

Alliant Energy 4902 North Biltmore Lane P.O. Box 77007 Madison, WI 53707-1007

1-800-ALLIANT (800-255-4268) alliantenergy.com

January 31, 2024

Submitted via electronic mail

Mr. Tony Peterson Wisconsin Department of Natural Resources 141 NW Barstow St Ste 180 Waukesha, WI 53188-3789

Subject: Annual CCR Landfill Report I-43 Ash Disposal Facility (License #2853) Wisconsin Power and Light Company Sheboygan, WI

Dear Mr. Peterson,

On behalf of Wisconsin Power and Light Company (WPL), Alliant Energy is submitting this Annual CCR Landfill Report in accordance with NR 506.20(3). The annual report consists of the following required documents:

- Annual CCR Fugitive Dust Control Report
- Annual Inspection Report [NR 506.20(2)(b)]
- Annual Groundwater Monitoring and Corrective Action Report [NR 507.15(3)(m)]
- Leachate Pipe Cleaning and Inspection Report [NR 506.07(5)(g)]

Please note that many of these items are also required by the federal Coal Combustion Residuals (CCR) Rule and have been prepared to satisfy federal requirements. Please call me if you have any questions or concerns regarding these documents and Wisconsin-specific requirements so we can continue to improve this report and future annual reports.

Thank you very much for your consideration of this initial submittal. If you have any questions or comments regarding this information, please call me at (608) 458-3853.

Regards,

Jeff Maxted Manager – Environmental Services Alliant Energy

CC: Mark Peters – Wisconsin DNR

Eric Sandvig, Director of Operations – Edgewater Generating Station Jim Jakubiak, Keith DeBlaey – Edgewater Generating Station Phil Gearing, Eric Nelson, Tom Karwoski – SCS Engineers

Annual CCR Fugitive Dust Control Report

Wisconsin Power and Light Company

Edgewater Generating Station (EDG) I-43 Ash Disposal Facility

Annual Coal Combustion Residuals (CCR) Fugitive Dust Control Report

November 17, 2023

This report applies to the following CCR unit at this facility:

CCR Landfill

EDG I-43 Ash Disposal Facility (Phase 3, Modules 1-2; Phase 4, Module 1)

Annual Coal Combustion Residuals (CCR) Fugitive Dust Control Report

November 17, 2023

Background

This report describes the actions taken to minimize fugitive CCR dust from CCR unit at this facility, provides a record of citizen complaints received since the previous report, and summarizes any corrective actions taken to minimize CCR fugitive dust. This report has been developed in accordance with 40 CFR 257.80(c).

Description of the Actions Taken to Control CCR Fugitive Dust

In accordance with the CCR Fugitive Dust Control Plan developed for this facility, the following measures were taken when needed to minimize CCR from becoming airborne:

- Establishing and enforcing a vehicle speed limit of 15 mph or less. Reduced speeds minimize fugitive dust generated from vehicle traffic.
- Covering all open-bodied vehicles that are transporting CCR to minimize the generation of fugitive dust during transport of CCR.
- Wetting CCR prior to placing the material in vehicles used for transport to the landfill. Moistened CCR is less likely to become airborne.
- Minimizing fall distances when handling or transferring CCR. The use of best practices when handling CCR can be used to minimize the generation of fugitive dust.
- Promptly collecting CCR that is observed in vehicle loading/unloading areas to minimize the potential for CCR to become airborne.
- Applying water directly to CCR using a water truck or irrigation system. Moistened CCR is less likely to become airborne.
- Suspending CCR management activities, including placement of CCR, during excessively windy conditions to minimize CCR from becoming airborne.
- Placement of soil and/or vegetated cover to minimize exposure of CCR in inactive landfill areas to conditions that could lead to fugitive dust.

Record of Citizen Complaints

Citizen complaints pertaining to fugitive dust are managed in accordance with Alliant Corporate Policy ENV-107. Specifically, the complaint must be reported to Environmental Services (1) via phone call and (2) in writing by submitting a completed Environmental Incident Report to Environmental Services within 10 business days. Citizen complaints are tracked within the Alliant Environmental Management Information System ("ENVIANCE").

There were no citizen complaints at this facility related to CCR fugitive dust during this reporting period.

Summary of Corrective Measures Taken

Corrective actions in response to citizen complaints were not required during this reporting period.

Periodic Review of CCR Fugitive Dust Control Plan

The CCR Fugitive Dust Control Plan is reviewed annually, and updated as necessary, in conjunction with preparation of the Annual CCR Fugitive Dust Control Report [40 CFR 257.80(c)]. During the periodic review, staff evaluate each measure for controlling fugitive dust to ensure that it is still appropriate for minimizing CCR from becoming airborne at the facility, verify that the procedures for conditioning CCR prior to landfilling and the procedure for logging complaints are sufficient, and evaluate other operations changes at the facility to determine whether additional dust control measures should be added.

- END -

Annual Inspection Report

Annual CCR Landfill Inspection

Edgewater I-43 Ash Disposal Facility

Prepared for:

Wisconsin Power and Light Company Edgewater Generating Station 3739 Lakeshore Drive Sheboygan, Wisconsin 53081

SCS ENGINEERS

25223069.00 | December 19, 2023

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830 Table of Contents

Sect	ection Page					
PE Ce	PE Certificationiii					
1.0	Intro	duction.	1			
	1.1	Purpos	e1			
	1.2	Backgr	ound1			
2.0	Sum	mary of	Results and Recommendations2			
3.0	Annu	al Inspe	ction3			
	3.1	Operat	ng Record Review3			
	3.2	Visual	nspection3			
4.0	Inspe	ection R	esults4			
	4.1	0	es in Geometry4			
	4.2		lumes4			
	4.3	Appear	ance of Structural Weakness4			
		4.3.1	Signs of Surface Movement or Instability5			
		4.3.2	Inappropriate Vegetation Growth5			
		4.3.3	Animal Burrows5			
		4.3.4	Erosion Damage			
		4.3.5	Unusual Surface Damage Caused by Vehicle Traffic			
	4.4	Disrup	ive Conditions6			
		4.4.1	Existing Disruptive Conditions			
			4.4.1.1 Current Inspection			
			4.4.1.2 Previous Inspection			
		4.4.2	Potentially Disruptive Conditions			
			4.4.2.1 Current Inspection			
			4.4.2.2 Previous Inspections			
	4.5		Changes Since Previous Annual Inspection6			
5.0	Futu	re Inspe	ctions6			
	5.1	Existing	g CCR Landfill6			
	5.2	New Co	CR Landfills and Lateral Expansions7			

I:\25223069.00\Deliverables\2023 Federal CCR Inspection\231219_I43_Annual CCR LF Inspection_FINAL.docx

[This page left blank intentionally]

Annual CCR Landfill Inspection

I, Phillip E. Gearing, hereby certify that this Annual CCR Landfill Inspection Report meets the requirements of 40 CFR 257.84(b)(2), was prepared by me or under my direct supervision, and that I am a duly licensed Professional Engineer under the laws of the State of Wisconsin.
(signature) (date)
Phillip E. Gearing (printed or typed name)
License number <u>E-45115</u>
My license renewal date is July 31, 2024.
Pages or sheets covered by this seal:
All – Annual CCR Landfill Inspection – Edgewater 143 Ash Disposal Facility

PE CERTIFICATION

[This page left blank intentionally]

Annual CCR Landfill Inspection

1.0 INTRODUCTION

1.1 PURPOSE

SCS Engineers (SCS) completed an annual inspection of the Wisconsin Power and Light Company (WPL) Edgewater I-43 Ash Disposal Facility (I-43) in Sheboygan, Wisconsin. The annual inspection was completed on July 24, 2023, in accordance with the U.S. Environmental Protection Agency (U.S. EPA) Coal Combustion Residuals (CCR) rule, 40 CFR 257 Subpart D, in particular 257.84(b)(1). According to 40 CFR 257.84(b)(1), an annual inspection by a qualified professional engineer is required for all existing and new CCR landfills and any lateral expansion of a CCR landfill. The purpose of the annual inspection is to ensure that the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering standards. The inspection must, at a minimum, include:

- A review of available information regarding the status and condition of the CCR unit, including, but not limited to, files available in the operating record (e.g., the results of inspections by a qualified person and results of previous annual inspections); and
- A visual inspection of the CCR unit to identify signs of distress or malfunction of the CCR unit.

This report has been prepared in accordance with 40 CFR 257.84(b)(2) to document the annual inspection.

1.2 BACKGROUND

The I-43 facility includes a closed CCR landfill, which consists of disposal Phase 1 and Phase 2, and an active CCR landfill, which currently consists of an existing CCR unit in disposal Phase 3 and Phase 4. The two landfills are located on the same property, but are not contiguous. The U.S. EPA CCR Rule does not apply to Phase 1 and Phase 2 because they were closed before the effective date of the CCR Rule.

The active CCR landfill at I-43 includes the following modules:

- Phase 3, Module 1
- Phase 3, Module 2
- Phase 4, Module 1

These phases were previously described as separate existing CCR landfills, although they are managed as a single landfill by the facility and by the Wisconsin Department of Natural Resources. WPL previously clarified that Phase 3, Module 1; Phase 3, Module 2; and Phase 4, Module 1 are one existing CCR landfill under the federal CCR Rule, and this report reflects WPL's clarification.

The modules are used to describe the location of items observed during the inspection. The inspection requirements in 40 CFR 257.84(b)(1) apply to the existing (active) CCR unit.

At the time of the inspection, the active CCR landfill modules were in various stages of development and use as described in the table below.

Unit	CCR Rule Status	Basis for Status
Existing Active Landfill (Includes Phase 3, Module 1; Phase 3, Module 2; Phase 4, Module 1)	Existing CCR Landfill. Currently accepting CCR.	Filling is occurring in Phase 3, Module 2 and overlay from Phase 3, Module 2 is currently occurring on Phase 3, Module 1. Final or interim waste grades have been reached in some areas, and final or intermediate cover is present on portions of the CCR unit. Final closure per 257.102 will not be completed until final grades are reached throughout the CCR unit.

2.0 SUMMARY OF RESULTS AND RECOMMENDATIONS

SCS identified no deficiencies or releases during the annual inspection of the CCR unit at I-43. Deficiencies and releases must be remedied by the owner or operator as soon as feasible and the remedy documented.

SCS did identify conditions during the annual inspection that are not considered deficiencies but have the potential to become a deficiency if left unaddressed. Each condition and the recommendations provided by SCS to address them are summarized in the table below. Based on correspondence with WPL in follow-up to the visual inspection, the recommended maintenance was performed and will continue to be performed during routine landfill maintenance.

These conditions, recommendations, and maintenance performed are described in further detail in **Section 4.0**.

Condition	CCR Unit / Location	Recommendation(s)	Report Section
Vegetation growth in berm drainage material	Separation berm between Phase 3, Module 2 and contact water swale.	Remove vegetation, especially woody and deep-rooted vegetation, before it becomes established. Monitor during 7-day inspections. Continue to inspect and remove vegetation growth in drainage layer material and other areas during general maintenance.	4.3.2

Condition	CCR Unit / Location	Recommendation(s)	Report Section
Vegetation grown in drainage layer material	Phase 3, Module 2 drainage layer material (Southwest corner)	Remove vegetation, especially woody and deep-rooted vegetation, before it becomes established. Monitor during 7-day inspections. Continue to inspect and remove vegetation growth in drainage layer material and other areas during general maintenance.	4.3.2

3.0 ANNUAL INSPECTION

Mr. Phillip Gearing of SCS completed an annual inspection of the active CCR landfill at I-43 on July 24, 2023. Mr. Gearing is a licensed professional engineer in Wisconsin and holds a Bachelor of Science degree in Geological Engineering. He has over 17 years of experience in the design, construction, and operation of solid waste disposal facilities. The scope of the annual inspection is described in **Sections 3.1** and **3.2**. The results of the annual inspection are discussed in **Section 4.0**.

3.1 OPERATING RECORD REVIEW

SCS reviewed the available information in the operating record for I-43. Information reviewed by SCS included operating record materials provided by WPL and the information posted on Alliant Energy's CCR Rule Compliance Data and Information website for the I-43 facility.

3.2 VISUAL INSPECTION

SCS completed a visual inspection of the I-43 landfill to identify signs of distress or malfunction of the CCR unit.

The visual inspection included observations of the following:

- CCR placement areas including active filling areas, intermediate cover areas, final cover areas, and exterior non-CCR berms or slopes.
- Leachate collection and removal system components including visible leachate drainage layer materials.
- Leachate and contact water run-off management features including swales, the storage basin, and the storage basin pumping system.
- Non-contact storm water run-on and run-off control features, including swales located adjacent to active fill areas but outside the landfill limits and the on-site storm water management basin.

4.0 INSPECTION RESULTS

The results of the annual inspection, along with a description of any deficiencies or releases identified during the visual inspection, are summarized in the following sections.

4.1 CHANGES IN GEOMETRY

No apparent changes in geometry were noted that would indicate distress or malfunction of the CCR unit since the previous annual inspection at the I-43 facility completed under 40 CFR 257.84(b)(1). All changes in geometry observed during the annual inspection were the result of planned CCR filling.

At the time of the visual inspection, CCR placement was ongoing in Phase 3, Module 2 and overlay from Phase 3, Module 2 is currently occurring on Phase 3, Module 1. Final or interim waste grades have been reached in some areas through the unit. Final cover exists in areas where final waste grades have been reached and intermediate cover exists in remaining interim grade areas that are awaiting future CCR placement.

4.2 CCR VOLUMES

The approximate volume of CCR contained in the CCR unit at the time of the inspection is summarized below. A description of how the estimate was developed and the sources used are also summarized below.

Unit	Estimated Volume of CCR in Place	Basis for Estimate and Source
Existing Active Landfill (Includes Phase 3, Module 1; Phase 3, Module 2; Phase 4, Module 1)	478,600 cubic yards	Estimated volume based on the updated August 23, 2023, existing conditions and survey compared to approved base grades in Phase 3, Module 1 and documented drainage layer grades in Phase 3, Module 2. Estimated volume excludes final cover or intermediate cover material installed at time of survey. Estimated volume considers vertical boundary at the module limits.

4.3 APPEARANCE OF STRUCTURAL WEAKNESS

The inspection included a review of the appearance of actual or potential structural weakness of the CCR unit. The visual inspection included a review of CCR fill areas including the top slopes, internal side slopes, external side slopes, and internal ramps/haul roads for the presence of the following conditions:

- Signs of surface movement or instability:
 - Sloughing, slumping, or sliding
 - Surface cracking
 - Slopes in excess of three horizontal to one vertical (3H:1V)
 - Toe of slope bench movement
 - Evidence of inadequate compaction of exposed CCR
- Inappropriate vegetation growth

- Animal burrows
- Erosion damage
- Unusual surface damage caused by vehicle traffic

4.3.1 Signs of Surface Movement or Instability

No signs of surface movement or instability were noted during the inspection of the landfill.

4.3.2 Inappropriate Vegetation Growth

No inappropriate vegetation growth impacting the CCR unit was noted during the inspection, except as observed below:

- Vegetation growth was observed in the separation berm drainage layer material between Phase 3, Module 2 and the contact water swale. SCS recommends the removal of vegetation, especially woody and deep-rooted vegetation before it becomes established, and these areas be monitored during the 7-day inspections. Vegetation growth in the drainage layer and other areas should continue to be inspected and removed during general maintenance.
- Vegetation growth was observed in the drainage layer material in Phase 3, Module 2 Southwest corner. SCS recommends the removal of vegetation, especially woody and deep-rooted vegetation before it becomes established, and these areas be monitored during the 7-day inspections. Vegetation growth in the drainage layer and other areas should continue to be inspected and removed during general maintenance.
- Dense vegetation growth in the exterior drainage swales and around features (toe drains, cleanouts, discharge structures, etc.) makes access for inspection more difficult. Regular vegetation maintenance is likely to aid in the identification of issues before they become significant. Additional vegetation maintenance could be beneficial for future weekly and annual inspections. This condition is not considered an operating deficiency, but SCS recommends woody vegetation and dense vegetation be spot removed, and these areas monitored during the 7-day inspections.

Based on correspondence with WPL in follow-up to the visual inspection, the recommended vegetation maintenance was performed.

4.3.3 Animal Burrows

No animal burrows were noted during the inspection of the CCR unit.

4.3.4 Erosion Damage

No erosion damage was noted during the inspection of the CCR unit.

4.3.5 Unusual Surface Damage Caused by Vehicle Traffic

No unusual surface damage caused by vehicle traffic was noted during the inspection of the CCR unit.

Annual CCR Landfill Inspection

4.4 DISRUPTIVE CONDITIONS

4.4.1 Existing Disruptive Conditions

4.4.1.1 Current Inspection

No existing conditions that were disrupting the operation and safety of the CCR unit were noted during the annual inspection.

4.4.1.2 Previous Inspection

No existing conditions that were disrupting the operation and safety of the CCR unit were noted during the previous inspection.

4.4.2 Potentially Disruptive Conditions

4.4.2.1 Current Inspection

No potentially disruptive conditions to operation and safety of the CCR unit were noted during the annual inspection.

4.4.2.2 Previous Inspections

CCR tracking on haul roads was observed during the previous inspection and noted as a potentially disruptive condition. The condition was not observed during the current annual inspection. Landfill staff were maintaining access roads as described in the fugitive dust control plan. SCS recommends that tracking and accumulation of CCR on the landfill haul roads continue to be monitored during the 7-day inspections.

4.5 OTHER CHANGES SINCE PREVIOUS ANNUAL INSPECTION

No site changes were noted during the inspection of Phase 3, Module 1; Phase 3, Module 2; and Phase 4, Module 1 when comparing to the previous annual inspection.

5.0 FUTURE INSPECTIONS

5.1 EXISTING CCR LANDFILL

As stated in 40 CFR 257.84(b)(4), the owner or operator of the CCR unit must conduct the inspection required by paragraphs (b)(1) and (2) of this section on an annual basis. The date of completing the inspection report is the basis for establishing the deadline to complete the next subsequent inspection. Any required inspection may be conducted prior to the required deadline, provided the owner or operator places the completed inspection report into the facility's operating record within a reasonable amount of time. In all cases, the deadline for completing subsequent inspection reports is based on the date of completing the previous inspection report. The owner or operator has completed an inspection when the inspection report has been placed in the facility's operating record.

The next annual inspection of the existing landfill unit must be completed within 1 year of the placement of this inspection report in the operating record for the facility.

5.2 NEW CCR LANDFILLS AND LATERAL EXPANSIONS

The initial annual inspection for modules constructed in the future must be completed within 14 months of the initial receipt of CCR in the module per 40 CFR 257.84(b)(3)(ii).

Annual CCR Landfill Inspection

[This page left blank intentionally]

Annual CCR Landfill Inspection

Annual Groundwater Monitoring and Corrective Action Report

2023 Annual Groundwater Monitoring and Corrective Action Report

Edgewater Generating Station I-43 Ash Disposal Facility Town of Wilson Sheboygan County, Wisconsin

Prepared for:

SCS ENGINEERS

25222069.00 | January 31, 2024

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830

OVERVIEW OF CURRENT STATUS

Edgewater Generating Station, I-43 Ash Disposal Facility 2023 Annual Report

In accordance with §257.90(e)(6), this section at the beginning of the annual report provides an overview of the current status of groundwater monitoring and corrective action programs for the coal combustion residual (CCR) unit. Supporting information is provided in the text of the annual report.

Category	Rule Requirement	Site Status
Monitoring Status – Start of Year	(i) At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95;	Detection
Monitoring Status – End of Year	(ii) At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95;	Detection
Statistically Significant Increases (SSIs)	(iii) If it was determined that there was an SSI over background for one or more constituents listed in Appendix III to this part pursuant to §257.94(e):	
	(A) Identify those constituents listed in Appendix III to this part and the names of the monitoring wells associated with such an increase; and	<u>October 2022</u> None <u>April 2023</u> None
	(B) Provide the date when the assessment monitoring program was initiated for the CCR unit.	Not Applicable

Category	Rule Requirement	Site Status
Statistically Significant Levels (SSL) Above Groundwater Protection	(iv) If it was determined that there was an SSL above the groundwater protection standard for one or more constituents listed in Appendix IV to this part pursuant to §257.95(g) include all of the following:	Not applicable – Appendix IV sampling not required
Standard (GPS)	(A) Identify those constituents listed in Appendix IV to this part and the names of the monitoring wells associated with such an increase;	
	(B) Provide the date when the assessment of corrective measures was initiated for the CCR unit;	
	(C) Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and	
	(D) Provide the date when the assessment of corrective measures was completed for the CCR unit.	
Selection of Remedy	(v) Whether a remedy was selected pursuant to §257.97 during the current annual reporting period, and if so, the date of remedy selection; and	Not applicable – Site is in detection monitoring
Corrective Action	(vi) Whether remedial activities were initiated or are ongoing pursuant to §257.98 during the current annual reporting period.	Not applicable – Site is in detection monitoring

Table of Contents

Sect	ion		Pc	ge
Over	view o	of Currer	nt Status	i
1.0	Intro	duction		1
2.0	Back	ground		1
	2.1	Geolog	tic and Hydrogeologic Setting	1
		2.1.1	Regional Information	1
		2.1.2	Site Information	2
	2.2	CCR R	ule Monitoring System	2
3.0	§257	7.90(e)	Annual Report Requirements	3
	3.1	§257.9	90(e)(1) Site Map	3
	3.2	§257.9	90(e)(2) Monitoring System Changes	3
	3.3	§257.9	90(e)(3) Summary of Sampling Events	3
	3.4	§257.9	90(e)(4) Monitoring Transition Narrative	4
	3.5	§257.9	90(e)(5) Other Requirements	5
		3.5.1	§257.90(e) General Requirements	5
		3.5.2	§257.94(d) Alternative Detection Monitoring Frequency	6
		3.5.3	§257.94(e)(2) Alternative Source Demonstration for Detection Monitoring	6
		3.5.4	§257.95(c) Alternative Assessment Monitoring Frequency	6
		3.5.5	§257.95(d)(3) Assessment Monitoring Results and Standards	6
		3.5.6	§257.95(g)(3)(ii) Alternative Source Demonstration for Assessment Monitoring	g6
		3.5.7	§257.96(a) Extension of Time for Corrective Measures Assessment	7
	3.6	§257.9	90(e)(6) Overview	7
4.0	Refe	rence		7

Tables

Table 1.	Groundwater Monitoring Well Network
----------	-------------------------------------

- Table 2.CCR Rule Groundwater Samples Summary
- Table 3.Groundwater Elevation Summary
- Table 4.Horizontal Gradients and Flow Velocity
- Table 5.Groundwater Analytical Results Summary October 2022 and April 2023
- Table 6.Groundwater Field Data Summary October 2022 and April 2023

Figures

- Figure 1. Site Location Map
- Figure 2. Site Plan and Monitoring Well Locations
- Figure 3. Bedrock Potentiometric Surface Map April 24-25, 2023
- Figure 4. Bedrock Potentiometric Surface Map October 9, 2023

Appendices

- Appendix A Regional Hydrogeologic Information
- Appendix B Boring Logs and Well Construction Documentation
- Appendix C Laboratory Reports
 - C1 October 2022 Detection Monitoring
 - C2 April 2023 Detection Monitoring
- Appendix D Historical Monitoring Results

 $\label{eq:linear} I:\25223069.00\Deliverables\2023\Fed\CCR\Annual\Report\240131_I-43\2023\Annual\GW\Mon.\ and\ Cor.\ Actn\Rpt_Final.docx$

1.0 INTRODUCTION

This 2023 Annual Groundwater Monitoring and Corrective Action Report was prepared to support compliance with the groundwater monitoring requirements of the Coal Combustion Residuals (CCR) Rule [40 Code of Federal Regulations (CFR) 257.50-107]. Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.90(e). The applicable sections of the Rule are provided below in italics, followed by applicable information relative to the 2023 Annual Groundwater Monitoring and Corrective Action Report for the CCR Unit.

This report covers the period of groundwater monitoring from January 1, 2023, through December 31, 2023.

The groundwater monitoring system at the Edgewater (EDG) I-43 Ash Disposal Facility (ADF) monitors a single existing CCR unit:

• EDG I-43 Phase 3, Module 1 and 2; and Phase 4, Module 1 (existing CCR Landfill)

The monitoring system is designed to detect monitored constituents at the waste boundary of the I-43 ADF as required by 40 CFR 257.91(d). The groundwater monitoring system consists of two background wells and three downgradient monitoring wells (**Table 1** and **Figure 2**).

2.0 BACKGROUND

To provide context for the annual report, the following background information is provided in this section of the report, prior to the annual report requirement sections:

- Geologic and hydrogeologic setting
- CCR Rule monitoring system

2.1 GEOLOGIC AND HYDROGEOLOGIC SETTING

2.1.1 Regional Information

For the purposes of groundwater monitoring, the Niagara Dolomite Aquifer is considered to be the uppermost aquifer unit, as defined under 40 CFR 257.53, at the I-43 ADF. The dolomite aquifer is underlain by the Maquoketa shale, which is a confining unit. The Maquoketa shale is underlain by the Cambrian-Ordovician sandstone aquifer. This sequence of sedimentary bedrock units is over 1,500 feet thick in the area of the I-43 ADF. The sedimentary sequence is underlain by Precambrian crystalline rocks that are not considered an aquifer in eastern Wisconsin. A summary of the regional hydrogeologic stratigraphy is presented in **Appendix A**.

An unconsolidated sand and gravel aquifer is present in some parts of Sheboygan County (Skinner and Borman, 1973), but does not appear laterally extensive.

Regional groundwater flow in the dolomite aquifer, in the vicinity of the site, is to the east or northeast. A map showing the regional water table elevations is included with the regional hydrogeologic information in **Appendix A**.

2.1.2 Site Information

Soils at the site are primarily clay with discontinuous layers of sand and silty sand to a depth of at least 100 feet. During drilling of the CCR wells, the unconsolidated materials were identified as consisting primarily of clay. Zones of sand and gravel are known to be present within the clay, but these appear to be discontinuous, and no nearby private wells screened within the unconsolidated material have been identified. Soils encountered in borings MW-301, MW-302, MW-303, and MW-304 were primarily lean clay, silty clay, and silty sand. The upper 70 feet of soils in boring MW-305 were similar, but in approximately the lower 40 feet above bedrock, sand was the primary soil type. The depth to bedrock in the five wells ranged from approximately 109 feet to 133 feet below ground surface (bgs), and the elevation of the top of bedrock ranged from approximately 568 feet above mean sea level (amsl) to 605 feet amsl. The boring logs, well construction, and well development forms for the I-43 ADF CCR monitoring wells are provided in **Appendix B**. All CCR monitoring wells are screened within the dolomite bedrock unit.

Shallow groundwater in the clay unit at the site generally flows east to west towards Weedens Creek, a tributary of the Sheboygan River, based on water levels measured under the state monitoring program. The flow direction to the west at the water table is consistent with previous water table maps prepared since the site was developed in the mid-1980s.

In the dolomite aquifer, groundwater flow is generally to the north and northeast as shown on the April and October 2022 bedrock potentiometric surface maps, based on groundwater elevations from monitoring wells MW-301 through MW-305 (**Figures 3** and **4**). The groundwater elevation data for the CCR monitoring wells are provided in **Table 3**. Calculated horizontal gradients and flow velocities for representative flow paths are provided in **Table 4**.

An evaluation was conducted in 2023 to assess the monitoring network coverage based on the apparent flow direction indicated by the potentiometric surface maps. The original downgradient compliance monitoring well locations were selected based on a regional flow direction to the east or northeast; however, the potentiometric surface maps indicate a potential flow path to the north. The mapped flow to the north is largely driven by the water level measured at MW-305. This well is installed at a location where the bedrock surface is somewhat higher than at the other wells; therefore, the apparent northerly flow direction may actually be a reflection of vertical head differences within the dolomite. To obtain additional information on groundwater flow direction and groundwater quality, the installation of an additional compliance monitoring well in the bedrock aquifer is planned for 2024. The monitoring well will be installed north of the CCR unit, on the north side of Phase 3 of the landfill.

2.2 CCR RULE MONITORING SYSTEM

The groundwater monitoring system established in accordance with the CCR Rule consists of two upgradient (background) monitoring wells and three downgradient monitoring wells (**Table 1** and **Figure 2**). The background wells include MW-304 and MW-305. The downgradient wells include MW-301, MW-302, and MW-303. The CCR Rule wells are installed in the upper portion of the dolomite aquifer. Well depths range from approximately 119 to 145 feet, measured from the top of the well casing. Installation of an additional monitoring well north of Phase 3 of the landfill is planned for 2024.

3.0 §257.90(e) ANNUAL REPORT REQUIREMENTS

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by §257.105(h)(1). At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

3.1 §257.90(e)(1) SITE MAP

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

A map of the site location is provided on **Figure 1**. A map with an aerial image showing the I-43 ADF CCR unit, and all background (or upgradient) and downgradient monitoring wells with identification numbers for the groundwater monitoring program, is provided as **Figure 2**.

3.2 §257.90(E)(2) MONITORING SYSTEM CHANGES

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No new monitoring wells were installed and no wells were decommissioned as part of the groundwater monitoring program for the I-43 ADF CCR unit in 2023.

3.3 §257.90(E)(3) SUMMARY OF SAMPLING EVENTS

In addition to all the monitoring data obtained under §§257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

Two semiannual groundwater sampling events and one resampling event were completed in 2023 at the I-43 ADF. A supplemental event occurred in November 2023 for select parameters following the October 2023 event. The samples were collected under the detection monitoring program, which was established on October 17, 2017. A summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs is included in **Table 2**.

Groundwater samples collected during the semiannual events, in April and October 2023, were analyzed for the Appendix III constituents. A resample event occurred in November at well MW-302 for fluoride. The resampling was performed in accordance with the Sampling and Analysis Plan for the site, which allows for 1-of-2 testing for evaluation of statistically significant increases (SSIs) above background in detection monitoring.

The validation and evaluation of the October 2022 monitoring event data was completed and transmitted to WPL on January 25, 2023. The validation and evaluation of the April 2023 monitoring event data was completed and transmitted to WPL on August 10, 2023. The validation and evaluation of the October 2023 monitoring event data and the November 2023 re-sampling event was in progress at the end of 2023 and will be transmitted to WPL in 2024; therefore, the October 2023 monitoring results will be included in the 2024 annual report.

The sampling results for Appendix III parameters in October 2022 and April 2023 are summarized in **Table 5.** Field parameter results for the October 2022 and April 2023 sampling events are provided in **Table 6.** The analytical laboratory reports for October 2022 and April 2023 are provided in **Appendix C.** Historical results for each monitoring well through April 2023 are summarized in **Appendix D.**

3.4 §257.90(E)(4) MONITORING TRANSITION NARRATIVE

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels);

There were no transitions between monitoring programs in 2023. The I-43 ADF remained in the detection monitoring program.

In 2023, the monitoring results for the October 2022 and April 2023 monitoring events were evaluated for SSIs in detection monitoring parameters relative to background. For all parameters except boron, the comparison to background was based on a prediction limit approach, comparing the results to interwell upper prediction limits (UPLs) based on background monitoring results from the upgradient wells (MW-304 and MW-305). For boron, the comparison to background used intrawell UPLs based on background monitoring results from the compliance wells (MW-301, MW-302, and MW-303).

The interwell and intrawell UPLs were most recently updated in January 2021, using background data collected through October 2020 for interwell UPLs and through April 2020 for intrawell UPLs. The January 2021 Statistical Analysis was included in an appendix in the 2021 Annual Groundwater Monitoring Report. The Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at Resource Conservation and Recovery Act (RCRA) Facilities (U.S. Environmental Protection Agency, 2009; Section 5.3.1) recommends periodic updating of background for both intrawell and interwell analyses. For semiannual monitoring, an update interval of 2 to 3 years is recommended; therefore, the UPL update will be completed in 2024.

No SSIs were observed for the October 2022 or April 2023 events.

3.5 §257.90(E)(5) OTHER REQUIREMENTS

Other information required to be included in the annual report as specified in §§257.90 through 257.98.

Additional potentially applicable requirements for the annual report, and the location of the requirement within the Rule, are provided in the following sections. For each cited section of the Rule, the portion referencing the annual report requirement is provided below in italics, followed by applicable information relative to the 2023 Annual Groundwater Monitoring and Corrective Action Report for the I-43 ADF CCR unit.

3.5.1 §257.90(e) General Requirements

For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year.

Status of Groundwater Monitoring and Corrective Action Program. The groundwater monitoring and corrective action program is currently in detection monitoring.

Summary of Key Actions Completed.

- Statistical evaluation and determination of SSIs for the October 2022 and April 2023 monitoring events.
- Two semiannual groundwater sampling and analysis events (April and October 2023), including a resample event in November 2023 at well MW-302 for fluoride.
- Evaluation of potential locations and drilling access for an additional compliance monitoring well on the north side of the CCR unit, north of Phase 3 of the landfill.

Description of Any Problems Encountered. No problems were encountered in 2023.

Discussion of Actions to Resolve the Problems. Not applicable.

Projection of Key Activities for the Upcoming Year (2024).

- Statistical evaluation and determination of any SSIs for the October 2023 and April 2024 monitoring events.
- If an SSI is determined, then within 90 days either:
 - Complete alternative source demonstration (if applicable), or
 - Establish an assessment monitoring program.
- Installation of an additional monitoring well on the north side of the CCR unit, north of Phase 3 of the landfill, and recertification of the monitoring network.
- Two semiannual groundwater sampling and analysis events (April and October 2024).
- UPL update will be completed in 2024.

3.5.2 §257.94(d) Alternative Detection Monitoring Frequency

The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer in the annual groundwater monitoring and corrective action report required by §257.90(e).

Not applicable. No alternative detection monitoring frequency has been proposed.

3.5.3 §257.94(e)(2) Alternative Source Demonstration for Detection Monitoring

The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by §257.90(e), in addition to the certification by a qualified professional engineer.

Not applicable. No SSIs were identified and, therefore, no ASD Reports were prepared for October 2022 or April 2023.

3.5.4 §257.95(c) Alternative Assessment Monitoring Frequency

The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer in the annual groundwater monitoring and corrective action report required by §257.90(e).

Not applicable. Assessment monitoring has not been initiated.

3.5.5 §257.95(d)(3) Assessment Monitoring Results and Standards

Include the recorded concentrations required by paragraph (d)(1) of this section, identify the background concentrations established under §257.94(b), and identify the groundwater protection standards established under paragraph (d)(2) of this section in the annual groundwater monitoring and corrective action report required by §257.90(e).

Not applicable. Assessment monitoring has not been initiated.

3.5.6 §257.95(g)(3)(ii) Alternative Source Demonstration for Assessment Monitoring

The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by §257.90(e), in addition to the certification by a qualified professional engineer.

Not applicable. Assessment monitoring has not been initiated.

3.5.7 §257.96(a) Extension of Time for Corrective Measures Assessment

The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measure due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by §257.90(e), in addition to the certification by a qualified professional engineer.

Not applicable. Corrective measures assessment has not been initiated.

3.6 §257.90(E)(6) OVERVIEW

A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit.

The specific requirements for the overview under \$257.90(e)(6) are listed and the information is provided at the beginning of this report, before the Table of Contents.

