2019 Annual Groundwater Monitoring and Corrective Action Report

Edgewater Generating Station Sheboygan, Wisconsin

Prepared for:

25219068.00 | January 31, 2020

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830

Table of Contents

Sect	ion			Page
1.0	Intro	duction		1
2.0	§257	7.90(e)	Annual Report Requirements	1
	2.1	§257.	90(e)(1) Site Map	1
	2.2	§257.	90(e)(2) Monitoring System Changes	2
	2.3	§257.	90(e)(3) Summary of Sampling Events	2
	2.4	§257.	90(e)(4) Monitoring Transition Narrative	2
	2.5	§257.	90(e)(5) Other Requirements	2
		2.5.1	§257.90(e) General Requirements	3
		2.5.2	§257.94(d) Alternative Detection Monitoring Frequency	3
		2.5.3	§257.94(e)(2) Alternative Source Demonstration for Detection Monitoring	4
		2.5.4	§257.95(c) Alternative Assessment Monitoring Frequency	4
		2.5.5	§257.95(d)(3) Assessment Monitoring Results and Standards	4
		2.5.6	§257.95(g)(3)(ii) Alternative Source Demonstration for Assessment Monitor	ing4
		2.5.7	§257.96(a) Extension of Time for Corrective Measures Assessment	4

Table

Table 1.CCR Rule Groundwater Samples Summary

Figures

- Figure 1.Site Location Map
- Figure 2 Site Plan and Monitoring Well Locations

Appendices

- Appendix A Laboratory Reports
 - A1 April 2019 Detection Monitoring
 - A2 October 2019 Detection Monitoring
- Appendix B Alternative Source Demonstrations
 - B1 Alternative Source Demonstration, October 2018 Detection Monitoring
 - B2 Alternative Source Demonstration, April 2019 Detection Monitoring

I:\25219068.00\Deliverables\2019 Annual Report - CCR\200131_2019 Annual Groundwater Monitoring and Corrective Action Report_EGS.docx

i

[This page left blank intentionally]

1.0 INTRODUCTION

This 2019 Annual Groundwater Monitoring and Corrective Action Report was prepared to support compliance with the groundwater monitoring requirements of the Coal Combustion Residuals (CCR) Rule [40 CFR 257.50-107]. Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.90(e). The applicable sections of the Rule are provided below in italics, followed by applicable information relative to the 2019 Annual Groundwater Monitoring and Corrective Action Report for the CCR Units.

This report covers the period of groundwater monitoring from January 1, 2019 through December 31, 2019.

The groundwater monitoring system at the Edgewater Generating Station is a multiunit system. The Edgewater Generation Station has four existing CCR units which are contiguous:

- EDG Slag Pond (existing CCR surface impoundment)
- EDG North A-Pond (existing CCR surface impoundment)
- EDG South A-Pond (existing CCR surface impoundment)
- EDG B-Pond (existing surface CCR impoundment)

The system is designed to detect monitored constituents at the waste boundary of the CCR units as required by 40 CFR 257.91(d). The groundwater monitoring system consists of one upgradient and three downgradient monitoring wells.

2.0 §257.90(E) ANNUAL REPORT REQUIREMENTS

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by §257.105(h)(1). At a minimum, the annual groundwater monitoring and corrective action report is placed in the extent available:

2.1 §257.90(E)(1) SITE MAP

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

A map of the site location is provided as **Figure 1**. A map with an aerial image showing the CCR units and all background (or upgradient) and downgradient monitoring wells with identification numbers for the groundwater monitoring program is provided as **Figure 2**.

2.2 §257.90(E)(2) MONITORING SYSTEM CHANGES

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No new monitoring wells were installed, and no wells were decommissioned as part of the groundwater monitoring program for the CCR units in 2019.

2.3 §257.90(E)(3) SUMMARY OF SAMPLING EVENTS

In addition to all the monitoring data obtained under §257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

Two groundwater samples were collected from each CCR monitoring well in 2019, as part of the semiannual groundwater sampling for the detection monitoring program at Edgewater Generating Station (**Table 1**). The date of sample collection, field measurements, and the analytical results of the analytical laboratory analyses are provided in **Appendix A**.

Assessment monitoring has not been initiated for the CCR units at the Edgewater Generating Station.

2.4 §257.90(E)(4) MONITORING TRANSITION NARRATIVE

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels);

There were no transitions between monitoring programs in 2019. The Edgewater Generating Station CCR units remained in the detection monitoring program.

In 2019, the monitoring results for the October 2018 and April 2019 monitoring events were evaluated for statistically significant increases (SSIs) in detection monitoring parameters relative to background. For both events, SSIs for boron, fluoride, field pH, and sulfate were identified; however, alternative source demonstrations (ASDs) were completed, demonstrating that a source other than the CCR units was the likely cause of the observed concentrations. The ASD reports are provided in **Appendix B**.

2.5 §257.90(E)(5) OTHER REQUIREMENTS

Other information required to be included in the annual report as specified in §257.90 through 257.98.

Additional potentially applicable requirements for the annual report, and the location of the requirement within the Rule, are provided in the following sections. For each cited section of the Rule, the portion referencing the annual report requirement is provided below in italics, followed by applicable information relative to the 2019 Annual Groundwater Monitoring and Corrective Action Report for the CCR Units.

2.5.1 §257.90(e) General Requirements

For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year.

Status of Groundwater Monitoring and Corrective Action Program. The groundwater monitoring and corrective action program is currently in detection monitoring.

Summary of Key Actions Completed (2019):

- Statistical evaluation and determination of SSIs for the October 2018 and April 2019 monitoring events
- ASD reports for the SSIs identified from the October 2018 and April 2019 monitoring events
- Two semiannual groundwater sampling and analysis events (April and October 2019)

Description of Any Problems Encountered. No problems were encountered in 2019.

Discussion of Actions to Resolve the Problems. Not applicable.

Projection of Key Activities for the Upcoming Year (2020):

- Statistical evaluation and determination of any SSIs for the October 2019 and April 2020 monitoring events
- If an SSI is determined, then within 90 days either:
 - Complete alternative source demonstration (if applicable), or
 - Establish an assessment monitoring program
- Two semiannual groundwater sampling and analysis events (April and October 2020)

2.5.2 §257.94(d) Alternative Detection Monitoring Frequency

The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer in the annual groundwater monitoring and corrective action report required by §257.90(e).

Not applicable. No alternative detection monitoring frequency has been proposed.

2.5.3 §257.94(e)(2) Alternative Source Demonstration for Detection Monitoring

The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by §257.90(e), in addition to the certification by a qualified professional engineer.

The ASD reports prepared to address the SSIs observed for the October 2018 and April 2019 sampling events are provided in **Appendix B**. The ASD reports are certified by a qualified professional engineer.

2.5.4 §257.95(c) Alternative Assessment Monitoring Frequency

The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer in the annual groundwater monitoring and corrective action report required by §257.90(e).

Not applicable. Assessment monitoring has not been initiated.

2.5.5 §257.95(d)(3) Assessment Monitoring Results and Standards

Include the recorded concentrations required by paragraph (d)(1) of this section, identify the background concentrations established under §257.94(b), and identify the groundwater protection standards established under paragraph (d)(2) of this section in the annual groundwater monitoring and corrective action report required by §257.90(e).

Not applicable. Assessment monitoring has not been initiated.

2.5.6 §257.95(g)(3)(ii) Alternative Source Demonstration for Assessment Monitoring

The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by §257.90(e), in addition to the certification by a qualified professional engineer.

Not applicable. Assessment monitoring has not been initiated.

2.5.7 §257.96(a) Extension of Time for Corrective Measures Assessment

The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measure due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by §257.90(e), in addition to the certification by a qualified professional engineer.

Not applicable. Corrective measures assessment has not been initiated.

Table 1

CCR Rule Groundwater Samples Summary

Table 1. CCR Rule Groundwater Samples Summary Edgewater Generating Station / SCS Engineers Project #25219068.00

Sample Dates	Dov	Background Well		
	MW-301	MW-302	MW-303	2R-OW
4/8/2019	D	D	D	D
10/7/2019	D	D	D	D
Total Samples	2	2		

Abbreviations:

D = Required by Detection Monitoring Program

Created by:	NDK	Date: 1/4/2018
Last revision by:	LWJ	Date: 11/19/2019
Checked by:	NDK	Date: 12/24/2019

I:\25219068.00\Deliverables\2019 Annual Report - CCR\Table\[Table 1. GW Sampling Summary Table -EDG 2019.xlsx]GW Summary

Figures

- 1 Site Location Map
- 2 Site Plan and Monitoring Well Locations

:\25219068.00\Dray 19 Annual Report/Sit ing Well Locations.dwg, 1/30/2020 3:44:39 PM

LEGEND

e	CCR RULE MONITORING WELL
•	ADDITIONAL MONITORING WELL
۲	ADDITIONAL PIEZOMETER
\oplus	ABANDONED MONITORING WELL
	CCR UNITS
	CLOSED LANDFILL LIMITS

Ν

NOTES:

1.	 AERIAL PHOTOGRAPH FROM THE NATIONAL AGRICULTURE IMAGERY PROGRAM AND PUBLISHED BY THE USDA FSA AERIAL PHOTOGRAPHY FIELD OFFICE. DATE OF IMAGE IS OCTOBER 1, 2013. 								
2.	WELL LOCATIONS ARE APPROXIMATE AND ARE OCTOBER 2011 WATER TABLE MAP PREPARED	E BASED ON) BY TRC.							
3.	CCR UNIT LIMITS AND CLOSED LANDFILL LOC/ APPROXIMATE.	ATION ARE							
4.	 MONITORING WELLS MW-301, MW-302, AND MW-303 WERE INSTALLED BY BADGER STATE DRILLING BETWEEN JANUARY 14 AND FEBRUARY 4, 2016. 								
	500 0	500							
	SCALE: 1" = 500'								
ç	SITE PLAN AND MONITORING WELL FIGURE								
		Z							

Appendix A

Laboratory Reports

A1 April 2019 Detection Monitoring

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

April 25, 2019

Meghan Blodgett SCS ENGINEERS 2830 Dairy Drive Madison, WI 53718

RE: Project: 25219068.00 EDGEWATER CLOSED Pace Project No.: 40185658

Dear Meghan Blodgett:

Enclosed are the analytical results for sample(s) received by the laboratory on April 11, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Day Milent

Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: Tom Karwoski, SCS ENGINEERS Nicole Kron, SCS ENGINEERS Jeff Maxted, ALLIANT ENERGY Marc Morandi, ALLIANT ENERGY

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: 25219068.00 EDGEWATER CLOSED

Pace Project No.: 40185658

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 Virginia VELAP ID: 460263 South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: 25219068.00 EDGEWATER CLOSED

Pace Project No.: 40185658

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40185658001	MW-301	Water	04/08/19 10:50	04/11/19 10:00
40185658002	MW-302	Water	04/08/19 12:30	04/11/19 10:00
40185658003	MW-303	Water	04/08/19 11:40	04/11/19 10:00
40185658004	2R-OW	Water	04/08/19 13:55	04/11/19 10:00
40185658005	FIELD BLANK	Water	04/08/19 14:00	04/11/19 10:00

SAMPLE ANALYTE COUNT

Project: 25219068.00 EDGEWATER CLOSED

Pace Project No.: 40185658

Lab ID	Sample ID	Method	Analysts	Analytes Reported
40185658001	MW-301	EPA 6020	DS1, KXS	2
			RMW	7
		SM 2540C	ТМК	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40185658002	MW-302	EPA 6020	DS1, KXS	2
			RMW	7
		SM 2540C	TMK	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40185658003	MW-303	EPA 6020	DS1, KXS	2
			RMW	7
		SM 2540C	ТМК	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40185658004	2R-OW	EPA 6020	DS1, KXS	2
			RMW	7
		SM 2540C	TMK	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40185658005	FIELD BLANK	EPA 6020	KXS	2
		SM 2540C	TMK	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3

ANALYTICAL RESULTS

Project: 25219068.00 EDGEWATER CLOSED

Pace Project No .:

No.: 40185658

Sample: MW-301	Lab ID:	40185658001	Collected:	04/08/19	9 10:50	Received: 04/	11/19 10:00 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	tion Meth	od: EPA	3010			
Boron Calcium	7310 77500	ug/L ug/L	220 250	66.0 69.8	20 1	04/12/19 08:15 04/12/19 08:15	04/17/19 20:02 04/16/19 21:27	7440-42-8 7440-70-2	
Field Data	Analytical	Method:							
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	8.18 1022 6.2 55 32.91 598.92 9.0	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1		04/08/19 10:50 04/08/19 10:50 04/08/19 10:50 04/08/19 10:50 04/08/19 10:50 04/08/19 10:50 04/08/19 10:50	7782-44-7	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	724	mg/L	20.0	8.7	1		04/15/19 11:55		
9040 pH	Analytical	Method: EPA 9	040						
pH at 25 Degrees C	7.9	Std. Units	0.10	0.010	1		04/16/19 11:33		H6
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride Fluoride Sulfate	11.4 0.29J 322	mg/L mg/L mg/L	2.0 0.30 60.0	0.50 0.10 20.0	1 1 20		04/20/19 00:35 04/20/19 00:35 04/22/19 12:23	16887-00-6 16984-48-8 14808-79-8	
Sample: MW-302	Lab ID:	40185658002	Collected:	04/08/19	9 12:30	Received: 04/	11/19 10:00 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	tion Meth	od: EPA	3010			
Boron Calcium	1670 64800	ug/L ug/L	110 250	33.0 69.8	10 1	04/12/19 08:15 04/12/19 08:15	04/17/19 20:09 04/16/19 21:34	7440-42-8 7440-70-2	
Field Data	Analytical	Method:							
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	7.98 519 1.6 -95 59.51 595.68 11.9	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1		04/08/19 12:30 04/08/19 12:30 04/08/19 12:30 04/08/19 12:30 04/08/19 12:30 04/08/19 12:30 04/08/19 12:30	7782-44-7	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	324	mg/L	20.0	8.7	1		04/15/19 11:55		

ANALYTICAL RESULTS

Project: 25219068.00 EDGEWATER CLOSED

Pace Project No.: 40185658

Sample: MW-302	Lab ID:	40185658002	Collected:	04/08/19	9 12:30	Received: 04/	(11/19 10:00 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
9040 pH	Analytical I	Method: EPA 9	040						
pH at 25 Degrees C	7.8	Std. Units	0.10	0.010	1		04/16/19 11:42		H6
300.0 IC Anions 28 Days	Analytical I	Method: EPA 3	00.0						
Chloride Fluoride Sulfate	18.4 0.87 71.7	mg/L mg/L mg/L	2.0 0.30 15.0	0.50 0.10 5.0	1 1 5		04/20/19 00:47 04/20/19 00:47 04/22/19 12:35	16887-00-6 16984-48-8 14808-79-8	MO
Sample: MW-303	Lab ID:	40185658003	Collected:	04/08/19	9 11:40	Received: 04/	(11/19 10:00 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical I	Method: EPA 6	020 Prepara	ation Meth	od: EPA	3010			
Boron Calcium	2930 135000	ug/L ug/L	110 250	33.0 69.8	10 1	04/12/19 08:15 04/12/19 08:15	04/17/19 20:15 04/16/19 21:40	7440-42-8 7440-70-2	
Field Data	Analytical I	Method:							
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	7.15 1196 0.3 -85 61.84 588.88 10.3	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1		04/08/19 11:40 04/08/19 11:40 04/08/19 11:40 04/08/19 11:40 04/08/19 11:40 04/08/19 11:40 04/08/19 11:40	7782-44-7	
2540C Total Dissolved Solids	Analytical I	Method: SM 25	40C						
Total Dissolved Solids	668	mg/L	20.0	8.7	1		04/15/19 11:56		
9040 pH	Analytical I	Method: EPA 9	040						
pH at 25 Degrees C	6.9	Std. Units	0.10	0.010	1		04/16/19 11:44		H6
300.0 IC Anions 28 Days	Analytical I	Method: EPA 3	00.0						
Chloride Fluoride Sulfate	20.0 <0.50 <5.0	mg/L mg/L mg/L	10.0 1.5 15.0	2.5 0.50 5.0	5 5 5		04/23/19 21:35 04/23/19 21:35 04/23/19 21:35	16887-00-6 16984-48-8 14808-79-8	D3 D3
Sample: 2R-OW	Lab ID:	40185658004	Collected:	04/08/19	9 13:55	Received: 04/	(11/19 10:00 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical I	Method: EPA 6	020 Prepara	ation Meth	od: EPA	3010			
Boron Calcium	35.8 121000	ug/L ug/L	11.0 250	3.3 69.8	1 1	04/12/19 08:15 04/12/19 08:15	04/17/19 20:22 04/16/19 21:47	7440-42-8 7440-70-2	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS

Project: 25219068.00 EDGEWATER CLOSED

Pace Project No.: 40185658

Sample: 2R-OW	Lab ID:	40185658004	Collected	04/08/19	9 13:55	Received: 04/	(11/19 10:00 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
Field pH	8.57	Std. Units			1		04/08/19 13:55		
Field Specific Conductance	1077	umhos/cm			1		04/08/19 13:55		
Oxygen, Dissolved	0.6	mg/L			1		04/08/19 13:55	7782-44-7	
REDOX	75	mV			1		04/08/19 13:55		
Turbidity	8.59	NTU			1		04/08/19 13:55		
Static Water Level	609.50	feet			1		04/08/19 13:55		
Temperature, Water (C)	6.7	deg C			1		04/08/19 13:55		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	610	mg/L	20.0	8.7	1		04/15/19 11:56		
9040 pH	Analytical	Method: EPA 9	040						
pH at 25 Degrees C	7.5	Std. Units	0.10	0.010	1		04/16/19 11:49		H6
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	55.3	mg/L	2.0	0.50	1		04/23/19 22:14	16887-00-6	
Fluoride	<0.10	mg/L	0.30	0.10	1		04/23/19 22:14	16984-48-8	
Sulfate	10.6	mg/L	3.0	1.0	1		04/23/19 22:14	14808-79-8	
Sample: FIELD BLANK	Lab ID:	40185658005	Collected	04/08/19	9 14:00	Received: 04/	/11/19 10:00 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	ation Meth	od: EPA	A 3010			
Boron	<3.3	ug/L	11.0	3.3	1	04/12/19 08:15	04/15/19 13:15	7440-42-8	
Calcium	<69.8	ug/L	250	69.8	1	04/12/19 08:15	04/15/19 13:15	7440-70-2	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	14.0J	mg/L	20.0	8.7	1		04/15/19 11:56		
9040 pH	Analytical	Method: EPA 9	040						
pH at 25 Degrees C	8.1	Std. Units	0.10	0.010	1		04/16/19 11:51		H6
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	<0.50	mg/L	2.0	0.50	1		04/23/19 22:27	16887-00-6	
Fluoride	<0.10	mg/L	0.30	0.10	1		04/23/19 22:27	16984-48-8	
Sulfate	<1.0	ma/L	3.0	1.0	1		04/23/19 22:27	14808-79-8	

