# SCS ENGINEERS



Run-On and Run-Off Control Plan Phase 3 Module 1 Phase 3 Module 2 Phase 4 Module 1

# Edgewater I-43 Ash Disposal Facility

Prepared for:

Wisconsin Power and Light Company

Edgewater Generating Station 3739 Lakeshore Drive Sheboygan, Wisconsin 53081-7233

Prepared by:

#### **SCS ENGINEERS**

2830 Dairy Drive Madison, Wisconsin 53718-6751 (608) 224-2830

> September 2016 File No. 25216111.00

Offices Nationwide www.scsengineers.com Run-On and Run-Off Control Plan Phase 3 Module 1 Phase 3 Module 2 Phase 4 Module 1

#### Edgewater I-43 Ash Disposal Facility

Prepared for:

Wisconsin Power and Light Company Edgewater Generating Station 3739 Lakeshore Drive Sheboygan, Wisconsin 53081-7233

Prepared by:

#### SCS ENGINEERS

2830 Dairy Drive Madison, Wisconsin 53718-6751 (608) 224-2830

> September 2016 File No. 25216111.00

### Table of Contents

### Section

### Page

| PE Ce | ertifico | ationiii                     |
|-------|----------|------------------------------|
| 1.0   | Introd   | duction and Project Summary  |
| 2.0   | Run-C    | On and Run-Off Control       |
|       | 2.1      | Design Criteria2             |
|       | 2.2      | Design With Calculations2    |
|       | 2.3      | Construction                 |
| 3.0   | Certi    | fications                    |
| 4.0   | Reco     | rdkeeping and Period Updates |

### Figures

| 1 Site Location Map |
|---------------------|
|---------------------|

2 Run-On and Run-Off Control Plan

### Appendix

A Drainage Design Calculations

I:\25216111.00\Deliverables\Run-On\_Run-Off Control Plan\WPL\_I43 Run-On and Run-Off Control Plan\_Final\_160929.docx

[This page left blank intentionally]

# PE CERTIFICATION

| ERICJ.<br>NELSON<br>E-37855-006<br>STITZER,<br>WIS<br>WIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I, Eric J. Nelson, hereby certify that this Run-On and Run-Off<br>Control Plan meets the requirements of 40 CFR 257.81(c), was<br>prepared by me or under my direct supervision, and that I am a<br>duly licensed Professional Engineer under the laws of the State of<br>Wisconsin. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The state of the s | ERIC J. NELSON                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (printed or typed name)                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | License number $\overline{6-37855-6}$                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | My license renewal date is $\frac{7/31/18}{2}$ .                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pages or sheets covered by this seal:<br>SEPTEMBER JOIL RUN -ON TWO RUN-Off CONTROLVIEN<br>I-43 ASH DISCO84 FACILITY                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J                                                                                                                                                                                                                                                                                    |

[This page left blank intentionally]

# 1.0 INTRODUCTION AND PROJECT SUMMARY

On behalf of Wisconsin Power and Light (WPL), SCS Engineers (SCS) has prepared this Run-on and Run-off Control Plan for the I-43 Ash Disposal Facility (ADF) in accordance with 40 CFR 257.81(c) as follows.

<u>40 CFR 257.81(c)(1).</u> "The owner or operator must prepare initial and periodic run-on and run-off control system plans for the CCR unit according to the timeframes specified in paragraphs (c)(3) and (4) of this section. These plans must document how the run-on and run-off control systems have been designed and constructed to meet the applicable requirement of this section. Each plan must be supported by appropriate engineering calculations. The owner or operator has completed the initial run-on and run-off control system plan when the plan has been placed in the facility's operating record as required by section 257.105(g)(3)."

The I-43 facility includes a closed coal combustion residue (CCR) landfill, which consists of disposal Phase 1 and Phase 2, and an active CCR landfill. The active CCR landfill currently consists of three existing CCR units in disposal Phase 3 and Phase 4. The two landfills are located on the same property, but are not contiguous. The U. S. Environmental Protection Agency (USEPA) CCR rule does not apply to Phase 1 and Phase 2, because they were closed before the effective date of the CCR rule.

The active CCR landfill at I-43 is comprised of three existing CCR units, which are the subject of this Run-on and Run-off Control Plan. These CCR units are listed below.

- Phase 3, Module 1
- Phase 3, Module 2
- Phase 4, Module 1

Two future CCR units (Phase 4 Module 2 and Phase 4 Module 3) are permitted with the Wisconsin Department of Natural Resources (WDNR), but have not been developed. When developed, the units will be new CCR landfills, as defined at 40 CFR 257.53.

Refer to **Figure 1** for site location. **Figure 2** shows the run-on and run-off drainage areas.

# 2.0 RUN-ON AND RUN-OFF CONTROL

<u>40 CFR 257.81(a).</u> "The owner or operator of an existing or new CCR landfill or any lateral expansion of a CCR landfill must design, construct, operate, and maintain:

(1) A run-on control system to prevent flow onto the active portion of the CCR unit during the peak discharge from a 24-hour, 25-year storm."

The entire facility has run-on and run-off control in place as approved by WDNR. Run-on is controlled by berms and swales around the perimeter of the landfill that divert storm water away from the landfill and to the detention basin on the north end of the property.

(2) "A run-off control system from the active portion of the CCR unit to collect and control at least the water volume resulting from a 24-hour, 25-year storm."

Run-off from the active portions of the existing CCR units at the facility is handled as contact water and is collected by a leachate collection system or internal swales, which route the contact water to a composite-lined contact water basin. The contact water in the basin is used for ash conditioning, and other applications within the CCR units. If needed, excess water in the contact water basin is pumped into a tanker truck and taken to a local waste water treatment facility for disposal. Per 257.81(b), this is consistent with the surface water requirements under 40 CFR 257.3-3.

Run-off from areas of the existing CCR units where final cover is in place (which prevents contact with CCR) is diverted into the perimeter drainage swales, which drain to the on-site detention/sedimentation basin. Intermediate swales/berms, downslope flumes, and energy dissipaters on the final cover help minimize erosion of the final cover. These features divert water to the perimeter drainage system, and ultimately to the on-site detention/sedimentation basin. Per 257.81(b), this is consistent with the surface water requirements under 40 CFR 257.3-3.

### 2.1 DESIGN CRITERIA

The storm water features described above are designed to handle run-on and run-off from a 25-year, 24-hour storm event as required by 40 CFR 257.81(a)(1) and (2). Storm water run-off calculations were updated in 2015. The calculations were performed assuming a 25-year, 24-hour precipitation depth of 4.79 inches, based on NOAA Atlas 14 precipitation data published in April 2013. The storm water run-on calculations were performed in 2008. The calculations were performed assuming a 25-year, 24-hour precipitation depth of 4.4 inches, based on Technical Paper-40 (TP-40) precipitation data published in May 1961. The off-site detention basin and on-site detention/sedimentation basin outlet structures are designed to safely pass run-off from a 100-year, 24-hour storm event.

# 2.2 DESIGN WITH CALCULATIONS

Storm water management design calculations (as described above) from the WDNR approved Plan of Operation (2008) and Plan of Operation Modification (2015) for Phase 3 and Phase 4 at the I-43 ADF are contained in **Appendix A**. As described in **Section 2.1**, the calculations from the 2008 Plan of Operation describe the storm water management design and provide calculations showing that the run-on control system will prevent flow onto the active portion of the CCR units during the peak discharge from a 25-year, 24-hour storm. The calculations from the 2015 Plan of Operation Modification describe the storm water management design and provide calculations showing that the run-off control system for the active portions of the CCR units will collect and control the water volume resulting from a 25-year, 24-hour storm. The calculations were performed by or overseen by a professional engineer licensed in the State of Wisconsin.

### 2.3 CONSTRUCTION

Existing storm water management features were constructed to site specifications with construction oversight directed by a professional engineer licensed in the State of Wisconsin. Construction documentation reports for the storm water management features were prepared, submitted to the WDNR, and approved by the WDNR.

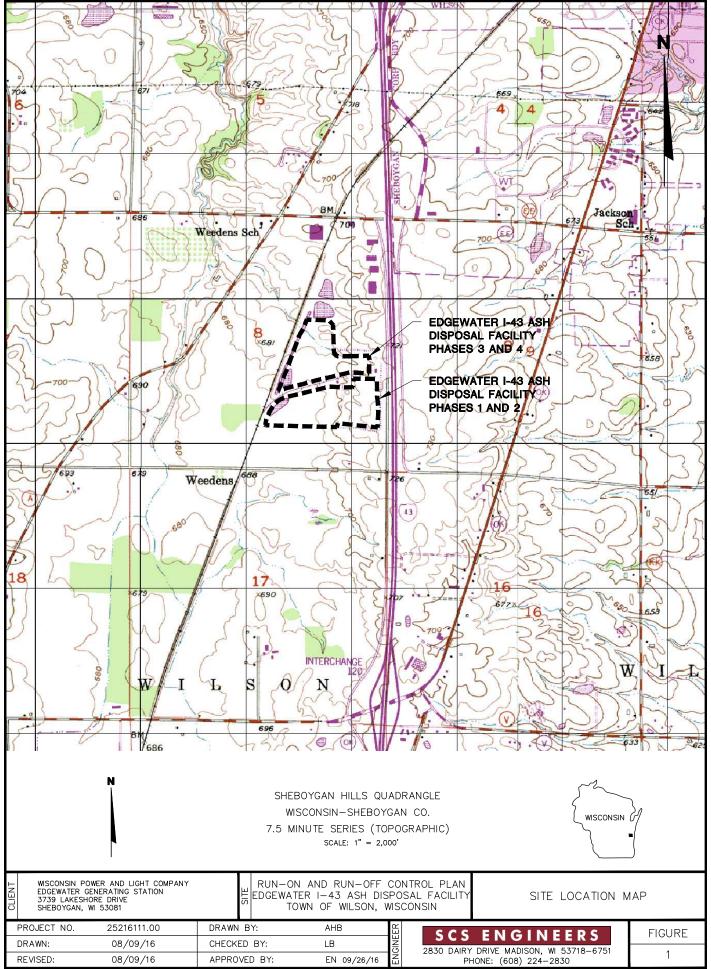
# 3.0 CERTIFICATIONS

<u>40 CFR 257.81(c)(5).</u> "The owner or operator must obtain a certification from a qualified professional engineer stating that the initial and periodic run-on and run-off control system plans meet the requirements of this section."

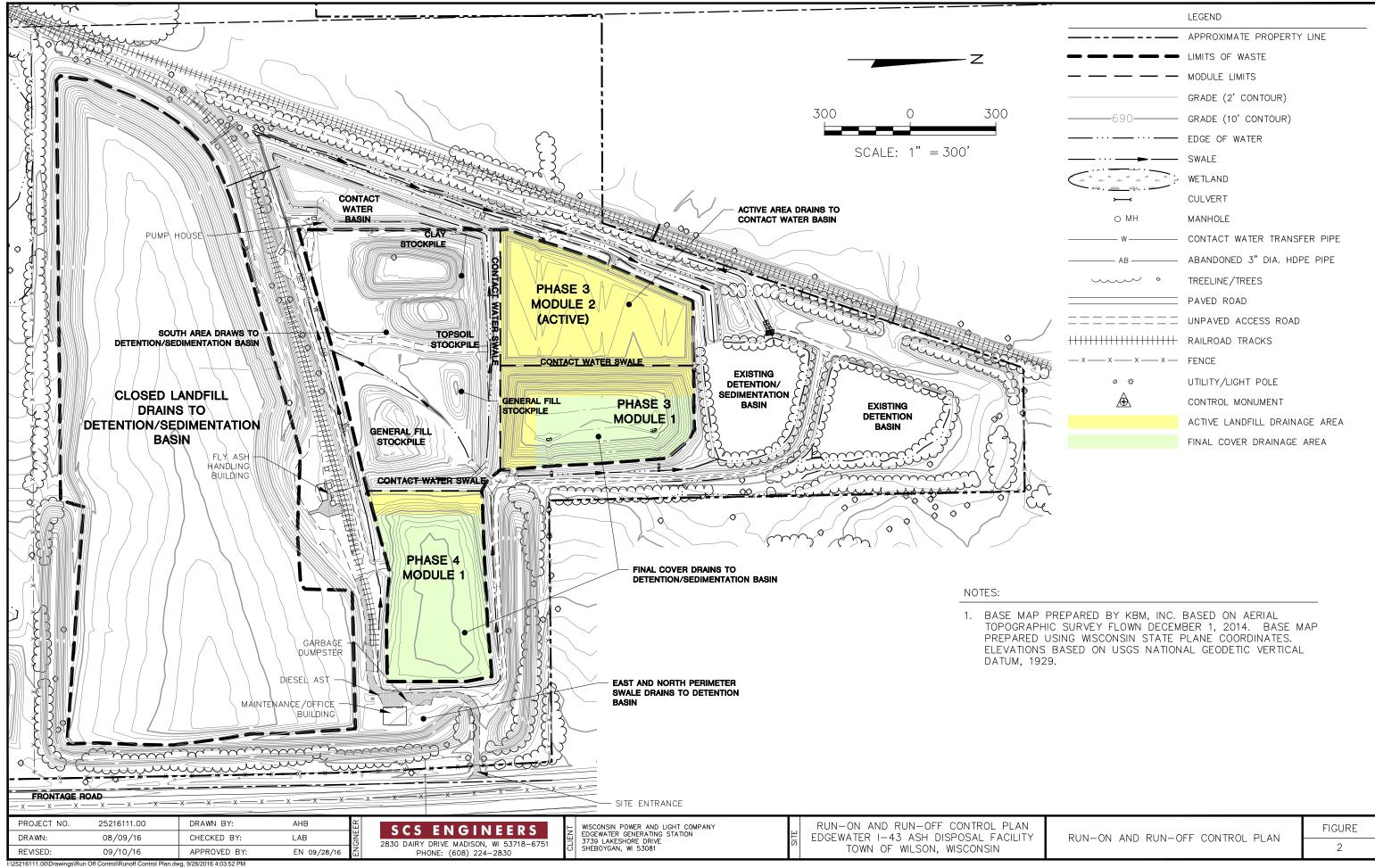
Eric Nelson, PE, a licensed profession engineer in the State of Wisconsin, has overseen the preparation of this Run-on and Run-off Control Plan. A certification statement is provided on **page iii** of this plan.

# 4.0 RECORDKEEPING AND PERIOD UPDATES

<u>40 CFR 257.81(d).</u> "The owner or operator of the CCR unit must comply with the recordkeeping requirements specified in section 257.105(g), the notification requirements specified in section 257.106(g), and the internet requirements specified in section 257.107(g)."


This Run-On and Run-Off Control Plan, and all periodic plans, will be placed in facility's operating record and on Alliant Energy's CCR Rule Compliance Data and Information website, as will all amendments. Periodic plans will be completed every 5 years per 40 CFR 257.81(c)(4).

Notification will be provided when this Run-On and Run-Off Control Plan, and all periodic plans, are available in the facility's operating record and on the facility's website per 40 CFR 257.105(g), 257.106(g), and 257.107(g).


[This page left blank intentionally]

# FIGURES

- 1
- Site Location Map Run-On and Run-Off Control Plan 2



:\25216111.00\Drawings\Run Off Control\Site Location Map.dwg, 9/28/2016 4:02:29 PM



# APPENDIX A

Drainage Design Calculations

### APPENDIX G

Stormwater Control Design Calculations

### Appendix G Surface Water Management Calculations

#### **Purpose:**

The purpose of the surface water runoff calculations is to demonstrate the following:

- The proposed Phase 3 and 4 landfill expansion surface water management system design meets the requirements of NR 504.09 Wis. Admin. Code.
- That the stormwater design features installed in 1984, (i.e., the detention/sedimentation basin, detention basin, outlet structures, and swales) are adequate for current regulations.

### **Existing Features:**

There are two stormwater outlets for the site. These outlets are; 1) an 36-inch diameter culvert under the railroad tracks to the west of the site and 2) an 24-inch diameter culvert under the railroad tracks. The culverts are shown on Figure G1.

The detention/sedimentation basin, detention basin, run-on diversion swale, perimeter swales around Phases 1 and 2, and culverts were installed in 1984. Currently, runoff from the areas of Phase 1 and 2 of the landfill that are at final grades is directed to the detention/sedimentation basin for treatment and runoff from the active portion of Phase 1 and 2 is directed to the interior Southern Ash Contact Holding Basin for use as dust control water. When Phase 1 and 2 are complete, runoff will be directed to the detention/sedimentation basin. Stormwater from off-site of the landfill to the east is directed via the run-on diversion swale to the detention basin for treatment.

The detention/sedimentation basin discharges through a 24-inch riser outlet structure to the 36-inch diameter culvert under the railroad tracks to the west. The detention basin discharges through an 18-inch riser outlet structure to the 24-inch diameter culvert under the railroad tracks.

#### **Methodologies:**

Design of Stormwater Management Features:

To design the storm water management features, runoff hydrographs for the 25-year, 24-hour and 100year, 24-hour storm event were developed. Hydrographs were developed using the TR-55 method contained within the Pond Pack<sup>®</sup> computer model developed by Bentley Systems, Inc. The TR-55 method for computing hydrographs is based on the methodologies presented in the Urban Hydrology for Small Watersheds manual developed by the Natural Resources Conservation Service (NRCS). The TR-55 model is designed to simulate the surface response of a watershed to a precipitation event. Input parameters for the model include precipitation depth for a given storm event, contributing drainage areas, runoff curve numbers, time of concentration, and travel time. The TR-55 model develops a runoff hydrograph for the watershed.

The following assumptions were used in the TR-55 model:

- The rainfall depths used were: 4.4 in for the 25-yr storm event and 5.1 in for the 100-yr event.
- A runoff curve number (CN) of 80 was used. This CN is for pasture in good condition (>75% ground cover) and a hydrologic soil group D.
- Sheet flow was assumed for the top of the landfill across the final grades.
- For flow in the perimeter swales, a mannings n value of 0.035 was used.

The hydrograph developed by TR-55 was routed through the existing detention/sedimentation basin and outlet using the Pond Pack<sup>®</sup> model to determine the outflow from the basin.

The sediment removal properties for the basins were evaluated using the P8 Urban Catchment Model. Wis. Admin. Code NR 504.09 requires sediment control measures be designed to settle 0.015 mm (15 micron) particle. Settling of the 15-micron particle corresponds to a trapping efficiency of 49%.

The design of the swales and culverts surrounding the landfill was evaluated using a channel and culvert calculator included in AutoCAD 2008. The channel calculator uses Manning's Equation to determine the maximum flow that a channel can carry given the geometry of the channel.

#### **RESULTS:**

The proposed surface water management system design meets the requirements of s. NR 504.09, Wis. Admin. Code. Further details are provided below.

#### **Runoff** Calculations

Runoff from Phases 1 and 2 of the landfill flows to the perimeter swales around the landfill and is directed to the sedimentation/detention basin.

Phase 3 & 4 of the landfill can be divided into 3 watersheds. The watersheds are shown on Figure G1. A southwest watershed that drains to the south and west perimeter swale of the landfill, a northeast watershed that drains to the north and northeast perimeter swale of the landfill, and a third watershed is located in the northern portion of the landfill and drains directly into the sedimentation/detention basin. This third watershed is small, approximately 2 acres, and considered insignificant and no runoff is calculated for this watershed.

| Drainage         | Area    | Runoff Curve | Time of Concentration |                         |
|------------------|---------|--------------|-----------------------|-------------------------|
| _Area            | (acres) | Number       | (hr)                  | 25-yr Storm Peak Runoff |
| Phases 1&2       | 53.1    | 80           | 0.61                  | 107.2 cfs               |
| Ph 3&4 Southwest | 32.0    | 80           | 0.78                  | 55.4 cfs                |
| PH 3&4 Northeast | 13.3    | 80           | 0.51                  | 30.7 cfs                |

#### Sedimentation / Detention Basin

All of these runoff from these watersheds is directed to the sedimentation / detention basin by the perimeter swales. The outlet structure of this basin is a 24-inch diameter riser outlet structure with a 25 foot wide emergency spillway located at elevation 685.0 ft with a top of berm elevation of 686.0 ft.

The flow through the sedimentation / detention basin was simulated using the Pond Pack<sup>®</sup> computer model. The peak inflow into the basin was 188.9 cfs for the 25-yr storm event. The peak outflow for the 25-yr storm event through the outlet structure was 37.3 cfs with a peak water elevation of 685.37. The 100-yr storm event was also modeled to ensure the emergency spillway was adequate, the peak elevation in the detention basin for the 100-yr storm was 685.79 ft.

Due to the water elevation during the 25-yr storm event (685.41) being above the elevation of the emergency spillway (685.0), a new outlet of the sedimentation/detention basin was designed. The new outlet design is shown on the detail drawings and consists of a 36-inch diameter CMP culvert with a 36-inch diameter CMP riser. This new outlet structure will need to be installed when the base grades for

Phase 4, Module 2 of the landfill is prepared. At the current rate of ash disposal, the outlet will not need to be replaced for approximately 10 years after disposal begins in Phase 3, Module 1.

The runoff for the site when Phase 3 Modules 1 and 2 and Phase 4 Module 1 are at final grades and contribute to the runoff going to the detention / sedimentation basin was also calculated to ensure the runoff from the 25-year storm event is contained within the basin using the existing outlet structure. The maximum water level obtained within the basin during the 25-yr storm event is 684.98 with a peak outflow of 19.8 cfs. The peak water level obtained during the 100-year storm event is 685.43 with a peak outflow of 41.6 cfs.

the proposed outlet structure for the detention / sedimentation basin was also modeled to ensure the 25year storm event runoff from the entire Phase 3 and 4 can be contained within the basin. The maximum water level obtained within the basin during the 25-yr storm event is 684.99 with a peak outflow of 38.1 cfs. The peak water level obtained during the 100-year storm event is 685.45 with a peak outflow of 73.1 cfs. The basin will also take longer than 3 day to completely drain.

#### Detention Basin

Stormwater run-on is directed to the detention basin by the run-on diversion swale. The off-site area that contributes to run-on is approximately 91 acres. The outlet structure of the detention basin is an 18-inch diameter riser outlet structure with a 25-ft wide emergency spillway at elevation 691.0 and a top of berm elevation of 693.0 ft. The flow through the detention basin was simulated using the Pond Pack<sup>®</sup> computer model. The peak outflow for the 25-yr storm is 8.8 cfs with a peak elevation of 688.4 ft. The peak outflow for the 100-yr storm is 12.2 cfs with a peak elevation of 689.3 ft. The basin will also take longer than 3 day to completely drain.

#### Sediment Removal

The sediment removal properties for the basins were evaluated using the P8 Urban Catchment Model. Wis. Admin. Code NR 504.09 requires sediment control measures be designed to settle 0.015 mm (15 micron) particle. Settling of the 15-micron particle corresponds to a trapping efficiency of 49%.

The P8 model showed the sedimentation / detention basin will capture 69.9% of the total suspended solids (TSS) and the detention basin will capture 74.2% of the TSS.

#### Perimeter Swale Sizing

The design of the perimeter swales surrounding the landfill was evaluated using a channel calculator included in AutoCAD 2008. The channel calculator uses Manning's Equation to determine the maximum flow that a channel can carry given the geometry of the channel.

The channel calculator shows the swales can carry the 25-yr storm event with a minimum of 0.5 feet of freeboard.

There will be a culvert installed in the swale to provide access to the leachate pumpout riser. The culvert calculator shows that two 24-inch diameter corrugated metal pipes (CMP) culverts can carry the design flow.

### **Intermediate Diversion Swales**

The Universal Soil Loss Equation (USLE) was used to determine if intermediate diversion berms were required on the final grades to prevent erosion. The equation showed that no berms were required.

KRG/krg/TR I:\3391\Calculations\Stormwater\Summary.doc

### **Runoff** Calculation

Phase 1 & 2

Type.... Tc Calcs Name.... PHASE 1+2

Page 1.02

File.... I:\3391\Calculations\Stormwater\Final Grades.ppw

# COMPOSITE AREA & WEIGHTED CN ---> 53.100 84.00 (84)

Table of Contents

...... TIME OF CONCENTRATION CALCULATOR Segment #1: Tc: TR-55 Sheet Mannings n .2400 
 Hydraulic Length
 170.00 ft

 2yr, 24hr P
 2.5000 in

 Slope
 .040000 ft/ft
 Avg.Velocity .15 ft/sec Segment #1 Time: .3118 hrs Segment #2: Tc: TR-55 Sheet Mannings n .2400 Hydraulic Length 50.00 ft 2yr, 24hr P 2.5000 in Slope .130000 ft/ft Avg.Velocity .19 ft/sec Segment #2 Time: .0731 hrs Segment #3: Tc: TR-55 Channel 13.5000 sq.ft Flow Area Wetted Perimeter 16.30 ft Hydraulic Radius .83 ft Slope .012000 ft/ft Mannings n .0350 Hydraulic Length 3350.00 ft Avg.Velocity 4.11 ft/sec Segment #3 Time: .2263 hrs -------Total Tc: .6111 hrs 

S/N: B4YXYWHMX89F Bentley PondPack (10.00.022.00)

Bentley Systems, Inc. 11/5/2007

i

File.... I:\3391\Calculations\Stormwater\Final Grades.ppw

SCS UNIT HYDROGRAPH METHOD

```
STORM EVENT: 25 year storm
Duration = 24.0000 hrs Rain Depth = 4.40
Rain Dir = I:\3391\Calculations\Stormwater\
                         Rain Depth = 4.4000 in
Rain File -ID = - TypeII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = I:\3391\Calculations\Stormwater\
HYG File - ID = work pad.hyg - PHASE 1+2 Dev 25
Tc = .6111 hrs
Drainage Area = 53.100 acres Runoff CN= 84
Computational Time Increment = .08148 hrs
Computed Peak Time = 12.2224 hrs
Computed Peak Flow = 108.07 cfs
Time Increment for HYG File = .0500 hrs
Peak Time, Interpolated Output = 12.2500 hrs
Peak Flow, Interpolated Output = 107.19 cfs
DRAINAGE AREA
            ------
            ID: PHASE 1+2
            CN = 84
            Area =
                   53.100 acres
            S = 1.9048 \text{ in}
            0.2S = .3810 in
            Cumulative Runoff
            2.7267 in
                   12.066 ac-ft
HYG Volume...
                  12.065 ac-ft (area under HYG curve)
***** SCS UNIT HYDROGRAPH PARAMETERS *****
Time Concentration, Tc = .61112 hrs (ID: PHASE 1+2)
Computational Incr, Tm = .08148 hrs = 0.20000 Tp
Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
Unit peak,
                 qp = 98.45 cfs
Unit peak time Tp = .40741 \text{ hrs}
Unit receding limb, Tr = 1.62966 hrs
Total unit time, Tb = 2.03707 hrs
```

SCS UNIT HYDROGRAPH METHOD

```
STORM EVENT: 100 year storm
Duration = 24.0000 hrs Rain Depth = 5.10
Rain Dir = I:\3391\Calculations\Stormwater\
                           Rain Depth = 5.1000 in
Rain File -ID = - TypeII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = I:\3391\Calculations\Stormwater\
HYG File - ID = work_pad.hyg - PHASE 1+2 Dev100
Tc = .6111 hrs
Drainage Area = 53.100 acres Runoff CN= 84
Computational Time Increment = .08148 hrs
Computed Peak Time = 12.2224 hrs
Computed Peak Flow = 133.12 cfs
Time Increment for HYG File = .0500 hrs
Peak Time, Interpolated Output = 12.2500 hrs
Peak Flow, Interpolated Output = 131.89 cfs
DRAINAGE AREA
             -----
             ID: PHASE 1+2
             CN = 84
             Area = 53.100
S = 1.9048 in
                     53.100 acres
             0.2S = .3810 in
             Cumulative Runoff
             3.3620 in
                    14.877 ac-ft
HYG Volume...
                   14.876 ac-ft (area under HYG curve)
***** SCS UNIT HYDROGRAPH PARAMETERS *****
Time Concentration, Tc = .61112 hrs (ID: PHASE 1+2)
Computational Incr, Tm = .08148 hrs = 0.20000 Tp
Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
Unit peak,
                  qp = 98.45 cfs
Unit peak time Tp = .40741 hrs
Unit receding limb, Tr = 1.62966 hrs
Total unit time, Tb = 2.03707 hrs
```

### **Runoff Calculation**

Phase 3 & 4 Northeast Drainage Area

Table of Contents

| S/N: B  | 4YXYWHMX89 | F              |
|---------|------------|----------------|
| Bentley | PondPack   | (10.00.022.00) |

10:44 AM

Table of Contents

TIME OF CONCENTRATION CALCULATOR Segment #1: Tc: TR-55 Sheet Mannings n .2400 Hydraulic Length 160.00 ft 2yr, 24hr P 2.5000 in Slope .030000 ft/ft Avg.Velocity .13 ft/sec Segment #1 Time: .3332 hrs Segment #2: Tc: TR-55 Sheet 1 
 Mannings n
 .2400

 Hydraulic Length
 30.00 ft

 2yr, 24hr P
 2.5000 in

 Slope
 .250000 ft/ft
 Avg.Velocity .22 ft/sec Segment #2 Time: .0374 hrs Segment #3: Tc: TR-55 Channel Flow Area 5.9000 sq.ft Wetted Perimeter 13.60 ft Hydraulic Radius .43 ft Slope .025000 ft/ft Mannings n .0350 Hydraulic Length 730.00 ft Avg.Velocity 3.86 ft/sec Segment #3 Time: .0526 hrs 

Type.... Tc Calcs Name.... PHASE 3+4 NE

Page 1.01

File.... I:\3391\Calculations\Stormwater\Final Grades.ppw

Segment #4: Tc: TR-55 Channel Flow Area 5.9000 sq.ft Wetted Perimeter 13.60 ft Hydraulic Radius .43 ft Slope .010000 ft/ft Mannings n .0350 Hydraulic Length 580.00 ft Avg.Velocity 2.44 ft/sec Segment #4 Time: .0660 hrs Segment #5: Tc: TR-55 Channel Flow Area 13.5000 sq.ft Wetted Perimeter 16.30 ft Hydraulic Radius .83 ft Slope.025000 ft/ftMannings n.0350Hydraulic Length350.00 ft Avg.Velocity 5.94 ft/sec Segment #5 Time: .0164 hrs 

Total Tc: .5056 hrs

Type.... Runoff CN-Area Name.... PHASE 3+4 NE

File.... I:\3391\Calculations\Stormwater\Final Grades.ppw

SCS UNIT HYDROGRAPH METHOD STORM EVENT: 25 year storm Duration = 24.0000 hrs Rain Depth = 4.40 Rain Dir = I:\3391\Calculations\Stormwater\ Rain Depth = 4.4000 in Rain File -ID = - TypeII 24hr Unit Hyd Type = Default Curvilinear HYG Dir = I:\3391\Calculations\Stormwater\ HYG File - ID = work\_pad.hyg - PHASE 3+4 NE Dev 25 TC = .5056 hrs Drainage Area = 13.300 acres Runoff CN= 84 Computational Time Increment = .06741 hrs Computed Peak Time = 12.2021 hrs Computed Peak Flow = 30.71 cfs Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 12.2000 hrs Peak Flow, Interpolated Output = 30.69 cfs DRAINAGE AREA ID:PHASE 3+4 NE CN = 84 Area = 13.300 acres S = 1.9048 in 0.2S = .3810 in Cumulative Runoff 2.7267 in 3.022 ac-ft HYG Volume... 3.022 ac-ft (area under HYG curve) \*\*\*\*\* SCS UNIT HYDROGRAPH PARAMETERS \*\*\*\*\* Time Concentration, Tc = .50561 hrs (ID: PHASE 3+4 NE) Computational Incr, Tm = .06741 hrs = 0.20000 Tp Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491) Unit peak, qp = 29.80 cfs Unit peak time Tp = .33707 hrs Unit receding limb, Tr = 1.34829 hrs Total unit time, Tb = 1.68537 hrs

SCS UNIT HYDROGRAPH METHOD STORM EVENT: 100 year storm Duration = 24.0000 hrs Rain Depth = 5.10 Rain Dir = I:\3391\Calculations\Stormwater\ Rain Depth = 5.1000 in Rain File -ID = - TypeII 24hr Unit Hyd Type = Default Curvilinear HYG Dir = I:\3391\Calculations\Stormwater\ HYG File - ID = work\_pad.hyg - PHASE 3+4 NE Dev100 = .5056 hrs TC Drainage Area = 13.300 acres Runoff CN= 84 Computational Time Increment = .06741 hrs Computed Peak Time = 12.2021 hrs Computed Peak Flow = 37.72 cfs Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 12.2000 hrs Peak Flow, Interpolated Output = 37.70 cfs DRAINAGE AREA ID:PHASE 3+4 NE CN = 84 13.300 acres Area = S = 1.9048 in 0.2S = .3810 in Cumulative Runoff 3.3620 in 3.726 ac-ft HYG Volume... 3.726 ac-ft (area under HYG curve) \*\*\*\*\* SCS UNIT HYDROGRAPH PARAMETERS \*\*\*\*\* Time Concentration, Tc = .50561 hrs (ID: PHASE 3+4 NE) Computational Incr, Tm = .06741 hrs = 0.20000 Tp Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491) Unit peak, qp = 29.80 cfs Unit peak time Tp = .33707 hrsUnit receding limb, Tr = 1.34829 hrs Total unit time, Tb = 1.68537 hrs

### **Runoff** Calculation

Phase 3 & 4 Southwest Drainage Area

16

Type.... Tc Calcs Name.... PHASE 3+4 SW

Page 1.03

File.... I:\3391\Calculations\Stormwater\Final Grades.ppw

Bentley Systems, Inc. 11/5/2007

Table of Contents

|                                                                                                 |           |                                           | <br>::: | ::: | ::: |     | : : | : :  | ::     | : | : : | : : | : :       | : ::     | : :   | : :   | :  | : : |
|-------------------------------------------------------------------------------------------------|-----------|-------------------------------------------|---------|-----|-----|-----|-----|------|--------|---|-----|-----|-----------|----------|-------|-------|----|-----|
|                                                                                                 |           |                                           |         |     |     |     |     |      |        |   |     |     | 103       | 1.22     |       | 00    |    | 2   |
|                                                                                                 |           |                                           |         |     |     |     |     |      |        |   |     |     |           |          |       |       |    |     |
|                                                                                                 |           |                                           | <br>    |     |     |     |     |      | a in   | - |     |     | -         |          | -     | -     |    |     |
|                                                                                                 |           |                                           |         |     |     |     |     |      |        |   |     |     |           |          |       |       |    |     |
| Compost #1. m-                                                                                  |           | 2004                                      |         |     |     |     |     |      |        |   |     |     |           |          |       |       |    |     |
| Segment #1: Tc:                                                                                 | TR-55 Sh  | eet                                       |         |     |     |     |     |      |        |   |     |     |           |          |       |       |    |     |
| Mannings n                                                                                      | 2400      |                                           |         |     |     |     |     |      |        |   |     |     |           |          |       |       |    |     |
| Mannings n<br>Hydraulic Length<br>2yr, 24hr P<br>Slope                                          | 130 00    | f+                                        |         |     |     |     |     |      |        |   |     |     |           |          |       |       |    |     |
| 2ur 24hr P                                                                                      | 2 5000    | in                                        |         |     |     |     |     |      |        |   |     |     |           |          |       |       |    |     |
| Slope                                                                                           | 030000    | £+ / £+                                   |         |     |     |     |     |      |        |   |     |     |           |          |       |       |    |     |
| orobe                                                                                           | .030000   | TC/TC                                     |         |     |     |     |     |      |        |   |     |     |           |          |       |       |    |     |
| Avg.Velocity                                                                                    | .13       | ft/sec                                    |         |     |     |     |     |      |        |   |     |     | .2822 hrs |          |       |       |    |     |
|                                                                                                 |           |                                           | Segr    | ner | t   | #:  |     | Γi   | me     | : |     |     |           | 21       | 32    | 2     | hı | s   |
|                                                                                                 |           |                                           | <br>    |     |     | -   |     |      |        |   |     |     |           |          |       |       |    |     |
| Commont #2. The                                                                                 | MD EE Ob  |                                           |         |     |     |     |     |      |        |   |     |     |           |          |       |       |    |     |
| Segment #2: Tc:                                                                                 | 1K-33 506 | eet                                       |         |     |     |     |     |      |        |   |     |     |           |          |       |       |    |     |
| Mannings n<br>Hydraulic Length                                                                  | .2400     |                                           |         |     |     |     |     |      |        |   |     |     |           |          |       |       |    |     |
| Hydraulic Length                                                                                | 30.00     | ft                                        |         |     |     |     |     |      |        |   |     |     |           |          |       |       |    |     |
| 2yr, 24hr P                                                                                     | 2.5000    | in                                        |         |     |     |     |     |      |        |   |     |     |           |          |       |       |    |     |
| 2yr, 24hr P<br>Slope                                                                            | .250000   | ft/ft                                     |         |     |     |     |     |      |        |   |     |     |           |          |       |       |    |     |
|                                                                                                 |           |                                           |         |     |     |     |     |      |        |   |     |     |           |          |       |       |    |     |
| Avg.Velocity                                                                                    | .22       | ft/sec                                    |         |     |     |     |     |      |        |   |     |     |           |          |       |       |    |     |
|                                                                                                 |           |                                           | Com     |     | ÷.  | ш.  | 1   | n 2. |        |   |     |     |           | <u>.</u> |       |       |    | -20 |
|                                                                                                 |           |                                           | <br>    | len |     | # 4 |     |      | me<br> | : |     |     |           | 03       | 5 / 4 | ł<br> | nr | s   |
|                                                                                                 |           |                                           |         |     |     |     |     |      |        |   |     |     |           |          |       |       |    |     |
| Segment #3: Tc:                                                                                 | TR-55 Cha | annel                                     |         |     |     |     |     |      |        |   |     |     |           |          |       |       |    |     |
| Flow Area                                                                                       | 5.9000    | sq.ft                                     |         |     |     |     |     |      |        |   |     |     |           |          |       |       |    |     |
| Wetted Perimeter                                                                                | 13.60     | ft                                        |         |     |     |     |     |      |        |   |     |     |           |          |       |       |    |     |
| Hydraulic Radius                                                                                | .43       | ft                                        |         |     |     |     |     |      |        |   |     |     |           |          |       |       |    |     |
| Slope                                                                                           | .015000   | ft/ft                                     |         |     |     |     |     |      |        |   |     |     |           |          |       |       |    |     |
| Mannings n                                                                                      | .0350     | 0 5 4 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 |         |     |     |     |     |      |        |   |     |     |           |          |       |       |    |     |
|                                                                                                 | 940.00    | ft                                        |         |     |     |     |     |      |        |   |     |     |           |          |       |       |    |     |
| Hydraulic Length                                                                                |           |                                           |         |     |     |     |     |      |        |   |     |     |           |          |       |       |    |     |
| Wetted Perimeter<br>Hydraulic Radius<br>Slope<br>Mannings n<br>Hydraulic Length<br>Avg.Velocity | 2.99      | ft/sec                                    |         |     |     |     |     |      |        |   |     |     |           |          |       |       |    |     |
| Hydraulic Length<br>Avg.Velocity                                                                | 2.99      | ft/sec                                    |         |     |     |     |     |      |        |   |     |     |           |          |       |       |    |     |

18

Bentley Systems, Inc. 11/5/2007

Type.... Tc Calcs Name.... PHASE 3+4 SW

Page 1.01

File.... I:\3391\Calculations\Stormwater\Final Grades.ppw

 Segment #4: Tc: TR-55 Channel

 Flow Area
 5.9000 sq.ft

 Wetted Perimeter
 13.60 ft

 Hydraulic Radius
 .43 ft

 Slope
 .014000 ft/ft

 Mannings n
 .0350

 Hydraulic Length
 1300.00 ft

 Avg.Velocity
 2.89 ft/sec

 Segment #4 Time: .1251 hrs

 Segment #5: Tc: TR-55 Channel

 Flow Area
 13.5000 sq.ft

 Wetted Perimeter
 16.30 ft

 Hydraulic Radius
 .83 ft

 Slope
 .003300 ft/ft

 Mannings n
 .0350

 Hydraulic Length
 1900.00 ft

 Avg.Velocity
 2.16 ft/sec

 Segment #5 Time: .2447 hrs

 Total Tc: .7768 hrs

------

File.... I:\3391\Calculations\Stormwater\Final Grades.ppw

SCS UNIT HYDROGRAPH METHOD

```
STORM EVENT: 25 year storm
Duration = 24.0000 hrs Rain Depth = 4.4000 in
Rain Dir = I:\3391\Calculations\Stormwater\
Rain File -ID = - TypeII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = I:\3391\Calculations\Stormwater\
HYG File - ID = work_pad.hyg - PHASE 3+4 SW Dev 25
Tc = .7768 hrs
Drainage Area = 32.000 acres Runoff CN= 84
Computational Time Increment = .10358 hrs
Computed Peak Time = 12.3255 hrs
Computed Peak Flow = 55.83 cfs
Time Increment for HYG File = .0500 hrs
Peak Time, Interpolated Output = 12.3500 hrs
Peak Flow, Interpolated Output = 55.41 cfs
DRAINAGE AREA
             ID:PHASE 3+4 SW
             CN = 84
             Area =
                     32.000 acres
             S = 1.9048 in
             0.2S = .3810 in
             Cumulative Runoff
             -----------------
                    2.7267 in
                     7.271 ac-ft
HYG Volume...
                     7.269 ac-ft (area under HYG curve)
***** SCS UNIT HYDROGRAPH PARAMETERS *****
Time Concentration, Tc = .77682 hrs (ID: PHASE 3+4 SW)
Computational Incr, Tm = .10358 hrs = 0.20000 Tp
Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)
Unit peak,
                  qp = 46.67 cfs
Unit peak time Tp = .51788 hrs
Unit receding limb, Tr = 2.07151 hrs
Total unit time, Tb = 2.58939 hrs
```

SCS UNIT HYDROGRAPH METHOD

```
STORM EVENT: 100 year storm
Duration = 24.0000 hrs Rain Depth = 5.1000 in
Rain Dir = I:\3391\Calculations\Stormwater\
Rain File -ID = - TypeII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = I:\3391\Calculations\Stormwater\
HYG File - ID = work_pad.hyg - PHASE 3+4 SW Dev100
Tc = .7768 hrs
Drainage Area = 32.000 acres Runoff CN= 84
Computational Time Increment = .10358 hrs
Computed Peak Time = 12.3255 hrs
Computed Peak Flow
                         = 68.81 cfs
Time Increment for HYG File =
                             .0500 hrs
Peak Time, Interpolated Output = 12.3500 hrs
Peak Flow, Interpolated Output = 68.24 cfs
DRAINAGE AREA
            -----
            ID:PHASE 3+4 SW
            CN = 84
            Area = 32.000 acres
            S = 1.9048 in
            0.2S = .3810 in
            Cumulative Runoff
            3.3620 in
                    8.965 ac-ft
HYG Volume...
                   8.963 ac-ft (area under HYG curve)
***** SCS UNIT HYDROGRAPH PARAMETERS *****
Time Concentration, Tc = .77682 hrs (ID: PHASE 3+4 SW)
Computational Incr, Tm = .10358 hrs = 0.20000 Tp
Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
Unit peak, qp = 46.67 cfs
Unit peak time Tp = .51788 hrs
Unit receding limb, Tr = 2.07151 hrs
Total unit time, Tb = 2.58939 hrs
```

Page 3.01

Event: 25 yr

Detention / Sedimentation Basin Routing Existing Outlet Structure Type.... Vol: Elev-Area Name.... DET / SED

File.... I:\3391\Calculations\Stormwater\Final Grades.ppw

| Elevation<br>(ft) | Planimeter<br>(sq.in) | Area<br>(acres) | A1+A2+sqr(A1*A2)<br>(acres) | Volume<br>(ac-ft) | Volume Sum<br>(ac-ft) |
|-------------------|-----------------------|-----------------|-----------------------------|-------------------|-----------------------|
|                   |                       |                 |                             |                   |                       |
| 681.46            |                       | 2.7500          | .0000                       | .000              | .000                  |
| 682.00            |                       | 2.8800          | 8.4442                      | 1.520             | 1.520                 |
| 684.00            |                       | 3.2100          | 9.1305                      | 6.087             | 7.607                 |
| 686.00            |                       | 4.0000          | 10.7933                     | 7.196             | 14.802                |

POND VOLUME EQUATIONS

\* Incremental volume computed by the Conic Method for Reservoir Volumes.