4.0 REFERENCE

Skinner, Earl L. and Ronald G. Borman, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigations Atlas HA-432, 1973. [This page left blank intentionally]

Tables

- 1 Groundwater Monitoring Well Network
- 2 CCR Rule Groundwater Samples Summary
- 3 Groundwater Elevation Summary
- 4 Horizontal Gradients and Flow Velocity
- 5 Groundwater Analytical Results Summary October 2022 and April 2023
- 6 Groundwater Field Data Summary October 2022 and April 2023

Table 1. Groundwater Monitoring Well Network
Edgewater I-43 Ash Disposal Facility / SCS Engineers Project #25223069.00

Monitoring Well	Location in Monitoring Network	Role in Monitoring Network
MW-301	Downgradient	Compliance
MW-302	Downgradient	Compliance
MW-303	Downgradient	Compliance
MW-304	Upgradient	Background
MW-305	Upgradient	Background

Created by:	NLB	Date: 12/13/2023
Last revision by:	NLB	Date: 12/13/2023
Checked by:	RM	Date: 12/18/2023

Table 2. CCR Rule Groundwater Samples SummaryEdgewater I-43 Ash Disposal Facility / SCS Engineers Project #25223069.00

Sample Dates		mpliance W	Background Wells			
	MW-301	MW-302	MW-303	MW-304	MW-305	
4/24-25/2023	D	D	D	D	D	
10/9/2023	D	D	D	D	D	
11/14/2023		D-R				
Total Samples	2	3	2	2	2	

Abbreviations:

D = Required by Detection Monitoring Program

D-R = Detection Monitoring Retest Sample

-- = Not Sampled

Created by:	NLB	Date: 6/30/2023
Last revision by:	NLB	Date: 12/29/2023
Checked by:	RM	Date: 1/11/2024

Table 3. Water Level SummaryEdgewater I-43 Ash Disposal Facility / SCS Engineers Project #25223069.00

Well Number	Groun	d Water Elevatio	on in feet above	mean sea level	(amsl)
weil Nomber	MW-301	MW-302	MW-303	MW-304	MW-305
op of Casing Elevation (feet amsl)	696.96	702.57	719.25	691.97	717.67
Screen Length (ft)	5.00	5.00	5.00	5.00	5.00
Total Depth (ft from top of casing)	134.56	144.33	144.65	119.49	122.97
Top of Well Screen Elevation (ft)	567.40	563.24	579.60	577.48	600.46
Measurement Date					
April 8, 2016	692.29	683.61	696.30		
April 26, 2016	653.54	653.56	653.59	655.90	
June 20, 2016	652.01	651.89	651.80	653.79	
August 9, 2016	649.68	649.30	649.37	651.55	
October 19, 2016	652.32	652.38	652.18	654.00	
December 19, 2016	652.85	652.79	652.82	654.26	
January 5, 2017	652.86	652.82	652.80	654.15	
January 23, 2017	652.98	664.97	652.92	654.37	
February 23, 2017	653.14	653.10	653.10	654.49	658.02
April 7, 2017	654.43	654.72	654.55	654.85	659.65
June 6, 2017	654.11	654.12	654.14	655.70	659.70
August 1, 2017	652.64	652.55	652.50	654.49	658.54
October 23, 2017	652.03	652.05	652.03	653.65	657.22
April 3, 2018	651.28	651.25	651.30	652.86	656.24
October 4, 2018	650.71	650.70	650.70	652.26	655.89
April 8-9, 2019	653.06	654.06	654.06	655.59	659.03
October 8, 2019	653.26	653.21	653.27	654.77	658.77
November 26, 2019			655.56		
April 7, 2020	656.59	656.47	656.46	658.16	661.58
May 20, 2020		655.81			
October 13, 2020	652.16	652.17	652.20	654.17	658.08
December 18, 2020	653.91	653.88			
April 13, 2021	654.56	654.57	654.53	656.36	659.69
June 16, 2021	649.78	649.75			
October 26, 2021	650.76	650.88	650.90	652.54	655.86
April 11-13, 2022	651.65	651.62	651.58	653.08	657.58
June 16, 2022		650.55			
October 4, 2022	648.87	648.85	648.89	650.51	654.40
February 14, 2023	651.61	651.60	651.61	653.17	656.25
March 22, 2023	652.44	652.43	652.42	654.04	657.48
April 24-25, 2023	653.26	653.25	653.31	654.83	658.22
May 25, 2023	651.28	651.24	651.30	653.17	657.54
June 26, 2023	648.06	648.05	648.07	649.86	655.07
July 26, 2023	647.08	647.02	647.17	649.15	652.09
October 11, 2023	648.65	648.67	648.65	650.24	654.22
November 14, 2023	649.98	649.97	649.95	651.37	654.89
	047.70	047.77	047.70	001.07	004.07
		E E Q Q 4	E74.40	E70 40	E0 4 70
Bottom of Well Elevation (ft)	562.40	558.24	574.60	572.48	594.70

Notes: -- = not measured None Created by: RM Last rev. by: NLB Checked by: RM Date: 1/10/2020 Date: 12/13/2023 Date: 12/18/2023

I:\25223069.00\Deliverables\2023 Fed CCR Annual Report\Tables\Table 3 - I43_wlstat_CCR.xls

Table 4. Horizontal Gradients and Flow Velocity Table Edgewater I-43 Ash Disposal Facility / SCS Engineers Project #25223069.00 January - December 2023

		F	low Path A - I	North	
Sampling Dates	h1 (ft)	h2 (ft)	∆l (ft)	∆h/∆l (ft/ft)	V (ft/d)
4/25-26/2023	654.00	653.25	510	0.0015	0.06
10/10-11/2023	649.00	648.67	235	0.0014	0.06

Wells	K Value (ft/d)	K Value (ft/d)
MW-301	1.7E-03	4.9
MW-302	4.8E-03	14
MW-303	6.8E-03	19
Geometric		
Mean	3.8E-03	11

Assumed Porosity, n
0.25

h1, h2 = point interpreted groundwater

 ΔI = distance between location 1 and 2

elevations at locations 1 and 2

 $\Delta h/\Delta I = hydraulic gradient$

Groundwater flow velocity equation: $V = [K^*(\Delta h/\Delta I)] / n$

ft = feet

- ft/d = feet per day
- K = hydraulic conductivity
- n = effective porosity

V = groundwater flow velocity

v = gr <u>Note:</u>

1. See Figures 3 and 4 for velocity calculation flow path locations.

Created by: NLB	Date: 12/13/2023
Last revision by: RM	Date: 1/11/2024
Checked by: NLB	Date: 1/11/2024

Table 5. Groundwater Analytical Results Summary Edgewater I-43 Ash Disposal Facility, Sheboygan, WI / SCS Engineers Project #25223069.00

			Backgro	und Wells					(Compliance \	Vells			
Parameter Name	Interwell	MW	-304	MW	-305		MW-301			MW-302			MW-303	
	UPL	10/5/2022	4/24/2023	10/4/2022	4/25/2023	Intrawell UPL	10/4/2022	4/24/2023	Intrawell UPL	10/4/2022	4/24/2023	Intrawell UPL	10/5/2022	4/24/2023
Groundwater Elevation, ft amsl		650.51	654.83	654.40	658.22		648.87	653.26		648.85	653.25		648.89	653.31
Appendix III														
Boron, ug/L		91.8	87.1	63.7	60.8	184	124	119	149	117	114	100	84.2	85.4
Calcium, ug/L	103,000	19,400	22,000	83,700	80,500		35,300	30,600		24,800	26,600		29,600	31,200
Chloride, mg/L	24.9	2.4	2.2	29.6	28.3		3.9	3.4		4.3 M0	3.9		4.2	3.8
Fluoride, mg/L	0.753	0.47	0.52	0.59	0.84 J		0.62	0.62		0.72 M0	0.74		0.56	0.58
Field pH, Std. Units	8.34	8.05	8.02	7.51	7.49		7.98	8.05		7.97	8.00		7.97	7.93
Sulfate, mg/L	140	16.2	15.6	140	132		11.8	11.4]	17.0	16.1		23.9	20.6
Total Dissolved Solids, mg/L	598	218	226	602	570		236	230		222	240		270	268

Blue shaded cell indicates the compliance well result exceeds the UPL (background) and the Limit of Quantitation (LOQ).

Abbreviations:

UPL = Upper Prediction Limit SSI = Statistically Significant Increase -- = Not Analyzed ug/L = micrograms per liter mg/L = milligrams per liter LOQ = Limit of Quantitation LOD = Limit of Detection

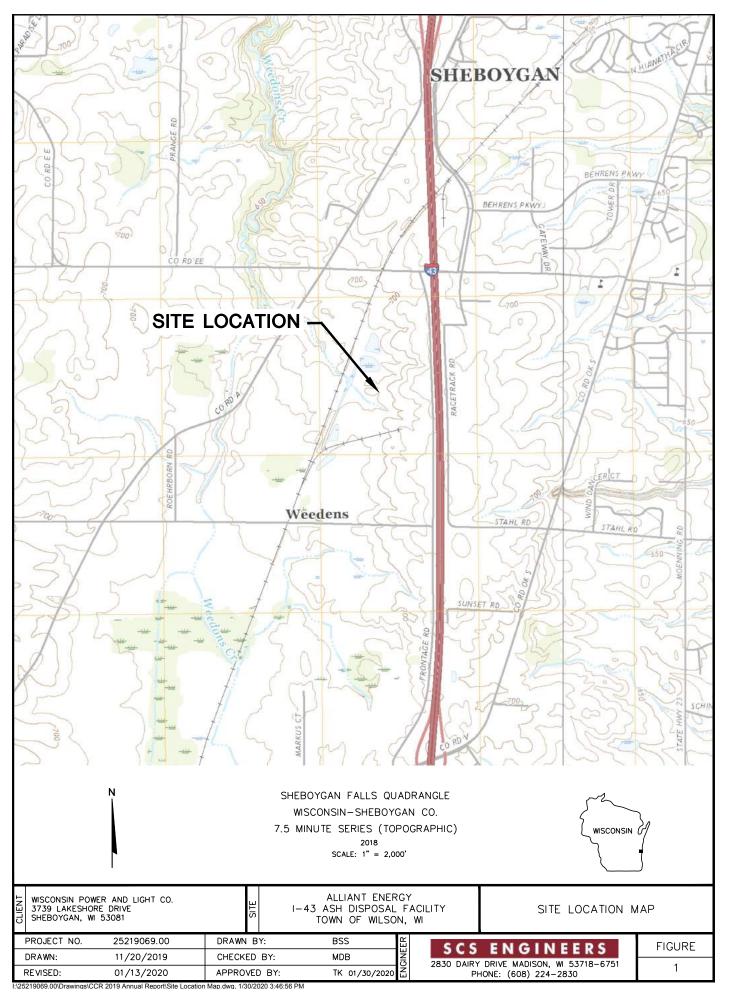
Notes:

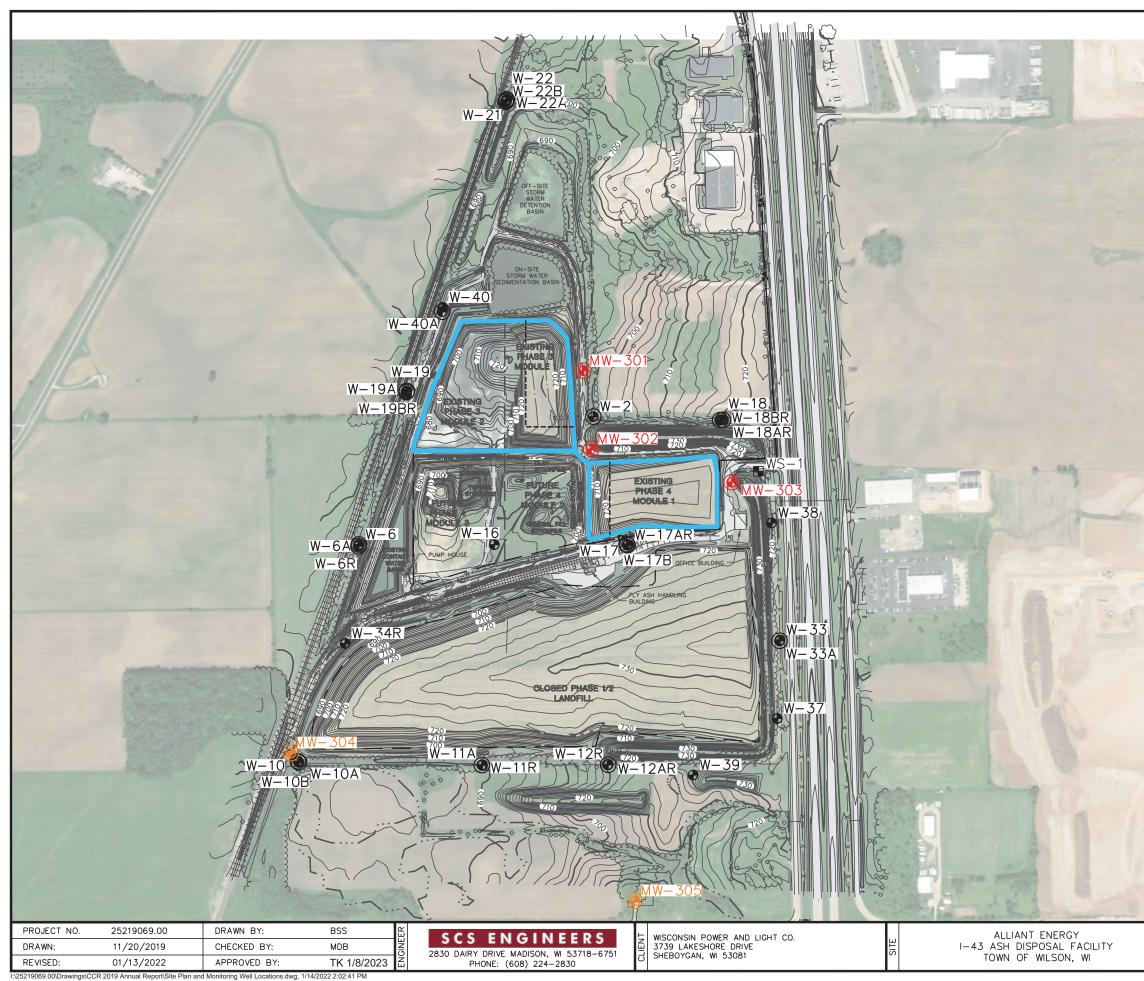
1. An individual result above the UPL does not constitute an SSI above background. See the accompanying letter text for identification of statistically significant results.

2. Interwell UPLs calculated based on results from background wells MW-304 and MW-305. Interwell UPLs based on 1-of-2 retesting approach. Interwell UPLs were calculated with background results from the May 2016 through the October 2020 sampling event.

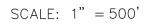
3. Following the completion of the April 2018 Alternative Source Demonstration (ASD) Report, dated October 31, 2018, the statistical method for evaluating boron data at the three compliance monitoring wells was modified to an intrawell approach. Intrawell UPLs were calculated using results from the May 2016 through the April 2020 sampling events.

Created by:	NDK	Date: 9/19/2022
Last revision by:	NLB	Date: 3/28/2023
Checked by:	RM	Date: 7/6/2023
Proj Mgr QA/QC:	TK	Date: 1/8/2024

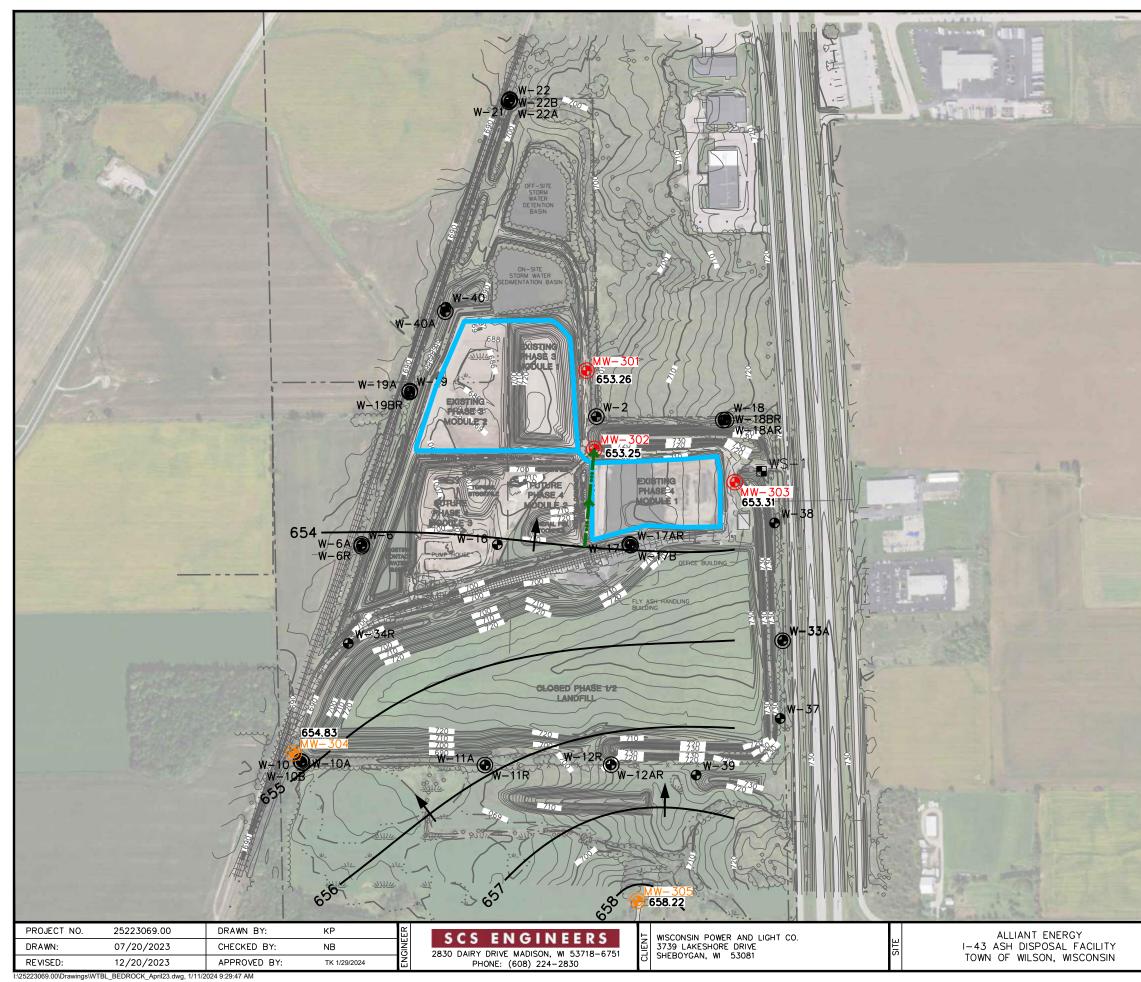

Table 6. Groundwater Field Data SummaryEdgewater I-43 Ash Disposal Facility / SCS Engineers Project #25223069.00

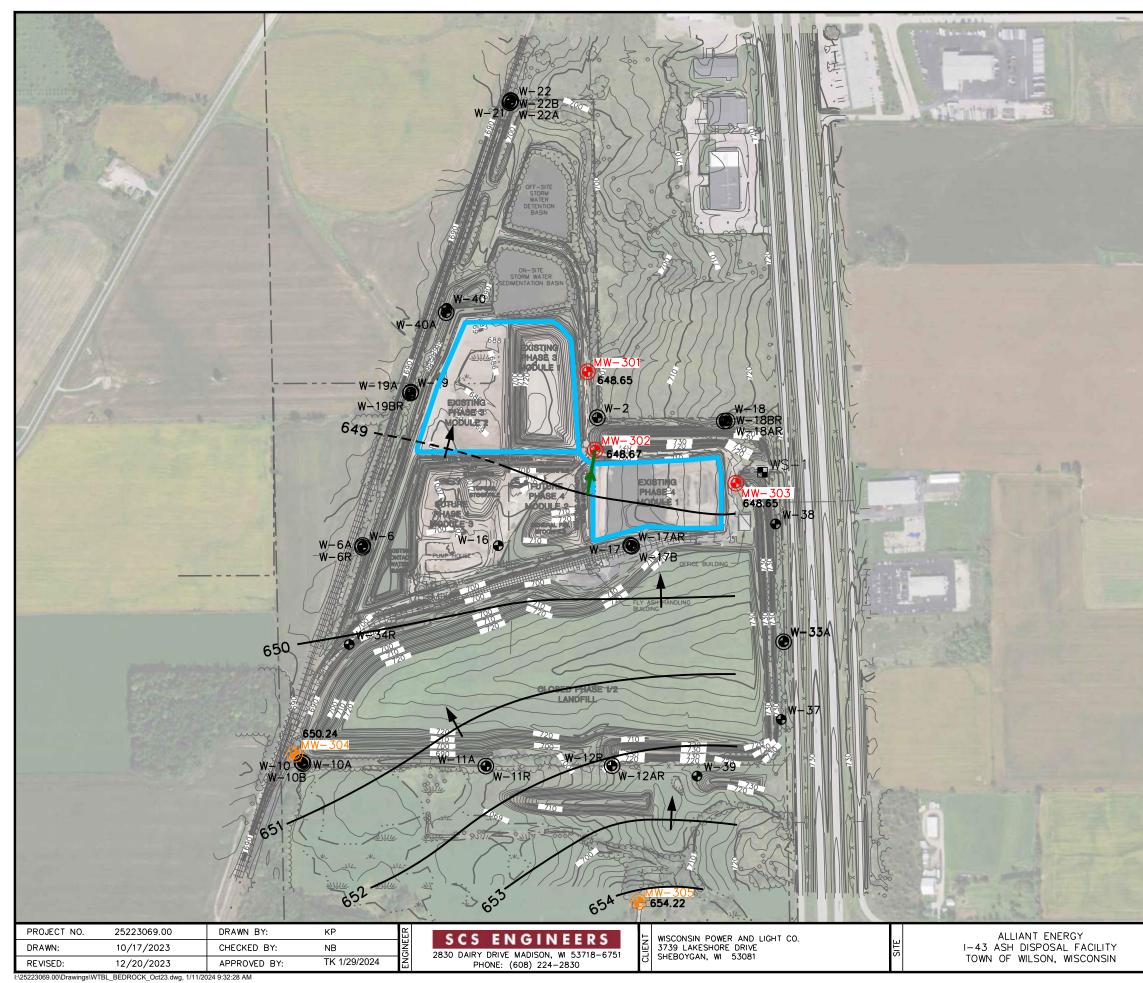

Well	Sample Date	Groundwater Elevation (feet)	Field Temperature (deg C)	Field pH (Std. Units)	Oxygen, Dissolved (mg/L)	Field Specific Conductance (umhos/cm)	Field Oxidation Potential (mV)	Turbidity (NTU)
MW-301	10/4/2022	648.87	11.1	7.98	0.63	373	60	115.0
	4/24/2023	653.26	8.8	8.05	1.40	370	370	97.9
MW-302	10/4/2022	648.85	11.8	7.97	0.83	383	95	3.33
	4/24/2023	653.25	9.0	8.00	1.22	387	451	1.77
MW-303	10/5/2022	648.89	10.3	7.97	1.10	455	118	2.64
	4/24/2023	653.31	9.4	7.93	1.03	447	297	1.65
MW-304	10/5/2022	650.51	11.4	8.05	0.81	400	157	77.7
	4/24/2023	654.83	8.8	8.02	1.02	385	315	2.32
MW-305	10/4/2022	654.40	10.7	7.51	0.67	917	119	6.44
	4/25/2023	658.22	8.5	7.49	1.71	890	323	1.42

Created by:	NLB	Date:	6/30/2023
Last revision by:	NLB	Date:	6/30/2023
Checked by:	RM	Date:	7/6/2023

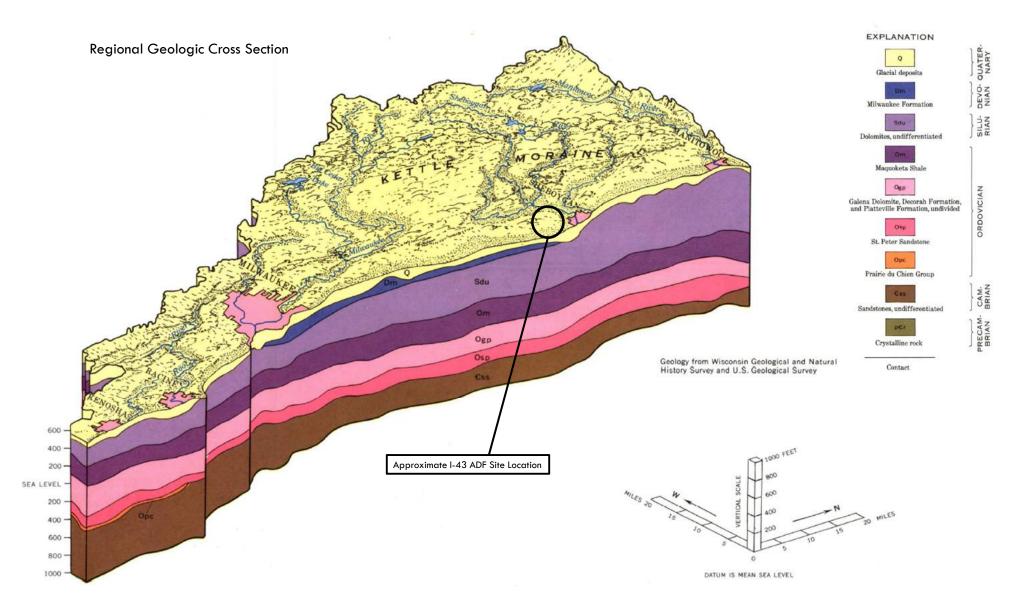

Figures

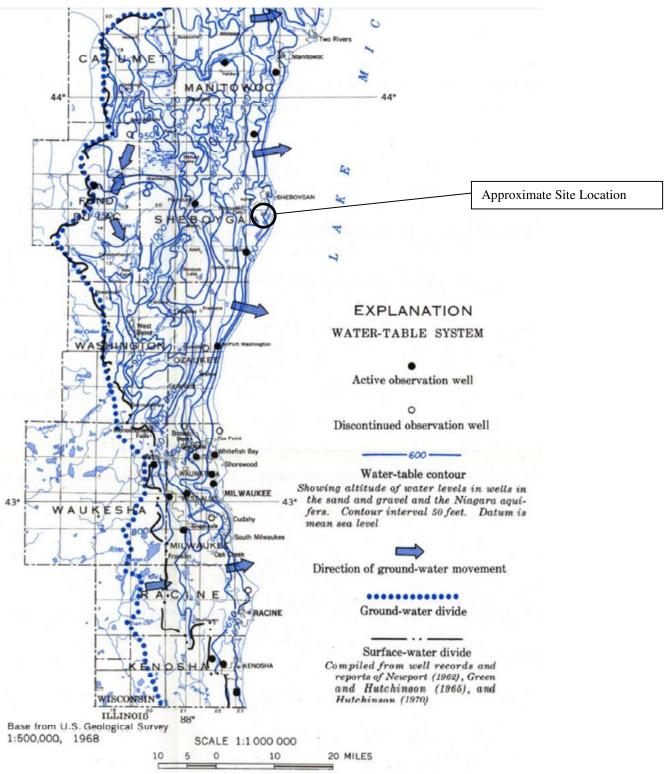
- 1 Site Location Map
- 2 Site Plan and Monitoring Well Locations
- 3 Bedrock Potentiometric Surface Map April 24-25, 2023
- 4 Bedrock Potentiometric Surface Map October 9, 2023




LEGEND APPROXIMATE PROPERTY LINE MODULE LIMITS GRADE (2' CONTOUR) 600 GRADE (10' CONTOUR) EDGE OF WATER SWALE CULVERT O MH MANHOLE W CONTACT WATER TRANSFER PIPE AB AB AB AB AB AB O NH MANDONED 3" DIA. HDPE PIPE AB AB AB AB PAVED ROAD CORTACT WATER SUPAL PAVED ROAD ITTEELINE/TREES PAVED ROAD ITTELINE/TREES PAVED ROAD ITTELINE/TYLIGHT POLE ITTUTYLIGHT POLE ITTUTYLIGHT POLE		
MODULE LIMITS GRADE (2' CONTOUR) 690 GRADE (10' CONTOUR) EDGE OF WATER SWALE CULVERT O MH MANHOLE W CONTACT WATER TRANSFER PIPE AB AB AB AB AB AB O MH MANDONED 3" DIA. HDPE PIPE VILLTREES PAVED ROAD ITTELINE/TREES ITTE ITTTE ITTTE <		LEGEND
GRADE (2' CONTOUR) GRADE (10' CONTOUR) GRADE (APPROXIMATE PROPERTY LINE
GRADE (10' CONTOUR) GRADE (10' CONTOUR) GRADE (10' CONTOUR) GDGE OF WATER GULVERT OMH MANHOLE GULVERT OMH MANHOLE W CONTACT WATER TRANSFER PIPE AB ABANDONED 3" DIA. HDPE PIPE AB ABANDONED 3" DIA. HDPE PIPE AB ABANDONED 3" DIA. HDPE PIPE MONITORINE /TREES PAVED ROAD UNPAVED ACCESS ROAD HIHIHIHIHIHIHI RAILROAD TRACKS V VILITY/LIGHT POLE MONITORING WELL (UNCONSOLIDATED) PIEZOMETER (UNCONSOLIDATED) PIEZOMETER (UNCONSOLIDATED) PIEZOMETER (UNCONSOLIDATED) PIEZOMETER (BEDROCK) CCR PIEZOMETER (BEDROCK) CCR UNIT LIMITS OF FINAL COVER NOTE: 1. 2018 AERIAL PHOTOGRAPH SOURCES: ESRI, DIGITALGLOBE, GEOEYE, I-CUBED, USDA FSA, USGS, AEX, CETMAPPING, AEROGRID, IGN, ICP, SWISSTOPO, AND THE GIS USER COMMUNITY. MONITORING WELLS MW-301, MW-302, MW-303, AND MW-304 WERE INSTALLED BETWEEN NOVEMBER 30, 2015 AND JANUARY 26, 2016 BY BADGER STATE DRILLING INC. DRILLING WAS PERFORMED UNDER THE SUPERVISION OF SICS ENOIMMERS. MONITORING WELL MW-305 WAS INSTALLED FEBRUARY 2, 2017 BY BADGER STATE DRILLING, INC. NONITORING WELL MW-305 WAS INSTALLED FEBRUARY 2, 2017 BY BADGER STATE DRILLING, INC.		MODULE LIMITS
		GRADE (2' CONTOUR)
SWALE O MH MH MANHOLE M CONTACT WATER TRANSFER PIPE AB ABANDONED 3" DIA. HDPE PIPE MH MANDOLE J" DIA. HDPE PIPE MAB ABANDONED 3" DIA. HDPE PIPE MAB PAVED ROAD MITHING RAILROAD TRACKS X X MONITORING WELL (UNCONSOLIDATED) PIEZOMETER (UNCONSOLIDATED) PIEZOMETER (UNCONSOLIDATED) PRIVATE WATER SUPPLY WELL CCR PIEZOMETER (BEDROCK) CCR RULE BACKGROUND MONITORING WELL CCR UNIT LIMITS OF FINAL COVER NOTE: 1. 2018 AERIAL PHOTOGRAPH SOURCES: ESRI, DIGITALGLOBE, GEOEYE, I-CUBED, USDA FSA, USGS, AX, GETMAPPING, AEROGRID, IGN, IGP, SWISSTOPO, AND THE GIS USER COMMUNITY. 2. MONITORING WELLS MW-301, MW-302, MW-303, AND MW-304 WERE INSTALLED BETWEEN NOVEMBER 30, 2015 AND JANUARY 26, 2016 BY BADGER STATE DRILLING INC. DRILLING WAS PERFORMED UNDER THE SUPERVISION OF SCS ENGINEERS. 3. MONITORING WELLS MW-305 WAS INSTALLED FEBRUARY 2, 2017 BY BADGER STATE DRILLING, INC.	690	GRADE (10' CONTOUR)
CULVERT O MH MANHOLE W CONTACT WATER TRANSFER PIPE AB ABANDONED 3" DIA. HDPE PIPE PAWED ROAD PAVED ROAD UNPAVED ACCESS ROAD HIHHHHHHHHHHHHHH RAILROAD TRACKS X X Y UTILITY/LIGHT POLE MONITORING WELL (UNCONSOLIDATED) PIEZOMETER (UNCONSOLIDATED) PRIVATE WATER SUPPLY WELL CCR PIEZOMETER (BEDROCK) CCR UNIT LIMITS OF FINAL COVER NOTE: 1. 2018 AERIAL PHOTOGRAPH SOURCES: ESRI, DIGITALGLOBE, GEOEYE, I-CUBED, USAS FSA, USGS, AXX, GETMAPPING, AEROGRID, IGN, IGP, SWISSTOPO, AND THE GIS USER COMMUNITY. 1. 2018 AERIAL PHOTOGRAPH SOURCES: ESRI, DIGITALGLOBE, GEOEYE, I-CUBED, USAS FSA, USGS, AXX, GETMAPPING, AEROGRID, IGN, IGP, SWISSTOPO, AND THE GIS USER COMMUNITY. 2. MONITORING WELLS MW-301, MW-302, MW-303, AND MW-304 WERE INSTALLED BETWEEN NOVEMBER 30, 2015 AND JANUARY 26, 2016 BY BADGER STATE DRILLING INC. DRILLING WAS PERFORMED UNDER THE SUPERVISION OF SCS ENGINEERS. 3. MONITORING WELL MW-305 WAS INSTALLED FEBRUARY 2, 2017 BY BADGER STATE DRILLING, INC.	· · · · · · · ·	EDGE OF WATER
O MH MANHOLE W CONTACT WATER TRANSFER PIPE AB ABANDONED 3" DIA. HDPE PIPE AB ABANDONED 3" DIA. HDPE PIPE Y REELINE/TREES PAVED ROAD HIHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	· · · ·	SWALE
w CONTACT WATER TRANSFER PIPE AB ABANDONED 3" DIA. HDPE PIPE w TREELINE/TREES PAVED ROAD IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	,	CULVERT
AB ABANDONED 3" DIA. HDPE PIPE Image: Constraint of the state of the	O MH	MANHOLE
Image: Construction of the system of the	W	CONTACT WATER TRANSFER PIPE
PAVED ROAD PAVED ROAD PAVED ROAD PAVED ACCESS ROAD PRIVATE WATERS PAVED POLE PRIVATE WATER SUPPLY WELL PRIVATE WATER SUPPLY WELL CCR PIEZOMETER (UNCONSOLIDATED) PRIVATE WATER SUPPLY WELL CCR UNIT CCR UNIT CCR UNIT PRIVATE WATER SUPPLY WELL CCR UNIT PRIVATE WATER SUPPLY WELL CCR UNIT PRIVATE WATER SUPPLY WELL PRIVATE WATER SUPPLY WELL CCR UNIT PRIVATE WATER SUPPLY WELL PRIVATE WATER SUPPLY SUPPLY WELL PRIVATE SUPER SUPPLY SUPP	AB	ABANDONED 3" DIA. HDPE PIPE
UNPAVED ACCESS ROAD HHHHHHHHHHHHHH RAILROAD TRACKS -X X X FENCE • * UTILITY/LIGHT POLE • MONITORING WELL (UNCONSOLIDATED) • PIEZOMETER (UNCONSOLIDATED) • PIEZOMETER (UNCONSOLIDATED) • PIEZOMETER (UNCONSOLIDATED) • PRIVATE WATER SUPPLY WELL • CCR PIEZOMETER (BEDROCK) • CCR RULE BACKGROUND MONITORING WELL • CCR UNIT 	····· »	TREELINE/TREES
 ** ** FENCE * * UTILITY/LIGHT POLE MONITORING WELL (UNCONSOLIDATED) PIEZOMETER (UNCONSOLIDATED) PIEZOMETER (UNCONSOLIDATED) PRIVATE WATER SUPPLY WELL CCR PIEZOMETER (BEDROCK) CCR RULE BACKGROUND MONITORING WELL CCR UNIT LIMITS OF FINAL COVER NOTE: 2018 AERIAL PHOTOGRAPH SOURCES: ESRI, DIGITALGLOBE, GEOEYE, I-CUBED, USDA FSA, USGS, AEX, GETMAPPING, AEROGRID, IGN, IGP, SWISSTOPO, AND THE GIS USER COMMUNITY. MONITORING WELLS MW-301, MW-302, MW-303, AND MW-304 WERE INSTALLED BETWEEN NOVEMBER 30, 2015 AND JANUARY 26, 2016 BY BADGER STATE DRILLING INC. DRILLING WAS PERFORMED UNDER THE SUPERVISION OF SCS ENGINEERS. MONITORING WELL MW-305 WAS INSTALLED FEBRUARY 2, 2017 BY BADGER STATE DRILLING, INC.		PAVED ROAD
 X X X Y X Y FENCE X UTILITY/LIGHT POLE MONITORING WELL (UNCONSOLIDATED) PIEZOMETER (UNCONSOLIDATED) PRIVATE WATER SUPPLY WELL CCR PIEZOMETER (BEDROCK) CCR RULE BACKGROUND MONITORING WELL CCR UNIT LIMITS OF FINAL COVER NOTE: 2018 AERIAL PHOTOGRAPH SOURCES: ESRI, DIGITALGLOBE, GEOEYE, I-CUBED, USDA FSA, USGS, AEX, GETMAPPING, AEROGRID, IGN, IGP, SWISSTOPO, AND THE GIS USER COMMUNITY. MONITORING WELLS MW-301, MW-302, MW-303, AND MW-304 WERE INSTALLED BETWEEN NOVEMBER 30, 2015 AND JANUARY 26, 2016 BY BADGER STATE DRILLING INC. DRILLING WAS PERFORMED UNDER THE SUPERVISION OF SCS ENGINEERS. MONITORING WELL MW-305 WAS INSTALLED FEBRUARY 2, 2017 BY BADGER STATE DRILLING, INC.		UNPAVED ACCESS ROAD
 * UTILITY/LIGHT POLE MONITORING WELL (UNCONSOLIDATED) PIEZOMETER (UNCONSOLIDATED) PRIVATE WATER SUPPLY WELL CCR PIEZOMETER (BEDROCK) CCR RULE BACKGROUND MONITORING WELL CCR UNIT MOTE: 1. 2018 AERIAL PHOTOGRAPH SOURCES: ESRI, DIGITALGLOBE, GEOEYE, I-CUBED, USDA FSA, USGS, AEX, GETMAPPING, AEROGRID, IGN, IGP, SWISSTOPO, AND THE GIS USER COMMUNITY. MONITORING WELLS MW-301, MW-302, MW-303, AND MW-304 WERE INSTALLED BETWEEN NOVEMBER 30, 2015 AND JANUARY 26, 2016 BY BADGER STATE DRILLING INC. DRILLING WAS PERFORMED UNDER THE SUPERVISION OF SCS ENGINEERS. MONITORING WELL MW-305 WAS INSTALLED FEBRUARY 2, 2017 BY BADGER STATE DRILLING, INC. 	+++++++++++++++++++++++++++++++++++++++	RAILROAD TRACKS
 MONITORING WELL (UNCONSOLIDATED) PIEZOMETER (UNCONSOLIDATED) PRIVATE WATER SUPPLY WELL CCR PIEZOMETER (BEDROCK) CCR RULE BACKGROUND MONITORING WELL CCR UNIT LIMITS OF FINAL COVER NOTE: 2018 AERIAL PHOTOGRAPH SOURCES: ESRI, DIGITALGLOBE, GEOEYE, I-CUBED, USDA FSA, USGS, AEX, GETMAPPING, AEROGRID, IGN, IGP, SWISSTOPO, AND THE GIS USER COMMUNITY. MONITORING WELLS MW-301, MW-302, MW-303, AND MW-304 WERE INSTALLED BETWEEN NOVEMBER 30, 2015 AND JANUARY 26, 2016 BY BADGER STATE DRILLING INC. DRILLING WAS PERFORMED UNDER THE SUPERVISION OF SCS ENGINEERS. MONITORING WELL MW-305 WAS INSTALLED FEBRUARY 2, 2017 BY BADGER STATE DRILLING, INC.	x x x x	FENCE
 PIEZOMETER (UNCONSOLIDATED) PRIVATE WATER SUPPLY WELL CCR PIEZOMETER (BEDROCK) CCR RULE BACKGROUND MONITORING WELL CCR UNIT LIMITS OF FINAL COVER NOTE: 2018 AERIAL PHOTOGRAPH SOURCES: ESRI, DIGITALGLOBE, GEOEYE, I-CUBED, USDA FSA, USGS, AEX, GETMAPPING, AEROGRID, IGN, IGP, SWISSTOPO, AND THE GIS USER COMMUNITY. MONITORING WELLS MW-301, MW-302, MW-303, AND MW-304 WERE INSTALLED BETWEEN NOVEMBER 30, 2015 AND JANUARY 26, 2016 BY BADGER STATE DRILLING INC. DRILLING WAS PERFORMED UNDER THE SUPERVISION OF SCS ENGINEERS. MONITORING WELL MW-305 WAS INSTALLED FEBRUARY 2, 2017 BY BADGER STATE DRILLING, INC.	Ø \$	UTILITY/LIGHT POLE
 PRIVATE WATER SUPPLY WELL CCR PIEZOMETER (BEDROCK) CCR RULE BACKGROUND MONITORING WELL CCR UNIT LIMITS OF FINAL COVER NOTE: 2018 AERIAL PHOTOGRAPH SOURCES: ESRI, DIGITALGLOBE, GEOEYE, I-CUBED, USDA FSA, USGS, AEX, GETMAPPING, AEROGRID, IGN, IGP, SWISSTOPO, AND THE GIS USER COMMUNITY. MONITORING WELLS MW-301, MW-302, MW-303, AND MW-304 WERE INSTALLED BETWEEN NOVEMBER 30, 2015 AND JANUARY 26, 2016 BY BADGER STATE DRILLING INC. DRILLING WAS PERFORMED UNDER THE SUPERVISION OF SCS ENGINEERS. MONITORING WELL MW-305 WAS INSTALLED FEBRUARY 2, 2017 BY BADGER STATE DRILLING, INC.	•	MONITORING WELL (UNCONSOLIDATED)
 CCR PIEZOMETER (BEDROCK) CCR RULE BACKGROUND MONITORING WELL CCR UNIT LIMITS OF FINAL COVER NOTE: 2018 AERIAL PHOTOGRAPH SOURCES: ESRI, DIGITALGLOBE, GEOEYE, I-CUBED, USDA FSA, USGS, AEX, GETMAPPING, AEROGRID, IGN, IGP, SWISSTOPO, AND THE GIS USER COMMUNITY. MONITORING WELLS MW-301, MW-302, MW-303, AND MW-304 WERE INSTALLED BETWEEN NOVEMBER 30, 2015 AND JANUARY 26, 2016 BY BADGER STATE DRILLING INC. DRILLING WAS PERFORMED UNDER THE SUPERVISION OF SCS ENGINEERS. MONITORING WELL MW-305 WAS INSTALLED FEBRUARY 2, 2017 BY BADGER STATE DRILLING, INC.	۲	PIEZOMETER (UNCONSOLIDATED)
 CCR RULE BACKGROUND MONITORING WELL CCR UNIT LIMITS OF FINAL COVER NOTE: 1. 2018 AERIAL PHOTOGRAPH SOURCES: ESRI, DIGITALGLOBE, GEOEYE, I-CUBED, USDA FSA, USGS, AEX, GETMAPPING, AEROGRID, IGN, IGP, SWISSTOPO, AND THE GIS USER COMMUNITY. MONITORING WELLS MW-301, MW-302, MW-303, AND MW-304 WERE INSTALLED BETWEEN NOVEMBER 30, 2015 AND JANUARY 26, 2016 BY BADGER STATE DRILLING INC. DRILLING WAS PERFORMED UNDER THE SUPERVISION OF SCS ENGINEERS. MONITORING WELL MW-305 WAS INSTALLED FEBRUARY 2, 2017 BY BADGER STATE DRILLING, INC. 	8	PRIVATE WATER SUPPLY WELL
CCR UNIT LIMITS OF FINAL COVER NOTE: 1. 2018 AERIAL PHOTOGRAPH SOURCES: ESRI, DIGITALGLOBE, GEOEYE, I-CUBED, USDA FSA, USGS, AEX, GETMAPPING, AEROGRID, IGN, IGP, SWISSTOPO, AND THE GIS USER COMMUNITY. 2. MONITORING WELLS MW-301, MW-302, MW-303, AND MW-304 WERE INSTALLED BETWEEN NOVEMBER 30, 2015 AND JANUARY 26, 2016 BY BADGER STATE DRILLING INC. DRILLING WAS PERFORMED UNDER THE SUPERVISION OF SCS ENGINEERS. 3. MONITORING WELL MW-305 WAS INSTALLED FEBRUARY 2, 2017 BY BADGER STATE DRILLING, INC. N	۲	CCR PIEZOMETER (BEDROCK)
 IMITS OF FINAL COVER NOTE: 2018 AERIAL PHOTOGRAPH SOURCES: ESRI, DIGITALGLOBE, GEOEYE, I-CUBED, USDA FSA, USGS, AEX, GETMAPPING, AEROGRID, IGN, IGP, SWISSTOPO, AND THE GIS USER COMMUNITY. MONITORING WELLS MW-301, MW-302, MW-303, AND MW-304 WERE INSTALLED BETWEEN NOVEMBER 30, 2015 AND JANUARY 26, 2016 BY BADGER STATE DRILLING INC. DRILLING WAS PERFORMED UNDER THE SUPERVISION OF SCS ENGINEERS. MONITORING WELL MW-305 WAS INSTALLED FEBRUARY 2, 2017 BY BADGER STATE DRILLING, INC. 	۲	CCR RULE BACKGROUND MONITORING WELL
NOTE: 1. 2018 AERIAL PHOTOGRAPH SOURCES: ESRI, DIGITALGLOBE, GEOEYE, I-CUBED, USDA FSA, USGS, AEX, GETMAPPING, AEROGRID, IGN, IGP, SWISSTOPO, AND THE GIS USER COMMUNITY. 2. MONITORING WELLS MW-301, MW-302, MW-303, AND MW-304 WERE INSTALLED BETWEEN NOVEMBER 30, 2015 AND JANUARY 26, 2016 BY BADGER STATE DILLING INC. DRILLING WAS PERFORMED UNDER THE SUPERVISION OF SCS ENGINEERS. 3. MONITORING WELL MW-305 WAS INSTALLED FEBRUARY 2, 2017 BY BADGER STATE DRILLING, INC. N		CCR UNIT
 2018 AERIAL PHOTOGRAPH SOURCES: ESRI, DIGITALGLOBE, GEOEYE, I-CUBED, USDA FSA, USGS, AEX, GETMAPPING, AEROGRID, IGN, IGP, SWISSTOPO, AND THE GIS USER COMMUNITY. MONITORING WELLS MW-301, MW-302, MW-303, AND MW-304 WERE INSTALLED BETWEEN NOVEMBER 30, 2015 AND JANUARY 26, 2016 BY BADGER STATE DRILLING INC. DRILLING WAS PERFORMED UNDER THE SUPERVISION OF SCS ENGINEERS. MONITORING WELL MW-305 WAS INSTALLED FEBRUARY 2, 2017 BY BADGER STATE DRILLING, INC. 		LIMITS OF FINAL COVER
 DIGITALGLOBE, GEOEYE, I-CUBED, USDA FSA, USGS, AEX, GETMAPPING, AEROGRID, IGN, IGP, SWISSTOPO, AND THE GIS USER COMMUNITY. 2. MONITORING WELLS MW-301, MW-302, MW-303, AND MW-304 WERE INSTALLED BETWEEN NOVEMBER 30, 2015 AND JANUARY 26, 2016 BY BADGER STATE DRILLING INC. DRILLING WAS PERFORMED UNDER THE SUPERVISION OF SCS ENGINEERS. 3. MONITORING WELL MW-305 WAS INSTALLED FEBRUARY 2, 2017 BY BADGER STATE DRILLING, INC. 	NOTE:	
 MW-304 WERE INSTALLED BETWEEN NOVEMBER 30, 2015 AND JANUARY 26, 2016 BY BADGER STATE DRILLING INC. DRILLING WAS PERFORMED UNDER THE SUPERVISION OF SCS ENGINEERS. MONITORING WELL MW-305 WAS INSTALLED FEBRUARY 2, 2017 BY BADGER STATE DRILLING, INC. 	DIGITALGLOBE, AEX, GETMAPPI	GEOEYE, I-CUBED, USDA FSA, USGS, NG, AEROGRID, IGN, IGP, SWISSTOPO,
FEBRUARY 2, 2017 BY BADGER STATE DRILLING, INC. $\sf N$	MW–304 WERE 2015 AND JAN DRILLING INC. [INSTALLED BETWEEN NOVEMBER 30, UARY 26, 2016 BY BADGER STATE DRILLING WAS PERFORMED UNDER THE
	500	

