20/2016	2,150	77.2
		1/24/2017	2,000	71.1
		4/6/2017	1,970	85.8
		6/6/2017	1,970	88.5
	h 414/ 200	8/2/2017	1,890	80.2
	MW-302	10/24/2017	1,760	72.2
		4/2/2018	1,800	72.7
		10/1/2018	1,570	59.2
		4/8/2019	1,670	71.7
		10/7/2019	1,730	55.7
		4/8/2020	1,570	65.3
		10/15/2020	1,410	73.1
L				

Table 2. Analytical Results - CCR Ponds Detection Monitoring Program Edgewater Generating Station, Sheboygan, Wisconsin SCS Engineers Project #25221068.00

Well Group	Well	Collection Date	Boron (µg/L)	Sulfate (mg/L)
		4/8/2016	4,210	3 J
		6/20/2016	3,360	11.4 J
		8/9/2016	3,860	2.4 J
		10/20/2016	3,740	5.6 J
		1/24/2017	4,210	<5
4)	0	4/6/2017	4,170	<5
nce		6/6/2017 4,570	<5	
Compliance		3,780	<5	
E D	14144 000	10/24/2017	3,480	<5
ပိ		4/2/2018	3,040	<5
		10/1/2018	2,360	<1.0
		4/8/2019	2,930	<5.0
		10/7/2019	2,830	<5.0
		4/8/2020	3,380	<2.2
		10/15/2020	3,310	<2.2 D3

Abbreviations:

μg/L = micrograms per liter or parts per billion (ppb)

mg/L = milligrams per liter or parts per million (ppm)

J = Estimated value below laboratory's limit of quantitation (LOQ)

D3 = Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

Notes:

 Complete laboratory reports included in 2017 Annual Groundwater Monitoring and Corrective Action Report, Edgewater Generating Station.

Created by:	NDK	Date:	3/2/2018
Last revision by:	RM	Date:	2/11/2021
Checked by:	NDK	Date:	3/15/2021

l:\25221068.00\Deliverables\2020 Oct ASD Edg Closed\Tables\[EDG-closed-Tables 2 and 4.xlsx]Table 2. CCR Analytical

Table 3A. Groundwater Elevations - State Monitoring Wells Edgewater 1-4 Closed Ash Disposal Facility / SCS Engineers Project #25221068.00

							(Ground W	ater Elev	ation in f	eet abov	e mean	sea level	(amsl)								
Well Number	1-OW	2R-OW	3R-OW	4R-OW	5-OW	W-5A	6AR	6R-OW	7A-OW	7-OW	18-OW	29-OW	29-A	30-OW	31-OW	32-OW	36-OW	37-OW	38R-OW	39R-OW	40-OW	SG-01
Top of Casing Elevation (feet amsl)	591.72	612.72	591.32	595.60	600.72	601.84	591.32	590.98	593.41	592.51	586.47	588.86	589.25	590.81	589.00	589.07	614.63	615.02	620.98	614.04	587.42	
Screen Length (ft)																						
Total Depth (ft from top of casing)	11.10	17.53	15.82	16.48	10.65	21.51	19.86	10.37	20.21	9.93	14.25	19.96	43.12	14.88	14.98	14.95	21.01	18.55	29.00	22.29	17.3	
Top of Well Screen Elevation (ft)	580.62	595.19	575.50	579.12	590.07	580.33	571.46	580.61	573.20	582.58	572.22	568.90	546.13	575.93	574.02	574.12	593.62	596.47	591.98	591.75		0.00
Measurement Date																						
October 24, 2012	588.11	607.82	582.64	585.24	595.63	596.69	587.42	587.40	591.71	589.56	583.49	585.16	586.60	586.40	582.58	583.63	599.77	599.42	599.38	598.05		597.60
April 18, 2012					595.89	597.13	587.33	587.35	592.35	589.79		585.32	588.39		00=100							
October 24, 2012					595.63	596.69	587.42	587.40	592.00	589.78		585.33	586.60									
April 8, 2013	588.50	609.92	588.37	586.35	596.66	597.65	588.40	587.34	592.79	589.95	583.97	585.78	588.07	588.57	584.35	584.50	600.79	600.24	600.16	598.30		597.9
October 22, 2013	584.88	601.15	580.90	584.46	594.23	595.64	582.64	584.83	591.23	587.24	NM ⁽¹⁾	584.70	586.76	582.19	580.40	580.76	599.13	598.22	598.42	596.56		598.0
April 22, 2014	588.05	609.22	587.99	586.11	595.18	597.10	587.00	587.37	589.27	589.51	NM ⁽¹⁾	585.38	588.22	587.53	583.75	583.75	NM ⁽¹⁾	599.67	599.38	598.56		597.8
October 28, 2014	586.14	607.27	586.30	585.08	595.33	596.51	587.68	586.99	591.92	589.29	NM ⁽¹⁾	585.00	587.84	585.48	582.88	582.68	600.07	599.81	599.26	598.37		595.85
April 7 - 9, 2015	587.90	608.47	587.44	585.52	595.66	596.76	586.99	587.50	591.95	588.50	ABAND	585.44	587.55	586.29	583.21	583.87	599.69	599.21	599.21	597.46	583.77	597.6
October 8, 2015	584.78	604.22	583.34	584.52	594.76	594.47	582.65	585.67	591.23	589.71	ABAND	584.69	587.27	584.26	581.60	582.52	600.29	599.47	599.70	598.09	583.01	
April 4-5, 2016	588.40	610.02	587.72	586.69	596.70	597.81	584.52	585.68	592.41	587.93	ABAND	582.95	587.25	586.91	584.35	584.47	601.05	601.37	601.18	601.13	579.28	599
October 17, 2016 ⁽²⁾	587.50	607.27	586.71	585.15	595.41	596.82	584.34	586.61	592.01	587.65	ABAND	581.25	586.10	586.23	583.02	583.83	600.87	600.70	600.74	599.49	579.42	
April 12-13, 2017	588.23	609.80	587.95	586.31	596.08	597.69	586.77	587.32	592.19	587.06	ABAND	583.74	585.43	585.36	583.68	584.52	602.01	602.11	602.08	601.29	584.02	
October 9, 2017	584.14	600.87	581.00	584.49	594.68	596.04	583.03	583.51	590.50	585.96	ABAND	583.01	584.88	582.76	580.93	581.18	600.18	598.48	599.65	598.07	583.05	
April 2, 2018	587.79	607.87	586.63	586.68	595.73	596.88	586.80	587.44	591.76	589.62	ABAND	585.51	587.11	585.68	582.95	582.85	600.71	600.00	600.04	597.99	583.64	
June 19, 2018	NM	605.70	585.49	585.20	595.41	NM	NM	NM	NM	587.20	ABAND	585.43	585.79	584.96	582.29	NM	NM (1)	600.44	600.68	599.61	583.07	NM
October 1, 2018	585.37	604.61	584.18	584.86	595.24	596.44	586.10	586.86	591.01	588.75	ABAND	585.04	584.94	584.79	582.11	582.81	600.30	600.12	600.27	599.79	583.17	<u> </u>
April 8, 2019	588.57	609.50	588.01	591.93	596.03	597.33	584.61	587.35	591.92	590.06	ABAND	585.76	586.75	587.83	584.18	584.85	600.21	599.60	599.74	598.49	583.75	
October 9-10, 2019	587.85	609.39	587.39	585.99	595.68	596.92	586.42		591.66	587.53	ABAND	585.14	585.10	587.15	583.63	584.48	599.92	600.25	600.01		583.08	
April 8-9, 2020	588.03	608.97	587.70	586.05	595.57	596.89	585.74	586.95	591.61	587.76	ABAND	584.98	587.35	587.29	583.70	584.59	599.40	599.52	599.48	599.38	583.01	
October 14-15, 2020	584.62	604.37	582.20	584.54	593.27	594.86	582.71	583.45	588.81	586.53	ABAND	583.95	586.83	583.83	582.60	582.82	ABAND	596.87	NM	594.72	583.26	NM
Bottom of Well Elevation (ft)	580.62	595.19	575.50	579.12	590.07	580.33	571.46	580.61	573.20	582.58	572.22	568.90	546.13	575.93	574.02	574.12	593.62	596.47	591.98	591.75	570.12	0.00

Notes: Created by: MDB Date: 5/6/2013

NM = not measured Last revision by: JSN Date: 10/20/2020

ABAND = abandoned Checked by: RM Date: 10/21/2020

I:\25221068.00\Deliverables\2020 Oct ASD Edg Closed\Tables\[Table 3A_Groundwater Elevation Summary - State.xls]levels

^{1:} Well broken

^{2:} Well casings at 7-OW, 7A, and 29-OW were cut down to allow the protective covers to close. 7-OW was cut down by 0.22 ft, 7A was cut down by 0.29 ft, and 29-OW was cut down by 0.17 ft. Top of casing elevations in this table were adjusted accordingly.

^{*:} Well was frozen

Table 3B. Groundwater Elevations - CCR Monitoring Wells WPL - Edgewater 1-4 (Closed) Ash Disposal Facility / SCS Engineers Project #25221068.00

Ground Water Elevation in feet above mean sea level (amsl)									
Well Number	MW-301	MW-302	MW-303	2R-OW					
Top of Casing Elevation (feet amsl)	604.42	615.15	611.99	612.72					
Revised Top of Casing Elevation (feet amsl)		606.77	603.87	-					
Screen Length (ft)	5.00	5.00	5.00	10.00					
Total Depth (ft from top of casing)	27.47	40.00	33.26	14.50					
Top of Well Screen Elevation (ft)	581.95	580.15	579.60	608.22					
Measurement Date									
April 8, 2016	599.75	596.19	589.04	609.68					
June 20, 2016	598.30	595.68	587.22	606.70					
August 9, 2016	598.00	595.53	587.72	605.74					
October 20, 2016	598.50	595.46	588.37	607.27					
January 23-24, 2017	597.10	596.30	588.84	609.64					
April 6, 2017	600.04	593.57	589.04	609.72					
June 6, 2017	598.77	595.86	588.44	607.63					
August 1, 2017	597.40	595.22	587.36	604.59					
October 24, 2017	597.20	595.25	587.97	601.74					
April 2, 2018	598.54	595.71	588.77	607.87					
October 1, 2018	597.60	595.28	588.17	604.61					
April 8, 2019	598.92	595.68	588.88	609.50					
October 7, 2019	599.56	595.58	588.77	609.39					
April 8, 2020	599.17	595.33	588.66	608.97					
June 26, 2020	597.89								
October 15, 2020	595.10	590.18	585.07	604.27					
Bottom of Well Elevation (ft)	576.95	575.15	578.73	598.22					

Notes:	Created by:	NDK	Date:	4/8/2020
NM = not measured	Last rev. by:	ZTW	Date:	1/15/2021
	Checked by:	TK	Date:	1/16/2021

I:\25221068.00\Deliverables\2020 Oct ASD Edg Closed\Tables\[Table 3B_Groundwater Elevation Summary - CCR.xls]levels

Table 4. 2016 - 2020 Groundwater Analytical Results -Closed Landfill State Monitoring Program Wells WPL - Edgewater Generating Station / SCS Project #25221068 Sheboygan, Wisconsin

Point Name	Reporting Period	Boron, dissolved (µg/L as B)	Sulfate, dissolved (mg/L as SO ₄)
Monitoring Wells	•		
2R-OW	2016-Apr	26.6	30.9
2R-OW	2016-Oct	40.4	22.9
2R-OW	2017-Apr	69.3 J	28.6
2R-OW	2017-Oct	35.2	32.9
2R-OW	2018-Apr	23.3	18.2
2R-OW	2018-Oct	41.8	35.5
2R-OW	2019-Apr	40.6	12.2
2R-OW	2019-Oct	88.5	29.3
2R-OW	2020-Apr	45.8	16.9
2R-OW	2020-Oct	29.9	21.8
3R-OW	2016-Apr	392	533
3R-OW	2016-Oct	468	372
3R-OW	2017-Apr	400	409
3R-OW	2017-Oct	389	637
3R-OW	2018-Apr	351	498
3R-OW	2018-Oct	462	495
3R-OW	2019-Apr	337	279
3R-OW	2019-Oct	454	299
3R-OW	2020-Apr	473	498
3R-OW	2020-Oct	339	654
4R-OW	2016-Apr	7,710	120
4R-OW	2016-Oct	17,300	252
4R-OW	2017-Apr	12,600	180
4R-OW	2017-Oct	15,700	178
4R-OW	2018-Apr	12,700	164
4R-OW	2018-Oct	8630	129
4R-OW	2019-Apr	10200	158
4R-OW	2019-Oct	9,200	161
4R-OW	2020-Apr	9,320	90.9
4R-OW	2020-Oct	10,200	134
5-OW	2016-Apr	4,330	215
5-OW	2016-Oct	5,970	210
5-OW	2017-Apr	5,490	258
5-OW	2017-Oct	6,040	230
5-OW	2018-Apr	3,900	143
5-OW	2018-Oct	6,180	226
5-OW	2019-Apr	4,140	197
5-OW	2019-Oct	4,680	179
5-OW	2020-Apr	4,610	199
5-OW	2020-Oct	4,870	161