Volume = (1/3) \* (EL2-EL1) \* (Areal + Area2 + sq.rt.(Areal\*Area2))

where: EL1, EL2 = Lower and upper elevations of the increment Areal,Area2 = Areas computed for EL1, EL2, respectively Volume = Incremental volume between EL1 and EL2

# File.... I:\3391\Calculations\Stormwater\Final Grades.ppw

### REQUESTED POND WS ELEVATIONS:

| Min. | Elev.=  | 681.46 | ft |
|------|---------|--------|----|
| Incr | ement = | .10    | ft |
| Max. | Elev.=  | 686.00 | ft |

### 

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

---> Forward Flow Only (UpStream to DnStream) <--- Reverse Flow Only (DnStream to UpStream) <---> Forward and Reverse Both Allowed

| Structure                                | No. |   | Outfall | El, ft  | E2, ft  |
|------------------------------------------|-----|---|---------|---------|---------|
|                                          |     |   |         |         |         |
| Orifice-Area                             | 04  | > | CO      | 682.000 | 686.000 |
| Orifice-Area                             | 05  | > | CO      | 682.250 | 686.000 |
| Orifice-Area                             | 01  | > | CO      | 682.500 | 686.000 |
| Orifice-Area                             | 06  | > | CO      | 682.750 | 686.000 |
| Orifice-Area                             | 02  | > | CO      | 683.000 | 686.000 |
| Orifice-Area                             | 07  | > | CO      | 683.250 | 686.000 |
| Orifice-Area                             | 03  | > | CO      | 683.500 | 686.000 |
| Stand Pipe                               | RO  | > | CO      | 684.030 | 686.000 |
| Orifice-Area                             | 00  | > | CO      | 681.830 | 686.000 |
| Culvert-Circular                         | CO  | > | ΤW      | 681.460 | 686.000 |
| Weir-Rectangular<br>TW SETUP, DS Channel | WO  | > | ΤW      | 685.000 | 686.000 |

File.... I:\3391\Calculations\Stormwater\Final Grades.ppw

OUTLET STRUCTURE INPUT DATA

| Structure ID<br>Structure Type |    | 04<br>Orifice-Area |     |
|--------------------------------|----|--------------------|-----|
| # of Openings                  |    | 4                  |     |
| Invert Elev.                   | =  | 682.00 ft          |     |
| Area                           | =  |                    |     |
| Top of Orifice                 | -  | .00 ft             |     |
| Datum Elev.                    | =  | 682.00 ft          |     |
| Orifice Coeff.                 | =  | .700               |     |
| Structure ID                   | =  | 05                 |     |
| Structure Type                 | =  | Orifice-Area       |     |
|                                |    |                    |     |
| # of Openings                  | =  | 4                  |     |
| Invert Elev.                   | -  | 682.25 ft          |     |
| Area                           | == | .0210 sq           | .ft |
| Top of Orifice                 | =  |                    |     |
| Datum Elev.                    | =  | 682.25 ft          |     |
| Orifice Coeff.                 | =  | .700               |     |
| Structure ID                   | =  | 01                 |     |
| Structure Type                 |    | Orifice-Area       |     |
|                                |    |                    |     |
| # of Openings                  | -  | 4                  |     |
| Invert Elev.                   |    | 682.50 ft          |     |
| Area                           | =  | .0210 sq.          | ft  |
| Top of Orifice                 |    | .00 ft             |     |
| Datum Elev.                    |    | 682.50 ft          |     |
| Orifice Coeff.                 | =  | .700               |     |
|                                |    |                    |     |

File.... I:\3391\Calculations\Stormwater\Final Grades.ppw

OUTLET STRUCTURE INPUT DATA

| Structure ID                                                                                                                   | = 06                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Structure Type                                                                                                                 | = Orifice-Area                                                                                     |
| # of Openings                                                                                                                  | = 4                                                                                                |
| Invert Elev.                                                                                                                   | = 682.75 ft                                                                                        |
| Area                                                                                                                           | = .0210 sq.ft                                                                                      |
| Top of Orifice                                                                                                                 | = .00 ft                                                                                           |
| Datum Elev.                                                                                                                    | = 682.75 ft                                                                                        |
| Orifice Coeff.                                                                                                                 | = .700                                                                                             |
| Structure ID                                                                                                                   | = 02                                                                                               |
| Structure Type                                                                                                                 | = Orifice-Area                                                                                     |
| # of Openings                                                                                                                  | = 4                                                                                                |
| Invert Elev.                                                                                                                   | = 683.00 ft                                                                                        |
| Area                                                                                                                           | = .0210 sq.ft                                                                                      |
| Top of Orifice                                                                                                                 | = .00 ft                                                                                           |
| Datum Elev.                                                                                                                    | = 683.00 ft                                                                                        |
| Orifice Coeff.                                                                                                                 | = .700                                                                                             |
| Structure ID<br>Structure Type<br><br># of Openings<br>Invert Elev.<br>Area<br>Top of Orifice<br>Datum Elev.<br>Orifice Coeff. | = 07<br>= Orifice-Area<br>= 4<br>= 683.25 ft<br>= .0210 sq.ft<br>= .00 ft<br>= 683.25 ft<br>= .700 |
| Structure ID<br>Structure Type<br>                                                                                             | = 03<br>= Orifice-Area<br>= 4<br>= 683.50 ft<br>= .0210 sq.ft<br>= .00 ft<br>= 683.50 ft<br>= .700 |

## File.... I:\3391\Calculations\Stormwater\Final Grades.ppw

OUTLET STRUCTURE INPUT DATA

| Structure ID       | =   | RO         |          |
|--------------------|-----|------------|----------|
| Structure Type     |     | Stand Pipe | <u>e</u> |
|                    |     |            |          |
| # of Openings      | -   | 1          |          |
| Invert Elev.       | -   | 684.03     | ft       |
| Diameter           | 100 | 2.0000     | ft       |
| Orifice Area       | =   | 3.1416     | sq.ft    |
| Orifice Coeff.     | =   | .700       |          |
| Weir Length        | ==  | 6.28       | ft       |
| Weir Coeff.        |     | 3.300      |          |
| K, Reverse         | =   | 1.000      |          |
| Mannings n         | =   | .0000      |          |
| Kev, Charged Riser | ==  | .000       |          |
| Weir Submergence   | =   | No         |          |
|                    |     |            |          |
|                    |     |            |          |

| = 0      | 0                    |                                          |
|----------|----------------------|------------------------------------------|
| = 0      | rifice-A:            | rea                                      |
|          |                      |                                          |
| =        | 4                    |                                          |
| =        | 681.83               | ft                                       |
| =        | .0210                | sq.ft                                    |
| <b>T</b> | .00                  | ft                                       |
| -        | 681.83               | ft                                       |
| =        | .700                 |                                          |
|          | = 0<br>= =<br>=<br>= | = 681.83<br>= .0210<br>= .00<br>= 681.83 |

Page 2.04

File.... I:\3391\Calculations\Stormwater\Final Grades.ppw

OUTLET STRUCTURE INPUT DATA

Structure ID = CO Structure Type = Culvert-Circular No. Barrels = 1 Barrel Diameter = 2.0000 ft Upstream Invert = 681.46 ft Dnstream Invert = 681.05 ft Horiz. Length = 30.00 ft Barrel Length = 30.00 ft Barrel Slope = .01367 ft/ft OUTLET CONTROL DATA... Mannings n = .0240 Ke = .5000 (forward entrance loss) Kb Kr = .042300 (per ft of full flow) = .5000 (reverse entrance loss) = .001 +/- ft HW Convergence = INLET CONTROL DATA... Equation form = 1 Inlet Control K = .0078 Inlet Control M = 2.0000 Inlet Control c = .03790 Inlet Control Y = .6900 .6900 1.129 T1 ratio (HW/D) =T2 ratio (HW/D) = 1.290 Slope Factor -.500 =

Use unsubmerged inlet control Form 1 equ. below T1 elev. Use submerged inlet control Form 1 equ. above T2 elev.

In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2... At T1 Elev = 683.72 ft ---> Flow = 15.55 cfs At T2 Elev = 684.04 ft ---> Flow = 17.77 cfs

1:44 PM

File.... I:\3391\Calculations\Stormwater\Final Grades.ppw

OUTLET STRUCTURE INPUT DATA

Structure ID = W0 Structure Type = Weir-Rectangular # of Openings = 1 Crest Elev. = 685.00 ft Weir Length = 25.00 ft Weir Coeff. = 2.630000 Weir TW effects (Use adjustment equation) Structure ID = TW Structure Type = TW SETUP, DS Channel

FREE OUTFALL CONDITIONS SPECIFIED

CONVERGENCE TOLERANCES... Maximum Iterations= 40 Min. TW tolerance = .01 ft Max. TW tolerance = .01 ft Min. HW tolerance = .01 ft Max. HW tolerance = .01 ft Min. Q tolerance = .00 cfs Max. Q tolerance = .00 cfs

File.... I:\3391\Calculations\Stormwater\Final Grades.ppw

LEVEL POOL ROUTING SUMMARY

|   | HYG Dir<br>Inflow HYG file<br>Outflow HYG file                                                                      | = work pa                 | 1.hyg -                                           | DET /                     | SED IN             | Dev        | 25<br>25 |                             |          |
|---|---------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------|---------------------------|--------------------|------------|----------|-----------------------------|----------|
|   | Pond Node Data<br>Pond Volume Data<br>Pond Outlet Data                                                              | = DET / SI                | ED                                                |                           |                    |            |          |                             |          |
|   | No Infiltration                                                                                                     |                           |                                                   |                           |                    |            |          |                             |          |
|   | INITIAL CONDITION                                                                                                   | 0377                      |                                                   |                           |                    |            |          |                             |          |
|   | Starting WS Elev<br>Starting Volume<br>Starting Outflow<br>Starting Infiltr.<br>Starting Total Qo<br>Time Increment | = .(<br>=<br>ut=<br>= .05 | 000 ac-ft<br>00 cfs<br>00 cfs<br>00 cfs<br>00 cfs | 2                         |                    |            |          |                             |          |
|   | INFLOW/OUTFLOW HY                                                                                                   |                           |                                                   |                           |                    |            |          |                             |          |
|   | Peak Inflow<br>Peak Outflow                                                                                         | = 188.<br>= 37.           | 91 cfs<br>26 cfs                                  | at<br>at                  | 12.2500<br>13.2000 | hrs<br>hrs |          |                             |          |
|   | Peak Elevation<br>Peak Storage =                                                                                    | = 685.<br>12.3            | 37 ft<br>65 ac-ft                                 | :                         |                    | 4          | Ļ        | Peak WATER<br>15 Above 68   | 5.0, the |
|   | MASS BALANCE (ac-                                                                                                   | ft)                       |                                                   | 1 1921 ANI 1928 TAL 273 C |                    |            |          | level of the<br>Spillway. A | Arus     |
| + | Initial Vol =                                                                                                       | .000                      |                                                   |                           |                    |            |          | outlet Design               | 15       |
|   | HYG Vol IN =                                                                                                        |                           |                                                   |                           |                    |            | ,        |                             |          |
|   | Infiltration =                                                                                                      | .000                      |                                                   |                           |                    |            | ł        | Required.                   |          |
|   | HYG Vol OUT =                                                                                                       |                           |                                                   |                           |                    |            |          | L                           |          |
|   | Retained Vol =                                                                                                      | 1.272                     |                                                   |                           |                    |            |          |                             |          |
|   | Unrouted Vol =                                                                                                      | 000                       | ac-ft (                                           | .002%                     | of Inflow          | v Volum    | me)      |                             |          |
|   |                                                                                                                     |                           |                                                   |                           |                    |            |          |                             |          |

WARNING: Outflow hydrograph truncated on right side.

1:44 PM 30 Type.... Pond Routing SummaryPage 3.01Name.... DET / SEDOUTTag: Dev 25File.... I:\3391\Calculations\Stormwater\Final Grades.ppwStorm... TypeII24hrTag: Dev 25

LEVEL POOL ROUTING SUMMARY

HYG Dir = I:\3391\Calculations\Stormwater\ Inflow HYG file = work\_pad.hyg - DET / SED IN Dev100 Outflow HYG file = work\_pad.hyg - DET / SED OUT Dev100

Pond Node Data = DET / SED Pond Volume Data = DET / SED Pond Outlet Data = Existing Outlet

No Infiltration

INITIAL CONDITIONS

| and have not part over part and a |           |     |        |       |
|-----------------------------------|-----------|-----|--------|-------|
| Starting                          | WS Elev   | =   | 681.46 | ft    |
| Starting                          | Volume    | =   | .000   | ac-ft |
| Starting                          |           | =   | .00    | cfs   |
| Starting                          | Infiltr.  | =   | .00    | cfs   |
| Starting                          | Total Qou | it= | .00    | cfs   |
| Time Inc:                         | rement    | =   | .0500  | hrs   |

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

| Peak | Inflow    | = | 232.63 | cfs   | at | 12.2500 | hrs |
|------|-----------|---|--------|-------|----|---------|-----|
| Peak | Outflow   | = | 71.28  | cfs   | at | 12.9000 | hrs |
|      |           |   |        |       |    |         |     |
| Peak | Elevation | = | 685.79 | ft    |    |         |     |
| Peak | Storage = |   | 13.979 | ac-ft |    |         |     |

MASS BALANCE (ac-ft)

| + | Initial Vol  | = | .000   |       |        |    |        |         |
|---|--------------|---|--------|-------|--------|----|--------|---------|
| + | HYG Vol IN   | = | 27.565 |       |        |    |        |         |
| - | Infiltration | = | .000   |       |        |    |        |         |
| - | HYG Vol OUT  | ÷ | 26.281 |       |        |    |        |         |
| - | Retained Vol | = | 1.284  |       |        |    |        |         |
|   |              |   |        |       |        |    |        |         |
|   | Unrouted Vol | = | 000    | ac-ft | (.001% | of | Inflow | Volume) |

WARNING: Outflow hydrograph truncated on right side.

Type.... Unit Hyd. Summary Page 1.01 Name.... PHASE 3+4 SW Tag: Dev 25 Event: 25 yr File.... I:\3391\Calculations\Stormwater\Final Grades.ppw Storm... TypeII 24hr Tag: Dev 25

```
SCS UNIT HYDROGRAPH METHOD
```

```
STORM EVENT: 25 year storm
          = 24.0000 hrs Rain Depth = 4.40
= I:\3391\Calculations\Stormwater\
Duration
                              Rain Depth = 4.4000 in
Rain Dir
                                                           PHASE 3 MOD 1+2
Rain File -ID = - TypeII 24hr
Unit Hyd Type = Default Curvilinear
                                                           AND PHASE 4- MODI
HYG Dir = I:\3391\Calculations\Stormwater\
HYG File - ID = work_pad.hyg - PHASE 3+4 SW Dev 25
Tc = .7768 hrs
Drainage Area = 14.800 acres Runoff CN= 84
Computational Time Increment = .10358 hrs
Computed Peak Time = 12.3255 hrs
Computed Peak Flow
                              = 25.82 cfs
Time Increment for HYG File
                             -----
                                    .0500 hrs
Peak Time, Interpolated Output = 12.3500 hrs
Peak Flow, Interpolated Output = 25.63 cfs
_____
                DRAINAGE AREA
              ID:PHASE 3+4 SW
              CN = 84
              Area = 14.800 acres
S = 1.9048 in
0.2S = .3810 in
              Cumulative Runoff
              2.7267 in
                       3.363 ac-ft
HYG Volume...
                     3.362 ac-ft (area under HYG curve)
***** SCS UNIT HYDROGRAPH PARAMETERS *****
Time Concentration, Tc = .77682 hrs (ID: PHASE 3+4 SW)
Computational Incr, Tm = .10358 hrs = 0.20000 Tp
Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)
Unit peak,
                  qp = 21.59 cfs
Unit peak, qp = 21.35 crs
Unit peak time Tp = .51788 hrs
Unit receding limb, Tr = 2.07151 hrs
Total unit time, Tb = 2.58939 hrs
```

File.... I:\3391\Calculations\Stormwater\Final Grades.ppw

LEVEL POOL ROUTING SUMMARY

|   | HYG Dir<br>Inflow HYG file<br>Outflow HYG file                                                                      |                                            |                                                      |          |           |            | v 25<br>v 25 |                                 |
|---|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------|----------|-----------|------------|--------------|---------------------------------|
|   | Pond Node Data<br>Pond Volume Data<br>Pond Outlet Data                                                              | = DET / SED                                |                                                      |          |           |            |              |                                 |
|   | No Infiltration                                                                                                     |                                            |                                                      |          |           |            |              |                                 |
|   | INITIAL CONDITION                                                                                                   | 2.25%                                      |                                                      |          |           |            |              |                                 |
|   | Starting WS Elev<br>Starting Volume<br>Starting Outflow<br>Starting Infiltr.<br>Starting Total Qo<br>Time Increment | = .00<br>= .0<br>= .0<br>put= .0<br>= .050 | 0 ac-ft<br>0 cfs<br>0 cfs<br>0 cfs<br>0 cfs<br>0 hrs |          |           |            |              |                                 |
|   | Peak Inflow<br>Peak Outflow                                                                                         | = 160.6<br>= 19.7                          | ======================================               | at<br>at | 12.2500   | hrs<br>hrs |              |                                 |
|   | Peak Elevation<br>Peak Storage =                                                                                    | = 684.9<br>10.94                           | 8 ft<br>6 ac-ft                                      |          |           |            | k            | PEAK WATER ELEV.<br>25->r Sturm |
|   | MASS BALANCE (ac-                                                                                                   |                                            |                                                      |          |           |            |              |                                 |
|   | Initial Vol =                                                                                                       | .000                                       |                                                      |          |           |            |              |                                 |
| + | HYG Vol IN =                                                                                                        | 18.450                                     |                                                      |          |           |            |              |                                 |
| 1 | Infiltration =                                                                                                      | .000                                       |                                                      |          |           |            |              |                                 |
|   | HYG Vol OUT =<br>Retained Vol =                                                                                     |                                            |                                                      |          |           |            |              |                                 |
|   | Unrouted Vol =                                                                                                      | 000 a                                      | c-ft (.                                              | 002%     | of Inflow | v Vol      | ume)         |                                 |
|   |                                                                                                                     |                                            |                                                      |          |           |            |              |                                 |

WARNING: Outflow hydrograph truncated on right side.

| Type | Pond Routing Summary                             | Page 3.01    |
|------|--------------------------------------------------|--------------|
| Name | DET / SED OUT Tag: Dev 25                        | Event: 25 vr |
| File | I:\3391\Calculations\Stormwater\Final Grades.ppw |              |
|      | TypeII 24hr Tag: Dev 25                          |              |

LEVEL POOL ROUTING SUMMARY

| HYG Dir =           | I:\3391\Calculations\Stormwater\    |
|---------------------|-------------------------------------|
| Inflow HYG file =   | work_pad.hyg - DET / SED IN Dev100  |
| Outflow HYG file =  | work_pad.hyg - DET / SED OUT Dev100 |
| Pond Node Data =    | DET / SED                           |
| Pond Volume Data =  |                                     |
| Pond Outlet Data =  | Existing Outlet                     |
| No Infiltration     |                                     |
| INITIAL CONDITIONS  |                                     |
| Starting WS Elev    | = 681.46 ft                         |
| Starting Volume     | = .000 ac-ft                        |
| Starting Outflow    | = .00 cfs                           |
| Starting Infiltr.   |                                     |
| Starting Total Qout |                                     |
| mine Territoria     |                                     |

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

Time Increment = .0500 hrs

| Peak Inflow<br>Peak Outflow | = | 197.69<br>41.57 |       | at<br>at | 12.2500 hrs<br>13.1000 hrs |       |         |       |
|-----------------------------|---|-----------------|-------|----------|----------------------------|-------|---------|-------|
|                             | = |                 |       |          | ~                          | PEAK  | WATER   | ELEV. |
| Peak Storage =              |   | 12.598          | ac-ft |          |                            | 100-2 | r STORM |       |

MASS BALANCE (ac-ft)

| + | Initial Vol  | - | .000   |       |        |    |        |         |
|---|--------------|---|--------|-------|--------|----|--------|---------|
| + | HYG Vol IN   |   | 22.748 |       |        |    |        |         |
| - | Infiltration | = | .000   |       |        |    |        |         |
| - | HYG Vol OUT  | = | 21.470 |       |        |    |        |         |
| - | Retained Vol | = | 1.278  |       |        |    |        |         |
|   |              |   |        |       |        |    |        |         |
|   | Unrouted Vol | = | 000    | ac-ft | (.001% | of | Inflow | Volume) |

WARNING: Outflow hydrograph truncated on right side.

Detention / Sedimentation Basin Routing Proposed Outlet Structure

File.... I:\3391\Calculations\Stormwater\Final Grades-new outlet.ppw

### REQUESTED POND WS ELEVATIONS:

| Min. | Elev.=  | 681.00 | ft |
|------|---------|--------|----|
| Incr | ement = | .10    | ft |
| Max. | Elev.=  | 686.00 | ft |

## 

## \*\*\*\*\*\*\*\*\*\*\*

---> Forward Flow Only (UpStream to DnStream) <--- Reverse Flow Only (DnStream to UpStream) <---> Forward and Reverse Both Allowed

| Structure                                | No. |   | Outfall | El, ft  | E2, ft  |
|------------------------------------------|-----|---|---------|---------|---------|
|                                          |     |   |         |         |         |
| Orifice-Circular                         | 01  | > | CO      | 681.750 | 686.000 |
| Orifice-Circular                         | 04  | > | CO      | 682.250 | 686.000 |
| Orifice-Circular                         | 05  | > | CO      | 682.750 | 686.000 |
| Orifice-Circular                         | 02  | > | CO      | 683.250 | 686.000 |
| Stand Pipe                               | RO  | > | CO      | 684.250 | 686.000 |
| Orifice-Circular                         | 00  | > | CO      | 681.250 | 686.000 |
| Culvert-Circular                         | CO  | > | ΤW      | 681.000 | 686.000 |
| Weir-Rectangular<br>TW SETUP, DS Channel | WO  | > | ΤW      | 685.000 | 686.000 |

File.... I:\3391\Calculations\Stormwater\Final Grades-new outlet.ppw

OUTLET STRUCTURE INPUT DATA

| Structure ID                                                  | = 01                                       |
|---------------------------------------------------------------|--------------------------------------------|
| Structure Type                                                | = Orifice-Circular                         |
| # of Openings                                                 | = 4                                        |
| Invert Elev.                                                  | = 681.75 ft                                |
| Diameter                                                      | = .5000 ft                                 |
| Orifice Coeff.                                                | = .700                                     |
| Structure ID                                                  | = 04                                       |
| Structure Type                                                | = Orifice-Circular                         |
| <pre># of Openings Invert Elev. Diameter Orifice Coeff.</pre> | = 4<br>= 682.25 ft<br>= .5000 ft<br>= .700 |
| Structure ID                                                  | = 05                                       |
| Structure Type                                                | = Orifice-Circular                         |
| # of Openings                                                 | = 4                                        |
| Invert Elev.                                                  | = 682.75 ft                                |
| Diameter                                                      | = .5000 ft                                 |
| Orifice Coeff.                                                | = .700                                     |
| Structure ID                                                  | = 02                                       |
| Structure Type                                                | = Orifice-Circular                         |
| <pre># of Openings Invert Elev. Diameter Orifice Coeff.</pre> | = 4<br>= 683.25 ft<br>= .5000 ft<br>= .700 |

9:11 AM

File.... I:\3391\Calculations\Stormwater\Final Grades-new outlet.ppw

OUTLET STRUCTURE INPUT DATA

| Structure ID       | -  | RO         |       |
|--------------------|----|------------|-------|
| Structure Type     | =  | Stand Pipe | 9     |
|                    |    |            |       |
| # of Openings      | =  | 1          |       |
| Invert Elev.       | -  | 684.25     | ft    |
| Diameter           | -  | 3.0000     | ft    |
| Orifice Area       | 22 | 7.0686     | sq.ft |
| Orifice Coeff.     | =  | .700       | 8     |
| Weir Length        | =  | 9.42       | ft    |
| Weir Coeff.        | =  | 3.300      |       |
| K, Reverse         | =  | 1.000      |       |
| Mannings n         | =  | .0000      |       |
| Kev, Charged Riser | =  | .000       |       |
| Weir Submergence   | =  | No         |       |
|                    |    |            |       |
|                    |    |            |       |

| Structure ID   | = 00            |     |
|----------------|-----------------|-----|
| Structure Type | = Orifice-Circu | lar |
|                |                 |     |
| # of Openings  | = 4             |     |
| Invert Elev.   | = 681.25 ft     |     |
| Diameter       | = .5000 ft      |     |
| Orifice Coeff. | = .700          |     |

File.... I:\3391\Calculations\Stormwater\Final Grades-new outlet.ppw

OUTLET STRUCTURE INPUT DATA

Structure ID = C0 Structure Type = Culvert-Circular ------No. Barrels = 1 Barrel Diameter = 3.0000 ft Upstream Invert = 681.00 ft Dnstream Invert = 680.50 ft Horiz. Length = 30.00 ft Barrel Length = 30.00 ft Barrel Slope = .01667 ft/ft OUTLET CONTROL DATA... Mannings n = .0240 Ke -.5000 (forward entrance loss) = .024635 (per ft of full flow) Kb .5000 (reverse entrance loss) Kr = .001 +/- ft HW Convergence = INLET CONTROL DATA... 1 Equation form = Inlet Control K = .0078 Inlet Control M = 2.0000 Inlet Control c = .03790 .6900 Inlet Control Y = T1 ratio (HW/D) = .000 T2 ratio (HW/D) = 1.288 Slope Factor = -.500 Use unsubmerged inlet control Form 1 equ. below T1 elev. Use submerged inlet control Form 1 equ. above T2 elev.

In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2... At T1 Elev = 681.00 ft ---> Flow = 42.85 cfs At T2 Elev = 684.86 ft ---> Flow = 48.97 cfs

File.... I:\3391\Calculations\Stormwater\Final Grades-new outlet.ppw

OUTLET STRUCTURE INPUT DATA

Structure ID = W0 Structure Type = Weir-Rectangular # of Openings = 1 Crest Elev. = 685.00 ft Weir Length = 25.00 ft Weir Coeff. = 2.630000 Weir TW effects (Use adjustment equation) Structure ID = TW Structure Type = TW SETUP, DS Channel

FREE OUTFALL CONDITIONS SPECIFIED

CONVERGENCE TOLERANCES... Maximum Iterations= 40 Min. TW tolerance = .01 ft Max. TW tolerance = .01 ft Min. HW tolerance = .01 ft Max. HW tolerance = .01 ft Min. Q tolerance = .00 cfs Max. Q tolerance = .00 cfs

Bentley Systems, Inc. 12/4/2007

AU

File.... I:\3391\Calculations\Stormwater\Final Grades-new outlet.ppw

LEVEL POOL ROUTING SUMMARY

| HYG Dir = I:\3391\Calculations\Stormwater\<br>Inflow HYG file = work_pad.hyg - DET / SED IN Dev 25<br>Outflow HYG file = work_pad.hyg - DET / SED OUT Dev 25<br>Pond Node Data = DET / SED<br>Pond Volume Data = DET / SED<br>Pond Outlet Data = Proposed Outlet<br>No Infiltration<br>INITIAL CONDITIONS<br>                                                                   |                                          |                                                    |        |            |     |                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------|--------|------------|-----|-----------------------|
| Inflow HYG file = work_pad.hyg - DET / SED IN Dev 25<br>Outflow HYG file = work_pad.hyg - DET / SED OUT Dev 25<br>Pond Node Data = DET / SED<br>Pond Volume Data = DET / SED<br>Pond Outlet Data = Proposed Outlet<br>No Infiltration<br>INITIAL CONDITIONS<br>                                                                                                                 | HYG Dir                                  | = 1.\3391\Calcula                                  | tionel | Ctormustor | X.  |                       |
| Pond Node Data = DET / SED<br>Pond Volume Data = DET / SED<br>Pond Outlet Data = Proposed Outlet<br>No Infiltration<br>INITIAL CONDITIONS<br>                                                                                                                                                                                                                                   |                                          |                                                    |        |            |     | 0.5                   |
| Pond Node Data = DET / SED<br>Pond Volume Data = DET / SED<br>Pond Outlet Data = Proposed Outlet<br>No Infiltration<br>INITIAL CONDITIONS<br>                                                                                                                                                                                                                                   | Outflow HVG file                         | e = work_pad.hyg =                                 | DET /  | SED OUR    | Dev | 25                    |
| Pond Volume Data = DET / SED<br>Pond Outlet Data = Proposed Outlet<br>No Infiltration<br>INITIAL CONDITIONS<br>                                                                                                                                                                                                                                                                 | OUCLION NIG III                          | e - work_pad.nyg -                                 | DEI /  | SED OUT    | Dev | 25                    |
| Pond Volume Data = DET / SED<br>Pond Outlet Data = Proposed Outlet<br>No Infiltration<br>INITIAL CONDITIONS<br>                                                                                                                                                                                                                                                                 | Pond Node Data                           | a = DET / SED                                      |        |            |     |                       |
| Pond Outlet Data = Proposed Outlet<br>No Infiltration<br>INITIAL CONDITIONS<br>                                                                                                                                                                                                                                                                                                 |                                          | 그는 이상 방법에 있는 것은 이상 방법에 있는 것이 없다.                   |        |            |     |                       |
| No Infiltration<br>INITIAL CONDITIONS<br>                                                                                                                                                                                                                                                                                                                                       |                                          |                                                    |        |            |     |                       |
| INITIAL CONDITIONS<br>Starting WS Elev = 681.25 ft<br>Starting Volume = .692 ac-ft<br>Starting Outflow = .00 cfs<br>Starting Infiltr. = .00 cfs<br>Starting Total Qout= .00 cfs<br>Time Increment = .0500 hrs<br>Peak Inflow = 188.91 cfs at 12.2500 hrs<br>Peak Outflow = 38.05 cfs at 13.2000 hrs<br>Peak Elevation = 684.99 ft<br>Peak Storage = .12.276 ac-ft               |                                          | a stopood oderoe                                   |        |            |     |                       |
| Starting WS Elev = 681.25 ft<br>Starting Volume = .692 ac-ft<br>Starting Outflow = .00 cfs<br>Starting Infiltr. = .00 cfs<br>Starting Total Qout= .00 cfs<br>Time Increment = .0500 hrs<br>INFLOW/OUTFLOW HYDROGRAPH SUMMARY<br>Peak Inflow = 188.91 cfs at 12.2500 hrs<br>Peak Outflow = 38.05 cfs at 13.2000 hrs<br>Peak Elevation = 684.99 ft<br>Peak Storage = 12.276 ac-ft | No Infiltration                          |                                                    |        |            |     |                       |
| Starting WS Elev = 681.25 ft<br>Starting Volume = .692 ac-ft<br>Starting Outflow = .00 cfs<br>Starting Infiltr. = .00 cfs<br>Starting Total Qout= .00 cfs<br>Time Increment = .0500 hrs<br>INFLOW/OUTFLOW HYDROGRAPH SUMMARY<br>Peak Inflow = 188.91 cfs at 12.2500 hrs<br>Peak Outflow = 38.05 cfs at 13.2000 hrs<br>Peak Elevation = 684.99 ft<br>Peak Storage = 12.276 ac-ft |                                          |                                                    |        |            |     |                       |
| Starting WS Elev = 681.25 ft<br>Starting Volume = .692 ac-ft<br>Starting Outflow = .00 cfs<br>Starting Infiltr. = .00 cfs<br>Starting Total Qout= .00 cfs<br>Time Increment = .0500 hrs<br>INFLOW/OUTFLOW HYDROGRAPH SUMMARY<br>Peak Inflow = 188.91 cfs at 12.2500 hrs<br>Peak Outflow = 38.05 cfs at 13.2000 hrs<br>Peak Elevation = 684.99 ft<br>Peak Storage = 12.276 ac-ft |                                          |                                                    |        |            |     |                       |
| Starting Volume = .692 ac-ft<br>Starting Outflow = .00 cfs<br>Starting Infiltr. = .00 cfs<br>Starting Total Qout= .00 cfs<br>Time Increment = .0500 hrs<br>INFLOW/OUTFLOW HYDROGRAPH SUMMARY<br>====================================                                                                                                                                            |                                          |                                                    |        |            |     |                       |
| Starting Outflow = .00 cfs<br>Starting Infiltr. = .00 cfs<br>Starting Total Qout= .00 cfs<br>Time Increment = .0500 hrs<br>INFLOW/OUTFLOW HYDROGRAPH SUMMARY<br>====================================                                                                                                                                                                            | - 영상 영상 영상 방송 가장 가장 바람이 많은 것이 많은 것을 많을까? | 학생님 이 가지 않는 것 같은 것 같 |        |            |     |                       |
| Starting Infiltr. = .00 cfs<br>Starting Total Qout= .00 cfs<br>Time Increment = .0500 hrs<br>INFLOW/OUTFLOW HYDROGRAPH SUMMARY<br>====================================                                                                                                                                                                                                          |                                          |                                                    | t      |            |     |                       |
| Starting Total Qout= .00 cfs<br>Time Increment = .0500 hrs<br>INFLOW/OUTFLOW HYDROGRAPH SUMMARY<br>Peak Inflow = 188.91 cfs at 12.2500 hrs<br>Peak Outflow = 38.05 cfs at 13.2000 hrs<br>Peak Elevation = 684.99 ft<br>Peak Storage = 12.276 ac-ft<br>Z5-yr Storm                                                                                                               | Starting Outflow                         | w = .00 cfs                                        |        |            |     |                       |
| Starting Total Qout= .00 cfs<br>Time Increment = .0500 hrs<br>INFLOW/OUTFLOW HYDROGRAPH SUMMARY<br>Peak Inflow = 188.91 cfs at 12.2500 hrs<br>Peak Outflow = 38.05 cfs at 13.2000 hrs<br>Peak Elevation = 684.99 ft<br>Peak Storage = 12.276 ac-ft<br>Z5-yr Storm                                                                                                               | Starting Infilt:                         | r. = .00 cfs                                       |        |            |     |                       |
| Time Increment = .0500 hrs<br>INFLOW/OUTFLOW HYDROGRAPH SUMMARY<br>Peak Inflow = 188.91 cfs at 12.2500 hrs<br>Peak Outflow = 38.05 cfs at 13.2000 hrs<br>Peak Elevation = 684.99 ft<br>Peak Storage = 12.276 ac-ft<br>Z5-yr Storm                                                                                                                                               |                                          |                                                    |        |            |     |                       |
| INFLOW/OUTFLOW HYDROGRAPH SUMMARY<br>Peak Inflow = 188.91 cfs at 12.2500 hrs<br>Peak Outflow = 38.05 cfs at 13.2000 hrs<br>Peak Elevation = 684.99 ft<br>Peak Storage = 12.276 ac-ft<br>Z5-yr Storm                                                                                                                                                                             | Time Increment                           | = .0500 hrs                                        |        |            |     |                       |
| Peak Elevation = 684.99 ft<br>Peak Storage = 12.276 ac-ft Z5-yr Storm                                                                                                                                                                                                                                                                                                           | ======================================   | = 188.91 cfs                                       | at     | 12.2500    | hrs |                       |
| Peak Elevation= $684.99 \text{ ft}$ $\leftarrow$ Peak Water ElevationPeak Storage =12.276 ac-ft $25-yr$ Storm                                                                                                                                                                                                                                                                   |                                          |                                                    |        |            |     |                       |
| Peak Elevation = 684.99 ft<br>Peak Storage = 12.276 ac-ft<br>====================================                                                                                                                                                                                                                                                                               |                                          |                                                    |        |            |     | D & wester Elization  |
| Peak Storage = 12.276 ac-ft Z5-yr Storm                                                                                                                                                                                                                                                                                                                                         |                                          |                                                    |        |            | <   | - Peak Water Elevator |
|                                                                                                                                                                                                                                                                                                                                                                                 |                                          |                                                    |        |            |     | 25-31 STORM           |
|                                                                                                                                                                                                                                                                                                                                                                                 |                                          | na ana ang ang ang ang ang ang ang ang a           |        |            |     |                       |
|                                                                                                                                                                                                                                                                                                                                                                                 | MACO DATANOD /                           | (L)                                                |        |            |     |                       |
| MACC DATANCE ( C+)                                                                                                                                                                                                                                                                                                                                                              |                                          |                                                    |        |            |     |                       |
| MASS BALANCE (ac-ft)                                                                                                                                                                                                                                                                                                                                                            |                                          |                                                    |        |            |     |                       |
|                                                                                                                                                                                                                                                                                                                                                                                 | HVG Vol IN -                             | .032<br>00 357                                     |        |            |     |                       |
| Initial Vol = .692                                                                                                                                                                                                                                                                                                                                                              | Infiltration =                           | 22.357                                             |        |            |     |                       |
| Initial Vol = .692<br>HYG Vol IN = 22.357                                                                                                                                                                                                                                                                                                                                       |                                          |                                                    |        |            |     |                       |
| Initial Vol = .692<br>HYG Vol IN = 22.357<br>Infiltration = .000                                                                                                                                                                                                                                                                                                                |                                          |                                                    |        |            |     |                       |
| Initial Vol = .692<br>HYG Vol IN = 22.357<br>Infiltration = .000<br>HYG Vol OUT = 22.241                                                                                                                                                                                                                                                                                        |                                          |                                                    |        |            |     |                       |
| Initial Vol = .692<br>HYG Vol IN = 22.357<br>Infiltration = .000                                                                                                                                                                                                                                                                                                                |                                          |                                                    |        |            |     |                       |

Unrouted Vol = -.000 ac-ft (.000% of Inflow Volume)

WARNING: Outflow hydrograph truncated on right side.