SITE PLAN AND MONITORING WELL LOCATIONS


	LEGEND	
	APPROXIMATE PROPERTY LIN	IE
	MODULE LIMITS	
	GRADE (2' CONTOUR)	
	GRADE (10' CONTOUR)	
	EDGE OF WATER	
	SWALE	
	CULVERT	
O MH	MANHOLE	
W	CONTACT WATER TRANSFER	PIPE
AB	ABANDONED 3" DIA. HDPE F	PE
····· »	TREELINE/TREES	
	PAVED ROAD	
	UNPAVED ACCESS ROAD	
+++++++++++++++++++++++++++++++++++++++	RAILROAD TRACKS	
x x x x	FENCE	
Ø \$	UTILITY/LIGHT POLE	
•	MONITORING WELL (UNCONSO)LIDATED)
۲	PIEZOMETER (UNCONSOLIDAT	ED)
	PRIVATE WATER SUPPLY WEI	LL
۲	CCR RULE PIEZOMETER (BED	ROCK)
•	CCR RULE BACKGROUND MO	NITORING WELL
	CCR RULE UNIT	
	FLOW PATH FOR VELOCITY ((SEE TABLE 4)	ALCULATION
651.58	POTENTIOMETRIC SURFACE E	LEVATION
	POTENTIOMETRIC SURFACE C	ONTOUR
-	APPROXIMATE GROUNDWATER DIRECTION	R FLOW
NOTE:		
MW-304 WERE 30, 2015 AND STATE DRILLING	LLS MW-301, MW-303, AND INSTALLED BETWEEN NOVEMB JANUARY 26, 2016 BY BADG G INC. DRILLING WAS PERFORM PERVISION OF SCS ENGINEERS	ER IED
	LLS MW-301, MW-302, MW-3 WERE SURVEYED ON FEBRUAR S ENGINEERS.	
	LL MW-305 WAS SURVEYED 2017 BY CQM, INC.	on N
	ELEVATIONS WERE COLLECTEE TERS ON APRIL 24-25, 2023.	
	IND MONITORING WELLS FOR 1 ARE MW-304 AND MW-305.	ΓHE
500	0 500	
SCALE:	1" = 500'	
BEDROCK POTENTIC	METRIC SURFACE MAP	FIGURE
APR	IL 2023	3


	LEGEND	
	APPROXIMATE PROPERTY LIN	IE
	MODULE LIMITS	
	GRADE (2' CONTOUR)	
690	GRADE (10' CONTOUR)	
	EDGE OF WATER	
	SWALE	
	CULVERT	
O MH	MANHOLE	
W	CONTACT WATER TRANSFER	PIPE
AB	ABANDONED 3" DIA. HDPE F	PIPE
· · · · ·	TREELINE/TREES	
	PAVED ROAD	
	UNPAVED ACCESS ROAD	
+++++++++++++++++++++++++++++++++++++++	RAILROAD TRACKS	
x x x x	FENCE	
Ø ‡	UTILITY/LIGHT POLE	
•	MONITORING WELL (UNCONSO	LIDATED)
۲	PIEZOMETER (UNCONSOLIDAT	ED)
	PRIVATE WATER SUPPLY WEI	LL
•	CCR RULE PIEZOMETER (BED	ROCK)
۲	CCR RULE BACKGROUND MO	NITORING WELL
	CCR RULE UNIT	
	FLOW PATH FOR VELOCITY C (SEE TABLE 4)	CALCULATION
651.58	POTENTIOMETRIC SURFACE E	LEVATION
	POTENTIOMETRIC SURFACE C	ONTOUR
-	APPROXIMATE GROUNDWATEF	R FLOW
NOTE:		
MW-304 WERE 30, 2015 AND STATE DRILLING	LLS MW-301, MW-303, AND INSTALLED BETWEEN NOVEMB JANUARY 26, 2016 BY BADG G INC. DRILLING WAS PERFORM PERVISION OF SCS ENGINEERS	ER 1ED
	ELLS MW-301, MW-302, MW-3 WERE SURVEYED ON FEBRUAR S ENGINEERS.	
	LL MW-305 WAS SURVEYED (2017 BY CQM, INC.	ON N
	ELEVATIONS WERE COLLECTED TERS ON OCTOBER 11, 2023.)
	ND MONITORING WELLS FOR T ARE MW-304 AND MW-305.	ΉE
500	0 500	
SCALE:	1" = 500'	
	METRIC SURFACE MAP	FIGURE
OCTOR	3ER 2023	4

Appendix A

Regional Hydrogeologic Information

Source: Skinner, Earl L. and Ronald G. Borman, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigations Atlas HA-432, 1973.

Regional Groundwater Flow Map - Uppermost Aquifer

Source: Skinner, Earl L. and Ronald G. Borman, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigations Atlas HA-432, 1973.

Table I43-3. Regional Hydrogeologic StratigraphyEdgewater I-43 Landfill / SCS Engineers Project #25216069

Age	Hydrogeologic Unit	General Thickness (feet)	Name of Rock Unit*	Predominant Lithology
Quaternary	Sand and Gravel	0 to 235	Surface sand and gravel	Sand and Gravel
	Aquifer	0 to 300	Buried sand and gravel	
Devonian	Niagara Dolomite	0 to 750	Dolomite	Dolomite
Silurian	Aquifer	010730	(undifferentiated)	Dolonine
	Confining Unit	0 to 400	Maquoketa Shale	Shale and dolomite
Ordovician		100 to 340	Galena Decorah Platteville	Dolomite
		0 to 330	St. Peter	Sandstone
	Sandstone Aquifer	0 to 140	Prairie du Chien	Dolomite
Cambrian		0 to 3,500?	Trempeleau Franconia Galesville Eau Claire Mt. Simon	Sandstone, some Dolomite and Shale
Precambrian	Not an Aquifer	Unknown	Crystalline Rocks	Igneous and metamorphic rocks

Source:

Skinner, Earl L. and Ronald G. Borman, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigations Atlas HA-432, 1973.

I:\25216069.00\Reports\2018 ASD Report\Attachment A Regional Geology and Hydro\Regional_Hydrogeologic_Stratigraphy_143.doc

Appendix B

Boring Logs and Well Construction Documentation

2023 Annual Groundwater Monitoring and Corrective Action Report

State of Wisconsin Department of Natural Resources

SOIL BORING	LOG INFORMATION
form 4400-122	Rev. 7-98

Form 4400-122

Route To:

Watershed/Wastewater Remediation/Redevelopment

Waste Management Other 🗌

8

Facili	ty/Proje	ect Nar	ne			License/	Permit	Monito	ring N	umber		Boring	Pa		of	6
	L-Edg				SCS#: 25215135.20	Lavenaci	. still	- noniti	and it	annout		Some	, , , , , , , , , , , , , , , , , , , ,		W-30	01
Borin Ke Ba	g Drille vin Du dger S	d By: urst tate	Name o	of crew chief (first, last)	and Firm	Date Dr		tarted 5/201	5	Da	te Drilli	ing Cor 12/19/			Dril H (n	ling Method SA/rotary nud)
WIU	nique W	Vell No V864		DNR Well ID No.	Common Well Name	Final Sta	atic Wa Fe		el	Surfac	e Eleva 694.	tion 40 Fe	et	Bo		Diameter .0 in.
State SE		rigin of N	626	stimated:) or Bo),196 N, 2,559,679 1/4 of Section 8,	DE S/C/N T 14 N, R 23 E	Lon	~	0	i T		Local C	Grid Lo				Feet 🗌 E 🗌 W
Facili	ty ID			County Sheboygan		County Co 60	ode	·	own/C	ity/ or 1 1.	Village					
Sa	nple										-	Soil	Prop	erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	And G	Rock Description icologic Origin For ich Major Unit		uscs	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
			Ē	LEAN CLAY, brown	ı (fill).		CI,									1
S1 S2	17 22	25 78 47 911	2	LEAN CLAY, red br fine to coarse sand, fi fractures, diamicton ()	own (7.5YR 4/6), moist, ne gravel, stiff, gray coat till).	with ings on					3.0 2.25	М				
S3	24	45 88	7	Softer, brittle, crumble	es.		CL				2.25					
S4		24 55	10 11	Color changes to (10.5	5YR 4/2).						1.5					
\$5	22	34 77	12 13 14 14	LEAN CLAY, dark re coarse sand, fine crum	eddish gray (5YR 4/2), tra ibly texture.	ace					2.25					

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

_	g Num nple			W-301 Use only as an attachment to Form 4400-			-			1	Soil	Prop	ge 2 erties		-
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well	Diagram	PID/FID	Standard Penetration			ß	P 200	RQD/ Comments
			16	LEAN CLAY, red brown, trace coarse sand and fine gravel. Same as above.											
6	24	35 88	-19 -20 -21	Same except dark brown (7.5YR 4/4).						2.5	М				
7	14	55 88	-22 -23 -24 -25 -26	Dark brown (7.5YR 4/2).						1.0					
	24	45 88	26 27 28 29 30	LEAN CLAY, dark brown (7.5YR 4/4), trace medium to coarse sand, few fine sand partings, massive, diamicton (till).	CI.					1.5					
, []	23	45 910	31 32 33 33 34 35	Same, massive to indistinctly laminated, trace fine gravel (dolomite), subrounded (till).						1.0	М				
10	24	55 810	36 37 38 39 40	Same						1.25					

	g Num nple		-	V-301 Use only as an attachment to Form					1		Soil	Prop	ge 3 erties	-	
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic	Log	Well	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/
S11	24	55 119	45	LEAN CLAY, red brown (7.5YR 4/2). Same as above.						1.75	М				
S12	24	57 99	47	Same.						0.75					
513	24	67 1011	53		CI.					1.75					
514	24	57 1010	56 57 58 59 60 61 62							1.75					
15	24	56 78	62 63 64 65	Same, except less sand and fine gravel						2.0					

San	g Num nple			V-301 Use only as an attachment to Form 4400-		-					Soil	Prop	ge 4 erties		1.
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic Log	Well	Diagram		Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/
П			66	LEAN CLAY, same as above.	cı.										
516	24	38 814	- 69 - 70 - 71 - 72 - 73	SILT, light grey (5YR 6/1), laminated (lake sediment).	, ML.					2.5					
517	18	7 7 22	74	SILTY SAND, grey, fine, with medium to coarse sand, trace fine gravel, mostly very fine sand	-					0.5					
518	12	16 18 23	E	(outwash).	SM										
;19	24	139 1214	78	LEAN CLAY, dark brown (7.5YR 4/2) with trace fine to coarse sand, fine gravel (sub-rounded dolomite), massive, diamicton, peds have fine crumbling texture.					2	2.25	м				
20	. 24	14 20 23	81 82 83 84 85 86	Same, except less sand and gravel	CL.					4.5	М				
21	24	9 14 19	87							4.0					

	g Num nple			V-301 Use only as an attachment to Form 4400		1	T				Soil	Prop	ge 5 erties		
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well	Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/
22	24	10 12 14	91 92 93 94 95	LEAN CLAY, same as above. Same.	CL.					2.5					
3	22	9 11 15	96 97 98 99 100	LEAN CLAY, dark grayish brown (10YR 4/2), massive to very indistinctly laminated, very plastic.						3.0	М				
4	24	78 10	102 103 104 104	LEAN CLAY, dark grayish brown (10YR 4/2), massive to indistinclty laminated, very plastic (lake sediment).						1.5	М				
5	22	8 10 12	100 107 108 109 110 1110		CL.					2.0	М				
6	NR	8 10 13	112												

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A

_	g Num nple	1		V-301 Use only as an attachment to Form 440			T			1	Soil	Pag Prope		of	
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic	LOB	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
17	24	WOR	-116 -117 -118 -119 -120	LEAN CLAY, same as above. Thinly laminated (lake sediment).	CL.					3.5	М				Rods dropped
8	22	17 20 21	121	SILT, greyish brown (10YR 5/2), with clay (lake sediment).	ML					2.0	М				
I	9	19 50/3	123	SILTY GRAVEL, dolomite fragments, grey, with clayey silt (weathered bedrock). DOLOMITE (bedrock).	GM	000									
			124 125 126 127 128 129 130 131 132 133 134 135	End of boring @ 135.0' Checked and edited by:	DOLOMIT										S30 sampled chips from 124-128'. Lost circulat no water/mu returnng.
				BJS 3/30/2016											

Route To:

Watershed/Wastewater Remediation/Redevelopment Waste Management Other 🛛

Facilit	y/Proje	ct Nan	ne		Contraction of the second	License/I	Permit	Monito	ring N	umber		Boring	Pag	er	1.55	
	L-Edge				SCS#: 25215135.20					_		1 ::			V-30	
1.000			Name o	f crew chief (first, last)	and Firm	Date Dril	ling S	tarted		Da	te Drill	ing Con	npleted		10.000	ing Method
	in Du ger S						12/4	/2015		1		12/7/2	015			SA/rotary
	ique W			DNR Well ID No.	Common Well Name	Final Stat				Surfac	e Eleva		.015	Bo		Diameter
	VV	7863				1	Fe	et	-			24 Fe		4.11	8.	.0 in.
	Grid Or	rigin		stimated:) or Bo 788 N, 2,559,719		La		ø	1		Local (
NE	Plane	of S		/4 of Section = 8,	DE S/C/N T 14 N, R 23 E	Long		0	,		1	Feet			1	Feet 🗌 E
acilit		0 0		County		County Co		Civil T	`own/C	ity/ or	Village					
				Sheboygan		60		Wils	on Tr	ι.					_	
San	nple						100	1				Soil	Prop	erties		
	& (in)	22	et	Soil/	Rock Description						1.				1.1	
be 1	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		leologic Origin For		S	0	E		Standard Penetration	2 -		2j		RQD/ Comments
Number and Type	ngth cove	DW C	pth 1	Ea	ach Major Unit		SC	Graphic Log	Well Diagram	PID/FID	inda	Moisture Content	Liquid	Plasticity Index	P 200	/QQ
ane	Le Re	BI	De				Э	Grap Log	MIQ	IId	Ste	ΰŽ	Ľ!	Pla	P	20
			-	brown (7.5YR 3/2) m	brown (7.5YR 4/6) to da nottled, trace fine to coarse	e sand.					-				6.1	
П			-1			-										
	12	36	E_2								2.7					
1	13	36 810	Ē								3.7	М				k i i
-			-3	LEAN CLAY brown	(7.5YR 4/4), trace small	fine to										ĺ.
-11			E.	coarse sand and fine	gravel, possible clay and p	gravel					1.1					
52	11	36 911	4	fill @5' very hard, dry	, diamición (ini).						3.5	M				í.
ų			-5													
			Ē						14							
П	3 I		E ⁶								1.1					
3	18	58	E7	LEAN CLAY, mottle	ed, strong brown (7.5YR 4 oarse sand, fine gravel, ve	4/6) and					2.5-	м				
9	10	58 1014	Ē	slightly moist (till).	barse sand, the graver, w		CL		16 L.		4.0	141				
H			-8													
	10	44	-9								2.0					
4	15	44 78	E								2.0	M				
Ц			=10													
			Ε.,													
			Ξu													
			-12													
			Ē													
П			-13	Same as above, excep	t brown (7.5YR 4/4), ver	y hard,										
5	19	36	-14	cohesive (till).				1			20	м				
·	19	36 1012	E								2,0- 4.0	IVI				
- H			-15													

Signature Meghan Blodgett	2	1 200	Firm	SCS Engineers	Tel: (608) 224-2830
Meghan Blodgett	10	unill	-	2830 Dairy Drive Madison, WI 53718	Fax:
	1				

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A

_	g Num nple			W-302 Use only as an attachment to Form 4400-1			1	1	1	Soil	Prop	ge 2 erties	UI	
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well	PID/FID	Standard Penetration			Plasticity Index	P 200	RQD/ Comments
6	24	3 4 6 9	16 17 18 19 20 21	LEAN CLAY, brown (7.5YR 4/4), trace fine to coarse sand, fine gravel, as above (till).					1.5	М				
, []	24	23 56	-22 -23 -24 -25 -26	Same as above, except dark brown (7.5YR 4/2), more moist (till).					1.5	М				
	20	78 79	-26 -27 -28 -29 -30 -31 -32	LEAN CLAY, brown (7.5YR 4/2), massive, trace fine to coarse sand, fine gravel (till).	cī.				1.0					
	6	56 88	33						1.0					
•	24	58 1011							1.0					

_	g Num nple			W-302 Use only as an attachment to Form 4400-1		1	T		1		Soil	Prop	ge 3 erties	UI .	
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic	Well	Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
11	19	79 11 12	41 42 43 44 45 46	LEAN CLAY, brown (7.5YR 4/2), trace fine to coarse sand, fine gravel (till).						1.5- 2.75	w				
2	18	6 10 12 12	47		CL.					1.5	w				
3	24	77 1010	-52	Same as above, except less sand and gravel.						1.25	w				
4	24		57	LEAN CLAY, brown, trace fine to coarse sand, 1/8-3/4" fine to coarse sand seams at 58.5',59', and 59.75', laminated with very thin silt partings (lake sediment).	-ci					1.5	W				
5	24	79 1212	63 64 65	SILT, brown (7.5YR 5/2), massive, little clay (lake sediment).	ML					1.5	w				

_	g Num nple		141 4	V-302 Use only as an attachment to Form 4400-		Τ		T			1	Soil	Pag Prope	-	of	Í
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Cumbio	Log	Well	Diagram	PID/FID	Standard Penetration			ity	P 200	RQD/ Comments
16	18	14 18 30 26	66	SILT with sand, brown, massive, sand is very fine to fine.	ML						1	w				
H			-67	SILTY SAND, fine, massive. SILT WITH SAND, fine, loose, mostly very fine sand	SM	1	H									
7	20	14 25 38 32	68	(lake sediment).								M-W				Sand appear barely wet.
H			- 69					ð,								
18	18	21 30 34 34	-70									w				
H			-71	Same.												
19	18	14 12 25 24	72													
-			-73	Same.	ML.											
20	18	19 27 28 28	-74													
H			75					l								
21	18	21 29 33 30	-76					R								
Н			- 77 E					ł	I							
22	16	23 32 30 28	-78													
H			-79					ĺ.								
23	16	19 21 21 27	80	POORLY GRADED SAND WITH SILT, fine with medium, brown to gray, loose (outwash).	1	Η	$\frac{1}{1}$	ł				w				
H			-81	niculuit, brown to gray, loose (butwash).	SP-SM											
24 324	14	9 19 19 16	82									w				
зЦ			83	SILT, brown, little fine sand, massive to indistinctly laminated (lake sediment).												
			84						h							
			-85		ML.											
			86													
			87													
П			88	LEAN CLAY, dark brown (7.5YR 4/2), massive,			11									
5	18	10 20 23 24	-89	trace fine to coarse sand, fine gravel, very stiff, cohesive, diamicton (till).	cL						3.0- 4.5	w				
U			-90								4.2					

_	g Num nple			V-302 Use only as an attachment to Form 4400-					1	1	Soi		erties		
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic	Log	Well	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Commente
526	20	12 18 21 25	91 92 93 94 94	LEAN CLAY, brown, massive, trace fine to coarse sand, fine gravel, as above (till). Same.	CL					2.5	w				
27	14	17 20 22 12	96 97 98 999 100 101	LEAN CLAY, brown (7.5YR 5/2), massive to indistinctly laminated, trace fine gravel, red/gray laminations (lake sediment).						2.5					
28	24	8 10 13 14	102	LEAN CLAY, grayish brown (10YR 5/2), laminated, with very thin silt partings, very stiff, hard (lake sediment).	a					2.0					
29	24	79 1214		Same as above, except silt is concentrated in 1mm layers spaced 2-6" apart.						1.5					
30			112	Same except dark grayish brown (10YR 4/2), laminated, fewer silt partings, very plastic (lake sediment).											

_	g Num nple	- 11							1		Soil	Prop	erties		-
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Loo	Well	Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
			116	LEAN CLAY, same as above, very plastic, laminated (lake sediment).											
31	24	78 1012	-118 -119 -120		CL.					1.0					S30 was no collected
32	24	9 10 12 13	121	Same.		1				0.5- 1.0					
33	24	11 13 18 18	E	Same as above, very plastic, laminated, few silt partings (lake sediment).						2.0					
14 = 15 16 =	24	14 22 30/5	125	LEAN CLAY WITH SAND, grayish brown, sand is fine. SILT WITH SAND, grayish brown, mostly very fine	a					0.5					
57 58 =	24	30 25 28 24	-126 -127 -127	sand, cohesive. LEAN CLAY WITH SAND, grayish brown, sand is fine, some silt, laminated to thinly bedded clay and silt (lake sediment).	ML					0.5					
9	24	15 17 19 17	-129	Thinly bedded silty fine sand and clay.	CL.			ľ		0.5- 1.0					
10	6	21 19 50/3	131	With dolomite gravel.											
		50/3	-132 -133 -134 -135 -136 -137 -138	DOLOMITE, light gray and brownish gray, dark and light laminations, massive, some pitted and vuggy, mostly without mineralization, vertical fractures common.	DOLOMIT										Convertie
1	0	30/3	-138 	Shaly zone (6') at ~138.5. gray, mineralized fractures below 139'.											Convert to re coring. Run 133'-143'-No water return below 139'.

Sample	-							11.	Soil	Prop	erties		
and Type Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
		141 142 143 143	DOLOMITE (bedrock). Very vuggy and mineralized vugs and fractures below 142'. Blind drilled 144-148'	DOLOMIT									TCR=126/12/ TCR=100% SCR=103/12/ SCR=86% MCR=85/U MCR=57% RQD=57% Fair
			End of boring @ 148' Logged by: Zach Watson: 0-28' Meghan Blodgett: 28-110' Tony Kollasch: 110-144' Checked and edited by: BJS 3/30/2016										

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

Route To:

 Watershed/Wastewater
 Waste Management

 Remediation/Redevelopment
 Other

	//Proje				Same Carlos and	License/	Permit	/Monite	oring N	Number		Boring	Numb		11.00	2
	-Edge				SCS#: 25215135.20	-			-						N-30	
Kev	Drilled in Du ger St	irst	Name of	f crew chief (first, last)	and Firm	Date Dri		0/201	5	Da	ate Drill	ing Cor 12/4/2			H	ing Methoc SA/rotary ud)
	ique W	ell No		DNR Well ID No.	Common Well Name	Final Sta	tic Wa	ater Lev		Surfac	e Eleva	tion		Bo	rehole	Diameter
local (Grid Or	7865 rigin	□ (es	timated: 🗌) or Bo	pring Location	1	Fe	eet	-	-		.60 Fe Grid Lo		_	8	.0 in.
State I NE	Plane 1/4	of S	625,	,616 N, 2,560,451 /4 of Section 8,	E S/C/N T 14 N, R 23 E	La Long	g	o 0	;	"					1	Feet 🗌 E
acility	'ID			County Sheboygan		County Co 60	de		fown/0	City/ or n.	Village	~				
Sam	ple				1				1		-	Soil	Prope	erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	And G	Rock Description eologic Origin For ch Major Unit		USCS	Graphic Log	Well	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
51	14	12 24	1	LEAN CLAY, strong plasticity, mottled col	brown (7.5YR 4/6), me oring, trace coarse sand.	d	CL				1.5	м				
32 , B	14	4 I 2 2	4	SILTY SAND layer,	fine to coarse @ 5-5.5'.		SM				0.75	М				
3	24	47 1011	7	LEAN CLAY, (7.5Y) fine gravel, very stiff,	R 4/4), trace sand, fine te firm, massive, diamictor	o coarse, n (till).					2.8- 4.0	w				
54	18	25 79	10	Same.			CL.				3.0	w				
5	22	23 46	12								1-1.8	W				2

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

	g Numl nple	ber		V-303 Use only as an attachment to Form 440	00-122.	1	-	1-	1	Soil	Prop	ge 2 erties	01	/
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic Log	Well Diagram	PID/FID	Standard Penetration			ty	P 200	RQD/ Commente
6	24	34 68	16 17 18 19 20 21	LEAN CLAY, (7.5YR 4/4), as above.					2.0	w				
7	24	35 67	22 23 24 25 26 27	Same.					1.5- 2.0	W				
3	24	36 78	28 29 30 31 32	Same.	c.				1.5	W				
, []	24	35 79	-33 -34 -35 -36						2.2	w				
0	6	69 11 13	-37 -38 -39 -40	Same as above, except very soft and saturated.					NA	w				

	g Numi nple			W-303 Use only as an attachment to Form 4400-	166.	1	1	1	1	Soil	Prop	ge 3 erties	U1	
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well	PID/FID	Standard Penetration			Plasticity Index	P 200	RQD/ Comments
11	6	10 12 12 16	41 42 43 44 45 46 47	LEAN CLAY, (7.5YR 4/4).						w				
12	24	56 810	48	(no sample retained)					1.3	w				
3	21	37 79	52 53 54 55 56 56	LEAN CLAY (7.5YR 4/4), fine to coarse sand, fine gravel, firm, massive, diamicton (till).	ct.				1.0	w				
4	19	10 11 13 10	57 57 58 60 61 62	Same.					1.0	W				
5	11	46 911	63 64 65						0.5	w				

San	nple	ber	1000	V-303 Use only as an attachment to Form 4400-1				1	11-	Soil	Prop	ge 4 erties		7
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic Log	Well Diayram	PID/FID	Standard Penetration			b,	P 200	RQD/
16	4	9 34 50/5	66 67 68 69 70 71 71 72	Same. LEAN CLAY WITH SAND, brown (7.5YR 4/4), soft, sand fine to coarse.					0	w				
17	7	8 12 12 13	73	Some as above, except trace fine to coarse sand.	ci.				0	w				
8	24	36 57	77 78 79 80 81 	Same as above except, soft in some areas and stiff in others.					0.5	W				
9	15	19 22 25 31	83	SANDY SILT, (10YR 5/4), fine sand, very uniform grains, loose, mostly very fine sand, non-plastic.						w				
0	3	16 16 23 25	86		ML					w				
1	20	20 18 13 14	88	LEAN CLAY, brown (7.5YR 4/4), trace coarse sand, massive to indistinctly laminated (lake sediment).	cL					w				

_	g Num nple			V-303 Use only as an attachment to Form 4400-	1		Τ		-		Soil		ge 5 erties		
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic	LOG	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
22	18	35 38 23 30 19 12 12 13	-96	Same with layers of SANDY SILT, yellowish brown (10YR 5/4), fine, loose (lake sediment).	CL					1.0	w				
4		24 28 34 50/4 36 50/5	103 104 105 106	SANDY SILT, yellowish brown (10YR 5/4) fine, mostly very fine sand, loose (lake sediment).	ML						w w				
5	23	32 22 20 24	108	LEAN CLAY, with layers of SILT, SAND (lake sediment as above).	ci.					3.2	w				
	3		-112 -113 -114 -115	SILTY SAND, (10YR 5/4).	SM					1.2	w				

San	g Num nple		-	V-303 Use only as an attachment to Form 4400		1				1	Soil	Pag Prope		of	
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	U S C S	Graphic	Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/
28	5	50/4	116	LEAN CLAY, 7.5 YR 5/2, trace gravel.	ĊL.					2.5	w				
29	5	50/5	-119 	SILTY SAND WITH GRAVEL, fine, with medium and coarse sand, greys, blues whites and browns, gravel is fine and coarse.							w				
50	8	41 50/-	122	SILTY SAND, fine to coarse grained, trace fine gravel, fine (outwash).							W				
H.	2	50/4	123 124 125		SM						w				
Π	10	31 50/4	126								w				
2 П	10		128	Same.							w				
3	3	50/5	129								w				
4	4	50/4	- 131 - - 132	SILT, some gravel, very dense/stiff (weathered bedrock).	MI.					4.5	w				
			-133 -134	DOLOMITE (bedrock).	Н		7								
			135			1	/								
			137		DOLOMITI	1									
			139				~								

_	g Numb nple	115		Use only as an attachment to Form 4400			1			Soil	ge 7 erties		7	
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/
			141	DOLOMITE (bedrock).	DOLOMIT									
				End of boring @ 143.5' Checked and edited by: BJS 3/30/2016										

State of Wisconsin Department of Natural Resources

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

Route To:

Watershed/Wastewater

Waste Management

T. 111	(T) 1			_			17.5	10 1	A.F. 15			-	10	Pag	-	of	6	
Facility/Project Name WPL-Edgewater I43 SCS#: 25215135.20 Boring Drilled By: Name of crew chief (first, last) and Firm							License/Permit/Monitoring Number Boring Number MW-304											
							Date Drilling Started Date Dril						npleted		a section of the	ing Method		
Kevin Durst Badger State								1/25/2016						2016		HSA/rotary (mud)		
WI Unique Well No. DNR Well ID No. Common Well Name							e Final S	Final Static Water Level Surface							Bo	orehole Diameter		
Tarilo		7866				vine Leastion N		Feet						et		8.	.0 in.	
Local C State F		rgin	624	204 N	, 2,558,156	E S/C/N	1	at	ø	1		Local C				1	Feet 🗌 E	
SW		of S		1/4 of Sec		T 14 N, R 23 E	Lo	ng	ò	1	"	1.77	rea					
Facility					County			County Code Civil Town/City/ or							-			
			-		Sheboygan		60		Wils	on Tn		_	-					
Sample						111		100		Soil Properties								
Number and Type	Length Att. & Recovered (in)	stuno OD ut ut of of the second secon						USCS	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments	
sı	14	25 611	1	LEAN sand, f	I CLAY, brown fine gravel.	(7.5YR 4/6), with fin	e to coarse	a				3.5	м					
S2	14	46 59	4	LEAN	as above, excep I CLAY, brown ve, stiff.	t dark brown. (7.5YR 4/6), with silt	layers,		-			3.5	м					
S3	24	25 811	6 7 8	LEAN	CLAY, brown	(7.5YR 4/4), with fine sive, stiff, diamicton (1	e to coarse	ľ				3.25	М					
.S4	24	45 910	10		interval of sand		CL				3.25	М						
S6	24	24 45	13	LEAN	CLAY, as abo	ve (till).						1.5	М					