Table 4. 2016 - 2020 Groundwater Analytical Results Closed Landfill State Monitoring Program Wells WPL - Edgewater Generating Station / SCS Project #25221068 Sheboygan, Wisconsin

Point Name	Reporting Period	Boron, dissolved (µg/L as B)	Sulfate, dissolved (mg/L as SO ₄)
7-OW	2016-Apr	610	255
7-OW	2016-Oct	964	251
7-OW	2017-Apr	761	259
7-OW	2017-Oct	1,130	246
7-OW	2018-Apr	818	243
7-OW	2018-Oct	1150	218
7-OW	2019-Apr	914	254
7-OW	2019-Oct	1,200	224
7-OW	2020-Apr	928	214
7-OW	2020-Oct	1,290	242
29-A	2016-Apr	357	40.9
29-A	2016-Oct	264	39.6
29-A	2017-Apr	365	41.5
29-A	2017-Oct	278	42.1
29-A	2018-Apr	264	39.4
29-A	2018-Oct	268	39.2
29-A	2019-Apr	292	44.2
29-A	2019-Oct	258	39.1
29-A	2020-Apr	268	37.5
29-A	2020-Oct	263	42.9
Monitoring Wells (cor	ntinued)		
29-OW	2016-Apr	10,600	120
29-OW	2016-Oct	10,900	85.7
29-OW	2017-Apr	9,500	77
29-OW	2017-Oct	9,060	62
29-OW	2018-Apr	8,640	102
29-OW	2018-Oct	11,000	109
29-OW	2019-Apr	10,600	190
29-OW	2019-Oct	10,800	114
29-OW	2020-Apr	9,160	69.9
29-OW	2020-Oct	8,480	73.3
30-OW	2016-Apr	79	4.8
30-OW	2016-Oct	113	4.6
30-OW	2017-Apr	176	7.5
30-OW	2017-Oct	135	16.7
30-OW	2018-Apr	94.5	21.5
30-OW	2018-Oct	115	11.4
30-OW	2019-Apr	52.1	2.4 J
30-OW	2019-Oct	84.9	5.6
30-OW	2020-Apr	54.4	2.8
30-OW	2020-Oct	118	15.2

Table 4. 2016 - 2020 Groundwater Analytical Results -Closed Landfill State Monitoring Program Wells WPL - Edgewater Generating Station / SCS Project #25221068 Sheboygan, Wisconsin

Point Name	Reporting Period	Boron, dissolved (µg/L as B)	Sulfate, dissolved (mg/L as SO ₄)
31-OW	2016-Apr	114	91.2
31-OW	2016-Oct	35	63.3
31-OW	2017-Apr	77	82.4
31-OW	2017-Oct	190	70.3
31-OW	2018-Apr	30.8	51.5
31-OW	2018-Oct	36.7	62.7
31-OW	2019-Apr	18.5	68.6
31-OW	2019-Oct	38.6	57.5
31-OW	2020-Apr	25.8	39.1
31-OW	2020-Oct	30.8	58.5
40-OW	2016-Apr	8,030	731
40-OW	2016-Oct	29,400	768
40-OW	2017-Apr	8,680	849
40-OW	2017-Oct	8,800	873
40-OW	2018-Apr	9,790	771
40-OW	2018-Oct	11,300	797
40-OW	2019-Apr	8620	636
40-OW	2019-Oct	10,600	836
40-OW	2020-Apr	10,900	836
40-OW	2020-Oct	9,870	818
Leachate Monitoring	Wells	1	
37-OW	2016-Apr	19,100	759
37-OW	2016-Oct	12,500	439
37-OW	2017-Apr	15,900	633
37-OW	2017-Oct	9,440	264
37-OW	2018-Apr	5,890	159
37-OW	2018-Oct	16,600	555
37-OW	2019-Apr	15,800	492
37-OW	2019-Oct	16,300	798
37-OW	2020-Apr	20,200	769
37-OW	2020-Oct		
38R-OW	2016-Apr	33,800	1,000
38R-OW	2016-Oct	17,100	514
38R-OW	2017-Apr	21,100	932
38R-OW	2017-Oct	10,800	364
38R-OW	2018-Apr	4,250	123
38R-OW	2018-Oct	32,400	956
38R-OW	2019-Apr	9,720	330
38R-OW	2019-Oct	30,400	1,020
38R-OW	2020-Apr	51,800	1,520
38R-OW	2020-Oct		

Table 4. 2016 - 2020 Groundwater Analytical Results Closed Landfill State Monitoring Program Wells L. Edgowater Congrating Station / SCS Project #25221

WPL - Edgewater Generating Station / SCS Project #25221068 Sheboygan, Wisconsin

Point Name	Reporting Period	Boron, dissolved (µg/L as B)	Sulfate, dissolved (mg/L as SO ₄)
Leachate Monitoring Wells (continued)			
39R-OW	2016-Apr	10,100	534
39R-OW	2016-Oct	29,900	1,390
39R-OW	2017-Apr	22,400	1,150
39R-OW	2017-Oct	32,800	1,400
39R-OW	2018-Apr	28,800	772
39R-OW	2018-Oct	24,700	1,160
39R-OW	2019-Apr	26,000	1,520
39R-OW	2019-Oct	17,100	601
39R-OW	2020-Apr	19,100	1160
39R-OW	2020-Oct	34,200	1190

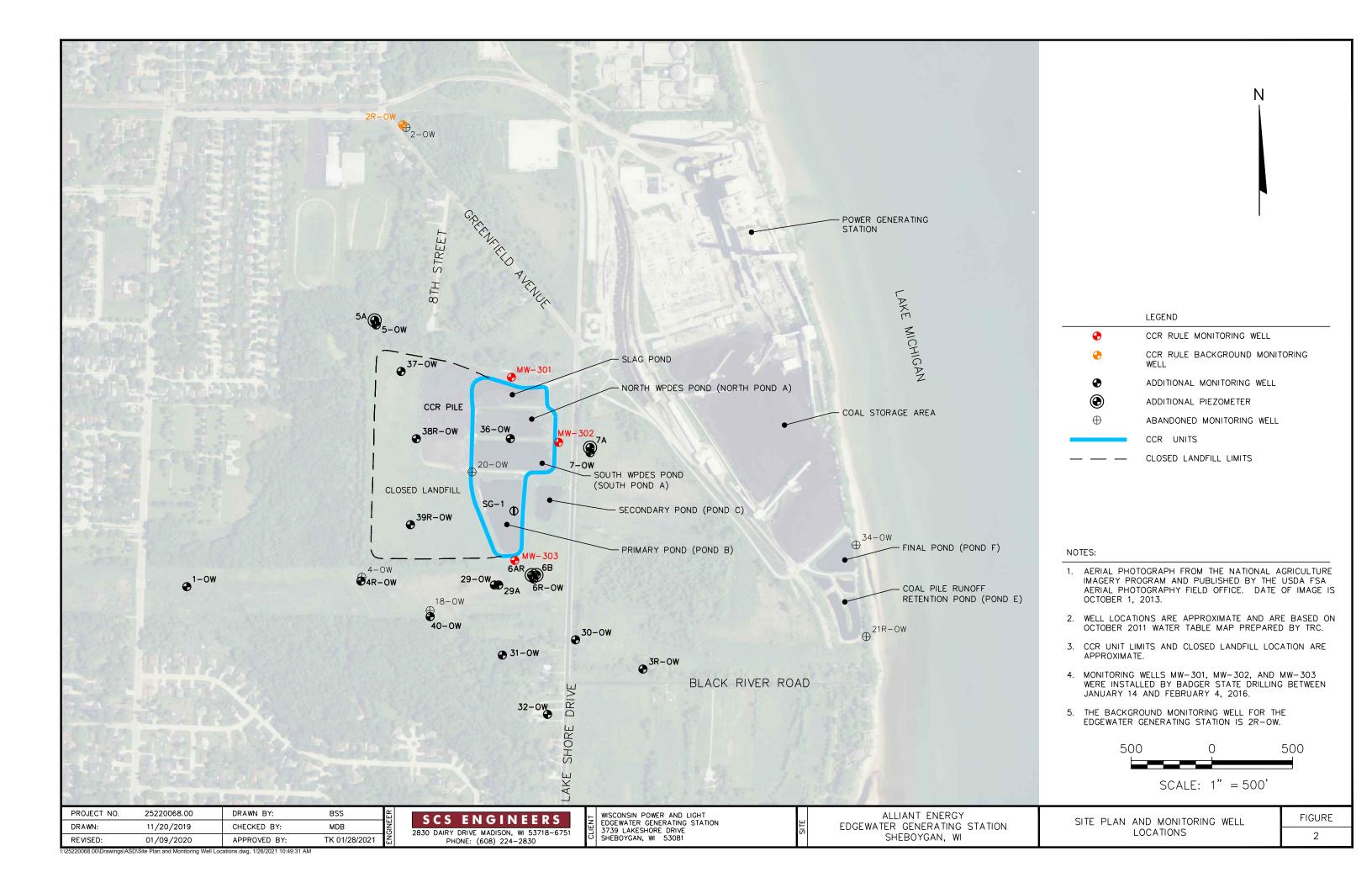
Abbreviations:

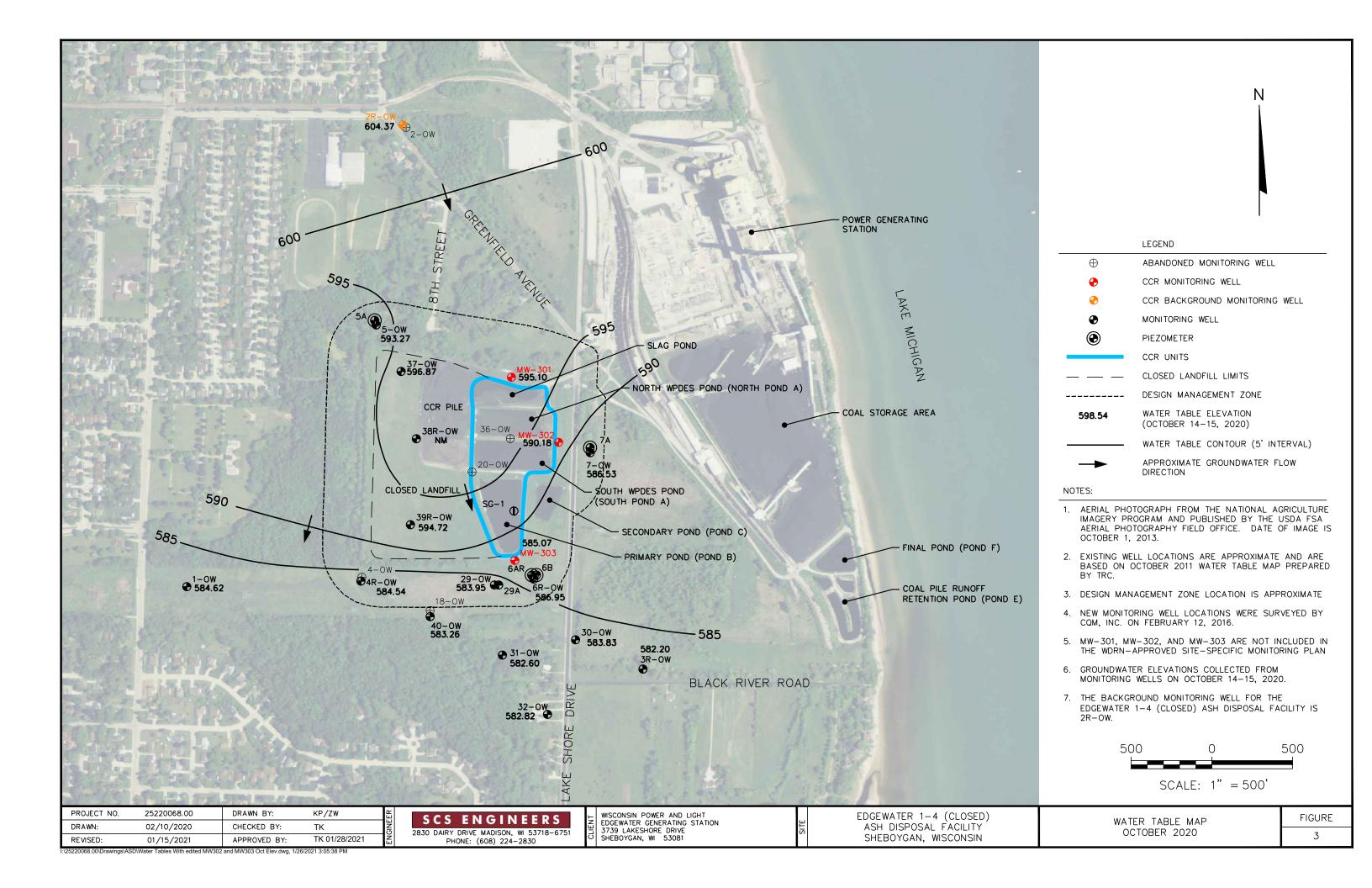
 μ g/L = micrograms per liter or parts per billic-- : not measured mg/L = milligrams per liter or parts per million (ppm)