Type.... Pond Routing Summary Page 2.01 Name.... DET / SED OUT Tag: Dev 25 Event: 25 yr File.... I:\3391\Calculations\Stormwater\Final Grades-new outlet.ppw Storm... TypeII 24hr Tag: Dev 25

LEVEL POOL ROUTING SUMMARY

| HYG Dir      | 100     | I:\3391\Calculations\Stormwater\    |
|--------------|---------|-------------------------------------|
| Inflow HYG   | file =  | work_pad.hyg - DET / SED IN Dev100  |
| Outflow HYG  | file =  | work_pad.hyg - DET / SED OUT Dev100 |
| Pond Node    | Data =  | DET / SED                           |
| Pond Volume  | Data =  | DET / SED                           |
| Pond Outlet  | Data =  | Proposed Outlet                     |
| No Infiltrat |         | Proposed Outlet                     |
| INITIAL CONE | DITIONS |                                     |

| Starting  | WS Elev   | ==  | 681.25 | ft    |  |
|-----------|-----------|-----|--------|-------|--|
| Starting  | Volume    | ==  | .692   | ac-ft |  |
| Starting  | Outflow   | =   | .00    | cfs   |  |
| Starting  | Infiltr.  | =   | .00    | cfs   |  |
| Starting  | Total Qou | it= | .00    | cfs   |  |
| Time Inc: | rement    | =   | .0500  | hrs   |  |

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

| Peak | Inflow    | - | 232.63 | cfs | at | 12.2500 | hrs          |      |       |           |
|------|-----------|---|--------|-----|----|---------|--------------|------|-------|-----------|
| Peak | Outflow   | = | 73.09  | cfs | at | 12.9000 | hrs          |      |       |           |
|      |           |   |        |     |    |         |              |      |       |           |
| Peak | Elevation | = | 685.45 | ft  |    |         | $\leftarrow$ | Peak | water | Elevation |
|      |           |   |        |     |    |         |              |      |       |           |

100->1 STORM

WARNING: Outflow hydrograph truncated on right side.

Type.... Pond Routed HYG (total out)Page 1.06Name.... DET / SEDOUTTag: Dev 25Event: 25 yrFile...I:\3391\Calculations\Stormwater\Final Grades-new outlet.ppwStorm...TypeII24hrTag: Dev 25

| Time  <br>hrs |     | YDROGRAPH OF<br>utput Time :<br>represents | increment = | .0500 hrs | in each row. |                |
|---------------|-----|--------------------------------------------|-------------|-----------|--------------|----------------|
| 69.7000 i     | .08 | .08                                        | .08         | .08       | .08          | -              |
| 69.9500       | .08 | .08                                        | .08         | .08       | .08          |                |
| 70.2000       | .08 | .08                                        | .08         | .08       | .08          |                |
| 70.4500       | .08 | .08                                        | .08         | .08       | .08          |                |
| 70.7000       | .08 | .08                                        | .08         | .08       | .08          |                |
| 70.9500 j     | .08 |                                            | Z.0 Hr. 08  | .08       | .08          |                |
| 71.2000       | .08 | .08                                        | 2.0 4.00    | .08       | .08          |                |
| 71.4500 I     | .07 | .07                                        | .07         | .07       | .08          |                |
| 71.7000       | .07 | .07                                        | .07         | .07       | .07          |                |
| 71.9500       | .07 | .07                                        | .07         | .07       | .07          | OUTFLOW AT     |
| 72.2000       | .07 | .07                                        | .07         | .07       | .07          | 72.0 HRS       |
| 72.4500       | .07 | .07                                        | .07         | .07       | .07          | -              |
| 72.7000       | .07 | .07                                        | .07         | .07       | .07          | (3 Deys) =     |
| 72.9500       | .07 | .07                                        | .07         | .07       | .07          | (              |
| 73.2000 j     | .07 | .07                                        | .07         | .07       | .07          | O.O7CFS        |
| 73.4500       | .07 | .07                                        | .07         | .07       | .07          | 0 0 1 0 1 2    |
| 73.7000 j     | .07 | .07                                        | .07         | .07       | .07          |                |
| 73.9500       | .07 | .07                                        | .07         | .06       | .06          | .: BASIN TAKES |
| 74.2000       | .06 | .06                                        | .06         | .06       | .06          | MORE THAN 3    |
| 74.4500       | .06 | .06                                        | .06         | .06       | .06          | MORE FHAN 3    |
| 74.7000       | .06 | .06                                        | .06         | .06       | .06          | DAYS to DRAIN  |
| 74.9500       | .06 | .06                                        | .06         | .06       | .06          | PRAIN.         |
| 75.2000       | .06 | .06                                        | .06         | .06       | .06          |                |
| 75.4500       | .06 | .06                                        | .06         | .06       | .06          |                |
| 75.7000       | .06 | .06                                        | .06         | .06       | .06          |                |
| 75.9500       | .06 | .06                                        | .06         | .06       | .06          |                |
| 76.2000       | .06 | .06                                        | .06         | .06       | .06          |                |
| 76.4500       | .06 | .06                                        | .06         | .06       | .06          |                |
| 76.7000       | .06 | .06                                        | .06         | .00       | .06          |                |
| 76.9500       | .06 | .06                                        | .06         | .06       | .06          |                |
| 77.2000       | .05 | .05                                        | .05         | .05       | .05          |                |
| 77.4500       | .05 | .05                                        | .05         | .05       | .05          |                |
| 77.7000       | .05 | .05                                        | .05         | .05       | .05          |                |
| 77.9500       | .05 | .05                                        | .05         | .05       | .05          |                |
| 78.2000       | .05 | .05                                        | .05         | .05       | .05          |                |
| 78.4500       | .05 | .05                                        | .05         | .05       | .05          |                |
| 78.7000       | .05 | .05                                        | .05         | .05       | .05          |                |
| 78.9500       | .05 | .05                                        | .05         | .05       | .05          |                |
| 79.2000       | .05 | .05                                        | .05         | .05       | .05          |                |
| 79.4500       | .05 | .05                                        | .05         | .05       | .05          |                |
| 79.7000       | .05 | .05                                        | .05         | .05       | .05          |                |
| 79.9500       | .05 | .05                                        | .05         | .05       | .05          |                |
| 80.2000       | .05 | .05                                        | .05         | .05       | .05          |                |
| 80.4500       | .05 | .05                                        | .05         | .05       | .05          |                |
| 80.7000 i     | .05 | .05                                        | .05         | .05       | .04          |                |

**Detention Basin Routing** 

» 44

Type.... Tc Calcs Name.... OFF-SITE AREA

Page 1.02

File.... I:\3391\Calculations\Stormwater\off-site.ppw

# RUNOFF CURVE NUMBER DATA

|                          |    | Area   | Impervious<br>Adjustment |     | Adjusted |
|--------------------------|----|--------|--------------------------|-----|----------|
| Soil/Surface Description | CN | acres  | βС                       | %UC | CN       |
|                          |    |        |                          |     |          |
| Off-site                 | 79 | 91.000 |                          |     | 79.00    |

#### 

Table of Contents (continued)

TIME OF CONCENTRATION CALCULATOR Segment #1: Tc: TR-55 Sheet 
 Mannings n
 .2400

 Hydraulic Length
 400.00 ft

 2yr, 24hr P
 2.5000 in

 Slope
 .010000 ft/ft
 Avg.Velocity .10 ft/sec Segment #1 Time: 1.0763 hrs Segment #2: Tc: TR-55 Channel Wetted Perimeter 13.60 ft Hydraulic Radius .43 ft Slope Siope .010000 ft/ft Mannings n 0250 Hydraulic Length 3600.00 ft Avg.Velocity 2.44 ft/sec Segment #2 Time: .4099 hrs Total Tc: 1.4862 hrs

File.... I:\3391\Calculations\Stormwater\off-site.ppw

SCS UNIT HYDROGRAPH METHOD

```
STORM EVENT: 25 year storm
Duration = 24.0000 hrs Rain Depth = 4.4000 in
Rain Dir = I:\3391\Calculations\Stormwater\
Rain File -ID = - TypeII 24hr
Unit Hyd Type = Default Curvilinear
HYG Dir = I:\3391\Calculations\Stormwater\
HYG File - ID = - OFF-SITE AREA 25
Tc = 1.4862 hrs
Drainage Area = 91.000 acres Runoff CN= 79
Computational Time Increment = .19816 hrs
Computed Peak Time = 12.8806 hrs
Computed Peak Flow = 81.53 cfs
Time Increment for HYG File = .0500 hrs
Peak Time, Interpolated Output = 12.8500 hrs
Peak Flow, Interpolated Output = 81.27 cfs
DRAINAGE AREA
             ID:OFF-SITE AREA
             CN = 79
             Area =
                      91.000 acres
             S = 2.6582 in
             0.2S = .5316 in
             Cumulative Runoff
             _____
                     2.2928 in
                    17.387 ac-ft
HYG Volume...
                    17.386 ac-ft (area under HYG curve)
***** SCS UNIT HYDROGRAPH PARAMETERS *****
Time Concentration, Tc = 1.48623 hrs (ID: OFF-SITE AREA)
Computational Incr, Tm = .19816 hrs = 0.20000 Tp
Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb)
K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp)))
Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491)
Unit peak,
                  qp = 69.38 cfs
Unit peak time Tp = .99082 hrs
Unit receding limb, Tr = 3.96327 hrs
Total unit time, Tb = 4.95408 hrs
```

S/N: B4YXYWHMX89F Bentley PondPack (10.00.022.00)

Bentley Systems, Inc. 11/5/2007

Type.... Unit Hyd. Summary Name.... OFF-SITE AREA Tag: 25 File.... I:\3391\Calculations\Stormwater\off-site.ppw Storm... TypeII 24hr Tag: 25

SCS UNIT HYDROGRAPH METHOD

STORM EVENT: 100 year storm Duration = 24.0000 hrs Rain Depth = 5.10 Rain Dir = I:\3391\Calculations\Stormwater\ Rain Depth = 5.1000 in Rain File -ID = - TypeII 24hr Unit Hyd Type = Default Curvilinear HYG Dir = I:\3391\Calculations\Stormwater\ HYG File - ID = - OFF-SITE AREA 100 Tc = 1.4862 hrs Drainage Area = 91.000 acres Runoff CN= 79 Computational Time Increment = .19816 hrs Computed Peak Time = 12.8806 hrs Computed Peak Flow = 103.19 cfs Time Increment for HYG File = .0500 hrs Peak Time, Interpolated Output = 12.8500 hrs Peak Flow, Interpolated Output = 102.94 cfs DRAINAGE AREA ID:OFF-SITE AREA CN = 79 Area = 91.000 acres S = 2.6582 in 0.2S = .5316 in Cumulative Runoff 2.8879 in 21.900 ac-ft HYG Volume... 21.899 ac-ft (area under HYG curve) \*\*\*\*\* SCS UNIT HYDROGRAPH PARAMETERS \*\*\*\*\* Time Concentration, Tc = 1.48623 hrs (ID: OFF-SITE AREA) Computational Incr, Tm = .19816 hrs = 0.20000 Tp Unit Hyd. Shape Factor = 483.432 (37.46% under rising limb) K = 483.43/645.333, K = .7491 (also, K = 2/(1+(Tr/Tp))) Receding/Rising, Tr/Tp = 1.6698 (solved from K = .7491) Unit peak, qp = 69.38 cfs Unit peak time Tp = .99082 hrs Unit receding limb, Tr = 3.96327 hrs Total unit time, Tb = 4.95408 hrs

Bentley Systems, Inc. 11/5/2007

Page 3.01

Event: 25 yr

## File.... I:\3391\Calculations\Stormwater\off-site.ppw

| Elevation<br>(ft) | Planimeter<br>(sq.in) | Area<br>(acres) | A1+A2+sqr(A1*A2)<br>(acres) | Volume<br>(ac-ft) | Volume Sum<br>(ac-ft) |
|-------------------|-----------------------|-----------------|-----------------------------|-------------------|-----------------------|
| 685.50            |                       | 2.7000          | .0000                       | .000              | .000                  |
| 686.00            |                       | 2.8800          | 8.3685                      | 1.395             | 1.395                 |
| 688.00            |                       | 3.5800          | 9.6710                      | 6.447             | 7.842                 |
| 690.00            |                       | 4.4900          | 12.0793                     | 8.053             | 15.895                |
| 692.00            |                       | 6.5000          | 16.3923                     | 10.928            | 26.823                |

POND VOLUME EQUATIONS

\* Incremental volume computed by the Conic Method for Reservoir Volumes.

Volume = (1/3) \* (EL2-EL1) \* (Areal + Area2 + sq.rt.(Area1\*Area2))

where: EL1, EL2 = Lower and upper elevations of the increment Areal,Area2 = Areas computed for EL1, EL2, respectively Volume = Incremental volume between EL1 and EL2

Type.... Vol: Elev-Area Name.... DETENTION Page 1.01

## File.... I:\3391\Calculations\Stormwater\off-site.ppw

### REQUESTED POND WS ELEVATIONS:

| Min. | Elev. | = | 685.50 | ft |
|------|-------|---|--------|----|
| Incr | ement | - | .10    | ft |
| Max. | Elev. | = | 692.00 | ft |

## 

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

---> Forward Flow Only (UpStream to DnStream) <--- Reverse Flow Only (DnStream to UpStream) <---> Forward and Reverse Both Allowed

| Structure                                | No. |   | Outfall | El, ft  | E2, ft  |
|------------------------------------------|-----|---|---------|---------|---------|
|                                          |     |   |         |         |         |
| Orifice-Circular                         | 01  | > | CO      | 687.000 | 692.000 |
| Orifice-Circular                         | 02  | > | CO      | 687.500 | 692.000 |
| Orifice-Circular                         | 03  | > | CO      | 688.000 | 692.000 |
| Orifice-Circular                         | 04  | > | CO      | 688.500 | 692.000 |
| Orifice-Circular                         | 05  | > | CO      | 689.000 | 692.000 |
| Stand Pipe                               | RO  | > | CO      | 689.880 | 692.000 |
| Orifice-Circular                         | 00  | > | CO      | 686.230 | 692.000 |
| Culvert-Circular                         | CO  | > | ΤW      | 685.500 | 692.000 |
| Weir-Rectangular<br>TW SETUP, DS Channel | WO  | > | ΤW      | 692.000 | 692.000 |

## File.... I:\3391\Calculations\Stormwater\off-site.ppw

OUTLET STRUCTURE INPUT DATA

| Structure ID<br>Structure Type<br><br># of Openings<br>Invert Elev.<br>Diameter<br>Orifice Coeff. | = 01<br>= Orifice-Circular<br>= 3<br>= 687.00 ft<br>= .0810 ft<br>= .700 |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Structure ID<br>Structure Type                                                                    | = 02<br>= Orifice-Circular                                               |
| # of Openings                                                                                     | = 3                                                                      |
| Invert Elev.<br>Diameter                                                                          | = 687.50 ft<br>= 0810 ft                                                 |
| Orifice Coeff.                                                                                    | = .0810 ft<br>= .700                                                     |
| Structure ID<br>Structure Type<br># of Openings                                                   | = 03<br>= Orifice-Circular<br>= 3                                        |
| Invert Elev.                                                                                      | = 688.00 ft                                                              |
| Diameter                                                                                          | = .0810 ft                                                               |
| Orifice Coeff.                                                                                    | = .070                                                                   |
| Structure ID<br>Structure Type                                                                    | = 04<br>= Orifice-Circular                                               |
| # of Openings                                                                                     | = 3                                                                      |
| Invert Elev.                                                                                      | = 688.50 ft                                                              |
| Diameter                                                                                          | = .0810 ft                                                               |
| Orifice Coeff.                                                                                    | = .700                                                                   |

51

File.... I:\3391\Calculations\Stormwater\off-site.ppw

OUTLET STRUCTURE INPUT DATA

| Structure ID<br>Structure Type |        | 05<br>Orifice-C | ircular |
|--------------------------------|--------|-----------------|---------|
| # of Openings                  |        | 3               |         |
| Invert Elev.                   | =      |                 | f+      |
| Diameter                       |        |                 |         |
| Orifice Coeff.                 | =      |                 | LC      |
|                                |        |                 |         |
| Structure ID                   | =      | RO              |         |
| Structure Type                 | =      | Stand Pipe      | 9       |
|                                |        |                 |         |
| # of Openings                  | =      | 1               |         |
| Invert Elev.                   | =      | 689.88          | ft      |
| Diameter                       | =      | 1.5000          | ft      |
| Orifice Area                   | -      | 1.7671          | sq.ft   |
| Orifice Coeff.                 | =      | .700            |         |
| Weir Length                    | =      | 4.71            | ft      |
| Weir Coeff.                    | $\sim$ | 3.300           |         |
| K, Reverse                     | =      | 1.000           |         |
| Mannings n                     | =      | .0000           |         |
| Kev, Charged Riser             |        | .000            |         |
| Weir Submergence               | -      | No              |         |
| Structure TD                   |        |                 |         |
|                                |        | 00              |         |
| Structure Type                 | -      | Orifice-Ci      | rcular  |
| # of Openings                  | _      | з               |         |
| Invert Elev.                   | -      | 686.23          | ft      |
| Diameter                       | =      | .0810           |         |
| Orifice Coeff.                 | -      | .700            |         |

| S/N: B  | 4YXYWHMX89 | F              |  |
|---------|------------|----------------|--|
| Bentley | PondPack   | (10.00.022.00) |  |

Page 2.03

File.... I:\3391\Calculations\Stormwater\off-site.ppw

OUTLET STRUCTURE INPUT DATA

Structure ID = C0 Structure Type = Culvert-Circular -------No. Barrels = 1 Barrel Diameter = 1.5000 ft Upstream Invert = 685.50 ft Dnstream Invert = 685.00 ft Horiz. Length = 65.00 ft Barrel Length = 65.00 ft Barrel Slope = .00769 ft/ft OUTLET CONTROL DATA... Mannings n = .0240 Ke = .5000 (forward entrance loss) Ke=.5000(forward entrance loss)Kb=.062076(per ft of full flow)Kr=.5000(reverse entrance loss)HW Convergence=.001+/- ft INLET CONTROL DATA... Inlet Control K = .0078 Inlet Control M = 2.0000 Inlet Control c = .03790 .6900 1.132 Inlet Control Y = Tl ratio (HW/D) = T2 ratio (HW/D) = 1.293 Slope Factor = -.500

Use unsubmerged inlet control Form 1 equ. below T1 elev. Use submerged inlet control Form 1 equ. above T2 elev.

In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2... At T1 Elev = 687.20 ft ---> Flow = 7.58 cfs At T2 Elev = 687.44 ft ---> Flow = 8.66 cfs

File.... I:\3391\Calculations\Stormwater\off-site.ppw

OUTLET STRUCTURE INPUT DATA

Structure ID = W0 Structure Type = Weir-Rectangular # of Openings = 1 Crest Elev. = 692.00 ft Weir Length = 25.00 ft Weir Coeff. = 2.630000 Weir TW effects (Use adjustment equation)

Structure ID = TW Structure Type = TW SETUP, DS Channel FREE OUTFALL CONDITIONS SPECIFIED

CONVERGENCE TOLERANCES... Maximum Iterations= 40 Min. TW tolerance = .01 ft Max. TW tolerance = .01 ft Min. HW tolerance = .01 ft Max. HW tolerance = .01 ft Min. Q tolerance = .00 cfs Max. Q tolerance = .00 cfs

1:15 PM

Page 2.05

File.... I:\3391\Calculations\Stormwater\off-site.ppw

LEVEL POOL ROUTING SUMMARY

| HYG Dir     | =      | I:\3391\Calculations\Stormwater\ |
|-------------|--------|----------------------------------|
| Inflow HYG  | file = | NONE STORED - DETENTION IN 25    |
| Outflow HYG | file = | NONE STORED - DETENTION OUT 25   |
| Pond Node   |        |                                  |
| Pond Volume | Data = | DETENTION                        |
| Pond Outlet | Data = | Existing Outlet                  |

No Infiltration

INITIAL CONDITIONS

| Starting  | WS Elev   | -   | 685.50 | ft    |
|-----------|-----------|-----|--------|-------|
| Starting  | Volume    | -   | .000   | ac-ft |
|           | Outflow   | ==  | .00    | cfs   |
|           | Infiltr.  | =   | .00    | cfs   |
| Starting  | Total Qou | it= | .00    | cfs   |
| Time Inc: | rement    |     | .0500  | hrs   |
|           |           |     |        |       |

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

| Peak | Inflow    |   | 81.27  | cfs   | at | 12.8500 | hrs |
|------|-----------|---|--------|-------|----|---------|-----|
| Peak | Outflow   | = | 2.30   | cfs   | at | 24.8500 | hrs |
|      |           |   |        |       |    |         |     |
| Peak | Elevation | = | 690.10 | ft    |    |         |     |
|      | Storage = |   | 16.358 | DO FF |    |         |     |

MASS BALANCE (ac-ft)

| + | Initial Vol  | = | .000   |       |        |    |        |         |
|---|--------------|---|--------|-------|--------|----|--------|---------|
| + | HYG Vol IN   | = | 17.386 |       |        |    |        |         |
| - | Infiltration | = | .000   |       |        |    |        |         |
|   | HYG Vol OUT  | = | 5.359  |       |        |    |        |         |
| - | Retained Vol | = | 12.027 |       |        |    |        |         |
|   |              |   |        |       |        |    |        |         |
|   | Unrouted Vol | - | 000    | ac-ft | (.000% | of | Inflow | Volume) |

WARNING: Outflow hydrograph truncated on right side.

Type.... Pond Routing Summary Name.... DETENTION OUT Tag: 25 File.... I:\3391\Calculations\Stormwater\off-site.ppw Storm... TypeII 24hr Tag: 25

Event: 25 yr

Page 3.01

LEVEL POOL ROUTING SUMMARY

HYG Dir = I:\3391\Calculations\Stormwater\ Inflow HYG file = NONE STORED - DETENTION IN 100 Outflow HYG file = NONE STORED - DETENTION OUT 100

Pond Node Data = DETENTION Pond Volume Data = DETENTION Pond Outlet Data = Existing Outlet

No Infiltration

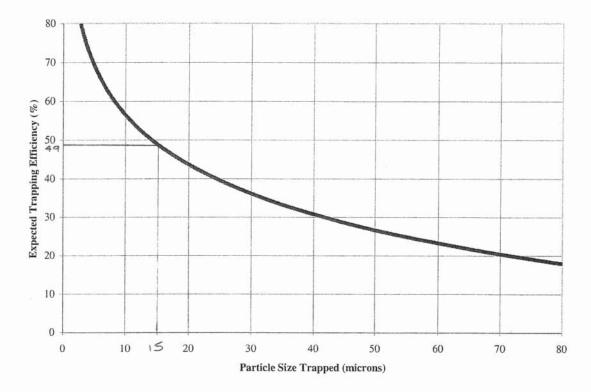
INITIAL CONDITIONS

| Starting  | WS Elev   | =   | 685.50 | ft    |
|-----------|-----------|-----|--------|-------|
| Starting  | Volume    | =   | .000   | ac-ft |
| Starting  | Outflow   | ==  | .00    | cfs   |
| Starting  | Infiltr.  | =   | .00    | cfs   |
| Starting  | Total Qou | it= | .00    | cfs   |
| Time Inc: | rement    |     | .0500  | hrs   |
|           |           |     |        |       |

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

| Peak | Inflow    |   | 102.94 | cfs   | at | 12.8500 | hrs |
|------|-----------|---|--------|-------|----|---------|-----|
| Peak | Outflow   | = | 6.35   | cfs   | at | 19.9000 | hrs |
|      |           |   |        |       |    |         |     |
| Peak | Elevation | = | 690.39 | ft    |    |         |     |
| Peak | Storage = |   | 17.718 | ac-ft |    |         |     |

MASS BALANCE (ac-ft)


| $^+$ | Initial Vol  | = | .000   |       |        |    |        |         |
|------|--------------|---|--------|-------|--------|----|--------|---------|
| +    | HYG Vol IN   |   | 21.899 |       |        |    |        |         |
|      | Infiltration | = | .000   |       |        |    |        |         |
| -    | HYG Vol OUT  | = | 9.716  |       |        |    |        |         |
| ÷    | Retained Vol | = | 12.182 |       |        |    |        |         |
|      |              |   |        |       |        |    |        |         |
|      | Unrouted Vol | = | 000    | ac-ft | (.002% | of | Inflow | Volume) |

WARNING: Outflow hydrograph truncated on right side.

Type.... Pond Routed HYG (total out)Page 1.06Name.... DETENTIONOUTTag:25File....I:\3391\Calculations\Stormwater\off-site.ppwStorm...TypeII24hrTag:25

| Time               | H            | YDROGRAPH OR | DINATES (cfs)<br>ncrement = .05 | 500 hrs      |           |                 |
|--------------------|--------------|--------------|---------------------------------|--------------|-----------|-----------------|
| hrs                | Time on left | represents   | time for first                  | t value in e | each row. |                 |
| 71.4000            | .56          | .56          | .56                             |              | .56       | 5               |
| 71.6500            | .56          | .56          | Fr 16.0                         | 2 5 6        | .56       |                 |
| 71.9000            | .56          | .56          | .56 H                           | .56          | .56       | OUTFLOW AT      |
| 72.1500            | .56          | .56          | .56                             | .56          | .56       |                 |
| 72.4000            | .56          | .56          | .56                             | .56          | .56       | 72.0 Hr =       |
| 72.6500            | .56          | .56          | .56                             | .56          | .56       | 0.56 CFS        |
| 72.9000            | 1.56         | .56          | .56                             | .56          | .56       |                 |
| 73.1500            | .56          | .56          | .56                             | .56          | .56       | . BASIN TAKES   |
| 73.4000            | 1.56         | .56          | .56                             | .56          | .56       |                 |
| 73.6500            | .56          | .56          | .56                             | .56          | .56       | MORE THAN 3     |
| 73.9000            | .56          | .56          | .56                             | .56          | .56       |                 |
| 74.1500            | .56          | .56          | .56                             | .56          | .56       | DAYS to brain . |
| 74.4000            | ,56          | .56          | .56                             | .56          | .56       |                 |
| 74.6500            | 1.56         | .56          | .56                             | .56          | .56       |                 |
| 74.9000            | 1.56         | .56          | .56                             | .56          | .56       |                 |
| 75.1500            | 1.55         | .55          | .55                             | .55          | .55       |                 |
| 75.4000            | 1.55         | .55          | .55                             | .55          | .55       |                 |
| 75.6500            |              | .55          | .55                             | .55          | .55       |                 |
| 75.9000            | .55          | .55          | .55                             | .55          | .55       |                 |
| 76.1500            | .55          | .55          | .55                             | .55          | .55       |                 |
| 76.4000            | .55          | .55          | .55                             | .55          | .55       |                 |
| 76.6500            | .55          | .55          | .55                             | .55          | .55       |                 |
| 76.9000            | .55          | .55          | .55                             | .55          | .55       |                 |
| 77.1500            | .55          | .55          | .55                             | .55          | .55       |                 |
| 77.4000            | .55          | .55          | .55                             | .55          | .55       |                 |
| 77.6500<br>77.9000 | .55<br>.55   | .55          | .55                             | .55          | .55       |                 |
| 78.1500            | .55          | .55          | .55                             | .55          | .55       |                 |
| 78.4000            | .55          | .55          | .55                             | .55          | .55       |                 |
| 78.6500            | .55          | .55          | .55                             | .55          | .55       |                 |
| 78.9000            | .55          | .55          | .55                             | .55          | .55       |                 |
| 79.1500            | .55          | .55          | .55                             |              | .55       |                 |
| 79.4000            | .55          | .55          | .55                             | .55          | .55       |                 |
| 79.6500            | .54          | .54          | .54                             | .55          | .54       |                 |
| 79.9000            | .54          | .54          | .54                             | .54          | .54       |                 |
| 80.1500            | .54          | .54          | .54                             | .54          | .54       |                 |
| 80.4000            |              | .54          | .54                             | .54          | .54       |                 |
| 80.6500            |              | .54          | .54                             | .54          | .54       |                 |
| 80.9000            | .54          | .54          | .54                             | .54          | .54       |                 |
| 81.1500            | .54          | .54          | .54                             | .54          | .54       |                 |
| 81.4000            | .54          | .54          | .54                             | .54          | .54       |                 |
| 81.6500            | .54          | .54          | .54                             | .54          | .54       |                 |
| 81.9000            | .54          | .54          | .54                             | .54          | .54       |                 |
| 82.1500            | .54          | .54          | .54                             | .54          | .54       |                 |
| 82.4000            | .54          | .54          | .54                             | .54          | .54       |                 |

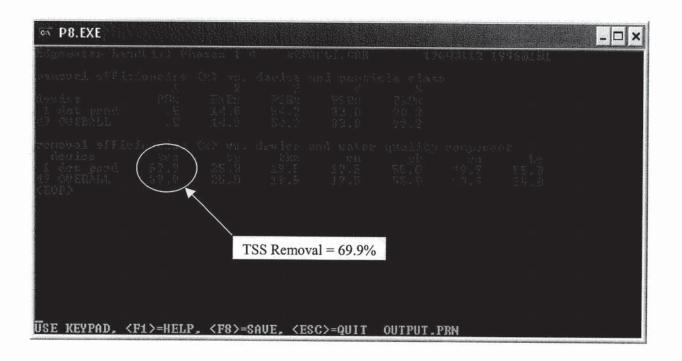
Sediment Removal Analysis (P8 Urban Catchment Model)

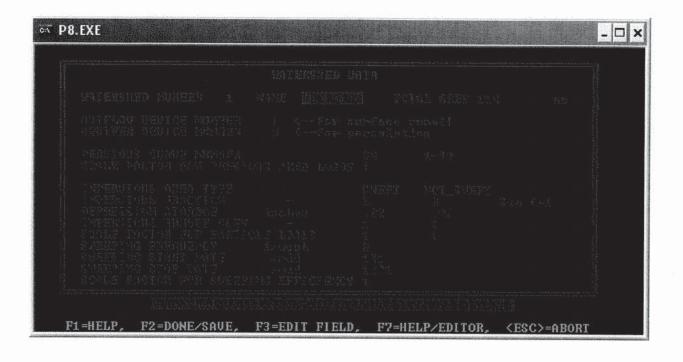


Convert the storage volume from the 1-year, 24-hour storm event into cubic feet. This volume of storage is then divided by the time required to settle the particle obtained by Stokes Law.

$$Q_{\text{max imum}}(cfs) = \frac{V_{\text{Storage}}(ft^3)}{Time(\text{sec})}$$


 $Q_{\mbox{\tiny tmaximum}}$  is the rate at which the basin must be released in order to obtain the expected efficiency.


\*See table on following page for particle settling velocities to calculate Time (sec)

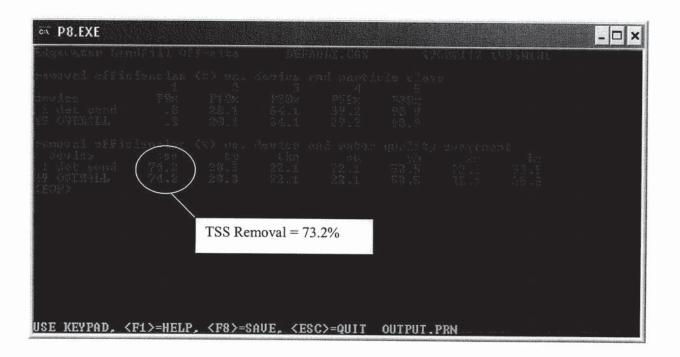

59

APPENDIX IV - BASIN EFFICIENCY 01/02/07

P8 - Sediment Removal Analysis Sedimentation / Detention Basin Edgewater Landfill

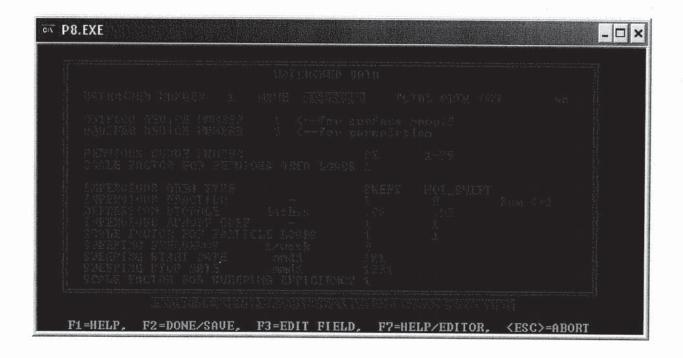







| ©√ P8.EXE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| DELEGION POND<br>DELEGION Rest SPY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| And Full States and Andreas Andreas<br>Andreas Andreas And |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| SERVER UNTERT - BANITE TROUB SOLL - SERVICE TREVIEW OF THESE<br>OFFICE STRUCTURE FROM THE COMPANY OFFICE OFFICE<br>UNTER SERVICE - South OFFICE OFFICE OFFICE OFFICE<br>SERVER BELLERY SET - BELLET A HOLE SCHOOLER LASHES OF<br>FLOWD COUL DESIDERS' SET AND AND OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| PARTICIAL RESOLAT. RECEDEN: 1 '7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| CUIPLOS DEVICE NC'SA INVILIA & MORAL & LUENTON &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| RACHMANESECCIONICALISMENTE ENCOLONICALISMENTEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| F1=HELP, F2=DONE/SAUE, F3=EDIT FIELD, F7=HELP/EDITOR, <esc>=ABORT</esc>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |

### KRG/ 1:\3391\Calculations\Stormwater\P8 - Sed-Det Basin.doc


P8 Sediment Removal Analysis Detention Basin for Off-site Stormwater Runon Edgewater Landfill

es P8.EXE - 🗆 × F1=HELP, F2=DONE/SAVE, F3=EDIT FIELD, F7=HELP/EDITOR, <ESC>=ABORT



62 ×

| ex P8.EXE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 🗆 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DETENTION POND<br>DETENTION POND<br>DETICE NO. 1 LOBEL STATEN SOTTON ELEW Foot 634.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CUNNACE STORAGE INFILTENTIC<br>AND CONSIGN (AD-St) STELLENT<br>SOUR BITTON (<br>VERMINERT FORL 2.3<br>FLOOD FUEL 7.5 7.5 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and a second sec |
| (a) and a sectors of a sector of a sect |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ANDIOLE SEADENI SAFEE MERINAN ). "1 S<br>ANDIOLE SEADENI SAFEE MERINAN A. MERINAN SAFEEDING (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SC>=ABORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



KRG/krg I:\3391\Calculations\Stormwater\P8 Offsite Det Basin.doc

63 <sup>2</sup>

| BT <sup>2</sup> |                        | Sheet No. |              |
|-----------------|------------------------|-----------|--------------|
| ina             |                        | Calc. No. |              |
|                 |                        | Rev. No.  |              |
| Job No. 3391    | Job Edgewater Landfill | By KRG    | Date 12/4/07 |
| Client          | Subject                | Chk'd.    | Date         |

Arother method of checking sodiant Renoval is to Detromine the sortage Area of the basin and the discharge. This ratio can be compared to the Table below. To settle the 0.015 mm particle, An Ratio of 3125 ts required.