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

	g Numl nple			V-304 Use only as an attachment to Form 440		1	T	-	1		Soil	Prop	ge 2 erties	51	-
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic	Log	Diagram	PID/FID	Standard Penetration			5A	P 200	RQD/ Comments
7	22	34 46	16 17 18 19 20 21	LEAN CLAY, brown (7.5YR 4/4), as above (till).						1.25	М				
3	22	23 56	22 23 24 25 26												
,	24	24 67	27 28 29 30		a.					1.0	М				
•	24	35 69	31 32 33 34 34 35 36							1.0	М				
1	24	36 812	-37 -38 -39 -40	Same with fine silt partings.						2.5	М				

San	nple	ber		V-304 Use only as an attachment to Form 4400-				-	-	1	Soil	Prop	erties	of	
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic	Log	Well	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Commente
			41	LEAN CLAY, brown.	cī.										
2	24	4 4 5 8	43	CLAYEY SILT, brown (7,5YR 4/6).	ML		T				м				
L			45	LEAN CLAY WITH SAND, brown (7.5YR 4/6), fine to coarse.	CL.										
	24	24 46	-48 -49 -50							0.75	w				
-			51	LEAN CLAY, brown (7.5YR 4/6).	cı										
	24	45 811	54	SILTY SAND, brown, fine to medium grained.	SM	-	-			1.5	м				
			55	CLAYEY SAND, fine to coarse.	sc		-								
	16	5 13 23 25	59 60	POORLY GRADED SAND WITH SILT, grey (10YR 4/2), fine to medium grained (outwash).						0.5	w				
-	12	8 1.1 18 20	61	Same.	SP-SM						w				
	20	15 23 31 30	-63	Same except mostly very fine sand.											
			-64	LEAN CLAY, with fine to coarse sand, fine gravel, diamicton (till)	CL		11								

	ple										Soil	Prop	erties		
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic	LOG 111	Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Commente
°	20	14 19 15 15	66	LEAN CLAY, brown (7.5YR 4/6).	ci.					2.5	М				
9	8	50/5	68	LEAN CLAY, with layers of SILT, fine to coarse sand (lake sediment).						4.5	М				
U			70	(lake sediment).											
		8 10 15 17	-72 -73 -74	LEAN CLAY, dark brown (7.5YR 4/2), laminated, very plastic (lake sediment).						1.25	М				
U		1017	-75		cı.										
Π	24	7 11 14 15	76	Same with few silt partings, very stiff.						2.75					
	21	14 15	80							2.75					
Π			82												
	12	25 50/5	85	SILTY SAND, grey, fine to coarse grained, dense, trace gravel.						>4.5					
-	16	21 34 42 46	86	Limestone rock fragments, with fine and coarse gravel.	SM						w				
	1	50/2	88												

Sar	g Num nple	-					- 1				1	Soil	Prop	erties		
S Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Granhic	Log	Well	Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
	T)	51111	Ē	Same, diamicton.												
526	2	50/5	-91 -92		SM			l								S26 was skippe
			-93		_		-									
327	24	34 31 42 52/3	E	SILTY SAND and SILT, except dark grayish brown (10YR 4/2), sandstone fragments, fine sand, fine gravel, cohesive, brittle.				l	b			w				
-			-95						ſ							
28	14	30 39 50/3	E I		SM		8	ł				w				
		20.34	-97													
29	12	20 34 50/5	-98	FAT CLAY WITH GRAVEL, brown (7.5 4/3),								W				
30	12	37 50/4	100	sandstone fragments, fine to coarse sand, fine gravel.	СН				ľ		4.5	w				
			101	SILTY SAND, dark grayish brown (10YR 4/2).	SM	h	T		ļ							
31	12	16 35 50/4	= 102		Jim				h		1.5	W				1
Н	,		-103	LEAN CLAY, very dark brown (7.5 YR 2.5/2). SILTY SAND, dark grayish brown (10YR 4/2), fine	CL	-					100	175				
32	18	17 35 50/4	104	grained.	SM							w				
ł		17 50/2	105	SANDY LEAN CLAY, dark brown (7.5YR 3/2), trace gravel.		1	-					-				
33	8	17 50/2	-106		CL						4.0	W				Bedrock at 106. ft bgs.
34	2	50/3	107	SILTY SAND, dark grayish brown (10YR 4/2), fine grained, (weathered bedrock).	SM	I	T									
	-		-109													
35	NA		109	DOLOMITE, gray (7.5YR 6/1), angular fragments.												
A			-111			-										
			-112		DOLOMIT		1									
M			-113													
Y			-114			É	7	THUN								
In			-115			F	-	E	-							

-	y Numb			7-304 Use only as an attachment to Form 4400-						Soil		erties	of	
- and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Commente
	NA		116	DOLOMITE, gray (7.5YR 6/1), angular fragments.	DOLOMI									
			-118-	End of boring @ 118' Logged by: Joe Larson: 0-93' Kyle Kramer: 93-118' Checked and edited by: BJS 3/30/2016										

State of Wisconsin Department of Natural Resources

SOIL BORING	LOG INFORMATION
Form 4400-122	Rev. 7-98

Route To:	Wa
-----------	----

atershed/Wastewater 🔲 Remediation/Redevelopment

Waste Management 🛛 🗋 Other 📋

													Pag		of	7
	y/Projec	et Nan	ie			License/I	Pennit/	Monito	ring N	umber		Boring				
	L I43	1 De	Jama at	f crew chief (first, last) a	SCS#: 25217032.00	Data Dail				D	ate Drilli		MW-		- ID-:11	ing Adapted
-	in Du	•	Name of	i crew ciner (first, last) a	ոգելող	Date Dril	ining St	anea			ate Drith	ing Con	npicica			ing Method
			Drilling	y			1/30	/2017				2/2/2	017		H	SA/Rotary
	ique W			DNR Well ID No.	Common Well Name	Final Sta				Surfac	e Eleva			Bo		Diameter
		7819			MW-305		Fe	et				46 Fe			6	.3 in.
	Grid Or	igin		stimated: 🗌) or Bor	ing Location	La	+	٥	,	1)	Local C	Grid Loo				
State		- e - C1		,435 N, 2,559,946				。	,			Feet			1	Feet 🗌 E
SE Facilit		of S		/4 of Section 8, County	T 14 N, R 23 E	Long County Co	<u>de</u>	 Civil T	own/C	itv/ or	 Village					W
1 40111	<i>,</i>			Sheboygan		60	u.	Wilse			* ninge					
San	nple						1					Soil	Prope	erties		
	· ·			Soil/R	tock Description											
	kit. 2 Sd (i	nuts	Fee		cologic Origin For						5					<u>ي</u>
્ર્યુદ્ધ	th A	ů	րլո		ch Major Unit		CS	hic	l me	E C	lard trati	ent te		Ži j		men
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet				n s i	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid	Plasticity Index	P 200	RQD/ Comments
<u>~ a</u>			- -	TOPSOIL.			<u> </u>	<u><u> </u></u>	ৰিট	<u>_</u>		20				<u> </u>
			Ē					2 2.2								
П			- I	LEAN CLAY, strong	brown (7.5YR 4/6).		"./!	346 31						1		
		1 2	È													
51	8	22 4	-2							\$ \$	1.75					
Ľ			E													
			-3													
m																
			-4												ł	1
S2	14	48 11	Fil								4.5+					
U			E, I													
											1					
			È, I													
П			E.					ļ			1					
S 3	18	711	-				C				4.5+					
		14	-7													
U			E													
			-8													
П			-													
		4 10	-9										ļ			
\$4	18	4 10 9	_								4.5+					
U			-10													
			E													
													1			
			-					Í								
			-12					ļ								
			14.				1		1	1		1		ł.		

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature Phyle Man Firm SC 2830	S Engineers Tel: (608) 224-2830
----------------------------------	---------------------------------

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A

]		V-305 Use only as an attachment to Form 4			ľ]		Soil		erties		1
Blew Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uses	Graphic Log	Wel] Diagram	PID/FID	Star.dard Per.etration			8	P 200	RQD! Comments
46 8		Same as above except, brown (7.5 YR4/3).					2.5					Mud Rootary 15 ft dys
469	- 17 - 18 - 19 - 20	Same as above except, trace gravel.					4.5-1					
467	22 23 24 24 25 26		сſ.				3.0					
467	27 - 28 - 28 - 29 - 30						2.0					
	46 8 46 9	$\begin{array}{c} -13 \\ -14 \\ 8 \\ -15 \\ -16 \\ -17 \\ -18 \\ -19 \\ -20 \\ -21 \\ -22 \\ -23 \\ -24 \\ -7 \\ -25 \\ -26 \\ -27 \\ -28 \\ -28 \\ -29 \\ -2$	$\begin{array}{c} -13 \\ -14 \\ 8 \\ -14 \\ -16 \\ -16 \\ -16 \\ -16 \\ -16 \\ -17 \\ -18 \\ -18 \\ -18 \\ -18 \\ -18 \\ -18 \\ -18 \\ -18 \\ -18 \\ -18 \\ -20 \\ -21 \\ -22 \\ -23 \\ -22 \\ -23 \\ -23 \\ -24 \\ -25 \\ -26 \\ -27 \\ -28 \\ -28 \\ -28 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -20 \\ -21 \\ -21 \\ -21 \\ -22 \\ -23 \\ -26 \\ -27 \\ -28 \\ -28 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -20 \\ -21 \\ -21 \\ -21 \\ -22 \\ -23 \\ -26 \\ -27 \\ -28 \\ -28 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -20 \\ -21 \\ -21 \\ -21 \\ -21 \\ -21 \\ -21 \\ -22 \\ -23 \\ -23 \\ -26 \\ -27 \\ -28 \\ -28 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -20 \\ -21 \\ -21 \\ -21 \\ -21 \\ -21 \\ -21 \\ -21 \\ -21 \\ -21 \\ -21 \\ -21 \\ -21 \\ -21 \\ -22 \\ -23 \\ -23 \\ -24 \\ -25 \\ -26 \\ -27 \\ -28 \\ -28 \\ -29 \\ -$	$\begin{array}{c} -13\\ -14\\ 8\\ -15\\ -16\\ -15\\ -16\\ -17\\ -18\\ -16\\ -17\\ -18\\ -19\\ -20\\ -21\\ -22\\ -21\\ -22\\ -21\\ -22\\ -22\\ -23\\ -26\\ -21\\ -22\\ -23\\ -26\\ -27\\ -28\\ -26\\ -27\\ -28\\ -29\\ -29\\ -29\\ -29\\ -29\\ -29\\ -29\\ -29$	$\begin{array}{c c} $	$\begin{array}{c} 4.6 \\ 1.1 \\ 4.6 \\ 1.1 \\ 1.5 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.7 \\ 1.6 \\ 1.6 \\ 1.7 \\ 1.6 \\$	$\begin{array}{c} 4 & 6 \\ 4 & 6 \\ 7 \\ 1 \\ 4 \\ 8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$\begin{array}{c c} & 13 \\ & 14 \\ & 14 \\ & 15 \\ & 15 \\ & 16 \\ & 17 \\ & 16 \\ & 17 \\ & 16 \\ & 17 \\ & 16 \\ & 17 \\ & 16 \\ & 17 \\ & 16 \\ & 17 \\ & 16 \\ & 17 \\ & 16 \\ & 17 \\ & 16 \\ & 17 \\ & 16 \\ & 17 \\ & 16 \\ & 17 \\ & 16 \\ & 17 \\ & 16 \\ & 17 \\ & 16 \\ & 16 \\ & 17 \\ & 16 \\ & 16 \\ & 17 \\ & 16 \\ & 16 \\ & 17 \\ & 16$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c} 4 \\ 4 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\$	B00 0000 00000 00000000000000000000000

Borin	g Numl	oer	MV	V-305 Use only as an attachment to Form	4400-122.							Pag		of	7
	nple_										Soil	Prope			
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic Log	wel)	Diagram		Standard Penetration	Moisture Content	Líquid Límit	Plastícity Index	P 200	RQD/ Comments
59	18	58 9	33							2.5					
S10	18	47 9	37							2.5	- - - - -				
SLI	18	37 8	42		CT					2.5					
S12	18	39 13	47 48 49 50 51							2.0		- - - -			
2/26/2024	- Clas	sificat		ternal - ECRM13238613					:						

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A

· · · · · ·	g Num	ber	M۷	V-305 Use only as an attachment to Form 4400	-122.								ge 4	oľ	7
Sar	nple	ļ									Soil	Prop	erties		
	Length Att. & Recovered (m)	ts	5	Soil/Rock Description			İ								
노리	Att.	Sun	la Fe	And Geologic Origin For	s	0		ε	Ω	rd ttion	2 8		<u>A</u>		ents
Number and Type	ngth cove	Blaw Counts	Depth In Feel	Each Major Unit	u s c	Graphic Log	Well	Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid	Plasticity Index	P 200	RQD/ Comments
an N	Re	Ē	<u> </u>		<u> </u>	0.	≤∣	Ő	IId	Person	Σ̈́⊔́	ت ت	μ. <u>Γ</u>	<u> </u>	<u> </u>
S13	18	558	53	Same as above except, brown (7.5YR 4/3).						2.5					
S14	18	556			- - 					1.5					
\$15	12	55 16	62 63 64 65 66			n Marin - A Marin - Marin - Marin - Marina - Marina - Marina - Marina - Marin - M				3.0					
\$16 \$17	12 20	13 16 16 14 19 20 22	70	POORLY GRADED SAND, gray (10YR 5/1), medium to coarse grained.	sp										
02/26/20			72	SILTY SAND, brown (7.5YR 4/3), fine grained. Internal - ECRM13238613	SiM										

	g Num	ber	MW	V-305 Use only as an attachment to Form 4400-1	.22,					<u></u>		ge 5	of	7
Number and Type	Length Au. & ad	Blaw Caunts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	1.0g	well Diagram	PID/FID	Standard Penetration		Plasticity soit.	P 200	RQD/ Comments
S18	16	99 1016		LEAN CLAY, brown (7.5YR 4/3).	SM CL									
S19	18	8 16 18 21	75	POORLY GRADED SAND, gray (10YR 5/1), fine to medium grained.										
S20	16	8 18 20 23	77											
S21	16	15 20 23 30												
S2 2	16	1523 2631	81											
S23	18	21 18 29 31			SP									
S24	18	17 30 33 33	85											
S25	16	15 20 30 30												

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A

	g Numl	ber	MŴ	/-305 Use only as an attachment to Form 440	0-122.	<u></u>			1		age 6	oľ	7
Satt Number and Type	Length Att. & d Recovered (in)	Blow Counts	Depth In Fec.	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well	PID/FID	Standard Penetration		Limit Plasticity Index	P 200	RQD/ Comments
S26	18	18 23 25 29	93 94 95 96										
S27	14	10 22 24 25	-97 -98 -99 -100	Same as above except, trace coarse gravel.	SP								
S28	12	13 3 10 8	102	Same as above except, trae coarse gravel.									
S29	12	23 42 50/0.5	- 107 - 108 - 109 - 110 - 110	DOLOMITE, gray (10YR 5/1), weathered.									

Boring N		er	MW	/-305		Use	only as	s an att	achmei	nt to F	form 4	1400-1	22.	-						Pag	;e 7	of	7
Sampl						-		-										So	il F	rope	rties		
Number and Type Length Att. &	Recovered (in)	Blow Counts	Depth In Feet			And	il/Rock I Geolo Each N	gic Or	igin Fo				uscs	Graphic Log	Well Dia <i>s</i> ram	PID/FID	Standard Penetration	Moisture	Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
S30 -			- 113 - 114 - 115 - 116 - 117 - 118 - 119 - 120 - 121		t'borin			zs.															

SCS #25215135.20

	Watershed/Wastewater	Waste Mana	agemen	MONITORING WELL Form 4400-113A	CONSTRUCTION Rev. 7-98
Facility/Project Name WPL-Edgewater I43	Local Grid Location of Well 626196.3 ft.	XIN	59679 ft. W	Well Name MW-301	
Facility License, Permit or Monitoring No. 02853	Local Grid Origin (estin	mated:) or "Long	Well Location	Wis. Unique Well No. VV864	DNR Well ID No.
Facility ID	St. Plane 626196.3 ft.	N. 255967	9.0 ft. E. S/C/N		14/2016
460022090 Type of Well	Section Location of Waste/S		N.R. 23 KE	Well Installed By: Nan	d d y y y y ne (first, last) and Firm
Well Code <u>12</u> / PZ	SW1/4 of NE 1/4 of Se Location of Well Relative to		Gov. Lot Number	Kevin Durst	
Distance from Waste/ Enf. Stds. Sourceft. Apply	u Upgradient s d X Downgradient n	Sidegradient		Badger State Drill	
A. Protective pipe, top elevation 69	72 <u>1</u> ft. MSL		. Cap and lock?		X Yes No
B. Well casing, top elevation69	6. 96 ft. MSL	H	a. Inside diameter		⁴ in.
C. Land surface elevation69	4. 40 ft. MSL		b. Length:		<u>7</u> n.
D. Surface seal, bottom69390 ft. MS	water to a	3	c. Material:		Steel X 04
12. USC <u>S classification of so</u> il near screet	1 State 1	1965年	d. Additional pro	etection?	Other X Yes No
	sw sp 🗌 🔪 🖁			e: ves, bumper posts	
SM SC ML MH C Bedrock X	ст 🗆 сн 🗖 🛛 🖊		. Surface scal:		Bentonite X 30
	Yes No			in Bentonite chips	Concrete 0 1 Other
	tary 🔀 50	4		well casing and protectiv	
Hollow Stem Au	uger 🔀 4 1			•	Bentonite 30
O	ther			5 sand- 2 bags	Other
15. Drilling fluid used: Water X0 2	Air 01	s s	Annular space se	al: a. Granular/Chippe nud weight Bentonite	
	None 99			nud weight Bento	
16. Drilling additives used?	Yes X No		d % Benton	ite Bentonite-c	ement grout 50
		988 4		³ volume added for any o	The second s
Describe	8		f. How installed		$\begin{array}{c c} \text{Tremie} & \mathbf{X} & 0 \\ \text{ie pumped} & \mathbf{X} & 0 \\ \end{array}$
17. Source of water (attach analysis, if requ	ired):	3 83			Gravity 08
Site Supply Well	8	6	Bentonite seal:	CLUDAS, MARKAN AND AND AND AND AND AND AND AND AND A	ite granules 33
E. Bentonite seal, top566.40 ft. MS	122		b/4 m c	3/8 in. 1/2 in. Ben 2 Baos	tonite chips 3 2 Other 3 2
F. Fine sand, top 571.40 ft. MS	L or = 123 ft.	7 / /	. Fine sand materia	al: Manufacturer, produc Ohio #7	et name & mesh size
G. Filter pack, top 569.40 ft. MS	L or 125 ft.		b. Volume added	0.5 lbs ft	3
F67 40	Lor 127 ft.	8	. Filter pack mater	ial: Manufacturer, produ	ct name & mesh size
H. Screen joint, top567.40 ft. MS	L or II.		a b. Volume added	Ohio #5 d 3 lbs ft	<u> </u>
I. Well bottom 562.40 ft. MS	$L \text{ or } = -\frac{132}{100} \text{ ft.}$	9	b. Woll casing:	Flush threaded PVC sc Flush threaded PVC sc	hedule 40 🗌 23
J. Filter pack, bottom562.40 ft. MS	L or 132ft.			PVC	Other
K. Borehole, bottomft. MS	L or <u>135</u> ft.		 A. Screen material: a. Screen type: 	1	Factory cut 11
L. Borehole, diameter $\frac{8.0}{-}$ in.					inuous slot 🗙 01 Other
M. O.D. well casing $-\frac{2.4}{1}$ in.			b. Manufacturerc. Slot size:d. Slotted length		$0. _ 01 in.$
N. I.D. well casing $-\frac{1.9}{-1.9}$ in.		11	. Backfill material	(below filter pack): ck cuttings/slough	$\begin{array}{c}5 \text{ ft.} \\ \text{None} \\ 14 \\ \text{Other} \\ \end{array}$
I hereby certify that the information on this	form is true and correct to th	e best of my know			
Signature ON KA	Firm				
Tyle Hof for J. l	SCS E	INGINEERS, 28	830 Dairy Drive,	Madison, WI 53718-6	5/51

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

SCS #25215135.20

	Watershed/Wastewater	Waste Man	agemen	MONITORING WELL CONSTRUCTIO Form 4400-113A Rev. 7-98
Facility/Project Name WPL-143	Local Grid Location of We 625788.4 ft	And and a second s	559719 ft. W.	Well Name MW-302
Facility License, Permit or Monitoring No. 02853	Local Grid Origin (est	timated:) or Long	Well Location	Wis. Unique Well No. DNR Well ID No. VV863
Facility ID	St. Planc 625788.4 f		19.0 ft. E. S/C/N	Date Well Installed
460022090	Section Location of Waste/	Source		1 /15 /2016 d d v v v v Well Installed By: Name (first, last) and Fir
Well Code 12 / PZ	<u>SW1/4 of NE 1/4 of S</u>	sec. 8, T. 14	$N, R. 23 \square W$	Kevin Durst
Distance from Waste/ Enf. Stds.	Location of Well Relative t	o Waste/Source	Gov. Lot Number	
Sourceft. Apply	d Downgradient n			Badger State Drilling
	281 ft. MSL		 Cap and lock? Protective cover 	Yes No
B. Well casing, top elevation $-\frac{70}{-1}$	2. 57 ft. MSL		a. Inside diamete	
C. Land surface elevation70	0. 24 ft. MSL		b. Length:	$=$ $\overline{7}$ ft.
	WARTER OF		c. Material:	Steel 🔀 0 d
D. Surface seal, bottom69974 ft. MS	24-37/5-3.4V		san barran in	Other 🛄 🛄
12. USCS classification of soil near screet		II N	d. Additional pro	
			If yes, describ	e: ves. bumper posts (3)
Bedrock X			3. Surfacc scal:	Bentonite X 30
	Yes No		10 bags 3/8	in Bentonite chips Other
	tary 🗙 50			well casing and protective pipe:
Hollow Stem Au	percent of the second se			Bentonite 30
	ther		Ohio #	5 sand-2 bags Other 🔲 📗
			5. Annular space se	al: a. Granular/Chipped Bentonite 3 3
15. Drilling fiuid used: Water X 0 2 Drilling Mud 0 3	Air 01			nud weight Bentonite-sand slurry 35
	None 99			nud weight Bentonite slurry 🔀 31
16. Drilling additives used?	Yes 🗙 No	× ×		ite Bentonite-cement grout 5 (volume added for any of the above
			f. How installed	
Describe			I. How instance.	Tremie pumped X 02
17. Source of water (attach analysis, if requ	tired):			Gravity 0
Site supply well			6. Bentonite seal:	a. Bentonite granules 3 3
	100.0		b /4 in. 🗙	3/8 in. $1/2$ in. Bentonite chips 32
E. Bentonite seal, top572.24 ft. MS			c	2 Baos Other
F. Fine sand, top -567.24 ft. MS	L or 133 ft.		7. Fine sand materia	al: Manufacturer, product name & mesh size 1 bag Ohio #7
G. Filter pack, top 565.24 ft. MS	L or 135 ft.		a b. Volume addee	
, , , , , , , , , , , , , , , , , , ,				ial: Manufacturer, product name & mesh siz
H. Screen joint, top563.24 ft. MS	L or $\{_}^{137}$ ft.		a b. Volume addee	Ohio #5
I. Well bottom 558.24 ft. MS	Lor142 ft.		9. Well casing:	Flush threaded PVC schedule 40 22
		置		Flush threaded PVC schedule 80 X 24
J. Filter pack, bottom 558.24 ft. MS	L or $_$ $_$ $_$ $\frac{142}{\text{ft.}}$ $$	を入	<u>10</u>	Other 🗍 🚚
K. Borehole, bottom552.24 ft. MS	Lor ¹⁴⁸ ft.	1	0. Screen material:	PVC Factory cut 1 1
K. Borenoie, bouom			a. Screen type:	Factory cut 1 1 Continuous slot X 0 1
L. Borehole, diameter $-\frac{8.0}{-1}$ in.				Other
			b. Manufacturer	Monoflex
M. O.D. well casing -2.4 in.		\backslash	 c. Slot size: d. Slotted length 	0 <u>01</u> in 5 ft
N. I.D. well casing $-\frac{1.9}{-1.9}$ in.		`1		(below filter pack): None 1 4
•			Lin	nestone Chips Other 🗙 📗
I hereby certify that the information on this		he best of my kno	wledge.	
Signature 200 For N.H.	Firm	ENGINEERS, 2	830 Dairy Drive,	Madison, WI 53718-6751

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

0

	Vatershed/Wastewater	Other	nagemenX	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Facility/Project Name WPL-143	Local Grid Location of Wel 625615.5 ft.		560451 ft. W.	Well Name MW-303
Facility License, Permit or Monitoring No. 02853	Local Grid Origin (est		Well Location	Wis. Unique Well No. DNR Well ID No. VV865
Facility ID	Lat St. Planc 625615.5 ft		51.0 ft. E. S/C/N	Date Well Installed
460022090	Section Location of Waste/	Courses		
Type of Well Well Code 12 / PZ	SW1/4 of NE 1/4 of S	ec. <u>8</u> ,T. <u>1</u>	4 <u>N, R.</u> 23 ₩E	Well Installed By: Name (first, last) and Firm Kevin Durst
Distance from Waste/ Enf. Stds.	Location of Well Relative to u Upgradient s	Sidegradien		Badger State Drilling
Sourceft. Apply	d Downgradient n 9. 48 ft. MSL		1. Cap and lock?	X Yes No
71	9. $25_{\text{ft.}}$ MSL		2. Protective cover	pipe:
B. wen casing, top elevation $= = =$			a. Inside diameter	$-\frac{0}{5}$ in.
	660 ft. MSL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	b. Length: c. Material:	Steel X 04
D. Surface seal, bottom71610 ft. MS	L or50 ft.		C. 144461141.	
12. USCS classification of soil near screen		1 Wales	d. Additional pro	
		$ \land \land$	If yes, describe	e: ves, bumper posts (3)
Bedrock X		🛛 🖾 🔪 `	3. Surfacc scal:	Bentonite \times 30 Concrete \bigcirc 01
I A REAL PROPERTY AND A RE	Yes No			Other
	ary 🔀 50		4. Material between	well casing and protective pipe:
Hollow Stem Au			17.1	Bentonite 🛄 30
0	ther			io #5 sand Other 🛛 🏬
15. Drilling fiuid used: Water X0 2	Air 01		5. Annular space se	al: a. Granular/Chipped Bentonite 33 nud weight Bentonite-sand slurry 35
	None 99	8 8		nud weight Bentonite slurry X 31
		×	d % Benton	ite Bentonite-cement grout 50
16. Drilling additives used?	res 🗙 No	X X	eFt	volume added for any of the above
Describe			f. How installed	
17. Source of water (attach analysis, if requ	ired):	8 W		Tremie pumped 🔀 02 Gravity 🗌 08
Site supply well	l l		6. Bentonite seal:	a. Bentonite granules 33
			b. 🗌 /4 in. 🗙	3/8 in. 1/2 in. Bentonite chips 3 2
E. Bentonite seal, top588.60 ft. MS	Lor128 ft.	88/	c	Other
F. Fine sand, top683.60 ft. MS	L or $_$ $_$ $_$ $_$ $_$ $_$ ft.	▌፟፟፟፟ዾ/ ,	7. Fine sand materia	al: Manufacturer, product name & mesh size Ohio #7
G. Filter pack, top 581.60 ft. MS	Lor 135 ft.		a b. Volume addee	
	L or137_ft.		8. Filter pack mater	ial: Manufacturer, product name & mesh size
			a b. Volume addee	$\frac{\text{Ohio } \#5}{1.50 \text{ ft}^3}$
I. Well bottom 574.60 ft. MS	L or 142 ft.		9. Well casing:	Flush threaded PVC schedule 40 23
J. Filter pack, bottom574.60 ft. MS	L or 142 ft.			Flush threaded PVC schedule 80 2 4 Other
K. Borehole, bottomft. MS	Lor ¹⁴³ ft.		 Screen material: a. Screen type: 	Factory cut X 11
2 			a. Gorocartypo.	Continuous slot 01
L. Borehole, diameter $-\frac{6.0}{-1}$ in.			h Manuf	Other 🗌 🎆
M. O.D. well easing -2.4 in.			 b. Manufacturer c. Slot size: d. Slotted length 	0. <u>01</u> in.
N. I.D. well casing $-\frac{1.9}{-1}$ in.				(below filter pack): None 1 4
I hereby certify that the information on this	form is true and correct to t	he best of my kno	owledge.	Native Other X
Signature	Firm			
Mille For Zach	water SCS	ENGINEERS, 2	2830 Dairy Drive,	Madison, WI 53718-6751

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

SCS #25215135.20

	Watershed/Wastewater	Waste Managemen	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Facility/Project Name WPL-143	Local Grid Location of Well 624204 ft.	×N. 2558156 ft. W	Well Name 7 MW-304
Facility License, Permit or Monitoring No. 02853	Local Grid Origin (estin	, Ľ, , ,	or <u>VV866</u>
Facility ID 460022090	St. Plane 624204.0 ft. 1	N,2558156.0 ft. E. S/C	
Type of Well	Section Location of Waste/So SW1/4 ofNE 1/4 of Sec		Well Installed By: Name (first, last) and Firm
Well Code <u>12 / PZ</u>	Location of Well Relative to,	Waste/Source Gov. Lot Numbe	Kevin Duerst
Distance from Waste/ Enf. Stds. Sourceft. Apply	u Upgradient s d Downgradient n	Sidegradient Not Known	Badger State Drilling
	238 ft. MSL	1. Cap and lock?	
B. Well casing, top elevation $-\frac{69}{-9}$	197 ft. MSL	a. Inside diam	
C. Land surface clevation68	3948 ft. MSL	b. Length:	<u>5</u> ft.
D. Surface seal, bottom68898 ft. MS	SL or 0.5 ft.	c. Material:	Steel X 04
12. USCS classification of soil near screen		d. Additional	protection? X Yes No
		If yes, desc	ribe: ves, bumper posts Bentonite X 30
Bedrock X		3. Surface scal:	Concrete 0 1
	Yes No		Other
14. Drilling method used: Ro Hollow Stem Au	tary $\times 50$ ngcr $\times 41$	4. Material betw	een well casing and protective pipe: Bentonite 30
	ther		sand Other 🔀
15. Drilling fluid used: Water X0 2	Air 01	5. Annular space	al mud weight Bentonite-sand slurry 3 3
	None 99		al mud weight Bentonite-said stury 33
16. Drilling additives used?	Yes XNo	d % Ben	tonite Bentonite-cement grout 50
		e f. How instal	Ft ³ volume added for any of the above led: Tremie X 01
Describe		I. How instal	Tremie pumped 0 2
17. Source of water (attach analysis, if requ Site supply well	lirea):	6. Bentonite seal	Gravity 08 a. Bentonite granules 33
	👹		\times 3/8 in. $1/2$ in. Bentonite chips \checkmark 3.2
E. Bentonite seal, top 586.48 ft. MS		B	ack Hills Bentonite Other
F. Fine sand, top581.48 ft. MS	L or = = = = = 108 ft.	7. Fine sand mat	erial: Manufacturer, product name & mesh size Ohio #5
G. Filter pack, top579.48 ft. MS	Lor110 ft.		ded ft ³
H. Screen joint, top577.48 ft. MS	Lor ft.	8. Filter pack ma	terial: Manufacturer, product name & mesh size Ohio #7
		b. Volume ad	lded1 ft ³
I. Well bottom 572.48 ft. MS	$L \text{ or } = -\frac{117}{117} \text{ ft.}$	9. Well casing:	Flush threaded PVC schedule4023Flush threaded PVC schedule8024
J. Filter pack, bottom 572.48 ft. MS	SL or $_$ $_$ 117 ft.		Other
K. Borehole, bottomft. MS	L or 118 ft.	10. Screen materi a. Screen typ	e: Factory cut 🔀 11
L. Borehole, diameter $-\frac{8.0}{-1}$ in.		A	Continuous slot 01
M. O.D. well casing -2.4 in.	2	b. Manufactur c. Slot size:	$\underbrace{\text{Monoflex}}_{0, _01 \text{ in.}}$
N. I.D. well casing 1.9 in.		d. Slotted len 11. Backfill mate	gth:5 ft. rial (below filter pack): None 🕅 14
-			Other
I hereby certify that the information on this Signature	form is true and correct to the Firm	best of my knowledge.	
Min 200 for Jul		NGINEERS, 2830 Dairy Driv	e, Madison, WI 53718-6751

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

SCS # 2517032.00

	Watershed/Wastewater	Waste Managemen	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Facility/Project Name	Remediation/Redevelopment Local Grid Location of Well	Other	- Wall Name
WPL - Edgewater I43	ft.	N. ft.]E. Well Name WW-305
Facility License, Permit or Monitoring No.	Local Grid Origin (estima	ated: []) or Well Locatio	n 🖸 Wis. Unique Well No. DNR Well ID No. VY819
Facility ID	St. Plane 623435.13 ft. N	2559945.85 ft. E. S	/C/N Date Well Installed 2/ 2/ 2017
Type of Well	Section Location of Waste/Sou		Well Installed By: Name (first, last) and Firm
Well Code 12 / PZ	1/4 of1/4 of Sec.	,TN, R	LW Kevin Duerst
Distance from Waste/ Enf. Stds.	Location of Well Relative to M u Upgradient s	Aste/Source Gov. Lot Num Sidegradient	
Sourceft. Apply X	d Downgradient n	Not Known	Badger State Drilling
A. Protective pipe, top elevation	717.88 ft. MSL	1. Cap and loo	
B. Well casing, top elevation	717.67 ft. MSL	2. Protective	60
		a. Inside dia	ameter: -5α .
	715.46 ft. MSL	b. Length:	
D. Surface seal, bottom 713.46 ft. MS	SL or 2 ft.	N. Mathat	Other
12. USCS classification of soil near screen	n:	d. Addition	al protection? X Yes No
	sw sp i		escribe: yes, bumper posts (3)
	сг 🗆 сн 🗖 🛛 📈		Bentunita 30
Bedrock X	🕅	3. Surface sea	Concrete X 01
	Yes No	×	Other
	tary 🔀 50	4. Material be	tween well casing and protective pipe:
Hollow Stem Au		#5 D W/ O	Bentonite 30
0	ther	#5 R.W. S	
15. Drilling fiuid used: Water X0 2	Air 01	5. Annular spi	
	None 99		/gal mud weight Bentonite-sand slurry 35
			/gal mud weight Bentonite slurry X 31 entonite Bentonite-cement grout 50
16. Drilling additives used?	Yes 🗙 No	d 70 L	<u>4</u> Ft ³ volume added for any of the above
		f. How ins	
Describe	🛛	I, HOW INS	Tremie pumped 0 2
17. Source of water (attach analysis, if requ	ired):	88 1	Gravity 08
Site Supply Well		6. Bentonite s	eal: a. Bentonite granules 3 3
			n. $\times 3/8$ in. $1/2$ in. Bentonite chips 732
E. Bentonite seal, top609.46 ft, MS		c. <u>100 lbs</u>	Other
F. Fine sand, top -603.46 ft. MS	L or112 ft.	7. Fine sand m #7 R.W.	aterial: Manufacturer, product name & mesh size Sidley
G. Filter pack, top602.46 ft. MS	L or113 ft.	b. Volume	
H. Screen joint, top600.46 ft. MS	L or115_ft.	8. Filter pack	material: Manufacturer, product name & mesh size #5 R.W. Sidley
		ab. Volume	
I. Well bottom 595.46 ft. MS	Lor120 ft.	9. Well casing	
			Flush threaded PVC schedule 80 24
J. Filter pack, bottom594.46 ft. MS	$L \text{ or } = \frac{121}{12} \text{ ft.}$		Other 🗍 🚛
K. Borehole, bottom 594.46 ft. MS	Lor 121 ft.	10. Screen mate a. Screen t	
			ype: Factory cut 11 Continuous slot X 01
L. Borehole, diameter6.25 in.			Other 🗆 🛄
III.		b. Manufac	
M. O.D. well casing $-\frac{2.4}{-1}$ in.		C. Slot size	: 0. <u>01</u> in.
N ID well caring 1.9		d. Slotted 1	
N. I.D. well casing $ \frac{1.9}{-}$ in.		11. Backfill ma	terial (below filter pack): None X 1 4 Other
I hereby certify that the information on this	form is true and correct to the b	est of my knowledge.	
Signature Ma M	Firm		
myle the	SCS EN	GINEERS, 2830 Dairy D	rive, Madison, WI 53718

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on those forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

1

State of Wisconsin Department of Natural Resources

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/Waste	ewater 🛄	Waste Management	\mathbf{X}	
Remediation/Red	levelopment	Other		
Facility/Project Name	County Name		Well Name	
Alliant Energy 1-43		eboygan		MW-301
Facility License, Permit or Monitoring Number	County Code 59	Wis. Unique Well Nu <u>VV-864</u>		Well ID Number
 Can this well be purged dry? Ye Well development method 	es 🛛 No	11. Depth to Water (from top of		ent After Development $\frac{46}{12} = \frac{34}{12}$ (L
surged with bailer and bailed Image: Constraint of the surged with block and bailed	4 1 6 1 4 2	well casing)	-	<u></u>
surged with block, bailed and pumped	62 70 20 10		• •	yy m m d d yyyy ma.m. m16:00 ⊠p.m.
	51 50	12. Sediment in well bottom13. Water clarity	inch Clear10 Turbid X 15	esinches Clear X 20 Turbid 25
3. Time spent developing well	190 min.		(Describe)	(Describe)
4. Depth of well (from top of well casisng) $-\frac{132}{2}$	2.9_ft.		Medium brown color	Medium brown color Slightly to moderately turbid
5. Inside diameter of well $-\frac{2}{2}$) in.		Very turbid	
6. Volume of water in filter pack and well casing18	.2 gal.	Fill in if drilling fluids	were used and well	is at solid waste facility:
7. Volume of water removed from well315	gal.			
8. Volume of water added (if any)	:. <u>-</u> gal.	14. Total suspended solids	mg	/l mg/l
9. Source of water added		15. COD	mg	/l,mg/l
		16. Well developed by	: Name (first, last) and E	7inn.
10. Analysis performed on water added? Ye (If yes, attach results)	es 🗙 No	First Name: Nate	Last N	ame: Harms
<		Firm: SCS ENGIN	EERS, 2830 Dairy I	Drive, Madison, WI 53718