Project: Pace Project No :	25219068.00 EDC	GEWATER CLOSE	0									
			A			- DA 0000						
QC Batch:	318132	Analysi	is ivietnoa:	: E	EPA 6020							
QC Batch Method:	EPA 3010		Analysi	is Descript	tion: 6	6020 MET						
Associated Lab Sar	mples: 40185658	001, 40185658002	, 401856580	003, 4018	5658004, 4	40185658005	5					
METHOD BLANK:	1849562		N	latrix: Wa	ter							
Associated Lab Sar	mples: 40185658	001, 40185658002	, 401856580	003, 4018	5658004, 4	40185658005	5					
			Blank	R	eporting							
Parar	neter	Units	Result	t	Limit	Analyz	ed	Qualifiers				
Boron		ug/L		<3.3	11.(04/15/19	13:01					
Calcium		ug/L	<	69.8	250	0 04/15/19	13:01					
LABORATORY CO	NTROL SAMPLE:	1849563										
			Spike	LCS	3	LCS	% Red	C				
Parar	neter	Units	Conc.	Resu	ılt	% Rec	Limits	s Qi	ualifiers			
Boron		ug/L	500		478	96	80)-120		-		
Calcium		ug/L	5000		4900	98	80)-120				
MATRIX SPIKE & N	ATRIX SPIKE DUP	PLICATE: 184956	64		1849565							
			MS	MSD								
		40185656001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	er Un	its Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	ug	/L 68.0	500	500	557	556	98	97	75-125	0	20	
Calcium	ug	/L 89000	5000	5000	90100	91100	23	42	75-125	1	20	P6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	25219068.00 EDG	SEWATER CLOSE	D				
Pace Project No .:	40185658						
QC Batch:	318389		Analysis Me	ethod:	SM 2540C		
QC Batch Method:	SM 2540C		Analysis De	escription: 2	2540C Total Di	ssolved Solids	
Associated Lab Sam	ples: 40185658	001, 40185658002	2, 40185658003,	40185658004,	40185658005		
METHOD BLANK:	1850749		Matrix	: Water			
Associated Lab Sam	ples: 40185658	001, 40185658002	2, 40185658003,	40185658004,	40185658005		
			Blank	Reporting			
Param	eter	Units	Result	Limit	Analyze	d Qualif	iers
Total Dissolved Solid	S	mg/L	<8.7	20.0	0 04/15/19 1 [,]	1:54	
LABORATORY CON	TROL SAMPLE:	1850750					
_			Spike	LCS	LCS	% Rec	
Param	eter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Total Dissolved Solid	S	mg/L	577	588	102	80-120	
SAMPLE DUPLICAT	E: 1850751			_			
Davar	-4	Linita	40185606019	Dup	000	Max	Qualifiant
Param	eter	Units	Result	Result	RPD		
Total Dissolved Solid	S	mg/L	1010	1020	0	1	5
	E: 1850752						
CAMP LE DOI LICAT	L. 1000702		40185654001	Dup		Max	
Param	eter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Solid	s	mg/L	230	250	0	8	5 R1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	25219068.00 EDG	EWATER CLOSE	D						
Pace Project No.:	40185658								
QC Batch:	318500		Analysis Meth	iod: E	EPA 9040				
QC Batch Method:	EPA 9040		Analysis Desc	cription: 9	9040 pH				
Associated Lab San	nples: 401856580	001, 40185658002	2, 40185658003, 40	185658004, 4	40185658005				
SAMPLE DUPLICA	TE: 1851026								
			40185479001	Dup			Max		
Paran	neter	Units	Result	Result	RPD		RPD	Qualifiers	
pH at 25 Degrees C	;	Std. Units	6.8	6.8	8	0	20) H6	
SAMPLE DUPLICA	TE: 1851027								
			40185514001	Dup			Max		
Paran	neter	Units	Result	Result	RPD		RPD	Qualifiers	
pH at 25 Degrees C	;	Std. Units	7.9	8.0	0	1	20	H6	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	25219068.0	0 EDGE\	WATER CLOSED)									
Pace Project No.:	40185658												
QC Batch:	318652			Analys	sis Method:	E	PA 300.0						
QC Batch Method:	EPA 300.0)		Analys	sis Descript	tion: 30	0.0 IC Anio	ns					
Associated Lab Sar	mples: 401	8565800	1, 40185658002										
METHOD BLANK:	1851803			Ν	Matrix: Wa	ter							
Associated Lab Sar	mples: 401	8565800	1, 40185658002										
				Blank	k R	eporting							
Parar	neter		Units	Resul	t	Limit	Analyz	ed	Qualifiers	_			
Chloride			mg/L	~	<0.50	2.0	04/19/19	18:53		_			
Fluoride			mg/L	~	<0.10	0.30	04/19/19	18:53					
Sulfate			mg/L		<1.0	3.0	04/19/19	18:53					
		PIE 1	851804										
			001004	Spike	LCS	5	LCS	% Rec	;				
Parar	neter		Units	Conc.	Resu	lt	% Rec	Limits	Qu	alifiers			
Chloride			mg/L	20		20.2	101	90	-110		•		
Fluoride			mg/L	2	1	2.1	105	90	-110				
Sulfate			mg/L	20)	20.3	101	90	-110				
MATRIX SPIKE & N			CATE: 185180)5		1851806							
				MS	MSD								
			40185587001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	er	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride		mg/L	15.4	20	20	37.3	37.2	109	109	90-110	0	15	
Fluoride		mg/L	0.16J	2	2	2.4	2.4	110	111	90-110	0	15	M0
Sulfate		mg/L	27.4	20	20	48.5	50.2	106	114	90-110	3	15	MO
MATRIX SPIKE & N	ATRIX SPIK		CATE: 185180)7		1851808							
				MS	MSD								
			40185658002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	er	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride		mg/L	18.4	20	20	40.1	40.1	108	108	90-110	0	15	
Fluoride		mg/L	0.87	2	2	3.1	3.1	112	112	90-110	0	15	MO
Sulfate		mg/L	71.7	100	100	172	176	100	104	90-110	2	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

EPA 300.0

300.0 IC Anions

Project: 25219068.00 EDGEWATER CLOSED

Pace Project No.: 40185658

QC Batch: 319139 QC Batch Method: EPA 300

QC Batch Method:	EPA 3	00.0		Analysis Descriptio	n:
Associated Lab Samp	les:	40185658003,	40185658004,	40185658005	

METHOD BLANK: 1854578 Matrix: Water Associated Lab Samples: 40185658003 40185658004 40185658005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Chloride	mg/L	<0.50	2.0	04/23/19 21:08	
Fluoride	mg/L	<0.10	0.30	04/23/19 21:08	
Sulfate	mg/L	<1.0	3.0	04/23/19 21:08	

Analysis Method:

LABORATORY CONTROL SAMPLE: 1854579

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L	20	19.8	99	90-110	
Fluoride	mg/L	2	2.0	99	90-110	
Sulfate	mg/L	20	19.8	99	90-110	

MATRIX SPIKE & MATRIX SPIK		CATE: 185458	80		1854581							
			MS	MSD								
		40185658003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	20.0	100	100	121	122	101	102	90-110	1	15	
Fluoride	mg/L	<0.50	10	10	10.1	10.3	100	101	90-110	1	15	
Sulfate	mg/L	<5.0	100	100	99.8	101	100	101	90-110	1	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 25219068.00 EDGEWATER CLOSED

Pace Project No.: 40185658

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
- H6 Analysis initiated outside of the 15 minute EPA required holding time.
- M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
- P6 Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.
- R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 25219068.00 EDGEWATER CLOSED

Pace Project No.: 40185658

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40185658001	 MW-301	EPA 3010	318132	EPA 6020	318258
40185658002	MW-302	EPA 3010	318132	EPA 6020	318258
40185658003	MW-303	EPA 3010	318132	EPA 6020	318258
40185658004	2R-OW	EPA 3010	318132	EPA 6020	318258
40185658005	FIELD BLANK	EPA 3010	318132	EPA 6020	318258
40185658001	MW-301				
40185658002	MW-302				
40185658003	MW-303				
40185658004	2R-OW				
40185658001	MW-301	SM 2540C	318389		
40185658002	MW-302	SM 2540C	318389		
40185658003	MW-303	SM 2540C	318389		
40185658004	2R-OW	SM 2540C	318389		
40185658005	FIELD BLANK	SM 2540C	318389		
40185658001	MW-301	EPA 9040	318500		
40185658002	MW-302	EPA 9040	318500		
40185658003	MW-303	EPA 9040	318500		
40185658004	2R-OW	EPA 9040	318500		
40185658005	FIELD BLANK	EPA 9040	318500		
40185658001	MW-301	EPA 300.0	318652		
40185658002	MW-302	EPA 300.0	318652		
40185658003	MW-303	EPA 300.0	319139		
40185658004	2R-OW	EPA 300.0	319139		
40185658005	FIELD BLANK	EPA 300.0	319139		

MA ST
an Jan
×
1
TDS
2 5
HOE
DOTAR-Harrowyce
-607-1700
IDWEST RI

9a(27Jun2006)

ORIGINAL

5U 100 325 500 33U 250	G1U 1 lit G1H 1 lit G4S 125	Exceptions	020	019	018	017	016	015	014	013	012	011	010	600	800	007	006	005	004	003	002	001	ੇਛੇ ਕੋਟ ₩ AG1U		1	Allo
	eram eram mlar	s to pre														\square				Ī			AG1H			ontain
nber g nber g nber gla	bergi bergi nberg	eserva																					AG4S			ers ne
çlass u çlass u çlass H	ass ass HC glass H glass H	tion c																					AG4U ag			eding
Inpres 12SO4		heck:																				Γ	AG5U			prese
- 0, 0	<i>"</i> +	VOA																					AG2S			Prvatic
		Colif																	i 19 19-19 19-19				BG3U			on hav
BP BP 5	BP BP	orm, 1																			1414) 1613		BP1U			e bee
S Z S S		ЮС, -																					BP2N			
250 n 250 n 250 n	1 lite 500 n 500 n	TOX,																					BP2Z	and a second second	Lab I	cked
nt pla nt pla	r plast nL pla nL pla	TOH,					1.1											Q	ý	8	Y	Y	BP3U ast		-o# o	and n
stic N stic N stic H	tic unj stic H stic N	0&G,																			49439 		BP3C		fpHp	oted b
aOH NO3 NO3	nos NOS aOH,	¥ ₪																-		F			BP3N		aper	elow:
	Znact	RO, F																					BP3S		R	Nes
		henol																					DG9A		W	oNo No
		ics, O																					DG9T		Ø	-NN
i9M	397 391 391	ther:																					VG9U <		Lat	-
40 m	4040 1011															Γ							VG9H) Std ≠	
IL clea	iL amt iL amt iL clea																						VG9M		변이	
r vial r vial	oer as oer Na Ir vial	Head																					VG9D		prese	
DI DI	corbic h Thio unpre	Ispace					an an a'																JGFU		rvatio	
<u>ـ</u>	S V	e in √																					WGFU គ្ន		n (if p	
		OA Vi																					WPFU		H adju	
N S	555	als (>(SP5T റ	1	isted)	
PIC	PFC GFC	ômm)																								I
120 ziplo	4 oz 4 oz 4 oz	: □Ye					an da la constante Marine da																GN <u>si</u>			
mL pl	amb clear plast	s ¤No																					VOA Vials (>6r	nm) *	1	
astic I	er jar u jar un ic jar u	AVIA					antre da Parte da			eniani.													H2SO4 pH ≤2			
Va Thi	unpres Inpres	, *If ye					an chu																NaOH+Zn Act p	H ≥9	com	Initia
osulfa	<i>v, v,</i>	is loo																					NaOH pH ≥12		pleted	whe
īte		k in he																X	X	X	X	X	HNO3 pH ≤2	Second Second Second	14	2
		}adspac								_										0			pH after adjuste			
]		e col	2.	2	2.	2.	2.	2.	2	2.	2.	2.	2.	2.	2.	2.	2.	2.	2.	2.	2.	2.				٤
		umn	5/5/10	5/5/10	5/5/10	5/5/10	5/5/10	5/5/10	5/5/10	5/5/10	5/5/10	5/5/10	5/5/10	5/5/10	5/5/10	5/5/10	5/5/10	5/5/10	5/5/10	5/5/10	5/5/10	.5/5/10	Volume (mL)			

:-GB-C-046-Rev.02 (29Mar2018) Sample Preservation Receipt Form

133

Pace Analytical"	LOC Sample Condit		Document Revised: 25Apr2018
Acc Analytical		cument No	lequing Authority
1241 Bellevue Street, Green Bay, WI 5430	2 F-GB	-C-031-Rev.07	Pace Green Bay Quality Office
Sample	Condition Un	on Receipt Form (S	
Client Name:	Inginee	rs Project #:1	0#:40185658
Courier: CS Logistics Fed Ex Speed		Valtco	
Client Face Other		401	85658
Tracking #:			
Custody Seal on Cooler/Box Present: yes	no Seals intac	t: Yes no	
Packing Material:	no Seals intac	t: Tyes Tno	
Thermometer Used SR - MA		e Cother	
Cooler Temperature Uncorr: ROT_/Corr:	Type of ice.	Blue Dry None	Samples on ice, cooling process has begun
Temp Blank Present: ves Kno	Biological	Tissue is Frozen: 🔽 ves	no Person examining contents:
Temp should be above freezing to 6° C. Biota Samples may be received at $\leq 0^{\circ}$ C.			Date:
Chain of Custody Present:		1.	
Chain of Custody Filled Out:		2No sest. Mail	4-11-19
Chain of Custody Relinquished:		3.	
Sampler Name & Signature on COC:		4.	
Samples Arrived within Hold Time:	Yes DNo	5.	
- VOA Samples frozen upon receipt	∕ □Yes □No	Date/Time:	
Short Hold Time Analysis (<72hr):	Yes □No	6.	
Rush Turn Around Time Requested:		7.	
Sufficient Volume:		8.	
For Analysis: Dyes □No MS/MSD:			
Correct Containers Used:	Yes INO	9.	
-Pace Containers Used:	Yes □No □N/A		
-Pace IR Containers Used:			
Containers Intact:	Yes INO	10.	
Filtered volume received for Dissolved tests		11.	
Sample Labels match COC:		12.	
-Includes date/time/ID/Analysis Matrix:	$\overline{\mathcal{W}}$		
Trip Blank Present:		13.	
Trip Blank Custody Seals Present			
Pace Trip Blank Lot # (if purchased):			
Person Contacted	Date	If checked,	see attached form for additional comments
Comments/ Resolution:	Date/		
Project Manager Review:	lfor Dn	~	Date: <u> </u>
	3		Page 17 of <u>17</u>

A2 October 2019 Detection Monitoring

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

October 23, 2019

Meghan Blodgett SCS ENGINEERS 2830 Dairy Drive Madison, WI 53718

RE: Project: 25216068 ALLIANT EDGE 1-4 CCR Pace Project No.: 40196734

Dear Meghan Blodgett:

Enclosed are the analytical results for sample(s) received by the laboratory on October 08, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Day Milent

Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: Tom Karwoski, SCS ENGINEERS Nicole Kron, SCS ENGINEERS Jeff Maxted, ALLIANT ENERGY Marc Morandi, ALLIANT ENERGY

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: 25216068 ALLIANT EDGE 1-4 CCR

Pace Project No.: 40196734

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 Virginia VELAP ID: 460263 South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: 25216068 ALLIANT EDGE 1-4 CCR

Pace Project No.: 40196734

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40196734001	MW-301	Water	10/07/19 12:20	10/08/19 09:45
40196734002	MW-302	Water	10/07/19 14:25	10/08/19 09:45
40196734003	MW-303	Water	10/07/19 13:20	10/08/19 09:45
40196734004	2R-OW	Water	10/07/19 11:05	10/08/19 09:45
40196734005	FIELD BLANK	Water	10/07/19 00:00	10/08/19 09:45

SAMPLE ANALYTE COUNT

Project: 25216068 ALLIANT EDGE 1-4 CCR

Pace Project No.: 40196734

Lab ID	Sample ID	Method	Analysts	Analytes Reported
40196734001		EPA 6020	DS1	2
			AXL	7
		SM 2540C	ТМК	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40196734002	MW-302	EPA 6020	DS1	2
			AXL	7
		SM 2540C	ТМК	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40196734003	MW-303	EPA 6020	DS1	2
40196734003 MW-			AXL	7
		SM 2540C	ТМК	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40196734004	2R-OW	EPA 6020	DS1	2
			AXL	6
		SM 2540C	ТМК	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40196734005	FIELD BLANK	EPA 6020	DS1	2
		SM 2540C	ТМК	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3

ANALYTICAL RESULTS

Project: 25216068 ALLIANT EDGE 1-4 CCR

Pace Project No.:

lo.: 40196734

Sample: MW-301	Lab ID:	40196734001	Collected	: 10/07/1	9 12:20	Received: 10/	08/19 09:45 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	ation Meth	od: EPA	3010			
Boron Calcium	7220 87600	ug/L ug/L	200 2540	60.6 762	20 10	10/11/19 07:55 10/11/19 07:55	10/17/19 13:37 10/15/19 08:34	7440-42-8 7440-70-2	P6 P6
Field Data	Analytical	Method:							
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C) 2540C Total Dissolved Solids Total Dissolved Solids 9040 pH pH at 25 Degrees C 300.0 IC Anions Chloride	7.56 1052 2.7 146 79.44 599.56 12.2 Analytical 694 Analytical 7.8 Analytical	Std. Units umhos/cm mg/L mV NTU feet deg C Method: SM 25 mg/L Method: EPA 9 Std. Units Method: EPA 3 mg/l	540C 20.0 040 0.10 00.0 2 0	8.7 0.010	1 1 1 1 1 1 1		10/07/19 12:20 10/07/19 12:20 10/07/19 12:20 10/07/19 12:20 10/07/19 12:20 10/07/19 12:20 10/07/19 12:20 10/10/19 17:09 10/15/19 11:27	16887-00-6	H6
Fluoride Sulfate	0.24J 312	mg/L mg/L mg/L	0.30 30.0	0.10 10.0	1 10		10/16/19 17:24 10/16/19 17:24 10/17/19 11:21	16984-48-8 14808-79-8	
Sample: MW-302	Lab ID:	40196734002	Collected	: 10/07/1	9 14:25	Received: 10/	08/19 09:45 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	ation Meth	od: EPA	3010			
Boron Calcium	1730 67500	ug/L ug/L	10.0 254	3.0 76.2	1 1	10/11/19 07:55 10/11/19 07:55	10/15/19 09:36 10/15/19 09:36	7440-42-8 7440-70-2	
Field Data	Analytical	Method:							
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	7.86 487 1.3 124 32.69 595.58 13.5	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1 1		10/07/19 14:25 10/07/19 14:25 10/07/19 14:25 10/07/19 14:25 10/07/19 14:25 10/07/19 14:25 10/07/19 14:25	7782-44-7	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	290	mg/L	20.0	8.7	1		10/10/19 17:09		