8.16

## Erosion and Sediment Control Handbook

| TABLE 8.1 | Surface Area | Requirements of | Sediment | Traps and | Basins |
|-----------|--------------|-----------------|----------|-----------|--------|
|-----------|--------------|-----------------|----------|-----------|--------|

| Pa    | rticle size, mm |         | g velocity,<br>c (m/sec) | Surface area<br>ft <sup>2</sup> per ft <sup>3</sup> /sec<br>discharge | requirements,<br>(m <sup>2</sup> per m <sup>3</sup> /sec<br>discharge) |
|-------|-----------------|---------|--------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|
|       |                 |         |                          |                                                                       | uischarge)                                                             |
| 0.5   | (coarse sand)   | 0.19    | (0.058)                  | 6.3                                                                   | (20.7)                                                                 |
| 0.2   | (medium sand)   | 0.067   | (0.020)                  | 17.9                                                                  | (58.7)                                                                 |
| 0.1   | (fine sand)     | 0.023   | (0.0070)                 | 52.2                                                                  | (171.0)                                                                |
| 0.05  | (coarse silt)   | 0.0062  | (0.0019)                 | 193.6                                                                 | (635.0)                                                                |
| 0.02  | (medium silt)   | 0.00096 | (0.00029)                | 1,250.0                                                               | (4.101.0)                                                              |
| 0.01  | (fine silt)     | 0.00024 | (0.000073)               | 5,000.0                                                               | (16,404.0)                                                             |
| 0.005 | (clay)          | 0.00006 | (0.000018)               | 20,000.0                                                              | (65,617.0)                                                             |

With the proposed outlet, the outlet Flow From the 25-25 storm is 38,05 CFs at a elevation of 684.89. The surface area at this elevation = 3,6 Ac = 156816 FT<sup>2</sup>

$$\frac{156816F_{+}^{2}}{38.05F_{+}^{3}/s_{+}} = 4121F_{+}^{2}/s_{+}$$

Swale and Culvert Calculations

65 10

## Channel Calculator

| Solving for<br>Flowrate                                                                           | Trapezoidal<br>Depth of Flow<br>163.0000 cfs<br>0.0033  ft/ft<br>0.0000  in<br>120.0000  in<br>1.0000  ft/ft (V/H)<br>3.0000  ft/ft (V/H)                                                                                                 |
|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Velocity<br>Full Flowrate<br>Flow area<br>Flow perimeter<br>Hydraulic radius<br>Top width<br>Area | $\begin{array}{c} 38.3721 \text{ in } \\ 4.6626 \text{ fps} \\ 230.0749 \text{ cfs} \\ 34.9591 \text{ ft2} \\ 200.0008 \text{ in} \\ 25.1704 \text{ in} \\ 142.3837 \text{ in} \\ 44.6667 \text{ ft2} \\ 220.0737 \text{ in} \end{array}$ |

SWALE CARRIES FLOW From PHASES 1+2 + PHASEB+4-SouthWest

MAX FLOW Depth = 38.4"

FREE BOARD = 48"-33,4"= 9.6"

\_Page 1

tmp#7.txt

# Channel Calculator

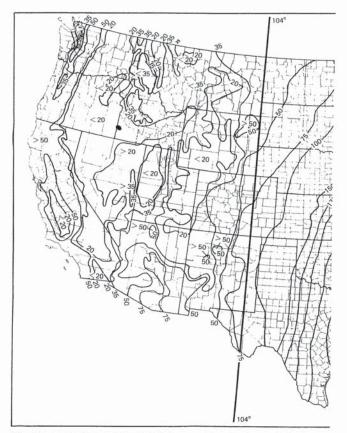
| Given Input Data:                                                                                                                       |                                                                                                                                             | SWALE LOCATED   |
|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Shape<br>Solving for<br>Flowrate<br>Slope<br>Manning's n<br>Height<br>Bottom width<br>Left slope                                        | Trapezoidal<br>Depth of Flow<br>30.7000 cfs<br>0.0100 ft/ft<br>0.0300<br>24.0000 in<br>120.0000 in<br>4.0000 ft/ft (V/H)                    | EAST OF PHASE 3 |
| Right slope                                                                                                                             | 3.0000 ft/ft (V/H)                                                                                                                          |                 |
| Computed Results:                                                                                                                       |                                                                                                                                             |                 |
| Depth<br>Velocity<br>Full Flowrate<br>Flow area<br>Flow perimeter<br>Hydraulic radius<br>Top width<br>Area<br>Perimeter<br>Percent full | 9.3523 in<br>3.8516 fps<br>137.0073 cfs<br>7.9708 ft2<br>139.4984 in<br>8.2280 in<br>125.4555 in<br>21.1667 ft2<br>170.0369 in<br>38.9680 % | 1% SLOPE        |

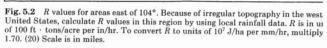
10'

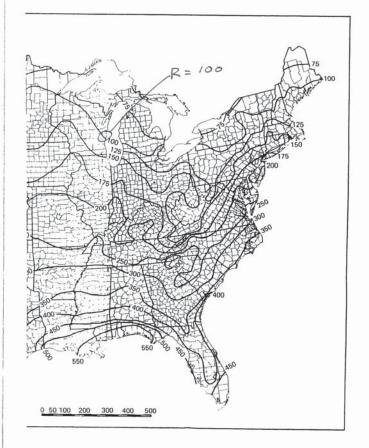
Page 1 67 tmp#9.txt

CULVERT Manning Pipe Calculator NEAR Given Input Data: LEACHATE DUMPOUT Shape ..... Circular Solving for ..... Flowrate Diameter ..... 24.0000 in Depth ..... 24.0000 in slope ..... 0.0140 ft/ft Manning's n ..... 0.0240 Computed Results: Flowrate ..... 14.4989 cfs Area ..... 3.1416 ft2 Wetted Area ..... 3.1416 ft2 75.3982 in 75.3982 in Wetted Perimeter ..... Perimeter ..... Velocity ..... Hydraulic Radius ..... 4.6151 fps 6.0000 in Percent Full ..... 100.0000 % Full flow Flowrate ..... 14.4989 cfs Full flow velocity ..... 4.6151 fps 25-YR PEAK RUNOFF FOR PHASE 3+4 SW = 55.4 cfs ONLY & of this watershed will Flow through this culuent DESIGN FLOW = 27.7 efs SLOPE = 1,4% ZAIL CMP FLOW = 14.5 CFS 2-24" CMP CAN HANDLE Z9CFS V

-Page 1


**Intermediate Diversion Berm Calculation** 


|                         | Sheet No. |                                |
|-------------------------|-----------|--------------------------------|
|                         | Calc. No. |                                |
|                         | Rev. No.  |                                |
| Job Edgewater Land fill | By KRG    | Date 12/3/07                   |
| Subject                 | Chk'd.    | Date                           |
|                         |           | Job Edgewater Land fill By KRG |


```
Determine IF INTERMEDIATE DIVERSION BERMS ARE
REQUIRED ON THE FINAL COVER.
  MAMTAIN SOLL LOSS to 3 TON/AR OR LESS.
  UNIVERSAL SOLL LOSS Equations
       A= R+KxLSx CKP
            A = Average Annual Soil Loss iton/AC.
           R= Ramfall + RUNOFE Erosivity index
           K = Soil Erodibility Factor, ton/Ac
           LS = SLOPE Leigth + Steepless factor
           C = cover Managent factor
          P: Practice factor
For the top of the Final Grades, Slope = 3%, Length = 330 Fr
        R=100
        K= 0.29
                   A=(100)(0.29)(0.41)(0.1)(0.9)
        LS= 0.41
        C= 0.1
                      = 1.07 ton/Ac ok
        P= 0.9
For SIDES OF Final Cover, Scope = 25% , Longth = 170'
    R= 100
    K=0.29 A= (100) (0.29) (7.66) (0.1) (0.09)
```

| 45= 1,66 |          |        |     |
|----------|----------|--------|-----|
| (= 0.1   | A = 2.00 | TON/AC | OK. |
| P=0.9    |          |        | 1   |

. No Intermediate SWALE IS REQUIRED.







#### Estimating Soil Loss

TABLE 5.6 C Values for Soil Loss Equation\*

| Type of cover                                       | C factor | Soil loss<br>reduction, % |
|-----------------------------------------------------|----------|---------------------------|
| None                                                | 1.0      | 0                         |
| Native vegetation (undisturbed)                     | 0.01     | 99                        |
| Temporary seedings:                                 |          |                           |
| 90% cover, annual grasses, no mulch                 | (0.1)    | 90                        |
| Wood fiber mulch, ¾ ton/acre (1.7 t/ha), with seed† | 0.5      | 50                        |
| Excelsior mat, jute†                                | 0.3      | 70                        |
| Straw mulch <sup>†</sup>                            |          |                           |
| 1.5 tons/acre (3.4 t/ha), tacked down               | 0.2      | 80                        |
| 4 tons/acre (9.0 t/ha), tacked down                 | 0.05     | 95                        |

The second secon

5.24

# Erosion and Sediment Control Handbook

 TABLE 5.7
 P Factors for Construction Sites (Adapted from Ref. 15)

| Surface condition              | P value |
|--------------------------------|---------|
| Compacted and smooth           | 1.0     |
| Trackwalked along contour*     | 1.3     |
| Trackwalked up and down slopet | 1.2     |
| Punched straw                  | 0.9     |
| Rough, irregular cut           | 0.9     |
| Loose to 12-in (30-cm) depth   | 0.9     |
| depth                          | 0.8     |

\*Tread marks oriented up and down slope.

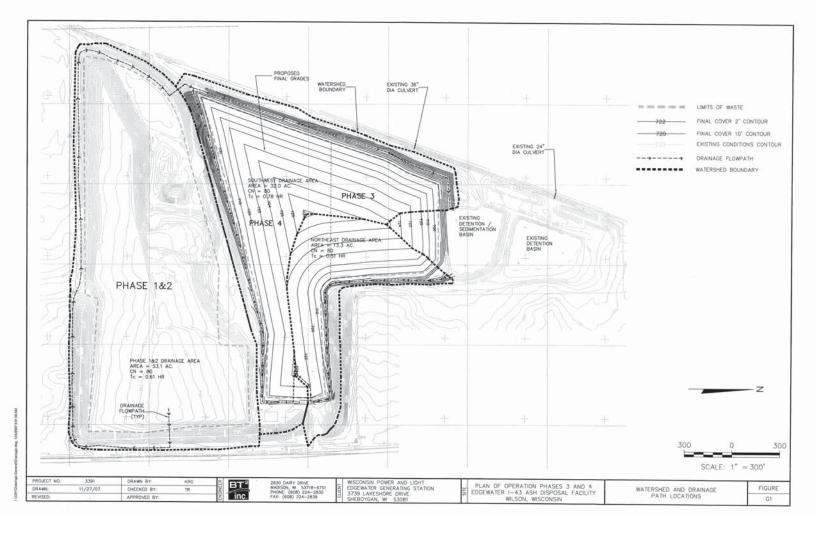
<sup>†</sup>Tread marks oriented parallel to contours, as in Figs. 6.9 and 6.10.

|                      | Organic metter o |                 | ontent  |  |
|----------------------|------------------|-----------------|---------|--|
| Texture class        | <b>40+5</b> %    | 2%              | 4%      |  |
|                      | K                | K               | K       |  |
| Sand                 | 0.05             | 0.03            | 0.02    |  |
| Fine sand            | -16              | .14             | .10     |  |
| Very fine sand       | .42              | .36             | .28     |  |
| Loamy sand           | .12              | .10             | - 08    |  |
| Loamy fine sand      | .24              | .20             | .16     |  |
| Loamy very fine sand | + 44             | .38             | .30     |  |
| Sandy losm           | -27              | - 24            | .19     |  |
| Fine sendy loem      | -35              | .30             | .24     |  |
| Very fine sandy loam | .47              | .41             | . 33    |  |
| Loem                 | -38              | - 34            | .29     |  |
| Silt loam            | . 48             | . 42            | +33     |  |
| Silt                 | .60              | .52             | -42     |  |
| Sandy clay loam      | .27              | (25)            | .21     |  |
| llay loam            | .28              | .25 A           | Ve= .21 |  |
| Silty clay loam      | .37              | (32) 0,1        |         |  |
| Sandy clay           | .14              | .13             | .12     |  |
| Hilty cley           | .25              | .23             |         |  |
| lay                  | >                | ene asserbill a | .19     |  |
| and a                |                  | 0.13-0.29       |         |  |

### TABLE 5. APPROXIMATE VALUES OF FACTOR K FOR USDA TEXTURAL CLASSES<sup>11</sup>

The values shown are estimated averages of broad ranges of specific-soil values. When a texture is near the borderline of two texture classes, use the average of the two K values. 5.23

|                | Slope |             |             | LS val      | ues for      | followin     | g slope      | lengths      | <i>l</i> , ft (m | )            |               |
|----------------|-------|-------------|-------------|-------------|--------------|--------------|--------------|--------------|------------------|--------------|---------------|
| Slope<br>ratio |       | 10<br>(3.0) | 20<br>(6.1) | 30<br>(9.1) | 40<br>(12.2) | 50<br>(15.2) | 60<br>(18.3) | 70<br>(21.3) | 80<br>(24.4)     | 90<br>(27.4) | 100<br>(30.5) |
|                | 0.5   | 0.06        | 0.07        | 0.07        | 0.08         | 0.08         | 0.09         | 0.09         | 0.09             | 0.09         | 0.10          |
| 100:1          | 1     | 0.08        | 0.09        | 0.10        | 0.10         | 0.11         | 0.11         | 0.12         | 0.12             | 0.12         | 0.12          |
| 100.1          | 2     | 0.10        | 0.12        | 0.14        | 0.15         | 0.16         | 0.17         | 0.18         | 0.19             | 0.19         | 0.20          |
|                | 3     | 0.14        | 0.18        | 0.20        | 0.22         | 0.23         | 0.25         | 0.26         | 0.27             | 0.28         | 0.29          |
|                | 4     | 0.16        | 0.21        | 0.25        | 0.28         | 0.30         | 0.33         | 0.35         | 0.37             | 0.38         | 0.40          |
| 20:1           | 5     | 0.17        | 0.24        | 0.29        | 0.34         | 0.38         | 0.41         | 0.45         | 0.48             | 0.51         | 0.53          |
|                | 6     | 0.21        | 0.30        | 0.37        | 0.43         | 0.48         | 0.52         | 0.56         | 0.60             | 0.64         | 0.67          |
|                | 7     | 0.26        | 0.37        | 0.45        | 0.52         | 0.58         | 0.64         | 0.69         | 0.74             | 0.78         | 0.82          |
| 12%:1          | 8     | 0.31        | 0.44        | 0.54        | 0.63         | 0.70         | 0.77         | 0.83         | 0.89             | 0.94         | 0.99          |
|                | 9     | 0.37        | 0.52        | 0.64        | 0.74         | 0.83         | 0.91         | 0.98         | 1.05             | 1.11         | 1.17          |
| 10:1           | 10    | 0.43        | 0.61        | 0.75        | 0.87         | 0.97         | 1.06         | 1.15         | 1.22             | 1.30         | 1.37          |
|                | 11    | 0.50        | 0.71        | 0.86        | 1.00         | 1.12         | 1.22         | 1.32         | 1.41             | 1.50         | 1.58          |
| 8:1            | 12.5  | 0.61        | 0.86        | 1.05        | 1.22         | 1.36         | 1.49         | 1.61         | 1.72             | 1.82         | 1.92          |
|                | 15    | 0.81        | 1.14        | 1.40        | 1.62         | 1.81         | 1.98         | 2.14         | 2.29             | 2.43         | 2.56          |
| 6:1            | 16.7  | 0.96        | 1.36        | 1.67        | 1.92         | 2.15         | 2.36         | 2.54         | 2.72             | 2.88         | 3.04          |
| 5:1            | 20    | 1.29        | 1.82        | 2.23        | 2.58         | 2.88         | 3.16         | 3.41         | 3.65             | 3.87         | 4.08          |
| 4%:1           | 22    | 1.51        | 2.13        | 2.61        | 3.02         | 3.37         | 3.69         | 3.99         | 4.27             | 4.53         | 4.77          |
| 4:1            | 25    | 1.86        | 2.63        | 3.23        | 3.73         | 4.16         | 4.56         | 4.93         | 5.27             | 5.59         | 5.89          |
|                | 30    | 2.51        | 3.56        | 4.36        | 5.03         | 5.62         | 6.16         | 6.65         | 7.11             | 7.54         | 7.95          |
| 3:1            | 33.3  | 2.98        | 4.22        | 5.17        | 5.96         | 6.67         | 7.30         | 7.89         | 8.43             | 8.95         | 9.43          |
|                | 35    | 3.23        | 4.57        | 5.60        | 6.46         | 7.23         | 7.92         | 8.55         | 9.14             | 9.70         | 10.22         |
| 2%:1           | 40    | 4.00        | 5.66        | 6.93        | 8.00         | 8.95         | 9.80         | 10.59        | 11.32            | 12.00        | 12.65         |
|                | 45    | 4.81        | 6.80        | 8.33        | 9.61         | 10.75        | 11.77        | 12.72        | 13.60            | 14.42        | 15.20         |
| 2:1            | 50    | 5.64        | 7.97        | 9.76        | 11.27        | 12.60        | 13.81        | 14.91        | 15.94            | 16.91        | 17.82         |
|                | 55    | 6.48        | 9.16        | 11.22       | 12.96        | 14.48        | 15.87        | 17.14        | 18.32            | 19.43        | 20.48         |
| 1%:1           | 57    | 6.82        | 9.64        | 11.80       | 13.63        | 15.24        | 16.69        | 18.03        | 19.28            | 20.45        | 21.58         |
|                | 60    | 7.32        | 10.35       | 12.68       | 14.64        | 16.37        | 17.93        | 19.37        | 20.71            | 21.96        | 23.15         |
| 1%:1           | 66.7  | 8.44        | 11.93       | 14.61       | 16.88        | 18.87        | 20.67        | 22.32        | 23.87            | 25.31        | 26.68         |
|                | 70    | 8.98        | 12.70       | 15.55       | 17.96        | 20.08        | 21.99        | 23.75        | 25.39            | 26.93        | 28.39         |
|                | 75    | 9.78        | 13.83       | 16.94       | 19.56        | 21.87        | 23.95        | 25.87        | 27.66            | 29.34        | 30.92         |
| 1%:1           | 80    | 10.55       | 14.93       | 18.28       | 21.11        | 23.60        | 25.85        | 27.93        | 29.85            | 31.66        | 33.38         |
|                | 85    | 11.30       | 15.98       | 19.58       | 22.61        | 25.27        | 27.69        | 29.90        | 31.97            | 33.91        | 35.74         |
|                | 90    | 12.02       | 17.00       | 20.82       | 24.04        | 26.88        | 29.44        | 31.80        | 34.00            | 36.06        | 38.01         |
|                | 95    | 12.71       | 17.97       | 22.01       | 25.41        | 28.41        | 31.12        | 33.62        | 35.94            | 38.12        | 40.18         |
| 1:1            | 100   | 13.36       | 18.89       | 23.14       | 26.72        | 29.87        | 32.72        | 35.34        | 37.78            | 40.08        | 42.24         |


\*Calculated from

LS =  $\left(\frac{65.41 \times s^2}{s^2 + 10,000} + \frac{4.56 \times s}{\sqrt{s^2 + 10,000}} + 0.065\right) \left(\frac{l}{72.5}\right)^m$ 

| 1211-11-22 | LS values for following slope lengths $l$ , ft (m) |       |       |         |        |       |       |        |        |        |              |
|------------|----------------------------------------------------|-------|-------|---------|--------|-------|-------|--------|--------|--------|--------------|
| 150        | 200                                                | 250   | 300   | 350     | 400    | 450   | 500   | 600    | 700    | 800    | 900<br>(274) |
| (46)       | (61)                                               | (76)  | (91)  | (107)   | (122)  | (137) | (152) | (183)  | (213)  | (244)  | (274)        |
| 0.10       | 0.11                                               | 0.11  | 0.12  | 0.12    | 0.13   | 0.13  | 0.13  | 0.14   | 0.14   | 0.14   | 0.15         |
| 0.14       | 0.14                                               | 0.15  | 0.16  | 0.16    | 0.16   | 0.17  | 0.17  | 0.18   | 0.18   | 0.19   | 0.19         |
| 0.23       | 0.25                                               | 0.26  | 0.28  | 0.29    | 0.30   | 0.32  | 0.33  | 0.34   | 0.36   | 0.37   | 0.39         |
| 0.32       | 0.35                                               | 0.38  | (0.40 | 0.42    | > 0.43 | 0.45  | 0.46  | 0.49   | 0.51   | 0.54   | 0.55         |
| 0.47       | 0.53                                               | 0.58  | 0.62  | 0.66    | 0.70   | 0.73  | 0.76  | 0.82   | 0.87   | 0.92   | 0.96         |
| 0.66       | 0.76                                               | 0.85  | 0.93  | 1.00    | 1.07   | 1.13  | 1.20  | 1.31   | 1.42   | 1.51   | 1.60         |
| 0.82       | 0.95                                               | 1.06  | 1.16  | 1.26    | 1.34   | 1.43  | 1.50  | 1.65   | 1.78   | 1.90   | 2.02         |
| 1.01       | 1.17                                               | 1.30  | 1.43  | 1.54    | 1.65   | 1.75  | 1.84  | 2.02   | 2.18   | 2.33   | 2.47         |
| 1.21       | 1.40                                               | 1.57  | 1.72  | 1.85    | 1.98   | 2.10  | 2.22  | 2.43   | 2.62   | 2.80   | 2.97         |
| 1.44       | 1.66                                               | 1.85  | 2.03  | 2.19    | 2.35   | 2.49  | 2.62  | 2.87   | 3.10   | 3.32   | 3.52         |
| 1.68       | 1.94                                               | 2.16  | 2.37  | \$ 2.56 | 2.74   | 2.90  | 3.06  | 3.35   | 3.62   | 3.87   | 4.11         |
| 1.93       | 2.23                                               | 2.50  | 2.74  | 2.95    | 3.16   | 3.35  | 3.53  | 3.87   | 4.18   | 4.47   | 4.74         |
| 2.35       | 2.72                                               | 3.04  | 3.33  | 3.59    | 3.84   | 4.08  | 4.30  | 4.71   | 5.08   | 5.43   | 5.76         |
| 3.13       | 3.62                                               | 4.05  | 4.43  | 4.79    | 5.12   | 5.43  | 5.72  | 6.27   | 6.77   | 7.24   | 7.68         |
| 3.72       | 4.30                                               | 4.81  | 5.27  | 5.69    | 6.08   | 6.45  | 6.80  | 7.45   | 8.04   | 8.60   | 9.12         |
| 5.00       | 5.77                                               | 6.45  | 7.06  | 7.63    | 8.16   | 8.65  | 9.12  | 9.99   | 10.79  | 11.54  | 12.24        |
| 5.84       | 6.75                                               | 7.54  | 8.26  | 8.92    |        | 10.12 |       | 11.68  | 12.62  | 13.49  | 14.31        |
| (7.21      | 8.33                                               | 9.31  | 10.20 | 11.02   | 11.78  | 12.49 | 13.17 | 14.43  | 15.58  | 16.66  | 17.67        |
| 9.74       | 11.25                                              | 12.57 | 13.77 | 14.88   | 15.91  | 16.87 | 17.78 | 19.48  | 21.04  | 22.49  | 23.86        |
| 11.55      | 13.34                                              | 14.91 | 16.33 | 17.64   | 18.86  | 20.00 | 21.09 | 23.10  | 24.95  | 26.67  | 28.29        |
| 12.52      | 14.46                                              | 16.16 | 17.70 | 19.12   | 20.44  | 21.68 | 22.86 | 25.04  | 27.04  | 28.91  | 30.67        |
| 15.50      | 17.89                                              | 20.01 | 21.91 | 23.67   | 25.30  | 26.84 | 28.29 | 30.99  | 33.48  | 35.79  | 37.96        |
| 18.62      | 21.50                                              | 24.03 |       | 28.44   |        |       |       | 37.23  | 40.22  | 42.99  | 45.60        |
| 21.83      | 25.21                                              | 28.18 | 30.87 | 33.34   | 35.65  | 37.81 | 39.85 | 43.66  | 47.16  | 50.41  | 53.47        |
|            |                                                    |       |       | 38.32   | 40.97  | 43.45 | 45.80 | 50.18  | 54.20  | 57.94  | 61.45        |
|            |                                                    |       |       | 40.32   |        |       |       | 52.79  | 57.02  | 60.96  | 64.66        |
| 28.35      | 32.74                                              | 36.60 | 40.10 | 43.31   | 46.30  | 49.11 | 51.77 | 56.71  | 61.25  | 65.48  | 69.45        |
| 32.68      | 37.74                                              | 42.19 | 46.22 | 49.92   | 53.37  | 56.60 | 59.66 | 65.36  | 70.60  | 75.47  | 80.05        |
|            |                                                    |       |       |         |        |       | 63.48 | 69.54  | 75.12  | 80.30  | 85.17        |
|            |                                                    |       |       |         |        |       | 69.15 | 75.75  | 81.82  | 87.46  | 92.77        |
| 40.88      | 47.20                                              | 52.77 | 57.81 | 62.44   | 66.75  | 70.80 | 74.63 | 81.76  | 88.31  |        | 100.13       |
|            |                                                    |       |       |         |        |       | 79.92 | 87.55  |        | 101.09 |              |
|            |                                                    |       |       |         |        |       | 84.99 |        |        | 107.51 |              |
| 49.21      | 56.82                                              | 63.53 | 69.59 | 75.17   | 80.36  | 85.23 | 89.84 |        |        | 113.64 |              |
| 51.74      | 59.74                                              | 66,79 | 73.17 | 79.03   | 84.49  | 89.61 | 94.46 | 103.48 | 111.77 | 119.48 | 126.73       |

TABLE 5.5 LS Values\* (10)

73 end





|         | CS ENG         | JILLI NO. |                        | 1.01     | 5   |      |         |
|---------|----------------|-----------|------------------------|----------|-----|------|---------|
|         |                | CALC. NO. |                        |          |     |      |         |
|         |                |           |                        | REV. NO. |     |      |         |
| Job No. | 25214060       | Job       | 143 Plan Modification  | BY       | KRG | DATE | 1/30/15 |
| Client  | Alliant Energy | Subject   | Storm Water Management | CHK'D.   | ZB  | DATE | 2/10/15 |

1 of 3

### **Storm Water Management Calculations**

### Purpose:

The purpose of the storm water runoff calculations is to demonstrate that the proposed landfill surface water management system design meets the requirements of the Wisconsin Administrative Code, 504.09.

### **Existing Features:**

Currently Phase 1 and 2 of the landfill have final cover in place. The final cover includes a grass surface. Phase 3, Module 1 has been constructed and is full of ash but does not have final cover in place. Phase 4, Module 1 was constructed in the summer of 2014 and is accepting ash.

Surface water runoff from final cover areas discharges to an existing sedimentation basin at the north end of the landfill. Surface water runoff that comes in contact with ash discharges to the contact water basin located along the western side of the facility, which is managed separately from the non-contact runoff (refer to Section 2.7 of the Plan Modification report). An additional existing detention basin is located north of the landfill detention/sedimentation basin to treat off-site runon. Because the plan modification does not affect off-site runon or the existing detention basin, these storm water management calculations do not include modeling of these areas/features.

From the discharge of the existing detention/sedimentation basins, runoff ultimately discharges off-site via two culverts: 1) a 36-inch diameter culvert under the railroad tracks to the west of the site and 2) a 24-inch diameter culvert under the railroad tracks to the west of the site. The culverts are shown on Figure F1.

## Approach:

### **Final Cover Soil Loss**

The Universal Soil Loss Equation (USLE) was used to estimate soil loss along the final cover slopes. The USLE estimates the final cover soil erosion based on the erodibility of the soil, the rainfall and runoff erosivity, the slope steepness, cover management, and soil practice factors. A maximum soil loss of 3 tons per acre is considered acceptable.

### Hydrograph Generation

To properly size the storm water management features, runoff hydrographs for the 25-year, 24-hour, and 100-year, 24-hour, storm events were developed. HydroCAD was used to model the storm water management system and develop the hydrographs using TR-20 methodologies. The model is designed to simulate the surface runoff response of a watershed to a precipitation event. Input parameters for the model include precipitation depth for the design storm event, contributing drainage areas, runoff curve numbers, time of concentration, and travel time.

The final cover watersheds are shown on Figures F-1 and F-2.

### Perimeter Ditch and Diversion Berm Sizing

Perimeter ditches and diversion berms were sized for the 25-year, 24-hour storm event using the Manning's equation to determine the depth of flow and velocity in the berm/ditch based on the berm/ditch geometry and peak flow in the berm/ditch (as determined by the Hydrograph Generation calculations). The drainage areas for the diversion berms are included in Figure F2.

### Downslope Flume and Energy Dissipator Sizing

The downslope flume inlets were sized for the 25-year, 24-hour storm event using the orifice equation. The downslope flume pipes were sized based on the peak flow conditions in the pipe using Manning's



Job

Subject

| RS                     | SHEET NO. |     | 2 of | 3       |
|------------------------|-----------|-----|------|---------|
|                        | CALC. NO. |     |      |         |
|                        | REV. NO.  |     |      |         |
| 143 Plan Modification  | BY        | KRG | DATE | 1/30/15 |
| Storm Water Management | CHK'D.    | ZB  | DATE | 2/10/15 |

equation. Energy dissipators were sized using tables from the reference book "Hydraulic Design of Energy Dissipators for Culvert and Channels," US Department of Transportation, Federal Highway Administration, July 2006.

### Culvert Sizing

Job No. 25214060

Alliant Energy

Client

The culverts were sized for the 25-year, 24-hour storm event using the HY-8 computer model developed by the US Department of Transportation, Federal Highway Administration. Culvert outlet protection was sized using guidance from the Wisconsin DOT Permissible Velocities for Riprap Lined Ditches, Procedure 13-30-10.

### Sedimentation Basin Sizing

The sedimentation basin sizing process involved determining an appropriate ratio of surface area to flow rate that would allow particles to settle out during a design storm event. The sedimentation basins were sized for the 25-year, 24-hour storm event. The sedimentation basin emergency spillway were sized for the 100-year, 24-hour storm event.

A table presented in the "Erosion and Sediment Control Handbook" (Goldman, et. Al., 1986) provides the surface area-to-discharge ratio required to achieve settlement of the desired particle sizes.

The HydroCAD model was used in conjunction with accepted formulas and engineering calculations to evaluate the ability of the sedimentation basin to meet the requirements of NR 504.09.

### **Key Assumptions:**

• Runoff curve numbers were based on tables presented in Urban Hydrology for Small Watersheds, and were assumed as follows

| Cover Type           | CN                                          |
|----------------------|---------------------------------------------|
| Landfill final cover | 79 – Open spaces (lawns, parks, etc) in     |
|                      | fair condition with hydrologic soil group C |
| Sedimentation basin  | 98 – Water surface                          |

• A Type II rainfall distribution was used, based on The NOAA Atlas 14, Precipitation Frequency Data Server for Sheboygan Falls, WI (page 4). The following precipitation depths were assumed.

| Storm Event       | Precipitation Depth (inches) |
|-------------------|------------------------------|
| 25-year, 24-hour  | 4.79                         |
| 100-year, 24-hour | 6.55                         |

• Other assumptions are included with the calculations attached to this appendix.

### **Results:**

The proposed landfill surface water management system design meets the requirements of the Wisconsin Administrative Code, 504.09. Further details are provided below.

## Soil Loss

The USLE calculations indicate a minimal soil loss rate along the 3% and 4:1 final cover sideslopes. Although the calculations indicate no diversion berms are needed, berms have been designed upslope of the final cover slope transition. Experience has shown these transition points are sometimes more susceptible to erosion, so the added berms provide protection. Refer to the USLE Calculations section of this appendix for the detailed calculations.

# SCS ENGINEERS

Job

Subject

| RS                     | SHEET NO. |     | 3 of 3 |         |  |  |
|------------------------|-----------|-----|--------|---------|--|--|
| W.S.                   | CALC. NO. |     |        |         |  |  |
|                        | REV. NO.  |     |        |         |  |  |
| 143 Plan Modification  | ВҮ        | KRG | DATE   | 1/30/15 |  |  |
| Storm Water Management | CHK'D.    | ZB  | DATE   | 2/10/15 |  |  |
|                        |           |     |        |         |  |  |

## Hydrograph Generation

Alliant Energy

Job No. 25214060

Client

The hydrograph modeling results for the 25-year and 100-year, 24-hour storm events are included the Hydrograph Generation section of this appendix.

### Perimeter Ditch and Diversion Berm Sizing

The diversion berms will be constructed as shown on the plan set. The diversion berms will maintain a minimum 0.5 foot freeboard. Refer to the Diversion Berm and Ditch Sizing section of this appendix for the detailed calculations.

The perimeter ditches will be constructed as shown on the plan set. The perimeter ditches will contain the runoff from the 25-year, 24-hour storm event and maintain a minimum 0.5 foot of freeboard. Erosion matting will be used where ditch velocities exceed 5 feet per second. Refer to the Diversion Berm and Ditch Sizing section of this appendix for the detailed calculations.

## Downslope Flume and Energy Dissipator Sizing

The downslope flumes will be constructed as shown on the plan set. The downslope flumes are designed to accommodate the surface water runoff from the final cover for a 25-year, 24-hour storm event. Energy dissipators at the bottom of the downslope flumes have been designed to handle the peak velocities, and additional riprap protection has been sized for the energy dissipator outlets. Refer to the Downslope Flume and Energy Dissipator Sizing section of this appendix for the detailed calculations.

### Culvert Sizing

The culverts are designed to accommodate the flows from the perimeter ditches for the 25-year, 24-hour storm event. Riprap outlet protection has been sized based on the discharge rates and outlet velocities. Refer to the Culvert Sizing section of this appendix for the detailed calculations.

### Sedimentation Basin Sizing

The outlet structure for the detention/sedimentation basin is sized to control runoff from the 25-year, 24-hour storm event, assuming the starting water elevation is at the bottom of the lowest outlet structure opening. The sedimentation basin is designed to settle out particles 0.01 microns and larger in diameter. Refer to the Sedimentation Basin Sizing section of this appendix for the detailed calculations. The emergency spillways have been designed to pass the 100-year, 24-hour storm event.

I:\25214060\Calculations\Stormwater\SW Calcs Writeup 021115.doc



NOAA Atlas 14, Volume 8, Version 2 Location name: Sheboygan Falls, Wisconsin, US\* Latitude: 43.6942°, Longitude: -87.7645° Elevation: 718 ft\* \* source: Google Maps



A

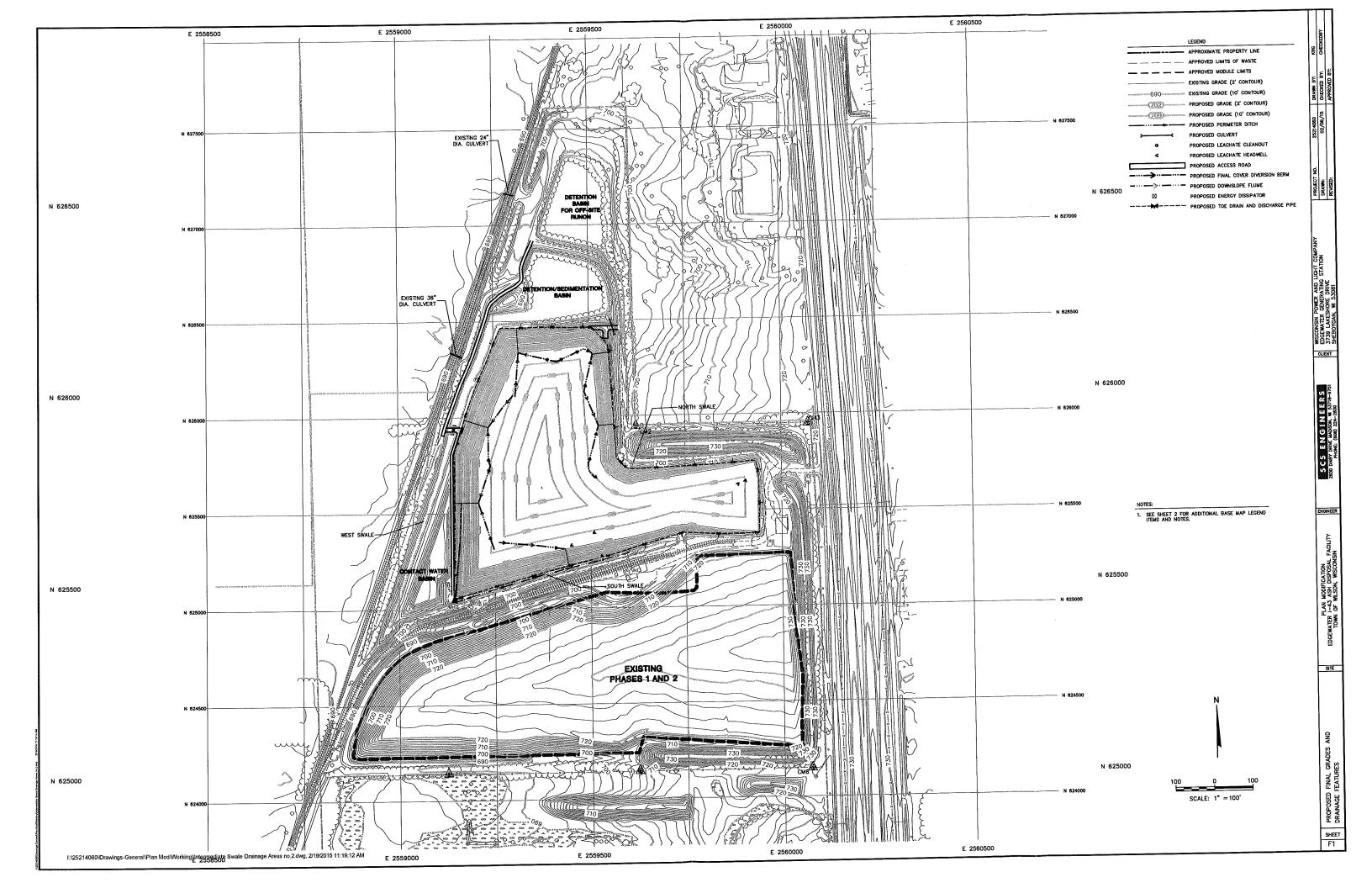
### POINT PRECIPITATION FREQUENCY ESTIMATES

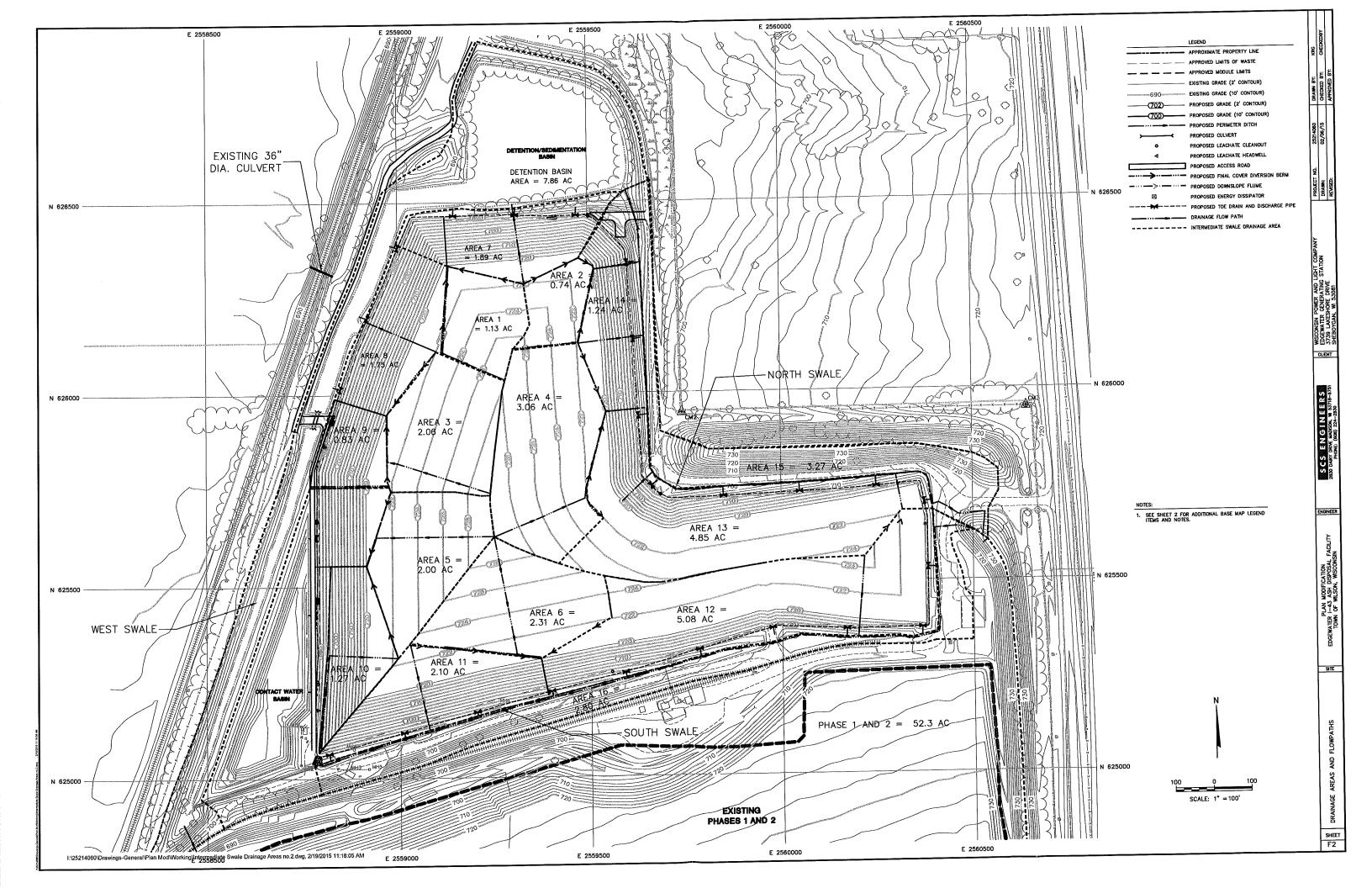
Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland

PF\_tabular | PF\_graphical | Maps\_&\_aerials

## PF tabular


| PDS-     | PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) <sup>1</sup> |                               |                               |                               |                               |                               |                              |                              |                              |                            |
|----------|----------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|----------------------------|
| Duration |                                                                                                          |                               |                               | Average                       | e recurrence                  | interval (ye                  | ars)                         |                              |                              |                            |
| Duration | 1                                                                                                        | 2                             | 5                             | 10                            | 25                            | 50                            | 100                          | 200                          | 500                          | 1000                       |
| 5-min    | <b>0.325</b><br>(0.258-0.409)                                                                            | <b>0.388</b><br>(0.307-0.488) | <b>0.488</b><br>(0.385-0.615) | <b>0.568</b><br>(0.447-0.717) | <b>0.674</b><br>(0.514-0.858) | <b>0.753</b><br>(0.565-0.966) | <b>0.829</b><br>(0.607-1.07) | <b>0.903</b><br>(0.641-1.19) | <b>0.997</b><br>(0.688-1.33) | <b>1.06</b><br>(0.722-1.43 |
| 10-min   | <b>0.476</b><br>(0.377-0.599)                                                                            | <b>0.568</b><br>(0.450-0.715) | <b>0.714</b><br>(0.564-0.900) | <b>0.832</b> (0.654-1.05)     | <b>0.987</b><br>(0.753-1.26)  | <b>1.10</b><br>(0.828-1.41)   | <b>1.21</b><br>(0.889-1.57)  | <b>1.32</b><br>(0.939-1.74)  | <b>1.46</b><br>(1.01-1.94)   | <b>1.56</b><br>(1.06-2.10) |
| 15-min   | <b>0.581</b><br>(0.460-0.730)                                                                            | <b>0.693</b><br>(0.549-0.872) | <b>0.871</b> (0.688-1.10)     | <b>1.01</b><br>(0.798-1.28)   | <b>1.20</b><br>(0.918-1.53)   | <b>1.34</b> (1.01-1.72)       | <b>1.48</b> (1.08-1.92)      | <b>1.61</b><br>(1.15-2.12)   | <b>1.78</b> (1.23-2.37)      | <b>1.90</b><br>(1.29-2.56) |
| 30-min   | <b>0.805</b><br>(0.638-1.01)                                                                             | <b>0.963</b><br>(0.763-1.21)  | <b>1.21</b><br>(0.959-1.53)   | <b>1.41</b><br>(1.11-1.78)    | <b>1.68</b><br>(1.28-2.13)    | <b>1.87</b><br>(1.40-2.39)    | <b>2.05</b> (1.50-2.66)      | <b>2.23</b> (1.58-2.92)      | <b>2.45</b> (1.69-3.26)      | <b>2.60</b><br>(1.77-3.51  |
| 60-min   | <b>1.04</b><br>(0.823-1.31)                                                                              | <b>1.24</b><br>(0.978-1.55)   | <b>1.55</b> (1.23-1.96)       | <b>1.81</b><br>(1.43-2.29)    | <b>2.16</b> (1.66-2.76)       | <b>2.43</b><br>(1.83-3.13)    | <b>2.69</b> (1.98-3.50)      | <b>2.96</b> (2.10-3.90)      | <b>3.30</b><br>(2.28-4.41)   | <b>3.56</b> (2.42-4.79     |
| 2-hr     | <b>1.27</b><br>(1.02-1.58)                                                                               | <b>1.51</b><br>(1.21-1.87)    | <b>1.89</b><br>(1.51-2.35)    | <b>2.21</b><br>(1.76-2.75)    | <b>2.65</b> (2.06-3.36)       | <b>3.00</b><br>(2.28-3.82)    | <b>3.34</b><br>(2.48-4.31)   | <b>3.69</b><br>(2.65-4.83)   | <b>4.16</b> (2.90-5.52)      | <b>4.51</b><br>(3.08-6.04  |
| 3-hr     | <b>1.42</b> (1.15-1.75)                                                                                  | <b>1.67</b> (1.35-2.06)       | <b>2.09</b><br>(1.69-2.58)    | <b>2.45</b><br>(1.97-3.03)    | <b>2.97</b><br>(2.33-3.75)    | <b>3.38</b><br>(2.60-4.30)    | <b>3.81</b><br>(2.85-4.90)   | <b>4.25</b><br>(3.08-5.55)   | <b>4.86</b><br>(3.41-6.44)   | <b>5.34</b><br>(3.66-7.11) |
| 6-hr     | <b>1.69</b><br>(1.39-2.05)                                                                               | <b>1.96</b><br>(1.61-2.39)    | <b>2.45</b><br>(2.00-2.98)    | <b>2.89</b><br>(2.35-3.52)    | <b>3.54</b><br>(2.83-4.46)    | <b>4.09</b><br>(3.19-5.17)    | <b>4.67</b><br>(3.54-5.99)   | <b>5.30</b><br>(3.88-6.90)   | <b>6.19</b><br>(4.39-8.18)   | <b>6.91</b><br>(4.77-9.15  |
| 12-hr    | <b>1.97</b><br>(1.64-2.36)                                                                               | <b>2.27</b><br>(1.89-2.73)    | <b>2.83</b> (2.34-3.40)       | <b>3.35</b><br>(2.76-4.04)    | <b>4.16</b><br>(3.38-5.21)    | <b>4.85</b><br>(3.84-6.10)    | <b>5.61</b> (4.31-7.15)      | <b>6.44</b><br>(4.77-8.34)   | <b>7.63</b> (5.46-10.0)      | <b>8.60</b> (5.98-11.3     |
| 24-hr    | <b>2.26</b><br>(1.90-2.67)                                                                               | <b>2.59</b><br>(2.18-3.07)    | <b>3.23</b><br>(2.71-3.82)    | <b>3.84</b><br>(3.20-4.56)    | <b>4.79</b><br>(3.95-5.96)    | <b>5.63</b> (4.51-7.01)       | <b>6.55</b> (5.09-8.28)      | <b>7.57</b><br>(5.66-9.73)   | <b>9.04</b><br>(6.52-11.8)   | <b>10.3</b> (7.18-13.4     |
| 2-day    | <b>2.57</b> (2.20-3.00)                                                                                  | <b>2.93</b><br>(2.50-3.42)    | <b>3.63</b><br>(3.08-4.23)    | <b>4.30</b><br>(3.63-5.04)    | <b>5.37</b><br>(4.48-6.60)    | <b>6.31</b><br>(5.12-7.79)    | <b>7.36</b> (5.78-9.22)      | <b>8.52</b><br>(6.43-10.9)   | <b>10.2</b><br>(7.43-13.3)   | <b>11.6</b> (8.18-15.1     |
| 3-day    | <b>2.82</b> (2.43-3.26)                                                                                  | <b>3.18</b><br>(2.73-3.67)    | <b>3.87</b><br>(3.31-4.48)    | <b>4.55</b><br>(3.88-5.29)    | <b>5.65</b><br>(4.75-6.90)    | <b>6.62</b> (5.41-8.11)       | <b>7.70</b> (6.08-9.60)      | <b>8.90</b><br>(6.76-11.3)   | <b>10.7</b><br>(7.80-13.8)   | <b>12.1</b><br>(8.58-15.7  |
| 4-day    | <b>3.03</b><br>(2.63-3.48)                                                                               | <b>3.40</b><br>(2.93-3.90)    | <b>4.10</b><br>(3.53-4.72)    | <b>4.79</b><br>(4.11-5.54)    | <b>5.91</b><br>(4.99-7.17)    | <b>6.89</b><br>(5.66-8.40)    | <b>7.99</b><br>(6.34-9.92)   | <b>9.22</b> (7.02-11.7)      | <b>11.0</b> (8.07-14.2)      | <b>12.5</b> (8.86-16.1     |
| 7-day    | <b>3.55</b><br>(3.10-4.03)                                                                               | <b>3.98</b><br>(3.48-4.53)    | <b>4.80</b><br>(4.18-5.46)    | <b>5.57</b><br>(4.82-6.36)    | <b>6.77</b> (5.75-8.09)       | <b>7.81</b> (6.46-9.39)       | <b>8.95</b> (7.14-11.0)      | <b>10.2</b> (7.81-12.8)      | <b>12.0</b><br>(8.84-15.4)   | <b>13.5</b> (9.62-17.3     |
| 10-day   | <b>4.01</b><br>(3.54-4.52)                                                                               | <b>4.52</b> (3.98-5.10)       | <b>5.43</b><br>(4.76-6.14)    | <b>6.27</b><br>(5.47-7.11)    | <b>7.54</b><br>(6.42-8.90)    | <b>8.61</b><br>(7.14-10.3)    | <b>9.77</b><br>(7.82-11.9)   | <b>11.0</b> (8.46-13.7)      | <b>12.8</b><br>(9.46-16.3)   | <b>14.3</b> (10.2-18.2)    |
| 20-day   | <b>5.45</b><br>(4.87-6.05)                                                                               | <b>6.09</b><br>(5.44-6.77)    | <b>7.20</b> (6.41-8.02)       | <b>8.16</b><br>(7.21-9.12)    | <b>9.54</b> (8.18-11.0)       | <b>10.7</b> (8.91-12.4)       | <b>11.8</b><br>(9.53-14.1)   | <b>13.0</b><br>(10.1-16.0)   | <b>14.7</b><br>(10.9-18.5)   | <b>16.0</b> (11.6-20.4     |
| 30-day   | <b>6.71</b><br>(6.05-7.38)                                                                               | <b>7.47</b><br>(6.73-8.23)    | <b>8.74</b><br>(7.84-9.65)    | <b>9.80</b><br>(8.74-10.9)    | <b>11.3</b><br>(9.71-12.9)    | <b>12.4</b><br>(10.4-14.4)    | <b>13.6</b><br>(11.0-16.1)   | <b>14.8</b><br>(11.5-17.9)   | <b>16.4</b><br>(12.2-20.4)   | <b>17.6</b> (12.7-22.2     |
| 45-day   | <b>8.35</b><br>(7.59-9.11)                                                                               | <b>9.29</b><br>(8.44-10.1)    | <b>10.8</b><br>(9.78-11.8)    | <b>12.0</b><br>(10.8-13.2)    | <b>13.7</b><br>(11.8-15.4)    | <b>14.9</b><br>(12.6-17.0)    | <b>16.1</b><br>(13.1-18.8)   | <b>17.2</b> (13.4-20.7)      | <b>18.7</b><br>(14.0-23.1)   | <b>19.8</b> (14.4-24.9     |
| 60-day   | <b>9.78</b> (8.94-10.6)                                                                                  | <b>10.9</b> (9.96-11.8)       | <b>12.7</b><br>(11.5-13.8)    | <b>14.0</b><br>(12.7-15.3)    | <b>15.8</b><br>(13.7-17.7)    | <b>17.1</b> (14.5-19.4)       | <b>18.3</b> (15.0-21.3)      | <b>19.5</b><br>(15.2-23.3)   | <b>20.9</b> (15.6-25.7)      | <b>21.9</b> (15.9-27.5     |


<sup>1</sup> Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top





**USLE** Calculation

| SCS ENG               | INEERS                                                                                                          | Sheet No. | 1 of 6        |
|-----------------------|-----------------------------------------------------------------------------------------------------------------|-----------|---------------|
|                       | en and an and a second seco | Calc. No. |               |
|                       |                                                                                                                 | Rev. No.  |               |
| Job No. 25214060      | Job: 1-43 Landfill Plan Modification                                                                            | By: KRG   | Date: 1/30/15 |
| Client: Alient Energy | Subject: Soil Loss Along Final Cover                                                                            | Chk'd:    | Date:         |

### **Universal Soil Loss Equation (USLE) Calculation**

Use USLE to estimate soil loss along the 3% final cover slope, with the goal of maintaining  $\leq$  3 ton/acre of soil loss along the final cover.

#### **USLE Equation:**

A = R \* K \* LS \* C \* P

where: A = Average annual soil loss, ton/acre

R = Rainfall and runoff erosivity index

- K = Soil erodibility factor, tons/acre
- LS = Slope length and steepness factor
- C = Cover management factor
- P = Practice factor

The LS factor is a function of the slope and flow length.

LS = L \* S

where:  $L = Slope length factor = (1/72.6)^m$ 

where: I = Slope length, feet

m = Slope-length exponent(m = 0.3 for slopes of 1% to 3%)m = 0.4 for slopes of 3.5% to 4.5%

= 0.5 for slopes greater than 5%

$$S = Slope steepness factor = (65.41s^2/(s^2 + 10,000)) + (4.56s/(SQRT(s^2 + 10,000))) + 0.065$$

where: s = Slope, in percent

The soil type chosen for selecting the appropriate K factor is an estimate of silt loam for the topsoil.

.

| Data Entered     | Data C | omputed |
|------------------|--------|---------|
| Slope (%), s = 3 | s =    | 0.26    |
| I = 340          | L =    | 1.6     |
| m = 0.3          | LS =   | 0.4     |

### Calculate Average Annual Soil Loss, A:

$$R = 100 *$$

$$K = 0.42 *$$

$$LS = 0.4$$

$$C = 0.004 *$$

$$P = 1.0 *$$

$$A = R * K * LS * C * P = 0.1 \text{ tons/acre}$$

\* See attached references for R, K, C, and P factors

Soil loss along the 3% slope of the final cover results in minimal soil loss.

| SCS ENG               | IN EERS                              | Sheet No. | 2 of 6        |
|-----------------------|--------------------------------------|-----------|---------------|
|                       | Calc. No.                            |           |               |
|                       |                                      | Rev. No.  |               |
| Job No. 25214060      | Job: 1-43 Landfill Plan Modification | By: KRG   | Date: 1/30/15 |
| Client: Alient Energy | Subject: Soil Loss Along Final Cover | Chk'd:    | Date:         |

### Universal Soil Loss Equation (USLE) Calculation

Use USLE to estimate soil loss along the 4:1 final cover slope, with the goal of maintaining  $\leq$  3 ton/acre of soil loss along the final cover.

### **USLE Equation:**

A = R \* K \* LS \* C \* P

where: A = Average annual soil loss, ton/acre

R = Rainfall and runoff erosivity index

K = Soil erodibility factor, tons/acre

- LS = Slope length and steepness factor
- C = Cover management factor
- P = Practice factor

The LS factor is a function of the slope and flow length.

LS = L \* S

where:  $L = Slope length factor = (I/72.6)^m$ 

where: I = Slope length, feet

m = Slope-length exponent (m = 0.3 for slopes of 1% to 3%m = 0.4 for slopes of 3.5% to 4.5%

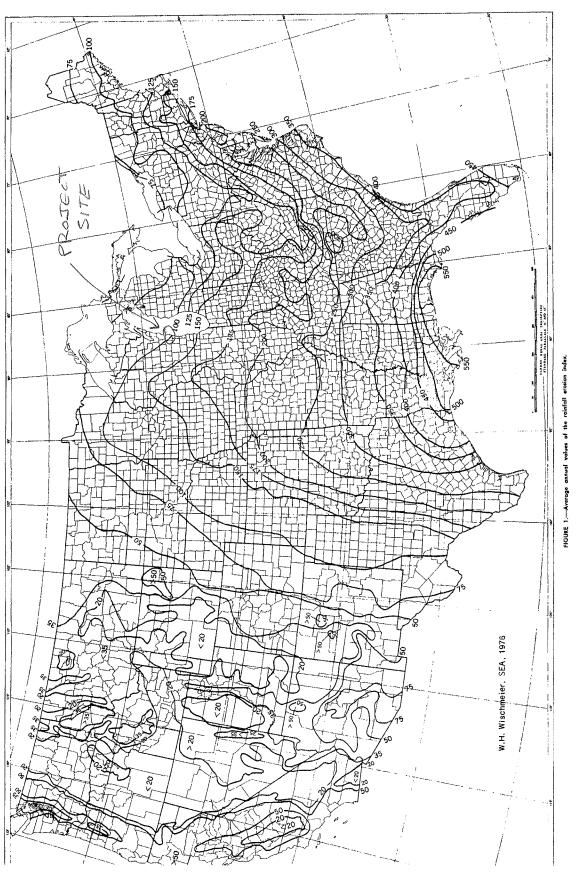
$$m = 0.5$$
 for slopes areater than 5%

$$m = 0.5$$
 for slopes greater than 5%)

$$S = Slope steepness factor = (65.41s^{2}/(s^{2} + 10,000)) + (4.56s/(SQRT(s^{2} + 10,000))) + 0.065$$

where: s = Slope, in percent

The soil type chosen for selecting the appropriate K factor is an estimate of silt loam for the topsoil.


| Data Entered      | Data Co | omputed |
|-------------------|---------|---------|
| Slope (%), s = 25 | s =     | 5.02    |
| I = 136           | L =     | 1.4     |
| m = 0.5           | LS =    | 6.9     |

### Calculate Average Annual Soil Loss, A:

| R =  | 100   | * |                        |   |               |
|------|-------|---|------------------------|---|---------------|
| к =  | 0.42  | * |                        |   |               |
| LS = | 6.9   |   | A = R * K * LS * C * P | = | 1.2 tons/acre |
| C =  | 0.004 | * |                        |   |               |
| P =  | 1.0   | * |                        |   |               |

\* See attached references for R, K, C, and P factors

Soil loss along the 4:1 slope of the final cover results in minimal soil loss.



soil in a unit plot, pinpoints differences in erosion according to differences in soil type. Long-term plot studies under natural rainfall have produced K values generalized in Table 5 for the USDA soil types.

|                      |          | matter   |          |
|----------------------|----------|----------|----------|
| Texture class        | \$\$.5%  | 2%       | 4%       |
|                      | <u>K</u> | K        | <u> </u> |
| Sand                 | 0.05     | 0.03     | 0.02     |
| Fine sand            | .16      | .14      | .10      |
| Very fine sand       | .42      | .36      | .28      |
| Loamy sand           | .12      | .10      | .08      |
| Loamy fine sand      | .24      | .20      | .16      |
| Loamy very fine sand | • 44     | .38      | . 30     |
| Sandy loam           | .27      | .24      | .19      |
| Fine sandy loam      | • 35     | .30      | .24      |
| Very fine sandy loam | .47      | .41      | • 33     |
| Loam                 | .38      | . 34     | . 29     |
| Silt loam            | .48      | · (42)   | •33      |
| Silt                 | .60      | .52      | .42      |
| Sandy clay loam      | .27      | .25      | .21      |
| Clay loam            | .28      | .25      | .21      |
| Silty clay loam      | • 37     | •32      | .26      |
| Sandy clay           | .14      | .13      | .12      |
| Silty clay           | .25      | .23      | .19      |
| Clay                 |          | 0.13-0.2 | 29       |

TABLE 5.APPROXIMATE VALUES OF FACTOR K FOR<br/>USDA TEXTURAL CLASSES 11

The values shown are estimated averages of broad ranges of specific-soil values. When a texture is near the borderline of two texture classes, use the average of the two K values.

The evaluator must next consider the shape of the slope in terms of length and inclination. The appropriate LS factor is obtained from Table 6. A nonlinear slope may have to be evaluated as a series of segments, each with uniform gradient. Two or three segments should be sufficient for most engineered landfills, provided the segments are selected so that they are also of equal length (Table 6 can be used, with certain adjustments). Enter Table 6 with the total slope length and read LS values corresponding to the percent slope of each segment. For three segments, multiply the chart LS values for the upper, middle, and lower segments by 0.58, 1.06, and 1.37, respectively. The average of the three products is a good estimate of the

|          |                                                 | Productiv | ity level |
|----------|-------------------------------------------------|-----------|-----------|
|          | Crop, rotation, and management                  | High      | Mod,      |
|          |                                                 | - C v     | alue      |
| Base val | ue: continuous fallow, tilled up and down slope | 1.00      | 1.00      |
| CORN     | · · · · · · · · · · · · · · · · · · ·           |           |           |
|          | C, RdR, fall TP, conv                           | 0.54      | 0.62      |
|          | C, RdR, spring TP, conv                         | .50       | .59       |
|          | C, RdL fall TP, conv                            | .42       | .52       |
|          | C, RdR, we seeding, spring TP, conv             | .40       | .49       |
|          | C. RdL, standing, spring TP, conv               | .38       | .48       |
|          | C-W-M-M, RdL, TP for C, disk for W              | .039      | .074      |
|          | C-W-M-M-M, RdL, TP for C, disk for W            | .032      | .061      |
|          | C, no-till pl in c-k sod, 95-80% rc             | .017      | .053      |
| COTTO    |                                                 |           |           |
| ~~       | Cot, conv (Western Plains)                      | 0.42      | 0.49      |
|          | Cot, conv (South)                               | .34       | .40       |
| MEADO    | W                                               |           |           |
|          | Grass & Legume mix                              | (0.004)   | 0.01      |
|          | Alfalfa, lespedeza or Sericia                   | .020      |           |
|          | Sweet clover                                    | .025      |           |
| SORGH    | JM, GRAIN (Western Plains)                      |           |           |
|          | RdL, spring TP, conv                            | 0.43      | 0.53      |
|          | No-till p1 in shredded 70-50% rc                | .11       | .18       |
| CANDE    |                                                 |           |           |
| SOYBE/   | B, RdL, spring TP, conv                         | 0.48      | 0.54      |
|          | C-B, TP annually, conv                          | .43       | .51       |
|          | B, no-till pl                                   | .22       | .28       |
|          | C-B, no-till pl, fall shred C stalks            | .18       | .22       |
|          |                                                 |           |           |
| WHEAT    |                                                 |           |           |
|          | W-F, fall TP after W                            | 0.38      |           |
|          | W-If, stubble mulch, 500 lbs rc                 | .32       | · ·       |
|          | W-F, stubble mulch, 1000 lbs rc                 | .21       |           |
|          |                                                 |           |           |
|          |                                                 |           |           |

## GENERALIZED VALUES OF FACTOR C FOR STATES EAST OF THE ROCKY MOUNTAINS<sup>11</sup> TABLE 7.

F - fallow - soybeans B С - corn M - grass & legume hay c-k<sup>#</sup> - chemically killed p1 - plant W - wheat conv - conventional cot - cotton wc - winter cover lbs rc - pounds of crop residue per acce remaining on surface after new crop seeding

% rc - percentage of soil surface covered by residue mulch after new crop seeding 70-50% rc - 70% cover for C values in first column; 50% for second column % rc

RdR - residues (corn stover, straw, etc.) removed or burned

RdL - all residues left on field (on surface or incorporated)

TP - turn plowed (upper 5 or more inches of soil inverted, covering residues)

are listed in Table 8. These values are based on rather limited field data, but P has a narrower range of possible values than the other five factors.

|                                           |                     | Land slope (percent) |            |         |         |  |  |
|-------------------------------------------|---------------------|----------------------|------------|---------|---------|--|--|
| Practice                                  | 1.1-2               | 2.1-7                | 7.1-12     | 12.1-18 | 18.1-24 |  |  |
|                                           |                     |                      | (Factor P) |         | · · · · |  |  |
| Contouring (P <sub>c</sub> )              | 0.60                | 0.50                 | 0.60       | 0.80    | 0.90    |  |  |
| Contour strip cropping (P <sub>sc</sub> ) |                     |                      |            | · ·     |         |  |  |
| R-R-M-M'                                  | 0.30                | 0.25                 | 0.30       | 0.40    | 0.45    |  |  |
| R-W-M-M                                   | 0.30                | 0.25                 | 0.30       | 0.40    | 0.45    |  |  |
| R-R-W-M                                   | 0.45                | 0.38                 | 0.45       | 0.60    | 0.68    |  |  |
| R-W                                       | 0.52                | 0.44                 | 0.52       | 0.70    | 0.90    |  |  |
| R-O                                       | 0.60                | 0.50                 | 0.60       | 0.80    | 0.90    |  |  |
| ontour listing or ridge planting          |                     | 1                    | · · ·      |         | * , .   |  |  |
| Pc1)                                      | 0.30                | 0.25                 | 0.30       | 0.40    | 0.45    |  |  |
| Contour terracing $(P_t)^2$               | <sup>3</sup> 0.6/√n | 0.5/√n               | 0.6/√n     | 0.8/√n  | 0.9/√n  |  |  |
| o support practice                        | 1.0                 | 1.0                  | 1.0        | (1.0    | 1.0     |  |  |

TABLE 8. VALUES OF FACTOR P<sup>11</sup>

6

 $^{1}$  R = rowcrop, W = fall-seeded grain, O = spring-seeded grain, M = meadow. The crops are grown in rotation and so arranged on the field that rowcrop strips are always separated by a meadow or winter-grain strip.

<sup>2</sup> These Pt values estimate the amount of soil eroded to the terrace channels and are used for conservation planning. For prediction of off-field sediment, the Pt values are multiplied by 0.2.

n = number of approximately equal-length intervals into which the field slope is divided by the terraces. Tillage operations must be parallel to the terraces.

> Example: An owner/operator proposes to close one section of his small landfill with a sandy clay subsoil  $W_{\rm eff} = 10^{-10}$ cover having the surface configuration shown in Figure 21. The factor R has been established as 200 for this locality. The evaluator questions anticipated erosion along the steep side and assigns the following values to the other factors in the USLE after inspecting Tables 5 through 8:

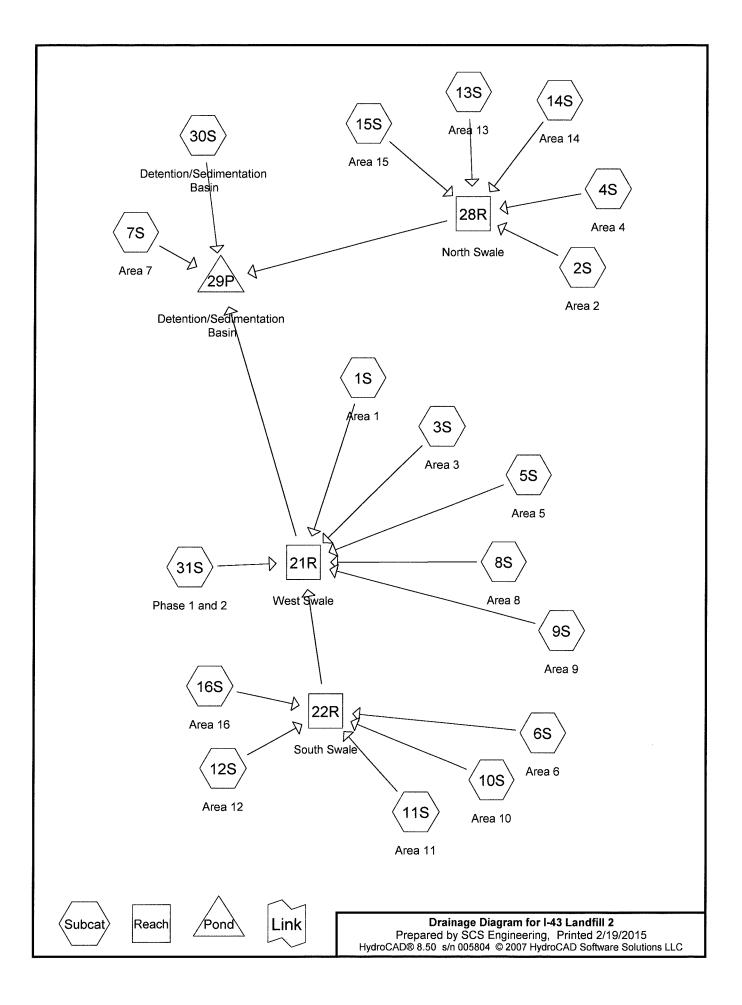
> > K = 0.14 LS = 8.3 C = 1.00P = 0.90

The rate of erosion for the steep slope of the landfill is calculated as follows:

A = 200 (0.14 tons/acre) (8.3) (1.00) (0.90)

. . .

• • • • • = 209 tons/acre


This erosion not only exceeds a limit recommended by the permitting authority but also indicates a potential

Hydrograph Generation

- 25-year, 24-hour Storm Event
- 100-year, 24-hour Storm Event

25-year, 24-hour Storm

•



# Summary for Subcatchment 1S: Area 1

Runoff = 3.71 cfs @ 12.08 hrs, Volume= 0.227 af, Depth> 2.42"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 1.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 25-yr Rainfall=4.79"

| _ | Area        | (ac) C           | N Des            | cription             |                   |                                                                                                                              |
|---|-------------|------------------|------------------|----------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------|
| * | 1.          | 130 7            | 79               |                      |                   |                                                                                                                              |
|   | 1.          | 130              | Perv             | ious Area            |                   |                                                                                                                              |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                                                                                  |
|   | 13.5        | 100              | 0.0300           | 0.12                 |                   | Sheet Flow,<br>Grass: Dense n= 0.240 P2= 2.59"                                                                               |
|   | 1.1         | 78               | 0.0300           | 1.21                 |                   | Shallow Concentrated Flow,<br>Short Grass Pasture Kv= 7.0 fps                                                                |
|   | 1.2         | 223              | 0.0100           | 3.11                 | 57.58             | Trap/Vee/Rect Channel Flow, Intermediate Swale<br>Bot.W=0.00' D=1.00' Z= 4.0 & 33.0 '/' Top.W=37.00'<br>n= 0.030 Short grass |
|   | 15.8        | 401              | Total            |                      |                   |                                                                                                                              |

# Summary for Subcatchment 2S: Area 2

Runoff = 2.45 cfs @ 12.08 hrs, Volume= 0.149 af, Depth> 2.42"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 1.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 25-yr Rainfall=4.79"

|   | Area        | (ac) C           | N Dese           | cription             |                   |                                                                                                                              |
|---|-------------|------------------|------------------|----------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------|
| * | 0.          | 740 7            | 79               |                      |                   |                                                                                                                              |
|   | 0.          | 740              | 40 Pervious Area |                      |                   |                                                                                                                              |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                                                                                  |
|   | 13.5        | 100              | 0.0300           | 0.12                 |                   | Sheet Flow,<br>Grass: Dense n= 0.240 P2= 2.59"                                                                               |
|   | 1.0         | 70               | 0.0300           | 1.21                 |                   | Shallow Concentrated Flow,<br>Short Grass Pasture Kv= 7.0 fps                                                                |
|   | 1.0         | 196              | 0.0100           | 3.11                 | 57.58             | Trap/Vee/Rect Channel Flow, Intermediate Swale<br>Bot.W=0.00' D=1.00' Z= 4.0 & 33.0 '/' Top.W=37.00'<br>n= 0.030 Short grass |
|   | 15.5        | 366              | Total            |                      |                   |                                                                                                                              |

## Summary for Subcatchment 3S: Area 3

Runoff = 6.61 cfs @ 12.09 hrs, Volume= 0.414 af, Depth> 2.41"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 1.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 25-yr Rainfall=4.79"

|   | Area        | (ac) C           | N Des            | cription             |                   |                                                                                                                                     |
|---|-------------|------------------|------------------|----------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| * | 2.          | 060 7            | 79               |                      |                   |                                                                                                                                     |
|   | 2.          | 060              | Pervious Area    |                      |                   |                                                                                                                                     |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                                                                                         |
|   | 13.5        | 100              | 0.0300           | 0.12                 |                   | Sheet Flow,<br>Grass: Dense n= 0.240 P2= 2.59"                                                                                      |
|   | 2.5         | 182              | 0.0300           | 1.21                 |                   | Shallow Concentrated Flow,<br>Short Grass Pasture Kv= 7.0 fps                                                                       |
|   | 0.6         | 120              | 0.0100           | 3.11                 | 57.58             | <b>Trap/Vee/Rect Channel Flow, Intermediate Swale</b><br>Bot.W=0.00' D=1.00' Z= 4.0 & 33.0 '/' Top.W=37.00'<br>n= 0.030 Short grass |
|   | 16.6        | 402              | Total            |                      |                   |                                                                                                                                     |

## Summary for Subcatchment 4S: Area 4

Runoff = 9.76 cfs @ 12.09 hrs, Volume= 0.616 af, Depth> 2.41"

|   | Area        | (ac) C           | N Des            | cription             |                   |                                                                                                                              |
|---|-------------|------------------|------------------|----------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------|
| * | 3.          | 060 7            | 79               |                      |                   |                                                                                                                              |
|   | 3.          | 060              | Perv             | ious Area            |                   |                                                                                                                              |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                                                                                  |
|   | 13.5        | 100              | 0.0300           | 0.12                 |                   | Sheet Flow,<br>Grass: Dense n= 0.240 P2= 2.59"                                                                               |
|   | 2.1         | 155              | 0.0300           | 1.21                 |                   | Shallow Concentrated Flow,<br>Short Grass Pasture Kv= 7.0 fps                                                                |
|   | 1.2         | 232              | 0.0100           | 3.11                 | 57.58             | Trap/Vee/Rect Channel Flow, Intermediate Swale<br>Bot W=0.00' D=1.00' Z= 4.0 & 33.0 '/' Top.W=37.00'<br>n= 0.030 Short grass |
|   | 16.8        | 487              | Total            |                      |                   |                                                                                                                              |

### Summary for Subcatchment 5S: Area 5

Runoff = 6.38 cfs @ 12.09 hrs, Volume= 0.402 af, Depth> 2.41"

| _ | Area                | (ac) C           | N Dese           | cription             |                   |                                                                                                                              |
|---|---------------------|------------------|------------------|----------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------|
| * | 2.                  | 000 7            | 79               |                      |                   |                                                                                                                              |
|   | 2.000 Pervious Area |                  |                  |                      |                   |                                                                                                                              |
|   | Tc<br>(min)         | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                                                                                  |
|   | 13.5                | 100              | 0.0300           | 0.12                 |                   | Sheet Flow,<br>Grass: Dense n= 0.240 P2= 2.59"                                                                               |
|   | 2.9                 | 208              | 0.0300           | 1.21                 |                   | Shallow Concentrated Flow,<br>Short Grass Pasture Kv= 7.0 fps                                                                |
|   | 0.4                 | 77               | 0.0100           | 3.11                 | 57.58             | Trap/Vee/Rect Channel Flow, Intermediate Swale<br>Bot.W=0.00' D=1.00' Z= 4.0 & 33.0 '/' Top.W=37.00'<br>n= 0.030 Short grass |
|   | 16.8                | 385              | Total            |                      |                   |                                                                                                                              |

### Summary for Subcatchment 6S: Area 6

Runoff = 7.37 cfs @ 12.09 hrs, Volume= 0.465 af, Depth> 2.41"

|   | Area        | (ac) C           | N Des            | cription             |                   |                                                                                                                              |
|---|-------------|------------------|------------------|----------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------|
| * | 2.          | 310 7            | 79               |                      | •                 |                                                                                                                              |
|   | 2.          | 310              | Perv             | ious Area            |                   |                                                                                                                              |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                                                                                  |
|   | 13.5        | 100              | 0.0300           | 0.12                 |                   | Sheet Flow,<br>Grass: Dense n= 0.240 P2= 2.59"                                                                               |
|   | 3.0         | 215              | 0.0300           | 1.21                 |                   | Shallow Concentrated Flow,<br>Short Grass Pasture Kv= 7.0 fps                                                                |
|   | 0.3         | 62               | 0.0100           | 3.11                 | 57.58             | Trap/Vee/Rect Channel Flow, Intermediate Swale<br>Bot.W=0.00' D=1.00' Z= 4.0 & 33.0 '/' Top.W=37.00'<br>n= 0.030 Short grass |
|   | 16.8        | 377              | Total            |                      |                   |                                                                                                                              |

#### Summary for Subcatchment 7S: Area 7

Runoff = 7.41 cfs @ 12.02 hrs, Volume= 0.381 af, Depth> 2.42"

| _ | Area        | (ac) C           | N Des            | cription             |                   |                                                                                                         |  |
|---|-------------|------------------|------------------|----------------------|-------------------|---------------------------------------------------------------------------------------------------------|--|
| * | 1.          | 890 7            | <b>'</b> 9       |                      |                   |                                                                                                         |  |
|   | 1.          | 890              | Pervious Area    |                      |                   |                                                                                                         |  |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                                                             |  |
|   | 9.6         | 65               | 0.0300           | 0.11                 | <b>`</b>          | Sheet Flow,                                                                                             |  |
|   | 0.7         | 144              | 0.2500           | 3.50                 |                   | Grass: Dense n= 0.240 P2= 2.59"<br><b>Shallow Concentrated Flow,</b><br>Short Grass Pasture Kv= 7.0 fps |  |
| _ | 10.3        | 209              | Total            |                      |                   |                                                                                                         |  |

### Summary for Subcatchment 8S: Area 8

Runoff = 6.83 cfs @ 12.02 hrs, Volume= 0.353 af, Depth> 2.42"

| _ | Area        | (ac) C           | N Des            | cription             |                   |                                                               |
|---|-------------|------------------|------------------|----------------------|-------------------|---------------------------------------------------------------|
| * | 1.          | 750 7            | 79               |                      |                   |                                                               |
|   | 1.750       |                  | Pervious Area    |                      |                   |                                                               |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                   |
|   | 9.8         | 67               | 0.0300           | 0.11                 |                   | Sheet Flow,<br>Grass: Dense n= 0.240 P2= 2.59"                |
|   | 0.6         | 136              | 0.2500           | 3.50                 |                   | Shallow Concentrated Flow,<br>Short Grass Pasture Kv= 7.0 fps |
|   | 10.4        | 203              | Total            |                      |                   |                                                               |

## Summary for Subcatchment 9S: Area 9

Runoff = 3.33 cfs @ 12.01 hrs, Volume= 0.167 af, Depth> 2.42"

| _ | Area        | (ac) C           | N Des            | cription             |                   |                                                               |  |
|---|-------------|------------------|------------------|----------------------|-------------------|---------------------------------------------------------------|--|
| * | 0.          | 830 7            | 79               |                      |                   |                                                               |  |
|   | 0.830       |                  | Pervious Area    |                      |                   |                                                               |  |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                   |  |
|   | 9.0         | 60               | 0.0300           | 0.11                 |                   | Sheet Flow,<br>Grass: Dense n= 0.240 P2= 2.59"                |  |
|   | 0.7         | 145              | 0.2500           | 3.50                 |                   | Shallow Concentrated Flow,<br>Short Grass Pasture Kv= 7.0 fps |  |
|   | 9.7         | 205              | Total            |                      |                   |                                                               |  |

## Summary for Subcatchment 10S: Area 10

Runoff = 4.41 cfs @ 12.06 hrs, Volume= 0.256 af, Depth> 2.42"

|   | Area        | (ac) C           | N Des            | cription             |                   |                                                             |
|---|-------------|------------------|------------------|----------------------|-------------------|-------------------------------------------------------------|
| * | 1.          | 270              | 79               |                      |                   |                                                             |
|   | 1.          | 270              | Perv             | vious Area           |                   |                                                             |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                 |
|   | 11.5        | 82               | 0.0300           | 0.12                 |                   | Sheet Flow,                                                 |
|   |             |                  |                  |                      |                   | Grass: Dense n= 0.240 P2= 2.59"                             |
|   | 0.5         | 96               | 0.2500           | 3.50                 |                   | Shallow Concentrated Flow,                                  |
|   |             |                  |                  |                      |                   | Short Grass Pasture Kv= 7.0 fps                             |
|   | 2.1         | 242              | 0.0100           | 1.93                 | 1.93              | Trap/Vee/Rect Channel Flow, Intermediate Swale on 4:1 Slope |
|   |             |                  |                  |                      |                   | Bot.W=0.00' D=0.50' Z= 4.0 '/' Top.W=4.00' n= 0.030         |
|   | 14.1        | 420              | Total            |                      |                   |                                                             |

#### Summary for Subcatchment 11S: Area 11

Runoff = 7.24 cfs @ 12.06 hrs, Volume= 0.423 af, Depth> 2.42"

|   | Area        | (ac) C           | N Dese           | cription             |                   |                                 |
|---|-------------|------------------|------------------|----------------------|-------------------|---------------------------------|
| * | 2.          | 100 7            | <b>'</b> 9       |                      |                   |                                 |
|   | 2.          | 100              | Perv             | ious Area            |                   |                                 |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                     |
|   | 13.5        | 100              | 0.0300           | 0.12                 |                   | Sheet Flow,                     |
|   |             |                  |                  |                      |                   | Grass: Dense n= 0.240 P2= 2.59" |
|   | 0.2         | 12               | 0.0300           | 1.21                 |                   | Shallow Concentrated Flow,      |
|   |             |                  |                  |                      |                   | Short Grass Pasture Kv= 7.0 fps |
|   | 0.6         | 120              | 0.2500           | 3.50                 |                   | Shallow Concentrated Flow,      |
|   |             |                  |                  |                      |                   | Short Grass Pasture Kv= 7.0 fps |
|   | 14.3        | 232              | Total            |                      |                   |                                 |