Notes:

--: not measured Laboratory Notes:

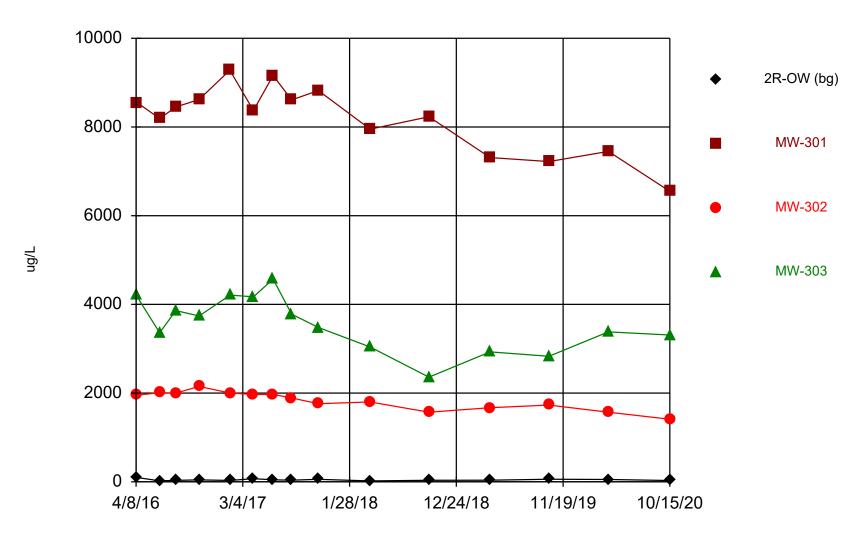
J: Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.


Created by:	SCC	Date:	2/24/2014
Last revision by:	RM	Date:	2/11/2021
Checked by:	NDK	Date:	3/15/2021

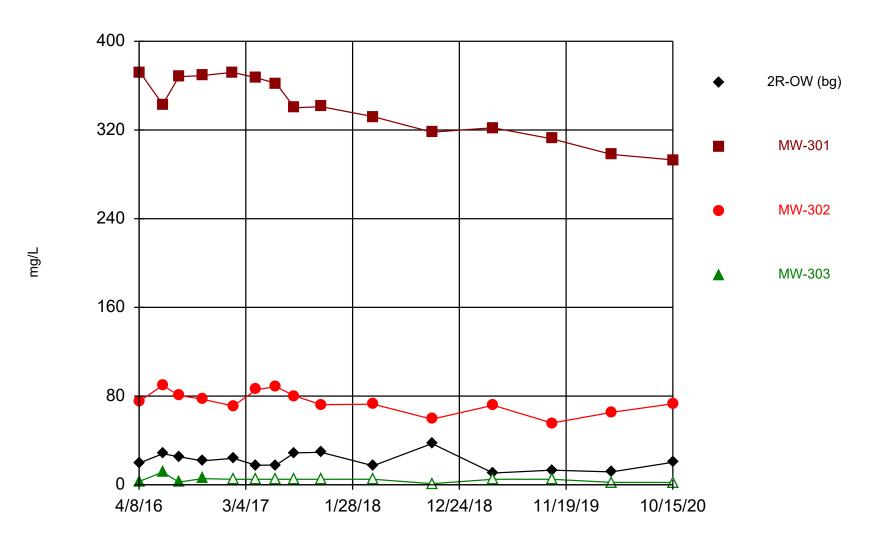

 $\label{thm:continuous} I:\25221068.00\Deliverables\2020\ Oct\ ASD\ Edg\ Closed\Tables\EDG-closed-Tables\ 2\ and\ 4.xlsx] Table\ 4.\ GW\ quality\ Data$

Figures

- 1 Site Location Map
- 2 Site Plan and Monitoring Well Locations
- 3 Water Table Map October 2020



Appendix A Trend Plots for CCR Wells


Boron

Time Series Analysis Run 2/10/2021 3:19 PM View: CCR - UPL - 2020

Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Sulfate

Time Series Analysis Run 2/10/2021 3:19 PM View: CCR - UPL - 2020 Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

F2 April 2021 ASD

Alternative Source Demonstration April 2021 Detection Monitoring

Edgewater Generating Station Sheboygan, Wisconsin

Prepared for:

SCS ENGINEERS

25221068.00 | October 13, 2021

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830

Table of Contents

Sect	ion		Page
PE C		ation	
1.0	Intro	ductionduction	1
	1.1	§257.94(E)(2) Alternative Source Demonstration Requirements	1
	1.2	Site Information and Map	1
	1.3	Statistically Significant Increases Identified	2
	1.4	Overview of Alternative Source Demonstration	2
2.0	Back	ground	2
	2.1	Regional Geology and Hydrogeology	3
	2.2	CCR Monitoring System	3
	2.3	Other Monitoring Wells	3
	2.4	Groundwater Flow Direction	3
3.0	Meth	nodology and Analysis Review	4
	3.1	Sampling and Field Analysis Review	4
	3.2	Laboratory Analysis Review	4
	3.3	Statistical Evaluation Review	5
	3.4	Summary of Methodology and Analysis Review Findings	5
4.0	Alter	native Sources	5
	4.1	Potential Causes of SSI	5
		4.1.1 Natural Variation	5
		4.1.2 Man-Made Alternative Sources	6
	4.2	Lines of Evidences	6
		4.2.1 Previous CCR Pond and Landfill Study	6
		4.2.2 CCR Constituents in Landfill Leachate	8
		4.2.3 State Program Groundwater Monitoring Results	8
5.0	Alter	native Source Demonstration Conclusions	9
6.0	Site	Groundwater Monitoring Recommendations	9
7.0	Refe	rences	9
		Tables	
Table Table Table Table Table	2 2 3A 2 3B 2 4	Groundwater Analytical Results Summary – April 2021 Historical Analytical Results for Parameters with SSIs Groundwater Elevations – State Monitoring Wells Groundwater Elevations – CCR Rule Monitoring Wells Groundwater Analytical Results – Closed Landfill State Monitoring Program Well Analytical Results – Closed Landfill Leachate Fluoride Monitoring	S

Figures

Figure 1. Site Location Map

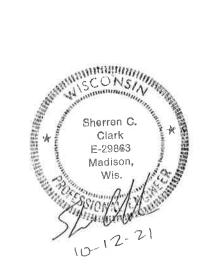

Site Plan and Monitoring Well Locations Water Table Map – April 2021 Figure 2.

Figure 3.

Appendix

Appendix A Trend Plots for CCR Wells

PE CERTIFICATION

I, Sherren Clark, hereby certify that that the information in this alternate source demonstration is accurate and meets the requirements of 40 CFR 257.94(e)(2). This certification is based on my review of the groundwater data and related site information available for the Edgewater Generating Station Ash Ponds. I am a duly licensed Professional Engineer under the laws of the State of Wisconsin.

(signature)

10-12-2021 (date)

Sherren Clark, PE

(printed or typed name)

License number E-29863

My license renewal date is July 31, 2022.

Pages or sheets covered by this seal:

Alternative Source Demonstration - April 2021 Detection

Monitoring, Edgewater Generating Station, Sheboygan Wisconsin

(Entire Document)

1.0 INTRODUCTION

This Alternative Source Demonstration (ASD) was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" published by the U.S. Environmental Protection Agency (USEPA) in the *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule,* dated April 17, 2015 (USEPA, 2015), and subsequent amendments. Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.94(e)(2). The applicable sections of the Rule are provided below in *italics*.

1.1 §257.94(E)(2) ALTERNATIVE SOURCE DEMONSTRATION REQUIREMENTS

The owner and operator may demonstrate that a source other than the CCR Unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels.

An ASD is completed when there are exceedances of one or more benchmarks established within the groundwater monitoring program. The ASD is completed to determine if any other sources are likely causes of the identified exceedance(s) of the established benchmark(s) at the site. This ASD was performed in response to results indicating a statistically significant increase (SSI) over background levels during detection monitoring under the CCR Rule.

This ASD report is evaluating the SSIs observed in the statistical evaluation of the April 2021 detection monitoring event at the Edgewater Generating Station (EDG). The first ASD was prepared for this facility evaluating the SSIs observed in the statistical evaluation of the October 2017 detection monitoring event (SCS Engineers [SCS], 2018b). The October 2017 ASD and subsequent semiannual updates have concluded that several lines of evidence demonstrate that SSIs reported for boron, fluoride, and sulfate concentrations in the downgradient monitoring wells (MW-301, MW-302, and MW-303) were likely due to leachate from the closed landfill, which is not subject to the requirements of 40 CFR 257.50-107.

As discussed in more detail in **Section 4.2** of this ASD, the findings for the April 2021 monitoring event were consistent with those for the previous events.

1.2 SITE INFORMATION AND MAP

EDG is located at 3739 Lakeshore Drive in Sheboygan, Sheboygan County, Wisconsin (**Figure 1**). EDG is an active coal-burning generating station. The EDG property includes a closed landfill and a series of CCR settling ponds, located on the opposite side of Lakeshore Drive from the plant itself (**Figure 1**). The EDG landfill is closed and no longer receives CCR. The groundwater monitoring system at EDG is a multi-unit system. EDG has four existing CCR Units which are contiguous:

- EDG Slag Pond (existing CCR surface impoundment)
- EDG North A-Pond (existing CCR surface impoundment)
- EDG South A-Pond (existing CCR surface impoundment)
- EDG B-Pond (existing CCR surface impoundment)

Closure of the four CCR surface impoundments was initiated in 2020, the cover was in place in June 2021, and the closure was certified on August 9, 2021. The existing monitoring system will be used to monitor the closure area. A map showing the CCR Units and all background (or upgradient) and downgradient monitoring wells with identification numbers for the groundwater monitoring program is provided as **Figure 2**.

The closed CCR landfill (Wisconsin Department of Natural Resources [WDNR] Permit No. 2524) is located immediately west of the former ponds location. The landfill contains primarily fly ash with some slag and was closed in 1987. Because this CCR landfill did not accept CCR after October 19, 2015, the landfill is not subject to the requirements of 40 CFR 257.50-107. The closed landfill is unlined and is known to be impacting groundwater at the site (SCS, 2016). Previous investigations done at the site (BT², Inc., 1993; RMT, 1997) concluded that the groundwater impacts downgradient of the landfill and ponds were attributable to groundwater interaction with the landfill, rather than leakage from the ponds.

1.3 STATISTICALLY SIGNIFICANT INCREASES IDENTIFIED

SSIs were identified for boron, fluoride, and sulfate at one or more wells based on the April 2021 detection monitoring event. A summary of the April 2021 constituent concentrations and the established benchmark concentrations is provided in **Table 1**. The constituent concentrations with SSIs above the background concentration are highlighted in the table.

1.4 OVERVIEW OF ALTERNATIVE SOURCE DEMONSTRATION

This ASD report includes:

- Background information (Section 2.0)
- Evaluation of potential that SSIs are due to methodology or analysis (Section 3.0)
- Evaluation of potential that SSIs are due to natural sources or man-made sources other than the CCR Units (Section 4.0)
- ASD conclusions (**Section 5.0**)
- Monitoring recommendations (**Section 6.0**)

The boron, fluoride, and sulfate results from background and compliance sampling are provided in **Table 2**. The laboratory report for the April 2021 detection monitoring event will be included in the 2021 annual groundwater monitoring and corrective action report to be submitted in January 2022. Complete laboratory reports for the background monitoring events and previous detection monitoring events were included in the previous annual groundwater monitoring and corrective action reports.

2.0 BACKGROUND

To provide context for the ASD evaluation, the following background information is provided in this section of the report, prior to the ASD evaluation sections:

- · Geologic and hydrogeologic setting
- CCR Rule monitoring system
- Other monitoring wells
- Groundwater Flow Direction

A more detailed discussion of the background information for the site is provided in the ASD for the October 2017 event (SCS, 2018).

2.1 REGIONAL GEOLOGY AND HYDROGEOLOGY

For the purposes of groundwater monitoring, the unconsolidated sand and gravel aquifer is considered to be the uppermost aquifer, as defined under 40 CFR 257.53, at the EDG ponds. The sand and gravel aquifer is present in some parts of Sheboygan County (Skinner and Borman, 1973). Boring logs from monitoring wells at the EDG ponds and for nearby private wells indicate that the unconsolidated material at, and near, the site contains a significant amount of sand. Private well logs from the surrounding area indicate that the sand and gravel aquifer has been used as a water source; however, several older sand wells in the area have been replaced with bedrock water supply wells.

The dolomite aquifer underlies the unconsolidated material at the site. The total thickness of the dolomite aquifer at the site is unknown. The dolomite aquifer is underlain by the Maquoketa shale, which is a confining unit. The Maquoketa shale is underlain by the Cambrian-Ordovician sandstone aquifer. This sequence of sedimentary bedrock units is over 1,500 feet thick in the site vicinity.

The regional groundwater flow in the unconsolidated sand and gravel aquifer in the vicinity of the site is to the east and slightly southeast.

2.2 CCR MONITORING SYSTEM

The groundwater monitoring system established under the CCR Rule consists of one upgradient (background) monitoring well and three downgradient monitoring wells, as shown on **Figure 2**. The upgradient monitoring well is 2R-OW. The downgradient monitoring wells include MW-301, MW-302, and MW-303. The CCR compliance monitoring wells were installed in the unconsolidated sediments with screens in the uppermost soil layer producing appreciable water, which was a sandy silt unit. Well depths range from approximately 14.5 to 40 feet, measured from the top of the well casing.

2.3 OTHER MONITORING WELLS

Sixteen groundwater monitoring wells currently exist at the EDG site as part of the monitoring system developed for the state monitoring program for the closed landfill. The well locations are shown on **Figure 2**. These monitoring wells are used to monitor groundwater conditions at the site under the WDNR state monitoring program.

Monitoring wells for the state monitoring program are installed in the unconsolidated material at the site. This shallow monitoring system includes water table wells and piezometers. Well depths range from approximately 9 to 43 feet, measured from the top of the well casing.

2.4 GROUNDWATER FLOW DIRECTION

Shallow groundwater in the area of the EDG site generally flows to the south-southeast, toward Fish Creek, which discharges into Lake Michigan. There is some localized groundwater mounding associated with the EDG ponds. The water table map shown on **Figure 3** represents the site conditions of the unconsolidated deposits during the April 2021 detection monitoring event. The water table map shows a generally southward flow direction, with localized groundwater mounding in the area of the EDG ponds. The groundwater elevations at the CCR and state monitoring wells during the April 2021 detection monitoring event are in **Table 3A** and **3B**. Water levels measured in

April 2021 were lower than in previous monitoring events as a result of the pond closure; however, the general flow directions were consistent with prior results.

3.0 METHODOLOGY AND ANALYSIS REVIEW

To evaluate the potential that an SSI is due to a source other than the regulated CCR Unit, SCS used a two-step evaluation process. First, the sample collection, field and laboratory analysis, and statistical evaluation were reviewed to identify any potential error or analysis that led to the exceedance of the benchmark. Second, potential alternative sources, including natural variation and man-made sources other than the CCR Unit, were evaluated. This section of the report provides the findings of the methodology and analysis review. **Section 4.0** of the report addresses the potential alternative sources.

3.1 SAMPLING AND FIELD ANALYSIS REVIEW

Field notes and sampling results were reviewed to determine if any sampling error may have caused or contributed to the observed SSIs. Potential field sampling errors or issues could include mislabeling of samples, improper sample handling, missed holding times, cross-contamination during sampling, or another field error. Field blank sample results were also reviewed for any indication of potential contamination from sampling equipment or containers. Based on the review of the field notes and results, SCS did not identify any indication that the SSI concentrations were due to a sampling error.

Because boron, fluoride, and sulfate are laboratory parameters, there is little potential for a field analysis error to contribute to an SSI.

3.2 LABORATORY ANALYSIS REVIEW

The laboratory report for the April 2021 detection monitoring was reviewed to evaluate whether any laboratory analysis error or issue may have caused or contributed to the observed SSIs for boron, fluoride, or sulfate. The laboratory report review included reviewing the laboratory quality control flags and narrative, verifying that correct methods were used and desired detection limits were achieved, and checking the field and laboratory blank sample results. Laboratory reports for the background monitoring events were reviewed for the October 2017 ASD. Laboratory reports for subsequent detection monitoring events were reviewed as part of the ASD preparation for each event.

Based on the review of the laboratory reports, SCS did not identify any indication that the SSI concentrations were due to a laboratory analysis error. There were no laboratory quality control flags or issues identified in the laboratory reports that affect the usability of the data for detection monitoring.

Time series plots of the analytical data were also reviewed for any anomalous results that might indicate a possible sampling or laboratory error (e.g., dilution error or incorrect sample labeling). Time series plots for the parameters with SSIs are provided in **Appendix A**. No indications of sampling or laboratory errors were noted based on the time series review. The April 2021 boron, fluoride, and sulfate results for MW-301, MW-302, and MW-303 are consistent with the historical data.

3.3 STATISTICAL EVALUATION REVIEW

The review of the statistical results and methods includes a quality control check of the following:

- Input analytical data vs. laboratory analytical reports
- Review statistical method and outlier concentration lists for each monitoring well/CCR Unit

Based on the review of the statistical evaluation, SCS did not identify any errors or issues in the statistical evaluation that caused or contributed to the determination of interwell SSIs for the April 2021 detection monitoring event.

3.4 SUMMARY OF METHODOLOGY AND ANALYSIS REVIEW FINDINGS

In summary, there were no changes to the SSI determinations for the April 2021 monitoring event based on the methodology and analysis review, and no errors or issues causing or contributing to the reported SSIs were identified.

4.0 ALTERNATIVE SOURCES

This section of the report discusses the potential alternative sources for the boron, fluoride, and sulfate SSIs at MW-301, MW-302, and MW-303; identifies the most likely alternative source(s); and presents the lines of evidence indicating that an alternative source is most likely the cause of the observed SSIs for boron, fluoride, and sulfate.

4.1 POTENTIAL CAUSES OF SSI

4.1.1 Natural Variation

The statistical analysis was completed using an interwell approach, comparing the April 2021 detection monitoring results to the upper prediction limits (UPLs) calculated based on the sampling of the background well (2R-OW). If concentrations of a constituent that is naturally present in the aquifer vary spatially, then the potential exists that the downgradient concentrations may be higher than upgradient concentrations due to natural variation.

Although natural variation is present in the shallow aquifer, it does not appear likely that natural variation is the primary source causing the boron and sulfate SSIs. These parameters were detected at higher concentrations than would likely be present naturally.

Natural variation may have caused or contributed to the SSI for fluoride at MW-302. Elevated natural fluoride concentrations significantly higher than those reported for the downgradient wells (above 2 milligrams per liter [mg/L]) have been observed in a region in eastern Wisconsin extending along the Lake Michigan shoreline from Kewaunee County in the north to the Illinois border in the south, as described Luczaj, J., and Masarik, K, 2015, *Groundwater Quantity and Quality Issues in a Water-Rich Region: Examples from Wisconsin, USA*. The authors note that most of the wells with elevated fluoride appear to be drawing from the Pleistocene glacial sediments and Silurian dolomite units. Skinner and Borman (1973) and Kammerer (1995) also identify the Lake Michigan shoreline area of eastern Wisconsin as having somewhat elevated fluoride concentrations in groundwater.

The fluoride concentrations reported for MW-302 for October 2017 through April 2020 and April 2021 were just above the laboratory's LOQ, ranging from 0.78 mg/L in April 2018 to 0.88 mg/L in April 2021. These results are within the range of fluoride results at MW-302 during background monitoring for the CCR rule prior to October 2017 (**Table 2**). The result at MW-302 is within the range of reported regional natural concentrations, indicating that the fluoride concentration observed in these wells is potentially due to natural variability in the glacial sediments and shallow groundwater. As discussed below, there is also a potential that fluoride in MW-302 is associated with impacts from the closed CCR landfill.

4.1.2 Man-Made Alternative Sources

Man-made alternative sources that could potentially contribute to the boron, fluoride, and sulfate SSIs could include the closed CCR landfill, the coal storage area, or other plant operations. Based on the groundwater flow directions and previous investigations at the site, the closed landfill appears to be the most likely cause of the SSIs for wells MW-301, MW-302, and MW-303.

4.2 LINES OF EVIDENCES

The lines of evidence indicating that the SSIs for boron and sulfate in compliance wells MW-301, MW-302, and MW-303, relative to the background well, are due to an alternative source include:

- 1. A previous study of the CCR ponds and the closed CCR landfill determined that the landfill was the primary source of groundwater impacts in the area, based on multiple lines of evidence.
- 2. Past and current monitoring performed under the state monitoring program shows that boron, fluoride, and sulfate are present in the CCR landfill leachate.
- 3. Past and current monitoring performed under the state monitoring program shows that the highest boron and sulfate concentrations are in the monitoring wells near and downgradient from the CCR landfill.

Lines of evidence regarding natural variability as an additional alternative source of the fluoride SSIs are discussed below in **Section 4.1.1**.

Each of these lines of evidence and the supporting data were discussed in detail in the ASD for the October 2017 detection monitoring event (SCS, 2018). The lines of evidence are discussed briefly below, focusing on any updated information collected since the previous ASDs.

4.2.1 Previous CCR Pond and Landfill Study

A previous investigation titled *Field Investigation Report: Edgewater Closed Ash Disposal Facility*, completed by BT² in 1993, found that groundwater impacts were likely due to the closed landfill (**Figure 2**) located immediately west of the ponds (BT², 1993). The purpose of the 1993 investigation was to investigate the likely impact on groundwater quality of lining or abandoning the CCR impoundments (referred to in the report as the Wisconsin Pollutant Discharge Elimination System [WPDES] lagoons). The results from the investigation indicated that the CCR impoundments were not the primary source of downgradient groundwater impacts, and that closure or lining was not warranted at that time. The WDNR concurred with that finding in a letter dated April 20, 1994.

The primary lines of evidence from the 1993 report that supported this finding, and support the ASD for boron, fluoride, and sulfate, included:

- Water samples collected from each of the ponds met the Wisconsin groundwater enforcement standards established under NR 140, Wisconsin Administrative Code.
- Soil borings installed in the material below the larger ash pond, where the slag pond and the WDPES lagoons (North Pond A and South Pond A) were constructed, indicated that material below the ponds was almost entirely slag material. Water leaking out of the lagoons and moving downward would encounter primarily slag, which is relatively inert, and not fly ash. Additionally, results for water leach testing of site-wide composite samples of fly ash and slag confirmed that the fly ash had a higher potential than slag to impact groundwater. Water leach test results for the fly ash composite sample were higher for boron, sulfate, and fluoride in comparison to the slag composite sample.
- Ash disposal in the closed landfill is primarily fly ash. For seven borings in the landfill, the percent fly ash ranged from 60 to 86 percent.
- Results for water leach testing of site-wide composite samples of fly ash and slag confirmed that the fly ash had a higher potential than slag to impact groundwater. Water leach test results for the fly ash composite sample were higher for boron and sulfate in comparison to the slag composite sample.
- Water leach testing for individual boring samples of fly ash and/or slag also confirmed that fly ash leachate had significantly higher concentrations of boron and sulfate than slag leachate. For example, boron leach test results for seven samples from borings within the landfill, consisting mainly of fly ash, ranged from 624 to 3,370 micrograms per liter (μg/L), with most results over 2,000 μg/L. Boron leach test results for nine samples from borings around and between the ponds, consisting mainly of slag, ranged from less than 16 to 206 μg/L.
- Water sampling within the landfill and pond area, in CCR above the native soil, documented that groundwater/leachate within the landfill had significantly higher concentrations of boron than the groundwater/leachate within the slag berms immediately adjacent to and between the Slag Pond, North/South Pond A, and Pond B.
- Groundwater monitoring results indicated that the highest concentrations of boron and sulfate were in monitoring wells downgradient from the landfill, including 18-0W and 29-0W. Elevated boron and sulfate were also reported for samples from wells 4-0W and 5-0W, located near the southwest and northwest corners of the landfill. Monitoring wells 6-0W and 7-0W, located east and southeast of the ponds, had much lower concentrations of boron and sulfate.

In the April 1994 approval letter, the WDNR approved the 1993 investigation of the WPDES lagoons/CCR impoundments and concurred with the findings of the report. The WDNR requested additional monitoring from the four new monitoring wells installed within the CCR (36-OW, 37-OW, 38R-OW, and 39R-OW) and requested the addition of fluoride and arsenic to the monitoring program for these groundwater/leachate head wells.

The results of the additional monitoring were reported to the WDNR in a Groundwater Assessment Report dated September 30, 1997. The WDNR responded to the 1997 report in a letter dated April 16, 1998, which stated, "We agree with the report's finding that the WPDES ponds [Slag Pond, North Pond A, and South Pond A] do not appear to be significantly contributing to the contaminant plume downgradient of the facility. No further remedial action concerning the influence of the ponds on the landfill is warranted at this time." The WDNR also noted that the leachable constituents migrating from the saturated portion of the closed landfill have stabilized or also decreased since the landfill's closure and capping.

4.2.2 CCR Constituents in Landfill Leachate

Past and current monitoring performed under the state monitoring program shows that boron and sulfate are present in the CCR landfill leachate. Recent groundwater and leachate monitoring results for boron and sulfate in samples from the state monitoring program wells are summarized in **Table 4** (April 2016 through October 2020). The leachate head wells monitoring conditions within the CCR landfill are 37-OW, 38R-OW, and 39R-OW, listed near the end of the table.

Boron: Boron concentrations in samples from leachate head wells 37-0W, 38R-0W, and 39R-0W have generally exceeded those reported for the CCR monitoring wells.

Sulfate: Sulfate concentrations in samples from, leachate head wells 37-0W, 38R-0W, and 39R-0W have generally exceeded those reported for the CCR monitoring wells.

Fluoride: Fluoride is not part of the routine state monitoring program for the closed CCR landfill, but was sampled from the leachate wells (37-OW, 38R-OW, and 39R-OW) and the pond berm well (36-OW) from 1994 to 1997, as requested by the WDNR. The fluoride concentrations ranged from 0.25 to 0.97 mg/L (**Table 5**). The fluoride concentration for the sample collected at MW-302 (0.88 mg/L) was less than the highest observed concentration at the leachate wells.

Based on these results, fly ash disposal in the closed CCR landfill is a likely historical source of elevated boron and sulfate in groundwater, and is a potential source of fluoride.

4.2.3 State Program Groundwater Monitoring Results

Current monitoring performed under the state monitoring program continues to show that the highest boron and sulfate concentrations are in the monitoring wells near and downgradient from the CCR landfill. State program monitoring results for the CCR Rule detection monitoring parameters that overlap with the state program are summarized in **Table 4**, and well locations are on **Figure 2**.

Consistent with the conditions observed at the time of the 1993 report, the recent groundwater monitoring results indicate that the highest concentrations of boron and sulfate are in monitoring wells downgradient from the landfill, including 40-OW (replaced former 18-OW) and 29-OW. Elevated boron and sulfate also continue to be reported for samples from wells 4R-OW (replacement well for 4-OW) and 5-OW, located near the southwest and northwest corners of the landfill. Concentrations of boron and sulfate in the CCR program monitoring wells are lower than in the downgradient state program wells, consistent with the closed CCR landfill as the primary source.

5.0 ALTERNATIVE SOURCE DEMONSTRATION CONCLUSIONS

The lines of evidence discussed above regarding the SSIs reported for boron, fluoride, and sulfate concentrations in downgradient monitoring wells MW-301, MW-302, and/or MW-303 demonstrate that the SSIs are likely primarily due to leachate from the closed landfill, which is not subject to the requirements of 40 CFR 257.50-107. The landfill is regulated by the WDNR under the solid waste program. Natural variation may also contribute to the SSI reported for fluoride in downgradient monitoring well MW-302.

6.0 SITE GROUNDWATER MONITORING RECOMMENDATIONS

In accordance with section 257.94(e)(2) of the CCR Rule, the EDG pond site may continue with detection monitoring based on this ASD. The ASD report will be included in the 2021 Annual Report due January 31, 2022.

7.0 REFERENCES

BT², Inc., 1993, Field Investigation Report, Edgewater Closed Ash Disposal Facility, Wisconsin Power & Light Company, WDNR License #2524, June 1993.

Krammerer, P.A. Jr., 1995, Ground-Water Flow and Quality in Wisconsin's Shallow Aquifer System, U.S. Geological Survey, Water-Resources Investigations Report 90-4171.

Luczaj, J., and Masarik, K, 2015, Groundwater Quantity and Quality Issues in a Water-Rich Region: Examples from Wisconsin, USA: Resources, 2015, 4, 323-357.

RMT, Inc., 1997, Groundwater Assessment Report, Edgewater Closed Ash Disposal Facility, September 30, 1997.

SCS Engineers, 2016, Biennial Groundwater Monitoring Report for 2014-2015, Wisconsin Power and Light Company – Edgewater 1-4 (Closed) Ash Disposal Facility, Sheboygan, WI, License #02524, March 2016.

SCS Engineers, 2018a, Alternative Source Demonstration, October 2017 Monitoring Event, Edgewater Generating Station, April 2018.

SCS Engineers, 2018b, 2017 Annual Groundwater Monitoring and Corrective Action Report, Edgewater Generating Station, January 2018.

Skinner, Earl L., and Borman, Ronald G., 1973, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigation Atlas HA-432.

U.S. Environmental Protection Agency, 2015, Hazardous and Solid Waste Management Syste; Disposal of Coal Combustion Residuals from Electric Utilities, Final Rule. April 2015.

[This page left blank intentionally]

Tables

- 1 Groundwater Analytical Results Summary April 2021
- 2 Historical Analytical Results for Parameters with SSIs
- 3A Groundwater Elevations State Monitoring Wells
- 3B Groundwater Elevations CCR Rule Monitoring Wells
- 4 Groundwater Analytical Results Closed Landfill State Monitoring Program Wells
- 5 Analytical Results Closed Landfill Leachate Fluoride Monitoring

Table 1. Groundwater Analytical Results Summary Edgewater Generating Station / SCS Engineers Project #25221068.00

		Background Well	Compliance Wells		
		2R-OW	MW-301	MW-302	MW-303
Parameter Name	UPL	4/14/2021	4/14/2021	4/14/2021	4/14/2021
Appendix III					
Boron, µg/L	86	45.7	7,200	1,550	4,600
Calcium, µg/L	200,000	154,000	118,000	81,200	176,000
Chloride, mg/L	400	116	13.5	20.6	22.5
Fluoride, mg/L	0.2	<0.095	0.25 J	0.88	<0.095
Field pH, Std. Units	8.57	7.52	7.96	8.19	7.27
Sulfate, mg/L	36	15.3	195	70.5	0.54 J
Total Dissolved Solids, mg/L	1,190	737	614	342	710

4.4 Blue shaded cell indicates the compliance well result exceeds the UPL (background) and the Limit of Quantitation (LOQ).

Abbreviations:

UPL = Upper Prediction LimitLOD = Limit of Detectionmg/L = milligrams per liter-- = Not ApplicableLOQ = Limit of Quantitation μ g/L = micrograms per liter

Lab Notes:

J = Estimated concentration at or above the LOD and below the LOQ.

Notes:

- 1. An individual result above the UPL does not constitute an SSI above background. See the accompanying report text for identification of statistically significant results.
- 2. Interwell UPLs calculated based on results from background well 2R-OW. Interwell UPLs based on 1-of-2 retesting approach. The interwell UPLs were updated in January 2021 using data from April 2016 through October 2020.

 Created by: NDK
 Date: 1/7/2021

 Last revision by: MDB
 Date: 5/12/2021

 Checked by: NDK
 Date: 5/21/2021

 Scientist/PM QA/QC: TK
 Date: 6/23/2021

Table 2. Historical Analytical Results for Parameters with SSIs Edgewater Generating Station, Sheboygan, Wisconsin SCS Engineers Project #25221068.00

Well Group	Well	Collection Date	Boron (μg/L)	Fluoride (mg/L)	Sulfate (mg/L)
		4/8/2016	100	<0.20	19.5
		6/20/2016	22.4	<0.20	28.0
		8/9/2016	32.6	<0.20	25.4
		10/20/2016	43.1	<0.10	21.6
		1/24/2017	31.2	<0.10	23.9
~		4/6/2017	70.6	<0.10	17.6
Juc		6/6/2017	45.2	<0.10	17.8
Background		8/1/2017	35.7	<0.10	28.8
, X	2R-OW	10/23/2017	55.9	<0.10	29.3
gac		4/2/2018	19.7	0.12 J	17.2
ш		10/1/2018	34.7	<0.10	37.2
		4/8/2019	35.8	<0.10	10.6
		10/7/2019	58.8	<0.10	13.2
		4/8/2020	52.3	< 0.095	11.6
		10/15/2020	29.9	<0.096 J	20.3
		4/14/2021	45.7	<0.095	15.3
		4/11/2016	8,550	0.33 J	0.33 J
		6/20/2016	8,190	0.36 J	0.36 J
		8/9/2016	8,450	0.33 J	0.33 J
		10/20/2016	8,620	0.34	0.34
		1/23/2017	9,280	0.42	0.42
		4/6/2017	8,370	0.21 J	0.21 J
		6/6/2017	9,160	<0.10	<0.10
		8/2/2017	8,610	0.32	0.32
	MW-301	10/24/2017	8,820	<0.10	<0.10
		4/2/2018	7,950	0.25 J	0.25 J
		10/1/2018	8,230	0.2 J	0.2 J
		4/8/2019	7,310	0.29 J	0.29 J
		10/7/2019	7,220	0.24 J	0.24 J
		4/8/2020	7,450	0.39 M0	0.39 MO
Φ		10/15/2020	6,550	<0.48 D3,M0	<0.48 D3,M0
Compliance		4/14/2021	7,200	0.25 J	0.25 J
plic		4/8/2016	1,950	0.83	0.83
υc		6/20/2016	2,010	1.3 J	1.3 J
Ŭ		8/9/2016	2,000	0.8	0.8
		10/20/2016	2,150	0.8	0.8
		1/24/2017	2,000	0.89 J	0.89 J
		4/6/2017	1,970	0.76	0.76
		6/6/2017	1,970	0.9	0.9
		8/2/2017	1,890	0.78	0.78
	MW-302	10/24/2017	1,760	0.84	0.84
		4/2/2018	1,800	0.78	0.78
		10/1/2018	1,570	0.81	0.81
		4/8/2019	1,670	0.87	0.87
		10/7/2019	1,730	0.85	0.85
		4/8/2020	1,570	0.97	0.97
		10/15/2020	1,410	1.0 J, D3	
		4/14/2021	1,550	0.88	

Table 2. Historical Analytical Results for Parameters with SSIs Edgewater Generating Station, Sheboygan, Wisconsin SCS Engineers Project #25221068.00

Well Group	Well	Collection Date	Boron (μg/L)	Fluoride (mg/L)	Sulfate (mg/L)
		4/8/2016	4,210	<0.20	<0.20
		6/20/2016	3,360	<1.0	<1.0
		8/9/2016	3,860	<0.20	<0.20
		10/20/2016	3,740	<0.50	< 0.50
		1/24/2017	4,210	<0.50	<0.50
		4/6/2017	4,170	<0.50	< 0.50
Φ		6/6/2017	4,570	<0.50	<0.50
Compliance		8/2/2017	3,780	<0.50	< 0.50
ild	MW-303	10/24/2017	3,480	<0.50	<0.50
Con		4/2/2018	3,040	<0.50	<0.50
O		10/1/2018	2,360	<0.10	<0.10
		4/8/2019	2,930	<0.50	<0.50
		10/7/2019	2,830	<0.50	<0.50
		4/8/2020	3,380	<0.48	<0.48
		10/15/2020	3,310	<0.48 D3,	<0.48 D3,
		4/14/2021	4,600	<0.095	<0.095

Abbreviations:

μg/L = micrograms per liter or parts per billion (ppb)

mg/L = milligrams per liter or parts per million (ppm)

J = Estimated value below laboratory's limit of quantitation (LOQ)

D3 = Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

Notes:

 Complete laboratory reports included in 2017 Annual Groundwater Monitoring and Corrective Action Report, Edgewater Generating Station.

Created by:	NDK	Date:	3/2/2018
Last revision by:	RM	Date:	7/7/2021
Checked by:	NDK	Date:	9/10/2021

 $\label{thm:linear} I:\25221068.00\Deliverables\2021\ April\ ASD\ Edg\ Closed\Tables\2\ and\ 4-Analytical\ CCR\ and\ State\ Monitoring.xlsx] Table\ 2.\ CCR\ Analytical\ CCR\ A$

Table 3A. Groundwater Elevations - State Monitoring Wells Edgewater 1-4 Closed Ash Disposal Facility / SCS Engineers Project #25221068.00

	Ground Water Elevation in feet above mean sea level (amsl)																					
Well Number	1-OW	2R-OW	3R-OW	4R-OW	5-OW	W-5A	6AR	6R-OW	7A-OW	7-OW	18-OW	29-OW	29-A	30-OW	31-OW	32-OW	36-OW	37-OW	38R-OW	39R-OW	40-OW	SG-01
Top of Casing Elevation (feet amsl)	591.72	612.72	591.32	595.60	600.72	601.84	591.32	590.98	593.41	592.51	586.47	588.86	589.25	590.81	589.00	589.07	614.63	615.02	620.98	614.04	587.42	
Screen Length (ft)																						
Total Depth (ft from top of casing)	11.10	17.53	15.82	16.48	10.65	21.51	19.86	10.37	20.21	9.93	14.25	19.96	43.12	14.88	14.98	14.95	21.01	18.55	29.00	22.29	17.3	
Top of Well Screen Elevation (ft)	580.62	595.19	575.50	579.12	590.07	580.33	571.46	580.61	573.20	582.58	572.22	568.90	546.13	575.93	574.02	574.12	593.62	596.47	591.98	591.75		0.00
Measurement Date																						
October 24, 2012	588.11	607.82	582.64	585.24	595.63	596.69	587.42	587.40	591.71	589.56	583.49	585.16	586.60	586.40	582.58	583.63	599.77	599.42	599.38	598.05		597.60
April 18, 2012					595.89	597.13	587.33	587.35	592.35	589.79		585.32	588.39									
October 24, 2012					595.63	596.69	587.42	587.40	592.00	589.78		585.33	586.60									
April 8, 2013	588.50	609.92	588.37	586.35	596.66	597.65	588.40	587.34	592.79	589.95	583.97	585.78	588.07	588.57	584.35	584.50	600.79	600.24	600.16	598.30		597.9
October 22, 2013	584.88	601.15	580.90	584.46	594.23	595.64	582.64	584.83	591.23	587.24	NM ⁽¹⁾	584.70	586.76	582.19	580.40	580.76	599.13	598.22	598.42	596.56		598.0
April 22, 2014	588.05	609.22	587.99	586.11	595.18	597.10	587.00	587.37	589.27	589.51	NM ⁽¹⁾	585.38	588.22	587.53	583.75	583.75	NM ⁽¹⁾	599.67	599.38	598.56		597.8
October 28, 2014	586.14	607.27	586.30	585.08	595.33	596.51	587.68	586.99	591.92	589.29	NM ⁽¹⁾	585.00	587.84	585.48	582.88	582.68	600.07	599.81	599.26	598.37		595.85
April 7 - 9, 2015	587.90	608.47	587.44	585.52	595.66	596.76	586.99	587.50	591.95	588.50	ABAND	585.44	587.55	586.29	583.21	583.87	599.69	599.21	599.21	597.46	583.77	597.6
October 8, 2015	584.78	604.22	583.34	584.52	594.76	594.47	582.65	585.67	591.23	589.71	ABAND	584.69	587.27	584.26	581.60	582.52	600.29	599.47	599.70	598.09	583.01	
April 4-5, 2016	588.40	610.02	587.72	586.69	596.70	597.81	584.52	585.68	592.41	587.93	ABAND	582.95	587.25	586.91	584.35	584.47	601.05	601.37	601.18	601.13	579.28	599
October 17, 2016 ⁽²⁾	587.50	607.27	586.71	585.15	595.41	596.82	584.34	586.61	592.01	587.65	ABAND	581.25	586.10	586.23	583.02	583.83	600.87	600.70	600.74	599.49	579.42	
April 12-13, 2017	588.23	609.80	587.95	586.31	596.08	597.69	586.77	587.32	592.19	587.06	ABAND	583.74	585.43	585.36	583.68	584.52	602.01	602.11	602.08	601.29	584.02	
October 9, 2017	584.14	600.87	581.00	584.49	594.68	596.04	583.03	583.51	590.50	585.96	ABAND	583.01	584.88	582.76	580.93	581.18	600.18	598.48	599.65	598.07	583.05	
April 2, 2018	587.79	607.87	586.63	586.68	595.73	596.88	586.80	587.44	591.76	589.62	ABAND	585.51	587.11	585.68	582.95	582.85	600.71	600.00	600.04	597.99	583.64	
June 19, 2018	NM	605.70	585.49	585.20	595.41	NM	NM	NM	NM	587.20	ABAND	585.43	585.79	584.96	582.29	NM	NM (1)	600.44	83.003	599.61	583.07	NM
October 1, 2018	585.37	604.61	584.18	584.86	595.24	596.44	586.10	586.86	591.01	588.75	ABAND	585.04	584.94	584.79	582.11	582.81	600.30	600.12	600.27	599.79	583.17	
April 8, 2019	588.57	609.50	588.01	591.93	596.03	597.33	584.61	587.35	591.92	590.06	ABAND	585.76	586.75	587.83	584.18	584.85	600.21	599.60	599.74	598.49	583.75	
October 9-10, 2019	587.85	609.39	587.39	585.99	595.68	596.92	586.42	587.24	591.66	587.53	ABAND	585.14	585.10	587.15	583.63	584.48	599.92	600.25	600.01	599.82	583.08	
April 8-9, 2020	588.03	608.97	587.70	586.05	595.57	596.89	585.74	586.95	591.61	587.76	ABAND	584.98	587.35	587.29	583.70	584.59	599.40	599.52	599.48	599.38	583.01	<u> </u>
October 14-15, 2020	584.62	604.37	582.20	584.54	593.27	594.86	582.71	583.45	588.81	586.53	ABAND	583.95	586.83	583.83	582.60		ABAND	596.87	NM	594.72	583.26	NM
April 14, 2021	587.95	608.50	587.64	585.42	594.87	596.13	586.53	587.29	591.28	589.89	ABAND	585.16	587.64	587.06	583.46	584.25	ABAND	DRY	596.34	593.95	583.08	NM
Bottom of Well Elevation (ft)	580.62	595.19	575.50	579.12	590.07	580.33	571.46	580.61	573.20	582.58	572.22	568.90	546.13	575.93	574.02	574.12	593.62	596.47	591.98	591.75	570.12	0.00

Notes: Created by: MDB Date: 5/6/2013

NM = not measured Last revision by: LMH Date: 4/20/2021

ABAND = abandoned Checked by: NDK Date: 4/21/2021

I:\25221068.00\Deliverables\2021 April ASD Edg Closed\Tables\[Table 3A - GW Elevations State Wells.xls]levels

^{1:} Well broken

^{2:} Well casings at 7-OW, 7A, and 29-OW were cut down to allow the protective covers to close. 7-OW was cut down by 0.22 ft, 7A was cut down by 0.29 ft, and 29-OW was cut down by 0.17 ft. Top of casing elevations in this table were adjuste *: Well was frozen

Table 3B. Groundwater Elevations - CCR Monitoring Wells
WPL - Edgewater 1-4 (Closed) Ash Disposal Facility / SCS Engineers Project #25221068.00

	Depth to Water in feet below top of well casing				
Raw Data	MW-301	MW-302	MW-303	2R-OW	
Measurement Date					
April 8, 2016	4.67	18.96	22.95	3.04	
June 20, 2016	6.12	19.47	24.77	6.02	
August 9, 2016	6.42	19.62	24.27	6.98	
October 20, 2016	5.92	19.69	23.62	5.45	
January 23-24, 2017	7.32	18.85	23.15	3.08	
April 6, 2017	4.38	21.58	22.95	3.00	
June 6, 2017	5.65	19.29	23.55	5.09	
August 1, 2017	7.02	19.93	24.63	8.13	
October 24, 2017	7.22	19.90	24.02	10.98	
April 2, 2018	5.88	19.44	23.22	4.85	
October 1, 2018	6.82	19.87	23.82	8.11	
April 8, 2019	5.50	19.47	23.11	3.22	
October 7, 2019	4.86	19.57	23.22	3.33	
June 26, 2020	6.53				
October 15, 2020	9.32	16.59	18.80	8.45	
April 14, 2021	9.25	14.59	16.98	4.22	

Ground Water El	evation in feet ab	ove mean sea lev	el (amsl)	
Well Number	MW-301	MW-302	MW-303	2R-OW
Top of Casing Elevation (feet amsl)	604.42	615.15	611.99	612.72
Screen Length (ft)	5.00	5.00	5.00	10.00
Total Depth (ft from top of casing)	27.47	40.00	33.26	14.50
Top of Well Screen Elevation (ft)	581.95	580.15	579.60	608.22
Measurement Date				
April 8, 2016	599.75	596.19	589.04	609.68
June 20, 2016	598.30	595.68	587.22	606.70
August 9, 2016	598.00	595.53	587.72	605.74
October 20, 2016	598.50	595.46	588.37	607.27
January 23-24, 2017	597.10	596.30	588.84	609.64
April 6, 2017	600.04	593.57	589.04	609.72
June 6, 2017	598.77	595.86	588.44	607.63
August 1, 2017	597.40	595.22	587.36	604.59
October 24, 2017	597.20	595.25	587.97	601.74
April 2, 2018	598.54	595.71	588.77	607.87
October 1, 2018	597.60	595.28	588.17	604.61
April 8, 2019	598.92	595.68	588.88	609.50
October 7, 2019	599.56	595.58	588.77	609.39
June 26, 2020	597.89			-
October 15, 2020	595.10	598.56	593.19	604.27
April 14, 2021	595.17	600.56	595.01	608.50
Bottom of Well Elevation (ft)	576.95	575.15	578.73	598.22

 Notes:
 Created by:
 MDB
 Date:
 6/27/2016

 NM = not measured
 Last rev. by:
 LMH
 Date:
 4/20/2021

 Checked by:
 NDK
 Date:
 4/21/2021

Point Name	Reporting Period	Boron, dissolved (µg/L as B)	Sulfate, dissolved (mg/L as SO ₄)
Monitoring Wells	•	•	
2R-OW	2016-Apr	26.6	30.9
2R-OW	2016-Oct	40.4	22.9
2R-OW	2017-Apr	69.3 J	28.6
2R-OW	2017-Oct	35.2	32.9
2R-OW	2018-Apr	23.3	18.2
2R-OW	2018-Oct	41.8	35.5
2R-OW	2019-Apr	40.6	12.2
2R-OW	2019-Oct	88.5	29.3
2R-OW	2020-Apr	45.8	16.9
2R-OW	2020-Oct	29.9	21.8
2R-OW	2021-Apr	31.1	22.7
3R-OW	2016-Apr	392	533
3R-OW	2016-Oct	468	372
3R-OW	2017-Apr	400	409
3R-OW	2017-Oct	389	637
3R-OW	2018-Apr	351	498
3R-OW	2018-Oct	462	495
3R-OW	2019-Apr	337	279
3R-OW	2019-Oct	454	299
3R-OW	2020-Apr	473	498
3R-OW	2020-Oct	339	654
3R-OW	2021-Apr	316	172
4R-OW	2016-Apr	7,710	120
4R-OW	2016-Oct	17,300	252
4R-OW	2017-Apr	12,600	180
4R-OW	2017-Oct	15,700	178
4R-OW	2018-Apr	12,700	164
4R-OW	2018-Oct	8,630	129
4R-OW	2019-Apr	10,200	158
4R-OW	2019-Oct	9,200	161
4R-OW	2020-Apr	9,320	90.9
4R-OW	2020-Oct	10,200	134
4R-OW	2021-Apr	10,800	191
5-OW	2016-Apr	4,330	215
5-OW	2016-Oct	5,970	210
5-OW	2017-Apr	5,490	258
5-OW	2017-Oct	6,040	230
5-OW	2018-Apr	3,900	143
5-OW	2018-Oct	6,180	226
5-OW	2019-Apr	4,140	197
5-OW	2019-Oct	4,680	179
5-OW	2020-Apr	4,610	199
5-OW	2020-Oct	4,870	161
5-OW	2021-Apr	2,670	111

Point Name	Reporting Period	Boron, dissolved (µg/L as B)	Sulfate, dissolved (mg/L as SO ₄)
Monitoring Wells (co	ontinued)		
7-OW	2016-Apr	610	255
7-OW	2016-Oct	964	251
7-OW	2017-Apr	761	259
7-OW	2017-Oct	1,130	246
7-OW	2018-Apr	818	243
7-OW	2018-Oct	1150	218
7-OW	2019-Apr	914	254
7-OW	2019-Oct	1,200	224
7-OW	2020-Apr	928	214
7-OW	2020-Oct	1,290	242
7-OW	2021-Apr	961	247
29-A	2016-Apr	357	40.9
29-A	2016-Oct	264	39.6
29-A	2017-Apr	365	41.5
29-A	2017-Oct	278	42.1
29-A	2018-Apr	264	39.4
29-A	2018-Oct	268	39.2
29-A	2019-Apr	292	44.2
29-A	2019-Oct	258	39.1
29-A	2020-Apr	268	37.5
29-A	2020-Oct	263	42.9
29-A	2021-Apr	262	214
29-OW	2016-Apr	10,600	120
29-OW	2016-Oct	10,900	85.7
29-OW	2017-Apr	9,500	77
29-OW	2017-Apr	9,060	62
29-OW	2017-0C1 2018-Apr	8,640	102
29-OW	2018-Oct	11,000	102
29-OW	2019-Apr	10,600	190
29-OW	2017-Apr	10,800	114
29-OW	2020-Apr	9,160	69.9
29-OW	2020-Apr	8,480	73.3
29-OW	2020-0C1 2021-Apr	7,120	66.4
30-OW	2016-Apr	79	4.8
30-OW	2016-Oct	113	4.6
30-OW	2017-Apr	176	7.5
30-OW	2017-Oct	135	16.7
30-OW	2018-Apr	94.5	21.5
30-OW	2018-Oct	115	11.4
30-OW	2019-Apr	52.1	2.4 J
30-OW	2019-Oct	84.9	5.6
30-OW	2020-Apr	54.4	2.8
30-OW	2020-Oct	118	15.2
30-OW	2021-Apr	42.3	5.5

Point Name	Reporting Period	Boron, dissolved (µg/L as B)	Sulfate, dissolved (mg/L as SO ₄)
Monitoring Wells (co	ontinued)		
31-OW	2016-Apr	114	91.2
31-OW	2016-Oct	35	63.3
31-OW	2017-Apr	77	82.4
31-OW	2017-Oct	190	70.3
31-OW	2018-Apr	30.8	51.5
31-OW	2018-Oct	36.7	62.7
31-OW	2019-Apr	18.5	68.6
31-OW	2019-Oct	38.6	57.5
31-OW	2020-Apr	25.8	39.1
31-OW	2020-Oct	30.8	58.5
31-OW	2021-Apr	51	59.5
40-OW	2016-Apr	8,030	731
40-OW	2016-Oct	29,400	768
40-OW	2017-Apr	8,680	849
40-OW	2017-Oct	8,800	873
40-OW	2018-Apr	9,790	771
40-OW	2018-Oct	11,300	797
40-OW	2019-Apr	8,620	636
40-OW	2019-Oct	10,600	836
40-OW	2020-Apr	10,900	836
40-OW	2020-Oct	9,870	818
40-OW	2021-Apr	8,010	827
Leachate Monitorin	na Wells		
37-OW	2016-Apr	19,100	759
37-OW	2016-Oct	12,500	439
37-OW	2017-Apr	15,900	633
37-OW	2017-Oct	9,440	264
37-OW	2018-Apr	5,890	159
37-OW	2018-Oct	16,600	555
37-OW	2019-Apr	15,800	492
37-OW	2019-Oct	16,300	798
37-OW	2020-Apr	20,200	769
37-OW	2020-Oct		
37-OW	2021-Apr		
38R-OW	2016-Apr	33,800	1,000
38R-OW	2016-Oct	17,100	514
38R-OW	2017-Apr	21,100	932
38R-OW	2017-Oct	10,800	364
38R-OW	2018-Apr	4,250	123
38R-OW	2018-Oct	32,400	956
38R-OW	2019-Apr	9,720	330
38R-OW	2019-Oct	30,400	1,020
38R-OW	2020-Apr	51,800	1,520
38R-OW	2020-Oct		
38R-OW	2021-Apr	37400	1380

Point Name	Reporting Period	Boron, dissolved (µg/L as B)	Sulfate, dissolved (mg/L as SO ₄)
Leachate Monitoring	Wells (continued)		
39R-OW	2016-Apr	10,100	534
39R-OW	2016-Oct	29,900	1,390
39R-OW	2017-Apr	22,400	1,150
39R-OW	2017-Oct	32,800	1,400
39R-OW	2018-Apr	28,800	772
39R-OW	2018-Oct	24,700	1,160
39R-OW	2019-Apr	26,000	1,520
39R-OW	2019-Oct	17,100	601
39R-OW	2020-Apr	19,100	1160
39R-OW	2020-Oct	34,200	1190
39R-OW	2021-Apr	24,800	1140

Abbreviations:

 μ g/L = micrograms per liter or parts per billi -- : not measured mg/L = milligrams per liter or parts per million (ppm)

Notes:

--: not measured Laboratory Notes:

J: Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

Created by:	SCC	Date:	2/24/2014
Last revision by:	RM	Date:	7/7/2021
Checked by:	NDK	Date:	9/10/2021

I:\25221068.00\Deliverables\2021 April ASD Edg Closed\Tables\[Tables 2 and 4 - Analytical CCR and State Monitoring,xlsx]Table 4. GW quality Data

Table 5. Analytical Results - Closed Landfill Leachate Fluoride Monitoring Edgewater Generating Station, Sheboygan, Wisconsin SCS Engineers Project #25221068.00

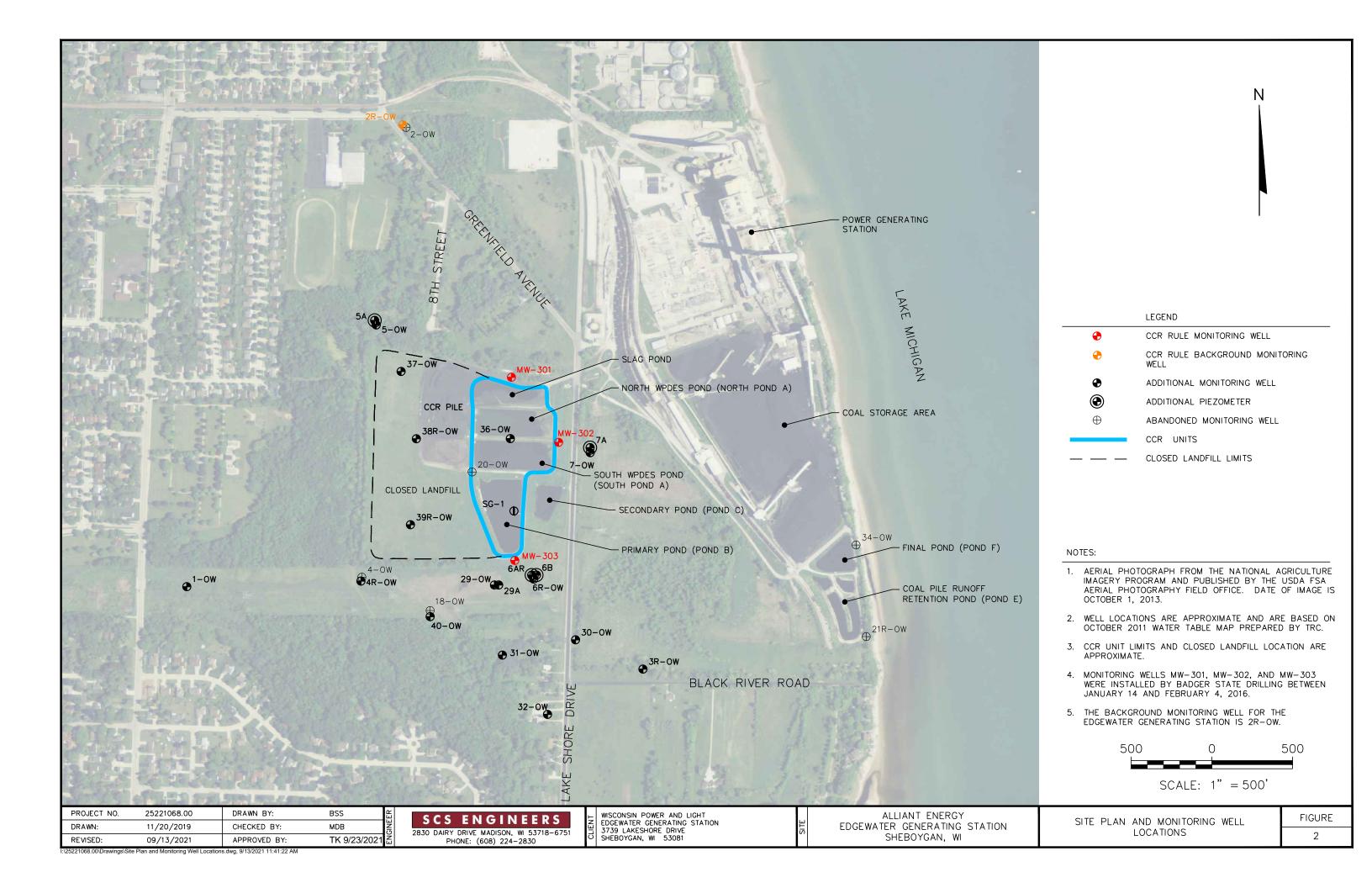
Collection Date	Fluoride (mg/L)			
Collection Date	36-OW	37-OW	38R-OW	39R-OW
9/8/1994	0.25	0.62	0.57	0.79
9/14/1995	0.38	0.51	0.71	0.87
9/17/1996	0.56	0.42	0.71	0.97
9/16/1997	0.60	0.44	0.73	0.97

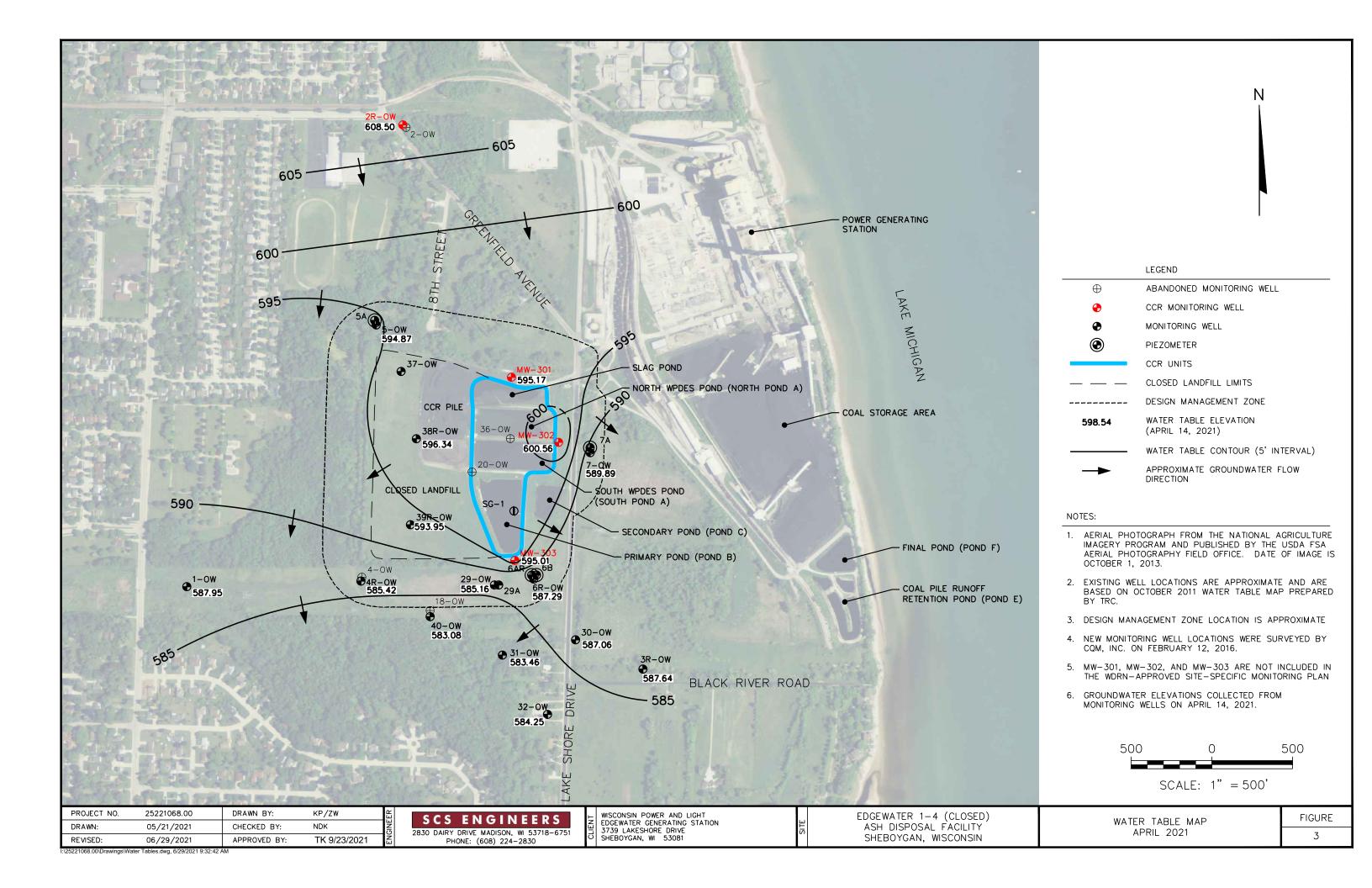
Abbreviations:

mg/L = milligrams per liter or parts per million (ppm)

Notes:

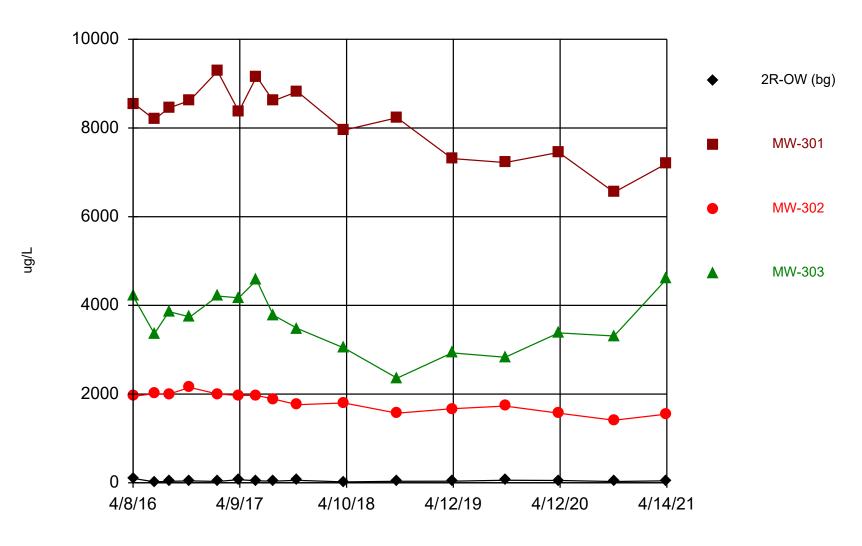
1. Data compiled from WDNR Groundwater Environmental Monitoring System (GEMS) website.


Created by:	NDK	Date:	3/5/2018
Last revision by:	NDK	Date:	3/5/2018
Checked by:	AJR	Date:	4/5/2018


I:\25221068.00\Deliverables\2021 April ASD Edg Closed\Tables\[Table 5 - EDG - closed-Leachate Floride Monitoring.xlsx]Table 5- Fl results

Figures

- 1 Site Location Map
- 2 Site Plan and Monitoring Well Locations
- 3 Water Table Map April 2021

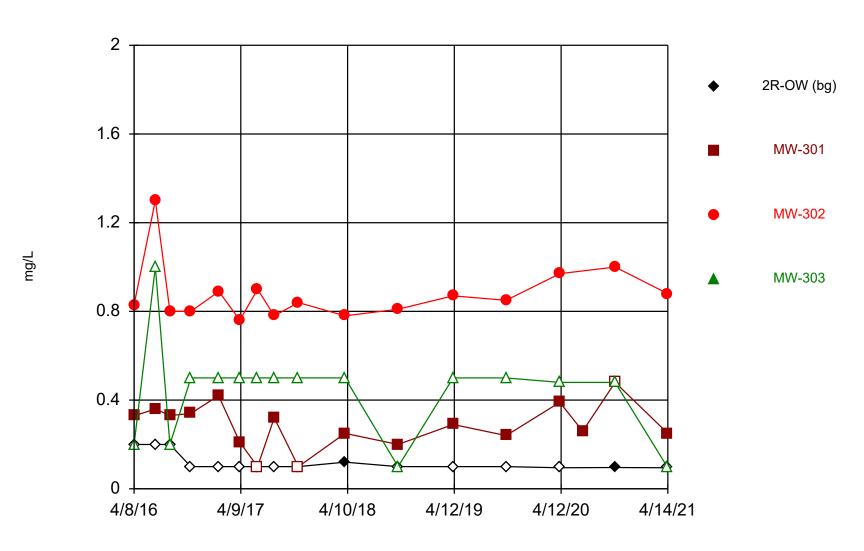


Appendix A Trend Plots for CCR Wells

Boron

Time Series Analysis Run 7/2/2021 9:39 AM View: CCR - UPL - 2020

Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020


Time Series

Constituent: Boron (ug/L) Analysis Run 7/2/2021 9:40 AM View: CCR - UPL - 2020

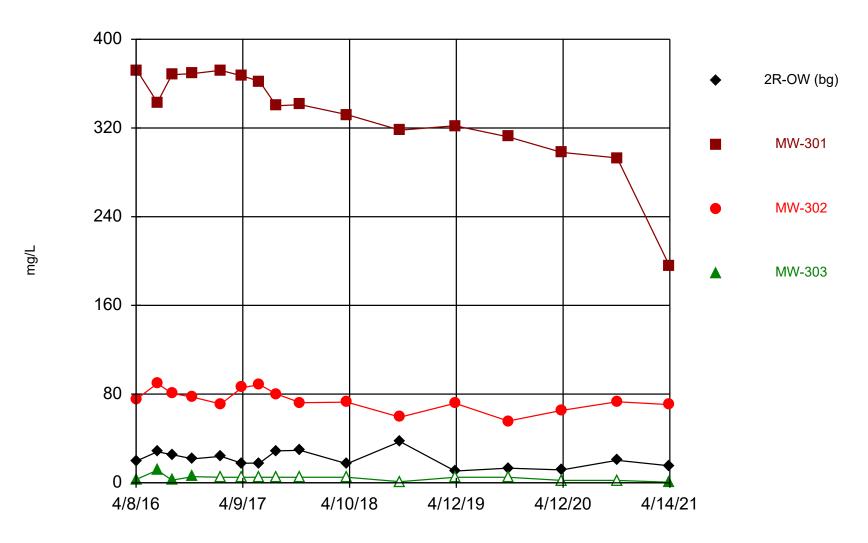
Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	100		1950	4210
4/11/2016		8550		
6/20/2016	22.4	8190	2010	3360
8/9/2016	32.6	8450	2000	3860
10/20/2016	43.1	8620	2150	3740
1/23/2017		9280		
1/24/2017	31.2		2000	4210
4/6/2017	70.6	8370	1970	4170
6/6/2017	45.2	9160	1970	4570
8/1/2017	35.7			
8/2/2017		8610	1890	3780
10/23/2017	55.9			
10/24/2017		8820	1760	3480
4/2/2018	19.7	7950	1800	3040
10/1/2018	34.7	8230	1570	2360
4/8/2019	35.8	7310	1670	2930
10/7/2019	58.8	7220	1730	2830
4/8/2020	52.3	7450	1570	3380
10/15/2020	29.9	6550	1410	3310
4/14/2021	45.7	7200	1550	4600

Fluoride

Time Series Analysis Run 7/2/2021 9:39 AM View: CCR - UPL - 2020

Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020


Time Series

Constituent: Fluoride (mg/L) Analysis Run 7/2/2021 9:40 AM View: CCR - UPL - 2020

Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	<0.2 (U)		0.83	<0.2 (U)
4/11/2016		0.33 (J)		
6/20/2016	<0.2 (U)	0.36 (J)	1.3 (J)	<1 (U)
8/9/2016	<0.2 (U)	0.33 (J)	0.8	<0.2 (U)
10/20/2016	<0.1 (U)	0.34	0.8	<0.5 (U)
1/23/2017		0.42		
1/24/2017	<0.1 (U)		0.89 (J)	<0.5 (U)
4/6/2017	<0.1 (U)	0.21 (J)	0.76	<0.5 (U)
6/6/2017	<0.1 (U)	<0.1 (U)	0.9	<0.5 (U)
8/1/2017	<0.1 (U)			
8/2/2017		0.32	0.78	<0.5 (U)
10/23/2017	<0.1 (U)			
10/24/2017		<0.1 (U)	0.84	<0.5 (U)
4/2/2018	0.12 (J)	0.25 (J)	0.78	<0.5 (U)
10/1/2018	<0.1 (U)	0.2 (J)	0.81	<0.1 (U)
4/8/2019	<0.1 (U)	0.29 (J)	0.87	<0.5 (U)
10/7/2019	<0.1 (U)	0.24 (J)	0.85	<0.5 (U)
4/8/2020	<0.095 (U)	0.39	0.97	<0.48 (U)
6/26/2020		0.26 (J)		
10/15/2020	0.096 (J)	<0.48 (U)	1 (J)	<0.48 (U)
4/14/2021	<0.095	0.25 (J)	0.88	<0.095

Sulfate

Time Series Analysis Run 7/2/2021 9:39 AM View: CCR - UPL - 2020

Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

Time Series

Constituent: Sulfate (mg/L) Analysis Run 7/2/2021 9:40 AM View: CCR - UPL - 2020

Edgewater Closed Generating Station Client: SCS Engineers Data: EDG_Clsd - Chem- export-Dec2020

	2R-OW (bg)	MW-301	MW-302	MW-303
4/8/2016	19.5		75.1	3 (J)
4/11/2016		372		
6/20/2016	28	343	89.6	11.4 (J)
8/9/2016	25.4	368	80.7	2.4 (J)
10/20/2016	21.6	369	77.2	5.6 (J)
1/23/2017		372		
1/24/2017	23.9		71.1	<5 (U)
4/6/2017	17.6	367	85.8	<5 (U)
6/6/2017	17.8	362	88.5	<5 (U)
8/1/2017	28.8			
8/2/2017		340	80.2	<5 (U)
10/23/2017	29.3			
10/24/2017		341	72.2	<5 (U)
4/2/2018	17.2	332	72.7	<5 (U)
10/1/2018	37.2	318	59.2	<1 (U)
4/8/2019	10.6	322	71.7	<5 (U)
10/7/2019	13.2	312	55.7	<5 (U)
4/8/2020	11.6	298	65.3	<2.2 (U)
10/15/2020	20.3	293	73.1	<2.2 (U)
4/14/2021	15.3	195	70.5	0.54 (J)