17. Additional comments on development:

Name and Address of Facility Contact /Owner/Responsible Party First Name: Jim Last Name: Jakubiak	I hereby certify that the above information is true and correct to the best of my knowledge.
Facility/Finn: WP&L Alliant Energy	Signature:
Street: 3739 Lakeshore Drive	Print Name: Nath Havins
City/State/Zip: Sheboygan, WI 53082	Firm: SCS ENGINEERS, 2830 Dairy Drive, Madison, WI 53718

SCS # 25215135.20

State of Wisconsin Department of Natural Resources

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/Was	lewater	Waste Management	X				
Remediation/Re	development	Other					
Facility/Project Name	County Name		Well Name				
Alliant Energy I-43	Sh	eboygan	MW-302				
Facility License, Permit or Monitoring Number	County Code 59	Wis. Unique Well N VV-86		DNR Well ID N	umber		
 Can this well be purged dry? Well development method surged with bailer and bailed 	Yes ⊠ No 41	11. Depth to Water (from top of well casing)		elopment Afte:			
surged with bailer and pumped surged with block and bailed surged with block and pumped surged with block, bailed and pumped compressed air bailed only	61 42 62 70 20 10	Date			$\frac{02}{m} \frac{16}{m} \frac{16}{d} \frac{1}{y}$ $4 : 20 \qquad $	<u>2016</u> уууу	
pumped only pumped slowly Other	51 50	 Sediment in well bottom Wator clarity 	Clear 🔲 1 (Turbid 🔀 1)	5 Turbio	inches		
	<u>145</u> min,		(Describe)	(Descr	ibe)		
	- <u>3 8 ft</u> .		Medium brown Very turbid		n brown color ìght turbidity		
5. Inside diameter of well $-\frac{2}{2}$.	0 in.						
	<u>3</u> gal.	Fill in if d rilling fluid	is were used and	d well is at solid	waste facility:		
7. Volume of water removed from well2	<u>6</u> gal.	14. Total suspended		mg/l	me/l		
8. Volume of water added (if any)	gal.	solids					
9. Source of water added	· · · · · · · · · · · · · · · · · · ·	15. COD		mg/l	mg/1		
		16. Well developed b	y: Name (first, las	at) and Firm			
10. Analysis performed on water added? If yes, attach results)	es 🗙 No	First Name: Nate		Last Name: Harm			
		Firm: SCS ENGIN	IEERS, 2830 I	Dairy Drive, Ma	dison, WI 53718		

17. Additional comments on development:

Name and Address of Facility Contact /Owner/Responsible Party First Name: Jim Last Name: Jakubiak	I hereby certify that the above information is true and correct to the best of my knowledge.
Facility/Firm: WP&L Alliant Energy	Signature: Nall H
Street: 3739 Lakeshore Drive	Print Name: 1ate 4 avms
City/State/Zip: Sheboygan, WI 53082	Firm: SCS ENGINEERS, 2830 Dairy Drive, Madison, WI 53718

SCS # 25215135.20

State of Wisconsin Department of Natural Resources

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/Wastewater	Wasie Managemen	nt 🔀
Remediation/Redevelop	oment Other	
Facility/Project Name Cour	nty Name	Well Name
Alliant Energy I-43	Sheboygan	MW-303
	aty Code Wis. Unique Well N 9	
2. Well development method surged with bailer and bailed 4 1	No No No No No No No No No No	Before Development After Development a6786 ft6786 ft.
surged with bailer and pumped X 61 surged with block and bailed 42 surged with block and pumped 62 surged with block, bailed and pumped 70 compressed air 20 bailed only 10	Date Time	b. $\frac{02}{m m} / \frac{16}{d} / \frac{2016}{y y y y} \frac{02}{m m} / \frac{16}{d} / \frac{2014}{y y y}$ c. $\frac{15}{2} : \frac{10}{10} \frac{a.m.}{p.m.} \frac{17}{17} : \frac{40}{10} \frac{a.m.}{p.m.}$
pumped only 51 pumped slowly 50 Other 1	12. Sediment in well bottom 13. Water clarity	Clear 2 1 0 Clear 2 2 0 Turbid 1 5 Turbid 2 5
3. Time spent developing well150 m		(Describe) (Describe)
4. Depth of well (from top of well casisng) $-\frac{145}{7}$, $\frac{7}{16}$ f	ìt.	Medium brown color Light brown color Very turbid very slight turbidity
5. Inside diameter of well $-\frac{2}{2}, \frac{0}{2}$ i	n.	
6. Volume of water in filter pack and well casing18_4	Fill in if drilling fluid	ids were used and well is at solid waste facility:
7. Volume of water removed from well $-\frac{250}{2}$. 4	gal.	
8. Volume of water added (if any) g	-	l mg/l mg/l
9. Source of water added	15. COD	mg/l mg/l
· · · · · · · · · · · · · · · · · · ·	16. Well developed b	by: Name (first, last) and Firm
10. Analysis performed on water added? Yes X (If yes, attach results)	O No First Name: Nate	Last Name: Harms
	Firm: SCS ENGIN	NEERS, 2830 Dairy Drive, Madison, WI 53718

17. Additional comments on development:

Name and Address of Facility Contact /Owner/Responsible Party First Last Name: Jim	I hereby certify that the above information is true and correct to the best of my knowledge.
Facility/Firm: WP&L Alliant Energy	Signature:
Succet: 3739 Lakeshore Drive	Print Name: Natl Havms
City/State/Zip: Sheboygan, WI 53082	Firm: SCS ENGINEERS, 2830 Dairy Drive, Madison, WI 53718

SCS # 25215135.20

State of Wisconsin Department of Natural Resources

MONITORING	WELL	DEVELOPMENT
Form 4400-113B		Rev. 7-98

Route to: Watershed/Wa	stewater 🛄	Waste Management	X			
Remediation/R	edevelopment	Other				
Facility/Project Name	County Name		Well Name			
Alliant Energy 1-43		leboygan			1W-304	
Facility License, Permit or Monitoring Number	County Code 59	Wis. Unique Well N VV-86		DNR Well	ID Number	
1. Can this well be purged dry?	Yes 🛛 No	11. Depth to Water	Before Deve	elopment	After Development	
2. Well development method surged with bailer and bailed surged with bailer and pumped surged with block and bailed surged with block and pumped surged with block, bailed and pumped	41 61 42 62 70	(from top of well casing) Date	$b \frac{02}{m} / \frac{16}{d}$	$\frac{3}{y} \frac{20}{y} \frac{20}{y}$	$\frac{39}{y} = \frac{39}{m} \frac{39}{m} \frac{16}{d} \frac{16}{y}$	<u>_2016</u> уууу
compressed air Image: Compressed air bailed only Image: Compressed air pumped only Image: Compressed air pumped slowly Image: Compressed air Other Image: Compressed air	20 10 51 50	Time 12. Sediment in well bottom 13. Water clarity		_inches	18 : 40a.m. ip.m. inches Clear X 2 0 Furbid25	
3. Time spent developing well	<u>120 min.</u>		(Describe)		Describe)	
4. Depth of well (from top of well casisng) -1^{1}	<u>45 7 ft.</u>		Medium brown		Water mostly clear	
5. Inside diameter of well	0 in.		Very turbid			
	8 4 gal.	Fill in if drilling fluid	ls were used and	d well is at a	solid waste facility:	
7. Volume of water removed from well2	<u>40</u> gal.	14 Tornt surper ded		maA	mg/l	
8. Volume of water added (if any)	<u> </u>	solids			,,,,,,,	
9. Source of water added		15. COD		mg/l	, mg/l	
		16. Well developed by	y: Name (first, la	st) and Firm		
10. Analysis performed on water added?	Yes 🔀 No	First Name: Nate Firm: SCS ENGIN		Last Name: Dairy Drive	Harms a, Madison, WI 53718	

17. Additional comments on development:

Name and Address of Facility Contact /Owner/Responsible Party First Name: Jim Last Name: Jakubiak	I hereby certify that the above information is true and correct to the best of my knowledge.
Facility/Firm: WP&L Alliant Energy	Signature:
Street: 3739 Lakeshore Drive	Print Name: Nate Harms
City/State/Zip: Sheboygan, WI 53082	Firm: SCS ENGINEERS, 2830 Dairy Drive, Madison, WI 53718

SCS # 25217032.00

State of Wisconsin Department of Natural Resources

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/Wastewate	Waste Management X
Remediation/Redevelo	pment Other
Facility/Project Name Con	nty Name Well Name
WPL-1-43	Sheyboygan MW-305
	nty Code Wis. Unique Well Number DNR Well ID Number
1. Can this well be purged dry? Yes 2. Well development method 4 1 surged with bailer and bailed 4 1 surged with bailer and pumped 6 1 surged with block and bailed 4 2 surged with block and pumped 6 2 surged with block, bailed and pumped 7 0 compressed air 2 0 bailed only 1 0 pumped only 5 1 pumped slowly 5 0 Other 9	No No Before Development After Development 11. Depth to Water (from top of well casing) Date $b. = \frac{2}{m} / \frac{7}{d} / \frac{59}{y} = \frac{56}{p} ft.$ $b. = \frac{2}{m} / \frac{7}{d} / \frac{2017}{d} = \frac{2}{y} / \frac{7}{d} / \frac{2017}{d} = \frac{2}{y} / \frac{7}{y} / \frac{2017}{y} = \frac{2017}{y} = \frac{2017}{d} = \frac{2}{d} / \frac{7}{d} / \frac{2017}{y} = \frac{2}{y} = \frac{10}{y} = \frac{10}{$
3. Time spent developing well162	Turbid 🔀 1 5 Turbid 🗌 2 5
4. Depth of well (from top of well casisng)122 .97	ft. Brown
5. Inside diameter of well $-\frac{1}{2} \cdot \frac{9}{2}$	in
 6. Volume of water in filter pack and well casing14 . 16 7. Volume of water removed from well135 . 0 	Fill in if drilling fluids were used and well is at solid waste facility:
8. Volume of water added (if any)	14. Total suspended mg/l mg/l
9. Source of water added NA	15. COD mg/l mg/l
	16. Well developed by: Name (first, last) and Firm
10. Analysis performed on water added? Yes (If yes, attach results)	No First Name: Kyle Last Name: Kramer
17 Additional comments on doublements	Firm: SCS ENGINEERS, 2830 Dairy Drive, Madison, WI 53718

17. Additional comments on development:

Water clarity was clear before ten well volumes.

Name and Address of Facility Contact /Owner/Responsible Party First Last Name: Jim Name: Jakubiak	I hereby certify that the above information is true and correct to the best of my knowledge.
Facility/Firm: Wisconsin Power and Light	Signature: Mugle Min
Street:3739 Lakeshore Drive	Print Name: Kyle Kramer
City/State/Zip: Sheyboygan,WI 53081	Firm: SCS ENGINEERS, 2830 Dairy Drive, Madison, WI 53718

NOTE: See instructions for more information including a list of county codes and well type codes. 02/26/2024 - Classification: Internal - ECRM13238613

Appendix C

Laboratory Reports

C1 October 2022 Detection Monitoring

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

October 27, 2022

Meghan Blodgett SCS ENGINEERS 2830 Dairy Drive Madison, WI 53718

RE: Project: CCR RULE EDGEWATER I-43 ASH Pace Project No.: 40252607

Dear Meghan Blodgett:

Enclosed are the analytical results for sample(s) received by the laboratory on October 06, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Green Bay

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Dan Milent

Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: Matt Bizjack, Alliant Energy Sherren Clark, SCS Engineers Jenny Coughlin, Alliant Energy Tom Karwoski, SCS ENGINEERS Nicole Kron, SCS ENGINEERS Ryan Matzuk, SCS Engineers Jeff Maxted, ALLIANT ENERGY Marc Morandi, ALLIANT ENERGY

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: CCR RULE EDGEWATER I-43 ASH

Pace Project No.: 40252607

Pace Analytical Services Green Bay

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 South Carolina Certification #: 83006001 Texas Certification #: T104704529-21-8 Virginia VELAP Certification ID: 11873 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-21-00008 Federal Fish & Wildlife Permit #: 51774A

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project: CCR RULE EDGEWATER I-43 ASH

Pace Project No.: 40252607

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40252607001	MW-301	Water	10/04/22 13:25	10/06/22 08:10
40252607002	MW-302	Water	10/04/22 12:10	10/06/22 08:10
40252607003	MW-303	Water	10/05/22 09:55	10/06/22 08:10
40252607004	MW-304	Water	10/05/22 10:55	10/06/22 08:10
40252607005	MW-305	Water	10/04/22 11:05	10/06/22 08:10
40252607006	FIELD BLANK	Water	10/05/22 10:40	10/06/22 08:10

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: CCR RULE EDGEWATER I-43 ASH

Pace Project No.: 40252607

Lab ID	Sample ID	Method	Analysts	Analytes Reported
40252607001		EPA 6020B	KXS	2
			KPR	7
		SM 2540C	SRK	1
		EPA 9040	YER	1
		EPA 300.0	HMB	3
40252607002	MW-302	EPA 6020B	KXS	2
			KPR	7
		SM 2540C	SRK	1
		EPA 9040	YER	1
		EPA 300.0	HMB	3
40252607003	MW-303	EPA 6020B	KXS	2
			KPR	7
		SM 2540C	SRK	1
		EPA 9040	YER	1
		EPA 300.0	HMB	3
0252607004	MW-304	EPA 6020B	KXS	2
			KPR	7
		SM 2540C	SRK	1
		EPA 9040	YER	1
		EPA 300.0	HMB	3
40252607005	MW-305	EPA 6020B	KXS	2
			KPR	7
		SM 2540C	SRK	1
		EPA 9040	YER	1
		EPA 300.0	HMB	3
40252607006	FIELD BLANK	EPA 6020B	KXS	2
		SM 2540C	SRK	1
		EPA 9040	YER	1
		EPA 300.0	HMB	3

PASI-G = Pace Analytical Services - Green Bay

REPORT OF LABORATORY ANALYSIS

Project: CCR RULE EDGEWATER I-43 ASH

i iojeci.

Pace Project No.: 40252607

Sample: MW-301	Lab ID:	40252607001	Collected	l: 10/04/22	2 13:25	Received: 10/	/06/22 08:10 Ma	atrix: Water		
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual	
6020B MET ICPMS		Analytical Method: EPA 6020B Preparation Method: EPA 3010A Pace Analytical Services - Green Bay								
	Pace Ana	lytical Services	s - Green Bay	/						
Boron	124	ug/L	10.0	3.0	1	10/19/22 06:04				
Calcium	35300	ug/L	254	76.2	1	10/19/22 06:04	10/25/22 19:35	7440-70-2		
Field Data	Analytical	Method:								
	Pace Ana	lytical Services	s - Green Bay	/						
Field pH	7.98	Std. Units			1		10/04/22 13:25			
Field Specific Conductance	373	umhos/cm			1		10/04/22 13:25			
Oxygen, Dissolved	0.63	mg/L			1		10/04/22 13:25	7782-44-7		
REDOX	59.9	mV			1		10/04/22 13:25			
Turbidity	115.0	NTU			1		10/04/22 13:25			
Static Water Level	648.87	feet			1		10/04/22 13:25			
Temperature, Water (C)	11.1	deg C			1		10/04/22 13:25			
2540C Total Dissolved Solids	Analytical	Method: SM 2	540C							
	Pace Ana	lytical Services	s - Green Bay	/						
Total Dissolved Solids	236	mg/L	20.0	8.7	1		10/10/22 11:58			
9040 pH	Analytical	Method: EPA	9040							
	Pace Ana	lytical Services	s - Green Bay	/						
pH at 25 Degrees C	8.0	Std. Units	0.10	0.010	1		10/18/22 09:17		H6	
300.0 IC Anions	Analytical	Method: EPA	300.0							
	Pace Ana	lytical Services	s - Green Bay	/						
Chloride	3.9	mg/L	2.0	0.43	1		10/13/22 20:28	16887-00-6		
Fluoride	0.62	mg/L	0.32	0.095	1		10/13/22 20:28	16984-48-8		
Sulfate	11.8	mg/L	2.0	0.44	1		10/19/22 22:07	14808-79-8		

Project: CCR RULE EDGEWATER I-43 ASH

Pace Project No.: 40252607

Sample: MW-302	Lab ID:	40252607002	Collected	d: 10/04/22	2 12:10	Received: 10/	/06/22 08:10 Ma	atrix: Water		
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual	
6020B MET ICPMS		Analytical Method: EPA 6020B Preparation Method: EPA 3010A Pace Analytical Services - Green Bay								
Boron Calcium	117 24800	ug/L ug/L	10.0 254	3.0 76.2	1 1	10/19/22 06:04 10/19/22 06:04	10/25/22 19:43 10/25/22 19:43			
Field Data	Analytical Pace Ana	Method: lytical Services	- Green Ba	y						
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	7.97 383 0.83 94.9 3.33 648.85 11.8	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1		10/04/22 12:10 10/04/22 12:10 10/04/22 12:10 10/04/22 12:10 10/04/22 12:10 10/04/22 12:10 10/04/22 12:10	7782-44-7		
2540C Total Dissolved Solids	,	Method: SM 2 lytical Services		у						
Total Dissolved Solids	222	mg/L	20.0	8.7	1		10/10/22 11:58			
9040 pH		Method: EPA S		y						
pH at 25 Degrees C	8.0	Std. Units	0.10	0.010	1		10/18/22 09:20		H6	
300.0 IC Anions		Method: EPA 3		y						
Chloride Fluoride Sulfate	4.3 0.72 17.0	mg/L mg/L mg/L	2.0 0.32 2.0	0.43 0.095 0.44	1 1 1		10/13/22 20:44 10/13/22 20:44 10/19/22 22:23	16984-48-8	M0 M0	

Project: CCR RULE EDGEWATER I-43 ASH

Pace Project No.: 40252607

Sample: MW-303	Lab ID:	40252607003	Collected	l: 10/05/22	2 09:55	Received: 10/	06/22 08:10 Ma	atrix: Water				
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual			
6020B MET ICPMS	-	Analytical Method: EPA 6020B Preparation Method: EPA 3010A Pace Analytical Services - Green Bay										
Boron Calcium	84.2 29600	ug/L ug/L	10.0 254	3.0 76.2	1 1		10/25/22 20:49 10/25/22 20:49					
Field Data	Analytical Pace Ana	Method: lytical Services	- Green Bay	/								
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	7.97 455 1.10 117.5 2.64 648.89 10.3	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1 1		10/05/22 09:55 10/05/22 09:55 10/05/22 09:55 10/05/22 09:55 10/05/22 09:55 10/05/22 09:55 10/05/22 09:55	7782-44-7				
2540C Total Dissolved Solids		Method: SM 2 lytical Services		/								
Total Dissolved Solids	270	mg/L	20.0	8.7	1		10/10/22 11:58					
9040 pH		Method: EPA S lytical Services		/								
pH at 25 Degrees C	7.9	Std. Units	0.10	0.010	1		10/18/22 09:22		H6			
300.0 IC Anions		Method: EPA 3		1								
Chloride Fluoride Sulfate	4.2 0.56 23.9	mg/L mg/L mg/L	2.0 0.32 2.0	0.43 0.095 0.44	1 1 1		10/14/22 14:25 10/14/22 14:25 10/14/22 14:25	16984-48-8				

Project: CCR RULE EDGEWATER I-43 ASH

Pace Project No.: 40252607

Sample: MW-304	Lab ID:	40252607004	Collected	: 10/05/22	2 10:55	Received: 10/	06/22 08:10 Ma	atrix: Water				
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual			
6020B MET ICPMS		Analytical Method: EPA 6020B Preparation Method: EPA 3010A Pace Analytical Services - Green Bay										
Boron Calcium	91.8 19400	ug/L ug/L	10.0 254	3.0 76.2	1 1		10/25/22 20:56 10/25/22 20:56					
Field Data	Analytical Pace Ana	Method:	- Green Bay									
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	8.05 400 0.81 157.2 77.7 650.51 11.4	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1 1		10/05/22 10:55 10/05/22 10:55 10/05/22 10:55 10/05/22 10:55 10/05/22 10:55 10/05/22 10:55 10/05/22 10:55	7782-44-7				
2540C Total Dissolved Solids	,	Method: SM 2										
Total Dissolved Solids	218	mg/L	20.0	8.7	1		10/10/22 11:59					
9040 pH		Method: EPA S										
pH at 25 Degrees C	8.0	Std. Units	0.10	0.010	1		10/18/22 09:24		H6			
300.0 IC Anions		Method: EPA										
Chloride Fluoride Sulfate	2.4 0.47 16.2	mg/L mg/L mg/L	2.0 0.32 2.0	0.43 0.095 0.44	1 1 1		10/14/22 15:15 10/14/22 15:15 10/14/22 15:15	16984-48-8				

Project: CCR RULE EDGEWATER I-43 ASH

Pace Project No.: 40252607

Sample: MW-305	Lab ID:	40252607005	Collected	1: 10/04/22	2 11:05	Received: 10/	06/22 08:10 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	-	l Method: EPA 6 Ilytical Services			hod: El	PA 3010A			
Boron Calcium	63.7 83700	ug/L ug/L	10.0 254	3.0 76.2	1 1	10/19/22 06:04 10/19/22 06:04			
Field Data	Analytical Pace Ana	l Method: Ilytical Services	- Green Bay	/					
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	7.51 917 0.67 118.5 6.44 654.40 10.7	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1 1		10/04/22 11:05 10/04/22 11:05 10/04/22 11:05 10/04/22 11:05 10/04/22 11:05 10/04/22 11:05 10/04/22 11:05	7782-44-7	
2540C Total Dissolved Solids		l Method: SM 28		/					
Total Dissolved Solids	602	mg/L	20.0	8.7	1		10/10/22 11:59		
9040 pH		l Method: EPA 9 Ilytical Services		/					
pH at 25 Degrees C	7.5	Std. Units	0.10	0.010	1		10/18/22 09:27		H6
300.0 IC Anions		l Method: EPA 3 Ilytical Services		/					
Chloride Fluoride Sulfate	29.6 0.59 140	mg/L mg/L mg/L	2.0 0.32 10.0	0.43 0.095 2.2	1 1 5		10/14/22 15:31 10/14/22 15:31 10/17/22 14:32	16984-48-8	

Project: CCR RULE EDGEWATER I-43 ASH

1 10,000.

Pace Project No.: 40252607

Sample: FIELD BLANK	Lab ID:	40252607006	Collected	10/05/22	2 10:40	Received: 10/	06/22 08:10 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Met	hod: EF	PA 3010A			
	Pace Anal	lytical Services	- Green Bay						
Boron	<3.0	ug/L	10.0	3.0	1	10/19/22 06:04	10/24/22 18:14	7440-42-8	
Calcium	<76.2	ug/L	254	76.2	1	10/19/22 06:04	10/24/22 18:14	7440-70-2	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
	Pace Anal	lytical Services	- Green Bay						
Total Dissolved Solids	14.0J	mg/L	20.0	8.7	1		10/10/22 11:59		
9040 pH	Analytical	Method: EPA 9	040						
	Pace Anal	lytical Services	- Green Bay						
pH at 25 Degrees C	6.2	Std. Units	0.10	0.010	1		10/18/22 09:36		H6
300.0 IC Anions	Analytical	Method: EPA 3	00.0						
	Pace Anal	lytical Services	- Green Bay						
Chloride	<0.43	mg/L	2.0	0.43	1		10/14/22 15:47	16887-00-6	
Fluoride	<0.095	mg/L	0.32	0.095	1		10/14/22 15:47	16984-48-8	
Sulfate	<0.44	mg/L	2.0	0.44	1		10/14/22 15:47	14808-79-8	

QUALITY CONTROL DATA

QC Batch: 429098 Analysis Method: EPA 6020B QC Batch Method: EPA 3010A Analysis Description: 6020B MET Laboratory: Pace Analytical Services - Green Bay Associated Lab Samples: 40252607001, 40252607002, 40252607003, 40252607004, 40252607005, 40252607006 METHOD BLANK: 2471384 Matrix: Water Associated Lab Samples: 40252607001, 40252607002, 40252607003, 40252607004, 40252607005, 40252607006 Bank Reporting Parameter Units Ug/L <3.0 010.0 10/24/22 18:00 Calcium ug/L <76.2 254 10/24/22 18:00 LABORATORY CONTROL SAMPLE: 2471385 Parameter Units Spike LCS Kec Imits 000 9400 94 80-120 Calcium ug/L 250 226 90 80-120 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2471386 2471387	
Laboratory: Pace Analytical Services - Green Bay Associated Lab Samples: 40252607001, 40252607002, 40252607003, 40252607004, 40252607005, 40252607006 METHOD BLANK: 2471384 Matrix: Water Associated Lab Samples: 40252607001, 40252607002, 40252607003, 40252607004, 40252607005, 40252607006 Blank Parameter Units Result Limit Analyzed Qualifiers Boron ug/L <3.0	
Associated Lab Samples: 40252607001, 40252607002, 40252607003, 40252607004, 40252607005, 40252607006 METHOD BLANK: 2471384 Associated Lab Samples: 40252607001, 40252607002, 40252607003, 40252607004, 40252607005, 40252607006 Bank Reporting Parameter Units Boron ug/L <3.0	
METHOD BLANK: 2471384 Matrix: Water Associated Lab Samples: 40252607001, 40252607002, 40252607003, 40252607004, 40252607005, 40252607006 Blank Reporting Parameter Units Result Limit Analyzed Qualifiers Boron ug/L <3.0 10.0 10/24/22 18:00 Calcium ug/L <76.2 254 10/24/22 18:00	
Associated Lab Samples: 40252607001, 40252607002, 40252607003, 40252607004, 40252607005, 40252607006 Bank Reporting Parameter Units Result Limit Analyzed Qualifiers Boron ug/L <3.0 10.0 10/24/22 18:00 Qualifiers Calcium ug/L <76.2 254 10/24/22 18:00 LABORATORY CONTROL SAMPLE: 2471385 Spike LCS LCS % Rec Qualifiers Boron ug/L 250 226 90 80-120 Qualifiers LABORATORY CONTROL SAMPLE: ug/L 250 226 90 80-120 Boron ug/L 250 226 90 80-120 Calcium ug/L 10000 9400 94 80-120	
ParameterUnitsBlank ResultReporting LimitAnalyzedQualifiersBoronug/L<3.0	
ParameterUnitsResultLimitAnalyzedQualifiersBoronug/L<3.0	
Boron Calcium ug/L ug/L <3.0 10.0 10/24/22 18:00 LABORATORY CONTROL SAMPLE: 2471385 Parameter Units Spike Conc. LCS Result LCS % Rec LCS Limits Qualifiers Boron Calcium ug/L 250 226 90 80-120	
Calcium ug/L <76.2 254 10/24/22 18:00 LABORATORY CONTROL SAMPLE: 2471385	
Calcium ug/L <76.2 254 10/24/22 18:00 LABORATORY CONTROL SAMPLE: 2471385	
ParameterUnitsSpike Conc.LCS ResultLCS % Rec % Rec% Rec LimitsQualifiersBoron Calciumug/L2502269080-120Ug/L1000094009480-120	
Calcium ug/L 10000 9400 94 80-120	
MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2471386 2471387	
MS MSD	
40252499001 Spike Spike MS MSD MS MSD % Rec Ma Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RF	
Calcium ug/L 81900 10000 10000 93900 91800 120 99 75-125 1	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project:		EWATER I-43 ASH						
Pace Project No.:	40252607							
QC Batch:	428279		Analysis Me	ethod:	SM 2540C			
QC Batch Method:	SM 2540C		Analysis De	escription:	2540C Total D	issolved Solids		
			Laboratory:		Pace Analytica	al Services - Gre	en Bay	
Associated Lab San	nples: 40252607	7001, 40252607002,	40252607003,	40252607004	, 40252607005	, 40252607006		
METHOD BLANK:	2466706		Matrix	: Water				
Associated Lab San	nples: 40252607	001, 40252607002,	40252607003,	40252607004	, 40252607005	, 40252607006		
			Blank	Reporting				
Paran	neter	Units	Result	Limit	Analyze	ed Quali	fiers	
Total Dissolved Soli	ds	mg/L	<8.7	2	0.0 10/10/22 1	1:57		
LABORATORY COM	NTROL SAMPLE:	2466707						
			Spike	LCS	LCS	% Rec		
Paran	neter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Total Dissolved Soli	ds	mg/L	587	534	91	80-120		
SAMPLE DUPLICA	TE: 2466708							
			40252660001	Dup		Max		
Paran	neter	Units	Result	Result	RPD	RPD	Qualifiers	
Total Dissolved Soli	 de	mg/L	488		80	2	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	CCR RULE EDGE	WATER I-43 ASH	l					
Pace Project No.:	40252607							
QC Batch:	428993		Analysis Meth	od: E	PA 9040			
QC Batch Method:	EPA 9040		Analysis Desc	ription: 9	040 pH			
			Laboratory:	P	ace Analytical	Services - Gr	een Bay	
Associated Lab Sa	mples: 402526070	001, 4025260700	2, 40252607003, 40	252607004, 4	0252607005,	40252607006		
SAMPLE DUPLICA	TE: 2470712							
	NIL. 24/0/12		40252531001	Dup		Мах		
Para	meter	Units	Result	Result	RPD	RPD	Qualifiers	
Para pH at 25 Degrees (Units Std. Units					Qualifiers 20 H6	
			Result	Result		RPD		
	2		Result	Result		RPD		
pH at 25 Degrees (2		Result	Result		RPD		
pH at 25 Degrees (SAMPLE DUPLICA	2		Result 8.2	Result 8.3		0 0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QC Batch:	4285	572		Anal	sis Methoo	1: E	PA 300.0						
QC Batch I		300.0			/sis Descrip		00.0 IC An	ions					
		00010			ratory:			ical Service	es - Green	Bav			
Associated	Lab Samples:	402526070	01, 4025260700				,			,			
METHOD E	BLANK: 24682	:63			Matrix: Wa	ater							
Associated	Lab Samples:	402526070	01, 4025260700	2									
				Blai	nk F	Reporting							
	Parameter		Units	Res	ult	Limit	Anal	/zed	Qualifier	S			
Chloride			mg/L		<0.43	2.0	10/13/2	2 12:15					
Fluoride			mg/L		<0.095	0.32		-					
Sulfate			mg/L		<0.44	2.0	10/14/2	2 19:54					
	ORY CONTROL	SAMPLE:	2468264										
				Spike	LC	S	LCS	% Re	ec				
	Parameter		Units	Conc.	Res	ult	% Rec	Limit	ts (Qualifiers			
Chloride			mg/L	2	20	21.1	10	5 9	90-110		_		
Fluoride			mg/L		2	2.1	10	3 9	90-110				
Sulfate			mg/L	2	20	18.9	9	5 9	90-110				
	PIKE & MATRIX		_ICATE: 2468	265		2468266							
MATRIX SH													
MATRIX SI		0		MS	MSD								
MATRIX SI			40252565001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
_	Parameter	Units	40252565001 Result			MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qua
-				Spike	Spike	-	-	-	-	Limits	RPD 1		Qua
P		Units	Result	Spike Conc.	Spike Conc.	Result	Result	% Rec	% Rec	Limits 90-110		RPD 15	
Ρ		Units mg/L	Result 546	Spike Conc. 400	Spike Conc. 400	Result 952	Result 947	% Rec 102	% Rec 100	Limits 90-110	1	RPD 15 15	
P Chloride Fluoride Sulfate	Parameter	Units mg/L mg/L mg/L	Result 546 39.5 538	Spike Conc. 400 400 2000	Spike Conc. 400 40	Result 952 85.0 2830	Result 947 88.5	% Rec 102 114	% Rec 100 123	Limits 90-110 90-110	1	RPD 15 15	MO
P Chloride Fluoride Sulfate		Units mg/L mg/L mg/L	Result 546 39.5 538	Spike Conc. 400 400 2000	Spike Conc. 400 40	Result 952 85.0	Result 947 88.5	% Rec 102 114	% Rec 100 123	Limits 90-110 90-110	1	RPD 15 15	M0
P Chloride Fluoride Sulfate	Parameter	Units mg/L mg/L mg/L	Result 546 39.5 538	Spike Conc. 400 2000 267	Spike Conc. 400 400 2000	Result 952 85.0 2830	Result 947 88.5	% Rec 102 114	% Rec 100 123	Limits 90-110 90-110	1	RPD 15 15	MO
P Chloride Fluoride Sulfate MATRIX SF	Parameter	Units mg/L mg/L mg/L	Result 546 39.5 538 LICATE: 2468	Spike Conc. 400 2000 2000	Spike Conc. 400 400 2000 MSD	Result 952 85.0 2830 2468268	Result 947 88.5 2760	% Rec 102 114 114	% Rec 100 123 111	Limits 90-110 90-110 90-110	1	RPD 15 15 15	M0 M0
P Chloride Fluoride Sulfate MATRIX SF	Parameter PIKE & MATRIX	Units mg/L mg/L mg/L SPIKE DUPI	Result 546 39.5 538 LICATE: 2468 40252607002	Spike Conc. 400 2000 267 MS Spike	Spike Conc. 400 400 2000 MSD Spike	Result 952 85.0 2830 2468268 MS	Result 947 88.5 2760 MSD	% Rec 102 114 114 MS	% Rec 100 123 111 MSD	Limits 90-110 90-110 90-110 90-110 % Rec Limits	1 4 3	RPD 15 15 15 Max RPD	M0 M0 Qua
P Chloride Fluoride Sulfate MATRIX SF	Parameter PIKE & MATRIX	Units mg/L mg/L mg/L SPIKE DUPI	Result 546 39.5 538 LICATE: 2468 40252607002 Result	Spike Conc. 400 2000 267 MS Spike Conc.	Spike Conc. 400 40 2000 MSD Spike Conc.	Result 952 85.0 2830 2468268 MS Result	Result 947 88.5 2760 MSD Result	% Rec 102 114 114 114 MS % Rec	% Rec 100 123 111 MSD % Rec	Limits 90-110 90-110 90-110 90-110 % Rec Limits	1 4 3 RPD	RPD 15 15 15 15 Max RPD	MO MO Qu MO

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Date: 10/27/2022 11:51 AM with 02/26/2024 - Classification: Internal - ECRM13238613

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, LLC.

Project:	CCR RULE EDGE	WATER I-43 ASE	-									
Pace Project No.:	40252607											
QC Batch:	428659		Analys	sis Metho	d: E	PA 300.0						
QC Batch Method:	EPA 300.0		Analys	sis Descri	ption: 3	00.0 IC Anic	ons					
			Labora	atory:	Р	ace Analytic	cal Service	es - Green	Bay			
Associated Lab Sar	mples: 402526070	003, 4025260700	4, 40252607	7005, 402	52607006							
METHOD BLANK:	2468707		1	Matrix: W	/ater							
Associated Lab Sar	mples: 402526070	003, 4025260700	4, 40252607	005, 402	52607006							
			Blank	<	Reporting							
Parar	neter	Units	Resu	lt	Limit	Analyz	zed	Qualifiers	5			
Chloride		mg/L		<0.43	2.0	10/14/22	13:52					
Fluoride		mg/L	<	0.095	0.32							
Fluonue						40/44/00	10 50					
Sulfate		mg/L		<0.44	2.0	10/14/22	13:52					
Sulfate	NTROI SAMPLE	_		<0.44	2.0	10/14/22	13:52					
	NTROL SAMPLE:	mg/L 2468708	Spike	<0.44 		LCS	13:52 % Re	ec				
Sulfate		_		_	S				Qualifiers			
Sulfate		2468708	Spike	LC Res	S	LCS	% Re Limi		Qualifiers			
Sulfate LABORATORY CO Parar		2468708 Units	Spike Conc.	LC Res	CS sult	LCS % Rec	% Re 	ts (Qualifiers			
Sulfate LABORATORY CO Parar Chloride		2468708 Units mg/L	Spike Conc. 20	LC Res	CS sult	LCS % Rec 97	% Re Limi	ts (90-110	Qualifiers			
Sulfate LABORATORY CO Parar Chloride Fluoride Sulfate	neter	2468708 Units mg/L mg/L mg/L	Spike Conc. 20 20 20	LC Res	2S sult 19.4 1.9 20.0	LCS % Rec 97 95	% Re Limi	ts (90-110 90-110	Qualifiers	_		
Sulfate LABORATORY CO Parar Chloride Fluoride Sulfate		2468708 Units mg/L mg/L mg/L	Spike Conc. 20 20 20	LC Res	CS sult 19.4 1.9	LCS % Rec 97 95	% Re Limi	ts (90-110 90-110	Qualifiers	_		
Sulfate LABORATORY CO Parar Chloride Fluoride Sulfate	neter	2468708 Units mg/L mg/L mg/L	Spike Conc. 20 20 709	LC Res	2S sult 19.4 1.9 20.0	LCS % Rec 97 95	% Re Limi	ts (90-110 90-110	Qualifiers	_	Max	
Sulfate LABORATORY CO Parar Chloride Fluoride Sulfate	neter /ATRIX SPIKE DUP	2468708 Units mg/L mg/L mg/L	Spike Conc. 20 20 709 MS Spike	LC Res)) MSD	2S sult 19.4 1.9 20.0 2468710	LCS % Rec 97 95 100 MSD	% Re Limi S	ts (00-110 00-110 00-110		RPD	Max RPD	Qual
Sulfate LABORATORY CO Parar Chloride Fluoride Sulfate MATRIX SPIKE & M	neter /ATRIX SPIKE DUP	2468708 Units mg/L mg/L mg/L LICATE: 2468 40252607003	Spike Conc. 20 20 709 MS Spike	LC Res)) MSD Spike	2S sult 19.4 1.9 20.0 2468710 MS	LCS % Rec 97 95 100 MSD	% Re Limi S S	ts (90-110 90-110 90-110 90-110 MSD	% Rec		RPD	Qual
Sulfate LABORATORY COL Parar Chloride Fluoride Sulfate MATRIX SPIKE & M Paramete	neter MATRIX SPIKE DUP r Units	2468708 Units mg/L mg/L tlICATE: 2468 40252607003 Result	Spike Conc. 20 20 709 MS Spike Conc.	LC Res) 2) MSD Spike Conc.	2S sult 19.4 1.9 20.0 2468710 MS Result	LCS % Rec 97 95 100 MSD Result	% Re Limi S S S MS % Rec	ts (90-110 90-110 90-110 90-110 MSD % Rec	% Rec Limits		RPD	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: CCR RULE EDGEWATER I-43 ASH

Pace Project No.: 40252607

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- 1q Due to the sample matrix, DI water was added to this sample on a one to one basis and the sample was stirred before analysis.
- H6 Analysis initiated outside of the 15 minute EPA required holding time.
- M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: CCR RULE EDGEWATER I-43 ASH

Pace Project No.: 40252607

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40252607001	MW-301	EPA 3010A	429098	EPA 6020B	429199
40252607002	MW-302	EPA 3010A	429098	EPA 6020B	429199
40252607003	MW-303	EPA 3010A	429098	EPA 6020B	429199
40252607004	MW-304	EPA 3010A	429098	EPA 6020B	429199
40252607005	MW-305	EPA 3010A	429098	EPA 6020B	429199
40252607006	FIELD BLANK	EPA 3010A	429098	EPA 6020B	429199
40252607001	MW-301				
40252607002	MW-302				
40252607003	MW-303				
40252607004	MW-304				
40252607005	MW-305				
40252607001	MW-301	SM 2540C	428279		
40252607002	MW-302	SM 2540C	428279		
40252607003	MW-303	SM 2540C	428279		
40252607004	MW-304	SM 2540C	428279		
40252607005	MW-305	SM 2540C	428279		
40252607006	FIELD BLANK	SM 2540C	428279		
40252607001	MW-301	EPA 9040	428993		
40252607002	MW-302	EPA 9040	428993		
40252607003	MW-303	EPA 9040	428993		
40252607004	MW-304	EPA 9040	428993		
40252607005	MW-305	EPA 9040	428993		
40252607006	FIELD BLANK	EPA 9040	428993		
40252607001	MW-301	EPA 300.0	428572		
40252607002	MW-302	EPA 300.0	428572		
40252607003	MW-303	EPA 300.0	428659		
40252607004	MW-304	EPA 300.0	428659		
40252607005	MW-305	EPA 300.0	428659		
40252607006	FIELD BLANK	EPA 300.0	428659		

Pace

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

40252607

a sample via this chain of custody constitutes acknowledgment and acceptance of the Pare Terms and Conditions found at https://info.parelabs.com/hub/s/pas-standard.terms.pdf

red Client Information: Iny: SCS ENGINEERS	Required Pro	oject info	rmation:				-																	
										matio	on:	ţ								- Li	Page :	1	Of	1
P 1010 Deles Delus		Meghan	Blodgett					ttenlik omno	on; any Na	mo:												· .		
ss: 2830 Dairy Drive	Copy To:							ddres	<u> </u>	inte;		· · · ·							7.0.00	An leanna	Dean	tone Ann		accase 2
mblodgett@scsengineers.com	Purchase Ore	der #:					_)uote;			1							64-250	and 1.94947-1949	workegula	wiy Agen	1945 A. 2018 - 15	Compare of the second
608-216-7362 Fax.	Project Name		R Rule Ed	loewater I-	43 Ash (2	5216069	_		roject	Mana	ager	dar	n.milev	wsky@p	acelah	bs.cn	m.		1- ASSA	ister de la compa		Location	-	
sted Due Date:	Project #:	~~					<u> </u>		-		3946-1				100102		4					WI		
	· ·											Ξ.		243	i.i.s	R	equest	ed Ana	lysis Filtere	l (Y/N)	法 編 433		577 A 45	
MATRIX Drinking Water Waste W Product SAMPLE ID So /Solit One Character per box. W de	WT 'ater WW P	(see valid codes to left) (G=GRAB_C=COMP)	ST	COLLE	CTED	VD	SAMPLE TEMP AT COLLECTION	ERS		Pre	serva	atives	S	XIN							Chlarine (Y/N)			
One Character per box. Wre (A-Z, 0-9 /, -) Air Otter Sample ids must be unique Tissue	AR OT TS	MATRIX CODE SAMPILE TYPE	DATE	TIME	DATE	TIME	SAMPLE TEMP	# OF CONTAINERS	Utipresurvuu H2SO4	EONH	HCI	NBUH Na2S203	Methanol	Other CARANSES Test	pH	TDS by 160.1	Metals(B/Ca)				Residual Chic			
- MW-301		WT	10/4	1325				3	1	1					y	x	x					0	n)	1
											\vdash	1			Ê		<u> </u>	+	- -!-	┆╸╏ ╍┨╴	+		~ \	
MW-302		WT	10/4	1210		ļ	\square	1	\	·[\square	\perp			X	x	×	4_}			4-1		02.	
- MW-303		wτ	1015	955				l	11						x	x	x					6	03	
			1 4		· · · ·	[1	╢	┼╀		+	+	\square	Ĥ		<u> </u>	╧┼═╌┠			+1		· •	
MW-304		wr	10/5					1	<u>µ</u> _		\vdash	_	<u> </u> .		X	X	x	┽┥┥		┝━┠╼┠╌		μQ	04	
- MW-305		wr	10/4	1105								.			x	x	x					$ \cdot 0$	70	
FIELD BLANK		WT		1040				4	Ч	V		i			×	<u> </u>	x					<u> </u>	00	
		WT						Τ				T			×	×								_
	•						╎┨	+			+	+			Ê	Ê	-	╌┼╾╌┤	···		++			
		WT_				ļ					\vdash						<u>×</u>				+			
· ·								1	· ·	·					1									ļ
		1-1-	<u> </u>					\top				t	1				<u> </u>	-						
_		+-					1	+				_	_		F		\square	+		+++	<u>+</u> .	<u> </u>	1.1	
			-			1						- <u>!</u>												
			17									ŀ												
ADDITIONAL COMMENTS	\square	KELINOV	BHER AY !!		NN .	DAT	E	ा	ME	: (12		AC	CEPTE	DBYI	FILIA	NOTA				TIME	4 979734 8 96989	SAMPLE	CONDITION	
MPLES UNFILTERED		Ľ	Ę7	· / ··	٦.	14	an l					1											1	
		\mathcal{V}^{-}	¥_/	<u>///</u>		1	<u>~</u>			┢		. 1											-	┢
	<i></i>			,		12	0/	<u>5/2</u>	<u>ı [</u>	10	<u>ð</u>													
		1	510	aist-	$\sqrt{1}$	ID/ La	57	771	n		7	īμ	NN	2 14	-11	r/			INI(d7)	OBIO	2.5		N	$ \mathbf{Y} $
		<u> </u>		ԴԴ	<u>, </u>	101 41	<u>، ب</u>	201	~	+		11	<u>v (b</u>	$\sim r$	100	17.			UNCOL	100 M	100	· •	+, ∽	┼┅╍┸╍╍┨
· · ·			1		√T Name	AND SIG	LER	RE	K	1 1 1 1 1 1	いた		e i s i i i i s steri i i				Esion	- ,	 22	in an tari Sa An Ingi Angi An Ingi Angi	TEMP In C	Received on Ice (Y/N)	ustody salad polor	Samples Intact (Y/N)
												E				- T.		s / 1	1112			× ۹ تد ا	13 0 3 3	

DC#_Title: ENV-FRM-GBAY-0035 v03_Sample Preservation Receipt Form Effective Date: 8/16/2022

C All co	lieni Intain	t Na ners ne	me: eeding	J pres	S	Et on ha		<u>he</u> ien ch		> Land n Lot# c				W Yes	ple Proj 03	LINO		LIN//	4				イい Hadjut		bo.	7				ial whe		p	Date/ Time;	
				Glass						Plast	ic					Via	als				Ja	ars			Gen	eral]	- (mmð <)	pH ≤2	laOH+Zn Act pH ≿9	≥12	<u>≤</u> 2	after adjusted	Volume
Pace ab#	AG1U	BG1U	AG1H	AG4S	AG5U	AG2S	BG3U	BP1U	BP3U	BP3B	BP3N	BP3S	BP2Z	VG9C	DG9T	VG9U	VG9H	NG9M	VG9D	JGFU	JG9U	WGFU	WPFU	SP5T	ZPLC	GN 1	GN 2	VDA Vials (H2SO4 pl	NaOH+Zn	NaOH pH ≥12	HNO3 pH	pHaftera	(mL)
01						Ē	Γ				1										_		i									Х		2.5/5
02	1,13	1.11 1.250.1	ette i			1.14	Zat	· ·	22	9 <u>6</u> - 5	1			÷ .					(a_1,b_2)	32 31.1			· · · .	a a chuir an	ri e c	19 A					1. 1. d	X	·	2.5/5
03						1			2		1																	_				X		2.5/5
04							di di		Z					- 1 ⁻		-	•.	:			· · · · · · ·									*	1	X	: :.	2.5/5
05						Γ			2	1	1					<u> </u>						1										X		2.5/5
06			1		1 ja				7	<u>.</u>	· 1			a an	- <u>-</u>						1.1.11	: <u>.</u>		1 L		5 1.4 1 1.1		з°.	::::			Х		2.5/5
07	Γ																				ļ					ſ								2.5/5
18			1			1.6				1.1				2	· · · ·			1.1		11.1	- 1 - 1 - 1 -	•. •. •	• • •	1		:	•				• • • •		an g	2.5/5
09						1			T	-		T	ł					ľ																2.5/5
10								:	· · · ·									· · · · ·			. . :		3.177	Ъ. Pr						11. E.T			· · · ·	2,5/5
11												Γ		1	1		1	1	1	}	[Ι											2.5/5
12				×			1 :						: · : :	1	1 p.		1 A.	· ·			¹					· · ·	·		. N.					2.5/5
13														<u> </u>		Τ		T			1	1												2.5/5
14	Ş	· ·	- <u>7</u> 1:.		·	·				. ÷ .		E. 3																						2.5/5
15																		[Y	$\gamma \gamma$	1	7	110	12					[2.5/5
16		: ; ;	-4 ⁻ r									1	1.1		· · ·			1			118		\mathbb{O}	Ш		C	1.1					1. 1. s	·····	2.5/5
17						<u> </u>				1		Ī	1		1		T	1		1														2.5/5
18											1			1	12.5					14									:			. : 		2.5/5
19		· - ·												Ī		1							T		[-								2.5/5
20	 .:					•	100		111		• • • •				1.						:	-14		1	i	··· · ·]	Т	\mathbf{k}	· .	·	a	· ·:	1	2.5/5
G1U G1U G1H G4S G5U	1 lite 1 lite 1 lite 125 100	er am er clea er am mL a mL a	ber gl ar gla ber gl mber mber	ass	ICL 12S 12S	O4 res	B B B B B B	. TOC P1U P3U P3B P3N P3S P2Z	1 liite 250 250 250 250	ər plas mL pl mL pl mL pl mL pl	stic un astic astic astic astic	ipres unpre NaOF HNO3 H2SC	H 3		ics, O		39C G9T 39U 39H 39M G9D	40 n 40 n 40 n 40 n	nL cle nL am nL cle nL cle nL cle nL cle	iber N ar via ar via ar via	orbic a Thic I unpr I HCL I MeQ	w/H(o res		JC JC W W	als (> 3FU 39U GFU PFU PST >LC	4 oz 9 oz 4 oz 4 oz 120	ambe ambe clear plast	erjari erjari jarur icjari lastic	No 7 unpres unpres unpres unpres Na Th	5 6 9	-	es loo)	k in he	adspace col
				lass i			F									<u> </u>								G	N 1 N 2								P	age <u>1</u> o

Sample Condition Upon Receipt Form (SCUR)

	Project #:
Client Name: <u>SLS Engineers</u>	WO#:40252607
Courier: 🞵 CS Logistics 🕞 Fed Ex 📋 Speedee 👘 UPS 📑 W	
Client Pace Other	
Tracking #:	40252607
Custody Seal on Cooler/Box Present: 📑 yes 🏌 no Seals intact:	🗋 yes 🕞 no
	🛄 yes 🧮 no
Packing Material: 🌈 Bubble Wrap 📄 Bubble Bags 🔲 None	e 💭 Other
Thermometer Used $SR - 110$ Type of Ice: (<i>Ne</i>)	Blue Dry None Meltwater Only
Cooler Temperature Uncorr: 3 /Corr: 3.5	Person examining contents:
, only provide the second seco	issue is Frozen: Types no Date: 101(0177/Initials: TP
Temp should be above freezing to 6°C. Biota Samples may be received at \leq 0°C if shipped on Dry Ice.	Labeled By Initials:
Chain of Custody Present: ZYes No N/A	1
Chain of Custody Filled Out: Ves ON ON/A	2
Chain of Custody Relinquished:	3
Sampler Name & Signature on COC:	4
Samples Arrived within Hold Time:	5.
- DI VOA Samples frozen upon receipt	Date/Time:
Short Hold Time Analysis (<72hr):	6
Rush Turn Around Time Requested:Yes 🖉 No	7
Sufficient Volume:	8.
For Analysis: Øyes ONo MS/MSD: Oyes ØNo ONA	
Correct Containers Used:	9.
Correct Type: Pace Green Bay, Pace IR, Non-Pace	
Containers Intact:	10
Filtered volume received for Dissolved tests	11
Sample Labels match COC: ZYes DNo DN/A	12.
-Includes date/time/ID/Analysis Matrix: W	
Trip Blank Present:	13.
Trip Blank Custody Seals Present Yes No NA	
Pace Trip Blank Lot # (if purchased):	
Client Notification/ Resolution:	If checked, see attached form for additional comments
Person Contacted:Date/ Comments/ Resolution:	
· · · · · · · · · · · · · · · · · · ·	

PM Review is documented electronically in LIMs. By releasing the project, the PM acknowledges they have reviewed the sample login

Page Z of Z

C2 April 2023 Detection Monitoring

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

May 12, 2023

Meghan Blodgett SCS ENGINEERS 2830 Dairy Drive Madison, WI 53718

RE: Project: 25223069 I-43 CCR Pace Project No.: 40261416

Dear Meghan Blodgett:

Enclosed are the analytical results for sample(s) received by the laboratory on April 27, 2023. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Green Bay

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Dan Milent

Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: Matt Bizjack, Alliant Energy Natalie Burris, SCS ENGINEERS Sherren Clark, SCS Engineers Jenny Coughlin, Alliant Energy Tom Karwoski, SCS ENGINEERS Ryan Matzuk, SCS Engineers Jeff Maxted, ALLIANT ENERGY

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: 25223069 I-43 CCR

Pace Project No.: 40261416

Pace Analytical Services Green Bay

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 South Carolina Certification #: 83006001 Texas Certification #: T104704529-21-8 Virginia VELAP Certification ID: 11873 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-21-00008 Federal Fish & Wildlife Permit #: 51774A

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project: 25223069 I-43 CCR

Pace Project No.: 40261416

Lab ID S	Sample ID	Matrix	Date Collected	Date Received
40261416001 N	IW-301	Water	04/24/23 13:15	04/27/23 09:15
40261416002 N	IW-302	Water	04/24/23 14:45	04/27/23 09:15
40261416003 N	1W-303	Water	04/24/23 09:45	04/27/23 09:15
40261416004 N	1W-304	Water	04/24/23 11:25	04/27/23 09:15
40261416005 N	1W-305	Water	04/25/23 09:20	04/27/23 09:15
40261416006 F	IELD BLANK	Water	04/25/23 08:50	04/27/23 09:15

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: 25223069 I-43 CCR

Pace Project No.:	40261416
-------------------	----------

Lab ID	Sample ID	Method	Analysts	Analytes Reported
40261416001		EPA 6020B	кхs	2
			AG1	7
		SM 2540C	SRK	1
		EPA 9040	YER	1
		EPA 300.0	HMB	3
40261416002	MW-302	EPA 6020B	KXS	2
			AG1	7
		SM 2540C	SRK	1
		EPA 9040	YER	1
		EPA 300.0	HMB	3
40261416003	MW-303	EPA 6020B	KXS	2
			AG1	7
		SM 2540C	SRK	1
		EPA 9040	YER	1
		EPA 300.0	HMB	3
40261416004	MW-304	EPA 6020B	KXS	2
			AG1	7
		SM 2540C	SRK	1
		EPA 9040	YER	1
		EPA 300.0	HMB	3
40261416005	MW-305	EPA 6020B	KXS	2
			AG1	7
		SM 2540C	SRK	1
		EPA 9040	YER	1
		EPA 300.0	HMB	3
40261416006	FIELD BLANK	EPA 6020B	KXS	2
		SM 2540C	SRK	1
		EPA 9040	YER	1
		EPA 300.0	HMB	:

PASI-G = Pace Analytical Services - Green Bay

REPORT OF LABORATORY ANALYSIS

SUMMARY OF DETECTION

Project: 25223069 I-43 CCR

Pace Project No.: 40261416

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
40261416001	 MW-301					
EPA 6020B	Boron	119	ug/L	10.0	05/10/23 22:36	
EPA 6020B	Calcium	30600	ug/L		05/10/23 22:36	
	Field pH	8.05	Std. Units		04/24/23 13:15	
	Field Specific Conductance	370	umhos/cm		04/24/23 13:15	
	Oxygen, Dissolved	1.40	mg/L		04/24/23 13:15	
	REDOX	370.1	mV		04/24/23 13:15	
	Turbidity	97.9	NTU		04/24/23 13:15	
	Static Water Level	653.26	feet		04/24/23 13:15	
	Temperature, Water (C)	8.8	deg C		04/24/23 13:15	
SM 2540C	Total Dissolved Solids	230	mg/L	20.0	04/28/23 15:36	
EPA 9040	pH at 25 Degrees C	7.9	Std. Units	0.10	05/02/23 10:06	H6
EPA 300.0	Chloride	3.4	mg/L	2.0	05/10/23 06:46	
EPA 300.0	Fluoride	0.62	mg/L	0.32	05/10/23 06:46	
EPA 300.0	Sulfate	11.4	mg/L	2.0	05/10/23 06:46	
40261416002	MW-302					
EPA 6020B	Boron	114	ug/L	10.0	05/10/23 22:44	
EPA 6020B	Calcium	26600	ug/L	254	05/10/23 22:44	
	Field pH	8.00	Std. Units		04/24/23 14:45	
	Field Specific Conductance	387	umhos/cm		04/24/23 14:45	
	Oxygen, Dissolved	1.22	mg/L		04/24/23 14:45	
	REDOX	451.2	mV		04/24/23 14:45	
	Turbidity	1.77	NTU		04/24/23 14:45	
	Static Water Level	653.25	feet		04/24/23 14:45	
	Temperature, Water (C)	9.0	deg C		04/24/23 14:45	
SM 2540C	Total Dissolved Solids	240	mg/L	20.0	04/28/23 15:36	
EPA 9040	pH at 25 Degrees C	8.0	Std. Units	0.10	05/02/23 10:09	H6
EPA 300.0	Chloride	3.9	mg/L	2.0	05/10/23 07:00	
EPA 300.0	Fluoride	0.74	mg/L	0.32	05/10/23 07:00	
EPA 300.0	Sulfate	16.1	mg/L	2.0	05/10/23 07:00	
40261416003	MW-303					
EPA 6020B	Boron	85.4	ug/L	10.0	05/10/23 22:51	
EPA 6020B	Calcium	31200	ug/L	254	05/10/23 22:51	
	Field pH	7.93	Std. Units		04/24/23 09:45	
	Field Specific Conductance	447	umhos/cm		04/24/23 09:45	
	Oxygen, Dissolved	1.03	mg/L		04/24/23 09:45	
	REDOX	297.4	mV		04/24/23 09:45	
	Turbidity	1.65	NTU		04/24/23 09:45	
	Static Water Level	653.31	feet		04/24/23 09:45	
	Temperature, Water (C)	9.4	deg C		04/24/23 09:45	
SM 2540C	Total Dissolved Solids	268	mg/L	20.0	04/28/23 15:36	
EPA 9040	pH at 25 Degrees C	8.0	Std. Units	0.10	05/02/23 10:15	H6
EPA 300.0	Chloride	3.8	mg/L	2.0	05/10/23 07:15	
EPA 300.0	Fluoride	0.58	mg/L	0.32	05/10/23 07:15	
EPA 300.0	Sulfate	20.6	mg/L	2.0	05/10/23 07:15	
40261416004	MW-304					
EPA 6020B	Boron	87.1	ug/L	10.0	05/10/23 22:58	

REPORT OF LABORATORY ANALYSIS

SUMMARY OF DETECTION

Project: 25223069 I-43 CCR

Pace Project No.: 40261416

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
40261416004	MW-304					
EPA 6020B	Calcium	22000	ug/L	254	05/10/23 22:58	
	Field pH	8.02	Std. Units		04/24/23 11:25	
	Field Specific Conductance	385	umhos/cm		04/24/23 11:25	
	Oxygen, Dissolved	1.02	mg/L		04/24/23 11:25	
	REDOX	315	mV		04/24/23 11:25	
	Turbidity	2.32	NTU		04/24/23 11:25	
	Static Water Level	654.83	feet		04/24/23 11:25	
	Temperature, Water (C)	8.8	deg C		04/24/23 11:25	
SM 2540C	Total Dissolved Solids	226	mg/L	20.0	04/28/23 15:36	
EPA 9040	pH at 25 Degrees C	7.9	Std. Units	0.10	05/02/23 10:24	H6
EPA 300.0	Chloride	2.2	mg/L	2.0	05/10/23 07:30	
EPA 300.0	Fluoride	0.52	mg/L	0.32	05/10/23 07:30	
EPA 300.0	Sulfate	15.6	mg/L	2.0	05/10/23 07:30	
40261416005	MW-305					
EPA 6020B	Boron	60.8	ug/L	10.0	05/10/23 23:06	
EPA 6020B	Calcium	80500	ug/L	254	05/10/23 23:06	
	Field pH	7.49	Std. Units		04/25/23 09:20	
	Field Specific Conductance	890	umhos/cm		04/25/23 09:20	
	Oxygen, Dissolved	1.71	mg/L		04/25/23 09:20	
	REDOX	322.8	mV		04/25/23 09:20	
	Turbidity	1.42	NTU		04/25/23 09:20	
	Static Water Level	658.22	feet		04/25/23 09:20	
	Temperature, Water (C)	8.5	deg C		04/25/23 09:20	
SM 2540C	Total Dissolved Solids	570	mg/L	20.0	04/28/23 15:37	
EPA 9040	pH at 25 Degrees C	7.6	Std. Units	0.10	05/02/23 10:26	H6
EPA 300.0	Chloride	28.3	mg/L	10.0	05/12/23 01:08	
EPA 300.0	Fluoride	0.84J	mg/L	1.6	05/12/23 01:08	D3
EPA 300.0	Sulfate	132	mg/L	10.0	05/12/23 01:08	
40261416006	FIELD BLANK					
SM 2540C	Total Dissolved Solids	18.0J	mg/L	20.0	04/28/23 15:37	
EPA 9040	pH at 25 Degrees C	7.5	Std. Units	0.10	05/02/23 10:38	H6
EPA 300.0	Chloride	2.6	mg/L	2.0	05/12/23 01:53	

REPORT OF LABORATORY ANALYSIS

Project: 25223069 I-43 CCR

Pace Project No.: 40261416

Sample: MW-301	Lab ID:	40261416001	Collected	: 04/24/23	3 13:15	Received: 04/	/27/23 09:15 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS		l Method: EPA 6 Ilytical Services			hod: El	PA 3010A			
Boron Calcium	119 30600	ug/L ug/L	10.0 254	3.0 76.2	1 1	05/02/23 05:28 05/02/23 05:28	05/10/23 22:36 05/10/23 22:36		
Field Data	Analytical Pace Ana	l Method: Ilytical Services	- Green Bay						
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	8.05 370 1.40 370.1 97.9 653.26 8.8	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1 1		04/24/23 13:15 04/24/23 13:15 04/24/23 13:15 04/24/23 13:15 04/24/23 13:15 04/24/23 13:15 04/24/23 13:15	7782-44-7	
2540C Total Dissolved Solids	,	l Method: SM 28							
Total Dissolved Solids	230	mg/L	20.0	8.7	1		04/28/23 15:36		
9040 pH		l Method: EPA 9 Ilytical Services							
pH at 25 Degrees C	7.9	Std. Units	0.10	0.010	1		05/02/23 10:06		H6
300.0 IC Anions	,	l Method: EPA 3 Ilytical Services							
Chloride Fluoride Sulfate	3.4 0.62 11.4	mg/L mg/L mg/L	2.0 0.32 2.0	0.43 0.095 0.44	1 1 1		05/10/23 06:46 05/10/23 06:46 05/10/23 06:46	16984-48-8	

Project: 25223069 I-43 CCR

Pace Project No.: 40261416

Sample: MW-302	Lab ID:	40261416002	Collected:	04/24/23	3 14:45	Received: 04/	27/23 09:15 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS		Method: EPA 6	•	ration Met	hod: El	PA 3010A			
Boron Calcium	114 26600	ug/L ug/L	10.0 254	3.0 76.2	1 1	05/02/23 05:28 05/02/23 05:28	05/10/23 22:44 05/10/23 22:44		
Field Data	Analytical Pace Ana	Method: Ilytical Services	- Green Bay						
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	8.00 387 1.22 451.2 1.77 653.25 9.0	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1		04/24/23 14:45 04/24/23 14:45 04/24/23 14:45 04/24/23 14:45 04/24/23 14:45 04/24/23 14:45 04/24/23 14:45	7782-44-7	
2540C Total Dissolved Solids	,	Method: SM 28							
Total Dissolved Solids	240	mg/L	20.0	8.7	1		04/28/23 15:36		
9040 pH		Method: EPA 9							
pH at 25 Degrees C	8.0	Std. Units	0.10	0.010	1		05/02/23 10:09		H6
300.0 IC Anions		Method: EPA 3							
Chloride Fluoride Sulfate	3.9 0.74 16.1	mg/L mg/L mg/L	2.0 0.32 2.0	0.43 0.095 0.44	1 1 1		05/10/23 07:00 05/10/23 07:00 05/10/23 07:00	16984-48-8	

Project: 25223069 I-43 CCR

Pace Project No.: 40261416

Sample: MW-303	Lab ID:	40261416003	Collected	04/24/23	09:45	Received: 04/	27/23 09:15 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	-	Method: EPA 6 lytical Services		ration Met	nod: Ef	PA 3010A			
Boron Calcium	85.4 31200	ug/L ug/L	10.0 254	3.0 76.2	1 1	05/02/23 05:28 05/02/23 05:28	05/10/23 22:51 05/10/23 22:51		
Field Data	Analytical Pace Ana	Method: lytical Services	- Green Bay						
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	7.93 447 1.03 297.4 1.65 653.31 9.4	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1 1		04/24/23 09:45 04/24/23 09:45 04/24/23 09:45 04/24/23 09:45 04/24/23 09:45 04/24/23 09:45 04/24/23 09:45	7782-44-7	
2540C Total Dissolved Solids		Method: SM 25 lytical Services							
Total Dissolved Solids	268	mg/L	20.0	8.7	1		04/28/23 15:36		
9040 pH		Method: EPA 9 lytical Services							
pH at 25 Degrees C	8.0	Std. Units	0.10	0.010	1		05/02/23 10:15		H6
300.0 IC Anions		Method: EPA 3 lytical Services							
Chloride Fluoride Sulfate	3.8 0.58 20.6	mg/L mg/L mg/L	2.0 0.32 2.0	0.43 0.095 0.44	1 1 1		05/10/23 07:15 05/10/23 07:15 05/10/23 07:15	16984-48-8	

Project: 25223069 I-43 CCR

Pace Project No.: 40261416

Sample: MW-304	Lab ID:	40261416004	Collected:	04/24/23	3 11:25	Received: 04/	27/23 09:15 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS		Method: EPA 6 lytical Services	•	ration Met	hod: El	PA 3010A			
Boron Calcium	87.1 22000	ug/L ug/L	10.0 254	3.0 76.2	1 1	05/02/23 05:28 05/02/23 05:28	05/10/23 22:58 05/10/23 22:58		
Field Data	Analytical Pace Ana	Method: lytical Services	- Green Bay						
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	8.02 385 1.02 315 2.32 654.83 8.8	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1 1		04/24/23 11:25 04/24/23 11:25 04/24/23 11:25 04/24/23 11:25 04/24/23 11:25 04/24/23 11:25 04/24/23 11:25	7782-44-7	
2540C Total Dissolved Solids		Method: SM 25 lytical Services							
Total Dissolved Solids	226	mg/L	20.0	8.7	1		04/28/23 15:36		
9040 pH		Method: EPA 9 lytical Services							
pH at 25 Degrees C	7.9	Std. Units	0.10	0.010	1		05/02/23 10:24		H6
300.0 IC Anions		Method: EPA 3 lytical Services							
Chloride Fluoride Sulfate	2.2 0.52 15.6	mg/L mg/L mg/L	2.0 0.32 2.0	0.43 0.095 0.44	1 1 1		05/10/23 07:30 05/10/23 07:30 05/10/23 07:30	16984-48-8	

Project: 25223069 I-43 CCR

Pace Project No.: 40261416

Sample: MW-305	Lab ID:	40261416005	Collected:	04/25/23	3 09:20	Received: 04/	/27/23 09:15 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS		l Method: EPA 6 Ilytical Services	•	ration Met	hod: Ef	PA 3010A			
Boron Calcium	60.8 80500	ug/L ug/L	10.0 254	3.0 76.2	1 1	05/02/23 05:28 05/02/23 05:28			
Field Data	Analytica Pace Ana	l Method: Ilytical Services	- Green Bay						
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	7.49 890 1.71 322.8 1.42 658.22 8.5	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1 1		04/25/23 09:20 04/25/23 09:20 04/25/23 09:20 04/25/23 09:20 04/25/23 09:20 04/25/23 09:20 04/25/23 09:20	7782-44-7	
2540C Total Dissolved Solids		l Method: SM 25 Ilytical Services							
Total Dissolved Solids 9040 pH		mg/L I Method: EPA 9 Ilytical Services		8.7	1		04/28/23 15:37		
pH at 25 Degrees C	7.6	Std. Units	0.10	0.010	1		05/02/23 10:26		H6
300.0 IC Anions		l Method: EPA 3 Ilytical Services							
Chloride Fluoride Sulfate	28.3 0.84J 132	mg/L mg/L mg/L	10.0 1.6 10.0	2.2 0.48 2.2	5 5 5		05/12/23 01:08 05/12/23 01:08 05/12/23 01:08	16984-48-8	D3

Project: 25223069 I-43 CCR

Pace Project No.: 40261416

Sample: FIELD BLANK	Lab ID:	40261416006	Collected	d: 04/25/23	3 08:50	Received: 04/	/27/23 09:15 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	020B Prep	aration Met	hod: EF	PA 3010A			
	Pace Ana	lytical Services	- Green Ba	y					
Boron	<3.0	ug/L	10.0	3.0	1	05/02/23 05:28	05/10/23 19:40	7440-42-8	
Calcium	<76.2	ug/L	254	76.2	1	05/02/23 05:28	05/10/23 19:40	7440-70-2	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
	Pace Ana	lytical Services	- Green Ba	y					
Total Dissolved Solids	18.0J	mg/L	20.0	8.7	1		04/28/23 15:37		
9040 pH	Analytical	Method: EPA 9	040						
-	Pace Ana	lytical Services	- Green Ba	y					
pH at 25 Degrees C	7.5	Std. Units	0.10	0.010	1		05/02/23 10:38		H6
300.0 IC Anions	Analytical	Method: EPA 3	00.0						
	Pace Ana	lytical Services	- Green Ba	y					
Chloride	2.6	mg/L	2.0	0.43	1		05/12/23 01:53	16887-00-6	
Fluoride	<0.095	mg/L	0.32	0.095	1		05/12/23 01:53	16984-48-8	
Sulfate	<0.44	mg/L	2.0	0.44	1		05/12/23 01:53	14808-79-8	

Project:	25223069 I-43 C	CR										
Pace Project No .:	40261416											
QC Batch:	443772		Analy	sis Method	d: E	PA 6020B						
QC Batch Method:	EPA 3010A		Analy	sis Descrip	ption: 6	020B MET						
			Labor	ratory:	P	ace Analyt	ical Service	es - Green	Bay			
Associated Lab San	nples: 4026141	16001, 402614160	02, 40261410	6003, 4026	61416004, 4	026141600	05, 402614	16006				
METHOD BLANK:	2547952			Matrix: Wa	ater							
Associated Lab San	nples: 4026141	16001, 402614160	02, 40261410	6003, 4026	61416004, 4	026141600	05, 402614	16006				
			Blan	k I	Reporting							
Paran	neter	Units	Resu	ult	Limit	Analy	zed	Qualifier	S			
		ug/L		<3.0	10.0	05/10/23	3 19:11					
Boron												
Boron Calcium		ug/L		<76.2	254	05/10/23	3 19:11					
			Spike Conc.	<76.2 LC Res	S	LCS % Rec	3 19:11 % Ri Limi		Qualifiers			
Calcium		2547953	Spike	LC Res	S	LCS	% Ro Limi		Qualifiers			
Calcium LABORATORY COM Paran		2547953 Units	Spike Conc.	LC Res	S sult	LCS % Rec	% Ri Eimi	ts (Qualifiers			
Calcium LABORATORY COM Paran Boron	neter	2547953 Units ug/L ug/L	Spike Conc. 250	LC Res	S sult	LCS % Rec 90	% Ri Eimi	ts 30-120	Qualifiers	_		
Calcium LABORATORY COM Paran Boron Calcium	neter	2547953 Units ug/L ug/L	Spike Conc. 250 10000	LC Res	225 9600 2547955	LCS % Rec 90 96	% Ri Limi)	ts 0 30-120 30-120		_		
Calcium LABORATORY COM Paran Boron Calcium MATRIX SPIKE & M	neter IATRIX SPIKE DU	2547953 Units ug/L ug/L JPLICATE: 254 40261411001	Spike Conc. 250 10000 7954 MS Spike	LC Res 0 0 0 MSD Spike	225 9600 2547955 MS	LCS % Rec 90 96 96	% Re Limi 5 & E	ts 0 30-120 30-120 MSD	% Rec		Max	
Calcium LABORATORY COM Paran Boron Calcium	neter IATRIX SPIKE DU	2547953 Units ug/L ug/L JPLICATE: 254 40261411001	Spike Conc. 250 10000 7954 MS	LC Res 0 0 MSD	225 9600 2547955	LCS % Rec 90 96	% Ri Limi)	ts 0 30-120 30-120		RPD	Max RPD	Qual
Calcium LABORATORY COM Paran Boron Calcium MATRIX SPIKE & M	neter IATRIX SPIKE DU	2547953 Units ug/L JPLICATE: 254 40261411001 itsResult	Spike Conc. 256 10000 7954 MS Spike Conc. 250	LC Res 0 0 0 MSD Spike	225 9600 2547955 MS	LCS % Rec 90 96 96	% Re Limi 5 & E	ts 0 30-120 30-120 MSD	% Rec		RPD	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	25223069 I-43 CC	CR						
Pace Project No.:	40261416							
QC Batch:	443595		Analysis Me	ethod:	SM 2540C			
QC Batch Method:	SM 2540C		Analysis De	escription:	2540C Total D	issolved Solids		
			Laboratory:		Pace Analytica	I Services - Gre	een Bay	
Associated Lab San	nples: 40261416	6001, 40261416002	2, 40261416003,	40261416004	, 40261416005,	40261416006		
METHOD BLANK:	2547072		Matrix	: Water				
Associated Lab San	nples: 40261416	6001, 40261416002	2, 40261416003,	40261416004	, 40261416005,	40261416006		
			Blank	Reporting				
Paran	neter	Units	Result	Limit	Analyze	ed Quali	fiers	
Total Dissolved Solie	ds	mg/L	<8.7	20	0.0 04/28/23 1	5:33		
LABORATORY COM	NTROL SAMPLE:	2547073						
			Spike	LCS	LCS	% Rec		
Paran	neter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Total Dissolved Solie	ds	mg/L	582	548	94	80-120		
SAMPLE DUPLICA	TE: 2547074							
			40261401001	Dup		Max		
Paran	neter	Units	Result	Result	RPD	RPD	Qualifiers	
Total Dissolved Solie	ds	mg/L	840	8	24	2	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	25223069 I-43 CC	R							
Pace Project No.:	40261416								
QC Batch:	443778		Analysis Meth	nod:	EPA 9040				
QC Batch Method:	EPA 9040		Analysis Desc	cription:	9040 pH				
			Laboratory:		Pace Analytica	al Serv	vices - Gre	en Bay	
Associated Lab Sa	mples: 40261416	001, 40261416002	2, 40261416003, 40	0261416004	, 40261416005	5, 4026	1416006		
SAMPLE DUPLICA	ATE: 2547973								
			40261401001	Dup			Max		
Para	meter	Units	Result	Result	RPD		RPD	Qualifiers	
pH at 25 Degrees (0	Std. Units	7.9	8	3.0	1		20 H6	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No		3069 I-43 CCF 1416	२										
QC Batch:	444	301		Anal	ysis Metho	d: E	EPA 300.0						
QC Batch Metho	d: EP/	A 300.0		Anal	ysis Descri	ption: 3	00.0 IC An	ions					
				Labo	oratory:	F	Pace Analy	tical Service	es - Green	Bay			
Associated Lab	Samples:	402614160	001, 4026141600	02, 402614	16003, 402	61416004							
METHOD BLAN	K: 2550	762			Matrix: W	ater							
Associated Lab	Samples:	402614160	001, 4026141600	2, 402614 ⁻	16003, 402	61416004							
				Bla	nk	Reporting							
Pa	rameter		Units	Res	ult	Limit	Anal	yzed	Qualifier	S			
Chloride			mg/L		<0.43	2.0	0 05/10/2	3 00:19					
Fluoride			mg/L		<0.095	0.32							
Sulfate			mg/L		<0.44	2.0	0 05/10/2	3 00:19					
LABORATORY (L SAMPLE:	2550763 Units	Spike Conc.	LC Res		LCS % Rec	% Ro Limi		Qualifiers			
Chloride		· .			20	18.5	9		90-110		_		
Fluoride			mg/L mg/L	4	2	1.9	9		90-110 90-110				
Sulfate			mg/L	2	20	18.6	9		90-110				
MATRIX SPIKE	& MATRI	K SPIKE DUPI	LICATE: 2550	764 MS	MSD	2550765							
			40261368001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Param	eter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride		mg/L	286	400	400	682	684	99	99	90-110	0	15	
Fluoride		mg/L	<1.9	40	40	42.2	42.4	105	106		1		
Sulfate		mg/L	276	400	400	669	672	98	99	90-110	0	15	
MATRIX SPIKE	& MATRI	K SPIKE DUPI	LICATE: 2550	766 MS	MSD	2550767							
			40261416004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Param	eter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
		mg/L	2.2	20	20	23.1	23.2	105	105	90-110	0	15	_
Chloride													
Chloride Fluoride		mg/L	0.52	2	2	2.6	2.6	104	105	90-110	0	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Date: 05/12/2023 02:07 PM with 02/26/2024 - Classification: Internal - ECRM13238613

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, LLC.

Page 16 of 22

Project:	25223	069 I-43 CCI	۲										
Pace Project No.:	40261	416											
QC Batch:	4443	04		Anal	ysis Metho	d:	EPA 300.0						
QC Batch Method:	EPA	300.0		Anal	ysis Descri	ption:	300.0 IC Ar	nions					
				Labo	oratory:		Pace Analy	tical Service	es - Green	Bay			
Associated Lab Sa	amples:	402614160	005, 4026141600	6									
METHOD BLANK:	25507	75			Matrix: W	ater							
Associated Lab Sa	amples:	402614160	05, 4026141600	6									
				Bla	nk	Reporting							
Para	ameter		Units	Res	ult	Limit	Anal	yzed	Qualifiers	3			
Chloride			mg/L		<0.43	2.	.0 05/12/2	3 00:39					
Fluoride			mg/L		<0.095	0.3	2 05/12/2	3 00:39					
Sulfate			mg/L		<0.44	2.	.0 05/12/2	3 00:39					
LABORATORY CO		SAMDI E.	2550776										
		SAMI LL.	2000110	Spike	LC	S	LCS	% R	ec				
Para	ameter		Units	Conc.	Res		% Rec	Limi		Qualifiers			
Chloride			mg/L	2	20	20.7	10	4 9	90-110		_		
Fluoride			mg/L	_	2	2.1	10		90-110				
Sulfate			mg/L	2	20	21.0	10	5 9	90-110				
MATRIX SPIKE &	MATRIX		LICATE: 25507	777		2550778	3						
			LICATE. 2000	MS	MSD	2000770)						
			40261416005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	er	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride		mg/L		100	100	131	131	103	102	90-110	1	15	
Fluoride		mg/L	0.84J	10	10	11.5	11.4	106	106	90-110	1		
Sulfate		mg/L	132	100	100	230	228	98	96	90-110	1	15	
MATRIX SPIKE &	MATRIX		LICATE: 25507	779		2550780)						
				MS	MSD		-						
			40261456001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
-	er	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Paramete				100	100	230	232	90	92	90-110	1	15	
Chloride		mg/L	139	100	100	200							
		mg/L mg/L	139 <0.48	10	10	10.4	10.8	104	108	90-110	4	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Date: 05/12/2023 02:07 PM with 02/26/2024 - Classification: Internal - ECRM13238613

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, LLC.

Page 17 of 22

QUALIFIERS

Project: 25223069 I-43 CCR

Pace Project No.: 40261416

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
- H6 Analysis initiated outside of the 15 minute EPA required holding time.
- P6 Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.

REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

QUALITY CONTROL DATA CROSS REFERENCE TABLE

 Project:
 25223069 I-43 CCR

 Pace Project No.:
 40261416

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40261416001	MW-301	EPA 3010A	443772	EPA 6020B	443833
40261416002	MW-302	EPA 3010A	443772	EPA 6020B	443833
40261416003	MW-303	EPA 3010A	443772	EPA 6020B	443833
40261416004	MW-304	EPA 3010A	443772	EPA 6020B	443833
40261416005	MW-305	EPA 3010A	443772	EPA 6020B	443833
40261416006	FIELD BLANK	EPA 3010A	443772	EPA 6020B	443833
40261416001	MW-301				
40261416002	MW-302				
40261416003	MW-303				
40261416004	MW-304				
40261416005	MW-305				
40261416001	MW-301	SM 2540C	443595		
40261416002	MW-302	SM 2540C	443595		
40261416003	MW-303	SM 2540C	443595		
40261416004	MW-304	SM 2540C	443595		
40261416005	MW-305	SM 2540C	443595		
40261416006	FIELD BLANK	SM 2540C	443595		
40261416001	MW-301	EPA 9040	443778		
40261416002	MW-302	EPA 9040	443778		
40261416003	MW-303	EPA 9040	443778		
40261416004	MW-304	EPA 9040	443778		
40261416005	MW-305	EPA 9040	443778		
40261416006	FIELD BLANK	EPA 9040	443778		
40261416001	MW-301	EPA 300.0	444301		
40261416002	MW-302	EPA 300.0	444301		
40261416003	MW-303	EPA 300.0	444301		
40261416004	MW-304	EPA 300.0	444301		
40261416005	MW-305	EPA 300.0	444304		
40261416006	FIELD BLANK	EPA 300.0	444304		

40261414

.

.

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately, and a sample via this chain of custody constitutes acknowledgment and acceptance of the Page Terms and Conditions fund at this (after page labels conditions) (after page labels conditions).

Section	A	Section B			a on loogi		see op too k		Sectio	an C						it nuş	A\$ / III I	w.pa	Jeiabe	6.001	enuo	spas	s-stan	oaro	-terms	par.				
	d Client Information:	Required Pr	oject ini	formatio	n:				nvolc		rmați	001														Page :		1	Of	1
Compan	Y SCS ENGINEERS	Report To	Megha	n Blodget	t			Į,	ltentx	ж												-				, nga .			<u>.</u>	
Address	2630 Dairy Drive	Сору То							Compa	ny Na	ume												-1							
	WI53716						-	, The second se	Addres	3			_										1			Recu	ulator	Agency		
Email.	mbbdgatt@scsengineers.com	Purchase Or						-	Pace C	lucie.																				
Phone.	608-216-7362 Fax.	Project Nam		i223069 I	-43				Pace F	mjeci	t Men	iger.	dan	milews	sky@	pacel	abe co	эπ,								Sta	ite / La	nodex		
Request	ed Due Data Standard TAT	Project # 25	223069						Pace f	rafile	18					-											. W	1		
,			_	_			<u></u>											Re	quest	nd Ar	talysis	. Filts	yrind ("	(M)				1.1	:	
	MANTRUX De features with	CODE Nor DAV WT	velid axdes to left) GRAB_C=COMP1		COL	LECTED		NOLL		–	Pr I	eserval	tives_	 }	,		<u>N</u>	<u>. N</u>	N	N									. `	
	Water Water Water Water Water Water Water Water Water Product Product SAMPLE ID Softward One Character per box. Wite Wite Product Wite Product	WT P SL OVP AR OT S	18 6		START	E		AT COLLEC	523							1991 9	(B, Ca)	vide, Suffale									orine (Y/N)			
ITEM #	One Character per box. With (A-Z, D-97, -) Oter Sample ids must be unique Tosae	ar Ot Ts	MATRIX CODE SAMPLE TYPE	DATI		DATE	TIME	SAMPLE TEMP AT COLLECTION	# DF CONTAINERS	H2SO4	HNO3	HCI NaOH	Na2S203	Methanol	Other	Analyses lest	Metals, Total (B, Ca)	Chioride, Fluoride, Sulfate, total	10S	μ							Residual Chlor			
1	MW-301		WT	1/2					5		2		Γ			, ,		<u>x =</u>	x	x			┢			\square	Ť	∞	r	
2			wf		144				Ш		Π		Τ			Γ,	,	x	x	x								90%	7	,
3	MW-303		wT		945			П	Π	Π	Π					Ţ,		x	x	x								00	2	
4	MW-304		WT	V	IIX	,			Π		IF		Π			ķ		x	x	x			Τ					00	21	-
5	MW-305		WT	4/2		1			\prod	Π						Ţ		x	x	x			Τ	Π		Π		200	5	
. 6	Field Blank		WT	V	55)(ľ	٧ľ	1	ľ					×	:	x	x	x								.90	C	
7																					Τ	Τ		Π		\Box			-	
8																														
· 9																								$\left[\right]$						
10							i																							
_ 11						<u> </u>	 		4		ļ					L														
12						<u> </u>	 	Ц		Ļ	L												Ĺ							
ļ	ADDITIONAL COMMENTS		RELINGU			0H			∎⊺ • و ا		-			CCEP	TED 8	Y/A	FFLIAT	NON				DŅÌ	re (· `	TIME		<u>8</u> 8	WPLE COI	NDITION9	
		<u> </u>	ΠW	<u>v</u> u		\mathcal{D}_{-}	4/2	<u>e</u>	6		┢	~~				_					,	100	76-	╞			_		., l	
		_	<u> C</u>	تصاد	2975	TUS-	HI84	12	04	15	-	X	2	-e	4	γ^{\prime}	₩	\mathcal{O}	بر	<u>e</u>	-	<i>[]}</i>	7 <u>D</u>	\mathcal{L}	ryn	20	¥_	Ύ.	\mathcal{N}	Ý
 				(J						 										_		_	 		<u> </u>				•
	•••••				RANO.	ER NAME									. ,											┨──	+			
						INT Name			 ∿	17	1.5	ይጠ	. /	Эл	<u>مر</u>	0	\mathbf{r}		· .							- U	ad on	<u>></u>		8
					sk	INATURE	of SAMPI	ER:	· V	3	Ñ.	~~ (\mathfrak{K}	F	~	Ť	<u> </u>	ATE	Signe	d: 1	<i>1</i> /:	<u> 2</u> C	た	3		TEMPING	Receiv	ke (YN) Custody	Sealed Cooler MN	Samples Intact (Y/N)

DC#_Title: ENV-FRM-GBAY-0035 v03_Sample Preservation Receipt Form Effective Date: 8/16/2022

All	Cite conta	ent N ainers	ame: needin		<u>C</u> servat	<u></u> 100 he	E		<u>n</u> Jecker	<u>e</u> l		below		San Zye	n ple Pro	Pre: ject	serv #	atio	n Re	icelp 62	t Fo	>rm ∠	16		_									
					_				Lab) Lot#	of pH	paper:	R		15 177) La	LIN/. b Std	A. ↓ #iDoi	f prese	ervatio	on (if p	H adju	usted);	•					itial w Implei		R	Date/ Time:	
	Glass Plastic								Vials					Jars			General				<u>ة</u> سم) •		T											
Pace Lab #	AGIU	BG1U	AG1H	AG4S	AG5U	AG2S	BG3U	BP1U	ВРЗU	BP3B	BP3N	BP3S	BP2Z	VG9C	DG9T	VG9U	VG9H	VG9M	VG9D	JGFU	JG9U	WGFU	WPFU	SP5T	ZPLC	GN 1	GN 2	VOA Vlats (>6mm)	12SO4 pH ≤2	laOH+Zn Act pH ≥9	VaOH pH ≥12	HNO3 pH s2	pH after adjusted	Volume (mL)
001	┟─	┢──															-				ſ Ó				<u>N</u>			ž	<u> </u>	Ž	Ž	. <u>-</u>	<u>–</u> a_	0.515
002	┟─	╂──				—		┝━┛╏			<u> </u>			_												[X		2.5/5
004	┢━	╂—	- [┝─┤																		- 1								\bigcirc		2.5/5
005	-	+					—ł																			t –					[\bigtriangledown		2.5/5
006	┢──	<u> </u>		—ł		┝─┥			╌┟┤		+						_									 	-					え		2.5/5
007	1			╾┦					┶┤		┝┸╼┦																	-				X		2.5/5
008			+	╾┽	-		-						-	_																		<u> </u>	_	2.5/5
009	_					[╼╼┼	\neg		_																							2.5/5
010				—f			-	+			∽∔	$ \rightarrow $										I										_		2.5/5
011			-		-+	-+		-+	+			7	\geq			<u> </u>		<u> </u>																2.5/5
012		-+	- {	-+	-+	-+	-+	[-			-+	-4	-#	$\overline{}$	_	$ \rightarrow$	\rightarrow																	2.5/5
013							-f		-+			-4	f d	╘┤	႗୷ᡶ	₹₹	ᅻ	$ \rightarrow $	l.	\rightarrow			[2.5/5
014		_			÷	-+	-+				\rightarrow		-	4	/4	4	4	À	\rightarrow	$ \dashv$		-+												2.5/5
015	_]		-				-	-+						-+	— -		-4	λŧ	≻∔	_7	\geq													2.5/5
016					-+	-†	-	-+		-+			-+	—- -	— <u> </u> -								\rightarrow	$ \rightarrow $	_									2.5/5
017							-[-	-			-+	— <u> </u> -	-			-+			+	_				1	\leq									2.5/5
018					-		-		-+		<u> </u>		-+					<u> </u>	—- -							$ \rightarrow $				_				2.5/5
019		[_	-	-+		-†			-		-+			-								$ \square$		\square					_	2.5/5
020	_		_			-	-		-+-		-+		\rightarrow	-+		-+-				-+-							_1			\geq				2.5/5
Exception	is to p	reserva	tion ch	eck: Vo	OA, C	Colifor	m, TC	С. то	ЭХ. То	ОН. О	8G. W) Phe	anolics	Othe						<u> </u>		<u>(</u>		_					l				2.5/5
					_								.,.,,	110/102	, ouis	a <u>.</u>			<u> </u>		Head	space	in VO	A Vials	s (>6n	nm) :	⊒Yes	ΠN	s taki	A	'lf yes	look li	1 head	space column
AG1U1 BG1U1	liter	ambe	r glas:	s	_		BPI		liter p	plastic	nubre	es			—	VG9	C 4	0 mL	clear	ascor	bic w	ИНСІ		JGF	u L	oz a	mbor							
AG1H1	líter	amhe	giass i rila si	- HCI		-	BP3I		50 mL	. plas	tic unp	pres				DG9	Т 4	0 mE .	ambe	r Na 1	Thio			JG9	U 9) oz a	nber	iar un	ipres inres					
AG4S 1	25 m	L amb	ier gla	ass H2	2SO4		BP31 BP31	D 25 N 25	10 mL 50 mi	. piasi niael	tic Na tic HN	OH				VG9	U 4	0 mL i	clear	viał ur	npras	1		WGF	U [4	l oz cl	ear ja	r unp	res					
AG5U 1	00 m	L amb	er ola	iss un	Dree		BP35	3 25	i0 mL	. plast	tic H2	SO4				VG91 VG91				vial H			L	WPF	υ 4	l oz pl	astic	iar un	pres		_			
AG2S 5	00 m	L amt	er ala	iss H2	2504	L	BP22	z 50)0 mL	plasi	tic Na	0H + (Zn			VG9I		U ML (U ML (clear : clear :	vial M vial Di	IEOH I			SP5' ZPL0		iploc l	. plas	tic Na	Thios	sulfate	9			
BG3U 2	<u>n v</u>	r cléa	r glas	s unpi	res																			GN		ipioc I	naĝ							
																							L	GN 2									Pac	ie 1 of $\overline{2}$

Sample Condi	tion Upo	on Receipt For	m (SCUR)	
Client Name: <u>SEFAGAces</u> Courier: CS Logistics F Fed Ex F Speedee F F Client F Pace Other:		Project #:	WO# : 4	0261416
Packing Material: T Bubble Wrap T Bubble Bags	Seals intac s / Nor	t: □ yes [no t: □ yes [no t: □ yes [no ne □ Other	40251416	••••···
Cooler Temperature Uncorr: O ICorr: O Temp Blank Present: Image: Sector Se		Blue Dry None Tissue is Frozen: 1	└ Meltwater (yes, no	Derson examining contents: Date: 1/27/23/Initials: SC
Biota Samples may be received at ≤ 0°C if shipped on Dry Ice. Chain of Custody Present: IYes Chain of Custody Filled Out: IYes Chain of Custody Relinquished: IYes Sampler Name & Signature on COC: IYes Samples Arrived within Hold Time: IYes - DI VOA Samples frozen upon receipt IYes Short Hold Time Analysis (<72hr):		2 3		Labeled By Initials:
Frip Black Quete to During and		12. 13.	ecked, see attached	d form for additional comments

PM Review is documented electronically in LIMs. By releasing the project, the PM acknowledges they have reviewed the sample login

Page_ 2 S_10

Appendix D

Historical Monitoring Results

Single Location Name: WPL - Edgewater I43

Location ID:	MW-301								
Number of Sampling Dates:	25								
Parameter Name	Units	4/26/2016	6/21/2016	8/10/2016	10/19/2016	12/19/2016	1/5/2017	1/23/2017	2/23/2017
Boron	ug/L	298	157	151	148	174		177	181
Calcium	ug/L	389000	148000	94900	77800	127000		105000	51400
Chloride	mg/L	28.5	18	6.2	7.4	8.9		8.2	6.3
Fluoride	mg/L	<2	1.1	0.62	0.65	0.86		0.77	0.64
Field pH	Std. Units	8.24	8.01	8.08	8	8.36		8.21	8.14
Sulfate	mg/L	25.9	15.9	7.4	9.5	9.6		9.3	9.1
Total Dissolved Solids	mg/L	343	290	306	312	264	194	254	276
Antimony	ug/L	0.98	0.58	0.12	<0.36	1		< 0.36	2.7
Arsenic	ug/L	20.8	8.1	5.8	4.6	7.3		6.8	5.6
Barium	ug/L	596	236	177	141	195		219	128
Beryllium	ug/L	3.9	1.1	0.54	<0.63	1.1		1.1	4.1
Cadmium	ug/L	0.47	<0.44	<0.089	<0.44	0.97		<0.44	2.1
Chromium	ug/L	133	37.7	20.8	16	27.7		28.6	14.2
Cobalt	ug/L	36.3	10.6	5.4	4.2	8.4		7.6	5.2
Lead	ug/L	35.9	11.3	6.1	5.1	9.6		8.1	5.6
Lithium	ug/L	137	49.2	29	24.8	42.2		38.6	25.1
Mercury	ug/L	<0.18	<0.13	<0.13	<0.13	<0.13		<0.13	<0.13
Molybdenum	ug/L	12.2	11.5	10.8	9.4	11		10.9	13.3
Selenium	ug/L	12.2	2.6	1.1	<1	2.5		<1	3.4
Thallium	ug/L	0.88	<0.71	<0.14	<0.71	1.2		<0.71	2.6
Radium-226	pCi/L	1.9	1.29	-0.088	-0.595	0.446		0.432	0.546
Radium-228	pCi/L	3.54	0.349	0.462	1.58	1.65		0.563	3.3
Total Radium	pCi/L	5.44	1.64	0.462	1.58	2.09		0.995	3.85
Field Specific Conductance	umhos/cm	401	394	387	367	384		382	371
Oxygen, Dissolved	mg/L	1.1	0.9	0.1	0.1	0.09		0.1	1.5
Field Oxidation Potential	mV	-94	-178	-155	-135	-143		-141	33
Groundwater Elevation	feet	653.54	652.01	649.68	652.32	652.85		652.98	653.14
Temperature	deg C	8.7	10.9	10.9	11.3	7.5		8.5	9
Turbidity	NTU	340.1	916.9	739.9	452.6	895.1		650.8	264.3
pH at 25 Degrees C	Std. Units	7.8	8	7.6	7.8	7.9		8.1	7.9

cation ID:	MW-301								
mber of Sampling Dates:	25								
Parameter Name	Units	4/6/2017	6/6/2017	8/1/2017	10/23/2017	4/3/2018	10/4/2018	4/9/2019	10/8/201
Boron	ug/L	144	138	145	149	136	120	126	142
Calcium	ug/L	45200	57600	59400	48700	36700	43700	42900	42600
Chloride	mg/L	5.6	7.5	5.2	4.7	4.7	4.1	4	3.8
Fluoride	mg/L	0.61	0.87	0.63	0.62	0.62	0.61	0.63	0.63
Field pH	Std. Units	8.12	7.89	7.99	7.82	8.02	8.15	8.18	7.7
Sulfate	mg/L	9.1	9	8.2	8.6	9.3	8.8	9.2	9.3
Total Dissolved Solids	mg/L	240	264	248	236	214	260	230	256
Antimony	ug/L	1.4	<0.15	<0.15					
Arsenic	ug/L	4.7	3.7	4.2					
Barium	ug/L	107	125	115					
Beryllium	ug/L	0.49	0.18	0.25					
Cadmium	ug/L	1	0.091	<0.081					
Chromium	ug/L	8.6	10.6	8.6					
Cobalt	ug/L	2.9	2.7	2.3					
Lead	ug/L	3.3	3.2	3					
Lithium	ug/L	16.2	18.1	16.7					
Mercury	ug/L	<0.13	<0.13	<0.13					
Molybdenum	ug/L	10.6	10.2	9.7					
Selenium	ug/L	1.5	<0.32	0.39					
Thallium	ug/L	1.3	<0.14	<0.14					
Radium-226	pCi/L	-0.084	0.408	0.539					
Radium-228	pCi/L	0.486	1.2	0.557					
Total Radium	pCi/L	0.486	1.61	1.16					
Field Specific Conductance	umhos/cm	390	374	377	378	384	387	395	390
Oxygen, Dissolved	mg/L	0.3	0.2	0	0.6	0.1	0.2	0.2	0.32
Field Oxidation Potential	mV	-53	-171	-161	-46	-138	-97	-99	97
Groundwater Elevation	feet	654.43	654.11	652.64	652.03	651.28	650.71	653.06	653.26
Temperature	deg C	9.9	11.1	10.5	9.7	8.6	9.5	9.4	9.8
Turbidity	NŤU	207.4	322.2	349.1	150.6	89.45	136.6	125.8	133.7
pH at 25 Degrees C	Std. Units	8	8	7.9	7.8	8	7.2	7.9	7.9

Location ID:	MW-301								
Number of Sampling Dates:	25								
Parameter Name	Units	4/7/2020	10/13/2020	12/18/2020	4/13/2021	6/16/2021	10/26/2021	4/13/2022	10/4/2022
Boron	ug/L	133	142		132		130	124	124
Calcium	ug/L	55800	33400		53900		30200	42100	35300
Chloride	mg/L	6.9	4.2		3.9		3.3	3.7	3.9
Fluoride	mg/L	0.82	0.83	0.64	0.64		0.61	0.7	0.62
Field pH	Std. Units	8.05	7.96	7.64	8.48	8.14	8.23	8.03	7.98
Sulfate	mg/L	11.2	19		10.2		10.2	11.1	11.8
Total Dissolved Solids	mg/L	276	228		238		200	262	236
Antimony	ug/L								
Arsenic	ug/L								
Barium	ug/L								
Beryllium	ug/L								
Cadmium	ug/L								
Chromium	ug/L								
Cobalt	ug/L								
Lead	ug/L								
Lithium	ug/L								
Mercury	ug/L								
Molybdenum	ug/L								
Selenium	ug/L								
Thallium	ug/L								
Radium-226	pCi/L								
Radium-228	pCi/L								
Total Radium	pCi/L								
Field Specific Conductance	umhos/cm	384	354	391	387	358	356	377	373
Oxygen, Dissolved	mg/L	0.3	1.1	0.5	0.2	0.3	1.3	0.49	0.63
Field Oxidation Potential	mV	-69	162	1.7	-16	146	291	224.6	59.9
Groundwater Elevation	feet	656.59	652.16	653.91	654.56	649.78	650.76	651.65	648.87
Temperature	deg C	9.5	12.5	8.1	9.1	10.2	11.2	9.2	11.1
Turbidity	NTU	259	57.28	69.45	179		130	145	115
pH at 25 Degrees C	Std. Units	7.9	7.8		8		7.9	8	8

Location ID:	MW-301					
Number of Sampling Dates:	25		 	 	 	
Parameter Name	Units	4/24/2023				
Boron	ug/L	119				
Calcium	ug/L	30600				
Chloride	mg/L	3.4				
Fluoride	mg/L	0.62				
Field pH	Std. Units	8.05				
Sulfate	mg/L	11.4				
Total Dissolved Solids	mg/L	230				
Antimony	ug/L					
Arsenic	ug/L					
Barium	ug/L					
Beryllium	ug/L					
Cadmium	ug/L					
Chromium	ug/L					
Cobalt	ug/L					
Lead	ug/L					
Lithium	ug/L					
Mercury	ug/L					
Molybdenum	ug/L					
Selenium	ug/L					
Thallium	ug/L					
Radium-226	pCi/L					
Radium-228	pCi/L					
Total Radium	pCi/L					
Field Specific Conductance	umhos/cm	370				
Oxygen, Dissolved	mg/L	1.4				
Field Oxidation Potential	mV	370.1				
Groundwater Elevation	feet	653.26				
Temperature	deg C	8.8				
Turbidity	NTU	97.9				
pH at 25 Degrees C	Std. Units	7.9				

Location ID:	MW-302								
Number of Sampling Dates:	27								
Parameter Name	Units	4/26/2016	6/21/2016	8/9/2016	10/19/2016	12/19/2016	1/5/2017	1/23/2017	2/23/2017
Boron	ug/L	198	121	131	126	127		151	149
Calcium	ug/L	254000	49000	36500	30900	42600		59300	41900
Chloride	mg/L	19.5	8.9	7.1	7.6	10		8.9	6.9
Fluoride	mg/L	1.1	0.74	0.75	0.69	0.94		0.85	0.67
Field pH	Std. Units	8.33	8.05	6.24	12.2	8.31		8.16	8.16
Sulfate	mg/L	81.5	36.4	35	42.6	36.4		30.4	27.9
Total Dissolved Solids	mg/L	543	346	308	298	302	280	324	344
Antimony	ug/L	4.5	0.73	0.28	0.37	0.97		0.75	0.96
Arsenic	ug/L	26.7	7.8	6.2	4.5	6.5		9	8.5
Barium	ug/L	309	100	80.1	60.4	77.5		119	103
Beryllium	ug/L	3.8	0.69	0.22	<0.13	0.35		1	0.8
Cadmium	ug/L	0.85	<0.18	<0.089	<0.089	0.6		<0.44	<0.44
Chromium	ug/L	49.8	5.2	2	0.81	3		7	5.5
Cobalt	ug/L	14.6	1.8	0.65	0.36	1.1		2.5	2.1
Lead	ug/L	55	7.1	2.3	0.92	3.6		8.8	6.5
Lithium	ug/L	79.9	19.2	14.4	14	15.8		22.8	19.6
Mercury	ug/L	<0.18	<0.13	<0.13	<0.13	<0.13		<0.13	<0.13
Molybdenum	ug/L	24.4	11.8	11.5	12.7	10.7		11.6	9.8
Selenium	ug/L	21.6	2.3	0.64	0.39	1.4		2.1	2.7
Thallium	ug/L	<0.71	<0.29	<0.14	<0.14	0.68		<0.71	<0.71
Radium-226	pCi/L	4.55	1.73	0.0816	0	0.293		0.325	1.21
Radium-228	pCi/L	3	1.84	1.24	1.12	0.574		2.4	2.64
Total Radium	pCi/L	7.55	3.57	1.32	1.12	0.867		2.73	3.85
Field Specific Conductance	umhos/cm	648	508	507	510	497		486	470
Oxygen, Dissolved	mg/L	2.4	0.5	0.5	0	0		0.4	1
Field Oxidation Potential	mV	52	-108	-95	-107	-73		-79	25
Groundwater Elevation	feet	653.56	651.89	649.3	652.38	652.79		664.97	653.1
Temperature	deg C	8.8	10.1	11.3	12.2	8.1		8.6	9.1
Turbidity	NTU	961.9	248.2	85.43	32.08	190.8		372.8	296.2
pH at 25 Degrees C	Std. Units	8	8	7.8	7.8	7.9		8	7.9

Location ID:	MW-302								
Number of Sampling Dates:	27								
Parameter Name	Units	4/6/2017	6/6/2017	8/1/2017	10/23/2017	4/3/2018	10/4/2018	4/9/2019	10/8/2019
Boron	ug/L	132	124	130	128	124	115	118	129
Calcium	ug/L	40800	38700	33900	31200	30000	28200	28400	29900
Chloride	mg/L	6.7	6.9	5.6	5.5	5.2	4.5	4.4	3.8
Fluoride	mg/L	0.68	0.83	0.74	0.71	0.73	0.71	0.73	0.71
Field pH	Std. Units	8	7.95	7.98	7.7	8.02	8.08	8.14	7.67
Sulfate	mg/L	29.6	32.2	24	26.3	22.6	19.6	20.4	18.4
Total Dissolved Solids	mg/L	322	284	262	238	248	250	248	242
Antimony	ug/L	0.41	0.4	0.21					
Arsenic	ug/L	5.7	7.2	6.3					
Barium	ug/L	90.2	77.2	78.8					
Beryllium	ug/L	<0.63	<0.18	<0.18					
Cadmium	ug/L	<0.44	<0.081	<0.081					
Chromium	ug/L	3.6	1.6	1.2					
Cobalt	ug/L	1.1	0.52	0.47					
Lead	ug/L	3.5	1.4	1.7					
Lithium	ug/L	16.8	12.7	11.2					
Mercury	ug/L	<0.13	<0.13	<0.13					
Molybdenum	ug/L	10.3	10.7	8					
Selenium	ug/L	1.4	<0.32	0.44					
Thallium	ug/L	<0.71	<0.14	<0.14					
Radium-226	pCi/L	1.49	0.366	1.1					
Radium-228	pCi/L	0.351	0.841	0.208					
Total Radium	pCi/L	1.84	1.21	0.844					
Field Specific Conductance	umhos/cm	491	419	435	455	434	433	426	423
Oxygen, Dissolved	mg/L	0	0.3	0	0.7	0.2	0.3	0.8	0.72
Field Oxidation Potential	mV	-12	-14	-115	70	-75	60	18	90
Groundwater Elevation	feet	654.72	654.12	652.55	652.05	651.25	650.7	654.06	653.21
Temperature	deg C	9.7	12.1	10.7	10.4	8.8	10.1	9.9	9.7
Turbidity	NTU	144.2	84.5	56.73	33.56	35.46	23.32	18.41	11.73
pH at 25 Degrees C	Std. Units	8	7.9	7.9	7.9	8	7.9	7.9	7.9

ocation ID:	MW-302								
umber of Sampling Dates:	27								
Parameter Name	Units	4/8/2020	5/20/2020	10/13/2020	12/18/2020	4/13/2021	6/16/2021	10/26/2021	4/13/202
Boron	ug/L	111		128		121		122	113
Calcium	ug/L	27200		26900		28700		27200	28600
Chloride	mg/L	4.4		4.3		4.1		3.8	4
Fluoride	mg/L	0.75	0.7	0.82	0.73	0.76	0.77	0.74	0.85
Field pH	Std. Units	7.79	8.19	7.85	8.05	8.36	8.37	8.23	8.01
Sulfate	mg/L	19.4		19		17.4		15.9	17.2
Total Dissolved Solids	mg/L	254		192		232		220	238
Antimony	ug/L								
Arsenic	ug/L								
Barium	ug/L								
Beryllium	ug/L								
Cadmium	ug/L								
Chromium	ug/L								
Cobalt	ug/L								
Lead	ug/L								
Lithium	ug/L								
Mercury	ug/L								
Molybdenum	ug/L								
Selenium	ug/L								
Thallium	ug/L								
Radium-226	pCi/L								
Radium-228	pCi/L								
Total Radium	pCi/L								
Field Specific Conductance	umhos/cm	413	420	418	426	412	386	393	399
Oxygen, Dissolved	mg/L	0.7	0.2	0.3	1	0.4	0.6	0.6	0.69
Field Oxidation Potential	mV	-3.4	-6	37	163	189	24	207	341
Groundwater Elevation	feet	656.47	655.81	652.17	653.88	654.57	649.75	650.88	651.62
Temperature	deg C	9.3	10	11.9	8.9	9.2	10.3	9.8	9.9
Turbidity	NTU	25.99	10.15	14.16	9.23	19.6	18.1	38.3	3.88
pH at 25 Degrees C	Std. Units	7.7		7.9		8		8	7.9

ation ID:	MW-302						
ber of Sampling Dates:	27				 	 	
Parameter Name	Units	6/16/2022	10/4/2022	4/24/2023			
Boron	ug/L		117	114			
Calcium	ug/L		24800	26600		 	
Chloride	mg/L		4.3	3.9			
Fluoride	mg/L	0.77	0.72	0.74			
Field pH	Std. Units	8.1	7.97	8			
Sulfate	mg/L		17	16.1			
Total Dissolved Solids	mg/L		222	240			
Antimony	ug/L						
Arsenic	ug/L						
Barium	ug/L						
Beryllium	ug/L						
Cadmium	ug/L						
Chromium	ug/L						
Cobalt	ug/L						
Lead	ug/L						
Lithium	ug/L						
Mercury	ug/L						
Molybdenum	ug/L						
Selenium	ug/L						
Thallium	ug/L						
Radium-226	pCi/L						
Radium-228	pCi/L						
Total Radium	pCi/L						
eld Specific Conductance	umhos/cm	384	383	387			
Oxygen, Dissolved	mg/L	0.52	0.83	1.22			
Field Oxidation Potential	mV	105.7	94.9	451.2			
Groundwater Elevation	feet	650.55	648.85	653.25			
Temperature	deg C	11.1	11.8	9			
Turbidity	NTU	4.95	3.33	1.77			
pH at 25 Degrees C	Std. Units		8	8			

_ocation ID:	MW-303								
Number of Sampling Dates:	23								
Parameter Name	Units	4/26/2016	6/21/2016	8/9/2016	10/19/2016	12/19/2016	1/5/2017	1/23/2017	2/23/2017
Boron	ug/L	86.4	85	96	90.8	81.6		99.8	93.9
Calcium	ug/L	48300	36900	36700	31600	50500		46700	32600
Chloride	mg/L	15.5	6.9	6.8	6.8	22.9		8.8	5.3
Fluoride	mg/L	0.55	0.59	0.59	0.6	0.63		0.8	0.55
Field pH	Std. Units	7.96	7.98	6.24	8.03	8.32		8.23	8.24
Sulfate	mg/L	131	45.2	70.1	137	38.2		113	46.1
Total Dissolved Solids	mg/L	468	314	378	458	312	310	400	300
Antimony	ug/L	0.66	0.1	0.077	0.077	2.3		0.59	0.081
Arsenic	ug/L	2.8	5.3	4.4	2.7	3.2		3.8	5.5
Barium	ug/L	134	80.2	91.2	81.6	90.3		120	81.1
Beryllium	ug/L	0.18	<0.13	<0.13	<0.13	<0.13		0.13	<0.13
Cadmium	ug/L	<0.089	<0.089	<0.089	<0.089	0.22		0.098	<0.089
Chromium	ug/L	8.1	1	0.93	0.41	1.3		8.6	2.1
Cobalt	ug/L	2.2	0.5	0.4	0.32	0.63		2	0.75
Lead	ug/L	1.9	0.26	0.091	0.16	0.3		2.1	0.52
Lithium	ug/L	19.3	10.2	13.1	14.8	10.3		20.1	11.9
Mercury	ug/L	<0.18	<0.13	<0.13	<0.13	<0.13		<0.13	<0.13
Molybdenum	ug/L	45.4	12.7	23	34	9.4		30.5	11
Selenium	ug/L	0.66	<0.21	<0.21	<0.21	0.26		0.29	<0.21
Thallium	ug/L	<0.14	0.17	<0.14	<0.14	<0.14		<0.14	<0.14
Radium-226	pCi/L	0	0.721	0	0	0.367		-0.066	0.233
Radium-228	pCi/L	0.392	0.338	0.426	0.921	0.497		0.236	1.37
Total Radium	pCi/L	0.392	1.06	0.426	0.921	0.864		0.236	1.6
Field Specific Conductance	umhos/cm	586	589	756	567	582		681	558
Oxygen, Dissolved	mg/L	1.1	0.8	0.4	2.2	0		0.9	0.1
Field Oxidation Potential	mV	178	-174	-138	-185	-156		-168	-119
Groundwater Elevation	feet	653.59	651.8	649.37	652.18	652.82		652.92	653.1
Temperature	deg C	8.6	10.2	11.3	11.3	4.4		8.8	8.9
Turbidity	NTU	107.6	21.88	13.48	8.9	30.04		103.3	51.76
pH at 25 Degrees C	Std. Units	7.6	7.9	7.8	7.9	7.7		8.1	7.9

Location ID:	MW-303								
Number of Sampling Dates:	23								
Parameter Name	Units	4/7/2017	6/6/2017	8/1/2017	10/23/2017	4/3/2018	10/4/2018	4/9/2019	10/7/2019
Boron	ug/L	89.8	89.1	95	89	94.6	87.3	88.4	91.2
Calcium	ug/L	33200	35500	35900	29100	31900	31600	31700	30900
Chloride	mg/L	6.2	6.2	5.7	6.8	5	4.4	4.1	4.7
Fluoride	mg/L	0.57	0.69	0.6	0.66	0.54	0.56	0.57	0.6
Field pH	Std. Units	8.15	7.9	7.91	7.59	7.98	8.04	8.05	10.12
Sulfate	mg/L	79.2	51.1	40.5	67.1	27.3	26.1	23.7	30.3
Total Dissolved Solids	mg/L	348	314	290	304	260	270	270	230
Antimony	ug/L	<0.073	<0.15	<0.15					
Arsenic	ug/L	2.8	4	4.4					
Barium	ug/L	80.7	80.6	81.1					
Beryllium	ug/L	<0.13	<0.18	<0.18					
Cadmium	ug/L	<0.089	<0.081	<0.081					
Chromium	ug/L	0.79	<1	<1					
Cobalt	ug/L	0.34	0.4	0.44					
Lead	ug/L	0.082	<0.2	0.22					
Lithium	ug/L	13.2	11.4	11.4					
Mercury	ug/L	<0.13	<0.13	<0.13					
Molybdenum	ug/L	21.2	14.4	12.4					
Selenium	ug/L	<0.21	<0.32	<0.32					
Thallium	ug/L	<0.14	<0.14	<0.14					
Radium-226	pCi/L	0.535	0.298	0.198					
Radium-228	pCi/L	0.336	0.397	0.454					
Total Radium	pCi/L	0.871	0.695	0.603					
Field Specific Conductance	umhos/cm	617	486	564	557	494	500	486	497
Oxygen, Dissolved	mg/L	0.6	0.4	0	1	0.2	0.2	0.2	0.56
Field Oxidation Potential	mV	-93	-65	-157	88	-125	-105	-65	127
Groundwater Elevation	feet	654.55	654.14	652.5	652.03	651.3	650.7	654.06	653.27
Temperature	deg C	9.7	11	11.7	10.1	8.9	10	9.5	11.8
Turbidity	NTU	9.79	22.54	16.29	3.06	6.62	17.2	4.92	9.74
pH at 25 Degrees C	Std. Units	7.9	7.9	7.9	7.9	7.8	7.9	7.8	7.9

ation ID:	MW-303								
ber of Sampling Dates:	23								
Parameter Name	Units	4/8/2020	10/13/2020	4/13/2021		4/11/2022	10/5/2022	4/24/2023	
Boron	ug/L	79	85.8	84.7	83.3	80.7	84.2	85.4	
Calcium	ug/L	29900	29000	29600	29300	31300	29600	31200	
Chloride	mg/L	4.3	5.2	4.5	4.2	4.3	4.2	3.8	
Fluoride	mg/L	0.6	0.7	0.62	0.61	0.71	0.56	0.58	
Field pH	Std. Units	7.67	8.31	8.26	8.05	7.73	7.97	7.93	
Sulfate	mg/L	23.3	33.2	25.6	28.9	24.9	23.9	20.6	
Total Dissolved Solids	mg/L	274	150	260	268	274	270	268	
Antimony	ug/L								
Arsenic	ug/L								
Barium	ug/L								
Beryllium	ug/L								
Cadmium	ug/L								-
Chromium	ug/L								
Cobalt	ug/L								-
Lead	ug/L								-
Lithium	ug/L								-
Mercury	ug/L								
Molybdenum	ug/L								
Selenium	ug/L								
Thallium	ug/L								
Radium-226	pCi/L								
Radium-228	pCi/L								
Total Radium	pCi/L								
ield Specific Conductance	umhos/cm	454	570	475	478	458	455	447	
Oxygen, Dissolved	mg/L	0.5	0.4	0.5	0.6	1.75	1.1	1.03	
Field Oxidation Potential	mV	-75.2	128	154	244	78	117.5	297.4	
Groundwater Elevation	feet	656.46	652.2	654.53	650.9	651.58	648.89	653.31	
Temperature	deg C	9.4	10.7	9.4	9.7	10.9	10.3	9.4	
Turbidity	NTU	21.08	7.21	<0.02	71.5	0.92	2.64	1.65	
pH at 25 Degrees C	Std. Units	7.8	7.9	8	8	7.9	7.9	8	

Location ID:	MW-304								
Number of Sampling Dates:	23								
Parameter Name	Units	4/26/2016	6/21/2016	8/9/2016	10/19/2016	12/19/2016	1/5/2017	1/23/2017	2/23/2017
Boron	ug/L	92.1	90.9	102	106	102		101	99.8
Calcium	ug/L	24500	25400	26700	23000	24800		24300	24500
Chloride	mg/L	3.8	3.9	2.7	1.8	2.2		2.1	2.3
Fluoride	mg/L	0.49	0.55	0.51	0.45	0.59		0.5	0.5
Field pH	Std. Units	8.16	8	6.29	8.17	8.29		8.14	8.22
Sulfate	mg/L	13.8	14.2	13.2	13.5	14.6		14.3	14.6
Total Dissolved Solids	mg/L	222	234	244	232	198	212	214	206
Antimony	ug/L	0.11	0.52	0.36	<0.073	0.23		0.3	0.63
Arsenic	ug/L	8.8	10	11.2	10.7	11.4		12.2	12.2
Barium	ug/L	77.6	74.7	81.5	73.4	71		81.1	73.5
Beryllium	ug/L	<0.13	<0.13	<0.13	<0.13	<0.13		<0.13	<0.13
Cadmium	ug/L	<0.089	<0.089	<0.089	<0.089	0.17		<0.089	0.45
Chromium	ug/L	0.75	0.94	0.78	<0.39	0.7		0.8	1
Cobalt	ug/L	0.26	0.23	0.12	0.078	0.18		0.17	0.53
Lead	ug/L	0.36	0.52	0.24	0.12	0.44		0.54	0.78
Lithium	ug/L	9.1	9.1	9.4	9.1	10.1		9.5	8.9
Mercury	ug/L	<0.18	<0.13	<0.13	<0.13	<0.13		<0.13	<0.13
Molybdenum	ug/L	4.6	4	3.9	3.8	3.7		3.8	4.1
Selenium	ug/L	<0.21	<0.21	<0.21	<0.21	<0.21		<0.21	0.32
Thallium	ug/L	<0.14	<0.14	<0.14	<0.14	0.19		<0.14	0.59
Radium-226	pCi/L	-0.215	0.511	0.161	-0.369	0.171		0.181	-0.164
Radium-228	pCi/L	0.687	0.288	0.137	0.625	-0.101		0.018	1.5
Total Radium	pCi/L	0.687	0.799	0.298	0.625	0.171		0.199	1.5
Field Specific Conductance	umhos/cm	4.9	402	399	397	394		393	382
Oxygen, Dissolved	mg/L	0.8	0.5	0.1	0	0.3		0	1.1
Field Oxidation Potential	mV	-57	-129	-127	-84	-3		-98	14
Groundwater Elevation	feet	655.9	653.79	651.55	654	654.26		654.37	654.49
Temperature	deg C	8.9	11.02	12	11.1	7.6		8.6	8.8
Turbidity	NTU	22.36	17.46	7.38	6.77	8.88		10.78	5.06
pH at 25 Degrees C	Std. Units	7.8	8	7.8	7.8	7.9		8	7.9

Location ID:	MW-304								
Number of Sampling Dates:	23								
Parameter Name	Units	4/7/2017	6/6/2017	8/1/2017	10/23/2017	4/3/2018	10/4/2018	4/8/2019	10/8/2019
Boron	ug/L	96.9	102	103	104	98.6	90.2	100	104
Calcium	ug/L	24800	23500	23000	20100	20200	19400	19100	20600
Chloride	mg/L	1.8	2	1.8	1.7	1.7	1.8	1.8	1.7
Fluoride	mg/L	0.48	0.6	0.53	0.54	0.5	0.5	0.51	0.48
Field pH	Std. Units	7.86	8.03	7.9	7.74	7.99	8.1	8.06	7.68
Sulfate	mg/L	14.5	14.9	14.2	14.2	15.2	13.5	14.5	13.5
Total Dissolved Solids	mg/L	224	218	222	208	222	224	226	172
Antimony	ug/L	<0.073	<0.15	<0.15					
Arsenic	ug/L	10.9	11.8	11.4					
Barium	ug/L	73.7	79.1	75.1					
Beryllium	ug/L	<0.13	<0.18	<0.18					
Cadmium	ug/L	<0.089	<0.081	<0.081					
Chromium	ug/L	<0.39	<1	<1					
Cobalt	ug/L	0.047	0.11	0.088					
Lead	ug/L	0.08	<0.2	<0.2					
Lithium	ug/L	9.2	9.1	9.2					
Mercury	ug/L	<0.13	<0.13	<0.13					
Molybdenum	ug/L	3.6	4.7	3.7					
Selenium	ug/L	<0.21	<0.32	<0.32					
Thallium	ug/L	<0.14	<0.14	<0.14					
Radium-226	pCi/L	0.326	0.604	2.05					
Radium-228	pCi/L	0.274	0.688	0.0736					
Total Radium	pCi/L	0.6	1.29	1.1					
Field Specific Conductance	umhos/cm	399	391	382	387	398	400	395	404
Oxygen, Dissolved	mg/L	2	0.5	0.4	0.8	0.3	0.2	0.7	0.81
Field Oxidation Potential	mV	-100	-104	-107	145	-103	-81	-23	104
Groundwater Elevation	feet	654.85	655.7	654.49	653.65	652.86	652.26	655.59	654.77
Temperature	deg C	12	11.2	14.3	10	8.9	9.5	10.4	11
Turbidity	NTU	2.56	3	2.88	1.7	9.62	3	6.25	43.61
pH at 25 Degrees C	Std. Units	8	7.8	8	7.9	8	7.9	7.9	8

ation ID:	MW-304								
ber of Sampling Dates:	23								
Parameter Name	Units	4/7/2020	10/15/2020	4/13/2021		4/11/2022	10/5/2022	4/24/2023	
Boron	ug/L	100	94.5	91.7	89.8	89.3	91.8	87.1	
Calcium	ug/L	18600	15800	19700	21600	25500	19400	22000	
Chloride	mg/L	5.2	2.1	2.1	2.3	2.3	2.4	2.2	
Fluoride	mg/L	0.75	0.58	0.53	0.49	<0.095	0.47	0.52	
Field pH	Std. Units	8.07	8.12	8.31	8.12	7.87	8.05	8.02	
Sulfate	mg/L	15.4	15.5	15.3	15.6	16.2	16.2	15.6	
Total Dissolved Solids	mg/L	228	228	224	218	220	218	226	
Antimony	ug/L								
Arsenic	ug/L								
Barium	ug/L								
Beryllium	ug/L								
Cadmium	ug/L								
Chromium	ug/L								
Cobalt	ug/L								
Lead	ug/L								
Lithium	ug/L								
Mercury	ug/L								
Molybdenum	ug/L								-
Selenium	ug/L								
Thallium	ug/L								
Radium-226	pCi/L								
Radium-228	pCi/L								
Total Radium	pCi/L								
Field Specific Conductance	umhos/cm	392	411	403	398	392	400	385	
Oxygen, Dissolved	mg/L	1.9	0.2	0.5	0.6	0.41	0.81	1.02	
Field Oxidation Potential	mV	190	-10	216	205	135.6	157.2	315	
Groundwater Elevation	feet	658.16	654.17	656.36	652.54	653.08	650.51	654.83	
Temperature	deg C	12.4	9.7	9.1	9.6	11.4	11.4	8.8	
Turbidity	NTU	227.3	9.1	<0.02	96.3	5.11	77.7	2.32	
pH at 25 Degrees C	Std. Units	7.8	8	8	8	7.9	8	7.9	

Location ID:	MW-305								
Number of Sampling Dates:	16								
Parameter Name	Units	2/23/2017	4/7/2017	6/6/2017	8/1/2017	10/23/2017	4/3/2018	10/4/2018	4/9/2019
Boron	ug/L	94.4	86.4	78.8	76.5	70	71.7	65.9	68
Calcium	ug/L	93800	103000	102000	95900	90700	83000	82200	89000
Chloride	mg/L	20.8	20.4	22.5	21.3	21.5	21.8	22.7	23
Fluoride	mg/L	0.73	0.59	0.72	0.69	0.64	0.63	0.58	0.65
Field pH	Std. Units	7.75	7.62	7.52	7.47	7.55	7.54	7.65	7.85
Sulfate	mg/L	127	131	140	130	134	129	130	136
Total Dissolved Solids	mg/L	576	576	598	570	540	566	572	568
Antimony	ug/L	0.21	0.088	0.59	0.53	0.23	<0.15	<0.15	0.78
Arsenic	ug/L	3	2.5	2.5	2.3	2.4	2.2	2.3	2.9
Barium	ug/L	230	220	208	200	195	177	169	169
Beryllium	ug/L	0.21	0.15	<0.18	<0.18	<0.18	<0.18	<0.18	0.19
Cadmium	ug/L	<0.089	<0.089	<0.081	<0.081	0.1	<0.081	<0.15	0.83
Chromium	ug/L	10.8	6.8	4	2.7	1.8	<1	<1	1.2
Cobalt	ug/L	2.6	1.5	0.8	0.56	0.5	<0.085	<0.12	0.83
Lead	ug/L	2.4	1.6	0.98	0.87	0.44	<0.2	<0.24	0.81
Lithium	ug/L	23.2	19.7	15.7	14.8	12.4	12	11.2	11.8
Mercury	ug/L	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.084	<0.084
Molybdenum	ug/L	5	4.6	3.3	3.6	3.2	2.5	2.3	3.3
Selenium	ug/L	0.56	0.28	<0.32	<0.32	<0.32	<0.32	<0.32	0.92
Thallium	ug/L	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14	0.8
Radium-226	pCi/L	0.35	0.0649	0.51	0.791	0.277	0.597	0.323	0.764
Radium-228	pCi/L	3.8	0.836	0.555	0.878	0.969	0.73	0.716	0.921
Total Radium	pCi/L	4.15	0.901	1.07	1.31	1.25	1.33	1.04	1.69
Field Specific Conductance	umhos/cm	856	922	884	901	886	915	941	942
Oxygen, Dissolved	mg/L	1.2	0.7	0.4	0.74	0.2	0.2	0.2	0.3
Field Oxidation Potential	mV	-224	-108	-167	-122	-125	-120	-101	-75
Groundwater Elevation	feet	658.02	659.65	659.7	658.54	657.22	656.24	655.89	659.03
Temperature	deg C	7.9	9.2	11.3	12.4	10.3	8.9	9.9	9.8
Turbidity	NTU	613.2	138	140.6	67.21	42.54	13.01	10.56	9.67
pH at 25 Degrees C	Std. Units	7.6	7.6	7.5	7.5	7.7	7.5	7.5	7.5

mber of Sampling Dates:	16								
Parameter Name	Units	10/8/2019	4/7/2020	10/15/2020	4/13/2021	10/26/2021	4/11/2022	10/4/2022	4/25/202
Boron	ug/L	73	65.8	65.5	66.6	67.8	61.5	63.7	60.8
Calcium	ug/L	90300	88800	76800	86800	87800	88500	83700	80500
Chloride	mg/L	22.5	24.9	24.5	25.3	24.9	27.5	29.6	28.3
Fluoride	mg/L	0.63	0.75	0.72	0.67	0.72	<0.095	0.59	0.84
Field pH	Std. Units	7.36	7.48	7.63	7.76	7.76	7.42	7.51	7.49
Sulfate	mg/L	137	135	139	127	125	141	140	132
Total Dissolved Solids	mg/L	548	580	500	540	556	578	602	570
Antimony	ug/L	<0.15							
Arsenic	ug/L	2.4							
Barium	ug/L	169							
Beryllium	ug/L	<0.25							
Cadmium	ug/L	<0.15							
Chromium	ug/L	<1							
Cobalt	ug/L	<0.12							
Lead	ug/L	<0.24							
Lithium	ug/L	12.4							
Mercury	ug/L	<0.084							
Molybdenum	ug/L	2.6							
Selenium	ug/L	<0.32							
Thallium	ug/L	<0.14							
Radium-226	pCi/L	0.238							
Radium-228	pCi/L	0.473							
Total Radium	pCi/L	0.711							
Field Specific Conductance	umhos/cm	935	917	911	891	863	889	917	890
Oxygen, Dissolved	mg/L	0.82	0.53	0.3	0.8	1.6	0.45	0.67	1.71
Field Oxidation Potential	mV	112	28	-41	128	136	261.1	118.5	322.8
Groundwater Elevation	feet	658.77	661.58	658.08	659.69	655.86	657.58	654.4	658.22
Temperature	deg C	12.4	10.5	10	9.4	11	9.9	10.7	8.5
Turbidity	NTU	6.56	7.35	8.27	0.93	21.7	30.1	6.44	1.42
pH at 25 Degrees C	Std. Units	7.6	7.5	7.6	7.6	7.6	7.5	7.5	7.6

Leachate Pipe Cleaning and Inspection Report

BUTEYN-PETERSON Construction Co., Inc.

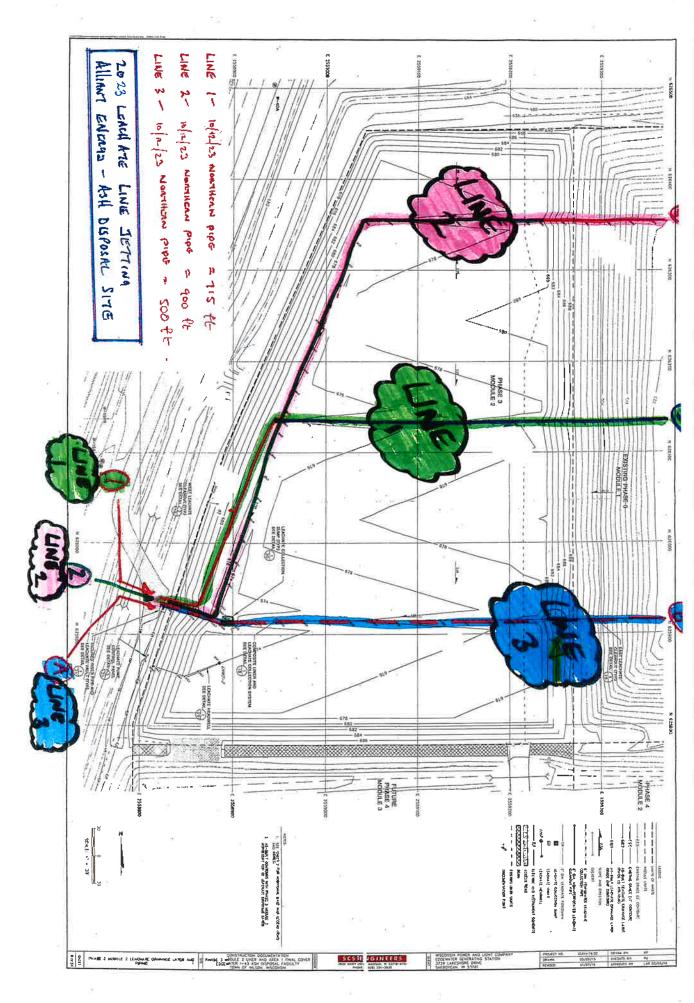
N7337 Dairyland Drive - Sheboygan, WI 53083 - PHONE (920) 565-6200 - FAX (920) 565-6203

October 27, 2023

5

Buteyn-Peterson Construction Inc. <u>certifies</u> that the leachate lines 1, 2, and 3 from Phase 3 Module 2 at the Alliant Energy I-43 Ash Disposal Facility in Sheboygan are clean and free from obstructions for 2023.

Aqualis formerly Northern Pipe, Inc. flushed and televised the lines on 10/12/2023.


Mark Brashaw Project Manager Buteyn-Peterson Construction Co., Inc. (920) 565-6200 office (920) 565-6203 fax (920) 377-0673 cell mark.brashaw@jpsbp.com

ţ

Freightliner | 6 hole 3/4" standard bullet tip | 3/4" Piranha HP12 80 GPM 2500 PSI

Line	Cleanout	Total Length	Jetted Length	Date	Comments	
1	1	715.0	715.0	10.12.2023 Line is in good condition	Line is in good condition	
	3					
2	2	900.0	900.0 900.0	900.0	10.12.2023	Line is in good condition
-	4		<u>a</u>			
	Α	500.0	500.0	10.12.2023	Line is in good condition	
3	В	500.0	1	10.12.2025		
-		2,115.0	2,115.0			

2094 COUNTY RD QQ GREEN BAY, WI 54311 | O 920-468-7074

1. I.

2094 County Road QQ Green Bay, Wisconsin 54311 920-468-7074 www.aqualisco.com

Table of Contents

Inspections

 γ_{i}

1 - 3	1
2-4	4
3 – 1	7
4 - 2	10
A – B	13
B – A	16

1

à.,

2094 County Road QQ

Green Bay, Wisconsin 54311 920-468-7074 www.aqualisco.com

- Overview	1		
US	camera direction >	334.7 ft televised	BS BS
	<	(asset length not specified)	>
Asset —			
	Alliant Energy		12 • Oct • 2023 09:33
Compass:	East	End Time:	10:08
Size:	6.0 in	Customer:	Buteyn Peterson Const. Co.
Material:	Polyethylene	Camera Direction:	Downstream
Joint Material:		Surveyor Name:	Shayne DeGrave (NPI)
Joint Length:		Purpose:	Routine Assessment
Sewer Use:	Leachate	Pre-Cleaning:	Jetting
Comments:	8	Weather	Dry
		Media ID:	
		PressureValue	
		WorkOrder	2140
		Project	
-Location		Comments:	
Street: Line 1			
City: City of	Sheboygan		

ă,

•

-Snapshots

1

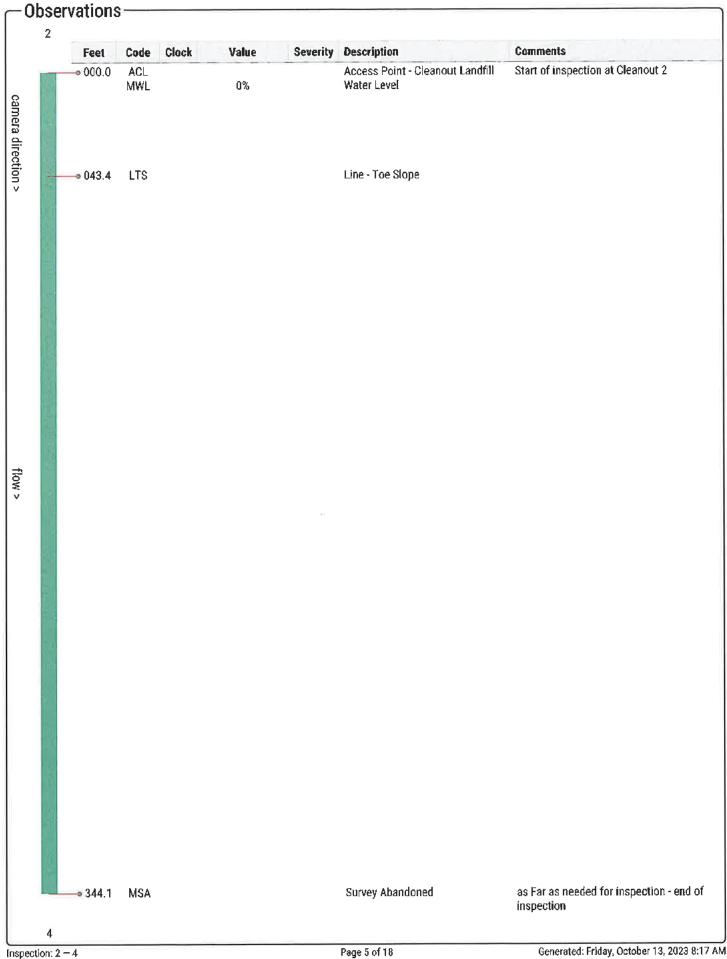
×.,

ACL at 000.0 ft | Start Of inspection at Cleanout 1

LTS at 032.5 ft

MSA at 334.7 ft | as far as needed for inspection - end of inspection

MWL at 000.0 ft


LR at 255.5 ft

2094 County Road QQ

Green Bay, Wisconsin 54311 920-468-7074 www.aqualisco.com

Overview			
2			4
and the second	camera direction >		and the second s
US			DS
		344.1 ft televised	
	<(a	asset length not specified)	>
Asset—			
	Alliant Energy		12 • Oct • 2023 10:09
Compass:		End Time:	
Size:	6.0 in	Customer:	Buteyn Peterson Const. Co.
Material:	Polyethylene	Camera Direction:	Downstream
Joint Material:		Surveyor Name:	Shayne DeGrave (NPI)
Joint Length:		Purpose:	Routine Assessment
Sewer Use:	Leachate	Pre-Cleaning:	Jetting
Comments:		Weather:	Dry
		Media ID:	
		PressureValue:	
		WorkOrder:	2140
		Project:	
-Location	· · · · · · · · · · · · · · · · · · ·	Comments:	
Street: Line 2			
	Chabayran		
City: City of	Sneboygan		

02/26/2024 - Classification: Internal - ECRM13238613

a A

 v_{ei}

-Snapshots

۰,

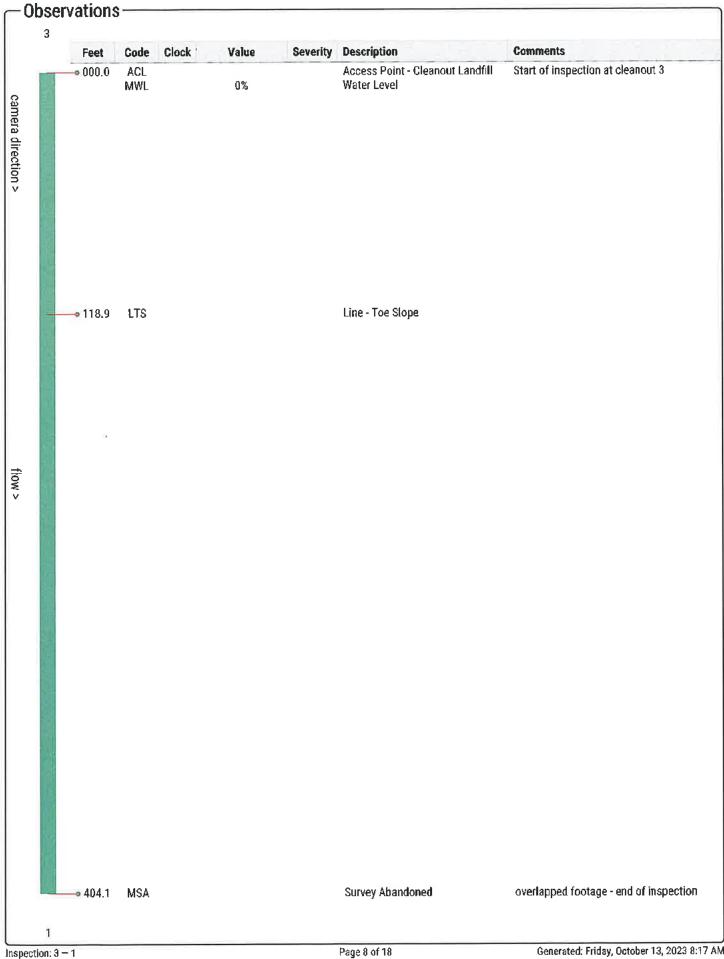
ж.,

ACL at 000.0 ft | Start of inspection at Cleanout 2

LTS at 043.4 ft

MWL at 000.0 ft

MSA at 344.1 ft | as Far as needed for inspection - end of inspection



2,

2094 County Road QQ

Green Bay, Wisconsin 54311 920-468-7074 www.aqualisco.com

Overview						
3	camera direction >			1 DS		
	US 404.1 ft televised (asset length not specified)					
Asset—		Inspection				
	Alliant Energy		12 • Oct • 2023 12:18			
Compass:	West	End Time:	13:21			
Size:	6.0 in	Customer:	Buteyn Peterson Const. Co.			
Material:	Polyethylene	Camera Direction:	Downstream			
Joint Material:		Surveyor Name:	Shayne DeGrave (NPI)			
Joint Length:		Purpose:	Routine Assessment			
Sewer Use:	Leachate	Pre-Cleaning:	Jetting			
Comments:		Weather:	Dry	3		
		Media ID:				
		PressureValue:				
		WorkOrder:	2140			
		Project:				
-Location		Comments:				
Street: Line 1						
City: City of	Sheboygan					

8

۰.,

-Snapshots-

1

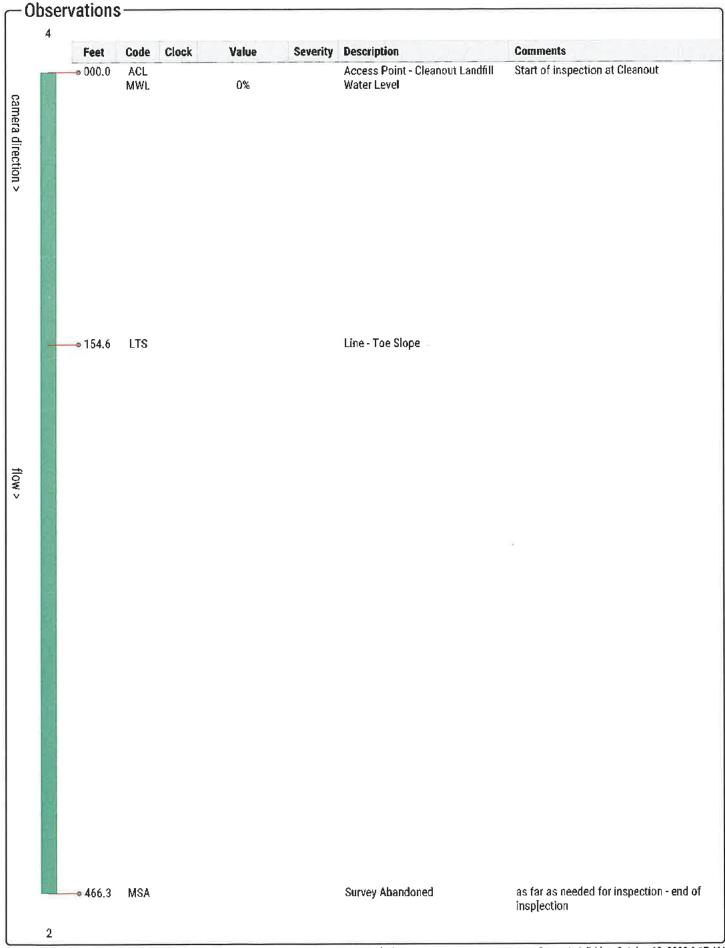
 $\mathbf{e}_{\mathbf{a}}$

ACL at 000.0 ft | Start of inspection at cleanout 3

LTS at 118.9 ft

MWL at 000.0 ft

MSA at 404.1 ft | overlapped footage - end of inspection



 $s_{\rm x}$

2094 County Road QQ

Green Bay, Wisconsin 54311 920-468-7074 www.aqualisco.com

-Overview				
4 US	camera direction >	466.3 ft te	elevised tot specified)	DS
L	1.20	(20000 10.1.g.1.1		
Asset—			Inspection-	
Owner:	Alliant Energy		Start Time:	12 • Oct • 2023 11:37
Compass:	West		End Time:	12:17
Size:	6.0 in		Customer:	Buteyn Peterson Const. Co.
Material	Polyethylene		Camera Direction:	Downstream
Joint Material			Surveyor Name:	Shayne DeGrave (NPI)
Joint Length:			Purpose:	Routine Assessment
Sewer Use:	Leachate		Pre-Cleaning:	Jetting
Comments:			Weather:	Dry
			Media ID:	
			PressureValue:	
			WorkOrder:	2140
			Project:	
-Location			Comments:	
Street: Line 2				
City: City of	Sheboygan			

 8

۰.,

-Snapshots

۰,

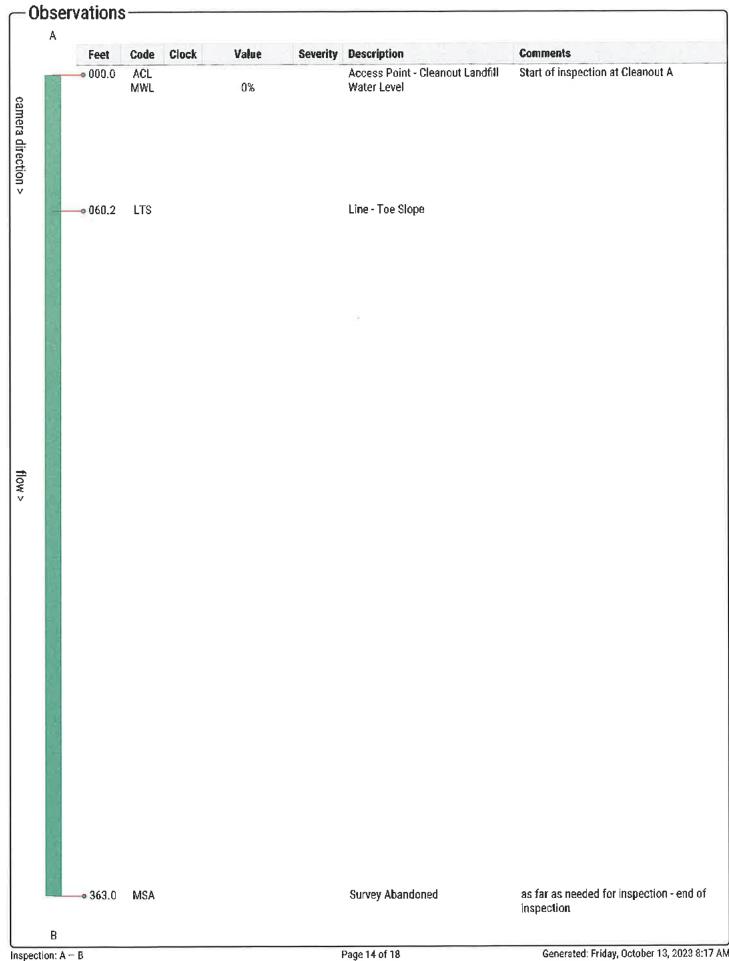
۰.,

ACL at 000.0 ft | Start of inspection at Cleanout

LTS at 154.6 ft

MWL at 000.0 ft

MSA at 466.3 ft | as far as needed for inspection - end of insp[ection



٩.,

2094 County Road QQ

Green Bay, Wisconsin 54311 920-468-7074 www.aqualisco.com

-Overview			
A			В
And and	camera direction >		
US			DS
		363.0 ft televised	
	≺ (ass	et length not specified)	>
Asset —		Inspection	
Owner:	Alliant Energy	Start Time:	12 • Oct • 2023 10:23
Compass:	East	End Time:	11:01
Size:	6.0 in	Customer:	Buteyn Peterson Const. Co.
Material:	Polyethylene	Camera Direction:	Downstream
Joint Material:		Surveyor Name:	Shayne DeGrave (NPI)
Joint Length:		Purpose:	Routine Assessment
Sewer Use:	Leachate	Pre-Cleaning:	Jetting
Comments:		Weather:	Dry
		Media ID:	
		PressureValue:	
		WorkOrder:	2140
		Project:	
		Comments:	
Street: Line 3			
	Ohahayaaa		
City: City of	Sneboygan		

.

1

-Snapshots

•

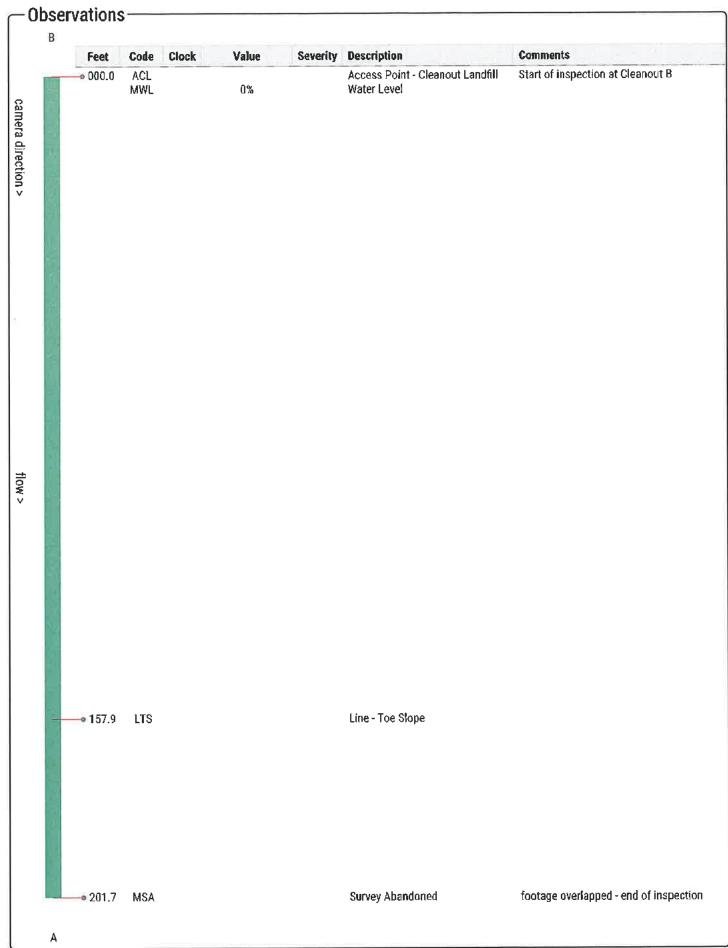
×.,

ACL at 000.0 ft | Start of inspection at Cleanout A

LTS at 060.2 ft

MWL at 000.0 ft

MSA at 363.0 ft | as far as needed for inspection - end of inspection


•

× ...

2094 County Road QQ

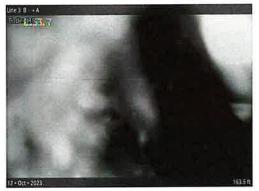
Green Bay, Wisconsin 54311 920-468-7074 www.aqualisco.com

-Overview			
В			А
	camera direction >		
US			DS
I HOW	F	201.7 ft televised	
	<(as	set length not specified)	>
		lucucation	
Asset—			
Owner:	Alliant Energy	Start Time:	12 • Oct • 2023 13:23
Compass:	West	End Time:	14:04
Size:	6.0 in	Customer:	Buteyn Peterson Const. Co.
Material:	Polyethylene	Camera Direction:	Downstream
Joint Material:		Surveyor Name:	Shayne DeGrave (NPI)
Joint Length:		Purpose:	Routine Assessment
Sewer Use:	Leachate	Pre-Cleaning:	Jetting
Comments:		Weather:	Dry
		Media ID:	
		PressureValue:	
		WorkOrder:	2140
		Project:	
-Location		Comments:	
Street: Line 3			
City: City of	Sheboygan		
·			

Inspection: B - A

٠,

8.0


-Snapshots-

њ "т

1.2

ACL at 000.0 ft | Start of inspection at Cleanout B

LTS at 157.9 ft

MWL at 000.0 ft

MSA at 201.7 ft | footage overlapped - end of inspection