# Summary for Subcatchment 12S: Area 12

Runoff = 14.68 cfs @ 12.13 hrs, Volume= 1.021 af, Depth> 2.41"

|   | Area        | (ac) C           | N Des            | cription             |                   |                                                               |  |
|---|-------------|------------------|------------------|----------------------|-------------------|---------------------------------------------------------------|--|
| * | 5.          | 080 7            | 79               |                      |                   |                                                               |  |
|   | 5.080       |                  | Pervious Area    |                      |                   |                                                               |  |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                   |  |
|   | 19.9        | 163              | 0.0300           | 0.14                 |                   | Sheet Flow,<br>Grass: Dense n= 0.240 P2= 2.59"                |  |
|   | 0.2         | 46               | 0.2500           | 3.50                 |                   | Shallow Concentrated Flow,<br>Short Grass Pasture Kv= 7.0 fps |  |
|   | 20.1        | 209              | Total            |                      |                   |                                                               |  |

### Summary for Subcatchment 13S: Area 13

Runoff = 15.91 cfs @ 12.08 hrs, Volume= 0.976 af, Depth> 2.42"

|   | Area        | (ac) C           | N Des            | cription             |                   |                                                               |
|---|-------------|------------------|------------------|----------------------|-------------------|---------------------------------------------------------------|
| * | 4.          | .850 7           | 79               |                      |                   |                                                               |
|   | 4.          | 850              | Perv             | rious Area           |                   |                                                               |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                   |
|   | 13.5        | 100              | 0.0300           | 0.12                 |                   | Sheet Flow,<br>Grass: Dense n= 0.240 P2= 2.59"                |
|   | 1.8         | 133              | 0.0300           | 1.21                 |                   | Shallow Concentrated Flow,<br>Short Grass Pasture Kv= 7.0 fps |
|   | 0.5         | 108              | 0.2500           | 3.50                 |                   | Shallow Concentrated Flow,<br>Short Grass Pasture Kv= 7.0 fps |
|   | 15.8        | 341              | Total            |                      |                   |                                                               |

#### Summary for Subcatchment 14S: Area 14

Runoff = 4.97 cfs @ 12.01 hrs, Volume= 0.250 af, Depth> 2.42"

|   | Area        | (ac) C           | N Des            | cription             |                   |                                                                                                         |  |
|---|-------------|------------------|------------------|----------------------|-------------------|---------------------------------------------------------------------------------------------------------|--|
| * | 1.          | 240 7            | 79               |                      |                   |                                                                                                         |  |
|   | 1.240       |                  | Pervious Area    |                      |                   |                                                                                                         |  |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                                                             |  |
|   | 9.2         | 62               | 0.0300           | 0.11                 |                   | Sheet Flow,                                                                                             |  |
|   | 0.5         | 111              | 0.2500           | 3.50                 |                   | Grass: Dense n= 0.240 P2= 2.59"<br><b>Shallow Concentrated Flow,</b><br>Short Grass Pasture Kv= 7.0 fps |  |
|   | 9.7         | 173              | Total            |                      |                   |                                                                                                         |  |

# Summary for Subcatchment 15S: Area 15

[49] Hint: Tc<2dt may require smaller dt

Runoff = 15.87 cfs @ 11.95 hrs, Volume= 0.661 af, Depth> 2.42"

|   | Area        | (ac) C           | N Des            | cription             |                   |                                                                                       |  |
|---|-------------|------------------|------------------|----------------------|-------------------|---------------------------------------------------------------------------------------|--|
| * | 3.          | 270 7            | 79               |                      |                   |                                                                                       |  |
|   | 3.          | 270              | Perv             | ious Area            |                   |                                                                                       |  |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                                           |  |
|   | 3.6         | 58               | 0.2700           | 0.27                 |                   | Sheet Flow,                                                                           |  |
|   | 0.6         | 145              | 0.0600           | 3.94                 |                   | Grass: Dense n= 0.240 P2= 2.59"<br>Shallow Concentrated Flow,<br>Unpaved Kv= 16.1 fps |  |
|   | 4.2         | 203              | Total            |                      |                   |                                                                                       |  |

#### Summary for Subcatchment 16S: Area 16

Runoff = 10.90 cfs @ 12.03 hrs, Volume= 0.579 af, Depth> 2.42"

| _ | Area        | (ac) C           | N Des            | cription             |                   |                                                    |
|---|-------------|------------------|------------------|----------------------|-------------------|----------------------------------------------------|
| * | 2.          | .870 7           | 79               |                      |                   |                                                    |
|   | 2.870       |                  | Pervious Area    |                      |                   |                                                    |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                        |
| _ | 10.9        | 44               | 0.0100           | 0.07                 |                   | Sheet Flow,<br>Grass: Dense n= 0.240 P2= 2.59"     |
|   | 0.4         | 55               | 0.0200           | 2.28                 |                   | Shallow Concentrated Flow,<br>Unpaved Kv= 16.1 fps |
|   | 11.3        | 99               | Total            |                      |                   |                                                    |

## Summary for Subcatchment 30S: Detention/Sedimentation Basin

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 60.20 cfs @ 11.89 hrs, Volume= 2.833 af, Depth> 4.33"

| <br>Area (ac) | CN | Description     |
|---------------|----|-----------------|
| 7.860         | 98 | Water Surface   |
| <br>7.860     |    | Impervious Area |

#### Summary for Subcatchment 31S: Phase 1 and 2

Runoff = 121.30 cfs @ 12.23 hrs, Volume= 10.476 af, Depth> 2.40"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 1.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 25-yr Rainfall=4.79"

| - | Area        | (ac) C           | N Dese           | cription             |                   |                                                                                                            |
|---|-------------|------------------|------------------|----------------------|-------------------|------------------------------------------------------------------------------------------------------------|
| × | 52.         | 300 7            | 79 Clos          | ed Landfill          |                   |                                                                                                            |
|   | 52.         | 300              | ) Pervious Area  |                      |                   |                                                                                                            |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                                                                |
| - | 12.0        | 100              | 0.0400           | 0.14                 |                   | Sheet Flow,<br>Grass: Dense n= 0.240 P2= 2.59"                                                             |
|   | 4.8         | 400              | 0.0400           | 1.40                 |                   | Shallow Concentrated Flow,<br>Short Grass Pasture Kv= 7.0 fps                                              |
|   | 12.1        | 2,976            | 0.0120           | 4.10                 | 55.37             | <b>Channel Flow, Perimeter Swale</b><br>Area= 13.5 sf Perim= 16.3' r= 0.83'<br>n= 0.035 Earth, dense weeds |
|   | 28.0        | 3 4 7 6          | Total            |                      |                   |                                                                                                            |

28.9 3,476 Total

#### Summary for Reach 21R: West Swale

[62] Warning: Exceeded Reach 22R OUTLET depth by 1.93' @ 12.40 hrs

Inflow Area = 73.700 ac, 0.00% Impervious, Inflow Depth > 2.40" for 25-yr event Inflow = 167.13 cfs @ 12.24 hrs, Volume= 14.740 af Outflow = 146.77 cfs @ 12.51 hrs, Volume= 14.486 af, Atten= 12%, Lag= 16.4 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 2.67 fps, Min. Travel Time= 9.8 min Avg. Velocity = 0.98 fps, Avg. Travel Time= 26.7 min

Peak Storage= 86,617 cf @ 12.35 hrs, Average Depth at Peak Storage= 2.46' Bank-Full Depth= 3.00', Capacity at Bank-Full= 214.18 cfs

15.00' x 3.00' deep channel, n= 0.030 Earth, dense weeds Side Slope Z-value= 3.0 '/' Top Width= 33.00' Length= 1,570.0' Slope= 0.0013 '/' Inlet Invert= 684.08', Outlet Invert= 682.00'

‡

#### Summary for Reach 22R: South Swale

 Inflow Area =
 13.630 ac, 0.00% Impervious, Inflow Depth > 2.41" for 25-yr event

 Inflow =
 42.53 cfs @
 12.07 hrs, Volume=
 2.743 af

 Outflow =
 35.46 cfs @
 12.29 hrs, Volume=
 2.699 af, Atten= 17%, Lag= 13.1 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 4.03 fps, Min. Travel Time= 8.0 min Avg. Velocity = 1.27 fps, Avg. Travel Time= 25.2 min

Peak Storage= 17,162 cf @ 12.16 hrs, Average Depth at Peak Storage= 0.71' Bank-Full Depth= 2.00', Capacity at Bank-Full= 242.67 cfs

10.00' x 2.00' deep channel, n= 0.030 Earth, dense weeds Side Slope Z-value= 4.0 3.0 '/' Top Width= 24.00' Length= 1,925.0' Slope= 0.0135 '/' Inlet Invert= 710.00', Outlet Invert= 684.08'

‡

#### Summary for Reach 28R: North Swale

 Inflow Area =
 13.160 ac, 0.00% Impervious, Inflow Depth > 2.42" for 25-yr event

 Inflow =
 39.81 cfs @
 12.00 hrs, Volume=
 2.652 af

 Outflow =
 35.67 cfs @
 12.18 hrs, Volume=
 2.620 af, Atten= 10%, Lag= 10.7 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 4.31 fps, Min. Travel Time= 6.0 min Avg. Velocity = 1.37 fps, Avg. Travel Time= 19.0 min

Peak Storage= 12,884 cf @ 12.08 hrs, Average Depth at Peak Storage= 0.67' Bank-Full Depth= 3.00', Capacity at Bank-Full= 609.75 cfs

10.00' x 3.00' deep channel, n= 0.030 Earth, dense weeds Side Slope Z-value=  $4.0 \ 3.0 \ '/'$  Top Width= 31.00'Length= 1,560.0' Slope=  $0.0167 \ '/'$ Inlet Invert= 708.00', Outlet Invert= 682.00'

‡

100-year, 24-hour Storm

## Summary for Subcatchment 1S: Area 1

Runoff = 5.86 cfs @ 12.08 hrs, Volume= 0.365 af, Depth> 3.87"

| _ | Area        | (ac) C           | N Dese           | cription             |                   |                                                                                                                                     |
|---|-------------|------------------|------------------|----------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| * | 1.          | 130 7            | 79               |                      |                   |                                                                                                                                     |
|   | 1.          | 130              | Pervious Area    |                      |                   |                                                                                                                                     |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                                                                                         |
|   | 13.5        | 100              | 0.0300           | 0.12                 |                   | Sheet Flow,<br>Grass: Dense n= 0.240 P2= 2.59"                                                                                      |
|   | 1.1         | 78               | 0.0300           | 1.21                 |                   | Shallow Concentrated Flow,<br>Short Grass Pasture Kv= 7.0 fps                                                                       |
|   | 1.2         | 223              | 0.0100           | 3.11                 | 57.58             | <b>Trap/Vee/Rect Channel Flow, Intermediate Swale</b><br>Bot.W=0.00' D=1.00' Z= 4.0 & 33.0 '/' Top.W=37.00'<br>n= 0.030 Short grass |
|   | 15.8        | 401              | Total            |                      |                   |                                                                                                                                     |

### Summary for Subcatchment 2S: Area 2

Runoff = 3.88 cfs @ 12.07 hrs, Volume= 0.239 af, Depth> 3.87"

|   | Area        | (ac) C           | N Desc           | cription             |                   |                                                                                                                              |
|---|-------------|------------------|------------------|----------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------|
| * | 0.          | 740 7            | 79               |                      |                   |                                                                                                                              |
|   | 0.          | 740              | Pervious Area    |                      |                   |                                                                                                                              |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                                                                                  |
|   | 13.5        | 100              | 0.0300           | 0.12                 | ,                 | Sheet Flow,<br>Grass: Dense n= 0.240 P2= 2.59"                                                                               |
|   | 1.0         | 70               | 0.0300           | 1.21                 |                   | Shallow Concentrated Flow,<br>Short Grass Pasture Kv= 7.0 fps                                                                |
|   | 1.0         | 196              | 0.0100           | 3.11                 | 57.58             | Trap/Vee/Rect Channel Flow, Intermediate Swale<br>Bot.W=0.00' D=1.00' Z= 4.0 & 33.0 '/' Top.W=37.00'<br>n= 0.030 Short grass |
|   | 15.5        | 366              | Total            |                      |                   |                                                                                                                              |

## Summary for Subcatchment 3S: Area 3

Runoff = 10.45 cfs @ 12.09 hrs, Volume= 0.665 af, Depth> 3.87"

|   | Area        | (ac) C           | N Desc           | cription             |                   |                                                                                                                              |
|---|-------------|------------------|------------------|----------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------|
| * | 2.          | 060 7            | 79               |                      |                   |                                                                                                                              |
|   | 2.060       |                  | Pervious Area    |                      |                   |                                                                                                                              |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                                                                                  |
|   | 13.5        | 100              | 0.0300           | 0.12                 |                   | Sheet Flow,<br>Grass: Dense n= 0.240 P2= 2.59"                                                                               |
|   | 2.5         | 182              | 0.0300           | 1.21                 |                   | Shallow Concentrated Flow,<br>Short Grass Pasture Kv= 7.0 fps                                                                |
|   | 0.6         | 120              | 0.0100           | 3.11                 | 57.58             | Trap/Vee/Rect Channel Flow, Intermediate Swale<br>Bot.W=0.00' D=1.00' Z= 4.0 & 33.0 '/' Top.W=37.00'<br>n= 0.030 Short grass |
| _ | 16.6        | 402              | Total            |                      |                   |                                                                                                                              |

### Summary for Subcatchment 4S: Area 4

Runoff = 15.43 cfs @ 12.09 hrs, Volume= 0.987 af, Depth> 3.87"

|   | Area        | (ac) C           | N Desc           | cription             |                   |                                                                                                                              |
|---|-------------|------------------|------------------|----------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------|
| * | 3.          | 060 7            | <b>'</b> 9       |                      |                   |                                                                                                                              |
|   | 3.          | 060              | Pervious Area    |                      |                   |                                                                                                                              |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                                                                                  |
|   | 13.5        | 100              | 0.0300           | 0.12                 | ï                 | <b>Sheet Flow,</b><br>Grass: Dense n= 0.240 P2= 2.59"                                                                        |
|   | 2.1         | 155              | 0.0300           | 1.21                 |                   | Shallow Concentrated Flow,<br>Short Grass Pasture Kv= 7.0 fps                                                                |
|   | 1.2         | 232              | 0.0100           | 3.11                 | 57.58             | Trap/Vee/Rect Channel Flow, Intermediate Swale<br>Bot.W=0.00' D=1.00' Z= 4.0 & 33.0 '/' Top.W=37.00'<br>n= 0.030 Short grass |
|   | 16.8        | 487              | Total            |                      |                   |                                                                                                                              |

### Summary for Subcatchment 5S: Area 5

Runoff = 10.09 cfs @ 12.09 hrs, Volume= 0.645 af, Depth> 3.87"

| _ | Area        | (ac) C           | N Dese           | cription             |                   |                                                                                                                              |
|---|-------------|------------------|------------------|----------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------|
| * | 2.          | 000 7            | <b>'</b> 9       |                      |                   |                                                                                                                              |
|   | 2.000       |                  | Pervious Area    |                      |                   |                                                                                                                              |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                                                                                  |
|   | 13.5        | 100              | 0.0300           | 0.12                 |                   | Sheet Flow,<br>Grass: Dense n= 0.240 P2= 2.59"                                                                               |
|   | 2.9         | 208              | 0.0300           | 1.21                 |                   | Shallow Concentrated Flow,<br>Short Grass Pasture Kv= 7.0 fps                                                                |
|   | 0.4         | 77               | 0.0100           | 3.11                 | 57.58             | Trap/Vee/Rect Channel Flow, Intermediate Swale<br>Bot.W=0.00' D=1.00' Z= 4.0 & 33.0 '/' Top.W=37.00'<br>n= 0.030 Short grass |
|   | 16.8        | 385              | Total            |                      |                   |                                                                                                                              |

#### Summary for Subcatchment 6S: Area 6

Runoff = 11.65 cfs @ 12.09 hrs, Volume= 0.745 af, Depth> 3.87"

|   | Area        | <u>(ac) C</u>    | N Dese           | cription             |                   |                                                                                                                              |
|---|-------------|------------------|------------------|----------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------|
| * | 2.          | 310 7            | <sup>7</sup> 9   |                      |                   |                                                                                                                              |
|   | 2.          | 310              | Pervious Area    |                      |                   |                                                                                                                              |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                                                                                  |
|   | 13.5        | 100              | 0.0300           | 0.12                 |                   | <b>Sheet Flow,</b><br>Grass: Dense n= 0.240 P2= 2.59"                                                                        |
|   | 3.0         | 215              | 0.0300           | 1.21                 |                   | Shallow Concentrated Flow,<br>Short Grass Pasture Kv= 7.0 fps                                                                |
|   | 0.3         | 62               | 0.0100           | 3.11                 | 57.58             | Trap/Vee/Rect Channel Flow, Intermediate Swale<br>Bot.W=0.00' D=1.00' Z= 4.0 & 33.0 '/' Top.W=37.00'<br>n= 0.030 Short grass |
| _ | 16.8        | 377              | Total            |                      |                   |                                                                                                                              |

## Summary for Subcatchment 7S: Area 7

Runoff = 11.66 cfs @ 12.02 hrs, Volume= 0.611 af, Depth> 3.88"

| _ | Area        | (ac) C           | N Des            | cription             |                   |                                                               |
|---|-------------|------------------|------------------|----------------------|-------------------|---------------------------------------------------------------|
| * | 1.          | .890             | 79               |                      |                   |                                                               |
|   | 1.          | .890             | 0 Pervious Area  |                      |                   |                                                               |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                   |
|   | 9.6         | 65               | 0.0300           | 0.11                 |                   | Sheet Flow,<br>Grass: Dense n= 0.240 P2= 2.59"                |
|   | 0.7         | 144              | 0.2500           | 3.50                 |                   | Shallow Concentrated Flow,<br>Short Grass Pasture Kv= 7.0 fps |
| _ | 10.3        | 209              | Total            |                      |                   |                                                               |

## Summary for Subcatchment 8S: Area 8

Runoff = 10.75 cfs @ 12.02 hrs, Volume= 0.566 af, Depth> 3.88"

|   | Area        | (ac) C           | N Des            | cription             |                   |                                                               |  |
|---|-------------|------------------|------------------|----------------------|-------------------|---------------------------------------------------------------|--|
| * | 1.          | 750 7            | 79               |                      |                   |                                                               |  |
|   | 1.          | 750              | Pervious Area    |                      |                   |                                                               |  |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                   |  |
|   | 9.8         | 67               | 0.0300           | 0.11                 |                   | Sheet Flow,<br>Grass: Dense n= 0.240 P2= 2.59"                |  |
|   | 0.6         | 136              | 0.2500           | 3.50                 |                   | Shallow Concentrated Flow,<br>Short Grass Pasture Kv= 7.0 fps |  |
| _ | 10.4        | 203              | Total            |                      |                   |                                                               |  |

#### Summary for Subcatchment 9S: Area 9

Runoff = 5.23 cfs @ 12.01 hrs, Volume= 0.268 af, Depth> 3.88"

|   | Area        | (ac) C           | N Des            | cription             |                   |                                                               |  |
|---|-------------|------------------|------------------|----------------------|-------------------|---------------------------------------------------------------|--|
| * | 0.          | 830 7            | 79               |                      |                   |                                                               |  |
|   | 0.          | 830              | Pervious Area    |                      |                   |                                                               |  |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                   |  |
|   | 9.0         | 60               | 0.0300           | 0.11                 |                   | Sheet Flow,<br>Grass: Dense n= 0.240 P2= 2.59"                |  |
|   | 0.7         | 145              | 0.2500           | 3.50                 |                   | Shallow Concentrated Flow,<br>Short Grass Pasture Kv= 7.0 fps |  |
| _ | 9.7         | 205              | Total            |                      |                   |                                                               |  |

## Summary for Subcatchment 10S: Area 10

Runoff = 6.96 cfs @ 12.06 hrs, Volume= 0.410 af, Depth> 3.88"

|   | Area        | (ac) C           | N Des            | cription             |                   |                                                             |
|---|-------------|------------------|------------------|----------------------|-------------------|-------------------------------------------------------------|
| * | 1.          | .270             | 79               |                      |                   |                                                             |
|   | 1.          | .270             | Perv             | vious Area           |                   |                                                             |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                 |
|   | 11.5        | 82               | 0.0300           | 0.12                 |                   | Sheet Flow,                                                 |
|   |             |                  |                  |                      |                   | Grass: Dense n= 0.240 P2= 2.59"                             |
|   | 0.5         | 96               | 0.2500           | 3.50                 |                   | Shallow Concentrated Flow,                                  |
|   | • •         |                  |                  |                      |                   | Short Grass Pasture Kv= 7.0 fps                             |
|   | 2.1         | 242              | 0.0100           | 1.93                 | 1.93              | Trap/Vee/Rect Channel Flow, Intermediate Swale on 4:1 Slope |
| _ |             |                  |                  |                      |                   | Bot.W=0.00' D=0.50' Z= 4.0 '/' Top.W=4.00' n= 0.030         |
|   | 14.1        | 420              | Total            |                      |                   |                                                             |

### Summary for Subcatchment 11S: Area 11

Runoff = 11.43 cfs @ 12.06 hrs, Volume= 0.678 af, Depth> 3.88"

|   | Area        | (ac) C           | N Desc           | cription             |                   |                                                                                                  |
|---|-------------|------------------|------------------|----------------------|-------------------|--------------------------------------------------------------------------------------------------|
| * | 2.          | 100 7            | <b>7</b> 9       |                      |                   |                                                                                                  |
|   | 2.          | 100              | Perv             | ious Area            |                   |                                                                                                  |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                                                      |
|   | 13.5        | 100              | 0.0300           | 0.12                 |                   | Sheet Flow,<br>Grass: Dense n= 0.240 P2= 2.59"                                                   |
|   | 0.2         | 12               | 0.0300           | 1.21                 |                   | Shallow Concentrated Flow,                                                                       |
|   | 0.6         | 120              | 0.2500           | 3.50                 |                   | Short Grass Pasture Kv= 7.0 fps<br>Shallow Concentrated Flow,<br>Short Grass Pasture Kv= 7.0 fps |
| _ | 14.3        | 232              | Total            |                      |                   |                                                                                                  |

## Summary for Subcatchment 12S: Area 12

Runoff = 23.32 cfs @ 12.12 hrs, Volume= 1.638 af, Depth> 3.87"

|   | Area  | (ac) C | N Des   | cription  |          |                                 |  |
|---|-------|--------|---------|-----------|----------|---------------------------------|--|
| * | 5.    | 080 7  | 79      |           |          |                                 |  |
|   | 5.    | 080    | Perv    | ious Area |          |                                 |  |
|   | Тс    | Length | Slope   | Velocity  | Capacity | Description                     |  |
|   | (min) | (feet) | (ft/ft) | (ft/sec)  | (cfs)    | •                               |  |
| _ | 19.9  | 163    | 0.0300  | 0.14      |          | Sheet Flow,                     |  |
|   |       |        |         |           |          | Grass: Dense n= 0.240 P2= 2.59" |  |
|   | 0.2   | 46     | 0.2500  | 3.50      |          | Shallow Concentrated Flow,      |  |
|   |       |        |         |           |          | Short Grass Pasture Kv= 7.0 fps |  |
|   | 20.1  | 209    | Total   |           |          |                                 |  |

## Summary for Subcatchment 13S: Area 13

Runoff = 25.14 cfs @ 12.08 hrs, Volume= 1.566 af, Depth> 3.87"

|   | Area        | (ac) C           | N Des            | cription             |                   |                                 |
|---|-------------|------------------|------------------|----------------------|-------------------|---------------------------------|
| * | 4.          | 850 7            | 79               |                      |                   |                                 |
|   | 4.          | 850              | Perv             | vious Area           |                   |                                 |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                     |
|   | 13.5        | 100              | 0.0300           | 0.12                 |                   | Sheet Flow,                     |
|   |             |                  |                  |                      |                   | Grass: Dense n= 0.240 P2= 2.59" |
|   | 1.8         | 133              | 0.0300           | 1.21                 |                   | Shallow Concentrated Flow,      |
|   |             |                  |                  |                      |                   | Short Grass Pasture Kv= 7.0 fps |
|   | 0.5         | 108              | 0.2500           | 3.50                 |                   | Shallow Concentrated Flow,      |
|   |             |                  |                  |                      |                   | Short Grass Pasture Kv= 7.0 fps |
|   | 15.8        | 341              | Total            |                      |                   |                                 |

# Summary for Subcatchment 14S: Area 14

Runoff = 7.82 cfs @ 12.01 hrs, Volume= 0.401 af, Depth> 3.88"

| _ | Area        | (ac) C           | N Des            | cription             |                   |                                                                                                         |  |
|---|-------------|------------------|------------------|----------------------|-------------------|---------------------------------------------------------------------------------------------------------|--|
| * | 1.          | 240 7            | 79               |                      |                   |                                                                                                         |  |
|   | 1.          | 240              | Perv             | vious Area           |                   |                                                                                                         |  |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                                                             |  |
|   | 9.2         | 62               | 0.0300           | 0.11                 |                   | Sheet Flow,                                                                                             |  |
|   | 0.5         | 111              | 0.2500           | 3.50                 |                   | Grass: Dense n= 0.240 P2= 2.59"<br><b>Shallow Concentrated Flow,</b><br>Short Grass Pasture Kv= 7.0 fps |  |
|   | 9.7         | 173              | Total            |                      |                   |                                                                                                         |  |

# Summary for Subcatchment 15S: Area 15

[49] Hint: Tc<2dt may require smaller dt

Runoff = 24.79 cfs @ 11.95 hrs, Volume= 1.059 af, Depth> 3.89"

| _ | Area        | (ac) C           | N Des            | cription             |                   |                                                    |  |
|---|-------------|------------------|------------------|----------------------|-------------------|----------------------------------------------------|--|
| * | 3.          | 270              | 79               |                      |                   |                                                    |  |
|   | 3.          | 270              | Perv             | vious Area           |                   |                                                    |  |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                        |  |
| _ | 3.6         | 58               | 0.2700           | 0.27                 |                   | Sheet Flow,<br>Grass: Dense n= 0.240 P2= 2.59"     |  |
|   | 0.6         | 145              | 0.0600           | 3.94                 |                   | Shallow Concentrated Flow,<br>Unpaved Kv= 16.1 fps |  |
|   | 4.2         | 203              | Total            |                      |                   |                                                    |  |

## Summary for Subcatchment 16S: Area 16

Runoff = 17.15 cfs @ 12.03 hrs, Volume= 0.928 af, Depth> 3.88"

|   | Area        | (ac) C           | N Des            | cription             |                   |                                                    |  |
|---|-------------|------------------|------------------|----------------------|-------------------|----------------------------------------------------|--|
| * | 2.          | 870 7            | 79               |                      |                   |                                                    |  |
|   | 2.          | 870              | Perv             | vious Area           |                   |                                                    |  |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                        |  |
| _ | 10.9        | 44               | 0.0100           | 0.07                 |                   | Sheet Flow,<br>Grass: Dense n= 0.240 P2= 2.59"     |  |
|   | 0.4         | 55               | 0.0200           | 2.28                 |                   | Shallow Concentrated Flow,<br>Unpaved Kv= 16.1 fps |  |
|   | 11.3        | 99               | Total            |                      |                   |                                                    |  |

## Summary for Subcatchment 30S: Detention/Sedimentation Basin

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 82.51 cfs @ 11.89 hrs, Volume= 3.928 af, Depth> 6.00"

| <br>Area (ac) | CN | Description     |
|---------------|----|-----------------|
| <br>7.860     | 98 | Water Surface   |
| <br>7.860     |    | Impervious Area |

#### Summary for Subcatchment 31S: Phase 1 and 2

Runoff = 193.11 cfs @ 12.23 hrs, Volume= 16.809 af, Depth> 3.86"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 1.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-yr Rainfall=6.55"

|   | Area        | (ac) C           | N Dese           | cription             |                   |                                                                                                         |
|---|-------------|------------------|------------------|----------------------|-------------------|---------------------------------------------------------------------------------------------------------|
| * | 52.         | 300 7            | 79 Clos          | ed Landfill          |                   |                                                                                                         |
|   | 52.         | 300              | Perv             | rious Area           |                   |                                                                                                         |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                                                             |
|   | 12.0        | 100              | 0.0400           | 0.14                 |                   | Sheet Flow,                                                                                             |
|   | 4.8         | 400              | 0.0400           | 1.40                 |                   | Grass: Dense n= 0.240 P2= 2.59"<br><b>Shallow Concentrated Flow,</b><br>Short Grass Pasture Kv= 7.0 fps |
|   | 12.1        | 2,976            | 0.0120           | 4.10                 | 55.37             | Channel Flow, Perimeter Swale<br>Area= 13.5 sf Perim= 16.3' r= 0.83'<br>n= 0.035 Earth, dense weeds     |
|   | 28.0        | 3 176            | Total            |                      |                   |                                                                                                         |

28.9 3,476 Total

#### Summary for Reach 21R: West Swale

[91] Warning: Storage range exceeded by 0.22'
[55] Hint: Peak inflow is 126% of Manning's capacity
[62] Warning: Exceeded Reach 22R OUTLET depth by 2.51' @ 12.35 hrs

 Inflow Area =
 73.700 ac,
 0.00% Impervious,
 Inflow Depth >
 3.85"
 for
 100-yr event

 Inflow =
 270.76 cfs @
 12.22 hrs,
 Volume=
 23.663 af

 Outflow =
 242.71 cfs @
 12.46 hrs,
 Volume=
 23.342 af,
 Atten=
 10%,
 Lag=
 14.5 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 3.08 fps, Min. Travel Time= 8.5 min Avg. Velocity = 1.09 fps, Avg. Travel Time= 23.9 min

Peak Storage= 124,154 cf @ 12.32 hrs, Average Depth at Peak Storage= 3.22' Bank-Full Depth= 3.00', Capacity at Bank-Full= 214.18 cfs

15.00' x 3.00' deep channel, n= 0.030 Earth, dense weeds Side Slope Z-value= 3.0 '/' Top Width= 33.00' Length= 1,570.0' Slope= 0.0013 '/' Inlet Invert= 684.08', Outlet Invert= 682.00'

‡

#### Summary for Reach 22R: South Swale

 Inflow Area =
 13.630 ac, 0.00% Impervious, Inflow Depth > 3.87" for 100-yr event

 Inflow =
 67.37 cfs @
 12.07 hrs, Volume=
 4.399 af

 Outflow =
 58.27 cfs @
 12.26 hrs, Volume=
 4.345 af, Atten= 14%, Lag= 11.3 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 4.71 fps, Min. Travel Time= 6.8 min Avg. Velocity = 1.43 fps, Avg. Travel Time= 22.5 min

Peak Storage= 24,052 cf @ 12.14 hrs, Average Depth at Peak Storage= 0.94' Bank-Full Depth= 2.00', Capacity at Bank-Full= 242.67 cfs

10.00' x 2.00' deep channel, n= 0.030 Earth, dense weeds Side Slope Z-value= 4.0 3.0 '/' Top Width= 24.00' Length= 1,925.0' Slope= 0.0135 '/' Inlet Invert= 710.00', Outlet Invert= 684.08'

‡

#### Summary for Reach 28R: North Swale

 Inflow Area =
 13.160 ac, 0.00% Impervious, Inflow Depth > 3.88" for 100-yr event

 Inflow =
 63.20 cfs @
 12.00 hrs, Volume=
 4.252 af

 Outflow =
 57.58 cfs @
 12.16 hrs, Volume=
 4.213 af, Atten= 9%, Lag= 9.3 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 5.04 fps, Min. Travel Time= 5.2 min Avg. Velocity = 1.53 fps, Avg. Travel Time= 17.0 min

Peak Storage= 17,962 cf @ 12.07 hrs, Average Depth at Peak Storage= 0.88' Bank-Full Depth= 3.00', Capacity at Bank-Full= 609.75 cfs

10.00' x 3.00' deep channel, n= 0.030 Earth, dense weeds Side Slope Z-value= 4.0 3.0 '/' Top Width= 31.00' Length= 1,560.0' Slope= 0.0167 '/' Inlet Invert= 708.00', Outlet Invert= 682.00'

‡

Perimeter Ditch and Diversion Berm Sizing

#### I-43 Landfill Sheboygan, Wl

| Project ID: 1-43 Landfill - Plan Modification                             |             |             |            |
|---------------------------------------------------------------------------|-------------|-------------|------------|
| Location: Sheboygan, WI                                                   |             |             |            |
| Designer/Checker: KRG<br>Date: 1/6/15                                     |             |             |            |
|                                                                           |             |             |            |
|                                                                           | South Swale | North Swale | Int. Swale |
|                                                                           | Q=25-yr     | Q=25-yr     | Q=25-yr    |
| Channel/Ditch Geometry                                                    |             |             |            |
| Channel Slope, S <sub>o</sub> (ft/ft)                                     | 0.013       | 0.025       | 0.01       |
| Channel Bottom Width, B (ft)                                              | 10          | 6           | 0.01       |
| Channel Side Slope, z1                                                    | 4           | 3           | 2          |
| Channel Side Slope, 2                                                     | 3           | 2           | 0.03       |
| Flow Depth, d (ft) Solve iteratively                                      | 0.89        | 0.86        | 1.65       |
| Safety Factor, SF                                                         | 1.5         | 1.5         | 1.5        |
|                                                                           | 1.9         |             | 1.0        |
| Vegetation/Soil Parameters                                                |             |             |            |
| Vegetation Retardance Class                                               | D           | D           | D          |
| Vegetation Condition                                                      | good        | good        | good       |
| Vegetation Growth Form                                                    | turf        | turf        | turf       |
| Soil Type                                                                 | cohesive    | cohesive    | cohesive   |
| D <sub>75</sub> (in) (Set at 0.00 for cohesive soils)                     |             |             |            |
| ASTM Soil Class                                                           | SC          | SC          | SC         |
| Plasticity Index, Pl                                                      | 16          | 16          | 16         |
| Results Summary                                                           |             |             |            |
| Design Q (ft <sup>3</sup> /s)                                             | 35.5        | 35.7        | 4.9        |
| Calculated Q (ft <sup>3</sup> /s)                                         | 35.8        | 35.7        | 4.8        |
| Difference Between Design & Calc. Flow (%)                                | 0.9%        | 0.0%        | -0.5%      |
| Stable (Yes or No)                                                        | YES         | YES         | YES        |
|                                                                           | 160         | 169         | 100        |
| Channel Parameters                                                        |             |             |            |
| Vegetation Height, h (ft)                                                 | 0.33        | 0.33        | 0.33       |
| Grass Roughness Coefficient, Cn                                           | 0.165       | 0.165       | 0.165      |
| Cover Factor, C <sub>f</sub>                                              | 0.90        | 0.90        | 0.90       |
| Noncohesive Soil                                                          |             |             |            |
| Soil Grain Roughness, n <sub>s</sub>                                      | 0.016       | 0.016       | 0.016      |
| Permissible Soil Shear Stress, τ <sub>p</sub> (lb/ft <sup>2</sup> )       | N/A         | N/A         | N/A        |
| Cohesive Soil                                                             |             |             |            |
| Porosity, e                                                               | 0.35        | 0.35        | 0.35       |
| Soil Coefficient 1, c1                                                    | 1.0700      | 1.0700      | 1.0700     |
| Soil Coefficient 2, c <sub>2</sub>                                        | 14.30       | 14.30       | 14.30      |
| Soil Coefficient 3, c <sub>3</sub>                                        | 47.700      | 47.700      | 47.700     |
| Soil Coefficient 4, c4                                                    | 1.42        | 1.42        | 1.42       |
| Soil Coefficient 5, c5                                                    | -0.61       | -0.61       | -0.61      |
| Soil Coefficient 6, c <sub>6</sub>                                        | 0.00010     | 0.00010     | 0.00010    |
| Permissible Soil Shear Stress, τ <sub>p</sub> (lb/ft <sup>2</sup> )       | 0.080       | 0.080       | 0.080      |
| Total Permissible Shear Stress, $\tau_p$ (lb/ft <sup>2</sup> )            | 0.080       | 0.080       | 0.080      |
| Cross Sectional Area, A (ft <sup>2</sup> )                                | 11.672      | 7.009       | 2.763      |
| Wetted Perimeter, P (ft)                                                  | 16.48       | 10.64       | 5.34       |
| Hydraulic Radius, R (ft)                                                  | 0.708       | 0.659       | 0.517      |
| Top Width, T (ft)                                                         | 16.23       | 10.30       | 3.35       |
| Hydraulic Depth, D (ft)                                                   | 0.719       | 0.680       | 0.825      |
| Froude Number (Q design)                                                  | 0.637       | 1.088       | 0.339      |
| Channel Shear Stress, τ <sub>o</sub> (lb/ft <sup>2</sup> )                | 0.57        | 1.03        | 0.32       |
| Actual Sheer Stress, τ <sub>d</sub> (ib/ft <sup>2</sup> )                 | 0.72        | 1.34        | 1.03       |
| Mannings n                                                                | 0.044       | 0.035       | 0.055      |
| Average Velocity, V (ft/s)                                                | 3.04        | 5.09        | 1.76       |
| Calculated Flow, Q (ft <sup>3</sup> /s)                                   | 35.8        | 35.7        | 4.8        |
| Difference Between Design & Calc. Flow (%)                                | 0.9%        | 0.0%        | -0.5%      |
| Effective Shear on Soil Surface, $\tau_e$ (lb/ft <sup>2</sup> )           | 0.010       | 0.028       | 0.009      |
|                                                                           |             |             |            |
| Total Permissible Shear on Veg., τ <sub>p.veg</sub> (lb/ft <sup>2</sup> ) | 6.06        | 3.83        | 9.47       |

# ENLOUNTEEDC

| JUS ENG                | Sheelino. 1/5                   |           |                |
|------------------------|---------------------------------|-----------|----------------|
|                        |                                 | Calc. No. |                |
|                        |                                 | Rev. No.  |                |
| Job No. 25214060       | Job: I-43 Landfill              | By: KRG   | Date: 01/14/15 |
| Client: Alliant Energy | Subject: Downslope Flume Sizing | Chk'd: ZB | Date: 02/09/15 |

Choot No.

4/2

**Purpose:** To size the downslope flume pipes to accommodate the flows expected from a 25-year, 24-hour storm event.

Approach: Use the orifice equation to size the downslope pipe inlet and Manning's equation to size the downslope pipes.

#### **Calculations:**

The runoff must first get into the down slope flume

The entrance to the flume is a Y with an open pipe on each branch of the Y.

1/2 of the flowrate of the 25-yr storm event for each drainage area will enter each branch of the flume. An orifice equation calculates the flowrate of water that can enter the pipe.

Orifice Equation:  $Q = C \times A \times (2 \times g \times h)^{0.5}$ 

Q = flow rate (cfs)

C = orifice coefficent = 0.63

A = area of orifice = 0.78 sf for 12" dia. pipe, 10" = 0.54 sf, 8" = 0.35 sf

g = acceleration due to gravity =  $32.2 \text{ ft/sec}^2$ 

h = orifice head acting on centerline = 1.5 x pipe diameter = 1.5' for 12" dia. pipe, 1.25' for 10", 1.0  $Q_{12" \text{ pipe}} = 0.63 \times .78 \times (2 \times 32.2 \times 1.5)^{0.5} =$ 4.83 cfs

| $Q_{10" \text{ pipe}} = 0.63 \times .54 \times (2 \times 32.2 \times 1.25)^{0.5} = 3.1$ | 05 cfs |
|-----------------------------------------------------------------------------------------|--------|
|-----------------------------------------------------------------------------------------|--------|

The downslope flume pipes have the following flow capacities at the designated slopes:

| Flow Capacity of Pipe |
|-----------------------|
| 25% slope             |
| 19.3 cfs              |
| 11.8 cfs              |
|                       |

\* See Sheets 2 - 3 for the Manning's flow calculations.