ANALYTICAL RESULTS

Project: 25216068 ALLIANT EDGE 1-4 CCR

Pace Project No.: 40196734

Sample: MW-302	Lab ID: 4	40196734002	Collected:	10/07/19	9 14:25	Received: 10/	08/19 09:45 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
9040 pH	Analytical N	/lethod: EPA 9	040						
pH at 25 Degrees C	7.6	Std. Units	0.10	0.010	1		10/15/19 11:20		H6
300.0 IC Anions	Analytical M	/lethod: EPA 3	00.0						
Chloride Fluoride Sulfate	17.8 0.85 55.7	mg/L mg/L mg/L	2.0 0.30 3.0	0.50 0.10 1.0	1 1 1		10/16/19 17:38 10/16/19 17:38 10/16/19 17:38	16887-00-6 16984-48-8 14808-79-8	
Sample: MW-303	Lab ID: 4	40196734003	Collected:	10/07/19	9 13:20	Received: 10/	08/19 09:45 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical N	/lethod: EPA 6	020 Prepara	tion Meth	od: EPA	3010			
Boron Calcium	2830 136000	ug/L ug/L	10.0 254	3.0 76.2	1 1	10/11/19 07:55 10/11/19 07:55	10/15/19 09:50 10/15/19 09:50	7440-42-8 7440-70-2	
Field Data	Analytical M	/lethod:							
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	6.90 1127 0.2 122 94.01 588.77 11.8	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1 1		10/07/19 13:20 10/07/19 13:20 10/07/19 13:20 10/07/19 13:20 10/07/19 13:20 10/07/19 13:20 10/07/19 13:20	7782-44-7	
2540C Total Dissolved Solids	Analytical N	/lethod: SM 25	40C						
Total Dissolved Solids	584	mg/L	20.0	8.7	1		10/10/19 17:09		
9040 pH		Std. Unite	0 10	0.010	1		10/15/10 11:20		Це
300.0 IC Anions	Analytical N	Aethod: EPA 3	0.10	0.010	I		10/13/19 11.29		ΠO
Chloride Fluoride Sulfate	19.1 <0.50 <5.0	mg/L mg/L mg/L	10.0 1.5 15.0	2.5 0.50 5.0	5 5 5		10/16/19 17:51 10/16/19 17:51 10/16/19 17:51	16887-00-6 16984-48-8 14808-79-8	D3 D3
Sample: 2R-OW	Lab ID: 4	40196734004	Collected:	10/07/19	9 11:05	Received: 10/	08/19 09:45 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical N	lethod: EPA 6	020 Prepara	tion Meth	od: EPA	3010			
Boron Calcium	58.8 132000	ug/L ug/L	10.0 254	3.0 76.2	1 1	10/11/19 07:55 10/11/19 07:55	10/15/19 09:57 10/15/19 09:57	7440-42-8 7440-70-2	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS

Project: 25216068 ALLIANT EDGE 1-4 CCR

1 10,000

Pace Project No.: 40196734

Sample: 2R-OW	Lab ID:	40196734004	Collected	: 10/07/1	9 11:05	Received: 10/	08/19 09:45 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Static Water Level Temperature, Water (C)	6.88 1261 2.5 148 609.39 14.0	Std. Units umhos/cm mg/L mV feet deg C			1 1 1 1 1		10/07/19 11:05 10/07/19 11:05 10/07/19 11:05 10/07/19 11:05 10/07/19 11:05 10/07/19 11:05	7782-44-7	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	706	mg/L	20.0	8.7	1		10/10/19 17:09		
9040 pH	Analytical	Method: EPA 9	040						
pH at 25 Degrees C	7.1	Std. Units	0.10	0.010	1		10/15/19 11:30		H6
300.0 IC Anions	Analytical	Method: EPA 3	00.0						
Chloride Fluoride Sulfate	88.8 <0.10 13.2	mg/L mg/L mg/L	10.0 0.30 3.0	2.5 0.10 1.0	5 1 1		10/17/19 11:34 10/16/19 18:04 10/16/19 18:04	16887-00-6 16984-48-8 14808-79-8	
Sample: FIELD BLANK	Lab ID:	40196734005	Collected	: 10/07/1	9 00:00	Received: 10/	/08/19 09:45 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	ation Meth	od: EPA	3010			
Boron Calcium	<3.0 <76.2	ug/L ug/L	10.0 254	3.0 76.2	1 1	10/11/19 07:55 10/11/19 07:55	10/15/19 08:00 10/15/19 08:00	7440-42-8 7440-70-2	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	<8.7	mg/L	20.0	8.7	1		10/10/19 17:09		
9040 pH	Analytical	Method: EPA 9	040						
pH at 25 Degrees C	6.8	Std. Units	0.10	0.010	1		10/15/19 11:32		H6
300.0 IC Anions	Analytical	Method: EPA 3	00.0						
Chloride Fluoride Sulfate	<0.50 <0.10 <1.0	mg/L mg/L mg/L	2.0 0.30 3.0	0.50 0.10 1.0	1 1 1		10/16/19 18:17 10/16/19 18:17 10/16/19 18:17	16887-00-6 16984-48-8 14808-79-8	

Project:	25216068 ALLIAN	FEDGE 1-4 CCF	ł									
Pace Project No.:	40196734											
QC Batch:	337095		Anal	ysis Metho	d: I	EPA 6020						
QC Batch Method:	EPA 3010		Anal	ysis Descri	ption:	6020 MET						
Associated Lab Sar	mples: 401967340	001, 4019673400	2, 4019673	34003, 401	96734004,	401967340	05					
METHOD BLANK:	1957892			Matrix: W	ater							
Associated Lab Sar	mples: 401967340	001, 4019673400	2, 4019673	34003, 401	96734004,	401967340	05					
			Bla	nk	Reporting							
Parar	neter	Units	Res	sult	Limit	Anal	yzed	Qualifier	S			
Boron		ug/L		<3.0	10.	0 10/15/1	9 07:53					
Calcium		ug/L		<76.2	25	4 10/15/1	9 07:53					
LABORATORY CO	NTROL SAMPLE:	1957893										
			Spike	LC	S	LCS	% Re	ec				
Parar	neter	Units	Conc.	Res	sult	% Rec	Limit	ts (Qualifiers			
Boron		ug/L	50	00	474	9	5 8	80-120				
Calcium		ug/L	500	00	5060	10	1 8	80-120				
MATRIX SPIKE & N	ATRIX SPIKE DUP	LICATE: 1957	894		1957895	5						
			MS	MSD								
		40196734001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	ug/L	7220	500	500	7950	8800	146	316	75-125	10	20	P6
Calcium	ug/L	87600	5000	5000	95700	98200	161	210	75-125	3	20	P6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	25216068 ALLIAN	IT EDGE 1-4 CCR						
Pace Project No.:	40196734							
QC Batch:	337052		Analysis Me	ethod:	SM 2540C			
QC Batch Method:	SM 2540C		Analysis De	escription: 2	2540C Total Di	ssolved Solids		
Associated Lab Sam	nples: 40196734	001, 40196734002	2, 40196734003,	40196734004, 4	40196734005			
METHOD BLANK:	1957339		Matrix	: Water				
Associated Lab Sam	nples: 40196734	001, 40196734002	2, 40196734003,	40196734004, 4	40196734005			
			Blank	Reporting				
Param	neter	Units	Result	Limit	Analyze	d Quali	fiers	
Total Dissolved Solid	ds	mg/L	<8.7	20.0	0 10/10/19 1	7:08		
LABORATORY CON	ITROL SAMPLE:	1957340	0.1		1.00	0/ D		
Param	neter	Units	Spike Conc.	Result	% Rec	% Rec Limits	Qualifiers	
Total Dissolved Solid	ds	mg/L	547	544	99	80-120		
SAMPLE DUPLICAT	TE: 1957341							
			40196734001	Dup		Max		
Param	neter	Units	Result	Result	RPD	RPD	Qualifiers	
Total Dissolved Solid	st	mg/L	694	۲04 T	4	1	10	
SAMPLE DUPLICAT	FE: 1957342							
			40196880006	Dup		Max		
Param	neter	Units	Result	Result	RPD	RPD	Qualifiers	
Total Dissolved Solid	ds	mg/L	328	3 348	8	6	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	25216068 ALLIAN	EDGE 1-4 CCR							
Pace Project No .:	40196734								
QC Batch:	337490		Analysis Meth	iod:	EPA 9040				
QC Batch Method:	EPA 9040		Analysis Desc	cription:	9040 pH				
Associated Lab San	nples: 401967340	001, 40196734002	2, 40196734003, 40	0196734004,	40196734005				
SAMPLE DUPLICA	TE: 1960489								
			40196734001	Dup			Max		
Paran	neter	Units	Result	Result	RPD		RPD	Qualifiers	
pH at 25 Degrees C		Std. Units	7.8	7.	.8	0	20 H6		
SAMPLE DUPLICA	TE: 1960490								
			40196949002	Dup			Max		
Paran	neter	Units	Result	Result	RPD		RPD	Qualifiers	
pH at 25 Degrees C	;	Std. Units	7.3	7	.4	1	20	H6	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

EPA 300.0

300.0 IC Anions

Project: 25216068 ALLIANT EDGE 1-4 CCR

Pace Project No.: 40196734

QC Batch:	33725	52		Analysis Me	ethod:
QC Batch Method:	EPA 3	300.0		Analysis De	escription:
Associated Lab Samp	les:	40196734001,	40196734002,	40196734003,	401967340

0196734002, 40196734003, 40196734004, 40196734005 Matrix: Water

 METHOD BLANK:
 1959861
 Matrix:
 Water

 Associated Lab Samples:
 40196734001, 40196734002, 40196734003, 40196734004, 40196734005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Chloride	mg/L	<0.50	2.0	10/16/19 10:46	
Fluoride	mg/L	<0.10	0.30	10/16/19 10:46	
Sulfate	mg/L	<1.0	3.0	10/16/19 10:46	

LABORATORY CONTROL SAMPLE: 1959862

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L	20	20.7	103	90-110	
Fluoride	mg/L	2	2.1	105	90-110	
Sulfate	mg/L	20	20.6	103	90-110	

MATRIX SPIKE & MATRIX SP		CATE: 1959	863		1959864							
			MS	MSD								
	4	0196679001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	490	400	400	856	864	91	93	90-110	1	15	
Fluoride	mg/L	<2.0	40	40	41.2	42.5	103	106	90-110	3	15	
Sulfate	mg/L	89.6	400	400	480	493	98	101	90-110	3	15	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 1959	865		1959866							
		40197022001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	37.6	100	100	138	138	101	100	90-110	1	15	
Fluoride	mg/L	26.2	100	100	74.6	72.9	48	47	90-110	2	15	MO
Sulfate	mg/L	<5.0	100	100	102	102	98	98	90-110	0	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALIFIERS

Project: 25216068 ALLIANT EDGE 1-4 CCR

Pace Project No.: 40196734

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
- H6 Analysis initiated outside of the 15 minute EPA required holding time.
- M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
- P6 Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 25216068 ALLIANT EDGE 1-4 CCR

Pace Project No.: 40196734

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40196734001	 MW-301	EPA 3010	337095	EPA 6020	337193
40196734002	MW-302	EPA 3010	337095	EPA 6020	337193
40196734003	MW-303	EPA 3010	337095	EPA 6020	337193
40196734004	2R-OW	EPA 3010	337095	EPA 6020	337193
40196734005	FIELD BLANK	EPA 3010	337095	EPA 6020	337193
40196734001	MW-301				
40196734002	MW-302				
40196734003	MW-303				
40196734004	2R-OW				
40196734001	MW-301	SM 2540C	337052		
40196734002	MW-302	SM 2540C	337052		
40196734003	MW-303	SM 2540C	337052		
40196734004	2R-OW	SM 2540C	337052		
40196734005	FIELD BLANK	SM 2540C	337052		
40196734001	MW-301	EPA 9040	337490		
40196734002	MW-302	EPA 9040	337490		
40196734003	MW-303	EPA 9040	337490		
40196734004	2R-OW	EPA 9040	337490		
40196734005	FIELD BLANK	EPA 9040	337490		
40196734001	MW-301	EPA 300.0	337252		
40196734002	MW-302	EPA 300.0	337252		
40196734003	MW-303	EPA 300.0	337252		
40196734004	2R-OW	EPA 300.0	337252		
40196734005	FIELD BLANK	EPA 300.0	337252		

-	-		
-	-		
-			
_			
-	-		
-			
-	-		
	_		
-	-		
-	-		
-		1.5	
_			
		1.2	
~			
-			
_		•	
-	-		
-	-		
-	-		
-			
r		1.	
-			
-	_		
	-		
- 22			
-			
•			
-			
_	-		
_	-		

special p	rax. Sample	Telephone:	Email #1: Email #2:	Transmit Prelim Ru	(Rush TAT : Da	Dich Timor					૧ પ	84	8 3	<u>%</u> 2	30	PACE LAB #	EPA Lei	(billable) EPA Lev	Data Package (8 *	Sampled By (Sign	Sampled By (Prin	Project State:	Project Name:	Project Number:	Phone:	Project Contact:	Branch/Location:	Company Name:	
ricing and release of liability	so on HOLD are subject to			ush Results by (complete what you wa	subject to approval/surcharge)	aund Time Demuested - Prelim					Field Blank	2R-00	MW-303	MW-302	Mw-301	CLIENT FIELD ID	/el IV Vour sample		Dottons MS/MSD		1: Chantar -	1: Charle Bills	13	Allian + Edgewater J	25216068		Tom Karowski	Madison WI	SCS Engineers	Please Print Cleany)
	Relinqu	Relinqu	Neimindu	1/2/0/ 1/2/10							10-7-19	10-7-19	10-7-19 1	10-7-19	10-7-19	DATE		i = Air Biota C	Matri	Regulatory Program:	U			<u> </u> <u>-</u>						
	ished By:	ished By:	isibility.		ished By						1155 1	118	320 6.	1425 G	120		sw = Surface We WW = Waste Wa WD = Wine	V = Water VW = Drinking W	x Codes			PRESERVAT (CODE)*	FILTERED (YES/NO)	H=Sodiun	A=None			$\overline{)}$	`	
					ζĮ.							3	3	3	3	A	ब है । nalys	ि है es Re	Idne	ster	1 *	TON Pick	- J	n Bisulfate Solu	B=HCL C	CH		Face	ŭ K	
				eder	<u>)</u> [,						X	×	×	\times	×	Bo	ro n,	Cal	ciu	m		4	2	tion	=H2SO4 D	<u>AIN</u>		3 Anal		
	Date/Tin	Date/Tin		Stol.	Date/Tim	Date/Tin			-		X X	× ×	X	××	× ×	Ch PH	lorid 1 Su	e, Fi	1001 He,	rid TD	ء ح ح	A A	2	-Sodium The	Internation			VUCal		
	ā	ē	ġ	MG 61	-19 @ 180	б —						·											/	Saltate 1=Othe	Codes DI Water F=Met	<u>CUST(</u>				
	Received By:	Received By:		11/1	Received By:	Received By:																			hanol G=NaCH		ן גרי	N	MN: 612-6	
			4	X	\mathcal{X}],	(×́	ર્ક) 00/-1/00	2 1700
	Date/Time:	Date/Time:		x11810 mm	2 Date/Time:	Date/Time:										COMMENTS	CLIENT	Invoice To Phone:		Invoice To Address:	Invoice To Company:	Invoice To Contact:		Mail To Address:	Mail To Company:	Mail To Contact:	Quote #:		WI: 920-469-2436	111- 000 120 022
				SHHS.												(Lab l			Mac	283	Sesi									
Intact / Not In	Present / Noter	Cooler Custoda	Samile Receipt		4019101	PACE Project N										Use Only)	OMMENTS		1:Son Eri	o Dairy Dr.	Engineers							JUI-JUI-		

ORIGINAL

AG2S BG3U	AGSU	AG43	AGIH	AG1U	E.	020	<u> 019</u>	018	017	016	015	014	013	012	011	010	600	800	007	906	005	004	003	002	001	Pace Lab #			Ω
500 I 250 I	100 1	1001	1 lite	1 lite	xceptio																					AG1U		7	lient
nL an	nL an	mL an	r amt	r amt	ins to J																					AG1H	1		
nber g ear gla	nber g	nber g	er gla	er gla	DIESEIV																					AG4S			me
lass H Iss unj	lass u	lass II	ss HC	SS	ation c																					AG4U	Glas		ainers
2SO4 pres	npres	LLSO4			heck:																					AG5U	S		needin
					VOA,						Λ															AG2S		6 pico	K
			1 		Colifo						Ц								148 202							BG3U			
BP3 BP3	BP3	BP2	BP2	BP1	rm, TC							<u>\</u>														BP1U			n have
S Z	B (=	3 2	U)C, TO							Ţ														BP2N			heen
50 ml	50 ml			liter	іX, TO																					BP2Z		Lab	hecke
ب plas plas	L plas	L plas	L plas	plastic	H, 0&								Ţ								4	N	2	2	7	BP3U	lasti	Lot#	and r
tic HP tic H2	tic III		tic H	: unpr	:G, WI	L														1.						BP3B	C	of pH j	Inted h
103 S04	OH	OH, 2	03	es	DRO,									Ţ)	1	/	~	1	BP3N		paper	
		nact			Pheno								5	-1						10						BP3S			3 20
		· · · .			lics, O								11	γ ,	Λ											DG9A		ŝ	Pro
VG9	VG9		DG9	DG9	ther:								11	Ω	Ц											DG9T		<u>S</u>	Sec.
D 4	≤ ¤ 4 4		T	A 4							1,	$\langle X \rangle$	$\overline{7}$	$\underline{(}$												VG9U	Via		W#1
0 mL			0 mL	0 mL										1		\square										VG9H	S	ab Sto	
clear v	clear v	clear	amber	ambei												,										VG9M		l #ID o	0
vial D	vial H		Na T	ascoi	Head																					VG9D		f prese	2
	eOH	lpres	hio	bic	Ispace																					JGFU		rvatio	5
					in VO	1000												Į_		1						WGFU	lars	n (if p l	22
				_	A Vials													7								WPFU		I adjus	
ZPL	SPS	WPF	WGF	JGF	s (>6m														I							SP5T	Gei	ted):	
N. N.		U 4	L C	U 4	m):																					ZPLC	Ieral		
iploc l	20 ml	oz pla	oz cle	oz an	Yes D	_														۱,						GN	Minnessul		
bag	, nlast	astic Ja	ar jar	ıber ja	No Se																					VOA Vials (>	•6mm) *		
	ic Na	ar unp	unpre	r unp	(V/A *I	<u> </u>																				H2SO4 pH ≤2	2		_
	Thios	res	ŏ	res	f yes l																					NaOH+Zn Ac	tpH≥9	comple	
	nlfate				ook in																					NaOH pH≥12	2	when	-
					heads																4	+-	++	4-	*	HNO3 pH ≤2			2
					pace col																					pH after adjus	ted	Time	Green
		-	<u></u>		umn	2.5/5/	2.5/5/	2.5/5/	2.5/5/	2.5/5/	2.5/5/	2.5/5	2.5/5	2.5/5	2.5/5	2.5/5	2.5/5	2.5/5	2.5/5	2.5/5	2.5/5	2.5/5	2.5/5	2.5/5	2.5/5	Voju (mI	4		h Bay, WI

F-GB-C-046-Rev.02 (29Mar2018) Sample Preservation Receipt Form

Page <u>I</u> of <u>____</u>

.

	D	ocument Name:	Documer	nt Revised: 25Apr2018
Pace Analytical	Sample Cond	aition Upon Receipt (S Document No		suing Authority
/ 1241 Bellevue Street, Green Bay, WI 54302	F-	GB-C-031-Rev.07	Pace Gr	een Bay Quality Office
Sample C	ondition U	pon Receipt For	rm (SCUR)	
lient Name: SCS	1947 ⁻¹⁴		WO#:	40196734
ourier: 🗖 CS Logistics 🏹 Fed Ex 🔲 Speedee		Waltco		
Client Pace Other:				
acking #: 7765 7343 934	k		40196734	
ustody Seal on Cooler/Box Present Seal	ho Seals in	tact: 🗖 yes 🦵 no		
ustody Seal on Samples Present: 🔲 yes	o Seals in	tact: Г yes Г no		
ecking Material:	e Bags	None Cother Wet Blue Dry None	Samples or	n ice, cooling process has begun
mp Blank Present: 🔲 yes 🞵 no	Biologi	cal Tissue is Frozen:	🗖 yes 🗖 no	Person examining contents:
mp should be above freezing to 6° $℃$. Dta Samples may be received at ≤ 0°C.				Initials:
nain of Custody Present:]N/A 1.		/
nain of Custody Filled Out:	□Yes ZNo E	IN/A 2 Patt	1	12/8/19
nain of Custody Relinquished:	ZÍYes ⊡No [IN/A 3.		
ampler Name & Signature on COC:	ØYes □No □]n/A 4 .		V
amples Arrived within Hold Time:	Yes No	5.		
- VOA Samples frozen upon receipt	□Yes □No	Date/Time:		• •
ort Hold Time Analysis (<72hr):	□Yes 🕅	6.		
ush Turn Around Time Requested:		7.		
ufficient Volume:		8.		
For Analysis: Thes INO MS/MSD:	□Yes □xro □			
prrect Containers Used:	QYes □No	9.		
-Pace Containers Used:	Yes No [<i>c</i>	
-Pace IR Containers Used:		2 1 N/A		· · · · ·
ontainers Intact:	∕⊡Yes □No	10.		
tered volume received for Dissolved tests		3N/A 11.		
ample Labels match COC:	Yes No D]N/A 12.		
-Includes date/time/ID/Analysis Matrix:	W			
ip Blank Present:	□Yes □No [N/A 13.		
ip Blank Custody Seals Present				
ace Trip Blank Lot # (if purchased):	· · · · · · · · · · · · · · · · · · ·			
Person Contacted:	, D	li ate/Time:	cnecked, see attacl	ned form for additional comments
Comments/ Resolution:				
en e	· ·	<u></u>		

	Q			10 10 100

Appendix B

Alternative Source Demonstrations

B1 Alternative Source Demonstration, October 2018 Detection Monitoring

Alternative Source Demonstration October 2018 Detection Monitoring

Edgewater Generating Station Sheboygan, Wisconsin

Prepared for:

25219068.00 | April 15, 2019

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830 Table of Contents

Sect	ion		Pag	je
PE Ce	ertifica	ation		iii
1.0	Intro	duction.		.1
	1.1	§257.9	04(E)(2) Alternative Source Demonstration Requirements	.1
	1.2	Site Inf	ormation and Map	.1
	1.3	Statisti	cally Significant Increases Identified	.2
	1.4	Overvie	ew of ASD	.2
2.0	Back	ground.		.2
	2.1	Region	al Geology and Hydrogeology	.3
	2.2	CCR M	onitoring System	.3
	2.3	Other N	Aonitoring Wells	.3
	2.4	Ground	Iwater Flow Direction	.3
3.0	Meth	odology	and Analysis Review	.4
	3.1	Sampli	ng and Field Analysis Review	.4
	3.2	Labora	tory Analysis Review	.4
	3.3	Statisti	cal Evaluation Review	.5
	3.4	Summa	ary of Methodology and Analysis Review Findings	.5
4.0	Alter	native S	ources	.5
	4.1	Potenti	al Causes of SSI	.5
		4.1.1	Natural Variation	.5
		4.1.2	Man-Made Alternative Sources	.6
	4.2	Lines c	f Evidences	.6
		4.2.1	Previous CCR Pond and Landfill Study	.7
		4.2.2	CCR Constituents in Landfill Leachate	.8
		4.2.3	State Program Groundwater Monitoring Results	.8
5.0	ASD	Conclus	ions	.9
6.0	Site (Groundv	vater Monitoring Recommendations	.9
7.0	Refe	rences		.9

Tables

Table 1	Detection Monitoring Results Summary – October 2017 – October 2018
Table 2	Analytical Results – CCR Ponds Detection Monitoring Program
Table 3	Groundwater Elevations – CCR Rule Monitoring Wells
Table 4	Analytical Results – Closed Landfill State Monitoring Program Wells
Table 5	Analytical Results – Closed Landfill Leachate Fluoride Monitoring

Figures

Figure 1.	Site Location Map

- Figure 2.
- Monitoring Well Location Map Water Table Map October 2018 Figure 3.

Appendix

Appendix A Trend Plots for CCR Wells

I:\25216068.00\Deliverables\2018 ASD Report No. 3\190415_ASD_EDG_No.3_Oct_FINAL.docx

PE CERTIFICATION

Sherren C. Clark E-29863 Madison, Wis.	I, Sherren Clark, hereby certify that that the information in this alternate source demonstration is accurate and meets the requirements of 40 CFR 257.94(e)(2). This certification is based on my review of the groundwater data and related site information available for the Edgewater Generating Station Ash Ponds. I am a duly licensed Professional Engineer under the laws of the State of Wisconsin.
	all parges-

[This page left blank intentionally]

1.0 INTRODUCTION

This Alternative Source Demonstration (ASD) was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" published by the U.S. Environmental Protection Agency (USEPA) in the *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule,* dated April 17, 2015 (USEPA, 2015), and subsequent amendments. Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.94(e)(2). The applicable sections of the Rule are provided below in *italics*.

1.1 §257.94(E)(2) ALTERNATIVE SOURCE DEMONSTRATION REQUIREMENTS

The owner and operator may demonstrate that a source other than the CCR Unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels.

An ASD is completed when there are exceedances of one or more benchmarks established within the groundwater monitoring program. The ASD is completed to determine if any other sources are likely causes of the identified exceedance(s) of established benchmark(s) at the site. This ASD was performed in response to results indicating a statistically significant increase (SSI) over background levels during detection monitoring under the CCR Rule.

This ASD report is evaluating the SSIs observed in the statistical evaluation of the October 2018 detection monitoring event at the Edgewater Generating Station (EDG). The first ASD was prepared for this facility evaluating the SSIs observed in the statistical evaluation of the October 2017 detection monitoring event (SCS Engineers [SCS], 2018b). The October 2017 ASD (dated April 2018) and April 2018 ASD concluded that several lines of evidence demonstrated that SSIs reported for boron, fluoride, pH, and sulfate concentrations in the downgradient monitoring wells (MW-301, MW-302, and MW 303) were likely due to leachate from the closed landfill, which is not subject to the requirements of 40 CFR 257.50-107.

As discussed in more detail in **Section 4.2** of this ASD, the findings for the October 2018 monitoring event were consistent with those for the previous events.

1.2 SITE INFORMATION AND MAP

EDG is located at 3739 Lakeshore Drive in Sheboygan, Sheboygan County, Wisconsin (**Figure 1**). EDG is an active coal-burning generating station. The EDG property includes a closed landfill and a series of CCR settling ponds, located on the opposite side of Lakeshore Drive from the plant itself (**Figure 1**). The EDG landfill is closed and no longer receives CCR. The groundwater monitoring system at the EDG is a multi-unit system. EDG has four existing CCR Units which are contiguous:

- EDG Slag Pond (existing CCR surface impoundment)
- EDG North A-Pond (existing CCR surface impoundment)
- EDG South A- Pond (existing CCR surface impoundment)
- EDG B-Pond (existing surface CCR impoundment)

A map showing the CCR Units and all background (or upgradient) and downgradient monitoring wells with identification numbers for the groundwater monitoring program is provided as **Figure 2**.

The closed CCR landfill (Wisconsin Department of Natural Resources [WDNR] Permit No. 2524) is located immediately west of the ponds. The landfill contains primarily fly ash with some slag, and was closed in 1987. Because this CCR landfill did not accept CCR after October 19, 2015, the landfill is not subject to the requirements of 40 CFR 257.50-107. The closed landfill is unlined and is known to be impacting groundwater at the site (SCS, 2016). Previous investigations done at the site (BT2, Inc., 1993; RMT, 1997) concluded that the groundwater impacts downgradient of the landfill and ponds were attributable to groundwater interaction with the landfill, rather than to leakage from the ponds.

1.3 STATISTICALLY SIGNIFICANT INCREASES IDENTIFIED

SSIs were identified for boron, fluoride, field pH, and sulfate at one or more wells based on the October 2018 detection monitoring event. A summary of the October 2018 constituent concentrations and the established benchmark concentrations is provided in **Table 1**. The October 2017 and April 2018 results are also included for comparison. The constituent concentrations with SSIs above the background concentration are highlighted in the table.

1.4 OVERVIEW OF ASD

This ASD report includes:

- Background information (Section 2.0)
- Evaluation of potential that SSIs are due to methodology or analysis (Section 3.0)
- Evaluation of potential that SSIs are due to natural sources or man-made sources other than the CCR Units (Section 4.0)
- ASD conclusions (Section 5.0)
- Monitoring recommendations (**Section 6.0**)

The boron, field pH, fluoride, and sulfate results from background and compliance sampling are provided in **Table 2**. The laboratory reports for the April and October 2018 detection monitoring events were included in the 2018 Annual Groundwater Monitoring and Corrective Action Report submitted in January 2019. Complete laboratory reports for the background monitoring events and the October 2017 detection monitoring event were included in the 2017 Annual Groundwater Monitoring and Corrective Action Report.

2.0 BACKGROUND

To provide context for the ASD evaluation, the following background information is provided in this section of the report, prior to the ASD evaluation sections:

- Geologic and hydrogeologic setting
- CCR Rule monitoring system
- Other monitoring wells
- Groundwater Flow Direction

A more detailed discussion of the background information for the site is provided in the ASD for the October 2017 event (SCS, 2018b).

2.1 REGIONAL GEOLOGY AND HYDROGEOLOGY

For the purposes of groundwater monitoring, the unconsolidated sand and gravel aquifer is considered to be the uppermost aquifer, as defined under 40 CFR 257.53, at the EDG ponds. The sand and gravel aquifer is present in some parts of Sheboygan County (Skinner and Borman, 1973). Boring logs from monitoring wells at the EDG ponds and for nearby private wells indicate that the unconsolidated material at, and near, the site contains a significant amount of sand. Private well logs from the surrounding area indicate that the sand and gravel aquifer has been used as a water source; however, several older sand wells in the area have been replaced with bedrock water supply wells.

The dolomite aquifer underlies the unconsolidated material at the site. The total thickness of the dolomite aquifer at the site is unknown. The dolomite aquifer is underlain by the Maquoketa shale, which is a confining unit. The Maquoketa shale is underlain by the Cambrian-Ordovician sandstone aquifer. This sequence of sedimentary bedrock units is over 1,500 feet thick in the site vicinity.

The regional groundwater flow in the unconsolidated sand and gravel aquifer in the vicinity of the site is to the east and slight southeast.

2.2 CCR MONITORING SYSTEM

The groundwater monitoring system established under the CCR Rule consists of one upgradient (background) monitoring well and three downgradient monitoring wells, as shown on **Figure 2**. The upgradient monitoring well is 2R-OW. The downgradient monitoring wells include MW-301, MW-302, and MW-303. The CCR compliance monitoring wells were installed in the unconsolidated sediments with screens in the uppermost soil layer producing appreciable water, which was a sandy silt unit. Well depths range from approximately 14.5 to 40 feet, measured from the top of the well casing.

2.3 OTHER MONITORING WELLS

Sixteen groundwater monitoring wells currently exist at the EDG site as part of the monitoring system developed for the state monitoring program for the closed landfill. The well locations are shown on **Figure 2**. These monitoring wells are used to monitor groundwater conditions at the site under the WDNR state monitoring program.

Monitoring wells for the state monitoring program are installed in the unconsolidated material at the site. This shallow monitoring system includes water table wells and piezometers. Well depths range from approximately 9 to 43 feet, measured from the top of the well casing.

2.4 GROUNDWATER FLOW DIRECTION

Shallow groundwater in the area of the EDG site generally flows to the south-southeast, toward Fish Creek, which discharges into Lake Michigan. There is some localized groundwater mounding associated with the EDG ponds. The water table map shown on **Figure 3** represents the site conditions of the unconsolidated deposits during the October 2018 detection monitoring event. The water table map shows a generally south-southeast flow direction, with localized groundwater mounding in the area of the EDG ponds. The groundwater elevations at the CCR wells during the October 2018 detection monitoring event are in **Table 3**.

3.0 METHODOLOGY AND ANALYSIS REVIEW

To evaluate the potential that an SSI is due to a source other than the regulated CCR Unit, SCS used a two-step evaluation process. First, the sample collection, field and laboratory analysis, and statistical evaluation were reviewed to identify any potential error or analysis that led to exceedance of the benchmark. Second, potential alternative sources, including natural variation and man-made sources other than the CCR unit, were evaluated. This section of the report provides the findings of the methodology and analysis review. **Section 4.0** of the report addresses the potential alternative sources.

3.1 SAMPLING AND FIELD ANALYSIS REVIEW

Field notes and sampling results were reviewed to determine if any sampling error may have caused or contributed to the observed SSIs. Potential field sampling errors or issues could include mislabeling of samples, improper sample handling, missed holding times, cross contamination during sampling, or other field error. Field blank sample results were also reviewed for any indication of potential contamination from sampling equipment or containers. Based on the review of the field notes and results, SCS did not identify any indication that the SSI concentrations were due to a sampling error.

The field pH trend plots were also reviewed for any anomalous results that might indicate a possible sampling or field analysis error (e.g., calibration error or incorrect sample identification). The time series plots are provided in **Appendix A**. The field pH results reported for all wells for the August 2016 background monitoring event were anomalously low, which is most likely due to a calibration error or other problem with the field pH meter for that event. During the statistical evaluation of the background data from well 2R-OW to develop the Upper Prediction Limit (UPL) for field pH, the August 2016 field pH result was identified as an outlier and was not used in the UPL calculation. Although the compliance wells also had outlier pH results for August 2016, the anomalous results for those wells were not considered when evaluating SSI determinations for the October 2018 detection monitoring, because an interwell analysis was used for the SSI evaluation, comparing current compliance well results to UPLs based on background well results.

Because boron, fluoride, and sulfate are laboratory parameters, there is little potential for a field analysis error to contribute to an SSI.

3.2 LABORATORY ANALYSIS REVIEW

The laboratory report for the October 2018 detection monitoring was reviewed to determine if any laboratory analysis error or issue that may have caused or contributed to the observed SSI for boron, fluoride, or sulfate. The laboratory report review included reviewing the laboratory quality control flags and narrative, verifying that correct methods were used and desired detection limits were achieved, and checking the field and laboratory blank sample results. Laboratory reports for the background monitoring and the October 2017 detection monitoring event were included in the 2017 Annual Groundwater Monitoring and Corrective Action Report for the facility, and laboratory reports for the April and October 2018 detection monitoring events were included in the 2018 Annual Groundwater Monitoring and Corrective Action Report. Laboratory reports were reviewed as part of the ASD preparation for each detection monitoring event.

Based on the review of the laboratory reports, SCS did not identify any indication that the SSI concentrations were due to a laboratory analysis error. There were no laboratory quality control flags or issues identified in the laboratory report that affect the usability of the data for detection monitoring.

Time series plots of the analytical data were also reviewed for any anomalous results that might indicate a possible sampling or laboratory error (e.g., dilution error or incorrect sample labeling). Time series plots for the parameters with SSIs are provided in **Appendix A**. No indications of sampling or laboratory errors were noted based on the time series review. The October 2018 boron, pH, fluoride, and sulfate results for MW-301, MW-302, and MW-303 are consistent with the historical data.

3.3 STATISTICAL EVALUATION REVIEW

The review of the statistical results and methods includes a quality control check of the following:

- Input analytical data vs. laboratory analytical reports
- Review statistical method and outlier concentration lists for each monitoring well/CCR Unit

Based on the review of the statistical evaluation, SCS did not identify any errors or issues in the statistical evaluation that caused or contributed to the determination of interwell SSIs for the October 2018 detection monitoring event.

3.4 SUMMARY OF METHODOLOGY AND ANALYSIS REVIEW FINDINGS

In summary, there were no changes to the SSI determinations for the October 2018 monitoring event based on the methodology and analysis review, and no errors or issues causing or contributing to the reported SSIs were identified.

4.0 ALTERNATIVE SOURCES

This section of the report discusses the potential alternative sources for the boron, sulfate, field pH, and fluoride SSIs at MW-301, MW-302, and MW-303; identifies the most likely alternative source(s); and presents the lines of evidence indicating that an alternative source is most likely the cause of the observed SSIs for boron, sulfate, field pH, and fluoride.

4.1 POTENTIAL CAUSES OF SSI

4.1.1 Natural Variation

The statistical analysis was completed using an interwell approach, comparing the October 2018 detection monitoring results to the UPLs calculated based on sampling of the background well (2R-OW). If concentrations of a constituent that is naturally present in the aquifer vary spatially, then the potential exists that the downgradient concentrations may be higher than upgradient concentrations due to natural variation.

Although natural variation is present in the shallow aquifer, it does not appear likely that natural variation is the primary source causing the boron and sulfate SSIs. These parameters were detected at higher concentrations than would likely be present naturally.

Natural variation may have contributed to the SSI for pH at MW-301 and MW-302. The UPL was calculated based on pH results at background well 2R-OW for the eight CCR Rule background monitoring events and the October 24, 2017, detection monitoring event. Based on these results the calculated UPL was 7.47, and the reported pH at MW-301 was 8.02 and at MW 302 was 7.78.

Although the results exceed the UPL, the historical pH results for 2R-OW include pH values up to 7.98, indicating variability in the background. This suggests that the SSIs for pH may be partially or completely due to natural variation.

Natural variation may also have caused or contributed to the SSI for fluoride at MW-302. Elevated natural fluoride concentrations significantly higher than those reported for the downgradient wells (above 2 milligrams per liter [mg/L]) have been observed in a region in eastern Wisconsin extending along the Lake Michigan shoreline from Kewaunee County in the north to the Illinois border in the south, as described Luczaj, J., and Masarik, K, 2015, *Groundwater Quantity and Quality Issues in a Water-Rich Region: Examples from Wisconsin, USA*. The authors note that most of the wells with elevated fluoride appear to be drawing from the Pleistocene glacial sediments and Silurian dolomite units. Skinner and Borman (1973) and Kammerer (1995) also identify the Lake Michigan shoreline area of eastern Wisconsin as having somewhat elevated fluoride concentrations in groundwater.

The fluoride concentrations reported for MW-302 for October 2017 through October 2018 were just above the laboratory's limit of quantitation (LOQ), at 0.84 mg/L in October 2017, 0.78 mg/L in April 2018, and 0.81 mg/L in October 2018. These results are within the range of reported natural concentrations, indicating that the fluoride concentration observed in this well is likely due to natural variability in the glacial sediments and shallow groundwater. As discussed below, there is also a potential that fluoride in MW-302 is associated with impacts from the closed CCR landfill.

4.1.2 Man-Made Alternative Sources

Man-made alternative sources that could potentially contribute to the boron, fluoride, pH, and sulfate SSIs could include the closed CCR landfill, the coal storage area, or other plant operations. Based on the groundwater flow directions and on previous investigations at the site, the closed landfill appears to be the most likely cause of the SSIs for wells MW-301, MW-302, and MW-303.

4.2 LINES OF EVIDENCES

The lines of evidence indicating that the SSIs for boron, sulfate, fluoride, and pH in compliance wells MW-301, MW-302, and MW-303, relative to the background well, are due to an alternative source include:

- 1. A previous study of the CCR ponds and the closed CCR landfill determined that the landfill was the primary source of groundwater impacts in the area, based on multiple lines of evidence.
- 2. Past and current monitoring performed under the state monitoring program shows that boron, sulfate, fluoride, and elevated pH are all present in the CCR landfill leachate.
- 3. Past and current monitoring performed under the state monitoring program shows that the highest boron and sulfate concentrations are in the monitoring wells near and downgradient from the CCR landfill.

Lines of evidence regarding natural variability as an additional alternative source of the fluoride and pH SSIs are discussed above in **Section 4.1.1**.

Each of these lines of evidence and the supporting data were discussed in detail in the ASD for the October 2017 detection monitoring event (SCS, 2018b). The lines of evidence are discussed briefly below, focusing on any updated information collected since the previous ASDs.

4.2.1 Previous CCR Pond and Landfill Study

A previous investigation titled *Field Investigation Report: Edgewater Closed Ash Disposal Facility*, completed by BT2 in 1993, found that groundwater impacts were likely due to the closed landfill (**Figure 2**) located immediately west of the ponds (BT2, 1993). The purpose of the 1993 investigation was to investigate the likely impact on groundwater quality of lining or abandoning the CCR impoundments (referred to in the report as the Wisconsin Pollutant Discharge Elimination System [WPDES] lagoons). The results from the investigation indicated that the CCR impoundments were not the primary source of downgradient groundwater impacts, and that closure or lining was not warranted. The WDNR concurred with that finding in a letter dated April 20, 1994.

The primary lines of evidence from the 1993 report that supported this finding, and support the ASD for boron, sulfate, fluoride, and pH, included:

- Water samples collected from each of the ponds met the Wisconsin groundwater enforcement standards established under NR 140, Wisconsin Administrative Code.
- Soil borings installed in the material below the larger ash pond, where the slag pond and the WDPES lagoons (North Pond A and South Pond A) were constructed is almost entirely slag material. Water leaking out of the lagoons and moving downward would encounter primarily slag, which is relatively inert, and not fly ash. Additionally, results for water leach testing of site-wide composite samples of fly ash and slag confirmed that the fly ash had a higher potential than slag to impact groundwater. Water leach test results for the fly ash composite sample were higher for boron, sulfate, fluoride, and pH in comparison to the slag composite sample.
- Water leach testing for individual boring samples of fly ash and/or slag also confirmed that fly ash leachate had significantly higher concentrations of boron and sulfate than slag leachate. Boron leach test results for nine samples from borings around and between the ponds, consisting mainly of slag, ranged from less than 16 to 206 µg/L.
- Water sampling within the landfill and pond area, in CCR above the native soil, documented that groundwater/leachate within the landfill had significantly higher concentrations of boron than the groundwater/leachate within the slag berms immediately adjacent to and between the Slag Pond, North/South Pond A, and Pond B.
- Groundwater monitoring results indicated that the highest concentrations of boron and sulfate were in monitoring wells downgradient from the landfill, including 18-OW and 29-OW. Elevated boron and sulfate were also reported for samples from wells 4-OW and 5-OW, located near the southwest and northwest corners of the landfill. Monitoring wells 6-OW and 7-OW, located east and southeast of the ponds, had much lower concentrations of boron and sulfate.

In the April 1994 approval letter, the WDNR approved the 1993 investigation of the WPDES lagoons/CCR impoundments and concurred with the findings of the report. The WDNR requested additional monitoring from the four new monitoring wells installed within the CCR (36-OW, 37-OW, 38R-OW, and 39R-OW) and requested the addition of fluoride and arsenic to the monitoring program for these groundwater/leachate head wells.

The results of the additional monitoring were reported to the WDNR in a Groundwater Assessment Report dated September 30, 1997. The WDNR responded to the 1997 report in a letter dated April 16, 1998, which stated, "We agree with the report's finding that the WPDES ponds [Slag Pond, North Pond A, and South Pond A] do not appear to be significantly contributing to the contaminant plume downgradient of the facility. No further remedial action concerning the influence of the ponds on the landfill is warranted at this time. "The WDNR also noted that the leachable constituents migrating from the saturated portion of the closed landfill have stabilized or also decreased since the landfill's closure and capping.

4.2.2 CCR Constituents in Landfill Leachate

Past and current monitoring performed under the state monitoring program shows that boron, sulfate, fluoride, and elevated pH are all present in the CCR landfill leachate. Recent groundwater and leachate monitoring results for boron, sulfate, and pH in samples from the state monitoring program wells are summarized in **Table 4** (April 2016 through October 2018). The leachate head wells monitoring conditions within the CCR landfill are 37-OW, 38R-OW, and 39R-OW, listed near the end of the table.

Boron: Boron concentrations in samples from leachate head wells 37-OW, 38R-OW, and 39R-OW have generally exceeded those reported for the CCR monitoring wells.

Sulfate: Sulfate concentrations in samples from, leachate head wells 37-OW, 38R-OW, and 39R-OW have generally exceeded those reported for the CCR monitoring wells.

Field pH: Field pH results for the three leachate head wells continue to have pH measurements that are slightly higher than the pH UPL calculated from the well 2R-OW background data. Ten of the 15 leachate field pH readings for April 2016 through October 2018 were higher than the calculated UPL. While slightly higher pH values were reported for the CCR well samples in October 2018, the range of pH values for the CCR compliance wells has generally been similar to recent pH results for leachate wells 37-OW and 38R-OW. Historically pH values at leachate head well 39R-OW were in the range of 8 to 9, but pH has followed a gradual decreasing trend at this well since routine monitoring began in 1994.

Fluoride: Fluoride is not part of the routine state monitoring program for the closed CCR landfill, but was sampled from the leachate wells (37-OW, 38R-OW, and 39R-OW) and the pond berm well (36-OW) from 1994 to 1997, as requested by the WDNR. The fluoride concentrations ranged from 0.25 to 0.97 mg/L (**Table 5**). The highest results were for leachate head well 39R-OW, and all four samples from this well exceeded the October 2018 fluoride concentration for MW-302.

Based on these results, the fly ash disposal in the closed CCR landfill is a likely historical source of elevated boron, sulfate, pH, and fluoride.

4.2.3 State Program Groundwater Monitoring Results

Current monitoring performed under the state monitoring program continues to show that the highest boron and sulfate concentrations are in the monitoring wells near and downgradient from the CCR landfill. State program monitoring results for the CCR Rule detection monitoring parameters that overlap with the state program are summarized in **Table 4**, and well locations are on **Figure 2**.

Consistent with the conditions observed at the time of the 1993 report, the recent groundwater monitoring results indicate that the highest concentrations of boron and sulfate are in monitoring wells downgradient from the landfill, including 18-OW (recently replaced by 40 OW) and 29 OW. Elevated boron and sulfate also continue to be reported for samples from wells 4-OW and 5-OW, located near the southwest and northwest corners of the landfill.

5.0 ASD CONCLUSIONS

The lines of evidence discussed above regarding the SSIs reported for boron, fluoride, field pH, and sulfate concentrations in downgradient monitoring wells MW-301, MW-302, and/or MW 303 demonstrate that the SSIs are likely primarily due to leachate from the closed landfill, which is not subject to the requirements of 40 CFR 257.50-107. The landfill is regulated by the WDNR under the solid waste program. The SSIs for fluoride and field pH at MW-301 and MW 302 may also be partially due to natural variability within the glacial sediment aquifer.

6.0 SITE GROUNDWATER MONITORING RECOMMENDATIONS

In accordance with section 257.94(e)(2) of the CCR Rule, the EDG pond site may continue with detection monitoring based on this ASD. The ASD report will be included in the 2018 Annual Report due January 31, 2019.

7.0 REFERENCES

BT2, Inc., 1993, Field Investigation Report, Edgewater Closed Ash Disposal Facility, Wisconsin Power & Light Company, WDNR License #2524, June 1993.

Kammerer, P.A. Jr., 1995, Ground-Water Flow and Quality in Wisconsin's Shallow Aquifer System, U.S. Geological Survey, Water-Resources Investigations Report 90-4171.

Luczaj, J., and Masarik, K, 2015, Groundwater Quantity and Quality Issues in a Water-Rich Region: Examples from Wisconsin, USA: Resources, 2015, 4, 323-357.

RMT, Inc., 1997, Groundwater Assessment Report, Edgewater Closed Ash Disposal Facility, September 30, 1997.

SCS Engineers, 2019, 2018 Annual Groundwater Monitoring and Corrective Action Report, Edgewater Generating Station, January 2019.

SCS Engineers, 2018a, 2017 Annual Groundwater Monitoring and Corrective Action Report, Edgewater Generating Station, January 2018.

SCS Engineers, 2018b, Alternative Source Demonstration, October 2017 Monitoring Event, Edgewater Generating Station, April 2018.

SCS Engineers, 2016, Biennial Groundwater Monitoring Report for 2014-2015, Wisconsin Power and Light Company – Edgewater 1-4 (Closed) Ash Disposal Facility, Sheboygan, Wisconsin, License #02524, March 2016.

Skinner, Earl L. and Ronald G. Borman, 1973, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigation Atlas HA-432.

U.S. Environmental Protection Agency, 2015, Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. April 2015.

[This page left blank intentionally]

Tables

- 1 Detection Monitoring Results Summary October 2017 October 2018
- 2 Analytical Results CCR Ponds Detection Monitoring Program
- 3 Groundwater Elevations CCR Rule Monitoring Wells
- 4 Analytical Results Closed Landfill State Monitoring Program Wells
- 5 Analytical Results Closed Landfill Leachate Fluoride Monitoring

Table 1Detection Monitoring Results Summary - October 2017 - October 2018Edgewater Generating Station

Parameter Name	Units	Interwell Upper	Be	ackground Wel	I				Com	pliance Wells	;			
		Prediction Limit (UPL)		2R-OW			MW-301			MW-302			MW-303	
			10/24/2017	4/2/2018	10/1/2018	10/24/2017	4/2/2018	10/1/2018	10/24/2017	4/2/2018	10/1/2018	10/24/2017	4/2/2018	10/1/2018
Boron	ug/L	107	55.9	19.7	34.7	8,820	7,950	8,230	1,760	1,800	1,570	3,480	3,040	2,360
Calcium	mg/L	206,247	170,000	121,000	190,000	87,200	78,900	88,800	68,100	68,000	64,700	173,000	146,000	139,000
Chloride	mg/L	378	305	108	462	11.9	11.2	11.5	18.9	18.5	18.6	20.4	19.7	4.3
Fluoride	mg/L	LOQ (varies by well)	<0.1 U	0.12 J	<0.10	<0.1 U	0.25 J	0.2 J	0.84	0.78	0.81	<0.5 U	<0.5 U	<0.10
Field pH	Std. Units	7.47	7.23	7.29	7.03	7.43	8.02	7.71	7.6	7.78	7.99	7.14	6.86	6.93
Sulfate	mg/L	35	29.3	17.2	37.2	341	332	318	72.2	72.7	59.2	<5 U	<5.0 U	<0.10
Total Dissolved Solids	mg/L	1,145	1010	680	1,260	772	752	722	316	314	306	566	630	620

149 Statistically significant increase at compliance well

Notes:

- 1. UPL based on parametric prediction limit based on 1-of-2 resampling methodology for all parameters except calcium and fluoride.
- 2. UPL for fluoride is non-parametric based on quantitation limit. UPL for calcium based on non-parametric prediction limit (highest background value).
- 3. UPLs calculated from background well results for April 2016 through October 2017.

l:\25216068.00\Deliverables\2018 ASD Report No. 3\Tables\[EDG-closed- Tables 1,2, and 3.xlsx]Table 1

Table 2. Analytical Results - CCR Ponds Detection Monitoring ProgramEdgewater Generating Station, Sheboygan, Wisconsin / SCS Engineers Project #25219068.00

Well Group	Well	Collection Date	Boron (μg/L)	Field pH (Std. Units)	Fluoride (mg/L)	Sulfate (mg/L)
		4/8/2016	100	7.34	<0.2 U	19.5
		6/20/2016	22.4	7.02	<0.2 U	28.0
		8/9/2016	32.6	6.10	<0.2 U	25.4
σ		10/20/2016	43.1	6.98	<0.1 U	21.6
uno		1/24/2017	31.2	7.15	<0.1 U	23.9
kgr	2R-OW	4/6/2017	70.6	7.01	<0.1 U	17.6
Bac		6/6/2017	45.2	6.86	<0.1 U	17.8
		8/1/2017	35.7	7.00	<0.1 U	28.8
		10/23/2017	55.9	7.23	<0.1 U	29.3
		4/2/2018	19.7	7.29	0.12 J	17.2
		10/1/2018	34.7	7.03	<0.10	37.2
		4/11/2016	8,550	7.91	0.33 J	372
		6/20/2016	8,190	7.48	0.36 J	343
		8/9/2016	8,450	6.47	0.33 J	368
		10/20/2016	8,620	7.68	0.34	369
	MM 201	1/23/2017	9,280	8.03	0.42	372
	MVV-301	4/6/2017	8,370	7.98	0.21 J	367
		6/6/2017	9,160	7.70	<0.1 0	362
		8/2/2017	8,610	7.58	0.32	340
		10/24/2017	8,820	/.43	<0.1 0	341
ince		4/2/2018	/,930	8.02	0.25 J	332
plia		10/1/2018	8,230	7.71	0.2 J	318
Com		4/8/2018	2,930	0.01	1.2	/ 3.1
Ŭ		8/0/2016	2,010	7.73	1.3 1	89.0
		10/20/2016	2,000	7.80	0.8	77.2
		1/24/2017	2,130	7.07	0.0	77.2
	M/M/ 302	4/6/2017	1 970	7.70	0.075	85.8
	/////-302	6/6/2017	1,970	7.84	0.9	88.5
		8/2/2017	1,890	7.76	0.78	80.2
		10/24/2017	1 760	7.60	0.84	72.2
		4/2/2018	1,800	7.78	0.78	72.2
		10/1/2018	1,500	7.00	0.81	, <u>2.</u> , 50.2
		4/8/2016	4 210	7.77	<0.211	31
		6/20/2016	3 360	6.79	<1	1141
		8/9/2016	3 860	6.09	<0.211	241
		10/20/2016	3,000	6.07	<0.2 0	2.4 J
e		1/24/2017	3,740	6.74	<0.5 U	5.0 5
lian	MNA/ 202	1/24/2017	4,210	0.94	<0.5 0	<50
duo	/////-303	4/6/2017	4,170	0.88	<0.5 U	<5 U
ŭ		6/6/2017	4,570	/.00	<0.5 U	<5 U _
		8/2/2017	3,780	6.94	<0.5 U	<5 U
		10/24/2017	3,480	7.14	<0.5 U	<5 U
		4/2/2018	3,040	6.86	<0.5 U	<5 U
		10/1/2018	2,360	6.93	<0.10	<1.0

Table 2. Analytical Results - CCR Ponds Detection Monitoring Program Edgewater Generating Station, Sheboygan, Wisconsin / SCS Engineers Project #25219068.00

Abbreviations:

 $\mu g/L$ = micrograms per liter or parts per billion (ppb) mg/L = milligrams per liter or parts per million (ppm) -- = not analyzed

U = Not detected

J = Estimated value below laboratory's limit of quantitation (LOQ)

Notes:

1. Complete laboratory reports included in 2017 Annual Groundwater Monitoring and Corrective Action Report, Edgewater Generating Station.

Created by: NDK	Date:	3/2/2018
Last revision by: NAS	Date:	3/6/2019
Checked by: NDK	Date:	3/18/2019

I:\25216068.00\Deliverables\2018 ASD Report No. 3\Tables\[EDG-closed- Tables 1,2, and 3.xlsx]Table 2- CCR Analytical

Ground Water Elevation in feet above mean sea level (amsl)										
Well Number	MW-301	MW-302	MW-303	2R-OW						
Top of Casing Elevation (feet amsl)	604.42	615.15	611.99	612.72						
Screen Length (ft)	5.00	5.00	5.00	10.00						
Total Depth (ft from top of casing)	27.47	40.00	33.26	14.50						
Top of Well Screen Elevation (ft)	581.95	580.15	579.60							
Measurement Date										
April 8, 2016	599.75	596.19	589.04	609.68						
June 20, 2016	598.30	595.68	587.22	606.70						
August 9, 2016	598.00	595.53	587.72	605.74						
October 20, 2016	598.50	595.46	588.37	607.27						
January 23-24, 2017	597.10	596.30	588.84	609.64						
April 6, 2017	600.04	593.57	589.04	609.72						
June 6, 2017	598.77	595.86	588.44	607.63						
August 1, 2017	597.40	595.22	587.36	604.59						
October 24, 2017	597.20	595.25	587.97	601.74						
April 2, 2018	598.54	595.71	588.77	607.87						
October 1, 2018	597.60	595.28	588.17	604.61						
Bottom of Well Elevation (ft)	576.95	575.15	578.73	598.22						

Table 3. Groundwater Elevations - CCR Rule Monitoring WellsEdgewater Generating Station, Sheboygan, WisconsinSCS Engineers Project #25219068.00

Notes:

Groundwater elevations compiled from field notes during sampling events.

-- = not measured

Created by:	NDK	Date:	2/28/2018
Last rev. by:	NAS	Date:	3/6/2019
Checked by:	NDK	Date:	3/18/2019

I:\25216068.00\Deliverables\2018 ASD Report No. 3\Tables\[EDG-closed- Tables 1,2, and 3.xlsx]Table 3. GW elev - CCR

Table 4. 2016 - 2018 Groundwater Analytical Results - Closed Landfill State Monitoring Program Wells WPL - Edgewater Generating Station / SCS Project #25219068 Sheboygan, Wisconsin

Point Name	Reporting Period	ph-Field (standard units)	Boron, dissolved (μg/L as B)	Sulfate, dissolved (mg/L as SO ₄)			
Monitoring Wells							
2R-OW	2016-Apr	7.45	26.6	30.9			
2R-OW	2016-Oct	6.98	40.4	22.9			
2R-OW	2017-Apr	7.3	69.3 J	28.6			
2R-OW	2017-Oct	7.66	35.2	32.9			
2R-OW	2018-Apr	7.29	23.3	18.2			
2R-OW	2018-Oct	7.03	41.8	35.5			
3R-OW	2016-Apr	7.41	392	533			
3R-OW	2016-Oct	7.32	468	372			
3R-OW	2017-Apr	7.35	400	409			
3R-OW	2017-Oct	7.39	389	637			
3R-OW	2018-Apr	7.24	351	498			
3R-OW	2018-Oct	7.03	462	495			
4R-OW	2016-Apr	7.69	7,710	120			
4R-OW	2016-Oct	7.71	17,300	252			
4R-OW	2017-Apr	7.44	12,600	180			
4R-OW	2017-Oct	7.31	15,700	178			
4R-OW	2018-Apr	7.51	12,700	164			
4R-OW	2018-Oct	7.22	8,630	129			
5-OW	2016-Apr	7.64	4,330	215			
5-OW	2016-Oct	7.75	5,970	210			
5-OW	2017-Apr	7.51	5,490	258			
5-OW	2017-Oct	7.54	6,040	230			
5-OW	2018-Apr	7.90	3,900	143			
5-OW	2018-Oct	7.43	6,180	226			
7-0W	2016-Apr	8.14	610	255			
7-0W	2016-Oct	7.59	964	251			
7-0W	2017-Apr	8.1	761	259			
7-0W	2017-Oct	7.73	1,130	246			
7-0W	2018-Apr	8.08	818	243			
7-0W	2018-Oct	7.69	1,150	218			
29-A	2016-Apr	9.07	357	40.9			
29-A	2016-Oct	8.54	264	39.6			
29-A	2017-Apr	9.09	365	41.5			
29-A	2017-Oct	8.97	278	42.1			
29-A	2018-Apr	8.72	264	39.4			
29-A	2018-Oct	8.38	268	39.2			

Table 4. 2016 - 2018 Groundwater Analytical Results - Closed Landfill State Monitoring Program Wells WPL - Edgewater Generating Station / SCS Project #25219068 Sheboygan, Wisconsin

Point Name	Reporting Period	ph-Field (standard units)	Boron, dissolved (μg/L as B)	Sulfate, dissolved (mg/L as SO ₄)			
Monitoring Wells (continued)							
29-OW	2016-Apr	8.03	10,600	120			
29-OW	2016-Oct	7.69	10,900	85.7			
29-OW	2017-Apr	8.49	9,500	77			
29-OW	2017-Oct	8.15	9,060	62			
29-OW	2018-Apr	7.97	8,640	102			
29-OW	2018-Oct	7.84	11,000	109			
30-OW	2016-Apr	8.26	79	4.8			
30-OW	2016-Oct	7.56	113	4.6			
30-OW	2017-Apr	8.47	176	7.5			
30-OW	2017-Oct	7.44	135	16.7			
30-OW	2018-Apr	7.96	94.5	21.5			
30-OW	2018-Oct	7.47	115	11.4			
31-OW	2016-Apr	7.63	114	91.2			
31-OW	2016-Oct	7.68	35	63.3			
31-OW	2017-Apr	7.99	77	82.4			
31-OW	2017-Oct	7.79	190	70.3			
31-OW	2018-Apr	7.71	30.8	51.5			
31-OW	2018-Oct	7.64	36.7	62.7			
40-OW	2016-Apr	8.04	8,030	731			
40-OW	2016-Oct	7.91	29,400	768			
40-OW	2017-Apr	7.97	8,680	849			
40-OW	2017-Oct	7.91	8,800	873			
40-OW	2018-Apr	7.93	9,790	771			
40-OW	2018-Oct	7.51	11,300	797			
Leachate Monitoring Wells							
37-OW	2016-Apr	7.49	19,100	759			
37-OW	2016-Oct	7.31	12,500	439			
37-OW	2017-Apr	8.01	15,900	633			
37-OW	2017-Oct	7.24	9,440	264			
37-OW	2018-Apr	7.68	5,890	159			
37-OW	2018-Oct	7.42	16,600	555			
38R-OW	2016-Apr	8.00	33,800	1,000			
38R-OW	2016-Oct	7.71	17,100	514			
38R-OW	2017-Apr	7.86	21,100	932			
38R-OW	2017-Oct	7.72	10,800	364			
38R-OW	2018-Apr	7.72	4,250	123			
38R-OW	2018-Oct	7.98	32,400	956			
Table 4. 2016 - 2018 Groundwater Analytical Results - Closed Landfill State Monitoring Program Wells WPL - Edgewater Generating Station / SCS Project #25219068 Sheboygan, Wisconsin

Point Name	Reporting Period	ph-Field (standard units)	Boron, dissolved (μg/L as B)	Sulfate, dissolved (mg/L as SO ₄)			
Leachate Monitoring Wells (continued)							
39R-OW	2016-Apr	7.26	10,100	534			
39R-OW	2016-Oct	7.32	29,900	1,390			
39R-OW	2017-Apr	7.44	22,400	1,150			
39R-OW	2017-Oct	7.52	32,800	1,400			
39R-OW	2018-Apr	7.76	28,800	772			
39R-OW	2018-Oct	7.4	24,700	1,160			

Abbreviations:

 $\mu g/L$ = micrograms per liter or parts per billion (ppb) mg/L = milligrams per liter or parts per million (ppm) -- : not measured MSL = mean sea level

Notes: -- : not measured

Laboratory Notes:

J: Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

Created by:	SCC	Date: 2/24/2014
Last revision by:	NDK	Date: 3/18/2019
Checked by:	MDB	Date: 3/18/2019

I:\25216068.00\Deliverables\2018 ASD Report No. 3\Tables\[EDG-closed- Tables 1,2, and 3.xlsx]Table 4. GW quality Data

Table 5. Analytical Results - Closed Landfill Leachate Fluoride MonitoringEdgewater Generating Station, Sheboygan, WisconsinSCS Engineers Project #25216068.00

Collection Date	Fluoride (mg/L)								
Collection Date	36-OW	37-OW	38R-OW	39R-OW					
9/8/1994	0.25	0.62	0.57	0.79					
9/14/1995	0.38	0.51	0.71	0.87					
9/17/1996	0.56	0.42	0.71	0.97					
9/16/1997	0.60	0.44	0.73	0.97					

Abbreviations:

mg/L = milligrams per liter or parts per million (ppm)

Notes:

1. Data compiled from WDNR Groundwater Environmental Monitoring System (GEMS) website.

Created by:	NDK	Date:	3/5/2018
Last revision by:	NDK	Date:	3/5/2018
Checked by:	AJR	Date:	4/5/2018
· -		-	/ /

I:\25216068.00\Reports\2018 ASD Report No. 2\Tables\[EDG-closed- Tables 1,2, and 3.xlsx]Table 5- FI resu

Figures

- 1 Site Location Map
- 2 Monitoring Well Location Map
- 3 Water Table Map October 1, 2018

I:\25216068.00\Drawings\Site Loc.dwg, 4/9/2019 11:19:08 AM

LEGEND

\oplus	ABANDONED MONITORING WELL					
Ð	MONITORING WELL					
۲	PIEZOMETER					
•	CCR RULE MONITORING WELL					
	CCR RULE LIMITS					
	CLOSED LANDFILL LIMITS					

Ν

NOTES:

Ν

- 1. AERIAL PHOTOGRAPH FROM THE NATIONAL AGRICULTURE IMAGERY PROGRAM AND PUBLISHED BY THE USDA FSA AERIAL PHOTOGRAPHY FIELD OFFICE. DATE OF IMAGE IS OCTOBER 1, 2013.
- 2. EXISTING WELL LOCATIONS ARE APPROXIMATE AND ARE BASED ON OCTOBER 2011 WATER TABLE MAP PREPARED BY TRC.
- 3. DESIGN MANAGEMENT ZONE LOCATION IS APPROXIMATE.
- 4. NEW MONITORING WELL LOCATIONS WERE SURVEYED BY CQM, INC. ON FEBRUARY 12, 2016.

Appendix A

Trend Plots for CCR Wells

WPL - Edgewater Closed

B2 Alternative Source Demonstration, April 2019 Detection Monitoring

Alternative Source Demonstration April 2019 Detection Monitoring

Edgewater Generating Station Sheboygan, Wisconsin

Prepared for:

25219068.00 | October 14, 2019

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830 Table of Contents

Sect	ion		Pa	ge			
PE Ce	ertifica	ation		. iii			
1.0	Intro	duction		1			
	1.1	§257.9	4(E)(2) Alternative Source Demonstration Requirements	1			
	1.2	Site Info	ormation and Map	1			
	1.3	Statistic	cally Significant Increases Identified	2			
	1.4	Overvie	w of Alternative Source Demonstration	2			
2.0	Back	ground.		2			
	2.1	Regiona	al Geology and Hydrogeology	3			
	2.2	CCR Mo	onitoring System	3			
	2.3	Other M	Ionitoring Wells	3			
	2.4	Ground	water Flow Direction	3			
3.0	Meth	odology	and Analysis Review	4			
	3.1	Sampli	ng and Field Analysis Review	4			
	3.2	Laborat	tory Analysis Review	4			
	3.3	Statistic	cal Evaluation Review	5			
	3.4	Summa	ary of Methodology and Analysis Review Findings	5			
4.0	Alteri	native So	ources	5			
	4.1	Potentia	al Causes of SSI	5			
		4.1.1	Natural Variation	5			
		4.1.2	Man-Made Alternative Sources	6			
	4.2	Lines of	f Evidences	6			
		4.2.1	Previous CCR Pond and Landfill Study	7			
		4.2.2	CCR Constituents in Landfill Leachate	8			
		4.2.3	State Program Groundwater Monitoring Results	8			
5.0	Alteri	native So	ource Demonstration Conclusions	9			
6.0	5.0 Site Groundwater Monitoring Recommendations						
7.0	Refe	rences		9			

Tables

Table 1	Detection Monitoring Results Summary -	October 2017 - April 2019

- Analytical Results CCR Ponds Detection Monitoring Program Groundwater Elevations CCR Rule Monitoring Wells Table 2
- Table 3
- Analytical Results Closed Landfill State Monitoring Program Wells Table 4
- Analytical Results Closed Landfill Leachate Fluoride Monitoring Table 5

Figures

Figure 1. Site Location Map

- Figure 2. Monitoring Well Location Map Water Table Map – April 2019
- Figure 3.

Appendix

Appendix A Trend Plots for CCR Wells

I:\25219068.00\Deliverables\2019 April ASD EDG\191014_EDG_No.4_April ASD.docx

PE CERTIFICATION

MINING COASTAN	I, Sherren Clark, hereby certify that that the information in this alternate source demonstration is accurate and meets the requirements of 40 CFR 257.94(e)(2). This certification is based on my review of the groundwater data and related site information available for the Edgewater Generating Station Ash Ponds. I am a duly licensed Professional Engineer under the laws of the State of Wisconsin.
* Clark E-29863 Madison, Wis.	Sherven Clark
acounter to history	(printed or typed name) License number <u>E-29863</u>
5	My license renewal date is July 31, 2020.
	Pages or sheets covered by this seal:
	Alternative Source Demonstration – April 2019 Detection Monitoring, Edgewater Generating Station, Sheboygan Wisconsin (Entire Document)

[This page left blank intentionally]

1.0 INTRODUCTION

This Alternative Source Demonstration (ASD) was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" published by the U.S. Environmental Protection Agency (USEPA) in the *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule,* dated April 17, 2015 (USEPA, 2015), and subsequent amendments. Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.94(e)(2). The applicable sections of the Rule are provided below in *italics*.

1.1 §257.94(E)(2) ALTERNATIVE SOURCE DEMONSTRATION REQUIREMENTS

The owner and operator may demonstrate that a source other than the CCR Unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels.

An ASD is completed when there are exceedances of one or more benchmarks established within the groundwater monitoring program. The ASD is completed to determine if any other sources are likely causes of the identified exceedance(s) of established benchmark(s) at the site. This ASD was performed in response to results indicating a statistically significant increase (SSI) over background levels during detection monitoring under the CCR Rule.

This ASD report is evaluating the SSIs observed in the statistical evaluation of the April 2019 detection monitoring event at the Edgewater Generating Station (EDG). The first ASD was prepared for this facility evaluating the SSIs observed in the statistical evaluation of the October 2017 detection monitoring event (SCS Engineers [SCS], 2018b). The October 2017 ASD and subsequent semiannual updates have concluded that several lines of evidence demonstrate that SSIs reported for boron, fluoride, pH, and sulfate concentrations in the downgradient monitoring wells (MW-301, MW-302, and MW 303) were likely due to leachate from the closed landfill, which is not subject to the requirements of 40 CFR 257.50-107.

As discussed in more detail in **Section 4.2** of this ASD, the findings for the April 2019 monitoring event were consistent with those for the previous events.

1.2 SITE INFORMATION AND MAP

EDG is located at 3739 Lakeshore Drive in Sheboygan, Sheboygan County, Wisconsin (**Figure 1**). EDG is an active coal-burning generating station. The EDG property includes a closed landfill and a series of CCR settling ponds, located on the opposite side of Lakeshore Drive from the plant itself (**Figure 1**). The EDG landfill is closed and no longer receives CCR. The groundwater monitoring system at EDG is a multi-unit system. EDG has four existing CCR Units which are contiguous:

- EDG Slag Pond (existing CCR surface impoundment)
- EDG North A-Pond (existing CCR surface impoundment)
- EDG South A- Pond (existing CCR surface impoundment)
- EDG B-Pond (existing surface CCR impoundment)

A map showing the CCR Units and all background (or upgradient) and downgradient monitoring wells with identification numbers for the groundwater monitoring program is provided as **Figure 2**.

The closed CCR landfill (Wisconsin Department of Natural Resources [WDNR] Permit No. 2524) is located immediately west of the ponds. The landfill contains primarily fly ash with some slag, and was closed in 1987. Because this CCR landfill did not accept CCR after October 19, 2015, the landfill is not subject to the requirements of 40 CFR 257.50-107. The closed landfill is unlined and is known to be impacting groundwater at the site (SCS, 2016). Previous investigations done at the site (BT2, Inc., 1993; RMT, 1997) concluded that the groundwater impacts downgradient of the landfill and ponds were attributable to groundwater interaction with the landfill, rather than leakage from the ponds.

1.3 STATISTICALLY SIGNIFICANT INCREASES IDENTIFIED

SSIs were identified for boron, fluoride, field pH, and sulfate at one or more wells based on the April 2019 detection monitoring event. A summary of the April 2019 constituent concentrations and the established benchmark concentrations is provided in **Table 1**. The October 2017, April 2018, and October 2018 results are also included for comparison. The constituent concentrations with SSIs above the background concentration are highlighted in the table.

1.4 OVERVIEW OF ALTERNATIVE SOURCE DEMONSTRATION

This ASD report includes:

- Background information (Section 2.0)
- Evaluation of potential that SSIs are due to methodology or analysis (Section 3.0)
- Evaluation of potential that SSIs are due to natural sources or man-made sources other than the CCR Units (Section 4.0)
- ASD conclusions (Section 5.0)
- Monitoring recommendations (**Section 6.0**)

The boron, field pH, fluoride, and sulfate results from background and compliance sampling are provided in **Table 2**. The laboratory report for the April 2019 detection monitoring event will be included in the 2019 annual groundwater monitoring and corrective action report submitted in January 2020. Complete laboratory reports for the background monitoring events and previous detection monitoring events were included in the previous annual groundwater monitoring and corrective action reports.

2.0 BACKGROUND

To provide context for the ASD evaluation, the following background information is provided in this section of the report, prior to the ASD evaluation sections:

- Geologic and hydrogeologic setting
- CCR Rule monitoring system
- Other monitoring wells
- Groundwater Flow Direction

A more detailed discussion of the background information for the site is provided in the ASD for the October 2017 event (SCS, 2018b).

2.1 REGIONAL GEOLOGY AND HYDROGEOLOGY

For the purposes of groundwater monitoring, the unconsolidated sand and gravel aquifer is considered to be the uppermost aquifer, as defined under 40 CFR 257.53, at the EDG ponds. The sand and gravel aquifer is present in some parts of Sheboygan County (Skinner and Borman, 1973). Boring logs from monitoring wells at the EDG ponds and for nearby private wells indicate that the unconsolidated material at, and near, the site contains a significant amount of sand. Private well logs from the surrounding area indicate that the sand and gravel aquifer has been used as a water source; however, several older sand wells in the area have been replaced with bedrock water supply wells.

The dolomite aquifer underlies the unconsolidated material at the site. The total thickness of the dolomite aquifer at the site is unknown. The dolomite aquifer is underlain by the Maquoketa shale, which is a confining unit. The Maquoketa shale is underlain by the Cambrian-Ordovician sandstone aquifer. This sequence of sedimentary bedrock units is over 1,500 feet thick in the site vicinity.

The regional groundwater flow in the unconsolidated sand and gravel aquifer in the vicinity of the site, is to the east and slight southeast.

2.2 CCR MONITORING SYSTEM

The groundwater monitoring system established under the CCR Rule consists of one upgradient (background) monitoring well and three downgradient monitoring wells, as shown on **Figure 2**. The upgradient monitoring well is 2R-OW. The downgradient monitoring wells include MW-301, MW-302, and MW-303. The CCR compliance monitoring wells were installed in the unconsolidated sediments with screens in the uppermost soil layer producing appreciable water, which was a sandy silt unit. Well depths range from approximately 14.5 to 40 feet, measured from the top of the well casing.

2.3 OTHER MONITORING WELLS

Sixteen groundwater monitoring wells currently exist at the EDG site as part of the monitoring system developed for the state monitoring program for the closed landfill. The well locations are shown on **Figure 2**. These monitoring wells are used to monitor groundwater conditions at the site under the WDNR state monitoring program.

Monitoring wells for the state monitoring program are installed in the unconsolidated material at the site. This shallow monitoring system includes water table wells and piezometers. Well depths range from approximately 9 to 43 feet, measured from the top of the well casing.

2.4 GROUNDWATER FLOW DIRECTION

Shallow groundwater in the area of the EDG site generally flows to the south-southeast, toward Fish Creek, which discharges into Lake Michigan. There is some localized groundwater mounding associated with the EDG ponds. The water table map shown on **Figure 3** represents the site conditions of the unconsolidated deposits during the April 2019 detection monitoring event. The water table map shows a generally southward flow direction, with localized groundwater mounding in the area of the EDG ponds. The groundwater elevations at the CCR wells during the April 2019 detection monitoring event are in **Table 3**.

3.0 METHODOLOGY AND ANALYSIS REVIEW

To evaluate the potential that an SSI is due to a source other than the regulated CCR Unit, SCS used a two-step evaluation process. First, the sample collection, field and laboratory analysis, and statistical evaluation were reviewed to identify any potential error or analysis that led to exceedance of the benchmark. Second, potential alternative sources, including natural variation and man-made sources other than the CCR unit, were evaluated. This section of the report provides the findings of the methodology and analysis review. **Section 4.0** of the report addresses the potential alternative sources.

3.1 SAMPLING AND FIELD ANALYSIS REVIEW

Field notes and sampling results were reviewed to determine if any sampling error may have caused or contributed to the observed SSIs. Potential field sampling errors or issues could include mislabeling of samples, improper sample handling, missed holding times, cross contamination during sampling, or other field error. Field blank sample results were also reviewed for any indication of potential contamination from sampling equipment or containers. Based on the review of the field notes and results, SCS did not identify any indication that the SSI concentrations were due to a sampling error.

The field pH trend plots were also reviewed for any anomalous results that might indicate a possible sampling or field analysis error (e.g., calibration error or incorrect sample identification). The time series plots are provided in **Appendix A**. The field pH results reported for all wells for the August 2016 background monitoring event were anomalously low, which is most likely due to a calibration error or other problem with the field pH meter for that event. During the statistical evaluation of the background data from well 2R-OW to develop the Upper Prediction Limit (UPL) for field pH, the August 2016 field pH result was identified as an outlier and was not used in the UPL calculation. Although the compliance wells also had outlier pH results for August 2016, the anomalous results for those wells were not considered when evaluating SSI determinations for the April 2019 detection monitoring, because an interwell analysis was used for the SSI evaluation, comparing current compliance well results to UPLs based on background well results.

The field pH result for background well 2R-OW was anomalously high in the April 2019 sampling. This result does not affect the statistical evaluation because the current background data set only includes results through October 2017. The result will be evaluated as a possible outlier when the background data set is updated in the future.

Because boron, fluoride, and sulfate are laboratory parameters, there is little potential for a field analysis error to contribute to an SSI.

3.2 LABORATORY ANALYSIS REVIEW

The laboratory report for the April 2019 detection monitoring was reviewed to evaluate whether any laboratory analysis error or issue may have caused or contributed to the observed SSIs for boron, fluoride, or sulfate. The laboratory report review included reviewing the laboratory quality control flags and narrative, verifying that correct methods were used and desired detection limits were achieved, and checking the field and laboratory blank sample results. Laboratory reports for the background monitoring events were reviewed for the October 2017 ASD. Laboratory reports for subsequent detection monitoring events were reviewed as part of the ASD preparation for each event.

Based on the review of the laboratory reports, SCS did not identify any indication that the SSI concentrations were due to a laboratory analysis error. There were no laboratory quality control flags or issues identified in the laboratory reports that affect the usability of the data for detection monitoring.

Time series plots of the analytical data were also reviewed for any anomalous results that might indicate a possible sampling or laboratory error (e.g., dilution error or incorrect sample labeling). Time series plots for the parameters with SSIs are provided in **Appendix A**. No indications of sampling or laboratory errors were noted based on the time series review. The April 2019 boron, pH, fluoride, and sulfate results for MW-301, MW-302, and MW-303 are consistent with the historical data.

3.3 STATISTICAL EVALUATION REVIEW

The review of the statistical results and methods includes a quality control check of the following:

- Input analytical data vs. laboratory analytical reports
- Review statistical method and outlier concentration lists for each monitoring well/CCR
 Unit

Based on the review of the statistical evaluation, SCS did not identify any errors or issues in the statistical evaluation that caused or contributed to the determination of interwell SSIs for the April 2019 detection monitoring event.

3.4 SUMMARY OF METHODOLOGY AND ANALYSIS REVIEW FINDINGS

In summary, there were no changes to the SSI determinations for the April 2019 monitoring event based on the methodology and analysis review, and no errors or issues causing or contributing to the reported SSIs were identified.

4.0 ALTERNATIVE SOURCES

This section of the report discusses the potential alternative sources for the boron, sulfate, field pH, and fluoride SSIs at MW-301, MW-302, and MW-303; identifies the most likely alternative source(s); and presents the lines of evidence indicating that an alternative source is most likely the cause of the observed SSIs for boron, sulfate, field pH, and fluoride.

4.1 POTENTIAL CAUSES OF SSI

4.1.1 Natural Variation

The statistical analysis was completed using an interwell approach, comparing the April 2019 detection monitoring results to the UPLs calculated based on sampling of the background well (2R-OW). If concentrations of a constituent that is naturally present in the aquifer vary spatially, then the potential exists that the downgradient concentrations may be higher than upgradient concentrations due to natural variation.

Although natural variation is present in the shallow aquifer, it does not appear likely that natural variation is the primary source causing the boron and sulfate SSIs. These parameters were detected at higher concentrations than would likely be present naturally.

Natural variation may have contributed to the SSIs for pH at MW-301 and MW-302. The UPL was calculated based on pH results at background well 2R-OW for the eight CCR Rule background monitoring events and the October 24, 2017, detection monitoring event. Based on these results the calculated UPL was 7.47, and the reported pH at MW-301 was 8.18 and at MW 302 was 7.98. Although the results exceed the UPL, the historical pH results for 2R-OW include pH values up to 7.98, indicating variability in the background, and the April 2019 pH result for 2R-OW was 8.57. This suggests that the SSIs for pH may be partially or completely due to natural variation.

Natural variation may also have caused or contributed to the SSI for fluoride at MW-302. Elevated natural fluoride concentrations significantly higher than those reported for the downgradient wells (above 2 milligrams per liter [mg/L]) have been observed in a region in eastern Wisconsin extending along the Lake Michigan shoreline from Kewaunee County in the north to the Illinois border in the south, as described Luczaj, J., and Masarik, K, 2015, *Groundwater Quantity and Quality Issues in a Water-Rich Region: Examples from Wisconsin, USA*. The authors note that most of the wells with elevated fluoride appear to be drawing from the Pleistocene glacial sediments and Silurian dolomite units. Skinner and Borman (1973) and Kammerer (1995) also identify the Lake Michigan shoreline area of eastern Wisconsin as having somewhat elevated fluoride concentrations in groundwater.

The fluoride concentrations reported for MW-302 for October 2017 through April 2019 were just above the laboratory's limit of quantitation (LOQ), at 0.84 mg/L in October 2017, 0.78 mg/L in April 2018, 0.81 mg/L in October 2018, and 0.87 mg/L in April 2019. These results are within the range of reported natural concentrations, indicating that the fluoride concentration observed in this well is likely due to natural variability in the glacial sediments and shallow groundwater. As discussed below, there is also a potential that fluoride in MW-302 is associated with impacts from the closed CCR landfill.

4.1.2 Man-Made Alternative Sources

Man-made alternative sources that could potentially contribute to the boron, fluoride, pH, and sulfate SSIs could include the closed CCR landfill, the coal storage area, or other plant operations. Based on the groundwater flow directions and on previous investigations at the site, the closed landfill appears to be the most likely cause of the SSIs for wells MW-301, MW-302, and MW-303.

4.2 LINES OF EVIDENCES

The lines of evidence indicating that the SSIs for boron, sulfate, fluoride, and pH in compliance wells MW-301, MW-302, and MW-303, relative to the background well, are due to an alternative source include:

- 1. A previous study of the CCR ponds and the closed CCR landfill determined that the landfill was the primary source of groundwater impacts in the area, based on multiple lines of evidence.
- 2. Past and current monitoring performed under the state monitoring program shows that boron, sulfate, fluoride, and elevated pH are all present in the CCR landfill leachate.
- 3. Past and current monitoring performed under the state monitoring program shows that the highest boron and sulfate concentrations are in the monitoring wells near and downgradient from the CCR landfill.

Lines of evidence regarding natural variability as an additional alternative source of the fluoride and pH SSIs are discussed above in **Section 4.1.1**.

Each of these lines of evidence and the supporting data were discussed in detail in the ASD for the April 2019 detection monitoring event (SCS, 2018b). The lines of evidence are discussed briefly below, focusing on any updated information collected since the previous ASDs.

4.2.1 Previous CCR Pond and Landfill Study

A previous investigation titled *Field Investigation Report: Edgewater Closed Ash Disposal Facility*, completed by BT² in 1993, found that groundwater impacts were likely due to the closed landfill (**Figure 2**) located immediately west of the ponds (BT², 1993). The purpose of the 1993 investigation was to investigate the likely impact on groundwater quality of lining or abandoning the CCR impoundments (referred to in the report as the Wisconsin Pollutant Discharge Elimination System [WPDES] lagoons). The results from the investigation indicated that the CCR impoundments were not the primary source of downgradient groundwater impacts, and that closure or lining was not warranted. The WDNR concurred with that finding in a letter dated April 20, 1994.

The primary lines of evidence from the 1993 report that supported this finding, and support the ASD for boron, sulfate, fluoride, and pH, included:

- Water samples collected from each of the ponds met the Wisconsin groundwater enforcement standards established under NR 140, Wisconsin Administrative Code.
- Soil borings installed in the material below the larger ash pond, where the slag pond and the WDPES lagoons (North Pond A and South Pond A) were constructed is almost entirely slag material. Water leaking out of the lagoons and moving downward would encounter primarily slag, which is relatively inert, and not fly ash. Additionally, results for water leach testing of site-wide composite samples of fly ash and slag confirmed that the fly ash had a higher potential than slag to impact groundwater. Water leach test results for the fly ash composite sample were higher for boron, sulfate, fluoride, and pH in comparison to the slag composite sample.
- Water leach testing for individual boring samples of fly ash and/or slag also confirmed that fly ash leachate had significantly higher concentrations of boron and sulfate than slag leachate. Boron leach test results for nine samples from borings around and between the ponds, consisting mainly of slag, ranged from less than 16 to 206 µg/L.
- Water sampling within the landfill and pond area, in CCR above the native soil, documented that groundwater/leachate within the landfill had significantly higher concentrations of boron than the groundwater/leachate within the slag berms immediately adjacent to and between the Slag Pond, North/South Pond A, and Pond B.
- Groundwater monitoring results indicated that the highest concentrations of boron and sulfate were in monitoring wells downgradient from the landfill, including 18-OW and 29-OW. Elevated boron and sulfate were also reported for samples from wells 4-OW and 5-OW, located near the southwest and northwest corners of the landfill. Monitoring wells 6-OW and 7-OW, located east and southeast of the ponds, had much lower concentrations of boron and sulfate.

In the April 1994 approval letter, the WDNR approved the 1993 investigation of the WPDES lagoons/CCR impoundments and concurred with the findings of the report. The WDNR requested additional monitoring from the four new monitoring wells installed within the CCR (36-OW, 37-OW, 38R-OW, and 39R-OW) and requested the addition of fluoride and arsenic to the monitoring program for these groundwater/leachate head wells.

The results of the additional monitoring were reported to the WDNR in a Groundwater Assessment Report dated September 30, 1997. The WDNR responded to the 1997 report in a letter dated April 16, 1998, which stated, "We agree with the report's finding that the WPDES ponds [Slag Pond, North Pond A, and South Pond A] do not appear to be significantly contributing to the contaminant plume downgradient of the facility. No further remedial action concerning the influence of the ponds on the landfill is warranted at this time." The WDNR also noted that the leachable constituents migrating from the saturated portion of the closed landfill have stabilized or also decreased since the landfill's closure and capping.

4.2.2 CCR Constituents in Landfill Leachate

Past and current monitoring performed under the state monitoring program shows that boron, sulfate, fluoride, and elevated pH are all present in the CCR landfill leachate. Recent groundwater and leachate monitoring results for boron, sulfate, and pH in samples from the state monitoring program wells are summarized in **Table 4** (April 2016 through April 2019). The leachate head wells monitoring conditions within the CCR landfill are 37-OW, 38R-OW, and 39R-OW, listed near the end of the table.

Boron: Boron concentrations in samples from leachate head wells 37-OW, 38R-OW, and 39R-OW have generally exceeded those reported for the CCR monitoring wells.

Sulfate: Sulfate concentrations in samples from, leachate head wells 37-OW, 38R-OW, and 39R-OW have generally exceeded those reported for the CCR monitoring wells.

Field pH: Field pH results for the three leachate head wells continue to have pH measurements that are slightly higher than the pH UPL calculated from the well 2R-OW background data. Thirteen of the 21 leachate field pH readings for April 2016 through April 2019 were higher than the calculated UPL. While slightly higher pH values were reported for the CCR well samples in April 2019, the range of pH values for the CCR compliance wells has generally been similar to recent pH results for leachate wells 37-OW and 38R-OW. Historically pH values at leachate head well 39R-OW were in the range of 8 to 9, but pH has followed a gradual decreasing trend at this well since routine monitoring began in 1994.

Fluoride: Fluoride is not part of the routine state monitoring program for the closed CCR landfill, but was sampled from the leachate wells (37-OW, 38R-OW, and 39R-OW) and the pond berm well (36-OW) from 1994 to 1997, as requested by the WDNR. The fluoride concentrations ranged from 0.25 to 0.97 mg/L (**Table 5**). Three of the four historic fluoride results from leachate head well 39R-OW equal or exceed the April 2019 fluoride concentration for MW-302.

Based on these results, fly ash disposal in the closed CCR landfill is a likely historical source of elevated boron, sulfate, pH, and fluoride.

4.2.3 State Program Groundwater Monitoring Results

Current monitoring performed under the state monitoring program continues to show that the highest boron and sulfate concentrations are in the monitoring wells near and downgradient from the CCR landfill. State program monitoring results for the CCR Rule detection monitoring parameters that overlap with the state program are summarized in **Table 4**, and well locations are on **Figure 2**.

Consistent with the conditions observed at the time of the 1993 report, the recent groundwater monitoring results indicate that the highest concentrations of boron and sulfate are in monitoring

wells downgradient from the landfill, including 18-OW (recently replaced by 40-OW) and 29-OW. Elevated boron and sulfate also continue to be reported for samples from wells 4-OW and 5-OW, located near the southwest and northwest corners of the landfill.

5.0 ALTERNATIVE SOURCE DEMONSTRATION CONCLUSIONS

The lines of evidence discussed above regarding the SSIs reported for boron, fluoride, field pH, and sulfate concentrations in downgradient monitoring wells MW-301, MW-302, and/or MW 303 demonstrate that the SSIs are likely primarily due to leachate from the closed landfill, which is not subject to the requirements of 40 CFR 257.50-107. The landfill is regulated by the WDNR under the solid waste program. The SSIs for fluoride and field pH at MW-301 and MW 302 may also be partially due to natural variability within the glacial sediment aquifer.

6.0 SITE GROUNDWATER MONITORING RECOMMENDATIONS

In accordance with section 257.94(e)(2) of the CCR Rule, the EDG pond site may continue with detection monitoring based on this ASD. The ASD report will be included in the 2019 Annual Report due January 31, 2020

7.0 REFERENCES

BT², Inc., 1993, Field Investigation Report, Edgewater Closed Ash Disposal Facility, Wisconsin Power & Light Company, WDNR License #2524, June 1993.

Kammerer, P.A. Jr., 1995, Ground-Water Flow and Quality in Wisconsin's Shallow Aquifer System, U.S. Geological Survey, Water-Resources Investigations Report 90-4171.

Luczaj, J., and Masarik, K, 2015, Groundwater Quantity and Quality Issues in a Water-Rich Region: Examples from Wisconsin, USA: Resources, 2015, 4, 323-357.

RMT, Inc., 1997, Groundwater Assessment Report, Edgewater Closed Ash Disposal Facility, September 30, 1997.

SCS Engineers, 2019, 2018 Annual Groundwater Monitoring and Corrective Action Report, Edgewater Generating Station, January 2019.

SCS Engineers, 2018a, 2017 Annual Groundwater Monitoring and Corrective Action Report, Edgewater Generating Station, January 2018.

SCS Engineers, 2018b, Alternative Source Demonstration, October 2017 Monitoring Event, Edgewater Generating Station, April 2018.

SCS Engineers, 2016, Biennial Groundwater Monitoring Report for 2014-2015, Wisconsin Power and Light Company – Edgewater 1-4 (Closed) Ash Disposal Facility, Sheboygan, Wisconsin, License #02524, March 2016.

Skinner, Earl L. and Ronald G. Borman, 1973, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigation Atlas HA-432.

U.S. Environmental Protection Agency, 2015, Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. April 2015.

[This page left blank intentionally]

Tables

- 1 Detection Monitoring Results Summary October 2017 April 2019
- 2 Analytical Results CCR Ponds Detection Monitoring Program
- 3 Groundwater Elevations CCR Rule Monitoring Wells
- 4 Analytical Results Closed Landfill State Monitoring Program Wells
- 5 Analytical Results Closed Landfill Leachate Fluoride Monitoring

Table 1. Detection Monitoring Results Summary - October 2017 - April 2019Edgewater Generating Station, Sheboygan, Wisconsin / SCS Engineers Project #25219068.00

Parameter Name	Units	Interwell Upper Prediction Limit	Background Well			Compliance Wells												
		(UPL)		2R-OW				MW	-301			MW	-302			MW-	303	
			10/24/2017	4/2/2018	10/1/2018	4/8/2019	10/24/2017	4/2/2018	10/1/2018	4/8/2019	10/24/2017	4/2/2018	10/1/2018	4/8/2019	10/24/2017	4/2/2018	10/1/2018	4/8/2019
Boron	ug/L	107	55.9	19.7	34.7	35.8	8,820	7,950	8,230	7,310	1,760	1,800	1,570	1,670	3,480	3,040	2,360	2,930
Calcium	mg/L	206,247	170,000	121,000	190,000	121,000	87,200	78,900	88,800	77,500	68,100	68,000	64,700	64,800	173,000	146,000	139,000	135,000
Chloride	mg/L	378	305	108	462	55.3	11.9	11.2	11.5	11.4	18.9	18.5	18.6	18.4	20.4	19.7	4.3	20
Fluoride	mg/L	LOQ (varies by well)	<0.1 U	0.12 J	<0.10	<0.10	<0.1 U	0.25 J	0.2 J	0.29	0.84	0.78	0.81	0.87	<0.5 U	<0.5 U	<0.10	<0.50
Field pH	Std. Units	7.47	7.23	7.29	7.03	8.57	7.43	8.02	7.71	8.18	7.6	7.78	7.99	7.98	7.14	6.86	6.93	7.15
Sulfate	mg/L	35	29.3	17.2	37.2	10.6	341	332	318	322	72.2	72.7	59.2	71.7	<5 U	<5.0 U	<0.10	<5.0
Total Dissolved	mg/L	1,145	1010	680	1,260	610	772	752	722	724	316	314	306	324	566	630	620	668

NDK

AJR

Date: 8/16/2019

Date: 8/19/2019

Updated:

Checked By:

149 Statistically significant increase at compliance well

Notes:

1. UPL based on parametric prediction limit based on 1-of-2 resampling methodology for all parameters except calcium and fluoride.

2. UPL for fluoride is non-parametric based on quantitation limit. UPL for calcium based on non-parametric prediction limit (highest background value).

3. UPLs calculated from background well results for April 2016 through October 2017.

I:\25219068.00\Deliverables\2019 April ASD EDG\Tables\[EDG-closed-Tables 1,2,3,4,5.xlsx]Table 1

Table 2. Analytical Results - CCR Ponds Detection Monitoring ProgramEdgewater Generating Station, Sheboygan, Wisconsin / SCS Engineers Project #25219068.00

Well Group	Well	Collection Date	Boron (µg/L)	Field pH (Std. Units)	Fluoride (mg/L)	Sulfate (mg/L)
		4/8/2016	100	7.34	<0.2 U	19.5
		6/20/2016	22.4	7.02	<0.2 U	28.0
		8/9/2016	32.6	6.10	<0.2 U	25.4
75		10/20/2016	43.1	6.98	<0.1 U	21.6
nnc		1/24/2017	31.2	7.15	<0.1 U	23.9
īo	2R-OW	4/6/2017	70.6	7.01	<0.1 U	17.6
		6/6/2017	45.2	6.86	<0.1 U	17.8
Bac		8/1/2017	35.7	7.00	<0.1 U	28.8
		10/23/2017	55.9	7.23	<0.1 U	29.3
		4/2/2018	19.7	7.29	0.12 J	17.2
		10/1/2018	34./	/.03	<0.1 U	37.2
		4/8/2019	35.8	8.5/	<0.1 U	10.6
		4/11/2016	8,550	7.91	0.33 J	372
		6/20/2016	8,190	/.48	0.36 J	343
		8/9/2016	8,450	6.4/	0.33 J	368
		10/20/2016	8,620	/.68	0.34	369
		1/23/2017	9,280	8.03	0.42	3/2
	MW-301	4/6/2017	8,3/0	7.98	0.21 J	36/
		6/6/2017	9,160	7.70	<0.1 0	362
		0/2/2017	0,010	7.30	0.32	340
		10/24/2017	7 950	7.43	-0.1 U	330
		10/1/2018	8 230	7 71	0.25 J	318
		4/8/2019	7,310	8.18	0.2 J	322
		4/8/2016	1.950	8.01	0.83	75.1
		6/20/2016	2.010	7.73	1.3.1	89.6
		8/9/2016	2,000	6.55	0.8	80.7
		10/20/2016	2,150	7.89	0.8	77.2
۵) ا		1/24/2017	2,000	7.98	0.89 J	71.1
UC6		4/6/2017	1,970	7.99	0.76	85.8
	MW-302	6/6/2017	1,970	7.84	0.9	88.5
d E		8/2/2017	1,890	7.76	0.78	80.2
Ō		10/24/2017	1,760	7.60	0.84	72.2
Ŭ		4/2/2018	1,800	7.78	0.78	72.7
		10/1/2018	1.570	7.99	0.81	59.2
		4/8/2019	1 670	7 98	0.87	71.7
		4/8/2016	4,210	7.04	<0.2 U	3.1
		6/20/2016	3 360	6 79	<111	11 4 1
		8/0/2014	3,000	4.00	<0.211	241
		10/20/2017	3,000	0.07	<0.2 U	2.4 J
		10/20/2016	3,740	6.94	<0.5 U	5.6 J
		1/24/2017	4,210	6.94	<0.5 0	<5 U
	MW-303	4/6/2017	4,170	6.88	<0.5 0	<5 U
		6/6/2017	4,570	7.00	<0.5 U	<5 U
		8/2/2017	3,780	6.94	<0.5 U	<5 U
		10/24/2017	3,480	7.14	<0.5 U	<5 U
		4/2/2018	3,040	6.86	<0.5 U	<5 U
		10/1/2018	2,360	6.93	<0.10 U	<1.0 U
		4/8/2019	2,930	7.15	<0.5 U	<5.0 U

Table 2. Analytical Results - CCR Ponds Detection Monitoring ProgramEdgewater Generating Station, Sheboygan, Wisconsin / SCS Engineers Project #25219068.00

Abbreviations:

 μ g/L = micrograms per liter or parts per billion (ppb) mg/L = milligrams per liter or parts per million (ppm) -- = not analyzed U = Not detected J = Estimated value below laboratory's limit of quantitation (LOQ)

Notes:

1. Complete laboratory reports included in 2017 Annual Groundwater Monitoring and Corrective Action Report, Edgewater Generating Station.

Created by:	NDK	Date:	3/2/2018
Last revision by:	NDK	Date:	8/16/2019
Checked by:	AJR	Date:	8/19/2019

I:\25219068.00\Deliverables\2019 April ASD EDG\Tables\[EDG-closed-Tables 1,2,3,4,5.xlsx]Table 2. CCR Analytical

Table 3. Groundwater Elevations - CCR Rule Monitoring WellsEdgewater Generating Station, Sheboygan, WisconsinSCS Engineers Project #25219068.00

Ground Water Elevation in feet above mean sea level (amsl)							
Well Number	MW-301	MW-302	MW-303	2R-OW			
Top of Casing Elevation (feet amsl)	604.42	615.15	611.99	612.72			
Screen Length (ft)	5.00	5.00	5.00	10.00			
Total Depth (ft from top of casing)	27.47	40.00	33.26	14.50			
Top of Well Screen Elevation (ft)	581.95	580.15	579.60				
Measurement Date							
April 8, 2016	599.75	596.19	589.04	609.68			
June 20, 2016	598.30	595.68	587.22	606.70			
August 9, 2016	598.00	595.53	587.72	605.74			
October 20, 2016	598.50	595.46	588.37	607.27			
January 23-24, 2017	597.10	596.30	588.84	609.64			
April 6, 2017	600.04	593.57	589.04	609.72			
June 6, 2017	598.77	595.86	588.44	607.63			
August 1, 2017	597.40	595.22	587.36	604.59			
October 24, 2017	597.20	595.25	587.97	601.74			
April 2, 2018	598.54	595.71	588.77	607.87			
October 1, 2018	597.60	595.28	588.17	604.61			
April 8, 2019	598.92	595.68	588.88	609.50			
Bottom of Well Elevation (ft)	576.95	575.15	578.73	598.22			

Notes:

Groundwater elevations compiled from field notes during sampling events.

-- = not measured

Created by:	NDK	Date:	2/28/2018
Last rev. by:	NDk	Date:	8/16/2019
Checked by:	AJR	Date:	8/19/2019

I:\25219068.00\Deliverables\2019 April ASD EDG\Tables\[EDG-closed-Tables 1,2,3,4,5.xlsx]Table 3. GW elev - CCR

Table 4. 2016 - 2019 Groundwater Analytical Results -
Closed Landfill State Monitoring Program WellsWPL - Edgewater Generating Station / SCS Project #25219068
Sheboygan, Wisconsin

Point Name	Reporting Period	ph-Field (standard units)	Boron, dissolved (ug/L as B)	Sulfate, dissolved
Monitoring Wells		(45.007	(g, 1 as c c 4)
	2016-Apr	7 45	26.6	30.9
	2016-Api	7.43	20.0	22.0
	2010-OCI	0.70	40.4	22.7
	2017-Apr	7.30	67.3 J	28.6
	2017-001	7.00	35.2	32.9
2R-OW	2018-Apr	7.29	23.3	18.2
2R-OW	2018-Oct	7.03	41.8	35.5
2R-OW	2019-Apr	8.5/	40.6	12.2
3R-OW	2016-Apr	7.41	392	533
3R-OW	2016-Oct	7.32	468	372
3R-OW	2017-Apr	7.35	400	409
3R-OW	2017-Oct	7.39	389	637
3R-OW	2018-Apr	7.24	351	498
3R-OW	2018-Oct	7.03	462	495
3R-OW	2019-Apr	7.70	337	279
4R-OW	2016-Apr	7.69	7,710	120
4R-OW	2016-Oct	7.71	17,300	252
4R-OW	2017-Apr	7.44	12,600	180
4R-OW	2017-Oct	7.31	15.700	178
4R-OW	2018-Apr	7.51	12,700	164
4R-OW	2018-Oct	7.22	8.630	129
4R-OW	2019-Apr	6.67	10,200	158
E OW	2017 Apr	7 / 4	4 220	015
5-070	2016-Apr	7.64	4,330	215
5-070	2016-001	7.75	5,970	210
5-0W	2017-Apr	7.51	5,490	258
5-OW	2017-Oct	/.54	6,040	230
5-OW	2018-Apr	7.90	3,900	143
5-OW	2018-Oct	/.43	6,180	226
5-OW	2019-Apr	6.74	4,140	197
7-OW	2016-Apr	8.14	610	255
7-OW	2016-Oct	7.59	964	251
7-OW	2017-Apr	8.10	761	259
7-OW	2017-Oct	7.73	1.130	246
7-OW	2018-Apr	8.08	818	243
7-OW	2018-Oct	7.69	1150	218
7-OW	2010-Oct	7.85	914	254
29-A	2016-Apr	9.07	357	40.9
29-A	2016-Oct	8.54	264	39.6
29-A	2017-Apr	9.09	365	41.5
29-A	2017-Oct	8.97	278	42.1
29-A	2018-Apr	8.72	264	39.4
29-A	2018-Oct	8.38	268	39.2
29-A	2019-Apr	8.10	292	44.2

Table 4. 2016 - 2019 Groundwater Analytical Results -
Closed Landfill State Monitoring Program WellsWPL - Edgewater Generating Station / SCS Project #25219068
Sheboygan, Wisconsin

Point Name	Reporting Period	ph-Field (standard units)	Boron, dissolved (μg/L as B)	Sulfate, dissolved (mg/L as SO₄)
Monitoring Wells (co	ntinued)			
29-OW	2016-Apr	8.03	10.600	120
29-OW	2016-Oct	7.69	10,000	85.7
29-OW	2010 OCI 2017-Apr	8.49	9 500	77
27-OW	2017-Apr	8 15	9,060	
27-077	2017-OCT	7.07	7,000	102
27-077	2010-Api	7.77	0,040	102
29-010	2010-001	7.04	11,000	109
29-070	2019-Apr	/.89	10,600	190
30-OW	2016-Apr	8.26	79	4.8
30-OW	2016-Oct	7.56	113	4.6
30-OW	2017-Apr	8.47	176	7.5
30-OW	2017-Oct	7.44	135	16.7
30-OW	2018-Apr	7.96	94.5	21.5
30-OW	2018-Oct	7.47	115	11.4
30-OW	2019-Apr	8.07	52.1	2.4 J
		7.40		01.0
31-OW	2016-Apr	7.63	4	91.2
31-OW	2016-Oct	7.68	35	63.3
31-OW	2017-Apr	7.99	77	82.4
31-OW	2017-Oct	7.79	190	70.3
31-OW	2018-Apr	7.71	30.8	51.5
31-OW	2018-Oct	7.64	36.7	62.7
31-OW	2019-Apr	7.95	18.5	68.6
40-OW	2016-Apr	8.04	8.030	731
40-OW	2016-Oct	7.91	29,400	768
40-OW	2017-Apr	7.97	8 680	849
40-OW	2017-Oct	7.91	8 800	873
40-OW	2018-Apr	7.93	9 790	771
40-OW	2018-Oct	7.51	11 300	797
40-OW	2019-Apr	6.80	8,620	636
10 0 11	2017 / 01	0.00	0,020	
Leachate Monitoring	Wells			
37-OW	2016-Apr	7.49	19,100	759
37-OW	2016-Oct	7.31	12,500	439
37-OW	2017-Apr	8.01	15,900	633
37-OW	2017-Oct	7.24	9,440	264
37-OW	2018-Apr	7.68	5,890	159
37-OW	2018-Oct	7.42	16,600	555
37-OW	2019-Apr	7.57	15,800	492
38R-OW	2016-Apr	8.00	33.800	1.000
38R-OW	2016-Oct	7.71	17,100	514
38R-OW	2017-Apr	7.86	21,100	932
38R-OW	2017-Oct	7,72	10,800	364
38R-OW	2018-Apr	7 72	4 250	123
38R-OW	2018-Oct	7.98	32 100	954
38R-OW	2010 OCT	7.64	9 720	330
301-011	2017-74	7.04	7,720	

Table 4. 2016 - 2019 Groundwater Analytical Results -
Closed Landfill State Monitoring Program WellsWPL - Edgewater Generating Station / SCS Project #25219068
Sheboygan, Wisconsin

Point Name	Reporting Period	ph-Field (standard units)	Boron, dissolved (µg/L as B)	Sulfate, dissolved (mg/L as SO ₄)
Leachate Monitoring	Wells (continued)			
39R-OW	2016-Apr	7.26	10,100	534
39R-OW	2016-Oct	7.32	29,900	1,390
39R-OW	2017-Apr	7.44	22,400	1,150
39R-OW	2017-Oct	7.52	32,800	1,400
39R-OW	2018-Apr	7.76	28,800	772
39R-OW	2018-Oct	7.40	24,700	1,160
39R-OW	2019-Apr	7.14	26,000	1,520

Abbreviations:

 μ g/L = micrograms per liter or parts per billion (ppb) mg/L = milligrams per liter or parts per million (ppm)

Laboratory Notes:

J: Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

Created by:	SCC	Date:	2/24/2014
Last revision by:	NDK	Date:	8/16/2019
Checked by:	AJR	Date:	8/19/2019

I:\25219068.00\Deliverables\2019 April ASD EDG\Tables\[EDG-closed-Tables 1,2,3,4,5.xlsx]Table 4. GW quality Data

Table 5. Analytical Results - Closed Landfill Leachate Fluoride MonitoringEdgewater Generating Station, Sheboygan, WisconsinSCS Engineers Project #25219068.00

Collection Date	Fluoride (mg/L)			
	36-OW	37-OW	38R-OW	39R-OW
9/8/1994	0.25	0.62	0.57	0.79
9/14/1995	0.38	0.51	0.71	0.87
9/17/1996	0.56	0.42	0.71	0.97
9/16/1997	0.60	0.44	0.73	0.97

Abbreviations:

mg/L = milligrams per liter or parts per million (ppm)

Notes:

1. Data compiled from WDNR Groundwater Environmental Monitoring System (GEMS) website.

Created by:	NDK	Date:	3/5/2018
Last revision by:	NDK	Date:	3/5/2018
Checked by:	AJR	Date:	4/5/2018

I:\25219068.00\Deliverables\2019 April ASD EDG\Tables\[EDG-closed-Tables 1,2,3,4,5.xlsx]Table 5- FI results

Figures

- 1 Site Location Map
- 2 Monitoring Well Location Map
- 3 Water Table Map April 2019

I:\25216068.00\Drawings\Site Loc.dwg, 4/9/2019 11:19:08 AM

LEGEND

\oplus	ABANDONED MONITORING WELL
Ð	MONITORING WELL
۲	PIEZOMETER
•	CCR RULE MONITORING WELL
	CCR RULE LIMITS
	CLOSED LANDFILL LIMITS

Ν

NOTES:

Ν

NOTES:

1. AERIAL PHOTOGRAPH FROM THE NATIONAL AGRICULTURE IMAGERY PROGRAM AND PUBLISHED BY THE USDA FSA AERIAL PHOTOGRAPHY FIELD OFFICE. DATE OF IMAGE IS OCTOBER 1, 2013. 2. EXISTING WELL LOCATIONS ARE APPROXIMATE AND ARE BASED ON OCTOBER 2011 WATER TABLE MAP PREPARED BY TRC. 3. DESIGN MANAGEMENT ZONE LOCATION IS APPROXIMATE. 4. NEW MONITORING WELL LOCATIONS WERE SURVEYED BY CQM, INC. ON FEBRUARY 12, 2016. 500 500 Ο SCALE: 1'' = 500'FIGURE WATER TABLE MAP APRIL 8, 2019 3

Appendix A

Trend Plots for CCR Wells