#### **Results:**

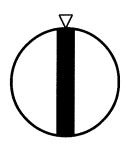
The downslope flumes will consist of the following sizes, as indicated on Plan Sheet 14.

| Flume Number     | Flow Rate (cfs) | 1/2 the Flowrate (cfs) | Flume Size |
|------------------|-----------------|------------------------|------------|
| Flume 1 (Area 1) | 3.7             | 1.9                    | 10 inch    |
| Flume 2 (Area 2) | 2.5             | 1.3                    | 10 inch    |
| Flume 3 (Area 3) | 6.6             | 3.3                    | 12 inch    |
| Flume 4 (Area 4) | 9.7             | 4.9                    | 12 inch    |
| Flume 5 (Area 5) | 6.4             | 3.2                    | 12 inch    |
| Flume 6 (Area 6) | 7.4             | 3.7                    | 12 inch    |

List of Calculators

s Hydraulics

Language


# Manning Formula Uniform Pipe Flow at Given Slope and Depth

Can you help me translate this calculator to your language or host this calculator at your web site?

# I-43 Landfill

# **Down Slope Flumes**

|                                              |            | Results:                                 |         |                 |
|----------------------------------------------|------------|------------------------------------------|---------|-----------------|
|                                              |            | Flow, q                                  | 11.8668 | cfs 🔻           |
| Set units: m mm ft inches                    |            | Velocity, v                              | 21.7580 | ft/sec 🔻        |
| Pipe diameter, d <sub>0</sub>                | 10         | Velocity head, h <sub>v</sub>            | 88.2918 | inches <b>v</b> |
|                                              | inches 🔻   | Flow area                                | 78.5400 | sq. in. 🔻       |
| Manning roughness, n <u>?</u>                | .012       | Wetted perimeter                         | 31.4159 | inches 🔻        |
| Pressure slope (possibly ? equal to pipe     | .25        | Hydraulic radius                         | 2.5000  | inches <b>v</b> |
| slope), S <sub>0</sub>                       | rise/run ▼ | Top width, T                             | 0.0000  | inches 🔻        |
| Percent of (or ratio to) full depth (100% or | 100        | Froude number, F                         | 0.00    |                 |
| 1 if flowing full)                           | % ▼        | Shear stress<br>(tractive force),<br>tau | 13.0078 | psf ▼           |



<u>Please give us your valued words of suggestion or praise. Did this free calculator exceed your expectations in every way?</u>

<u>Home | Support | FreeSoftware | Engineering Services | Engineering Calculators | Technical</u> <u>Documents | Blog (new in 2009) | Personal essays | Collaborative Family Trees | Contact</u>

Last Modified 01/14/2015 13:51:46

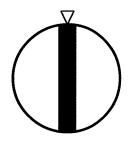
2

# **Free Online Manning Pipe Flow Calculator**

List of Calculators

ors Hydraulics

Language


# Manning Formula Uniform Pipe Flow at Given Slope and Depth

Can you help me translate this calculator to your language or host this calculator at your web site?

# I-43 Landfill

| Down Slope Flumes |  |
|-------------------|--|
|-------------------|--|

|                                                                 |                 | Results:                                 |          |         |            |
|-----------------------------------------------------------------|-----------------|------------------------------------------|----------|---------|------------|
|                                                                 |                 | Flow, q                                  | 19.2967  | cfs     | •          |
| Set units: m mm ft inches                                       |                 | Velocity, v                              | 24.5700  | ft/sec  | ▼          |
|                                                                 | 12              | Velocity head, h <sub>v</sub>            | 112.5889 | inches  | ▼          |
| Pipe diameter, d <sub>0</sub>                                   | inches <b>v</b> | Flow area                                | 113.0976 | sq. in. | ▼]         |
| Manning roughness, n <u>?</u>                                   | 1 1 1           | Wetted perimeter                         | 37.6991  | inches  | ▼]         |
| Pressure slope (possibly ? equal to pipe                        | .25             | Hydraulic radius                         | 3.0000   | inches  | ▼          |
| slope), S <sub>0</sub>                                          | rise/run ▼      | Top width, T                             | 0.0000   | inches  | ▼]         |
| Percent of (or ratio to) full depth (100% or 1 if flowing full) | 100<br>% ▼      | Froude number,<br>F                      | 0.00     |         |            |
|                                                                 |                 | Shear stress<br>(tractive force),<br>tau | 15.6094  | psf     | <b>V</b> ] |



<u>Please give us your valued words of suggestion or praise. Did this free calculator exceed</u> <u>your expectations in every way?</u>

<u>Home | Support | FreeSoftware | Engineering Services | Engineering Calculators | Technical</u> <u>Documents | Blog (new in 2009) | Personal essays | Collaborative Family Trees | Contact</u> Downslope Flume and Energy Dissipator Sizing

7

| SCS ENGI               | Sheet No. 1 of 6                     |           |                |  |
|------------------------|--------------------------------------|-----------|----------------|--|
|                        |                                      | Calc. No. |                |  |
|                        |                                      | Rev. No.  |                |  |
| Job No. 25214060       | Job: 1-43 Landfill Plan Modification | By: KRG   | Date: 01/28/15 |  |
| Client: Alliant Energy | Subject: Energy Dissipator Design    | Chk'd: ZB | Date: 02/09/15 |  |

#### **Energy Dissipator Design**

Design the Energy Dissipators located at the end of each downslope flume using the US Dept. of Transportation, Hydraulic Engineering Circular No. 14, "Hydraulic Design of Energy dissipators for Culverts and Channels", July 2006.

#### Pipe/Culvert: Flume 3, 4, 5, 6, and 7

\* Peak flow in this flume from 25-year, 24-hour event is 9.7 cfs. Flow is in a 12" dia. Flume From an on-line Mannings Equation Calculator (see page 3) Q = 9.7 cfs n = 0.01 V = 28.2 ft/sec A = 49.64 sq. in. = 0.34 sq. ft. Fr = 8.58

Compute Equivalent Depth of Flow Entering Dissipator:

 $Y_e = (A/2)^{1/2}$  where:  $Y_e = Equivalent depth$ A = Area (from above)

 $Y_{e} = 0.42 \text{ ft}$ 

#### Compute Energy at End of Pipe:

| $H_o = Y_e + V^2/2g$ when | e: H <sub>o</sub> = Energy            |
|---------------------------|---------------------------------------|
|                           | $Y_e = Equivalent depth (from above)$ |
|                           | V = Velocity (from above)             |
|                           | g = Gravity constant (32.2 ft/sec)    |
|                           |                                       |

Ho = 12.76 ft

#### Determine Width of Dissipator:

Use Froude Number computed above and Figure 9.14 (see page 5) from "Hydraulic Design of Energy Dissipators for Culverts and Channels" to obtain value for  $H_o/W$ . Given  $H_o$  above, compute W (width of dissipator).

| From Figure      | 9.14, $H_o/W_B =$ | 3.9 (interpolated) |
|------------------|-------------------|--------------------|
| W <sub>B</sub> = | 3.3 ft            |                    |

#### Determine Remaining Dimensions of the Dissipator:

Based on W determined above, use Table 9.2 (CU) (page 6) to determine the remaining dissipator dimensions. Round the value of  $W_B$  to the nearest entry in the table (interpolation is not necessary). Note: the smallest  $W_B$  on Table 9.2 is 4.0 ft, so this dimension is used.

| SCS ENGI               | Sheet No. 2 of 6                     |           |                |  |  |
|------------------------|--------------------------------------|-----------|----------------|--|--|
|                        | Calc. No.                            |           |                |  |  |
|                        |                                      | Rev. No.  |                |  |  |
| Job No. 25214060       | Job: 1-43 Landfill Plan Modification | By: KRG   | Date: 01/28/15 |  |  |
| Client: Alliant Energy | Subject: Energy Dissipator Design    | Chk'd: ZB | Date: 02/19/15 |  |  |

#### **Energy Dissipator Design**

#### Pipe/Culvert: Flume 1 and 2

\* Peak flow in this flume from 25-year, 24-hour event is 4.0 cfs.

Flow is in a 10" dia. Flume

From an on-line Mannings Equation Calculator (see page 4)

Q = 4 cfsn = 0.01 V = 22.4 ft/sec A = 25.7 sq. in. = 0.18 sq. ft. Fr = 8.5

$$\label{eq:compute Equivalent Depth of Flow Entering Dissipator:} \begin{split} & \underline{\mathsf{Y}_{e}} = \left(\mathsf{A}/2\right)^{1/2} & \text{where:} \quad \mathsf{Y}e = \mathsf{Equivalent depth} \end{split}$$

A = Area (from above)

 $Y_{e} = 0.30 \text{ ft}$ 

 $\begin{array}{c} \underline{Compute \ Energy \ at \ End \ of \ Pipe:}\\ H_o = Y_e + V^2/2g & where: \ H_o = Energy \\ Y_e = Equivalent \ depth \ (from \ above) \\ V = Velocity \ (from \ above) \\ g = Gravity \ constant \ (32.2 \ ft/sec) \end{array}$ 

Determine Width of Dissipator:

Use Froude Number computed above and Figure 9.14 from "Hydraulic Design of Energy Dissipators for Culverts and Channels" to obtain value for  $H_o/W$ . Given  $H_o$  above, compute W (width of dissipator).

From Figure 9.14,  $H_o/W_B =$  3.9 (interpolated)

 $W_B = 2.1 \text{ ft}$ 

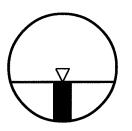
Determine Remaining Dimensions of the Dissipator:

Based on W determined above, use Table 9.2 (CU) to determine the remaining dissipator dimensions. Round the value of  $W_B$  to the nearest entry in the table (interpolation is not necessary). Note: the smallest  $W_B$  on Table 9.2 is 4.0 ft, so this dimension is used.

# **Free Online Manning Pipe Flow Calculator**

List of Calculators

Hydraulics Language


# Manning Formula Uniform Pipe Flow at Given Slope and Depth

<u>Can you help me translate this calculator to your language or host this calculator at your web</u> site?

# I-43 Landfill

# Down Slope Flumes 1,2,8,9,10

|                                              |                 | Results:                      |         |                                                                              |
|----------------------------------------------|-----------------|-------------------------------|---------|------------------------------------------------------------------------------|
|                                              |                 | Flow, q                       | 4.0097  | cfs 🔻                                                                        |
| Set units: m mm ft inches                    |                 | Velocity, v                   | 22.4299 | ft/sec 🔻                                                                     |
| Pipe diameter, d <sub>0</sub>                | 10              | Velocity head, h <sub>v</sub> | 93.8297 | inches 🔻                                                                     |
|                                              | inches <b>v</b> | Flow area                     | 25.7434 | sq. in. 🔻                                                                    |
| Manning roughness, n <u>?</u>                | .01             | Wetted perimeter              | 12.9325 | inches 🔻                                                                     |
| Pressure slope (possibly ? equal to pipe     | .25             | Hydraulic radius              | 1.9906  | inches 🔻                                                                     |
| slope), S <sub>0</sub>                       | rise/run ▼      | Top width, T                  | 9.6173  | inches <b>v</b>                                                              |
| Percent of (or ratio to) full depth (100% or | 36.3            | Froude number, F              | 8.50    |                                                                              |
| 1 if flowing full)                           | % ▼             | Shear stress                  |         | gele begele de bergen fastende et de fer et begele en en se de bester de reg |
|                                              |                 | (tractive force),<br>tau      | 4.7218  | psf <b>v</b>                                                                 |



<u>Please give us your valued words of suggestion or praise. Did this free calculator exceed your expectations in every way?</u>

<u>Home | Support | FreeSoftware | Engineering Services | Engineering Calculators | Technical</u> <u>Documents | Blog (new in 2009) | Personal essays | Collaborative Family Trees | Contact</u>

E Last Modified 01/28/2015 10:15:55

shows the relationship of the Froude number to the ratio of the energy entering the dissipator to the width of dissipator required. The Los Angeles tests indicate that limited extrapolation of this curve is permissible.

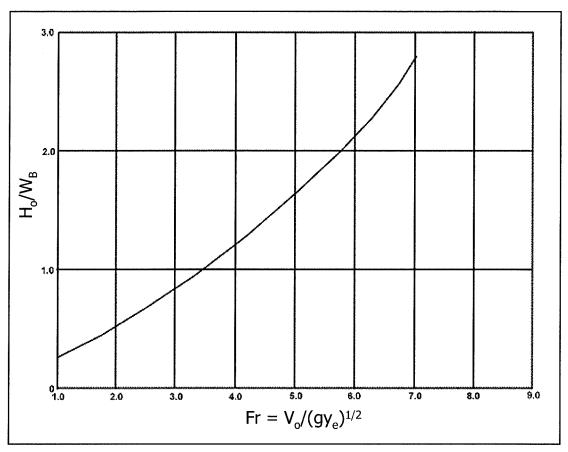



Figure 9.14. Design Curve for USBR Type VI Impact Basin

Once the basin width,  $W_B$ , has been determined, many of the other dimensions shown in Figure 9.13 follow according to Table 9.2. To use Table 9.2, round the value of  $W_B$  to the nearest entry in the table to determine the other dimensions. Interpolation is not necessary.

In calculating the energy and the Froude number, the equivalent depth of flow,  $y_e = (A/2)^{1/2}$ , entering the dissipator from a pipe or irregular-shaped conduit must be computed. In other words, the cross section flow area in the pipe is converted into an equivalent rectangular cross section in which the width is twice the depth of flow. The conduit preceding the dissipator can be open, closed, or of any cross section.

The effectiveness of the basin is best illustrated by comparing the energy losses within the structure to those in a natural hydraulic jump, Figure 9.15. The energy loss was computed based on depth and velocity measurements made in the approach pipe and also in the downstream channel with no tailwater. Compared with the natural hydraulic jump, the USBR Type VI impact basin shows a greater capacity for dissipating energy.

|       | W <sub>B</sub> | h1                    | h <sub>2</sub> | h <sub>3</sub> | h₄             | L              | L <sub>1</sub> | L <sub>2</sub> |
|-------|----------------|-----------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| ~~~>> | 4.             | 3.08                  | 1.50           | 0.67           | 1.67           | 5.42           | 2.33           | 3.08           |
|       | 5.             | 3.83                  | 1.92           | 0.83           | 2.08           | 6.67           | 2.92           | 3.83           |
|       | 6.             | 4.58                  | 2.25           | 1.00           | 2.50           | 8.00           | 3.42           | 4.58           |
|       | 7.             | 5.42                  | 2.58           | 1.17           | 2.92           | 9.42           | 4.00           | 5.42           |
|       | 8.             | 6.17                  | 3.00           | 1.33           | 3.33           | 10.67          | 4.58           | 6.17           |
|       | 9.             | 6.92                  | 3.42           | 1.50           | 3.75           | 12.00          | 5.17           | 6.92           |
|       | 10.            | 7.58                  | 3.75           | 1.67           | 4.17           | 13.42          | 5.75           | 7.67           |
|       | 11.            | 8.42                  | 4.17           | 1.83           | 4.58           | 14.58          | 6.33           | 8.42           |
|       | 12.            | 9.17                  | 4.50           | 2.00           | 5.00           | 16.00          | 6.83           | 9.17           |
|       | 13.            | 10.17                 | 4.92           | 2.17           | 5.42           | 17.33          | 7.42           | 10.00          |
|       | 14.            | 10.75                 | 5.25           | 2.33           | 5.83           | 18.67          | 8.00           | 10.75          |
|       | 15.            | 11.50                 | 5.58           | 2.50           | 6.25           | 20.00          | 8.50           | 11.50          |
|       | 16.            | 12.25                 | 6.00           | 2.67           | 6.67           | 21.33          | 9.08           | 12.25          |
|       | 17.            | 13.00                 | 6.33           | 2.83           | 7.08           | 21.50          | 9.67           | 13.00          |
| ſ     | 18.            | 13.75                 | 6.67           | 3.00           | 7.50           | 23.92          | 10.25          | 13.75          |
|       | 19.            | 14.58                 | 7.08           | 3.17           | 7.92           | 25.33          | 10.83          | 14.58          |
|       | 20.            | 15.33                 | 7.50           | 3.33           | 8.33           | 26.58          | 11.42          | 15.33          |
| -     |                |                       |                |                |                |                |                |                |
|       | W <sub>B</sub> | <b>W</b> <sub>1</sub> | $W_2$          | t <sub>1</sub> | t <sub>2</sub> | t <sub>3</sub> | t <sub>4</sub> | t <sub>5</sub> |
| ~>    | 4.             | 0.33                  | 1.08           | 0.50           | 0.50           | 0.50           | 0.50           | 0.25           |
|       | 5.             | 0.42                  | 1.42           | 0.50           | 0.50           | 0.50           | 0.50           | 0.25           |
|       | 6.             | 0.50                  | 1.67           | 0.50           | 0.50           | 0.50           | 0.50           | 0.25           |
| ſ     | 7.             | 0.50                  | 1.92           | 0.50           | 0.50           | 0.50           | 0.50           | 0.25           |
| [     | 8.             | 0.58                  | 2.17           | 0.50           | 0.58           | 0.58           | 0.50           | 0.25           |
|       | 9.             | 0.67                  | 2.50           | 0.58           | 0.58           | 0.67           | 0.58           | 0.25           |
|       | 10.            | 0.75                  | 2.75           | 0.67           | 0.67           | 0.75           | 0.67           | 0.25           |
|       | 11.            | 0.83                  | 3.00           | 0.67           | 0.75           | 0.75           | 0.67           | 0.33           |
|       | 12.            | 0.92                  | 3.00           | 0.67           | 0.83           | 0.83           | 0.75           | 0.33           |
|       | 13.            | 1.00                  | 3.00           | 0.67           | 0.92           | 0.83           | 0.83           | 0.33           |
|       | 14.            | 1.08                  | 3.00           | 0.67           | 1.00           | 0.92           | 0.92           | 0.42           |
|       | 15.            | 1.17                  | 3.00           | 0.67           | 1.00           | 1.00           | 1.00           | 0.42           |
|       | 16.            | 1.25                  | 3.00           | 0.75           | 1.00           | 1.00           | 1.00           | 0.50           |
| Γ     | 17.            | 1.33                  | 3.00           | 0.75           | 1.08           | 1.00           | 1.00           | 0.50           |
|       | 18.            | 1.33                  | 3.00           | 0.75           | 1.08           | 1.08           | 1.08           | 0.58           |
| ľ     | 19.            | 1.42                  | 3.00           | 0.83           | 1.17           | 1.08           | 1.08           | 0.58           |
| ľ     | 20.            | 1.50                  | 3.00           | 0.83           | 1.17           | 1.17           | 1.17           | 0.67           |
| L     |                |                       |                |                |                |                |                | L              |

 Table 9.2 (CU). USBR Type VI Impact Basin Dimensions (ft) (AASHTO, 2005)

6

Culvert Sizing

HY-8 Culvert Analysis Report

## **Crossing Discharge Data**

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 0 cfs

Design Flow: 146 cfs

Maximum Flow: 270 cfs

| Headwater Elevation<br>(ft) | Total Discharge (cfs) | West Swale Culverts<br>Discharge (cfs) | Roadway Discharge<br>(cfs) | Iterations  |
|-----------------------------|-----------------------|----------------------------------------|----------------------------|-------------|
| 678.70                      | 0.00                  | 0.00                                   | 0.00                       | 1           |
| 680.07                      | 27.00                 | 27.00                                  | 0.00                       | 1           |
| 680.67                      | 54.00                 | 54.00                                  | 0.00                       | 1           |
| 681.15                      | 81.00                 | 81.00                                  | 0.00                       | 1           |
| 681.63                      | 108.00                | 108.00                                 | 0.00                       | 1           |
| 682.07                      | 135.00                | 135.00                                 | 0.00                       | 1           |
| 682.23                      | 146.00                | 146.00                                 | 0.00                       | 1           |
| 683.11                      | 189.00                | 189.00                                 | 0.00                       | 1           |
| 683.47                      | 216.00                | 216.00                                 | 0.00                       | 1           |
| 683.81                      | 243.00                | 243.00                                 | 0.00                       | 1           |
| 684.16                      | 270.00                | 270.00                                 | 0.00                       | 1           |
| 686.00                      | 392.66                | 392.66                                 | 0.00                       | Overtopping |

# Table 1 - Summary of Culvert Flows at Crossing: I-43 Landfill

| Total<br>Discharge<br>(cfs) | Culvert<br>Discharge<br>(cfs) | Headwater<br>Elevation<br>(ft) | Inlet<br>Control<br>Depth (ft) | Outlet<br>Control<br>Depth (ft) | Flow<br>Type | Normal<br>Depth (ft) | Critical<br>Depth (ft) | Outlet<br>Depth (ft) | Tailwater<br>Depth (ft) | Outlet<br>Velocity<br>(ft/s) | Tailwater<br>Velocity<br>(ft/s) |
|-----------------------------|-------------------------------|--------------------------------|--------------------------------|---------------------------------|--------------|----------------------|------------------------|----------------------|-------------------------|------------------------------|---------------------------------|
|                             | 0.00                          | 0.00                           | 678.70                         | 0.000                           | 0.000        | 0-NF                 | 0.000                  | 0.000                | 0.300                   | 0.000                        | 0.000                           |
|                             | 27.00                         | 27.00                          | 680.07                         | 1.369                           | 0.951        | 1-JS1t               | 0.985                  | 1.006                | 1.238                   | 0.938                        | 3.542                           |
|                             | 54.00                         | 54.00                          | 680.67                         | 1.973                           | 1.427        | 1-JS1t               | 1.408                  | 1.437                | 1.674                   | 1.374                        | 4.669                           |
|                             | 81.00                         | 81.00                          | 681.15                         | 2.451                           | 1.828        | 1-JS1t               | 1.739                  | 1.772                | 2.008                   | 1.708                        | 5.484                           |
|                             | 108.00                        | 108.00                         | 681.63                         | 2.934                           | 2.200        | 1-JS1t               | 2.031                  | 2.060                | 2.287                   | 1.987                        | 6.168                           |
|                             | 135.00                        | 135.00                         | 682.07                         | 3.369                           | 2.563        | 1-JS1t               | 2.308                  | 2.317                | 2.531                   | 2.231                        | 6.769                           |
|                             | 146.00                        | 146.00                         | 682.23                         | 3.535                           | 2.322        | 1-JS1t               | 2.413                  | 2.415                | 2.622                   | 2.322                        | 7.000                           |
|                             | 189.00                        | 189.00                         | 683.11                         | 4.141                           | 4.412        | 3-M1t                | 2.822                  | 2.760                | 2.947                   | 2.647                        | 7.847                           |
|                             | 216.00                        | 216.00                         | 683.47                         | 4.506                           | 4.766        | 3-M1t                | 3.076                  | 2.960                | 3.131                   | 2.831                        | 8.348                           |
|                             | 243.00                        | 243.00                         | 683.81                         | 4.872                           | 5.114        | 3-M2t                | 3.341                  | 3.145                | 3.301                   | 3.001                        | 8.834                           |
|                             | 270.00                        | 270.00                         | 684.16                         | 5.250                           | 5.459        | 3-M2t                | 3.614                  | 3.324                | 3.461                   | 3.161                        | 9.308                           |

Table 2 - Culvert Summary Table: West Swale Culverts

Straight Culvert

Inlet Elevation (invert): 678.70 ft, Outlet Elevation (invert): 678.40 ft

Culvert Length: 100.00 ft, Culvert Slope: 0.0030

#### Site Data - West Swale Culverts

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 678.70 ft

Outlet Station: 100.00 ft

Outlet Elevation: 678.40 ft

Number of Barrels: 2

#### **Culvert Data Summary - West Swale Culverts**

Barrel Shape: Circular Barrel Diameter: 5.00 ft Barrel Material: Smooth HDPE Embedment: 0.00 in Barrel Manning's n: 0.0120 Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: NONE

| Flow (cfs) | Water Surface<br>Elev (ft) | Depth (ft) | Velocity (ft/s) | Shear (psf) | Froude Number |
|------------|----------------------------|------------|-----------------|-------------|---------------|
| 0.00       | 678.70                     | 0.00       | 0.00            | 0.00        | 0.00          |
| 27.00      | 679.64                     | 0.94       | 2.25            | 0.18        | 0.45          |
| 54.00      | 680.07                     | 1.37       | 2.78            | 0.26        | 0.48          |
| 81.00      | 680.41                     | 1.71       | 3.13            | 0.32        | 0.49          |
| 108.00     | 680.69                     | 1.99       | 3.40            | 0.37        | 0.50          |
| 135.00     | 680.93                     | 2.23       | 3.63            | 0.42        | 0.51          |
| 146.00     | 681.02                     | 2.32       | 3.71            | 0.43        | 0.51          |
| 189.00     | 681.35                     | 2.65       | 3.98            | 0.50        | 0.52          |
| 216.00     | 681.53                     | 2.83       | 4.13            | 0.53        | 0.52          |
| 243.00     | 681.70                     | 3.00       | 4.26            | 0.56        | 0.53          |
| 270.00     | 681.86                     | 3.16       | 4.38            | 0.59        | 0.53          |

### Table 3 - Downstream Channel Rating Curve (Crossing: I-43 Landfill)

#### Tailwater Channel Data - I-43 Landfill

Tailwater Channel Option: Trapezoidal Channel Bottom Width: 10.00 ft Side Slope (H:V): 3.00 (\_:1) Channel Slope: 0.0030 Channel Manning's n: 0.0300 Channel Invert Elevation: 678.70 ft

## Roadway Data for Crossing: I-43 Landfill

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 50.00 ft Crest Elevation: 686.00 ft Roadway Surface: Gravel Roadway Top Width: 20.00 ft Sedimentation Basin Sizing

.

# SCS ENGINEERS

| Sheet No. | 1 of 3 |
|-----------|--------|
| Calc. No. |        |
| Rev. No.  |        |

| Job No. 25214060       | Job: I-43 Landfill Plan Modification | By: KRC | 3  |
|------------------------|--------------------------------------|---------|----|
| Client: Alliant Energy | Subject: Sed Basin Sizing            | Chk'd:  | ZB |

Date: 02/06/15

Date: 02/10/15

| and the second |                                                                                                            |  |
|----------------|------------------------------------------------------------------------------------------------------------|--|
| Se             | dimentation Basin Sizing                                                                                   |  |
|                |                                                                                                            |  |
| Pe             | rformance Criteria                                                                                         |  |
| *              | Sedimentation basin is designed to settle out particles 15 microns and greater for the 25-year, 24-hour    |  |
|                | storm event                                                                                                |  |
| *              | Principal spillway is designed to pass the 25-year, 24-hour storm event.                                   |  |
| *              | Emergency spillway is designed to pass the 100-yr, 24-hour storm event.                                    |  |
| Complement of  |                                                                                                            |  |
| Us             | e the Table 8.1 presented in Erosion and Sediment Control Handbook (Goldman, et al., 1986) that provides   |  |
| the            | e surface area to discharge ratios required to achieve settlement of the desired particle sizes. The table |  |
| is             | included below. From this table, use the surface area to flow ratio for the sedimentation to determine the |  |

maximum particle size settled.

The table below summarized the surface area to flow ratios for sedimentation basins. It also summarizes the free board for the 100-year, 24-hour storm event. The information is based on the HydroCAD model output included in this appendix.

#### Surface Area Requirements of Sediment Traps and Basins TABLE 8.1

| Day               | rtialo aizo mm |         | g velocity,<br>c (m/sec) | Surface area<br>ft <sup>2</sup> per ft <sup>3</sup> /sec<br>discharge | requirements,<br>(m <sup>2</sup> per m <sup>3</sup> /sec<br>discharge) |  |
|-------------------|----------------|---------|--------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|--|
| Particle size, mm |                |         |                          |                                                                       |                                                                        |  |
| 0.5               | (coarse sand)  | 0.19    | (0.058)                  | 6.3                                                                   | (20.7)                                                                 |  |
| 0.2               | (medium sand)  | 0.067   | (0.020)                  | 17.9                                                                  | (58.7)                                                                 |  |
| 0.1               | (fine sand)    | 0.023   | (0.0070)                 | 52.2                                                                  | (171.0)                                                                |  |
| 0.05              | (coarse silt)  | 0.0062  | (0.0019)                 | 193.6                                                                 | (635.0)                                                                |  |
| 0.02              | (medium silt)  | 0.00096 | (0.00029)                | 1,250.0                                                               | (4,101.0)                                                              |  |
| 0.01              | (fine silt)    | 0.00024 | (0.000073)               | 5,000.0                                                               | (16, 404.0)                                                            |  |
| 0.005             | (clay)         | 0.00006 | (0.000018)               | 20,000.0                                                              | (65, 617.0)                                                            |  |

The output from the HydroCAD model for the 25 and 100-yr storm event is included on Pages 2 - 3.

|           | No. of Concession, Name |                   |                         |               |                                       |               |             | man Currelo |                                   |
|-----------|-------------------------|-------------------|-------------------------|---------------|---------------------------------------|---------------|-------------|-------------|-----------------------------------|
| 25-у      | ear, 24 hour s          | Storm             | Surface Area            |               |                                       | 100-yr, 24-hr |             | Basin       |                                   |
| Peak      | Peak                    | Peak Water        | at Peak Water           |               | Maximum                               | Storm Peak    | Top of      | Freeboard   |                                   |
| Inflow    | Discharge               | Surface           | Surface                 | SA/Q          | Particle Size                         | Water         | Berm        | for 100-yr  |                                   |
| (cfs)     | Q (cfs)                 | Elevation         | Elevation, SA           | Ratio         | Settled                               | Surface       | Elevation   | Storm       |                                   |
|           |                         |                   | (sf)                    |               | (mm)                                  | Elevation     | (Freeboard) | (feet)      |                                   |
| 165.09    | 17.1                    | 684.74            | 230,955                 | 13,506        | < 0.01                                | 685.90        | 686.50      | 0.6         |                                   |
|           |                         |                   |                         |               | · · · · · · · · · · · · · · · · · · · |               |             |             |                                   |
| I:\252140 | 60\Calculations\S       | stormwater\[Sed H | Basin Sizing.xls]Sheet1 | Normal States |                                       |               |             |             | Construction of the International |

## Summary for Pond 29P: Detention/Sedimentation Basin

[63] Warning: Exceeded Reach 21R INLET depth by 0.10' @ 15.40 hrs [62] Warning: Exceeded Reach 28R OUTLET depth by 2.62' @ 14.55 hrs

| Inflow Area = | 96.610 ac,   | 8.14% Impervious, Inflow | Depth > 2.52"  | for 25-yr event         |
|---------------|--------------|--------------------------|----------------|-------------------------|
| Inflow =      | 165.09 cfs @ | 12.49 hrs, Volume=       | 20.321 af      | -                       |
| Outflow =     | 17.07 cfs @  | 14.38 hrs, Volume=       | 10.223 af, Att | en= 90%, Lag= 113.9 min |
| Primary =     | 17.07 cfs @  | 14.38 hrs, Volume=       | 10.223 af      | -                       |
| Secondary =   | 0.00 cfs @   | 1.00 hrs, Volume=        | 0.000 af       |                         |

Routing by Stor-Ind method, Time Span= 1.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 684.74' @ 14.38 hrs Surf.Area= 5.302 ac Storage= 13.038 af

Plug-Flow detention time= 247.0 min calculated for 10.223 af (50% of inflow) Center-of-Mass det. time= 161.9 min (963.6 - 801.6)

| Volume                           | Invert                                                                                                                                                                                                                                                                                                                                                                                                       | Avail.Storag                          | je Stora         | age Description                                         |  |  |  |  |  |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------|---------------------------------------------------------|--|--|--|--|--|
| #1                               | 681.46'                                                                                                                                                                                                                                                                                                                                                                                                      | 20.170                                | af Cust          | com Stage Data (Prismatic) Listed below (Recalc)        |  |  |  |  |  |
| Elevatio<br>(fee                 |                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | Store:<br>Store: | Cum.Store<br>(acre-feet)                                |  |  |  |  |  |
| 681.4                            |                                                                                                                                                                                                                                                                                                                                                                                                              | · · · · · · · · · · · · · · · · · · · | 0.000            | 0.000                                                   |  |  |  |  |  |
| 682.0                            |                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | 1.520            | 1.520                                                   |  |  |  |  |  |
| 684.0                            |                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | 7.740            | 9.260                                                   |  |  |  |  |  |
| 686.0                            |                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | 10.910           | 20.170                                                  |  |  |  |  |  |
| 000.0                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | 10.010           | 20.110                                                  |  |  |  |  |  |
| Device                           | Routing                                                                                                                                                                                                                                                                                                                                                                                                      | Invert                                | Outlet De        | evices                                                  |  |  |  |  |  |
| #1                               | Primary                                                                                                                                                                                                                                                                                                                                                                                                      | 681.50'                               | 24.0" x 5        | 50.0' long Culvert CMP, square edge headwall, Ke= 0.500 |  |  |  |  |  |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                  | vert= 681.00' S= 0.0100 '/' Cc= 0.900                   |  |  |  |  |  |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                  | Corrugated metal                                        |  |  |  |  |  |
| #2                               | Device 1                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                  | . Orifice/Grate X 4.00 C= 0.600                         |  |  |  |  |  |
| #3                               | Device 1                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                  | . Orifice/Grate X 4.00 C= 0.600                         |  |  |  |  |  |
| #4                               | Device 1                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                  | . Orifice/Grate X 4.00 C= 0.600                         |  |  |  |  |  |
| #5                               | Device 1                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                  | . Orifice/Grate X 4.00 C= 0.600                         |  |  |  |  |  |
| #6                               | Device 1                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                  | riz. Orifice/Grate Limited to weir flow C= 0.600        |  |  |  |  |  |
| #7                               | Secondary                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                  | g x 30.0' breadth Broad-Crested Rectangular Weir        |  |  |  |  |  |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | •                | et) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60             |  |  |  |  |  |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | Coet. (Er        | nglish) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63         |  |  |  |  |  |
| 1=Cu<br>-2=<br>-3=<br>-4=<br>-5= | Primary OutFlow Max=17.07 cfs @ 14.38 hrs HW=684.74' (Free Discharge)<br>1=Culvert (Barrel Controls 17.07 cfs @ 5.43 fps)<br>2=Orifice/Grate (Passes < 6.26 cfs potential flow)<br>-3=Orifice/Grate (Passes < 5.66 cfs potential flow)<br>-4=Orifice/Grate (Passes < 4.99 cfs potential flow)<br>-5=Orifice/Grate (Passes < 4.22 cfs potential flow)<br>-6=Orifice/Grate (Passes < 19.76 cfs potential flow) |                                       |                  |                                                         |  |  |  |  |  |
|                                  | Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=681.46' (Free Discharge)                                                                                                                                                                                                                                                                                                                                        |                                       |                  |                                                         |  |  |  |  |  |

# Summary for Pond 29P: Detention/Sedimentation Basin

[63] Warning: Exceeded Reach 21R INLET depth by 0.92' @ 14.35 hrs [62] Warning: Exceeded Reach 28R OUTLET depth by 3.71' @ 13.60 hrs

| Inflow Area = | 96.610 ac,  | 8.14% Impervious, Inflow | Depth > 3.99"    | for 100-yr event      |
|---------------|-------------|--------------------------|------------------|-----------------------|
| Inflow =      |             | 12.44 hrs, Volume=       | 32.094 af        | ,                     |
| Outflow =     | 44.56 cfs @ | 13.47 hrs, Volume=       | 18.380 af, Atter | n= 84%, Lag= 62.0 min |
| Primary =     | 22.02 cfs @ | 13.47 hrs, Volume=       | 13.215 af        | , 5                   |
| Secondary =   | 22.55 cfs @ | 13.47 hrs, Volume=       | 5.165 af         |                       |

Routing by Stor-Ind method, Time Span= 1.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 685.90' @ 13.47 hrs Surf.Area= 5.991 ac Storage= 19.576 af

Plug-Flow detention time= 214.7 min calculated for 18.331 af (57% of inflow) Center-of-Mass det. time= 138.1 min ( 930.0 - 791.9 )

| Volume                                 | Invert                                                                                                                                                                                                                                                                                                                                                                                                        | Avail.Storage                                                                                     | e Storag                                                                                                                                             | ge Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| #1                                     | 681.46'                                                                                                                                                                                                                                                                                                                                                                                                       | 20.170 a                                                                                          | af Custo                                                                                                                                             | om Stage Data (Prismatic) Listed below (Recalc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Elevati                                | on Surf.Are                                                                                                                                                                                                                                                                                                                                                                                                   | a Inc.                                                                                            | .Store                                                                                                                                               | Cum.Store                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| (fee                                   | et) (acre                                                                                                                                                                                                                                                                                                                                                                                                     | s) (acre                                                                                          | e-feet)                                                                                                                                              | (acre-feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| 681.4                                  | 46 2.75                                                                                                                                                                                                                                                                                                                                                                                                       | 50 (                                                                                              | 0.000                                                                                                                                                | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| 682.0                                  | 00 2.88                                                                                                                                                                                                                                                                                                                                                                                                       | 30 <sup>-</sup>                                                                                   | 1.520                                                                                                                                                | 1.520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| 684.                                   | 00 4.86                                                                                                                                                                                                                                                                                                                                                                                                       | 50 T                                                                                              | 7.740                                                                                                                                                | 9.260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| 686.0                                  | 00 6.05                                                                                                                                                                                                                                                                                                                                                                                                       | 50 10                                                                                             | 0.910                                                                                                                                                | 20.170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Device                                 | Routing                                                                                                                                                                                                                                                                                                                                                                                                       | Invert C                                                                                          | Outlet Dev                                                                                                                                           | vices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| #1<br>#2<br>#3<br>#4<br>#5<br>#6<br>#7 | Primary<br>Device 1<br>Device 1<br>Device 1<br>Device 1<br>Device 1<br>Secondary                                                                                                                                                                                                                                                                                                                              | C<br>681.75' 6<br>682.25' 6<br>682.75' 6<br>683.25' 6<br>683.25' 6<br>684.00' 3<br>685.00' 1<br>H | Dutlet Inve<br>n= 0.025 (<br>5.0" Vert. (<br>5.0" Vert. (<br>5.0" Vert. (<br>5.0" Vert. (<br>5.0" Vert. (<br>56.0" Hori;<br>10.0' long<br>Head (feet | 0.0' long Culvert CMP, square edge headwall, Ke= 0.500         ert= 681.00' S= 0.0100 '/' Cc= 0.900         Corrugated metal         Orifice/Grate X 4.00 C= 0.600         Orifice/Grate Limited to weir flow C= 0.600         x 30.0' breadth Broad-Crested Rectangular Weir         0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60         glish) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63 |  |  |  |  |  |
| -1=Cu<br>-2=<br>-3=<br>-4=<br>-5=      | Primary OutFlow Max=22.02 cfs @ 13.47 hrs HW=685.90' (Free Discharge)<br>1=Culvert (Barrel Controls 22.02 cfs @ 7.01 fps)<br>-2=Orifice/Grate (Passes < 7.47 cfs potential flow)<br>-3=Orifice/Grate (Passes < 6.97 cfs potential flow)<br>-4=Orifice/Grate (Passes < 6.44 cfs potential flow)<br>-5=Orifice/Grate (Passes < 5.86 cfs potential flow)<br>-6=Orifice/Grate (Passes < 46.93 cfs potential flow) |                                                                                                   |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |

Secondary OutFlow Max=22.54 cfs @ 13.47 hrs HW=685.90' (Free Discharge) 7=Broad-Crested Rectangular Weir (Weir Controls 22.54 cfs @ 2.50 fps)

# SCS ENGINEERS

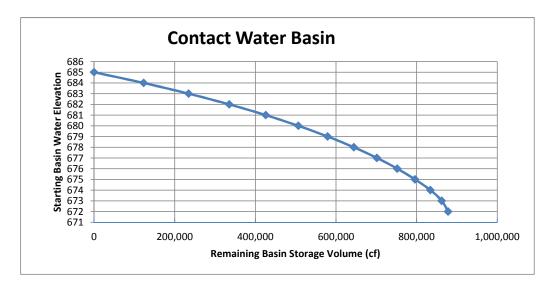
Subject

Sheet No. Calc. No. Rev. No. By KRG Date 5/17/16

Date 5/23/16

Chk'd BLP

Job No. 25214179 Client Wisconsin P&L Job

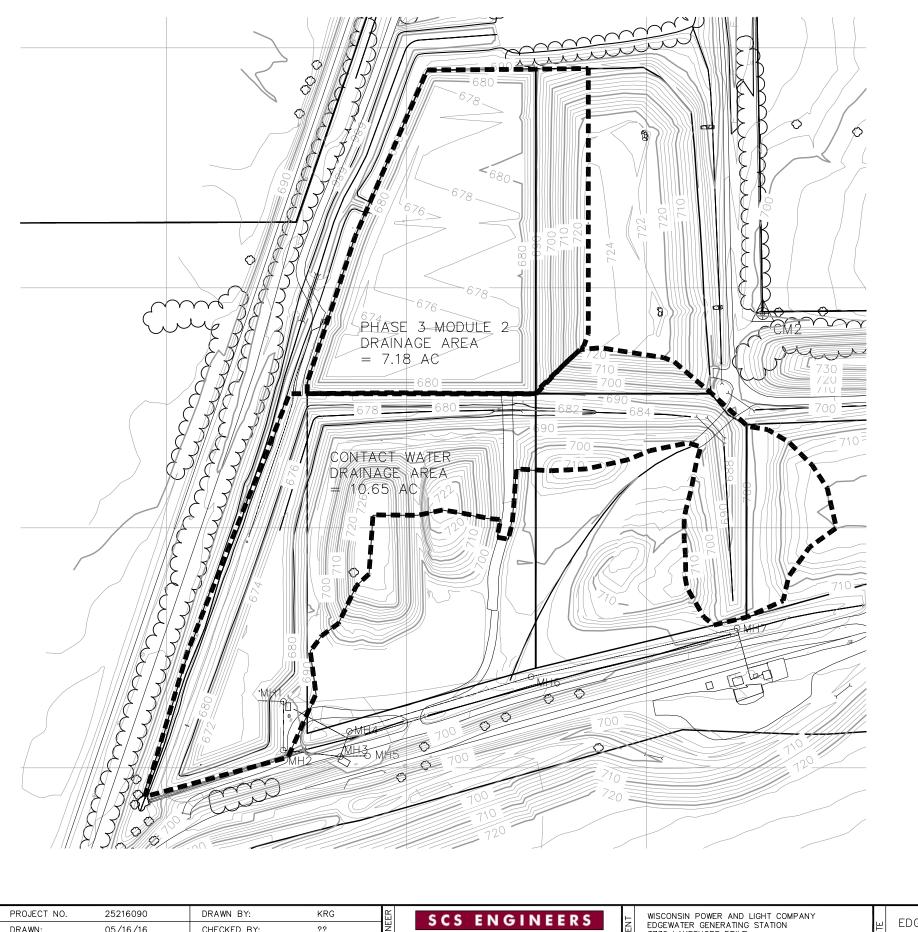

I-43 Ash Landfill С

| Contact | Water | Basin |  |
|---------|-------|-------|--|
|         |       |       |  |

| Pur  | pose:   |         |        |        |          |       |        |       |        |        |       |       |       |        |       |       |        |       |        |       |        |    |
|------|---------|---------|--------|--------|----------|-------|--------|-------|--------|--------|-------|-------|-------|--------|-------|-------|--------|-------|--------|-------|--------|----|
|      | The co  | ntact   | water  | basi   | n at     | the I | -43 1a | andfi | ill ac | comr   | noda  | tes r | unof  | f pun  | nped  | fror  | n cor  | ntact | wate   | r har | ndling | g  |
|      | areas v | ithin   | each   | mod    | ule a    | nd fr | om c   | other | area   | s dire | ectly | disc  | hargi | in int | o the | e cor | tact   | wate  | r bas  | in dı | iring  |    |
|      | storm e | events  | . The  | e pur  | pose     | of th | nis ca | lcula | ation  | is to  | dete  | rmin  | e the | e max  | kimu  | m sta | arting | g wa  | ter el | evati | on ir  | L  |
|      | the cor |         |        |        | -        |       |        |       |        |        |       |       |       |        |       |       |        | -     |        |       |        |    |
|      | runoff  |         |        |        |          |       |        |       |        |        |       |       |       |        |       |       |        |       |        |       |        |    |
|      |         |         |        |        |          |       |        |       |        |        |       |       |       |        |       |       |        |       |        |       |        |    |
| Apr  | oroach: |         |        |        |          |       |        |       |        |        |       |       |       |        |       |       |        |       |        |       |        |    |
|      | Determ  | nine th | e 25-  | -year  | , 24-    | hour  | storr  | n ev  | ent r  | unoff  | volu  | umes  | con   | tribu  | ting  | to th | e cor  | ntact | wate   | r bas | in fo  | r  |
|      | each pl |         |        |        |          |       |        |       |        |        |       |       |       |        | -     |       |        |       |        |       |        |    |
|      | volume  |         |        |        |          |       | -      |       |        |        |       |       |       |        |       |       |        |       |        |       |        |    |
|      | Detern  |         | -      | -      |          |       | -      |       | -      |        | _     |       |       |        |       |       |        |       | -      |       | ter a  | ;  |
|      | various |         |        |        | -        | -     |        |       |        |        |       |       |       |        | -     |       |        |       |        |       |        |    |
|      |         |         |        |        |          |       |        |       |        |        |       |       |       |        |       |       |        |       |        |       |        |    |
| Ass  | umptio  | ns      |        |        |          |       |        |       |        |        |       |       |       |        |       |       |        | -     |        |       |        |    |
|      | A 25-y  |         | 4-hou  | ır sto | orm e    | vent  | = 4.8  | 80 in | ches   | . base | ed or | ı NO  | AA    | Atlas  | s 14. |       |        |       |        |       |        |    |
|      | Assum   |         |        |        |          |       |        |       |        | ,      |       |       |       |        |       |       |        | -     | -      |       |        |    |
|      | Assum   |         |        |        |          |       |        | taine | d in   | the c  | onta  | et wa | ter h | asin.  |       |       |        | -     | -      |       |        |    |
|      | Ash ha  |         |        |        |          |       |        |       |        |        |       |       |       |        |       |       |        |       |        |       |        |    |
|      | Assum   |         |        |        |          |       |        |       | cont   | act w  | /ater | basi  | n are | bare   | soil  |       |        |       |        |       |        |    |
|      |         |         |        |        |          |       |        |       |        |        |       |       |       |        |       |       |        |       |        |       |        |    |
| Res  | ults:   |         |        |        | -        |       |        |       | -      |        |       |       |       |        |       |       |        | -     | -      | -     |        |    |
| 1105 | Phase 2 | 3 Mod   | ule 2  | Act    | ive      |       |        |       |        |        |       |       |       |        |       |       |        | -     | -      |       |        |    |
|      |         |         |        |        |          | unof  | f vol  | ume   | (269   | 114    | cf) r | esult | ino f | rom    | a 25  | -veai | · 24.  | -hou  | r stor | m ev  | ent i  | he |
|      |         | rting   |        |        |          |       |        |       |        |        |       |       | -     |        | u 23  | Jean  | , 21   | liou  |        |       |        |    |
|      | 54      |         |        |        |          |       |        |       |        |        | 002.  |       | 10    |        |       |       |        | -     | -      | -     |        |    |
|      | Phase 4 | 1 Mod   | lule 2 | ,      | -        |       |        |       | -      |        |       |       |       |        |       |       |        | -     | -      |       |        |    |
|      |         |         |        |        | the r    | unof  | f vol  | ume   | (257   | 352    | cf) r | esult | ing f | rom    | a 25  | -veai | · 24.  | -hou  | r stor | m ev  | ent i  | he |
|      |         | rting   |        |        |          |       |        |       |        |        |       |       | -     |        | u 25  | year  | , 27   | liou  |        |       |        |    |
|      | 54      |         |        |        |          |       |        |       |        |        | 001.  |       | 10    |        |       |       |        | -     | -      |       |        |    |
|      | Phase 4 | 1 Mod   | lule 3 |        |          |       |        |       |        |        |       |       |       |        |       |       |        |       | -      |       |        |    |
|      |         |         |        |        | the r    | unof  | f vol  | ume   | (237   | 141    | cf) r | ecult | ing f | rom    | a 25  | -Vea  | · 24.  | hou   | r stor | m ev  | ent    | he |
|      |         | rting   |        |        |          |       |        |       |        |        |       |       | -     |        | u 23  | year  | ., 24  | nou   |        |       |        |    |
|      | 56      | uung    | water  |        |          |       | ine pe |       |        |        | 001.  | 5.01  | lowe  |        |       |       |        | -     | -      | -     |        |    |
|      |         | _       |        |        |          |       |        |       |        |        |       |       |       |        |       |       |        | -     | -      |       |        |    |
|      |         |         |        |        |          |       |        |       |        |        |       |       |       |        |       |       |        |       |        |       |        |    |
|      |         | _       | -      |        | <u> </u> |       |        |       | -      |        |       |       |       |        |       |       |        | -     | -      |       |        |    |

# Table 1Operational ChartPhase 3 Module 2Contact Water Basin Outside Limits of Waste

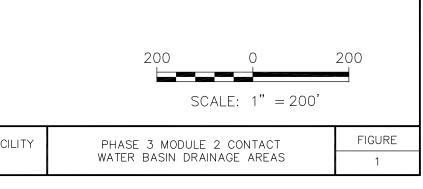
| Basin<br>Elevation | Starting<br>Water<br>Depth (ft) | Area (sf) | Incremental<br>Storage Volume<br>(cf) | Cumulative<br>Volume to Reach<br>Basin Elevation<br>685 (cf) | Notes                          |
|--------------------|---------------------------------|-----------|---------------------------------------|--------------------------------------------------------------|--------------------------------|
| 686                | 14                              | 140,337   | -                                     | -                                                            | Basin is full                  |
| 685                | 13                              | 128,481   | 0                                     | 0                                                            | Peak Elevation (1' freeboard)  |
| 684                | 12                              | 117,241   | 122,861                               | 122,861                                                      |                                |
| 683                | 11                              | 105,982   | 111,611                               | 234,473                                                      | Elev 682.5 Cumulative Volume = |
| 682                | 10                              | 95,370    | 100,676                               | 335,149                                                      | 284,811 cf                     |
| 681                | 9                               | 85,538    | 90,454                                | 425,603                                                      |                                |
| 680                | 8                               | 76,769    | 81,154                                | 506,756                                                      |                                |
| 679                | 7                               | 68,768    | 72,768                                | 579,525                                                      |                                |
| 678                | 6                               | 60,958    | 64,863                                | 644,388                                                      |                                |
| 677                | 5                               | 53,735    | 57,347                                | 701,734                                                      |                                |
| 676                | 4                               | 47,129    | 50,432                                | 752,166                                                      |                                |
| 675                | 3                               | 40,929    | 44,029                                | 796,195                                                      |                                |
| 674                | 2                               | 35,173    | 38,051                                | 834,246                                                      |                                |
| 673                | 1                               | 21,330    | 28,252                                | 862,498                                                      |                                |
| 672                | 0                               | 10,036    | 15,683                                | 878,181                                                      | Basin is empty                 |




Before pumping water from any of the contact water holding features located within each module into the Contact Water Basin, make sure there is adaquate storage available.

| Phase 3 Module 2 Runoff Volume |        |         | cf (from HydroCAD model, 2.588 ac-ft) |
|--------------------------------|--------|---------|---------------------------------------|
| Other Runoff Volume to Basin   |        | 156,380 | cf (from HydroCAD model, 3.590 ac-ft) |
|                                | Total: | 269,114 | cf                                    |

Based on the above runoff volume to the contact water basin, the starting water level in the basin should not be higher than 682.5 to accommodate the runoff from a 25-year, 24-hour storm event.

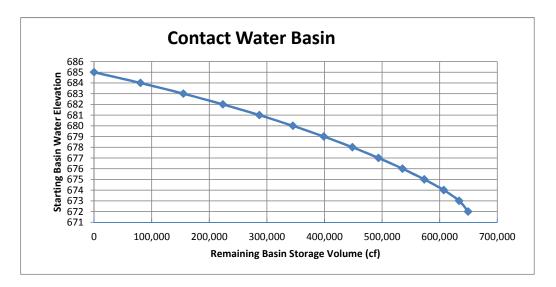

KRG/ 5/16/16



LEGEND

| PROJECT NO. | 25216090 | DRAWN BY:    | KRG | ER   | SCS ENGINEERS                           | П | WISCONSIN POWER AND LIGHT COMPANY                    |      | EDGEWATER I-43 ASH DISPOSAL FACI |
|-------------|----------|--------------|-----|------|-----------------------------------------|---|------------------------------------------------------|------|----------------------------------|
| DRAWN:      | 05/16/16 | CHECKED BY:  | ??  | SINE | 2830 DAIRY DRIVE MADISON, WI 53718-6751 | E | EDGEWATER GENERATING STATION<br>3739 LAKESHORE DRIVE | SITE | TOWN OF WILSON, WISCONSIN        |
| REVISED:    | ??/??/?? | APPROVED BY: |     | БN   | PHONE: (608) 224–2830                   | Ö | SHEBOYGAN, WISCONSIN                                 |      |                                  |

I:\25214060\Drawings-General\Plan Mod\Working\Phase 3 Module 2 Contact Water Storage - 2.dwg, 5/23/2016 3:27:19 PM

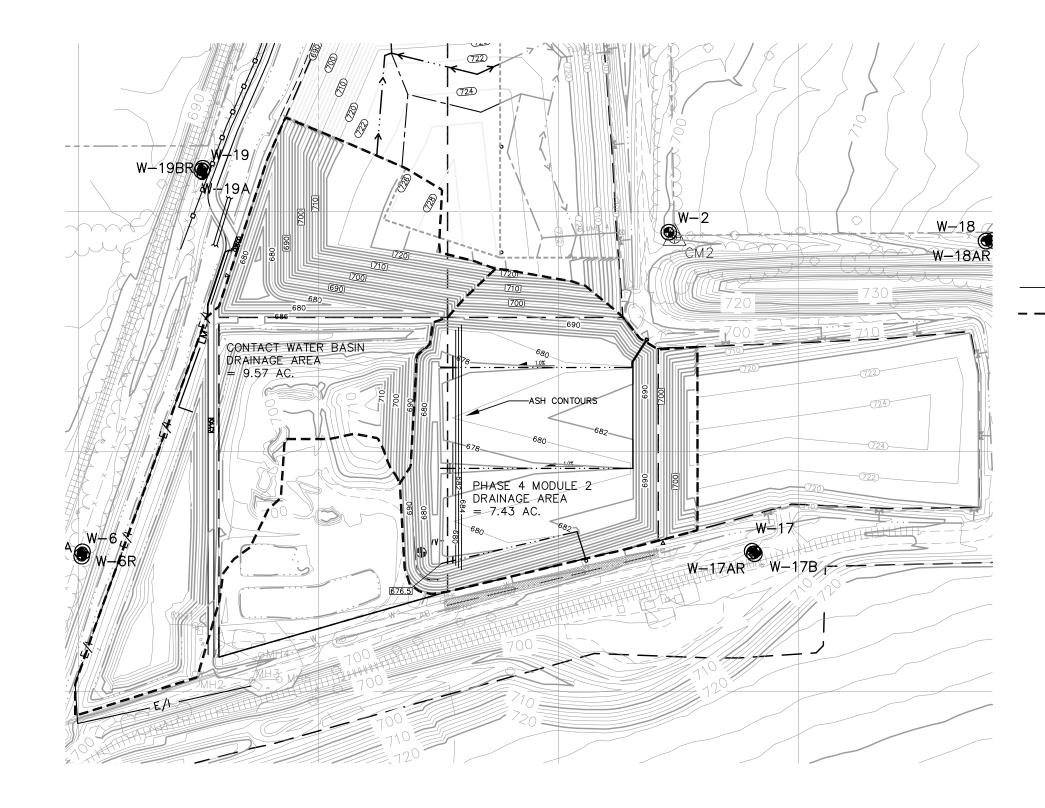



Ν

## WATER BASIN DRAINAGE AREA

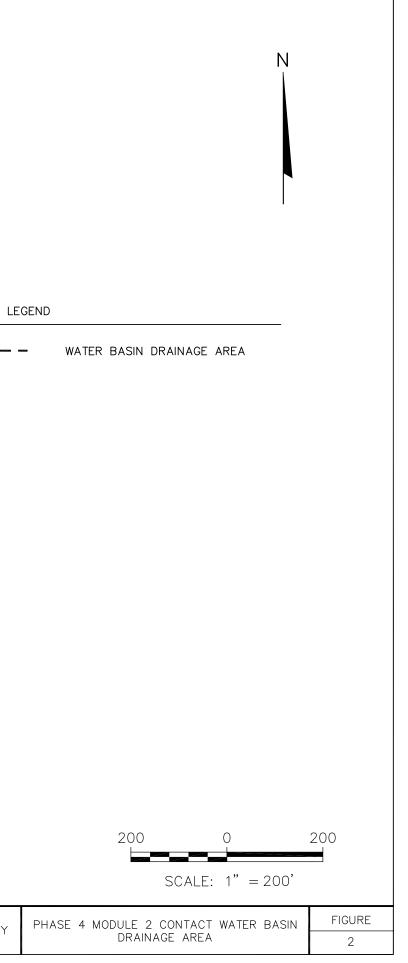
# Table 2Operational ChartPhase 4 Module 2Contact Water Basin Outside Limits of Waste

| Basin<br>Elevation | Starting<br>Water<br>Depth (ft) | Area (sf) | Incremental<br>Storage Volume<br>(cf) | Cumulative<br>Volume to Reach<br>Basin Elevation<br>685 (cf) | Notes                          |
|--------------------|---------------------------------|-----------|---------------------------------------|--------------------------------------------------------------|--------------------------------|
| 686                | 14                              | 89,741    | -                                     | -                                                            | Basin is full                  |
| 685                | 13                              | 83,468    | 0                                     | 0                                                            | Peak Elevation (1' freeboard)  |
| 684                | 12                              | 77,379    | 80,424                                | 80,424                                                       |                                |
| 683                | 11                              | 71,511    | 74,445                                | 154,869                                                      |                                |
| 682                | 10                              | 65,875    | 68,693                                | 223,562                                                      | Elev 681.5 Cumulative Volume = |
| 681                | 9                               | 60,657    | 63,266                                | 286,828                                                      | 255,195 cf                     |
| 680                | 8                               | 56,021    | 58,339                                | 345,167                                                      |                                |
| 679                | 7                               | 51,631    | 53,826                                | 398,994                                                      |                                |
| 678                | 6                               | 47,444    | 49,538                                | 448,531                                                      |                                |
| 677                | 5                               | 43,448    | 45,446                                | 493,977                                                      |                                |
| 676                | 4                               | 39,620    | 41,534                                | 535,511                                                      |                                |
| 675                | 3                               | 35,881    | 37,751                                | 573,262                                                      |                                |
| 674                | 2                               | 31,974    | 33,928                                | 607,190                                                      |                                |
| 673                | 1                               | 21,330    | 26,652                                | 633,841                                                      |                                |
| 672                | 0                               | 10,036    | 15,683                                | 649,524                                                      | Basin is empty                 |



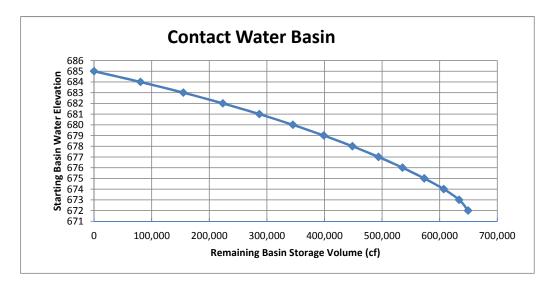

Before pumping water from any of the contact water holding features located within each module into the Contact Water Basin, make sure there is adaquate storage available:

| Phase 4 Module 2 Runoff Volume: | 116,697 cf (from HydroCAD model, 2.679 ac-ft) |
|---------------------------------|-----------------------------------------------|
| Other Ruoff Volume to Basin:    | 140,655 cf (from HydroCAD model, 3.229 ac-ft) |
| Total:                          | 257,352 cf                                    |


Based on the above runoff volume to the contact water basin, the starting water level in the basin should not be higher than 681.5 to accommodate the runoff from a 25-year, 24-hour storm event.

KRG/ 5/16/16



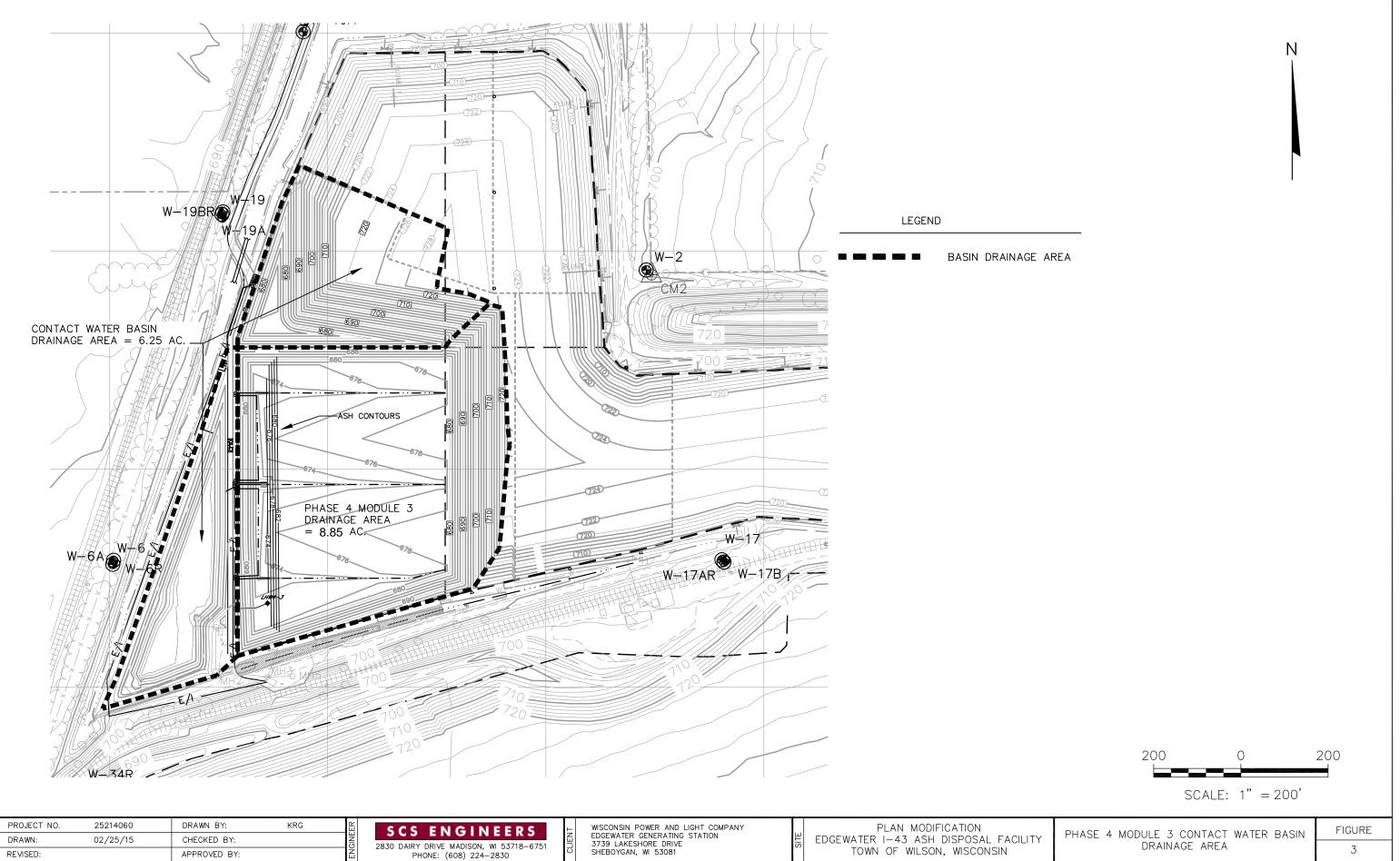

| PROJECT NO. | 25214060 | DRAWN BY:    | KRG | ER   | SCS ENGINEERS                           | μ    | WISCONSIN POWER AND LIGHT COMPANY                      | PLAN MODIFICATION                    |
|-------------|----------|--------------|-----|------|-----------------------------------------|------|--------------------------------------------------------|--------------------------------------|
| DRAWN:      | 02/25/15 | CHECKED BY:  |     | GINE | 2830 DAIRY DRIVE MADISON. WI 53718-6751 | LIEN | EDGEWATER GENERATING STATION 坦 3739 LAKESHORE DRIVE 07 | EDGEWATER I-43 ASH DISPOSAL FACILITY |
| REVISED:    | 05/16/16 | APPROVED BY: |     | EN   | PHONE: (608) 224–2830                   | Ū    | SHEBOYGAN, WI 53081                                    | TOWN OF WILSON, WISCONSIN            |

I \25214060\Drawings-GeneraliPlan Mod\Working\Phase 4 Module 2 Contact Water Storage - 2 dwg, 5/23/2016 3:42:12 PM

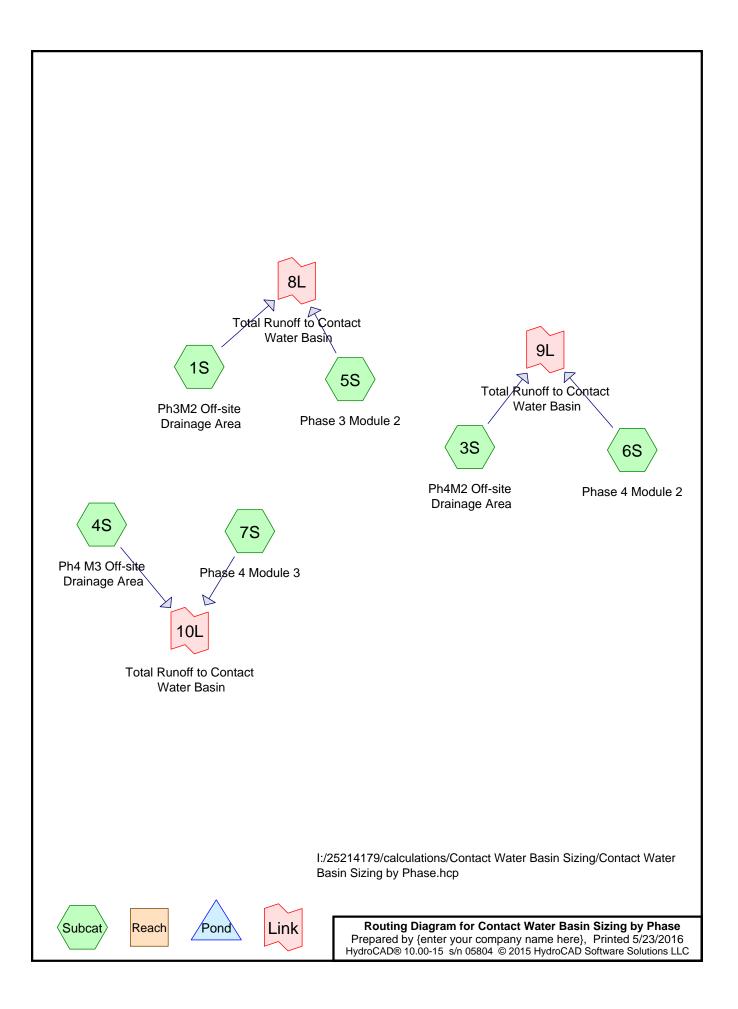


# Table 3Operational ChartPhase 4 Module 3Contact Water Basin Outside Limits of Waste

| Basin<br>Elevation | Starting<br>Water<br>Depth (ft) | Area (sf) | Incremental<br>Storage Volume<br>(cf) | Cumulative<br>Volume to Reach<br>Basin Elevation<br>685 (cf) | Notes                          |
|--------------------|---------------------------------|-----------|---------------------------------------|--------------------------------------------------------------|--------------------------------|
| 686                | 14                              | 89,751    | -                                     | -                                                            | Basin is full                  |
| 685                | 13                              | 83,469    | 0                                     | 0                                                            | Peak Elevation (1' freeboard)  |
| 684                | 12                              | 77,379    | 80,424                                | 80,424                                                       |                                |
| 683                | 11                              | 71,512    | 74,446                                | 154,870                                                      |                                |
| 682                | 10                              | 65,875    | 68,694                                | 223,563                                                      | Elev 681.5 Cumulative Volume = |
| 681                | 9                               | 60,658    | 63,266                                | 286,830                                                      | 255,197 cf                     |
| 680                | 8                               | 56,021    | 58,339                                | 345,169                                                      |                                |
| 679                | 7                               | 51,632    | 53,827                                | 398,996                                                      |                                |
| 678                | 6                               | 47,444    | 49,538                                | 448,534                                                      |                                |
| 677                | 5                               | 43,458    | 45,451                                | 493,985                                                      |                                |
| 676                | 4                               | 39,619    | 41,539                                | 535,524                                                      |                                |
| 675                | 3                               | 35,880    | 37,750                                | 573,274                                                      |                                |
| 674                | 2                               | 31,974    | 33,927                                | 607,201                                                      |                                |
| 673                | 1                               | 21,330    | 26,652                                | 633,853                                                      |                                |
| 672                | 0                               | 10,036    | 15,683                                | 649,536                                                      | Basin is empty                 |




Before pumping water from any of the contact water holding features located within each module into the Contact Water Basin, make sure there is adaquate storage available:


| Phase 4 Module 3 Runoff Volume: |        | 139,000 | cf (from HydroCAD model, 3.191 ac-ft) |
|---------------------------------|--------|---------|---------------------------------------|
| Other Runoff Volume to Basin:   |        | 98,141  | cf (from HydroCAD model, 2.253 ac-ft) |
| r                               | Fotal: | 237,141 | cf                                    |

Based on the above runoff volume to the contact water basin, the starting water level in the basin should not be higher than 681.5 to accommodate the runoff from a 25-year, 24-hour storm event.

KRG/ 5/16/16



| RE NSED:                                           | ATTROVED DT:                                                 | ш    | FIIONE. (0 |
|----------------------------------------------------|--------------------------------------------------------------|------|------------|
| I:\25214060\Drawings-General\Plan Mod\Working\Phas | e 4 Module 3 Contact Water Storage - 2 dwg, 5/23/2016 3 38 4 | 1 PM |            |



### Summary for Subcatchment 1S: Ph3M2 Off-site Drainage Area

[49] Hint: Tc<2dt may require smaller dt

Runoff = 69.57 cfs @ 12.09 hrs, Volume= 3.590 af, Depth> 4.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 4 25-yr Rainfall=4.80"

| A     | Area (sf)                      | CN [             | Description          |             |                                              |
|-------|--------------------------------|------------------|----------------------|-------------|----------------------------------------------|
|       | 323,363                        | 94 F             | allow, bar           | e soil, HSG | D                                            |
| * .   | 140,337                        | 98 \             | Vater Surfa          | ace (area o | f top of contact water basin)                |
|       | 463,700                        | 95 \             | Veighted A           | verage      |                                              |
|       | 323,363                        |                  | 69.74% Pervious Area |             |                                              |
|       | 140,337 30.26% Impervious Area |                  |                      | pervious Ar | ea                                           |
| _     |                                |                  |                      |             |                                              |
| Tc    | 0                              | Slope            | Velocity             | Capacity    | Description                                  |
| (min) | (feet)                         | (ft/ft)          | (ft/sec)             | (cfs)       |                                              |
| 0.4   | 100                            | 0.3300           | 3.80                 |             | Sheet Flow, Phase 4 Mod 1                    |
|       |                                |                  |                      |             | Smooth surfaces n= 0.011 P2= 2.59"           |
| 0.2   | 80                             | 0.3300           | 5.74                 |             | Shallow Concentrated Flow, Phase 4 Mod 1     |
|       |                                |                  |                      |             | Nearly Bare & Untilled Kv= 10.0 fps          |
| 2.8   | 980                            | 0.0100           | 5.80                 | 75.44       | Trap/Vee/Rect Channel Flow, Swale            |
|       |                                |                  |                      |             | Bot.W=10.00' D=1.00' Z= 3.0 '/' Top.W=16.00' |
|       |                                |                  |                      |             | n= 0.022 Earth, clean & straight             |
| 0.4   | 4 4 0 0                        | <b>T</b> . ( . ) |                      |             |                                              |

3.4 1,160 Total

### Summary for Subcatchment 3S: Ph4M2 Off-site Drainage Area

[49] Hint: Tc<2dt may require smaller dt

Runoff = 64.63 cfs @ 12.05 hrs, Volume= 3.229 af, Depth> 4.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 4 25-yr Rainfall=4.80"

| _ | Area  | (ac) C | N Des    | cription    |             |                                                |
|---|-------|--------|----------|-------------|-------------|------------------------------------------------|
|   | 7.    | 510    | 94 Fallo | ow, bare so | oil, HSG D  |                                                |
| * | 2.    | 060    | 98 Wat   | er Surface  | (area at to | p of contact water basin)                      |
|   | 9.    | 570    | 95 Weig  | ahted Aver  | age         |                                                |
|   | 7.    | 510    | 78.4     | 7% Pervio   | us Area     |                                                |
|   | 2.    | 060    | 21.5     | 3% Imperv   | ious Area   |                                                |
|   |       |        |          |             |             |                                                |
|   | Тс    | Length | Slope    | Velocity    | Capacity    | Description                                    |
| _ | (min) | (feet) | (ft/ft)  | (ft/sec)    | (cfs)       |                                                |
|   | 0.4   | 100    | 0.3300   | 3.80        |             | Sheet Flow, Off-site Stockpiles                |
|   |       |        |          |             |             | Smooth surfaces n= 0.011 P2= 2.59"             |
|   | 0.2   | 80     | 0.3300   | 5.74        |             | Shallow Concentrated Flow, Off-site Stockpiles |
| _ |       |        |          |             |             | Nearly Bare & Untilled Kv= 10.0 fps            |
|   | 0.6   | 180    | Total    |             |             |                                                |

### Summary for Subcatchment 4S: Ph4 M3 Off-site Drainage Area

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 43.43 cfs @ 12.04 hrs, Volume= 2.253 af, Depth> 4.33"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 4 25-yr Rainfall=4.80"

|   | Area (ac) | CN | Description                                        |
|---|-----------|----|----------------------------------------------------|
| * | 2.060     | 98 | Water Surface (area at top of contact water basin) |
| * | 4.190     | 98 | Ash in Phase 3 Module 2                            |
|   | 6.250     | 98 | Weighted Average                                   |
|   | 6.250     |    | 100.00% Impervious Area                            |

#### Summary for Subcatchment 5S: Phase 3 Module 2

[49] Hint: Tc<2dt may require smaller dt

Runoff = 50.45 cfs @ 12.08 hrs, Volume= 2.588 af, Depth> 4.33"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 4 25-yr Rainfall=4.80"

|   | A           | rea (sf)         | CN E             | Description          |                   |                                                                          |
|---|-------------|------------------|------------------|----------------------|-------------------|--------------------------------------------------------------------------|
| * | 3           | 12,726           | 98 C             | Dpen Cell            |                   |                                                                          |
|   | 312,726     |                  | 100.00% Im       |                      | pervious A        | rea                                                                      |
|   | Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                              |
|   | 1.6         | 100              | 0.2500           | 1.01                 |                   | Sheet Flow, Down Ash face in P3M1<br>Fallow n= 0.050 P2= 2.59"           |
|   | 0.1         | 33               | 0.2500           | 8.05                 |                   | Shallow Concentrated Flow, Down ash face in P3M1<br>Unpaved Kv= 16.1 fps |
|   | 0.4         | 96               | 0.0500           | 3.60                 |                   | Shallow Concentrated Flow, Across Liner<br>Unpaved Kv= 16.1 fps          |
| _ | 2.1         | 229              | Total            |                      |                   |                                                                          |

### Summary for Subcatchment 6S: Phase 4 Module 2

[49] Hint: Tc<2dt may require smaller dt

Runoff = 51.57 cfs @ 12.06 hrs, Volume= 2.679 af, Depth> 4.33"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 4 25-yr Rainfall=4.80"

|   | Area              | (ac) C           | N Dese           | cription             |                   |                                                                                                       |
|---|-------------------|------------------|------------------|----------------------|-------------------|-------------------------------------------------------------------------------------------------------|
| * | 7.                | .430 9           | 98 Ash           |                      |                   |                                                                                                       |
|   | 7.430 100.00% Imp |                  |                  |                      | rvious Area       |                                                                                                       |
|   | Tc<br>(min)       | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                                                           |
|   | 0.4               | 100              | 0.3300           | 3.80                 |                   | Sheet Flow, Down ash face in P4M1                                                                     |
|   | 0.0               | 27               | 0.3300           | 9.25                 |                   | Smooth surfaces n= 0.011 P2= 2.59"<br>Shallow Concentrated Flow,                                      |
|   | 0.3               | 68               | 0.0400           | 4.06                 |                   | Unpaved Kv= 16.1 fps<br><b>Shallow Concentrated Flow, Base of Phase 4 Mod 2</b><br>Paved Kv= 20.3 fps |
| _ | 0.7               | 195              | Total            |                      |                   |                                                                                                       |

Page 4

### Summary for Subcatchment 7S: Phase 4 Module 3

[49] Hint: Tc<2dt may require smaller dt

Runoff 61.61 cfs @ 12.06 hrs, Volume= 3.191 af, Depth> 4.33" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs MSE 24-hr 4 25-yr Rainfall=4.80"

| _ | Area                  | (ac) C           | N Dese           | cription             |                   |                                                                                         |
|---|-----------------------|------------------|------------------|----------------------|-------------------|-----------------------------------------------------------------------------------------|
| * | 8.                    | .850 9           | 8                |                      |                   |                                                                                         |
|   | 8.850 100.00% Impervi |                  |                  | 00% Impe             | rvious Area       |                                                                                         |
|   | Tc<br>(min)           | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                                             |
|   | 0.4                   | 100              | 0.3300           | 3.80                 |                   | Sheet Flow,                                                                             |
|   | 0.1                   | 42               | 0.3300           | 11.66                |                   | Smooth surfaces $n=0.011$ P2= 2.59"<br>Shallow Concentrated Flow,<br>Payod Ky= 20.3 fps |
|   | 0.5                   | 78               | 0.0200           | 2.87                 |                   | Paved Kv= 20.3 fps<br><b>Shallow Concentrated Flow,</b><br>Paved Kv= 20.3 fps           |
|   | 1.0                   | 220              | Total            |                      |                   |                                                                                         |

## Summary for Link 8L: Total Runoff to Contact Water Basin

| Inflow Are | ea = | 17.824 ac, 58. | 35% Impervious,   | Inflow Depth > 4.1 | 6" for 25-yr event      |
|------------|------|----------------|-------------------|--------------------|-------------------------|
| Inflow     | =    | 119.38 cfs @ 1 | 2.09 hrs, Volume= | 6.178 af           | -                       |
| Primary    | =    | 119.38 cfs @ 1 | 2.09 hrs, Volume= | e 6.178 af,        | Atten= 0%, Lag= 0.0 min |

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

## Summary for Link 9L: Total Runoff to Contact Water Basin

| Inflow Are | ea = | 17.000 ac, 5 | 5.82% Impervi | ious, Inflow De | pth > 4.17"   | for 25-yr event      |
|------------|------|--------------|---------------|-----------------|---------------|----------------------|
| Inflow     | =    | 116.20 cfs @ | 12.05 hrs, Vo | olume=          | 5.907 af      |                      |
| Primary    | =    | 116.20 cfs @ | 12.05 hrs, Vo | olume=          | 5.907 af, Att | en= 0%, Lag= 0.0 min |

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

## Summary for Link 10L: Total Runoff to Contact Water Basin

| Inflow Are | a = | 15.100 ac,10 | 0.00% Imper  | rvious, Inflow | Depth > 4.33" | for 25-yr event      |
|------------|-----|--------------|--------------|----------------|---------------|----------------------|
| Inflow     | =   | 104.32 cfs @ | 12.05 hrs, \ | √olume=        | 5.444 af      |                      |
| Primary    | =   | 104.32 cfs @ | 12.05 hrs, \ | Volume=        | 5.444 af, Att | en= 0%, Lag= 0.0 min |

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs