Location Restriction Compliance Demonstrations Contact Water Swale Liner Conversion I-43 Ash Disposal Facility Edgewater Generating Station Prepared for: Wisconsin Power and Light Company Edgewater Generation Station 3739 Lakeshore Drive Sheboygan, Wisconsin 53081 #### SCS ENGINEERS 25224280.00 | July 17, 2025 2830 Dairy Drive Madison, WI 53718-6751 608-224-2830 #### Table of Contents | | Page | |--|--| | on | | | tion and Project Summary | 1 | | Restrictions | 1 | | ces | 5 | | Figures | | | Site Location Map
Contact Water Swale Liner Conversion Module Location
Subbase Grades and Leachate Collection System | | | | | | Bedrock Aquifer Information | | | Wetland Information | | | · | | | • | | | · · · · · · · · · · · · · · · · · · · | | | Geologic Cross Sections | | | | Restrictions Figures Site Location Map Contact Water Swale Liner Conversion Module Location Subbase Grades and Leachate Collection System Bedrock Aquifer Information Wetland Information Fault Location Map Seismic Hazard Map Site Description and Geologic Summary Liquefaction and Settlement Potential Evaluation | Seepage Potential and Karst Condition Assessment Slope Stability Analyses Appendix H Appendix I [This page left blank intentionally] #### P.E. CERTIFICATION I, Phillip E. Gearing, hereby certify that the location restriction demonstrations prepared for the Contact Water Swale liner conversion the Edgewater I-43 disposal facility meet the requirements in 40 CFR 257.60(a), 61(a), 62(a), 63(a), and 64(a). This certification is based on my review of the Location Restriction Compliance Demonstrations for Contact Water Swale liner conversion prepared by SCS Engineers. I am a duly licensed Professional Engineer under the laws of the State of Wisconsin. | Engineers. I am a duly licensed Profes the laws of the State of Wisconsin. | ssional Engineer under | |--|------------------------| | Phili Hain | 7/17/2025 | | (signature) | (date) | | Phillip Gearing | | | (printed or typed name) | | | License number <u>E-45115-6</u> | - | | My license renewal date is July 31, 20 | 26. | | Pages or sheets covered by this seal: | | Entire document [This page left blank intentionally] #### 1.0 INTRODUCTION AND PROJECT SUMMARY On behalf of Wisconsin Power and Light Company (WPL), SCS Engineers (SCS) has prepared the enclosed Location Restriction Compliance Demonstrations for the Edgewater I-43 Disposal Facility Contact Water Swale Liner (CWS) conversion area as required by 40 CFR 257.60-64. The I-43 facility includes a closed CCR landfill, which consists of Phase 1 and Phase 2, and an active CCR landfill, which currently consists of an existing CCR unit in Phase 3 and Phase 4. The two landfills are located on the same property but are not contiguous. Phase 1 and Phase 2, which comprise an inactive CCR landfill that closed prior to October 15, 2015, are not the subject of this report. The active CCR landfill at I-43 includes the following modules: - Phase 3, Module 1 - Phase 3. Module 2 - Phase 4, Module 1 The modules are managed as a single landfill by the facility and by the Wisconsin Department of Natural Resources. This demonstration addresses the CWS, which will be constructed after October 19, 2015. The new area is contiguous with the Phase 3 and Phase 4 modules, however, will be managed as a separate CCR unit under the CCR rule. **Figure 1** shows the site location. **Figure 2** shows the CWS location. #### 2.0 LOCATION RESTRICTIONS §257.60. "Placement above the uppermost aguifer." "(a) New CCR landfills, existing and new CCR surface impoundments, and all lateral expansions of CCR units must be constructed with a base that is located no less than 1.52 meters (five feet) above the upper limit of the uppermost aquifer, or must demonstrate that there will not be an intermittent, recurring, or sustained hydraulic connection between any portion of the base of the CCR unit and the uppermost aquifer due to normal fluctuations in groundwater elevations (including the seasonal high water table). The owner or operator must demonstrate by the dates specified in paragraph (c) of this section that the CCR unit meets the minimum requirements for placement above the uppermost aquifer." The uppermost aquifer unit at the site, as defined under 40 CFR 257.53, is the Niagara Dolomite bedrock. This aquifer unit is present throughout Sheboygan County and is a major water supply source in much of Eastern Wisconsin (Skinner and Borman, 1973). A summary of the regional hydrogeologic stratigraphy and a regional geologic cross section are included in **Appendix A**. Boring logs for groundwater monitoring wells MW-301 through MW-305 and site-specific cross sections showing that the unconsolidated material overlying the dolomite is primarily clay are included in **Appendix A**. A search of publicly available private well logs in the vicinity of the site did not yield any logs indicating that the unconsolidated material is used locally as an aquifer. Private well logs documenting use of the Niagara Dolomite as an aquifer near the site are included in **Appendix A**. Based on a review of the well logs in **Appendix A**, the highest Niagara Dolomite bedrock aquifer elevation in the vicinity of the site is approximately elevation 605 feet above mean sea level (amsl). The high groundwater elevation associated with the uppermost aquifer below the CCR landfill is at an approximate elevation of 651.58 to 661.58 feet amsl [maximum range for MW-301 through MW-306 CCR wells], based on a review of groundwater elevations measured in CCR monitoring wells at the CCR landfill, for the period from April 2016 to January 2025 (Appendix A). The highest water level elevation measured at a CCR monitoring well associated with the CCR landfill was 661.58 feet amsl recorded at MW-305, which is an upgradient monitoring well located approximately 1,800 feet south of Phase 4 Module 1. As shown on **Figure 3**, the lowest subbase grade, which represents the top of subbase soils and bottom of the 4-foot-thick clay liner, within the CWS area to the nearest foot is 670 feet amsl. Based on this information, the CWS is located more than 5 feet above the uppermost aguifer. #### §257.61 "Wetlands." "(a) New CCR landfills, existing and new CCR surface impoundments, and all lateral expansions of CCR units must not be located in wetlands, as defined in §232.2 of this chapter, unless the owner or operator demonstrates by the dates specified in paragraph (c) of this section that the CCR unit meets the requirements of paragraphs (a)(1) through (5) of this section." The CWS is not located in wetlands. The location of the CWS is shown on **Figure 2**. The CWS area is currently a manmade swale lined with geomembrane and 4 feet of compacted clay that collects contact water and leachate. A national wetlands inventory map with the CWS location is provided in **Appendix B**. Historically, a wetland delineation conducted in 2009 (**Appendix B**) identified one wetland ("Wetland 1") within the Phase 3, Module 2 area (**Figure 2**), north of the CWS. WPL received a wetland permit for the permanent filling of Wetland 1 (0.81 acres) from the Wisconsin DNR as required by NR 103, Wisconsin Administrative Code. Through the permitting process, the DNR and WPL determined that construction of Phase 3, Module 2 would have no adverse impact on wetlands as provided in NR 103, and the wetland was removed prior to construction. The CWS will tie-in to the existing Phase 3, Module 2 area. #### §257.62 "Fault areas." "(a) New CCR landfills, existing and new CCR surface impoundments, and all lateral expansions of CCR units must not be located within 60 meters (200 feet) of the outermost damage zone of a fault that has had displacement in Holocene time unless the owner or operator demonstrates by the dates specified in paragraph (c) of this section that an alternative setback distance of less than 60 meters (200 feet) will prevent damage to the structural integrity of the CCR unit." Based on a review of the U.S. Geological Survey (USGS) Quaternary faults database and map as shown in **Appendix C**, the CCR landfill is not located within 200 feet of the outermost damage zone of a fault that has had displacement in Holocene time. In 40 CFR 257.53, Holocene is defined as the most recent epoch of the Quaternary period extending from 11,700 years before present, to present. The USGS map shows that no faults are located in Wisconsin. #### §257.63 "Seismic impact zones." "(a) New CCR landfills, existing and new CCR surface impoundments, and all lateral expansions of CCR units must not be located in seismic impact zones unless the owner or operator demonstrates by the dates specified in paragraph (c) of this section that all structural components including liners, leachate collection and removal systems, and surface water control systems, are designed to resist the maximum horizontal acceleration in lithified earth material for the site." The CCR landfill is not located in seismic impact zones. In 40 CFR 257.53, a seismic impact zone as an area having a 2 percent or greater probability that the maximum expected horizontal acceleration, expressed as a percentage of the earth's gravitational pull (g), will exceed 0.10 g in 50 years. Based on a review of the USGS 2014 Long-Term Model National Seismic Hazard Map (see **Appendix D**), the maximum expected horizontal acceleration for the majority of Wisconsin, including all of Sheboygan County, is less than
0.04 g, below the threshold for a seismic impact zone. #### 257.64 "Unstable areas." - "(a) An existing or new CCR landfill, existing or new CCR surface impoundment, or any lateral expansion of a CCR unit must not be located in an unstable area unless the owner or operator demonstrates by the dates specified in paragraph (d) of this section that recognized and generally accepted good engineering practices have been incorporated into the design of the CCR unit to ensure that the integrity of the structural components of the CCR unit will not be disrupted." - "(b) The owner or operator must consider all of the following factors, at a minimum, when determining whether an area is unstable: - "(1) On-site or local soil conditions that may result in significant differential settling; - As discussed in **Appendices E** and **F**, and as shown by the geologic cross sections from the 1977 Preliminary Site Feasibility Report prepared by Mead & Hunt, Inc. (see **Appendix G**), the CCR landfill is not located in on-site or local soil conditions that may result in significant differential settling. The site soil consists of stiff to very stiff clay till that extend to depths greater than 90 feet. Because the clays are stiff to very stiff, they are not susceptible to appreciable differential settlement that would affect the performance of the landfill. - (2) On-site or local geologic or geomorphologic features; and As discussed in **Appendices E**, **H**, and **I**, and shown by the geologic cross sections in **Appendix G**, the CCR landfill is not located in on-site or local geologic or geomorphologic features that are unstable. The cross sections show stiff to very stiff clay till that extend to depths greater than 90 feet. These geologic features provide a stable foundation for the CCR landfill. This assessment is confirmed by the slope stability analyses in **Appendix H** that indicate the slope stability safety factors are acceptable (i.e., safety factors against block or circular failure greater than or equal to 1.3 for interim conditions and greater than or equal to 1.5 for final grade conditions). (3) On-site or local human-made features or events (both surface and subsurface)." As shown by the geologic cross sections in **Appendix G**, the CCR landfill is not located in on-site or local human-made features or events (both surface and subsurface) that are unstable. Prior to development of the landfill, the historical site use was agricultural with minimal site disturbance. As discussed in **Appendix I**, seepage from groundwater or surface water is unlikely to cause instability. The facility is designed with adequate run-on and run-off control systems. Groundwater monitoring wells at the perimeter of the facility show that groundwater hydraulic gradients are downward and therefore groundwater is unlikely to negatively impact the performance of the facility. #### 3.0 REFERENCES - A. USGS Earthquake Hazards Program Faults Interactive Map Website: https://www.usgs.gov/programs/earthquake-hazards/faults, Last accessed June 6, 2024. - B. USGS seismic impact zones map reference: Petersen, M.D., Moschetti, M.P., Powers, P.M., Mueller, C.S., Haller, K.M., Frankel, A.D., Zeng, Yuehua, Rezaeian, Sanaz, Harmsen, S.C., Boyd, O.S., Field, E.H., Chen, Rui, Luco, Nicolas, Wheeler, R.L., Williams, R.A., Olsen, A.H., and Rukstales, K.S., 2015, Seismic-hazard maps for the conterminous United States, 2014: U.S. Geological Survey Scientific Investigations Map 3325, 6 sheets, scale 1: 7,000,000, http://dx.doi.org/10.3133/sim3325. - C. Skinner, Earl L. and Ronald G. Borman, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigations Atlas HA-432, 1973. - D. BT², Inc., 2008, Plan of Operation, Edgewater I-43 Ash Disposal Facility, Phases 3 and 4. - E. Mead & Hunt, Inc., 1977, Preliminary Site Feasibility Report, Ash Disposal Site, Beeck-Goebel Properties, Wilson Township, Sheboygan County, Wisconsin. - F. SCS Engineers, 2015, Plan Modification, Edgewater Ash Disposal Facility, Town of Wilson, Wisconsin. - G. SCS Engineers, 2025, Plan of Operation Modification Request, Contact Water Swale Liner Conversion, I-43 Ash Disposal Facility, Sheboygan, Wisconsin. [This page left blank intentionally] #### **Figures** - 1 Site Location Map - 2 Contact Water Swale Liner Conversion Module Location - 3 Subbase Grades and Leachate Collection System # Appendix A Bedrock Aquifer Information ## Table 143-3. Regional Hydrogeologic Stratigraphy Edgewater I-43 Landfill / SCS Engineers Project #25215053 | Age | Hydrogeologic
Unit | General
Thickness
(feet) | Name of Rock
Unit* | Predominant Lithology | |-------------|-----------------------|--------------------------------|--|------------------------------------| | Quaternary | Sand and Gravel | 0 to 235 | Surface sand and gravel | Sand and Gravel | | | Aquifer | 0 to 300 | Buried sand and gravel | | | Devonian | Niagara Dolomite | 0 to 750 | Dolomite | Dolomite | | Silurian | Aquifer | 010730 | (undifferentiated) | Dolonne | | | Confining Unit | 0 to 400 | Maquoketa Shale | Shale and dolomite | | Ordovician | | 100 to 340 | Galena
Decorah
Platteville | Dolomite | | | | 0 to 330 | St. Peter | Sandstone | | | Sandstone Aquifer | 0 to 140 | Prairie du Chien | Dolomite | | Cambrian | | 0 to 3,500? | Trempeleau
Franconia
Galesville
Eau Claire
Mt. Simon | Sandstone, some Dolomite and Shale | | Precambrian | Not an Aquifer | Unknown | Crystalline Rocks | lgneous and metamorphic rocks | #### Source: Skinner, Earl L. and Ronald G. Borman, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigations Atlas HA-432, 1973. Source: Skinner, Earl L. and Ronald G. Borman, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigations Atlas HA-432, 1973. State of Wisconsin Department of Natural Resources #### SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98 | | | | <u>Re</u> | oute To: | Watershed/\ | | | | NOUNDER . | gement | | | | | | | | | |--------------------|--|-------------|-----------------|-----------|--------------------------|--------------|--------------|-----------------------|-----------|----------------|-----------------|---------|-------------------------|---------------------|-----------------|---------------------|----------|----------------------| | | | | | | Remediation | /Redevelop | oment 🔲 | Other | Ш | | | | | | | | | | | Facili | ty/Proje | et Nor | na na | | | - | | Licence | /Darmit | /Monito | ring M | ımbar | | Doring | Pag
Numb | | of | 6 | | | L-Edge | | | | | SCS#: 2 | 5215135.20 | 1 | 'i Cilin | /141011110 | ning ivi | minoci | | Dornig | ; ivuiiio | | W-30 |)1 | | Borin | g Drille | d By: | | f crew cl | hief (first, last) | | | Date Di | illing S | tarted | | Da | ate Drilli | ng Cor | npleted | | Dril | ling Method | | | vin Du
lger S | | | | | | | | 12/1 | 5/2015 | 5 | | 1 | 12/19/ | 2015 | | H | SA/rotary
nud) | | | nique W | |). | DNR | Well ID No. | Common | Well Name | Final St | | | | Surfac | ce Eleva | | 2013 | Bo | | Diameter | | | | /864 | | | | <u> </u> | | | Fe | eet | | | | 40 Fe | | | 8 | .0 in. | | | Grid Or
Plane | rıgın | | | ☐) or Bo
, 2,559,679 | | on ⊠
′C/N | L | at | o | | | Local C | | cation
: 🔲 N | т | | Feet \square E | | SE | 1/4 | of N | | /4 of Sec | | | N, R 23 E | Lor | ıg | o | <u> </u> | | | rect | \Box s | | | reet □ E □ W | | Facilit | y ID | | | | County | | | County C | ode | 1 | | - | Village | | | | | | | Sar | nple | | 1 | | Sheboygan | | | 60 | | Wilse | on Tn | | | Coil | Prope | neti or | | Т | | Sai | _ | | l | | Soil/I | Rock Descr | intion | | | | | | - | 5011 | Рторе | rues | | 1 | | 4) | ott. & | unts | Feet | | | eologic Ori | | | | | | | uo | | | | | ts | | lber
Type | gth A | Blow Counts | Depth In Feet | | | ch Major U | _ | | CS | ohic | l
gram | PID/FID | dard | Moisture
Content | it it | Plasticity
Index | 0 |)/
Imen | | Number
and Type | Length Att. &
Recovered (in) | Blov | Dep | | | | | | n S | Graphic
Log | Well
Diagram | PID, | Standard
Penetration | Moisture
Content | Liquid
Limit | Plastic
Index | P 200 | RQD/
Comments | | | | | E | LEAN | CLAY, brown | (fill). | | | | | | | | | | | | | | П | | | -1 | | | | | | CL | | | | | | | | | | | | | 2.5 | E, | | CLAY, red bro | | | | | | | | | | | | | | | SI | S1 17 2.5 2 fine to coarse sand, fine gravel, stiff, gray fractures, diamicton (till). | | | | | | | tings on | | | | | 3.0 | M | | | | | | Н | | | -3 | | | | | | | | | | | | | | | | | 62 | 22 | 47 | E_4 | | | | | | | | | | 2.25 | | | | | | | S2 | 22 | 9 11 | E | | | | | | | | | | 2.25 | | | | | | | П | | | _5 | E_6 | E I | | | | | | | | | | | | | | | | | S3 | 24 | 4 5
8 8 | E-7 | | | | | | | | | | 2.25 | | | | | | | Ц | | | 8 | = | Softer, | brittle, crumble | s. | | | CL | | | | | | | | | | | S4 | | 2 4
5 5 | <u>-</u> 9 | | | | | | | | | | 1.5 | | | | | , | | Ш | | | E ₁₀ | Color | changes to (10.5 | YR 4/2). | -11 | -12 | El | | | | | | | | | | | | | | | | | П | | | 13 | LEAN | CLAY, dark re | ddish gray | (5YR 4/2), t | race | | | | | | | | | | | | S5 | 22 | 3 4
7 7 | 14 | coarse | sand, fine crum | biy texture. | | | | | | | 2.25 | | | | | | | | | 77 | Ė | | | | | | | | | | | | | | | | | T la | | . 41 | 15 la info | |
a this f | 1 | | | 11 | V 2052 C | | | | | | | | | | Signate | | y that t | ine infor | mation o | on this form is tr | ue and corr | T | | | ge.
 | | | | | | | m 1 (5) | 00) 224 222 | | _ | Larson | 1 | Myl | 1)// | for J. | -, | DC. | S Engine
Dairy Dri | | dison, V | <u>VI 53</u> 71 | 8 | | | | | Tel: (60 | 08) 224-2830
Fax: | This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent. | - | g Num | ber | MV | V-301 Use only as an attachment to Form 4400- | 122. | | | | | | Pag | | of | 6 | |--------------------|---------------------------------|-------------|----------------|--|-------|----------------|------|---------|-------------------------|---------------------|-----------------|---------------------|-------|------------------| | Sar | nple | - | | 0.75 . 5 | | | | | | Soil | Propo | erties | | | | | tt. &
d (in) | ınts | Feet | Soil/Rock Description And Geologic Origin For | | | | | u u | | | | | SQ. | | ber
Type | th Ai | Con | h In | Each Major Unit | CS | hic | man | E | lard
tratio | ture | b T | icity | | /
ment | | Number
and Type | Length Att. &
Recovered (in) | Blow Counts | Depth In Feet | Back Major Offic | O S O | Graphic
Log | Well | PID/FID | Standard
Penetration | Moisture
Content | Liquid
Limit | Plasticity
Index | P 200 | RQD/
Comments | | | | | F | | | | | | | | | | | | | | | | 16 | LEAN CLAY, red brown, trace coarse sand and fine | | | | | | | | | | | | | | | F 17 | gravel. Same as above. | | | | | | | | | | | | | | | <u>-17</u> | Same as above. | | | | | | | | | | | | П | | | -18 | | | | | | | | | | | | | S6 | 24 | 3 5 | E
19 | | | | | | 2.5 | M | | | | | | 20 | 24 | 3 5
8 8 | E | Same except dark brown (7.5YR 4/4). | | | | | 2.3 | IVI | | | | | | Ш | | | = 20 | Same except dank from (7.5 TK 1/1). | | | | | | | | | | | | | | | <u>-</u> 21 | | | | | | | | | | | | | | | | = | | | | | | | | | | | | | | | | E-22 | | | | | | | | | | | | | П | | | 23 | | | | | | | | | | | | | 07 | 1.4 | 5.5 | E
-24 | | | | | | 1.0 | | | | | | | S7 | 14 | 5 5
8 8 | E 27 | Dark brown (7.5YR 4/2). | | | | | 1.0 | | | | | | | Ц | | | 25 | Dark Glown (7.51K 4/2). | | | | | | | | | | | | | | | 26 | | | | | | | | | | | | | | | | E | | | | | | | | | | 1 | | | | | | <u>-27</u> | | CL | | | | | , | | | | | | п | | | E_28 | LEAN CLAV dark brown (7 5VR 4/4) trace medium | | | | | | | | | | | | | | 15 | -
-29 | LEAN CLAY, dark brown (7.5YR 4/4), trace medium to coarse sand, few fine sand partings, massive, diamicton (till). | | | | | | | | | | | | S8 | 24 | 4 5
8 8 | E 29 | dameton (un). | | | | | 1.5 | | | | | | | Ц | | | 30 | | | | | | | | | | | | | | | | _
31 | | | | | | | | | ** | | | | | | | - | | | | | | | | | | | | | | | | =32 | | | | | | | | | | | | | п | | | 33 | Same massive to indistinctly laminated trace fine | | | | | | | | | | | | | | 15 | E , | Same, massive to indistinctly laminated, trace fine gravel (dolomite), subrounded (till). | | | | | | | | | | | | S9 | 23 | 4 5
9 10 | 34 | | | | | | 1.0 | M | | | | | | Ц | | | _35 | | | | | | | | | | | | | | | | -36 | | | | | | | | | | | | | | | | E | | | | | | | | | | | | | | | | F-37 | | | | | | | | | | | | | П | 2 | | 38 | Same | | | | | | | | | | | | Ш | | 5.5 | E _ | Bank | | | | | | | | | | | | S10 | 24 | 5 5
8 10 | -39 | | | | | | 1.25 | | | | | | | Ц | | | F-40 | | | | | | | | | | | | | | g Num | ber | MV | V-301 Use only as an attachment to Form 4400- | 122. | | | | | | | Pa | | of | 6 | |--------------------|---------------------------------|--------------|--|---|------|---------|----|------|---------|-------------------------|---------------------|--------|---------------------|-------|------------------| | San | nple | | | | | | | | | | Soil | Prop | erties | 1 | | | | t. & | nts | eet | Soil/Rock Description | | | | | | l u | | | | | · · | | oer
ype | th At | Cou | ln I | And Geologic Origin For
Each Major Unit | S |)ic | | | E E | ard
ratio | ure | p | city | _ | ,
nents | | Number
and Type | Length Att. &
Recovered (in) | Blow Counts | Depth In Feet | Lacii Wajor Onit | USC | Graphic | go | Well | PID/FID | Standard
Penetration | Moisture
Content | Liquid | Plasticity
Index | P 200 | RQD/
Comments | | 7 8 | <u> </u> | | | | +- | | | Π | | 01 11 | 20 | ПП | <u> </u> | - | <u> </u> | | | | | E
-41 | LEAN CLAY and burner (7 SVD 4/2) | | | | | | | | | | | | | | | | E | LEAN CLAY, red brown (7.5YR 4/2). | | | | | | | | | | | | | | | | -42 | | | | | | | | | | | | | | п | | | 43 | Same as above. | | | | | | | | | | | | | - 11 | | | Ε | | | | | | | | | | | | | | S11 | 24 | 5 5
11 9 | - 44 | | | | | | | 1.75 | M | | | | | | Ц | | | E-45 | | | | | | | | | | | | | | | | | F 46 | | | | | | | | | | | | | | | | | -46 | | | | | | | | | | | | | | | | | -47 | | | | | | | | | | | | | | | | | E
48 | | | | | | | | | | | | | | | | | = 10 | Same. | | | | | | | | | | | | | S12 | 24 | 57
99 | - 49 | | | | | | | 0.75 | | | | | | | Ц | | | -
-50 | | | | | | | | | | | | | | | | | F | | | | | | | | | | | | | | | | | - 51 | | | | | | | | | | | | | | | | | _
52 | | | | | | | | | | | | | | | | | | * | CL | | | | | | | | | | | | П | | | 53
 | | | | | | | | | | | | | | S13 | 24 | 67
1011 | 54
 | | | | | | | 1.75 | | | | | | | Ш | | 10 11 | - 1 | | | | | | | | | | | | | | | | | <u>-55</u> | | | | | | | | | | | | | | | | | 56 | | | | | | | | | | | | | | | | | 57 | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | П | | | 58 | | | | | | | | | | | | | | S14 | 24 | 5 7
10 10 | _
59 | | | | | | | 1.75 | | | | | | | | - | 10 10 | | | | | | | | 1.70 | | | | | | | - | | | 60 | | | | | | | | | | | | | | | | | 61 | 62 | | | | | | | | | | | | | | П | | | 63 | Same, except less sand and fine gravel | | | | | | | | | | | | | 615 | 24 | 5.6 | | | | | | | | 20 | | | | | | | S15 | 24 | 5 6
7 8 | 64 | | | | | | | 2.0 | | | | | | | Ц | | | -65 | | | | | | | | | | | | | | Borin | g Num | ber | MV | V-301 Use only as an attachment to Form 4400- | 122. | | | | | Pag | | of | 6 | |--------------------|---------------------------------|---------------|-----------------|---|------|-----------------------------------|---------|-------------------------|---------------------|-----------------|---------------------|-------|------------------| | San | nple | | | | | | | | Soil | Prope | erties | | | | | % (ii) | ts | set | Soil/Rock Description | | | | _ | | | | | | | r
pe | Att | \onu | In F | And Geologic Origin For | S | ے ا | Q | rd | er t | | ity | | ents | | Number
and Type | Length Att. &
Recovered (in) | Blow Counts | Depth In Feet | Each Major Unit | SC | Graphic
Log
Well
Diagram | PID/FID | Standard
Penetration | Moisture
Content | Liquid
Limit | Plasticity
Index | P 200 | RQD/
Comments | | ang Nu | R Le | Ble | De | | D | Grap
Log
Well
Diag | PI | Sta | ⊻్ చ | Ľ, Ľ, | Pla | Ъ | <u> </u> | | | | | E | | | | | | | | | | | | | | | - 66 | LEAN CLAY, same as above. | | | | | | | | | | | | | | E
-67 | | CL | | | | | | | | | | | | | E o' | | | | | | | | | | | | П | | | -68 | | | | | | | | | | | | | | 3 8 | E
69 | | | | | | | | | | | | S16 | 24 | 3 8
8 14 | E 09 | SILT, light grey (5YR 6/1), laminated (lake sediment). | | | | 2.5 | | | | | | | Ц | | | - 70 | | | | | | | | | | | | | | | F | | | | | | | | | | | | | | | 一71
E | | | | | | | | | | | | | | | - 72 | | ML | | | | | | | | | | | | | Ē | | | | | | | | | | | | у П | | | -73 | | | | | | | | | | | | S17 | 18 | 7 7
22 | _
74 | | | | | 0.5 | | | | | | | | | 22 | E | SILTY SAND, grey, fine, with medium to coarse | | | | " | | | | | | | Н | | | - 75 | sand, trace fine gravel, mostly very fine sand (outwash). | | | | | | | | | | | S18 | 12 | 16 18
23 | E
-76 | (outwash). | | | | | | | | | | | 510 | 12 | 23 | E | | SM | | | | | | | | | | Ч | | | E-77 | | | | | | | | | | | | | | | E
-78 | | | | | | | | | | | | | | | Ė " | LEAN CLAY, dark brown (7.5YR 4/2) with trace fine | | | | | | | | | | | S19 | 24 | 13 9
12 14 | - 79 | to coarse sand, fine gravel (sub-rounded dolomite), massive, diamicton, peds have fine crumbling texture. | | | | 2.25 | M | | | | | | Ш | | | E
-80 | massive, diamicton, peds have fine crumbling texture. | | | | | | | | | | | | | | E 80 | | | | | | | | | | | | | | | -81 | | | | | | | | | | | | | | | - 02 | | | | | | | | | , | | | | | | E-82 | | | | | | | | | | | | п | | | E-83 | Same, except less sand and gravel | | | | | | | | | | | Ш | | 1.4.20 | = | Suns, except less said and graver | | | | | | | | | | | S20 | . 24 | 14 20
23 | 84 | | CL | | | 4.5 | M | | | | | | Ц | | | E
85 | 86 | | | | | | | | | | | | | | | E
-87 | | | | | | | | | | | | | | | E | | | | | | | | | | | | П | | | 88 | | | | | | | | | | | | S21 | 24 | 9 14
19 | 89 | | | | | 4.0 | | | | | | | 521 | ۵٦ | 19 | E | | | | | 1.0 | | | | | | | Ц | | | - 90 | | | | | | | | I | | | | Borin | g Num | ber | MV | V-301 Use only as an attachment to Form
4400 | 0-122. | | | | | | Pag | ge 5 | of | 6 | |--------------------|---------------------------------|-------------|-----------------|---|--------|----------------|------|--------------------|-------------------------|---------------------|-----------------|---------------------|-------|------------------| | San | nple | | | | | | | | | Soil | Prop | erties | | | | | t. &
I (in) | nts | eet | Soil/Rock Description | | | | | | | | | | | | ber
ype | th At
verec | Con | l In I | And Geologic Origin For
Each Major Unit | S | hic | | E E | lard
ratio | ture | ٠. و | city | _ | /
nents | | Number
and Type | Length Att. &
Recovered (in) | Blow Counts | Depth In Feet | Each Major Office | USCS | Graphic
Log | Well | Diagram
PID/FID | Standard
Penetration | Moisture
Content | Liquid
Limit | Plasticity
Index | P 200 | RQD/
Comments | | | | | E | | | | | | | | | | | | | | | | -91 | LEAN CLAY, same as above. | | | | | | | | | | | | | | | -
-92 | | | | | | | | | | | | | | | | E | | | | | | | | | | | | | П | | | -93
E | | | | | | | | | | | | | S22 | 24 | 10 12
14 | 94 | Same. | CL | | | | 2.5 | | | | | | | Ш | | | -
-95 | | | | | | | | | | | | | | | | E | | | | | | | | | | | | | | | | - 96 | | | | | | | | | | | | | | | | 97 | | | | | | | | | | | | | п | | | -
-98 | TEANIGUAY I I (1007) 4(0) | | | | | | | | | | | | | | | F | LEAN CLAY, dark grayish brown (10YR 4/2), massive to very indistinctly laminated, very plastic. | | | | | | | | | | | | S23 | 22 | 9 11
15 | E
-99 | | | | | | 3.0 | M | | | | | | Ц | | | 100 | | | | | | | | | | | | | | | | 101 | | | | | | | | | | | | | | | | E | | | | | | | | | | | | | | | | F 102 | | | | | | | | | | | | | П | | | 103 | LEAN CLAY, dark grayish brown (10YR 4/2), massive to indistinclty laminated, very plastic (lake | | | | | | | | | | | | S24 | 24 | 7 8
10 | 104 | massive to indistinctly laminated, very plastic (lake sediment). | | | | | 1.5 | M | | | | | | Ш | | 10 | -
- 105 | | | | | | | | | | | | | | | | - 1 | | | | | | | | | | | | | | | | 106 | | CL | | | | | | | | | | | | | | 107 | | | | | | | | | | | | | | | | 108 | | | | | | | | | | | | | Ш | | | - | | | | | | | | | | | | | S25 | 22 | 8 10
12 | 109 | | | | | | 2.0 | M | | | | | | Ц | | | 110 | š. | | | | | | | | | | | | | | | _111 | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | 112 | | | | | | | | | | | | | П | | | —113
—114 | | | | | | | | | | | | | S26 | NR | 8 10
13 | 114 | | | | | | | | | | | | | Ш | | | _
 | | | | | | | | | | | | | 1 | 1 | 1 | 113 | | 1 1 | - 1 | | 1 | | l | 1 | 1 | 1 | | | Control of the Contro | g Num | ber | MW | V-301 Use only as an attachment to Form 440 | 00-122. | | | | | | Pag | | of | 6 | |--|---------------------------------|-------------|---------------|---|---------|----------------|------|---------|-------------------------|---------------------|-----------------|---------------------|-------|---| | San | nple | | | | | | | | | Soil | Prope | rties | | | | | Length Att. &
Recovered (in) | ıts | set | Soil/Rock Description | | | | | | | | | | | | r
pe | Att | onno | in F | And Geologic Origin For | S | 0 | ء ا | | rd | 5 t | | ty | | ents | | Number
and Type | ngth | Blow Counts | Depth In Feet | Each Major Unit | SCS | Graphic
Log | Well | PID/FID | Standard
Penetration | Moisture
Content | Liquid
Limit | Plasticity
Index | 00 | RQD/
Comments | | Nu | Ler | Blc | De | | n Si | Grap | Well | II II | Sta | Š Š | Liquid
Limit | Plastic
Index | P 200 | S S | -116 | LEAN CLAY, same as above. | | | | | | | | | | | | | | | | EE/11 CE/11, suite as above. | | | | | | | | | | | | | | | - 117
- | | | | | | | | | | | | | | | | | | CL | | | | | | | | | | | | | | | Thinly laminated (lake sediment). | | | | | | | | | | | | S27 | 24 | WOR | 119 | | | | | | 3.5 | M | | | | Rods dropped | | | | | - | | | | | | | | | | | | | П | | | 120 | | | | | | | | | | | | | S28 | 22 | 17 20
21 | | (10XID 5/0) 11 1 (11 | | | | | 2.0 | M | | | | | | 520 | 22 | 21 | | SILT, greyish brown (10YR 5/2), with clay (lake sediment). | ML | | | | 2.0 | 141 | | | | | | Н | | | 122 | | ML | | | | | | | | | | | S29 | 9 | 19 50/3 | 123 | SILTY GRAVEL, dolomite fragments, grey, with clayey silt (weathered bedrock). | GM | 300 | | | | | | | | | | | | | _
124 | DOLOMITE (bedrock). | | | | | | | | | | | | | | | _ 124 | | | | | | | | | | | | | 1/ | | | _
125 | | | , | | | | | | | | | | M | | | | | | | | | | | | | | | | S30 | | | 126 | | | | 111 | | | | | | | S30 sampled
chips from
124'-128'. | | | | | _
127 | | | | | | | | | | | 124'-128'. | | M | | | - 12/ | | | <u> </u> | | | | | | | | | | 띡 | | | 128 | 目 | | | | | | | | | | | | —129
— | | рогоміл | | | | | | | | | | | _ | | | 130 | | | - | | | | | | | | Lost circulation- | | | | | | | | | | | | | | | | no water/mud
returnng. | | | | | 131 | | | | | | | | | | | returning. | | | | - | - | | | | | | | | | | | | | | | | 132 | | | | | | | | | | | | | | | F | 133 | | | 7 | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | 134 | | | | | | | | | | | | | | | F | 125 | | | | | | | | | | | | | | | | -135 | End of boring @ 135.0' | | | | | | | | | | | | | | | | Checked and edited by: | | | | | | | | | | | | | | | | BJS 3/30/2016 | . 1 | 1 | | | | 1 | | 1 | | - | | | | | State of Wisconsin Department of Natural Resources #### SOIL BORING LOG INFORMATION Rev. 7-98 Form 4400-122 | Route To: Watershed/Wastewater Waste Management Waste Management |--|---|-------------------------------------|----------------|------------|---------------------------------
--|----------------|--------------|----------|-------------------|-----------------|----------|-------------------------|---------------------|---------------------------|---------------------|----------|------------------| | | | | | | Remediation | /Redevelopi | ment \square | Other | e | Pag | | of | 7 | | | y/Proje | | | | | 00011 20 | 215125 20 | License/ | Permit/ | Monito | ring Ni | ımber | | Boring | Numbe | | W-30 | 12 | | | L-Edg Drille | | | of crew cl | hief (first, last) a | | 5215135.20 | Date Dr | illing S | tarted | | Da | te Drilli | ng Con | npleted | | | ing Method | | Kev | zin Du | ırst | | | | | | | | | | | | | | | HS | SA/rotary | | | lger S | | | DNR | Well ID No. | Common | Well Name | Final Sta | | /2015
ter Leve | | Surfac | e Elevat | 12/7/2 | 2015 | Bc | | nud)
Diameter | | 0. | | 7863 | | 21.11 | | | | | Fe | | | | | 24 Fe | et | | | .0 in. | | | Grid O | rigin | | | □) or Bo
, 2,559,719 | | on ⊠
C/N | 1. | at | 0 | 1 | " | Local C | | | | | | | State
NE | | of S | | 1/4 of Se | | T 14 N | | Lon | | 0 | , | " | | Feet | □ N □ S | | I | Feet ∐ E ☐ W | | Facilit | | 01 01 | | 174 01 50 | County | 1 1 1 1 | , K 25 E | County Co | | Civil T | own/C | ty/ or \ | Village | | | | | | | | | | | | Sheboygan | | | 60 | | Wilso | on Tn | | | | | | | | | San | nple | | | | | | | | | | | | | Soil | Prope | erties | | | | | t. &
(in) | nts | eet | | | Rock Descrip | | | | | | | _ | | | | | | | er | h Att | Cou | In F | | | eologic Orig | | | S | .ic | am | <u>a</u> | ard | ure | 7 | city | | nents | | Number
and Type | Length Att. &
Recovered (in) | Blow Counts | Depth In Feet | | Eac | ch Major Ut | nıı | | USC | Graphic
Log | Well
Diagram | PID/FID | Standard
Penetration | Moisture
Content | Liquid
Limit | Plasticity
Index | P 200 | RQD/
Comments | | <u> </u> | 1 1 | Щ | <u> </u> | LEAN | CLAY, strong | brown (7.5 | YR 4/6) to c | lark . | +- | | | 1 | 0.1 | 20 | I | | | H 0 | | | | | -1 | brown | (7.5YR 3/2) m | ottled, trace | fine to coar | se sand. | | | | | | | | | | | | | | | E | | | | | | | | | | | | | | | | | S1 | 13 | 3 6
8 10 | -2 | | | | | | | | | | 3.7 | M | | | | | | Н | | LEAN CLAY, brown (7.5YR 4/4), trace | | | | | | 11 6 . | | | | | | | | | | | | | | | E | coarse | sand and fine g | ravel, possił | ble clay and | gravel | | | | | | | | | | | | S2 | 11 | 3 6
9 11 | - 4 | fill @3 | 5' very hard, dry | , diamicton | (till). | | | | | | 3.5 | M | | | | | | Ш | | | <u> </u> | E | | | | | | | | | | | | | | | | | П | | | -6 | | | | | | | | | | | | | | | | | S3 | 18 | 5 8
10 14 | E
-7 | | CLAY, mottled, trace fine to co | | | | | | | | 2.5- | M | | | | | | | 10 | 10 14 | E | slightly | y moist (till). | , | g, · | , | CL | | | | 4.0 | | | | | | | Н | | | - 8 | | | | | | | | | | | | | | | | | S4 | 15 | 4 4 | _ ₉ | | | | | | | | | | 2.0 | M | | | | | | | | 78 | E | -10 | | | | | | | | | | | | | | | | | 10 | | | -11 | = | 12 | 40 | | | | | | | | | | a) | | | | | | п | | | _
_13 | C | | 1 | XD 4/4) | 1 | | | | | | | | | | | | | | | E | | as above, except
ve (till). | brown (7.5 | Y K 4/4), Ve | ery nard, | | | | | | | | | | | | S5 | 19 | 3 6
10 12 | 14
 | | | | | | | | | | 2.0-
4.0 | M | | | | | | Ш | | | -
-15 | | | | | | | | | | 1.0 | | | | | | | l hereb | y certif | y that t | he info | rmation o | on this form is tr | ue and corre | ect to the be | est of my kr | nowledg | ge. | | | | · | | | - | | | Signati | | | . / | 21 | 1 1/19 | and the second s | | | | | | | | | annin appromiser an arcan | | Tel: (60 | 08) 224-2830 | | Meg | han Blodgett What SCS Engineers Tel: (608) 224-2830 Engineers Tel: (608) 224-2830 Dairy Drive Madison, WI 53718 | | | | | | | | | | | | | | | | | | This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent. | Sample Soil/Rock Description Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Indicated Description And Geologic Origin | | g Num | ber | MV | V-302 Use only as an attachment to Form 4400- | 122. | | | | | | | ge 2 | of | 7 |
--|---|---------------|--------------|-------------------------------------|---|------|------|-----|-----|--------------|-----------|-------|--------------|-----|----------| | S6 24 34 19 20 21 22 23 Same as above, except dark brown (7.5YR 4/2), more moist (till). S7 24 23 24 26 25 26 26 27 27 28 | _Sar | T | | | | | | | | | Soil | Propo | erties | 1 | | | S6 24 34 19 20 21 22 23 Same as above, except dark brown (7.5YR 4/2), more moist (till). S7 24 23 24 26 25 26 27 27 28 | | % (ii) | ıts | eet | | | | | | | | | | | | | S6 24 34 19 20 21 22 23 Same as above, except dark brown (7.5YR 4/2), more moist (till). S7 24 23 24 26 25 26 27 27 28 | er
/pe | Att
ered | Coun | In F | | S | .2 | E | | ard
ation | ure
nt | | ity | | ents | | S6 24 34 19 20 21 22 23 Same as above, except dark brown (7.5YR 4/2), more moist (till). S7 24 23 24 26 25 26 27 27 28 | umb
id Ty | engtl
ecov | ow (| epth | Each Major Unit | SC | raph | ell | D/F | anda | oist | quid | astic
dex | 200 | ZD/ | | Solution (7.5 of Normal Norm | <u> </u> | 7 % | B | Ī | | n | 5 7 | À Ö | PI | St | Σŏ | | P I | Д | <u> </u> | | Solution (7.5 of Normal Norm | | | | F , | | | | | | | | | | | | | S6 24 34 69 19 20 21 22 23 24 56 24 24 56 25 26 26 27 27 28 28 24 24 25 25 26 26 27 27 28 28 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20 | | | | E 16 | LEAN CLAY, brown (7.5YR 4/4), trace fine to coarse | | | | | | | | | | | | S6 24 3 4 6 9 - 19 - 20 - 21 - 21 - 22 - 23 - 24 5 6 - 24 - 25 - 26 - 26 - 27 - 27 - 28 | | | | _17 | sand, fine graver, as above (till). | | | | | | | | | | | | S6 24 3 4 6 9 - 19 - 20 - 21 - 21 - 22 - 23 - 24 5 6 - 24 - 25 - 26 - 26 - 27 - 27 - 28 | | | | F 10 | | | | | | | | | | | | | S7 24 23 -24 Same as above, except dark brown (7.5YR 4/2), more moist (till). 1.5 M | | | | E 18 | , | | | | | | | | | | | | S7 24 23 -24 Same as above, except dark brown (7.5YR 4/2), more moist (till). 1.5 M | S6 | 24 | 3 4 | -19 | | | | | | 1.5 | M | | | | | | S7 24 23 Same as above, except dark brown (7.5YR 4/2), more moist (till). 1.5 M | | | 0 9 | E 20 | | | | | | | | | | | | | S7 24 23 Same as above, except dark brown (7.5YR 4/2), more moist (till). 1.5 M 1.5 M | | | | = 20 | | | | | | | | | | | | | S7 24 23 5 6 -24 Same as above, except dark brown (7.5YR 4/2), more moist (till). | | | | 21 | | | | | | | | | | | | | S7 24 23 5 6 -24 Same as above, except dark brown (7.5YR 4/2), more moist (till). 1.5 M 1.5 M | | | | E 22 | | | | | | | | | | | | | S7 24 23 56 -24 Same as above, except dark brown (7.5YR 4/2), more moist (till). | | | | = -22 | | | | | | | | | | | | | S7 24 23 56 -24 moist (till). | П | | | 23 | | | | | | | | | | | | | CL. | 67 | 24 | 2.3 | E 24 | Same as above, except dark brown (7.5YR 4/2), more | | | | | | ,,, | | | | | | -26
-27
-27 | 5/ | 24 | 5 6 | E 2' | moist (till). | | | | | 1.5 | M | | | | | | CL. | Ц | | | -25 | | | | | | | | | | | | | CL. | | | | 26 | | | | | | | | | | | | | CL. | | | | E 20 | | | | | | | | | | | | | | | | | -27 | | | | | | | | | | | | | I FANCIAN (7 EVD 4/2) | | | | E 28 | | CL | | | | | | | | | | | LEAN CLAY, brown (7.5 Y R 4/2), massive, trace fine to coarse sand, fine gravel (till). | | | | = 0 | LEAN CLAY, brown (7.5YR 4/2), massive, trace fine to coarse sand, fine gravel (till). | | | | | | | | | | | | S8 20 78 -29 1.0 | S8 | 20 | 7 8
7 9 | E-29 | , , | | | | | 1.0 | | | | | | | | Ш | | | -30 | | | | | | | | | | | | | | | | | E | | | | | | | | | | | | | | | | | - 31 | | | | | | | | | | | | | | | | | $\begin{bmatrix} -32 \end{bmatrix}$ | | | | | | | | | | | | | | | | | F | | | | | | | | | | | | | | П | | | -33 | | | | | | | | | | | | | S9 6 5 6 8 8 -34 1.0 1.0 | S9 | 6 | 5 6 | E ₃₄ | | | | | | 1.0 | | | | | | | | | | 8 8 | - | | | | | | 1.0 | | | | | | | = 35 | Ч | | | -35 | | | | | | | | | | | | | | | | | E
-36 | -37 | | | | | | | | | | | | | | | | | E_38 | | | | | | | | | | | | | | | | | Ē | | | | | | | | | | | | | S10 24 5 8 10 11 - 39 1.0 | S10 | 24 | 5 8
10 11 | 39 | | | | | | 1.0 | | | | | | | | Ц | | | -40 | | | | | | | | | | | | | Boring Number | MV | V-302 Use only as an attachment to Form 4400-1 | 22. | | | | Pag | | of | 7 | |---|-----------------|---|-----|-----------------------------------|-------------------------|---------------------|-----------------|---------------------|-------|------------------| | Sample | | | | | | Soil | Prope | erties | | | | Number
and Type
Length Att. &
Recovered (in) | Depth In Feet | Soil/Rock Description And Geologic Origin For | | | li di | | | | | , vi | | ber
Sype
th Air
vere | n In | Each Major Unit | S | hic ma CE | lard
ratio | ture | ъ., | city | | /
nent | | Number
and Type
Length Att. &
Recovered (ir | Dept | Zaux Major Omi | USC | Graphic
Log
Well
Diagram | Standard
Penetration | Moisture
Content | Liquid
Limit | Plasticity
Index | P 200 | RQD/
Comments | | | F | | | | 1 | | | | | | | | -41 | LEAN CLAY brown (7.5YR 4/2) trace fine to coarse | | | | | | | | | | | 12 | LEAN CLAY, brown (7.5YR 4/2), trace fine to coarse sand, fine gravel (till). | | | | | | | | | | | -42 | | | | | | | | | | | п | _43 | | | | | | | | | | | S11 19 7 9
11 12 | -
-44 | | | | 1.5- | W | | | | | | 11 12 | | | | | 1.5-
2.75 | ** | | | | | | 9 | E-45 | | | | | | | | | | | | -46 | | | | | | | | | | | | E
-47 | | | | | | | | | | | | F 7 | | | | | | | | | | | п | E-48 | | CL | | | | | | | | | S12 18 6 10 | 49 | | | | 1.5 | W | | | | | | 12 12 | | | | | 1.5 | " | | | | | | 7 | - 50 | | | | | | | | | | | | 51 | | | | | | | | | | | | -
-52 | | | | | | | | | | | | - 52 | | | | | | | | | | | П | - 53 | Same as above, except less sand and gravel. | | | | | | | | | | S13 24 77
10 10 | -
-54 | | | | 1.25 | w | | | | | | 10 10 | E _ | | | | 1.23 | '' | | | | | | 9 | - 55 | | | | | | | | | | | | _56 | | | | | | | | | | | | -
-57 | | | | | | | | | | | | = " | · | | | | | | | | | | п | <u>-</u> 58 | | | | | | | | | | | S14 24 7 9 11 12 | -
-59 | LEAN CLAY, brown, trace fine to coarse sand, 1/8-3/4" fine to coarse sand seams at 58.5',59', and | | | 1.5 | w | | | | | | 11 12 | E l | 59.75', laminated with very thin silt partings (lake sediment). | CL | | 1.5 | ., | | | | | | 7 | E-60 | ocanioni), | | | | | | | | | | | 61 | | | | | | | | | | | | -62 | | | | | | | | | | | | _ | | | | | | | | | | | | 63 | | | | | | | | | | | S15 24 79
12 12 | 64 | SILT, brown (7.5YR 5/2), massive, little clay (lake sediment). | | | 1.5 | w | | | | | | 12 12 | - 1 | Seamony. | ML | | 1.3 | ** | | | | | | 4 | 65 | ļ | | | | | | | 1 | | | Number and Type Comtent Content | ity | |
--|---------------------------|--------------------------| | Number and Type Length Att. & Recovered (ii) Blow Counts Blow Counts Blow Counts Depth In Feet Cog Well Diagram Woll Diagram Wolsture Content Ciquid Ciquid Ciquid Ciquid Ciquid Company Content Ciquid Ciquid Ciquid Company Ciquid Ciqu | icity | So | | Number and Type Length Att. Recovered Blow Coun Count B | icity | So | | Number and Tyr Length Number Blow C Blow C Blow C C S C S Caphic Log Well Diagram Penetra Pene | | Ti. | | and | | D/
nme | | | Plastic
Index
P 200 | RQD/
Comments | | | | | | S16 18 14 18 30 26 66 SILT with sand, brown, massive, sand is very fine to fine. | | | | | | | | SILTY SAND, fine, massive. SILTY WITH SAND, fine, loose, mostly very fine sand | | | | [lake sediment). | | | | S17 $\begin{bmatrix} 20 & 1425 \\ 3832 & 68 \end{bmatrix}$ $\begin{bmatrix} -68 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1425 & -68 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1425 & -68 \\ 0 & 0 & 0 \end{bmatrix}$ | | Sand appears barely wet. | | | | | | | | | | S18 18 21 30 70 W | | | | Same | | | | | | | | S19 18 14 12 72 31 | | | | S19 18 14 12 - 72 25 24 - 1 | | | | - - 73 Same. | | | | | | | | S20 18 19 27 - 74 28 28 E | | | | | | | | | | | | S21 18 21 29 - 76 33 30 - 76 | | | | | | | | | | | | S22 16 23 32 - 78 | | | | S22 16 23 32 78 30 28 7 | | | | H | | | | | | | | S23 16 19 21 80 POORLY GRADED SAND WITH SILT, fine with W | 1 | | | medium, brown to gray, loose (outwash). | | | | SP-SM SP-SM | | | | S24 14 9 19 — 82 W | | | | B SILT, brown, little fine sand, massive to indistinctly | | | | laminated (lake sediment). | | | | | | | | | | | | -85 _{ML} | LEAN CLAY, dark brown (7.5YR 4/2), massive, | | | | trace fine to coarse sand, fine gravel, very stiff, | | | | S25 18 10 20 — 89 cohesive, diamicton (till). CL 3.0- W 4.5 | | | | | | | | | g Num | ber | MV | V-302 Use only as an attachment to Form 4400- | 122. | , | | | | _ | | Pag | | of | 7 | |--------------------|---------------------------------|----------------|-----------------|---|------|---------|------|---------|---------|-------------------------|---------------------|-----------------|---------------------|-------|------------------| | San | nple | | | | | | | | | | Soil | Prope | erties | | | | | Length Att. &
Recovered (in) | ıts | eet | Soil/Rock Description | | | | | | _ | | | | | | | er
7pe | Att
ered | Cour | In F | And Geologic Origin For | S | ္ခ | | П | А | rd | it t | | ity | | ents | | Number
and Type | ngth | Blow Counts | Depth In Feet | Each Major Unit | SC | Graphic | Well | Diagram | PID/FID | Standard
Penetration | Moisture
Content | Liquid
Limit | Plasticity
Index | P 200 | RQD/
Comments | | a R | L S | BI | Lå | | Þ | Grap | ĭ ≥ | Di | PI | St | ≥ 5 | 22 | II II | Д_ | <u> </u> | | | | | E | | | | | | | | | | | | | | | | | -91 | LEAN CLAY, brown, massive, trace fine to coarse sand, fine gravel, as above (till). | | | | | | | | | | | | | | | | -92 | sand, fine gravel, as above (till). | | | | | | | | | | | | | | | | = | | | | | | | | | | | | | | П | | | E-93 | | CL | | | | | | | | | | | | S26 | 20 | 12 18 | -
94 | | | | | | | 2.5 | w | | | | | | 320 | 20 | 12 18
21 25 | Ε΄. | Same. | | | | | | 2.3 | l w | | | | | | Ц | | | - 95 | | | | | | | | | | | | | | | | | -
-96 | | | | | | | | | | | | | | | | | E | | | | | | | | | | | | | | | | | -97 | | | | | | | | | | | | | | _ | | | -
98 | | | | | | | | | | | | | | - 11 | | | = 10 | LEAN CLAY, brown (7.5YR 5/2), massive to indistinctly laminated, trace fine gravel, red/gray laminations (lake sediment). | | | | | | | | | | | | | S27 | 14 | 17 20
22 12 | _99 | laminations (lake sediment). | | | | | | 2.5 | | | | | | | Щ | | | -

100 | | | | | | | | | | | | | | | | | - 100 | | | | | | | | | | | | | | | | | 101 | | | | | | | | | | | | | | | | | -
-102 | | | | | | | | | | | | | | | | | - 102 | | | | | | | | | | | | | | П | | | 103 | LEAN CLAY, grayish brown (10YR 5/2), laminated, with very thin silt partings, very stiff, hard (lake sediment). | | | | | | | | | | | | | | | 8 10 | -

104 | | | | | | | | | | | | | | S28 | 24 | 8 10
13 14 | - 104 | | | | | | | 2.0 | | | | | | | Ц | | | 105 | | | | | | | | | | | | | | | | | 106 | | CL | | | | | | | | | | | | | | | - 100 | | | | | | | | | | | | | | | | | 107 | | | | | | | | | | | | | | | | | -

108 | | | | | | | | | | | | | | П | | | - 108 | Same as above, except silt is concentrated in 1mm layers spaced 2-6" apart. | | | | | | | | | | | | | S29 | 24 | 7 9
12 14 | 109 | layoro opacoa 2 o apare. | | | | | | 1.5 | | | | | | | Ш | | 12 14 | = 110 | | | | | | | | | | | | | | | | | 110
 | 3 | | | | | | | | | | | | | | | | 111 | 112
 | | | | | | | | | | | | | | П | | | 113 | Same except dark grayish brown (10YR 4/2), | | | | | | | | | | | | | | | 79 | | laminated, fewer silt partings, very plastic (lake sediment). | | | | | | | | | | | | | S30 | | 12 14 | 114 | ominone). | | | | | | | | | | | | | Ц | | ŀ | -115 | | | | 6.0 | | | | | | | | | | Borin | g Num | ber | MW | V-302 Use only as an attachment to Form 4400- | 122. | | | | 4 | | | Pag | | of | 7 | |--------------------|------------------------------|----------------|--------------------|---|---------|----------------|---------|---------|---------|-------------------------|---------------------|-----------------|---------------------|-------|---| | Sar | nple | | | | | | | | | | Soil | Prop | erties | | | | | Length Att. & Recovered (in) | ts | set | Soil/Rock
Description | | | | | | _ | | | | | | | r | Att | Joun | In F | And Geologic Origin For | S | l _o | | Е | Q | rd | er t | | ty | | ents | | Number
and Type | ngth | Blow Counts | Depth In Feet | Each Major Unit | SC | Graphic
Log | ٦ | Diagram | PID/FID | Standard
Penetration | Moisture
Content | Liquid
Limit | Plasticity
Index | P 200 | RQD/
Comments | | Nu | Lei
Re | BIC | De | | D D | 5 3 | Well | Dig | PII | Sta
Per | ž 3 | Li | Pla
Ind | P 2 | S S | | | | | - | | | | | | | | | | | | | | | | | -116 | LEAN CLAY, same as above, very plastic, laminated | | | | | | | | | | | | | | | | Ē | (lake sediment). | | | | | | | | | | | | | | | | 117 | | | | | | | | | | | | | | | | | -
-118 | | | | | | | | | | | | | | | | | E | | | | | | | | | | | | | | S31 | 24 | 7 8
10 12 | 119 | | | | | | | 1.0 | | | | | S30 was not | | | | 1012 | E 1 | | CL | | | | | | | | | | collected | | П | | | 120 | Same. | | | | | | | | | | | | | S32 | 24 | 9 10
12 13 | -
-121 | | | | | | | 0.5- | | | | | | | 332 | 24 | 12 13 | = | | | | | | | 1.0 | | | | | | | Н | | | 122 | | | | | | | | | | | | | | | | | - | Same as above, very plastic, laminated, few silt | | | | | | | | | | | | | S33 | 24 | 18 18 | 123 | partings (lake sediment). | | | | | | 2.0 | | | | | | | S34 = | | | _
124 | | | | | | | | | | | | | | 334 | | | | LEAN CLAY WITH SAND, grayish brown, sand is | - | | | | | | | | | | | | S35 | 24 | 14 22
30/5 | 125 | fine. | CL | | | | | 0.5 | | | | | | | S36 | | | _
126 | SILT WITH SAND, grayish brown, mostly very fine | | m | | | | | | | | | | | Ш | | | - 120 | sand, cohesive. | ML | | | | | | | | | | | | S37 | 24 | 30 25
28 24 | 127 | LEAN CLAY WITH SAND, grayish brown, sand is | - | | | | | 0.5 | | | | | | | S38 = | | 20 24 | - | fine, some silt, laminated to thinly bedded clay and silt | | | | | | | | | | | | | Н | | | <u> 128</u> | (lake sediment). | | | | | | | | | | | | | S39 | 24 | 15 17 | _
129 | | | | | | | 0.5- | | | | | | | 339 | 24 | 15 17
19 17 | = | Thinly bedded silty fine sand and clay. | CL | | | | | 1.0 | | | | | | | Н | | | 130 | | | | | | | | | | | | | | S40 | 6 | 21 19
50/3 | | | | | | | | | | | | | | | Ц | | 30/3 | —131
= | With dolomite gravel. | | | | | | | | | | | | | | | | -
-
-
132 | DOLONGER 1: 14 | | | | | | | | | | | | | | | | - | DOLOMITE, light gray and brownish gray, dark and light laminations, massive, some pitted and vuggy, | | | | | | | | | | | | | | | | 133 | mostly without mineralization, vertical fractures common. | | | | | | | | | | | 8 | | | | - | | | | | | | | | | | | | | | | | - | - 134 | | | - | $\ \ $ | | | | | | | | | | | 2 | | _
135 | Ė | -136 | | DOLOMIT | | $\ \ $ | | | | | | | | | | | | Ė | -
-137 | | | | 1 | | | | | | | | | | | | Ė | - 15/ | | | - | 1 | | | | | | | | | | S41 | 0 | 50/3 | 138 | | | | 1 | | | | | | | | Convert to rock | | | | Ė | - 120 | Shaly zone (6') at ~138.5. gray, mineralized fractures | | | | | | | | | | | coring. Run 1
133'-143'-No
water return | | | | F | 139 | below 139'. | | | 1 | | | | | | | | below 139'. | | Ш | | F | 140 | | | / | E | | | | | | | | | | ' | , | , | 1 | | | | | | | . ' | ' | ' | ' | | | ### **SOIL BORING LOG INFORMATION SUPPLEMENT** Form 4400-122A | Boring Number | MV | V-302 Use only as an attachment to Form 4400-1 | 22. | | | | | | Pag | ge 7 | of | 7 | |--|------------------|---|---------|----------------|-----------------|---------|-------------------------|---------------------|-----------------|---------------------|-----|------------------------------------| | Sample | | | | | | | | Soil | Prope | erties | | | | % (ii) \text{ \text{\$\frac{1}{2}}} | eet | Soil/Rock Description | | | | | | | | | | | | er
7pe
1 Att | In F | And Geologic Origin For | S | . <u>2</u> | <u> </u> | le | urd
ation | ıre
1t | _ | ity | | ents | | Number
and Type
Length Att. &
Recovered (in)
Blow Counts | Depth In Feet | Each Major Unit | SC | Graphic
Log | Well
Diagram | PID/FID | Standard
Penetration | Moisture
Content | Liquid
Limit | Plasticity
Index | 200 | RQD/
Comments | | Z # J M W | | | D | 9 7 | ≥ D | Б | SA | Z 0 | 77 | P II | Ь | Z 2 | | | E
141 | | | - | | | | | | | | | | | = | DOLOMITE (bedrock). | | | | | | | | | | | | II I | 142 | Very vuggy and mineralized vugs and fractures below | DOLOMIT | -/- | | | | | | | | TCR=126/120 | | | -
-143 | 142'. | | | | | | | | | | TCR=100%
SCR=103/120
SCR=86% | | | E | | | | | | | | | | | MCR=68.5/120
MCR=57% | | " | - 144 | Blind drilled 144-148' | | | | | | | | | | RQD=57%
Fair | End of boring @ 148' | | | | | | | | | | | | | | Logged by:
Zach Watson: 0-28' | | | | | | | | | | | | | | Meghan Blodgett: 28-110'
Tony Kollasch: 110-144' | | | | | | | | | | | | | | Checked and edited by: | | | | | | | | | | | | | | BJS 3/30/2016 | 1 1 | 1 1 | , | ı | ' | | ' | ' | 1 | ' | | | | State of Wisconsin Department of Natural Resources #### SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98 | | | | <u>Rc</u> | ute To: | Watershed/W
Remediation/ | astewater Redevelopment | | ste Mana | agen | nent | | | | | | | | | | |---|---------------------------------|-------------|-----------------|----------|-----------------------------|--|-----------------------|---|-------|----------------|-----------------|---------|-------------------------|---------------------|-----------------|---------------------|---------------|----------------------|--| | | | | | | | | | | | | | | | | Pag | ge 1 | of | 7 | | | | y/Proje | | | | | 0.00.11.05.01.51.05.01 | 1 | se/Perm | it/M | lonito | ring N | umb | er | Boring | Numb | | W 20 | 12 | | | | L-Edge
Drille | | | f crew c | hief (first, last) ar | SCS#: 25215135.20
nd Firm | | Date Drilling Started Date Drilling Completed | | | | | | | | IVI | W-30
Drill | ling Method | | | | in Du | | | | | | | 11/30/2015 12/4/2015 | | | | | | | | HSA/rotary (mud) | | | | | Badger State WI Unique Well No. DNR Well ID No. Common Well Name | | | | | | | e Final | Static W | | | | Surf | face Eleva | | 2013 | Borehole Diameter | | | | | | VV865 | | | | | | | F | eet | | | | | .60 Fe | | | 8.0 in. | | | | Local | Grid Oi
Plane | rigin | | | or Bor
, 2,560,451 | | | Lat | 0 | | 1 | | " Local | Grid Lo | | r | Feet E | | | | NE | | of S | | /4 of Se | | T 14 N, R 23 E | . _L | ong | 0 | | <u> </u> | | " | reet | □ N □ S | | | reet ☐ E | | | Facilit | y ID | | | | County | | County | Code | | | | • | or Village | | | | | | | | San | nple | | | | Sheboygan | | 60 | | | Vilso | n Tn | T | | Soil | Prope | ortios | | Т | | | San | _ | | | | Soil/R | ock Description | | | | | | | | 3011 | Тюрс | lics | | 1 | | | 4) | Att. 8
ed (in | unts | Feel | | | ologic Origin For | | | | | 1 | | | | | | | tts | | | Type | gth A | Blow Counts | Depth In Feet | | | h Major Unit | | CS | 1 | Graphic
Log | Well
Diagram | PID/FID | dard | Moisture
Content | bit
it | Plasticity
Index | 9 | RQD/
Comments | | | Number
and Type | Length Att. &
Recovered (in) | Blov | Dep | | | | | U S | 2 | Grap
Log | Well
Diagr | PID | Standard
Penetration | Moi | Liquid
Limit | Plastic
Index | P 200 | RQI | | | | | | = | | | brown (7.5YR 4/6), mring, trace coarse sand | | | | | | | | | | | | | | | П | | | -1 | | ,, | | | | | | | | | | | | | | | | a. | | 12 | E_2 | | | | | | | | | | 1,5 | | | | | | | | S1 | 14 | 24 | = 1 | | | | | CL | | | | | 1.5 | M | | | | | | | Ц | | | -3 | | | | | | | | | | 5 | | | | | | | | П | | | E ₄ | | | | | | | | | | | | | | | | | | S2 | 14 | 41 | F | | | | | | | | | | 0.75 | M | | | | | | | A, B | | 2 2 | _5 | SILTY | SAND layer, fir | ne to coarse @ 5-5.5'. | • | SM | 1 | | | | | | | | | | | | | | | E ₆ | | | | | | | | | | | | | | | | | | Ш | | | E | fine gr | avel, very stiff, f | 4/4), trace sand, fine irm, massive, diamict | to coarse ton (till). | , | | | | | | | | | | | | | S3 | 24 | 47
1011 | - 7 | | | | | | | | | | 2.8-
4.0 | W | | | | | | | Ц | | | E ₈ | | | | | | | | | | 4.0 | | | | | | | | П | | | E | | | | | | | | | | | | | | | | | | | 10 | 2 5 | F9 | | | | | | | | | | 2.0 | 777 | | | | | | | S4 | 18 | 79 | E ₁₀ | Same. | | | | | | | | | 3.0 | W | | | | | | | Ц | | | E | | | | | CL | | | | | | | | | | | | | | | | -11 | -12 | = | -13 | 14 | | | | | | | | | | | | | | | | | | S5 | 22 | 2 3
4 6 | E
-15 | | | | | | | | | | 1-1.8 | W | | | | | | | I hereb | v certifi | v that | | mation 4 | on this form is to | e and correct to the b | est of my | knowle | doe | | | <u></u> | | | | | | | | | Sionati | ire | | | / . | | Firm SC | CS Engi | | ugu. | | | | | | | | Tel: (6 | 08) 224-2830 | | | Zach | Wats | son | MI | 2 P/4 | for 2. | 283 | 30 Dairy I | | ladie | on W | Л 537 | 18 | | | |
| 101. (0 | 00) 224-2030
Fax: | | This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent. | CONTRACTOR OF THE PARTY OF | g Num | ber | MV | V-303 Use only as an attachment to Form 440 | 00-122. | | | _ | , | | Pag | | of | 7 | |----------------------------|---------------------------------|-------------|-----------------|--|---------|----------------|-----------------|---------|-------------------------|---------------------|-----------------|---------------------|-------|------------------| | San | nple | | | | | | | | | Soil | Prope | erties | | | | | & (ii) | ıts | set | Soil/Rock Description | | | | | | | | | | | | r | Att | onno | n Fe | And Geologic Origin For | S | 0 | ۹ ا | | d | 5 ₁ | | ty | | ents | | mbe
i Ty | ngth | Blow Counts | Depth In Feet | Each Major Unit | USC | Graphic
Log | Well
Diagram | PID/FID | ndaı | Moisture
Content | Liquid
Limit | Plasticity
Index | 00 |) Qu | | Number
and Type | Length Att. &
Recovered (in) | Blo | De | | n S | Grap
Log | Well
Diagr | PII | Standard
Penetration | § 5 | Liquid
Limit | Plastic
Index | P 200 | RQD/
Comments | | Ш | | | E | | | | | | | | | | | | | | | | 16 | LEAN CLAY, (7.5YR 4/4), as above. | | | | | | | | | | | | | | | | EE/AT CEATT, (7.5 TK 1/1), as above. | | | | | | | | | | | | | | | F 17 | | | 2 | | | | | | | | | | | | | E 18 | | | | | | | | | | | | | п | | | E | | | | | | | | | | | | | | | | _19 | | | | | | | | | | | | | S6 | 24 | 3 4
6 8 | E | | | | | | 2.0 | W | | | | | | | | | = 20 | F 21 | | | | | | | | | | | | | | | | -22 | | | | | | | | | | | | | | | | E | | | | | | | | | | | | | | | | = 23 | | | | | | | | | | | | | - 11 | | | E
-24 | | | | | | | | | | | | | S7 | 24 | 3 5
6 7 | E | Same. | | | | | 1.5-
2.0 | W | | | | | | | | 0 / | -25 | Same. | | | | | 2.0 | | | | | | | | | | E | | | | | | | | | | | | | | | | - 26 | | | | | | | | | | | | | | | | 27 | | | | | | | | | | | | | | | | E | | CL | | | | | | | | | | | | | | E-28 | | | | | 10 | | | | | | | | П | | | E
-29 | | | | | | | | | | | | | S8 | 24 | 3 6 | E 29 | Same. | | | | | 1.5 | W | | | | | | 50 | 27 | 3 6
7 8 | 30 | | | | | | 1.5 | ** | | | | | | ч | | | E | | | | | | | | | | | | | | | | =31 | | | | | | | | | | | | | | | | 32 | | | | | | | | | | | | | | | | = - | | | | | | | | | | | | | | | | _33 | | | | | | | | | | | | | П | | | E | | | | | | | | | | | | | | 24 | 3.5 | -34 | | 200 | | | | | 117 | | | | | | S9 | 24 | 3 5
7 9 | _35 | | | | | | 2.2 | W | | | | | | Ц | | | E | | | | | | | | | | | | | | | | _36 | | | | | | | | | | | | | | | | E 27 | | | | | | | | | | | | | | | | - 37 | | | | | | | | | | | | | | | | E_38 | | | | | | | | | | | | | П | | | E | Same as above, except very soft and saturated. | | | | | | | | | | | | | | | 38 - 39 - 40 | Same as above, except very soft and saturated. | | | | | | | | | | | | S10 | 6 | 69 | E 10 | | | | | | NA | W | | | | | | -1 | 1 | | 40 | | | Ι | | | ı | 1 | I | | 1 | | | Boring | The second second second second | ber | MV | V-303 Use only as an attachment to Form 4400 |)-122. | т | | | | | Pag | | of | 7 | |--------------------|---------------------------------|----------------|-----------------|---|--------|----------------|------------|---------|-------------------------|---------------------|-----------------|---------------------|-------|------------------| | Sam | | | | Soil/Dook Dosovieties | | | | | Soil Properties | | | | | | | 0 | ott. & | unts | Feet | Soil/Rock Description And Geologic Origin For | | | | | uo | | | | | ıts | | nber
Type | Length Att. &
Recovered (in) | Blow Counts | Depth In Feet | Each Major Unit | CS | Graphic
Log | II
gram | PID/FID | Standard
Penetration | Moisture
Content | uid | Plasticity
Index | 00 | RQD/
Comments | | Number
and Type | Len | Blo | Dep | | USC | Gra | Wel
Dia | PID | Star
Pen | Con | Liquid
Limit | Plastic
Index | P 200 | RQJ
Con | | Ц | | | = | | | | | | | | | | | | | | | | -41 | LEAN CLAY, (7.5YR 4/4). | | | | | | | | | | | | | | | -42 | | | | | | | | | | | | | | | | -
-43 | | | | | | | | | | | | | П | | | Ē | | | | | | | | | | | | | S11 | 6 | 10 12
12 16 | 44
 | | | | | | | w | | | | | | | | 12 16 | - 45 | | | | | | | | | | | | | | | | _
46 | | | | | | | | | | | | | | | | _
47 | | | | | | | | | | | | | | | | - 47 | | | | | | | | | | | | | | | | - 48 | | | | | | | | | | | | | Ш | | | _
49 | (no sample retained) | | | | | | | | | | | | S12 | 24 | 5 6
8 10 | -
-50 | (iii saiipi raamas) | | | | | 1.3 | W | | | | | | Ц | | | F | | | | | | | | | | | | | | | | _51
_ | | | | | | | | | | | | | | | | 52 | | | | | | | | | | | | | | | | | | CL | | | | | | | | | | | П | | | - | LEAN CLAY (7.5YR 4/4), fine to coarse sand, fine gravel, firm, massive, diamicton (till). | | | | | | | | | | | | S13 | 21 | 3 7
7 9 | 54
 | gravel, firm, massive, diamicton (till). | | | | | 1.0 | W | | | | | | | 21 | 79 | 55 | | | | | | 1.0 | ,, | _
57 | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | 58 | | | | | | | | | | | | | | | | 59 | Same. | | | | | | | | | | | | S14 | 19 | 10 11
13 10 | -
-60 | Sanc. | | | | | 1.0 | W | | | | | | Ц | | | - 00 | | | | | | | | | | | | | | | | - 61 | | | | | | | | | | | | | | | | 62 | П | | | | | | | | | | | | | | | | S15 | 11 | 4 6
9 11 | 64 | | | | | | 0.5 | w | | | | | | 515 | 11 | 911 | -65 | | | | | | 0.5 | ** | | | | | | Borin | g Num | ber | MV | V-303 Use only as an attachment to Form 4400-1 | 22. | | | | | | Pag | | of | 7 | |--------------------|---------------------------------|----------------|------------------|---|------|----------------|-----------------|---------|-------------------------|---------------------|-----------------|---------------------|-------|------------------| | San | nple | | | | | | | | | Soil | Prope | erties | | | | | t. &
1 (in) | nts | Feet | Soil/Rock Description | | | | | Ę | | | | | S | | ber
Jype | th At | Sol | h In I | And Geologic Origin For
Each Major Unit | 00 | hic | ram | Æ | lard | ture | . E | icity | | /
ment | | Number
and Type | Length Att. &
Recovered (in) | Blow Counts | Depth In Feet | 24011114901 01111 | USC | Graphic
Log | Well
Diagram | PID/FID | Standard
Penetration | Moisture
Content | Liquid
Limit | Plasticity
Index | P 200 | RQD/
Comments | | | | | E | | | | | | | | | | | | | | | | -66 | Same. | | | | | | | | | | | | | | | E
-67 | | | | | | | | | | | | | | | | E | | | | | | | | | | | | | | | | - 68 | | | | | | | | | | | | | | | | 69 | LEAN CLAY WITH SAND brown (7.5YR 4/4) soft | | | | | | | | | | | | S16 | 4 | 9 34
50/5 | E
-70 | LEAN CLAY WITH SAND, brown (7.5YR 4/4), soft, sand fine to coarse. | | | | | 0 | W | | | | | | U | | | Ē | | | | | | | | | | | _ | | | | | - 7 1 | | | | | | | | | | | | | | | | 72 | | | | | | | | | | | | | | | | -
-73 | | | | | | | | | | | | | п | | | = '3 | | | | | | | | | | | | | 0.15 | - | 8 12 | - 74 | | CL | | | | | *** | | | | | | S17 | 7 | 8 12
12 13 | <u>-</u> 75 | Some as above, except trace fine to coarse sand. | | | | | 0 | W | | | | | | Ц | | | -
-76 | | | | | | | | | | | | | | | | E | | | | | | | | | | | | | | | | — <i>77</i> | | | | | | | | | | | 79 | | | | | 78 | | | | | | | | | | | | | П | | | -
79 | Same as above except, soft in some areas and stiff in | | | | | | | | | | | | S18 | 24 | 3 6
5 7 | F | others. | | | | | 0.5 | W | | | | | | Ш | | 37 | E-80 | | | | | | | | | | | | | | | | 81 | | | | | | | | | | | | | | | | -
-82 | | | | | | | | | | | | | | | | E | | | | | | | | | | | | | - | | | - 83 | | | | | | | | | | | | | Ш | | | -84 | SANDY SILT, (10YR 5/4), fine sand, very uniform | | | | | | | | | | | | S19 | 15 | 19 22
25 31 | -
-85 | grains, loose, mostly very fine sand, non-plastic. | | | | | | W | | | | | | Н | | | E | | | | | | | | | | | | | S20 | 3 | 16 16 | - 86 | | ML | | | | | w | | | | | | 320 | 5 | 16 16
23 25 | 87 | | | | | | | ** | | | | | | | | | E
88 | A DANIGLAY I GOVE AND | | | | | | | | | | | | S21 | 20 | 20 18
13 14 | E | LEAN CLAY, brown (7.5YR 4/4), trace coarse sand, massive to indistinctly laminated (lake sediment). | 9866 | | | | | w | | | | | | Ц | | | 89 | | CL | | | | | | | | | | | | | | -90 | | | | | | | | | | | | | Andrew Control of the | g Num | ber | MW | V-303 Use only as an attachment to Form 4400- | 122. | | | | | | | ge 5 | of | 7 |
--|---------------------------------|------------------|-------------------------|--|----------------|----------------|------|---------|-------------------------|---------------------|-----------------|---------------------|-------|------------------| | San | nple | | | | | | | | | Soil | Prope | erties | | | | | s (ii) | , so | et | Soil/Rock Description | | | | | | | | | | | | o | Att. | unc | l Fe | And Geologic Origin For | | | _ | | ion | 103 | | > | | nts | | lber
Typ | gth / | ŭ | th Ir | Each Major Unit | SCS | hic | Tam | | darc | sture | uid
it | ticit | 0 |)/ | | Number
and Type | Length Att. &
Recovered (in) | Blow Counts | Depth In Feet | | N S | Graphic
Log | Well | PID/FID | Standard
Penetration | Moisture
Content | Liquid
Limit | Plasticity
Index | P 200 | RQD/
Comments | | 7 6 | | | E | | - | 0 - | | | 107 1 | | | | | | | | | | E | , | | | | | | | | | | | | | | | 91
 | | | | | | | | | | | | | | | | _
92 | | | | | | | | | | | | | | | | = - | | | | | | | | | | | | | | | | 93 | | | | | | | | | | | | | п | | | E | Same with layers of SANDY SILT, vellowish brown | | | | | | | | | | | | - 11 | | | -94 | Same with layers of SANDY SILT, yellowish brown (10YR 5/4), fine, loose (lake sediment). | | | | | | | | | | | | S22 | 18 | 35 38
23 30 | E 05 | | | | | | | W | | | | | | Ш | | | E-95 | | | | | | | | | | | | | - 11 | | | E
-96 | | | | | | | | | | | | | S23 | 18 | 19 12
12 13 | - 07 | | | | | | 1.0 | W | | | | | | 023 | 10 | 12 13 | <u>-</u> 97 | | CL | | | | 1.0 | ,, | | | | | | Ц | | | E I | | | | | | | | | | | | | | | | -98 | | | | | | | | | | | | | | | | E | | | | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | -
-100 | | | | | | | | | | | | | | | | = 100 | | | | | | | | | | | | | | | | _101 | | | | | | | | | | | | | | | | E | | | | | | | | | | | | | | | | -102 | - u | | | | | | | | | | | | | | | E | | | | | | | | | | | | | | | | 103 | | | | | | | | | | | | | | | | 104 | SANDY SILT, yellowish brown (10YR 5/4) fine, mostly very fine sand, loose (lake sediment). | | | | | | | | | | | | S24 | 16 | 24 28
34 50/4 | | mostry very fine sand, loose (lake sediment). | | | | | | W | | | | | | | 10 | 34 50/4 | 105 | | | | | | | | | | | | | Н | | | | | | | | | | | | | | | | | | | _106 | | ML | | | | | | | | | | | S25 | 12 | 36 50/5 | | | | | | | | W | | | | | | Ш | | | 107 | | | | | | | | | | | | | - 11 | | | -
-108 | | | | | | | | | | | | | S26 | 23 | 32 22
20 24 | | LEAN CLAV with layors of SHT SAND (lake | - | | | | 3.2 | w | | | | | | | | 20 24 | 109 | LEAN CLAY, with layers of SILT, SAND (lake sediment as above). | | | | | | 72000 | | | | | | ш | | | | | | | | | | | | | | | | | | | -110 | | | | | | | | | | | | | | | | -
-
-
-
111 | | | | | | | | | | | | | | | | = ''' | | CL | | | | | | | | | | | | | | _112 | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | 113 | | | | | | | | | | | | | П | | | - ,, | | | | | | | | | | | | | 627 | , | 50/5 | —114
— | | | | | | | | | | | | | S27 | 3 | 5.015 | _
115 | SILTY SAND, (10YR 5/4). | SM | | | | 1.2 | W | | | | | | I | 1 | ı | | | 1 | | | 1 | | 1 | ı | 1 | ı | | | Borin | g Num | ıber | MW | V-303 Use only as an attachment to Form 4400- | -122. | | | | | | | Pag | | of | 7 | |--------------------|---------------------------------|-------------|---------------|---|----------|----------------|---------------|-----------------|---------|-------------------------|---------------------|-----------------|---------------------|-------|------------------| | San | nple | | | | | | | | | | Soil | Prope | erties | | _ | | | 3 (E | S | et | Soil/Rock Description | | | | | | | | | | | | | . e | Att. | onu | n Fe | And Geologic Origin For | | | - | С | | d | نو | | <u> </u> | | nts | | nber
Typ | gth | Blow Counts | Depth In Feet | Each Major Unit | CS | phic | _ | II
gran | /FII | ndar | istur | uid
iit | Plasticity
Index | 00 | D/
nme | | Number
and Type | Length Att. &
Recovered (in) | Blo | Dep | | n s | Graphic | Log | well
Diagram | PID/FID | Standard
Penetration | Moisture
Content | Liquid
Limit | Plastic
Index | P 200 | RQD/
Comments | | | | | = | | SM | | | | | | | | | | - | | | | | -116 | LEAN CLAY, 7.5 YR 5/2, trace gravel. | | | | | | | | | | | | | S28 | 5 | 50/4 | E | | | | | | | 2.5 | W | | | | | | | | | -117 | | CL | | | | | | | | | | | | Ш | | | E | | | | | | | | | | | | | | | | | E-118 | | | | | | | | | | | | | | | | | 119 | SILTY SAND WITH GRAVEL, fine, with medium and coarse sand, greys, blues whites and browns, gravel is fine and coarse. | | | | | | | | | | | | | S29 | 5 | 50/5 | E | gravel is fine and coarse. | | | | | | | W | | | | | | | 5 | | 120 | | | | | | | | ,, | | | | | | Н | | | E | | | | | | | | | | | | | | - 11 | | 41.50/4 | -121 | SILTY SAND, fine to coarse grained, trace fine gravel, fine (outwash). | | | | | | | | | | | | | S30 | 8 | 41 50/4 | 122 | gravel, fine (outwash). | | | | | | | W | | | | | | Н | 123 | | | | | | | | | | | | | | S31 | 2 | 50/4 | E | | | | | | | | W | | | | | | - 11 | | | 124 | | | | | | | | | | | | | | - " | | | 125 | | SM | | | | | | | | | | | | | | | - 123 | | | | | | | | | | | 181 | | | П | | | 126 | | | | | | | | | | | | | | | | | E | | | | | | | | | | | | | | S32 | 10 | 31 50/4 | 127 | Same. | | | | | | | W | | | | | | | | | E 130 | | | | | | | | | | | | | | | | | 128 | | | | | | | | | | | | | | | | | 129 | | | | | | | | | | | | | | S33 | 3 | 50/5 | E | | | | | | | | w | | | | | | | | | 130 | | | | | | | | | | | | | | | | | E | | | | | | | | | | | | | | П | | | 131 | SILT, some gravel, very dense/stiff (weathered | | | | | | | | | | | | | S34 | 4 | 50/4 | 132 | bedrock). | ML | | | | | 4.5 | w | | | | | | , Ц | | | | DOLOMITE (bedrock). | | Ш | | | | | | | | | | | | | | 133 | DOLOWITE (bediock). | | | | | | | | | | | | | | | | E | | | | - | | | | | | | | | | | | | 134 | | | \overline{z} | | | | | | | | | | | | | | 135 | | | - | - | | | | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | 136 | | DOLOMITI | <u> </u> | $\frac{1}{2}$ | | | | | | | | | | | | | = | | | \Box | | | | | | | | | | | | | | 137 | | | 7 | | | | | | | | | | | | | | 138 | | | - | 4 | | | | | | | | | | | | | | | | - | + | | | | | | | | | | | | | 139 | | | | | | | | | | | | | | | | | Ξ, | | | | | | | | | | | | | | | | | 140 | | | | 1 ' | _ | | | | 1 | 1 | | | ## **SOIL BORING LOG INFORMATION SUPPLEMENT** Form 4400-122A | Borin | g Numl | oer | MW | √-303 Use only as an attachment to Form 4400- | 122. | | | | | | Pag | | of | 7 | |--------------------|---------------------------------|-------------|---------------|---|---------|----------------|-----------------|---------|-------------------------|---------------------|-----------------|---------------------|-----|------------------| | San | nple | | | | | | | | | Soil | Prope | erties | | | | | & (in) | s | et | Soil/Rock Description | | | | | | | | | | | | o r | Att. | oun | n Fe | And Geologic Origin For | S | 0 | ۽ | | d
tion | 5 1 | | ty | | ents | | Number
and Type | Length Att. &
Recovered (in) | Blow Counts | Depth In Feet | Each Major Unit | SCS | Graphic
Log | Well
Diagram | PID/FID | Standard
Penetration | Moisture
Content | Liquid
Limit | Plasticity
Index | 200 | RQD/
Comments | | Nu | Ler | Blo | De | | n | Grap | Well
Diagr | PII | Sta | ည် ဒိ | Liquid
Limit | Plastic
Index | P 2 | RQD/
Comm | | | | | - | | | - | 1 🗏 | | | | | | | | | | | | -141 | DOLOMITE (bedrock). | | | | | | | | | | | | | | | Ė | 2 0 2 0 1 1 1 2 1 0 1 1 1 1 1 1 1 1 1 1 | DOLOMIT | 1 / | 1 🗏 | | | | | | | | | | | |
142 | | | | | | | | | | | | | | | | E
-143 | | | | | | | | | | | | | | | | - | End of boring @ 143.5' | | -/- | 1 | | | | | | | | | | | | | Checked and edited by: | | | | | | | | | | | | | | | | BJS 3/30/2016 | = | 3 | , | 2 | , | _ | State of Wisconsin Department of Natural Resources ### SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98 Waste Management | | | | Ro | oute To: | Watershed/W | astewater | Waste | Manag | ement | | | | | | | | | |--------------------|---------------------------------|-------------|-----------------|------------|------------------------------|---------------------------|---|--|---------|--------|---------|------------|--------|---------|------------|-------|------------| | | | | | | Remediation/ | Redevelopment | Other | Pag | ge 1 | of | 6 | | Facilit | y/Proje | ct Nan | ne | | | | License/ | Permit | /Monito | ring N | umbei | | Boring | | , | | | | | L-Edge | | | | | SCS#: 25215135.20 | 1 | | | | | | | | | N-30 | 4 | | Boring | Drille | d By: | Name o | f crew ch | ief (first, last) ar | nd Firm | Date Dr | lling S | tarted | | D | ate Drilli | ng Con | npleted | | Drill | ing Method | | | in Du | | | | | | | | | | | | | | | | | | | ger S | | | | | | | | | | | | | 2016 | | | | | WI Un | ique W | |). | DNR V | Well ID No. | Common Well Name | Final Sta | | | el | Surfa | | | | Bo | | | | | | 7866 | | | | | | Fe | et | | | | | | | 8. | .0 in. | | State 1 | Grid O | rıgın | | | 2,558,156 | ing Location 🖂 E S/C/N | L | ıt | 0 | 1 | • | Local | | | | | | | Sw | | c C | | | | | | | 0 | , | , | | Feet | | | | | | S vv
Facility | | of S | C . | /4 of Sec | County | 1 14 N, K 25 E | | | Civil T | own/C | ity/ or | Village | | Пэ | | | w | | acing | , ID | | | | Sheboygan | | 1 | de | 1 | | | v mage | | | | | | | San | nle | | T | | blicobygaii | | 100 | Τ. | 77113 | | T. | | Soil | Prope | erties | | | | San | | | | | a | | | | | | | | Jon | Порс | lics | | | | | Length Att. &
Recovered (in) | ıts | eet | | | ock Description | | | | | | | | | | | | | r
pe | Atted | Cour | In F | | | ologic Origin For | A N, R 23 E Long ' " Feet [] N [| ents | | | | | | | | | | | mbe
I Ty | Length Att.
Recovered (| Blow Counts | Depth In Feet | | Eac | h Major Unit | | 1/25/2016 1/26/2016 HSA/rotary (mud) |)Qi | | | | | | | | | | Number
and Type | Lei | Blc | De | | | | | | 3 3 | W C | PII | Sta
Per | ຊັ ວິ | Lir | Pla
Ind | P 2 | 2×3 | | | | | - | LEAN | CLAY, brown (
ine gravel. | (7.5YR 4/6), with fine | to coarse | | | | | | | | | | | | | | | E ₁ | sand, n | ine gravei. | | | | | | | | | | | | | | Ш | | | Ē Î | | | | | | | | | | | | | | | | S1 | 14 | 2 5 | -2 | | | | | | | | | 3.5 | м | | | | | | · | | 6 11 | E | | | | | CL | | | | 5.0 | | | | | | | Н | | | _3 | | | | | | | | | | | | | | | | | | | E | | | | | | | | | | | | | | | | S2 | 14 | 4 6
5 9 | - 4 | | | | | | | | | 3.5 | M | | | | | | | | , | F _ | Same a | s above, except | dark brown. | | | | | | | | | | | | | - | | | <u>-5</u> | LEAN | CLAY, brown | (7.5YR 4/6), with silt | layers, | | 3/2/2 | | | | | | | | 2 | | | | | = _ | cohesiv | e, stiff. | | | | | | | | | | | | | | П | | | F ⁶ | | | | | | | | | | | | | | | | S3 | 24 | 2.5 | E_7 | | | | | | | | | 2 25 | м | | | | | | 33 | 24 | 25
811 | E ' | | | | | | | | | 3.23 | 101 | | | | | | Н | | | -8 | LEANI | CI AN I | (7.5VD 4/4) | | | | | | | | | | | | | Ш | | | E | sand, fi | ne gravel, mass | ive, stiff, diamicton (ti | ll). | | | | | | | | | | | | S4 | 24 | 4 5
9 10 | _9 | , | 0 , | , , | , | | | | | 3.25 | M | | | | | | Ш | | 9 10 | E | 1 inch i | interval of sand. | fine to medium grains | ed. | | | | | | | | | | | | Ц | | | -10 | brown. | , | | , | CL | | | | | | | | | | | | | | E | | | | | | | | | | | | | | | | | | | -11 | | | | | | | | | | | | | | | | | | | E 12 | | | | | | | | | | | | | | | | | | | - 12 | | | | | | | | | | | | | | | | | | | -
-13 | | | | | | | | | | | | | | | | Ш | | | E | | | | | | | | | | | | | | | | S6 | 24 | 2 4
4 5 | _14 | I E ANT | CLAY, as above | a (till) | | | | | | 1.5 | M | | | | | | | - | 4 5 | E I | LEAN | CLAI, as above | e (ull). | | | | | | " | | | | | | | Ц | | | -15 | | | | | | | | | | | | | | | | hereb | y certif | y that | the info | rmation or | n this form is tr | ue and correct to the bo | est of my kr | owled | ge. | | | | | | | | | Signature **SCS** Engineers Tel: (608) 224-2830 for J.L. Joe Larson 2830 Dairy Drive Madison, WI 53718 This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent. | Boring | g Numl | oer | MV | V-304 Use only as an attachment to Form 440 | 0-122. | | | | | | | ge 2 | of | 6 | |--------------------|---------------------------------|-------------|-----------------|--|--------|------|-----------------|---------|-------------------------|---------------------|-----------------|---------------------|-------|------------------| | Sam | | | | 9 | | | | | | Soil | Prop | erties | | | | | &
(ii) | ıts | eet | Soil/Rock Description | | | | | | | | | | | | er
/pe | Att و
ered | Cour | In F | And Geologic Origin For | S | .c | E | | ard
ation | are
nt | _ | ity | | ents | | Number
and Type | Length Att. &
Recovered (in) | Blow Counts | Depth In Feet | Each Major Unit | USCS | raph | Well
Diagram | PID/FID | Standard
Penetration | Moisture
Content | Liquid
Limit | Plasticity
Index | P 200 | RQD/
Comments | | Zä | JK | В | <u> </u> | | > | 9 | ≱ Q | Д. | SA | 20 | 7 7 | P I | Ь | | | | 15 | | E
-16 | | | | | | | | | | | | | | | | E | LEAN CLAY, brown (7.5YR 4/4), as above (till). | | | | | | | | | | | | | | | E 17 | | | | | | | | | | | | | | | | _
18 | | | | | | | | | | | | | | | | E | | | | | | | | | | | | | S7 | 22 | 3 4
4 6 | - 19 | | | | | | 1.25 | M | | | | | | Ц | | | E_20 | | | | | | | | | | | | | | | | Ē | | | | | | | | | | | | | | | | -21 | E
-23 | | | | | | | | | | | | | П | | | | | | | | | | | | | | | | S8 | 22 | 2 3
5 6 | 24 | | | | | | | | | | | | | Ш | | | E
-25 | | | | | | | | | | | | | | | | = | | | | | | | | | | | | | | | | - 26 | | | | | | | | | | | | | | | | E
-27 | | | | | | | | | | | | | | | | Ē | | CL | | | | | | | | | | | П | | | - 28 | | | | | | | | | | | | | S9 | 24 | 2 4
6 7 | | | | | | | 1.0 | M | | | | | | Ш | | 0 / | -30 | | | | | | |
| | | | | | | | | = | | | | | | | | | | | | | | | | _31 | | | | | | | | | | | | | | | | -
-32 | | | | | | | | | | | | | | | | E | | | | | | | | | | | | | П | | | - 33 | | | | | | | | | | | | | S10 | 24 | 3 5
6 9 | 34 | | | | | | 1.0 | M | | | | | | Ш | | 0 9 | _
35 | | | | | | | | | - | | | | | | | - 33 | | | | | | | | | | | | | | | | _36 | | | | | | | | | | | | | | | | _
37 | | | | | | | | | | | | | | | | = | | | | | | | | | | | | | П | | | 38 | | | | | | | | | | | | | S11 | 24 | 3 6
8 12 | 39 | Same with fine silt partings. | | | | | 2.5 | M | | | | | | | | 8 12 | | | | | | | | | | | | | | | 1 | | -40 | | 1 | Γ | | | I | ļ | | 1 | 1 | | | _ | g Num | ber | MV | V-304 Use only as an attachment to Form 4400- | 122. | | | | | | | _ | of | 6 | |--------------------|---------------------------------|-----------------|------------------|--|-------|----------------|------|----------|-------------------------|---------------------|-----------------|---------------------|-------|------------------| | San | nple | | | | | | | | | Soil | Prope | erties | | | | | % (ii | 80 | t t | Soil/Rock Description | | | · | | | | | | | | | 0 | ž (| unt | Fee | And Geologic Origin For | | | | | _ uo | | | _ | | ıts | | ype | th A | ပိ | ı In | Each Major Unit | CS | hic | 8 | E E | lard | ture | р | icity | | /
mer | | Number
and Type | Length Att. &
Recovered (in) | Blow Counts | Depth In Feet | But major ome | US (| Graphic
Log | Well | PID/FID | Standard
Penetration | Moisture
Content | Liquid
Limit | Plasticity
Index | P 200 | RQD/
Comments | | _a ra_ | コス | B | | | 1 2 | G | > (| <u> </u> | N P | 20 | 77 | P | Д | <u> </u> | | | | | F | | | | | | | | | | | | | | | | -41 | LEAN CLAY, brown. | | | | | | | | | | | | | | | = | LEAN CLAT, BIOWII. | CL | | | | | | | | | | | | | | -42 | | | | | | | | | | | | | | | | E | | | | | | | | | | | | | П | | | -43 | CLAYEY SILT, brown (7,5YR 4/6). | | 0/3/0/0/0 | | | | | | | | | | - 11 | | | E | (',0 111 "O) | | | | | | | | | | | | S12 | 24 | 4 4
5 8 | -44 | | ML | | | | | M | | | | | | - 11 | | 3.6 | E | | | | | | | | | | | | | | | | -45 | LEAN CLAY WITH SAND, brown (7.5YR 4/6), fine | | | | | | | | | | | | | | | E | to coarse. | | | | | | | | | | | | | | | -46 | | | | | | | | | | | | | | | | - 47 | | | | | | | | | | | | | | | | -47
- | | CL | | | | | | | | | | | | | | -
-48 | | CL | | | | | | | | | | | П | | | - 40 | | | | | | | | | | | | | 013 | 2.4 | 2.4 | _
49 | | | | | | 0.75 | 33.7 | | | | | | S13 | 24 | 2 4
4 6 | = " | | | | | | 0.75 | W | | | | | | Ц | | | E
-50 | | - | | | | | | | | | | | | | | | LEAN CLAY, brown (7.5YR 4/6). | | | | | | | | | | | | | | | - 51 | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | 52 | | CL | | | | | | | | | | | | | | _ | | | | | | | | | | | | | п | | | 53 | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | S14 | 24 | 4 5
8 11 | _54 | SILTY SAND, brown, fine to medium grained. | SM | 1100000 | | | 1.5 | M | | | | | | Ш | | 011 | | CLAYEY SAND, fine to coarse. | 1 | | | | | | | | | | | | | | 55 | , | | | | | | | | | | | | | | | Ε | | | | | | | | | | | | | | | | - 5 6 | | | | | | | | | | | | | | | | | | SC | | | | | | | | | | | | | | -57
- | | | | | | | | | | | | | | | | _
58 | | | | | | | | | | | | | Ш | | | F 36 | | | | | | | | | | | | | S15 | 16 | 5 13 | -
- 59 | TOODLY CD IND GIVE WARE CAN BE | | 111 | | | 0.5 | w | | | | | | 313 | 10 | 5 13
23 25 | E | POORLY GRADED SAND WITH SILT, grey (10YR 4/2), fine to medium grained (outwash). | | | | | 0.5 | ** | | | | | | Н | | | -60 | (variable), fine to medium gramed (variable). | | | | | | | | | | | | - 11 | | | | | | | | | | | | | | | | S16 | 12 | 8 1 1
18 20 | -61 | Same. | | | | | | w | | | | | | | | 18 20 | | Same. | SP-SM | | | | | | | | | | | Н | | | 62 | | | | | | 7.0 | | | | | | | | | Services annual | E | | | | | | | | | | | | | S17 | 20 | 15 23
31 30 | -63 | Same except mostly very fine sand. | | | | | | | | | | | | - 11 | | , , , , | Ε, Ι | | | | | | | | | | | | | Н | | | 64
 | LEAN CLAY, with fine to coarse sand, fine gravel, | - | | | | | | | | | | | | | | _
65 | diamicton (till) | CL | | | | | | | | | | | - 1 | 1 | | 05 | | 1 | I | | 1 | 1 1 | | 1 | l | | | | Borin | g Num | ıber | MV | V-304 Use only as an attachment to Form 4400-1 | 122. | | | | | | Pag | ge 4 | of | 6 | |--------------------|---------------------------------|----------------|----------------------|---|------|----------------|------|----------|-------------------------|---------------------|-----------------|---------------------|-------|------------------| | San | nple | | | | | | | | | Soil | Prope | erties | | | | | % (ii) | ıts | eet | Soil/Rock Description | | | | | | | | | | | | er
/pe | Att
ered | Cour | In F | And Geologic Origin For | S | . <u>e</u> | | | urd
ation | ıre
1t | _ | ity | | lents | | umb
nd Ty | Length Att. &
Recovered (in) | Blow Counts | Depth In Feet | Each Major Unit | SC | Graphic
Log | Well | PID/FID | Standard
Penetration | Moisture
Content | Liquid
Limit | Plasticity
Index | P 200 | RQD/
Comments | | Number
and Type | 20 | 14 19
15 15 | F A | LEAN CLAY, brown (7.5YR 4/6). | D | 9 7 | | <u> </u> | 2.5 | M M | 77 | P I | Ь | Z 2 | | | | 15 15 | E
-66 | | | | | | | | | | | | | | | | E | | | | | | | | | | | | | | | | E 67 | | CL | | | | | | | | | | | п | | | -
-68 | | | | | | | | | | | | | | | | E | | | | | | | | | | | | | S19 | 8 | 50/5 | - 69 | LEAN CLAY, with layers of SILT, fine to coarse sand (lake sediment). | | | | | 4.5 | M | | | | | | Ц | | | E-70 | (lake sediment). | | | | | | | | | | | | | | | E 7. | | | | | | | | | | | | | | | | —71
— | | | | | | | | | | | | | | | | - 72 | | | | | | | | | | | | | | | | -
-73 | | | | | | | | | | | | | | | | E | LEAN CLAY, dark brown (7.5YR 4/2), laminated, very plastic (lake sediment). | | | | | | | | | | | | S20 | | 8 10
15 17 | - 74 | | | | | | 1.25 | M | | | | | | Ц | | | | | | | | | | | | | | | | | | | = = | | | | | | | | | | | | | | | | - 76
E | | CL | | | | | | | | | | | | | | 77 | | | | | | | | | | | | | | | | -
-78 | | | | | | | | | | | | | | | | E ' | Same with few silt partings, very stiff. | | | | | | | | | | | | S21 | 24 | 7 11
14 15 | - 7 9 | | | | | | 2.75 | | | | | | | Ц | | | E
80 | | | | | | | | | | | | | | | | E | | | | | | | | | | | | | | | | -81 | | | | | | | | | | | | | | | | 82 | | | | | | | | | | | | | | | | -
-83 | | | | | | | | | | | | | П | | | - 63 | | | | | | | | | | | | | S22 | 12 | 25 50/5 | 84 | | | | | | >4.5 | | | | | | | Ш | | | -
-85 | SILTY SAND, grey, fine to coarse grained, dense, trace gravel. | | | | | | | | | | | | | 2 | | | unce graves. | | | | | | | | | | | | S23 | 16 | 21 34
42 46 | - 86 | | SM | | | | | W | | | | | | Н | | | 87 | Limestone rock fragments, with fine and coarse gravel. | 5.M | | | | | | | | | | | | | 50/2 | - | Emissione rock magnitude, with this and coarse graver. | | | | | | | | | | | | S24 | 1 | 50/2 | | | | | | | | | | | | | | Н | | | 89 | | | | | | | | | | | | | Ш | | | _
90 | | | | | | | | | | | | | 1 | 1 | | | ' | | | | ī | | ı | - 1 | 1 | ı | | | Control of the Contro | g Num | ber | MW | V-304 Use only as an attachment to Form 4400 |)-122. | | | | | | | | Pag | | of | 6 | |--|---------------------------------|------------------|------------------|---|---------|----------|------------------|------|---------|----------|-------------------------|---------------------|-----------------|---------------------
-------|------------------| | Sar | nple | | | | | | | | | | | Soil | Prope | erties | | | | | ii. & | 50 | # | Soil/Rock Description | | | | | | | | | | | | | | 0 | sd (| unt | Fee | And Geologic Origin For | | | | | | | _ uo | | | _ | | ıts | | ber
Type | th A | ြပ္မ | h In | Each Major Unit | CS | hic | | | ram | EB | lard | ture | E T | icity | 0 | mer / | | lum]
Ind J | Length Att. &
Recovered (in) | Blow Counts | Depth In Feet | | US (| Graphic | Log | Well | Diagram | PID/FID | Standard
Penetration | Moisture
Content | Liquid
Limit | Plasticity
Index | P 200 | RQD/
Comments | | Number
and Type | 3 | 50/4 | | Same, diamicton. | 1 | + | 7 | ^ | | <u>д</u> | S E | 20 | 11 | ПП | | <u> </u> | | | | | E | Suine, diameterii | | | | | | | | | | | | | | ı | | | - 91 | | | | | | | | | | | | | | | | | 50/5 | - 03 | | SM | | | | | | | | | | | | | S26 | 2 | 30/3 | <u> </u> | | | | | | | | | | - | | | S26 was skipped. | | L | | | E
-93 | | | Ш | | | | | | | | | | | | | | | E 70 | SILTY SAND and SILT, except dark grayish brown (10YR 4/2), sandstone fragments, fine sand, fine | | | | | | | | | | | | | | S27 | 24 | 34 31
42 52/3 | -94 | gravel, cohesive, brittle. | | | | | | | | W | | | | 31 | | | | 42 52/3 | E | | | | | | | | | | | | | | | Н | | | 95 | | | | | | | | | | | | | | | | | | Ē | | | | | | | | | | | | | | | S28 | 14 | 30 39
50/3 | - 96 | | SM | | | | | | | W | | | | | | Ш | | | E
-97 | | | | | | | | | | | | | | | | | | = " | | | | | | | | | | | | | | | S29 | 12 | 20 34
50/5 | E ₉₈ | | | | | | | | | W | | | | | | 327 | 12 | 50/5 | = | | | | | | | | | " | | | | | | Н | | | _99 | FAT CLAY WITH GRAVEL, brown (7.5 4/3), | | | 0000 | | | | | | | | | | | | | | E | sandstone fragments, fine to coarse sand, fine gravel. | | | | | | | | | | | | | | S30 | 12 | 37 50/4 | E 100 | | CH | | | | | | 4.5 | W | | | | | | | | | E 101 | | | | | | | | | | | | | | | П | | | 101 | SILTY SAND, dark grayish brown (10YR 4/2). | | | | | | | | | | | | | | S31 | 12 | 16 35 | 102 | | SM | | | | | | 1.5 | w | | | | | | 331 | 12 | 16 35
50/4 | E | LEAN CLAV seem double become (7.5 VD 2.5/2) | | | | | | | 1.5 | ** | | | | | | H | | 13 | 103 | LEAN CLAY, very dark brown (7.5 YR 2.5/2). SILTY SAND, dark grayish brown (10YR 4/2), fine | CL | H | | | | | | | | | | | | | | | - 1 | grained. | | | | | | | | | | | | | | S32 | 18 | 17 35
50/4 | -104 | | SM | | | | | | | W | | | | | | | | | E 105 | | | | | | | | | | | | | | | П | | | <u> </u> | SANDY LEAN CLAY, dark brown (7.5YR 3/2), | | | | | | | | | | | | | | S33 | 8 | 17 50/2 | 106 | trace gravel. | CL | | | | | | 4.0 | w | | | | Bedrock at 106.5 | | 333 | 0 | | - | | | | | | | | 4.0 | " | | | | ft bgs. | | Н | | | 107 | SILTY SAND, dark grayish brown (10YR 4/2), fine | | H | 123 | | | | | | | | | | | | | | | grained, (weathered bedrock). | | | | | | | | | | | | | | S34 | 2 | 50/3 | 108 | | SM | | | | | | | | | 4 | | | | | | | 109 | | | | | | | | | | | | | | | 1 | | | - 109 | DOLOMITE, gray (7.5YR 6/1), angular fragments. | | - | 4 | | | | | | | | | | | S35 | NA | | E ₁₁₀ | | | \vdash | 7 | | | | | | | | | | | | | | | | | | , | | | | | | | | | | | [1] | | | -111 | | | | | | | | | | | | | | | | | | E ,, | | | | 4 | | | | | | | | | | | | | | _112 | | DOLOMIT | E / | 7 | | | | | | | | | | | | | | _
 | | | F | 7 | | | | | | | | | | | 1 | | | - 113 | | | | _ | Ħ | | | | | | | | | | V | | | _
114 | | | 1 | | E | | | | | | | | | | M | | | | | | | \mathbb{Z}^{1} | | | | | | | | | | | 1" | | | -115 | | | | | | | | | | - | | | | | Borin | ıg Numl | ber | MW | V-304 Use only as an attachment to Form 4400- | 122. | | | | | | Pag | ge 6 | of | 6 | |--------------------|---------------------------------|-------------|---------------|--|---------|----------------|-----------------|---------|-------------------------|---------------------|-----------------|---------------------|-------|------------------| | - | nple | | | | T | | | | | Soil | Prope | | | | | | % (ii) | | ب | Soil/Rock Description | | | | | | | | | | | | 4) | od (i | unts | Fee | And Geologic Origin For | | | | | on | | | | | ıts | | ber | th A | ပိ | h In | Each Major Unit | CS | hic | ram | FID | lard | ture | r g | icity | _ | nen | | Number
and Type | Length Att. &
Recovered (in) | Blow Counts | Depth In Feet | | N S (| Graphic
Log | Well
Diagram | PID/FID | Standard
Penetration | Moisture
Content | Liquid
Limit | Plasticity
Index | P 200 | RQD/
Comments | | 7 8 | 11 12 | Щ | | | +- | 1 | | Д. | N H | 20 | 111 | ДД | | | | S36 | NA | | E | | | | | | | | | | | | | M | | | -116 | DOLOMITE, gray (7.5YR 6/1), angular fragments. | DOLOMIT | | | | | | | | | | | l K | | | -117 | | DOLOMIT | | | | | | | | | | | 1/1 | | | E ''' | | | 7 | | | | | | | | | | [1] | | | -118 | End of boring @ 118' | | | | | 140 | | | | | | | | | | | Logged by: | | | | | | | | | | | | | | | | Joe Larson: 0-93'
Kyle Kramer: 93-118' | | | | | | | | | | | | | | | | Checked and edited by: | | | | | | | | | | | | | | | | BJS 3/30/2016 | 4 | , | | | | | 2 | · · | 1 | | | | | | | | | | N. | v | 191 | 1 | - 1 | | . 1 | | | ' ' | | | | 1 | ı | - 1 | 1 | | State of Wisconsin Department of Natural Resources ### SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98 | | | | <u>R</u> | oute To: | Watershed | | vater \square | | Waste M
Other | _ | ement | \boxtimes | | | | | | | | |--------------------|---------------------------------|-----------------|-----------------|------------|---------------------|-----------|------------------------|--------|----------------------|--------------|------------------|-------------|---------|-------------------------|-----------------|-------------|---------------------|---------|----------------------| | | | | | | Kemedian | on/Rede | velopment 🗀 | | Other | Ш | | | | | | | | | 7 | | Facili | y/Proje | ct Nan | ne | | | | | I | License/I | Permit/ | Monito | ring N | lumbe | r | Boring | Pag
Numb | | of | 7 | | WP | L I43 | | | | | SCS | S#: 25217032.0 | | 2853 | | | | | | | MW | | | | | | | | Name o | of crew ch | ief (first, last |) and Fir | m | I | Date Dril | ling S | arted | | | ate Drill | ing Co | mpleted | l | Drill | ing Method | | Bac | | tate I | Orillin | | | | | | | | /2017 | | | | 2/2/2 | 2017 | | | SA/Rotary | | WI Uı | nique W | /ell No
/819 |). | DNR V | Well ID No. | Com | mon Well Nan
MW-305 | ne F | Final Sta | tic Wa
Fe | | el | Surfa | ice Eleva | ition
.46 Fe | a t | Bo | | Diameter | | Local | Grid O | | (e | stimated: | □) or E | Boring L | | | ı | ге | | | | | Grid Lo | | | 0 | .3 in. | | | Plane | | 623 | ,435 N, | 2,559,94 | 16 E | S/C/N | | La | t | o
 | <u>'</u> — | | - | | t 🗆 N | N. | | Feet E | | SE | | of S | E | 1/4 of Sec | | т 1- | 4 N, R 23 I | | Long | | 0 | <u>'</u> | . , | <u>'</u> | | | 5 | | □ W | | Facilit | y 1D
102209 | 90 | | | County
Sheboygai | n | | 60 | unty Co | de | Wilse | | | Village | | | | | | | | nple | | | | Silcooygai | | Maria | 100 | , | | VV 1150 | | 1. | | Soil | Prop | erties | | | | | Γ | | 1 | | Soi | 1/Rock D | Description | | | | | | | | | Tiop | | | _ | | 43 | Att. & | unts | Fee | | | | Origin For | | | | | | | lo | | | | | ts | | nber
Typ | Length Att. &
Recovered (in) | Blow Counts | Depth In Feet | | | Each Maj | _ | | | CS | ohic | | PID/FID | Standard
Penetrati | Moisture | id
it | icity | 0 | men | | Number
and Type | Len | Blo | Dep | | | | | | | C S | Graphic
Log | Well | PID, | Standard
Penetration | Moisture | Liquid | Plasticity
Index | P 200 | RQD/
Comments | | | | | E | TOPSO | DIL. | | | | | | 111 1 | | | | | | | | | | | | | - 1 | | | | | | | | 1, 11, | | | | | | | | | | | | | E , | LEAN | CLAY, stron | ng brown | (7.5YR 4/6). | | | | | | | | | | | | | | S1 | 8 | 22 | F 2 | | | | | | | | | | | 1.75 | | | | | | | | | 4 | _2 | | | | | | | | | ì | | | | | | | | | | | | - , | <u> </u> | F, | | | | | | | | | | | | | | | | | | S2 | 14 | 4 8
11 | F-4 | | | | | | | | | | | 4.5+ | | | | | | | | | 11 | F _ | | | | | | | | | | | | | | | | | | _ | | | E 3 | - , | | | | | | | | | | | | | | | | 2 | | | | | F-6 | | | | | | | | | | | | | | | | | | S3 | 18 | 7 11 | | | | | | | | CL | | | | 4.5+ | | | | | | | | | 14 | - 7 | | | | | | | | | | | 1.5 | | | | | | | | | | - | _8 | - | | | | | | | | | | | | | | | | | | S4 | 18 | 4 10 | - 9 | | | | | | | | | | | 4.5+ | | | | | | | | | 9 | - | | | | | | | | | | | 1.5 | | | | | | | | | | - 10 | = | -11 | T 1. 1 | | | <u> </u> | <u>.</u> | 4.6. | | 1 | |
<u> </u> | | 97. X 47. W. 47. | | | | | | | | | | I hereb | | y that | the info | rmation of | n this form is | true and | l correct to the | | | | ge. | | | | | | | | | | Signal | Ali | v F | \$11 | 2 | for 16 | ile 16 | | | inginee
airy Driv | | dison V | VI 527 | 712 | | | | | Tel: (6 | 08) 224-2830
Fax: | | | 11 | | 11 | | | | 20 | .50 00 | , 10114 | - 1VIA | | . 1 331 | 10 | | | | | | ı ax. | This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form | the same of sa | g Num | ber | MV | V-305 Use only as an attachment to Form 4 | 400-122. | | | | | G :: | | ge 2 | of | 7 | |--|-------------------------------------|-------------|---------------------------------|---|----------|----------------|-----------------|---------|-------------------------|---------------------|--|------|-------|-----------------------------| | Number
and Type | Length Att. & add
Recovered (in) | Blow Counts | Depth In Feet | Soil/Rock Description
And Geologic Origin For
Each Major Unit | USCS | Graphic
Log | Well
Diagram | PID/FID | Standard
Penetration | Moisture
Content | Property Pro | ity | P 200 | RQD/
Comments | | S5 | 18 | 468 | -13
-14
-15
-16 | Same as above except, brown (7.5 YR4/3). | | | | | 2.5 | | | | | Mud Roatary @
15 ft bgs. | | S6 | 18 | 469 | | Same as above except, trace gravel. | | | | | 4.5+ | | | | | | | S7 | 18 | 4 6
7 | -22
-23
-24
-25
-26 | | CL | | | | 3.0 | | | | | | | S8 | 18 | 4 6
7 | -27
-28
-29
-30 | | | | | | 2.0 | | | | | | | 15/2025 | i - Clas | sificat | -32
ion: Int | ernal - ECRM13565889 | | | | | | | | | | | | | mber | MW- | 305 Use | only as an attachment to For | m 4400-122. | _ | 1 | 1 | T | <i>c</i> | | ge 3 | of | 7 | |-------------------------------|--------|---------------------------------|---------|---|-------------|----------------|-----------------|---------|-------------------------|---------------------|-----------------|------------------|-------|------------------| | Number and Type Length Att. & | | Depth In Feet | And | il/Rock Description
Geologic Origin For
Each Major Unit | USCS | Graphic
Log | Well
Diagram | PID/FID | Standard
Penetration | Moisture
Content | Liquid
Limit | Plasticity Index | P 200 | RQD/
Comments | | S9 18 | 5 8 9 | -33
-34
-35
-36 | | | | | | | 2.5 | | | | | | | S10 18 | 479 | -37
-38
-39
-40
-41 | | | | | | | 2.5 | | | | | | | S11 8 | 378 | -42
-43
-44
-45
-46 | | | CL | | | | 2.5 | | | | | | | S12 18 | 3 9 13 | -47
-48
49
50 | | | | | | | 2.0 | | | | | | | Boring | THE RESERVE OF THE PERSON | iber | TVI V | V-305 Use only as an attachment to Form 440 | 00-122. | Т | | | T | Call | Pag | ge 4 | of | 7 | |--------|------------------------------|----------------|--------------------------|---|----------|----------------|-----------------|---------|-------------------------|------|-----|------|-------|------------------| | | Length Att. & Recovered (in) | Blow Counts | Depth In Feet | Soil/Rock Description
And Geologic Origin For
Each Major Unit | USCS | Graphic
Log | Well
Diagram | PID/FID | Standard
Penetration | | | ry. | P 200 | RQD/
Comments | | S13 | 18 | 558 | -53
-54
-55
-56 | Same as above except, brown (7.5YR 4/3). | | | | | 2.5 | | | | | | | S14 | 18 | 5 5 6 | -57
-58
59
60 | | CL | | | | 1.5 | | | | | | | S15 | 12 | 5 5 16 | -62
-63
-64
-65 | | | | | | 3.0 | | | | | | | S16 | 12 | 13 16
16 | -66
67
68
69 | POORLY GRADED SAND, gray (10YR 5/1), medium to coarse grained. | | | | | | | | | | | | S17 | 20 | 14 19
20 22 | 70
71
72 | SILTY SAND, brown (7.5YR 4/3), fine grained. | SP
SM | | | | | | | | | | | | g Num
nple | ber | 101 0 | V-305 Use only as an attachment to Form 4400- | 122. | T | Т | | T | T | Soil | Prope | ge 5 | of | <i>/</i> | |--------------------|---------------|----------------|-----------------------|---|------|---------|-----|-----------------|---------|-------------------------|------|-------|------------------|-------|----------| | Number
and Type | % (in) | Blow Counts | Depth In Feet | Soil/Rock Description
And Geologic Origin For
Each Major Unit | USCS | Graphic | Log | Well
Diagram | PID/FID | Standard
Penetration | | | Plasticity Index | P 200 | RQD/ | | | | | = | | SM | | | | | | | | | | | | S18 | 16 | 9 9
10 16 | -73 | LEAN CLAY, brown (7.5YR 4/3). | CL | | | | | | | | | | | | H | | | -
- 74
- | POORLY GRADED SAND, gray (10YR 5/1), fine to medium grained. | | | | | | | | | | | | | S19 | 18 | 8 16
18 21 | _
— 75
- | mediani giunea. | | | | | | | | | | | | | Н | | | _
76 | | | | | | | | | | | | | | S20 | 16 | 8 18
20 23 | -
-
-
-77 | | | | | | | | | | | | | | | 10 | 20 23 | _
_
_
_ 78 | | | | | | | | | | | | _ | | | | | _ | | | | | | | | | | | | | | S21 | 16 | 15 20
23 30 | 79

 | | | | | | | | | | | | | | | | | 80 | | | | | | | | | | | | | | 522 | 16 | 15 23
26 31 | -
81
- | | | | | | | | | | | | | | H | | | -
82 | | | | | | | | | | | | | | 523 | 18 | 21 18
29 31 | 83 | | SP | | | | | | | | | | | | | | 29 31 | -
-
84 | | × | | | | | | | |
 | | | | | 17.20 | _ | | | | | | | | | | | | | | 524 | 18 | 17 30
33 33 | — 85
-
-
- | | | | | | | | | | | | | | u | | | 86

 | | | | | | | | | | | | | | | | | -
87
- | | | | | | | | | | | | | | П | | | -
-
-
-
- | | | | | | | | | | | | | | 325 | 16 | 15 20
30 30 | -
-
-
89 | | | | | | | | | | | | | | Ц | | | -
-
-
-90 | | | | | | | | | | | | | | | | | -
-
-
-91 | /2025 | i - Clas | sificat | −92
ion: Int | ernal - ECRM13565889 | | | | | 1 | | | | | | | 08/ | | g Num | ber | MV | V-305 Use only as an attachment to Form 4400- | 122. | | | | | | | ge 6 | of | 7 | |--------------------|---------------------------------|-----------------|----------------|---|------|----------------|-----------------|---------|-------------------------|---------------------|-----------------|---------------------|-------|------------------| | San | nple | - | | | | | | | | Soil | Prope | rties | | | | | tt. &
d (in) | ınts | Feet | Soil/Rock Description And Geologic Origin For | | | | | _ u | | | | | | | lber
Гуре | th A | Blow Counts | h In | Each Major Unit | S) | hic | ram | EID | lard
tratio | ture | ъ., | icity | | /
nents | | Number
and Type | Length Att. &
Recovered (in) | Blow | Depth In Feet | Savi Major Cini | USCS | Graphic
Log | Well
Diagram | PID/FID | Standard
Penetration | Moisture
Content | Liquid
Limit | Plasticity
Index | P 200 | RQD/
Comments | | | | | - , | | | | | | | | | | | | | | | | _
93 | S26 | 18 | 18 23
25 29 | 94 | | | | | | | | | | | | | | | 20 27 | | | | | | | | | | | | | | Ш | | | 95
 | | | | | | | | | | | | | | | | -

96 | | | | | | | | | | | | | | | | - 70 | | | | | | | | | | | | | | | | 97 | П | | | 98
 | | | | | | | | | | | | | 527 | 1.4 | 10 22 | -
-
-99 | Same as above except, trace coarse gravel. | | | | | | | | | | | | S27 | 14 | 10 22
24 25 | - // | | | | | | | | | | | | | Ц | | | _
100 | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | —101
- | | SP | | | | | | | | | | | | | | -
-
102 | | | | | | | | | | | | | | | | - 102 | | | | | | | | | | | | | п | | | _
103 | Same as above average transport | | | | | | | | | | | | | | | | Same as above except, trace coarse gravel. | | | | | | | | | | | | S28 | 12 | 13 13
10 18 | 104 | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | 105
 | | | | Ť | | | | | | | | | | | | -
106 | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | _
107 | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | П | | | 108
 | | | | | | | | | | | | | S29 | 12 | 23 42
50/0.5 | -
-
-109 | | | | | | | | | | | | | | 12 | 50/0.5 | -
- | | | | | | | | | | | | | Ц | | - | 110 | | | | | | | | | | | | | | | ļ | - | DOLOMITE, gray (10YR 5/1), weathered. | | | | | | | | | | | | | | ļ | -111
- | | | | | | | | | | | | | | | | -
-112 | | | | | | | | | | | | | /15/2025 | - Clas | sificati | on: Int | ernal - ECRM13565889 | 1 | | | | 1 | J | | ı | ı | | | | g Numb | oer | MW | V-305 Use only as an attachment to Form 4400-1 | 22. | _ | , | | _ | | Pag | ge 7 | of | 7 | |--------------------|---------------------------------|-------------|-----------------|--|------|----------------|-----------------|----------|-------------------------|---------------------|-----------------|---------------------|-------|------------------| | San | nple | | | | | | | | | Soil | Prope | erties | | | | | tt. & | ınts | Feet | Soil/Rock Description | | | | | | | | | | 70 | | ber | th Ai | Cou | l In I | And Geologic Origin For
Each Major Unit | S | nic . | am | E. | ard
ratio | ure | - | city | | nents | | Number
and Type | Length Att. &
Recovered (in) | Blow Counts | Depth In Feet | Bacil Major Offic | USCS | Graphic
Log | Well
Diagram | PID/FID | Standard
Penetration | Moisture
Content | Liquid
Limit | Plasticity
Index | P 200 | RQD/
Comments | | | | | E | | | 7 | | <u> </u> | SA | 20 | | P II | | 20 | | | | | - | | | | | | | | | | | | | | | | -113 | | | | | | | | | | | | | | | | -
114 | | | | | | | | | | | | | | | | E | | | | | | | | | | | | | | | | -
-115 | -116 | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | -117 | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | 118
 | | | | | | | | | | | | | | | | _
—119 | | | - | | | | | | | | | | | | | _ | | | | | | | | | | | | | S30 — | | | 120 | | | -/- | | | | | | | | | | | | | E | | | | | | | | | | | | | | | | -121 | End of boring at 121 ft bgs. | | | | 1 | 8/15/2025 | - Clas | sificat | ion: Int | ernal - ECRM13565889 | | | | | | | | | | | State of Wisconsin Department of Natural Resources Private Water Supply Box 7921 Madison, Wisconsin 53707 ## NOTE: White Copy — Division's Copy Green Copy — Driller's Copy Yellow Copy — Owner's Copy WELL CONSTRUCTOR S REPORT Form 3300-1 Rev. 2-79 **Site Supply Well** | | | | | | | | | | . ~ | | | - 2 - 2 | | | | | | | | | |----------------------|--
--|-----------------------------|----------------------------|-------------------|------------------------|-------------------------|-----------------------|-----------|-------------|--------------|---------------------------------------|-------------------------|--------------------------------|-----------------------|------------|--|--------------------|--------------|-------------| | 1. CO I | UNTY | . / | | | | | | E: | 7 | | | ¬ | | | | . } | | | | | | | AML | 1/4 04 | ction or o | South Lat | | | | سلا | | T | | | | | | | | | | | | 2. LO | CATION | 74 5 | | 30V (. LOI | | Section | | i | - I | 3. NA! | ие с | - 1 | | | 77 | | | <i>.</i> | | (√) ONE | | OR | — G ri | id or S | | - | | , | | | | AD | DRESS | | | | - | | | i agan | ~_ | | | 4 371 | D 16. | (1.1.1 | 1 1 22 1 | Cour | iti | Ne | vy 0 | | | | | 10. | Buy | 56 | 7 | | | | | | | AN! | D – 11 8 | avanab. | ie subdivis | ion name, | lot & | block No | o. - | | | POS | T OF | FICE | 2441 | 10 1 1- | . , | | | | 4 | | | 4 Die4 | !- f - | 4 & | | Dubalaa | | | | | | | | 1 | | | | | | - + - | - | | | _ | _ | | | Бинатпд | | | | | | | | - | Connect | ted To: | | | | | | | | ansv | ver in app | Second Control Script Sc | Street | t Sewer | Second or Greek to the Section Township Stage S. NAME SOWNER AGENT AT TIME OF DRILLING CHECK (A ONE FINAL STATE OF ORDER) Section Township Stage S. NAME SOWNER AGENT AT TIME OF DRILLING CHECK (A ONE FINAL STATE OF ORDER) Section Township Stage S. NAME Sowner Section Township Stage Secti | Sán. | Storm | Second S | _ | er | Clearw | ater | | | | | | | | | | ıch. | _
-1 | | | | Privy | Pet | Pit: N | lonconfori | | ing (| ···· | ce Pumpi | room | ТВ | arn A | nimal | Anin | nal Silo | Gia | | _ | | Sîlage | Ear | then | | | Waste
Pit | Well | | | | Nonconf | orming E | xisting | Ģı | itter 1 | Barn | | d Wit | h Pit∣Sto | | W/O | Storage | | | | | | Stoop Stoo | ure /V | Vatertight | Liquid N | | | urface | Waste Pe | ond o | r Land | Ma | nure S | Storage |
Basin | · + Ot1 |
her (D | escribe) | | | | | Stack o | ADDRESS FOR Street No. Street or Road Name Carretts Mary Street ADDRESS Gale Date. Plant Plan | ĺ | | | | | | • | | • | - 1 | | | | · · | ffer | | | | | | 5. Well | l is intend | led to | supply wa | er for: | | ; | 1 | |] | 9. F0 | | | | | | | | | | | | | | W | ra | ispax | al | 1 T. | oul | uy | | | | | Kind | j | | | From (ft | .) | T | o (ft.) | | 6. DR | ILLHOLI | E | | | | U | | U | | | | | | : | | | | | _ | | | Dia. (i | in.) From | m (tt.) | To (ft.) | Dia. (in | ı.) 📗 | From (ft | .) [| To (ft.) | | | rea | 1 | Cla | y | | | Surface | | 1 | 8 | | 1. | <i>z</i> | | | يرے | | <i>A</i> | _ | - - | | , | | | 4 | 1 ; | | | | ا ا | | , , | | _/7 | Su | rface · | 162 | , 8 | | 20 | | \$75 | | | 100 | nd | + g | 2011 | el_ | | 7 | 8 | F | 4 | | | . // | | 100 | , | | | | | | | | _ | - | Ż | | | _ | . / | | _ | | 10 | | | | _ | | | | | | | CL | A. | <i>f</i> | :
 | | | 8 | 2 | _/: | 30 | | 7. CAS | SING, LII
Mat | NER, (
terial, V | URBING
Veight, Sp | AND SCR ecification | EEN | | | | | | | , 0 | ü. | | 1 | | | | | _ | | Dia. (i | | | | | | From (ft | :.) [: | To (ft.) | | | Cl | Aug | 44 | noru | <u>ll</u> | | /30 | 7 | 15 | عر | | _ | . m | | 00 - | د سيند مر | <u>.</u> | | | , | _ [| | | | | | | | | | _ | | | <u> </u> | 1/2 | <u>ew t</u> | E. do | 8.05 0 | Til | Surface | . 4 | 20% | | | lt. | me | al | one | <i>)</i> | | 150 | ک | 3 | 75 | | | 1 | - | | | | | | | | | | - | : | | | | | | | | | | | ST 14 | 1453 | USit | ۷_ | | | | | | | | | | | | | | | | | | | מ מ נ | | 20 | | | | | | 5-2 | s 4.4 | hi. | · · · · · | . | | | (7 11 | - 0 | 4 | | | | | of of | wal | L_ | + | | | | | <u>Jt</u> | - V | cov i | wn | 10 1 | <u>r)</u> | | (1-16 | , 0 | | | | | | | | | | | | | | C | Jun | ty | ori | J-D. | file | | | | | | | | | | | · | † | | - | | | 10. T | YPE O | F DR | ILLING | MACHI | NE USE | D | , | | | | | | | | | | | | | | | _ | | | | ₽ | otary-ha
/drilling | mmer | _ | _ | | | | 8. GR (| ou <mark>t o</mark> r | ОТНЕ | R SEALIN | G MATER | RIAL | | | | | Ĺ | Cat | ole To | ol | , , | | | - | _ Jet | ting w | rith | | | | <u>Ki</u> | nd | |] | From (ft | :.) | To (ft.) | | . [| Roʻ
W/o | tary-ai
drilling | ir
a mud | Z R | otary-ha
air | mmer | | | Ai | r | | | n | | 0 | | | | | | . 1 | _ | Ro | tary-w | | , | | | | | W. | ater | | | oka | + C | ener | ut. | | Surface | | 207 | | ان ب | mu | ď | | R L | everse R | otary | | | | | | | | | | | ٠. | | | | | Well o | aneten (| ction c | romnlete | ed on | | M | 121 · = | 30 | 19 | 84 | | 11. | MISCEI | LLAN | EOUS D | ATA | <u>.j.</u> | | · | | \neg | 17011 C | J18911 41 | CHOIL | ompion | <u> </u> | | <u> </u> | ahovo | | | | | 11. | | | , | 2 | U- | ia at | 65 | -
 | ы | Wall ie | tormir | natod | 10 | § | iches | _ | | final g | rade | | | | riem re | <u>st: —-</u> | | | <u> ги</u> | <u>s. at —</u> | _ | 7 | T 1VI | . 11 ETT 19 | CELIIIII | IACCU | | | icites | | 001011 | | | | | | Depth fr | om sur | face to no | rmal water | level | | 65 | / 1 | L | Well đị | sinfect | ed upo | on comp | letion | | X | Yes 🗆 | No | | | | | - | | • • | 8 - | | 3 3 | . 152. | · | | 347-11 | -1- <i>d</i> | _44 | 44 | | ia. | ۲X | var 🗀 | No | | | | | when p | umpin | g | F1 | E. S | tabilized | 1 124 | es (LL | INO | well se | aled Wa | aterug | art upor | complet / | bi oo | بخر
8 | 169 🗀 | 140 | | | | | Water co- | male s | ent to | | m | edi | 20- | ر
س | -per | -3/6 | 485 | pron | lahotat | 〜 ~ <i> 10</i> レ
OTV (011 | بالداريم | 101 | Pr. 4 | 4 | 19 | 84 | coale | | | | Your of
finishing | opinion of
ng the we | oncern
ell, amo | ing other pount of cer | pollution h
nent used i | azards
in exol | s, intorm
uting, bk | ation cor
asting, et | icerning
c., shoul | ki be | given o | n rever | se side | , and d 21
8. | ia refatin | g to near | uy we | ild, screens | , 20113, | иιεπι | OU OI | | | - | / | 11 - | / | | | | | · · · · [| | WA | GNE | R BRO | THERS | WELL | <u> </u> | | | | | | Signatu | re | | [[]] | | | | | | | Busine | | | | te Mailin | g Addre | SS | | | | | | 441 | / | 41 | UN | Marc | • | Darie | foral Wal | i Deilles | , | | | · · · · · · · · · · · · · · · · · · · | | X 49 | | |) | | | | | • • • | 4 | <i></i> (| | // ` ` | , | 1/cR12 | reten wel | n Dimer | • | | 4.7 | | LEA POL | NAME OF | 3057 · | | <u>. </u> | | | | | Well Construction Report Fo
WISCONSIN UNIQUE WELL N | or
<i>UMBER</i> K | KB4 | 53 | | State of WI - Private Water Systems - DG/2 Department of Natural Resources, Box 7921 Madison, WI 53707 | Form 3300-77A
(R 8/00) | |---|---
--|--|--|---|---------------------------------------| | Property WP@L MCGILLIS, BOB
Owner | Tele
Nun | 1 | -452-2700 | | Please type or Print using a black Pen
Please Use Decimals Instead of Fractions. | | | Mailing 5326 CTH A Address | • | | | | 1. Well Location X Town City Village | Fire # (if available) | | City SHEBOYGAN | | State
WI | Zip Code 53081 | | of WILSON Grid or Street Address or Road Name and Nur 5326 CTH A | mber | | County of Well Location Sheboygan County Well Per W | mit No. | Well Cor
12/03/ | mpletion Dat
1 1996 | te | Subdivision Name Lot # | Block # | | Well Constructor (Business Name) HYINK WELL DRILLING INC License 479 | # Facility I | D Numbe | er (Public We | ells) | Gov't Lot # or NV | | | Address
N6250 ALPINE RD | Public W
W | ell Plan A | Approval # | | Section 8 T 14 N; R. Latitude Deg. Min. Longitude Deg Min. | 23 Y E W | | City State Zip C
SHEBOYGAN FALLS WI 53085 | | approval (| mm/dd/yyyy | y) | 2. Well Type New Reconstr | Lat/Long Method GPS008 | | Hicap Permanent well # Common Well # | Specific | Capacity | .4 | gpm/ft | of previous unique well # construc
Reason for replaced or Reconstructed Well? | ted in | | 3. Well serves 1 # of homes and or | | High cap
Well? | pacity | Yes X No | NON CONFORMING ALCOVE | | | (e.g. barn, restaurant, church, school, industry, etc.) | | Property | = | Yes X No | X Drilled Driven Point Jetted | Other: | | 6 0 1822. Rotary - | No If yes, of 31 9. Downspout/ 10. Privy 11. Foundation 12. Foundation 13. Building E | distance in Yard Hydrand Hydrand Hydrand Hydrand Drain to | n feet from q drant o Clearwater o Sewer astic Gravity astic Sewer: units =< 6 | | neighboring properties? X Yes No 68 17. Wastewater Sump 18. Paved Animal Barn Pen 19. Animal Yard or Shelter 20. Silo 21. Barn Gutter 22. Manure Pipe Gravity Cast Iron or Plastic 23. Other Manure Storage 24. Ditch 25. Other NR 812 Waste Storag Geology Type, Caving/Noncaving, Color, Hardness, et CLAY SAND SAND @ GRAVEL CLAY LIMESTONE | From To | | Dia. (in.) 6 NEW BLACK STEEL 280 WALL A | | (ft.) | (ft.) 97 | 9. Static Wat | ter Level | . Well is: 🔻 Above Grade | | SAWHILL 18 97LB FT WELDED J | | | | | ft. above ground surface 31 ft. below ground surface st | 14 in. Below Grade eveloped? X Yes No | | Dia. (in.) Screen type, material & slot size | | | | Pumping Le
Pumping at | 10 m. below surface | sinfected? X Yes No apped? X Yes No | | 7. Grout or Other Sealing Material. Method Method: MOUNDED Kind of Sealing Material | From (ft.) | To
(ft.) | # Sacks
Cement | 12. Did you n
this property?
X Yes | notify the owner of the need to permanently aban? No If no, explain: | don and fill all unused wells on | | BENTONITE | 0 | 0 | 4 | 13. Signature JH | of the Well Constructor or Supervisory Driller | Date signed 12/20/1996 | | | | | | Signature | of Drill Rig Operator (Mandatory unless same as | | | Make additional comments on reverse side about geolo | ny additional cores | ne water | quality etc | Variance | issued Ves X No | | ### **Department of Natural Resources** Well Construction Report Comment Sheet Form 3300-77A Rev. 8/00 ### **Well Codes and Identifiers** Geologic Log No SID Number Common Well Name Well Notification # Batch Seq # 431 | Well Construct
WISCONSIN UNIQ | | | eer (| QS3 | 95 | | State of WI - Private Water Systems - DG/2
Department of Natural Resources, Box 7921
Madison, WI 53707 | | |---|--------------------|--|--|---|----------------------------|--|---|--| | Property SPIRO BROS LLC
Owner | | | | ephone 92 | 20-682-610 | 5 | Please type or Print using a black Pen
Please Use Decimals Instead of Fractions. | | | Mailing W4634 FRONTAGE
Address | E RD | | • | | | | 1. Well Location X Town City Village | Fire # (if available) | | City SHEBOYGAN | | | | State
WI | Zip Code
53081 | | of WILSON Grid or Street Address or Road Name and Nu W4634 FRONTAGE RD | mber | | County of Well Location
Sheboygan | County
W | Well Permit No | | Well Co
09/04 | mpletion Dat
/2002 | te | Subdivision Name Lot # | Block # | | Well Constructor (Business Name) ROGER WEBER | ı | License # 99 | Facility 1 | ID Numbe | er (Public We | ells) | | NE 1/4 of NE 1/4 of | | Address
N2253 CTY G | | | Public W | Vell Plan A | Approval # | | Section 8 T 14 N; R Latitude Deg. Min. Longitude Deg Min. | 23 X E W | | City
CHILTON | State
WI | Zip Code 53014 | Date of A | Approval | (mm/dd/yyyy | v) | 2. Well Type Replacement Reconstr | Lat/Long Method GPS008 | | Hicap Permanent well # C | ommon W | ell# | Specific | Capacity | 1 | gpm/ft | of previous unique well # construct Reason for replaced or Reconstructed Well? | cted in | | 3. Well serves # of home (e.g. barn, restaurant, church, school 4. Is the well located upslope or side Well located within 1,200 feet of a | ol, industry | ot downslope fro | om any cont | | y? | | Drilled Driven Point Jetted neighboring properties? X Yes No | Other: | | Well located in floodplain? Distance in Feet from Well to Nea 1. Landfill 10 2. Building Overhang 45 3. Septic Holding Ta 4. Sewage Absorption Uni 5. Nonconforming Pit 6. Buried Home Heating C 7. Buried Petroleum Tank | nkX | 10
11
12
13
38 14 | 2. Foundation 3. Building I Cast 4. Building S Cast 5. Collector | on Drain to
on Drain to
Drain
Iron or Pla
Sewer X
Iron or Pl | O Clearwater O Sewer astic | Other Pressure Other in. diam. | 17. Wastewater Sump 18. Paved Animal Barn Pen 19. Animal Yard or Shelter 20. Silo 21. Barn Gutter 22. Manure Pipe Gravity Cast Iron or Plastic 23. Other Manure Storage 24. Ditch | Pressure Other | | Shoreline Swimmin Drillhole Dimensions and Constru- | | | Store. Clearwate | r Sump | =< 6 | > 6
 | 25. Other NR 812 Waste Storag
Geology | ge
From To | | From To Dia (in.) (ft.) (ft.) | Upper
Enlarged | Drillhole . Rotary - Mud C | Y1-4: | • | ver
en Bedrock | I- | Type, Caving/Noncaving, Color, Hardness, et TOP SOIL | tc (ft.) (ft.) 0 4 | | 10 0 20 | X 2 | . Rotary - Air | | | | R-C- | RED CLAY | 4 149 | | 6 20 220 | | . Rotary - Air and
.Drill-Through C | | | Ц | G-CG | STONEY GRAY CLAY | 149 165 | | | 6
7
8. To | Reverse Rotary Cable-tool Bit Dual Rotary emp. Outer Casir demoved? f no, why not? | | dia.
No | depth (ft) | L- | LIMESTONE | 165 220 | | 6. Casing, Liner, Screen Material Dia. (in.) | l, Weight, | Specification | | From
(ft.) | To
(ft.) | | | | | 6 BLACK STAND ST
PE SEAMLESS IPS
53GR B | | | | 0 | 165 | 10. Pump Tes | ft. above ground surface 90 ft. below ground surface st D | 18 in. Below Grade 18 in. Below Grade 18 veveloped? X Yes No | | Dia. (in.) Screen type, material
& sl | ot size | | | | | Pumping Le
Pumping at | AT THE BEIOW SUITURE | isinfected? X Yes No apped? X Yes No | | 7. Grout or Other Sealing Material. M Method: FLOODED HOLE Kind of Sealing Mater | | | From (ft.) | To
(ft.) | # Sacks
Cement | 12. Did you r
this property?
Yes | notify the owner of the need to permanently abar | ndon and fill all unused wells on | | PUDDLED CLAY | | | 0 | 20 | | 13. Signature FF | of the Well Constructor or Supervisory Driller | Date signed 09/04/2002 | | | | | | | | | of Drill Rig Operator (Mandatory unless same a | | | Make additional comments on reve | rse side ab | out geology add | itional scree | ne water | quality etc | Variance | issued Ves X No | | ### **Department of Natural Resources** Well Construction Report Comment Sheet Form 3300-77A Rev. 8/00 ### **Well Codes and Identifiers** Geologic Log No SID Number Common Well Name Well Notification # Batch Seq # 811 328 James NOTE WHITE COPY - DIVISION'S COPY GREEN COPY - DRILLER'S COPY VELLOW COPY - OWNER'S COPY STATE OF WISCONSIN DEPARTMENT OF NATURAL RESOURCES Box 450 Madison, Wisconsin, 53701 | | | | | | YELLOW C | OPY - OV | NNER'S | COPY | | | | | | | |----------------------|-----------------------------|----------------------------|------------------|---------------------------------|---------------------------------|------------------------|-------------|--------------|----------|-----------------|-------------|--|----------|---------------------------------------| | 1. COUNTY | She boy | /gan | i | CI: | HECK ONE | Village | | City | NAMI | Wi. | 1501 | <u>. </u> | | | | 2. LOCATIO | N − ¼ Sea
 N • I | _ | | nship | Range
.23E. | 3. OWN | | IME OF D | | ply Co. | | | | | | OR Grid or | street no. | Stre | et name | ' | | ADDI | RESS | | | | • | | - · - | | | AND If ava | ulable subdivisi | on many lat | | | | 1 | oute | # 3 | EE | <u>-</u> | . — | | | | | AITIZ TT AVS | matric satisfies | on name, or (| x omek no. | | | _ | | | Wisc | consin | | | | | | 4. Distance | in feet from | well to near | est: Bu | | NITARY SEWER | FLOOR I | RAIN | FOU | INDATIO | | | WASTE
C. I. | WATE | R DRAIN | | (Reco | ord answer in a | ppropriate ble | ock) | 12 - | | | | - | | | - | 60 | | | | CLEAR WAT | l l | EPTIC TANK | PRIVY | EEPAGE PIT | ABSORPTION | FIELD | BARN | SILÖ | ABANE | ONED WEL | r Siv | | <u> </u> | | | C. 1. | THE | | | | | _ | | | . . | | | | | | | OTHER POL | LUTION SOUR | RCES (Give d | escription su | | luarry, drainage | well, stream | m, pond. | , lake, etc. | <u> </u> | | _! | _ | | | | 5. Well is in | tended to su | pply water 1 | or: | | None
Biovolo | Chan | | | | | <u> </u> | | | | | 6. DRILLH | IOI E | | | ··· · · · · · · · · · · · · · · | Bicycle | , | RMATIO | ONE | | | | | | | | Dia. (in.) | From (ft.) | To (ft.) | Dia. (in.) | From (ft.) | To (ft.) | 9. 101 | 111124 1 11 | ONS
Kind | | | ļ | From (f | t.) | To (ft.) | | 10 | Surface | 22 | · · · · · · · | İ | Ţ | | | | | | i | Surfac | | | | | | | | ļ | | | lay | | | | <u> </u> | Surrac | -
 | 78 | | 6 | 22 | 174 | | | | s | and | | | | | 78 | : | 130 | | 7. CASING Dia. (in.) | i, LINER, CU
I Kı | IRBING, AN
nd and Weigh | | N
 From (ft.) | To (ft.) | c | lay | | | | | 130 | : | 155 | | 6 | New b | lack s | teel | Surface | 159 | H | ard | Pan | | · · · | | 155 | 1 . | 159 | | | nine | threa | a bafi
A bafi | | | • | | | D1- | | | | ! | | | | pape, | prired | aea c | <u> </u> | - |) T | imes | tone | KOCK | | -+ | 159 | | 174 | | | coupl | ed | | | <u> </u> | | | | | | <u>i</u> | | ĺ | | | | 19.45 | per f | t. |
 | 8. GROUT | OR OTHER | SEALING | MATERIAL | <u> </u>
 | <u> </u> | 10, TY | PE OF | DRILLI | NG MAC | HINE USE | <u></u> | | | · · · · · · · · · · · · · · · · · · · | | | Kind | ł. | | From (ft.) | † To (ft.) | Cab | le Tool | | p | rect Rotary | - 1 | Re | everse | Rotary | | C | lay slu | rrv | | Surface | 22 | | ary - air | | | otary – ham | | {∏ Je | tting v | with | | | | | | 1 | 1 | w/d | Irilling m | | with | drilling mud | | | | [_iWater | | 11 881005 | LANEOUE | DATA | | <u>:</u> | ! | Well co | nstructi | ion comp | leted on | June | | | 19 | 972 | | Yield test: | LLANEOUS | | Hrs. at | 1 | 16 GPM | Well is | termina | ted | 10 | inches | | above
below | fi | nal grade | | Depth from | surface to no | ormal water | level | | '4 ft. | Well dis | sinfecte | d upon c | ompletio | n | | X | Yes | ☐ No | | Depth to wa | ater laval whe | ın pumping | | 8 | 11 ft. | Well sea | aled war | tertight u | pon com | pletion | | * | Yes | ☐ No | | Water samp | le sent to | | | | Ma | dison | | lat | ooratory | on։ "Մ ղ | ne | 20 | | ¹⁹ 72 | | type of casio | _ | - | | - | ion concerning
of cement use | _ | | | | | | | | | | OTCNI A COLUMN | | | ` -> | - / | | COMPL. | ETE MA | IL ADDR | ESS | | | | | • | | E mu | in ' | w. x | rula
Ri | egistered We | ell Driller |] | Route | ₽ # 3 | KK S | he boyg | an, | Wis | con | sin | | COLUCY | TECT PECITO | | | _ | ase do not wri | te in spac
– 48 HRS | | CONFIR | MED | [REX | MARKS | · | | | | COLIFORM | TEST RESULT | ı | C) | a.i · 24 1173 | . 0/4.3 | 70 11113 | | | | 131 | | - | | | ## SOTE: White Copy Division's Copy Green Copy Driller's Copy Yeilow Copy Owner's Copy WELL CONSTRUCTOR'S REPORT 4 Joint 3300 - 15 Rev. 12.76 $\leq COUNTY$ CHECK (VEONE). Name: Sheboygan Wilson X Fown . Village ___ City. * OWNER: AGENT AT TIME OF DRILLING CHECK (4) ONE William Behrens Township T. 14N. R.23E. NAMI. 2 HOCAHON 1.130 G. G. Street No. Street Name ADDRI SS Frontage Rd. Stahl Rd. Wasti dable subdivision name, lot & block No. ASSE POST OFFICE Sheboygan, Wisconsin Floor Drain Competited for Distance in feet from well. evicility op- 5 (902) V (7/40), (2/40). Sun tary Blog newer Storn Blog. Drain. Storm Bldg, Sewer to nearest: Steeling Cit, Sowie Other Sewer Cit. C. . COLE C.1.Officer Other C.L.Other ан имел сандри претабе 90 Alberta (F Stood Sower College Sewers I condition to the College Sewage Samp Creatwater Septic Holding Sewage Absorption Unit Sewage total Sumb Lank Lank Seepage Pit Spepage Pit Street Storen Cil. Office. Section 1 263, 1110 Seepage Bed. Characteri Ohne water Sump Seepage Trench Printy Print Pro Nanconforming Existing - Substituce Primpercers Glass Lined Sido Larthen Sillage Born Americ Americal 5 to VVIASTO: Mand With Pit Storage COMMON Barrier W/O Noncombination in Executing Well 121 1411 Fac My Prompt Soud Manure Subsurface Waste Production Lane Other (Give Description) Water foil is Crossid Manuro - 510 dage - -Capadiane of Chapteral Capit Made that Od Lagrania Stact in tructure. respectify Type). None Well is intended to supply water for: 9. FORMATIONS Warehouse Kind Trom (ff.) To (ff.) 6. DRILLHOLF Clay 14 Dia. (in.) | From (0.) | Fo (0.) | Dia. (iii.) | From (0.) To OLE Surface Sand 14 18 10 22 Surface Clay 85 18 22 165 ". CASING JUNER, CURBING AND SCREEN Sand 85 Material, Weight, Specification 115 A Method of Assembly Dia. (m.) l Tromputa.c Le dita Clay 115 150 New black steel 6 153 Surface Hard Pan 150 153 pipe Limestone Rock 153 165 coupled .280 +ASTM A53 10. TYPE OF DRILLING MACHINE USED Sumitomo Metal Ind. Rotary Laborer w/dialbing $^{\prime}$) wetting with 🗶 capte foot ! m.a & an S. GROUT OR OTHER SEATING MATERIAL Richard air. Rotary hammer Air Louis 1910 Kind From Otta il w/do i ca inadiJ & a r Water Refact widoffing Clay slurry 22 L Reverse Riotary Surface August 21 19 78 Well construction completed on -本 above MISCELLANEOUS DATA final grade 20 8 below inches Hrs. at GPM. Well is terminated Yield Test: 71 ▼ Yes 1 1 No Well disinfected upon completion Ft. Depth from surface to normal water level Depth of water level. 83 † ¥ yes + ⊤ No. Yes No Well sealed watertight upon completion Stabilized I t. when pumping Sheboygan August 22 1978 laboratory on Water sample sent to Your opinion concerning other pollution hazards, information concerning difficulties encountered, and data relating to nearby wells, screens, seals, method of finishing the well, amount of cement used in grouting, blasting, etc., should be given on reverse side. Complete Mail Address Signature Route #3 kK Sheboygan, Wisconsin Registered Well Driller OCT 29 1975 ## NOV 1 0 1975 NOTE STATE OF WISCONSIN DEPARTMENT OF NATURAL RESOURCES Box 450 Madison, Wisconsin 53701 WHITE COPY - DIVISION'S COPY GREEN COPY - DRILLER'S COPY YELLOW COPY - OWNER'S COPY | 1. COUNTY | | | | | | CK ONE | | | | | | NAME | , | | | | | |---|---|---------------------------|-----------------|-------------|---------------|-------------|------------------|---|------------------------|--------------|---------------|-----------|-------------------------|---------------|--------------------------|---------------|------------------| | | She bo | | | <u> </u> | Town | | [] | Village | | City | | | | ils | ri | | | | 2. LOCATIO | | ection
E. 1 | | Cownship | | Range | | 3. OWI | | | OF DRII | | | | | | | | OR – Grid or | | T-+ T | Street name | .14N. | K. | 23E. | | ADE | RESS | llam | n Bel | nrer | <u>ıs</u> | | | | <u></u> . | | | . • • • • • • • • • • • • • • • • • • • | | | ntage : | Rđ. | | | ADE | | hl F | ₹₫. | | | | | | | | AND -If ava | ilable subdivis | ion name, | | | • | | | POS | r offi | | | | | | | | | | - Di | | 4 | | Dirit DING | ICANII. | TADY EX | ******* | 10000 | She | bo y g | an, | | cons | in | | | | | 4. Distance | in feet from | well to | nearest: | BUILDING | C. | | LE
LE | C. I. | | 1 | | | i drain
Indepei | NDENT | | WAT? | ER DRAIN
TILE | | (Reco | ord answer in a | appropriat | te block) | 10 | - | - | | 30 | | | | - | | | 15 | |
 | | CLEAR WAT | TILE | SEPTIC T | ANK PRIVY | SEEPAGE | PIT | ABSORP | TION | FIELD | BARI | N SI | LO A | BAND | ONED W | ELL S | INK HOLI | <u></u> | | | | | 7 0 | | | - | | 80 | | | _ | | | | | | | | | OTHER POL | LUTION SOU | RCES (G | ive description | such as dun | | arry, draii | nage | well, strea | am, pon | nd, lake, | etc.) | | | | · - · · · · · | | - | | 5. Well is in | ntended to su | ipply wa | ter for: | Warel | | se | | <u>.</u> | | ···· | | | , | | | | | | 6. DRILLE | IOLE | | | · - | - | | | 9. FO | RMAT | IONS | | | | | | | | | Dia. (in.) | From (ft.) | To (ft. |) Dia. (in | .) From (| (ft.) | To (ft.) |) | | | | Kind | | | | From (f | ít.) | To (ft.) | | 10 | Surface | 22 | | | | | | | Cla | У | | • • • • | | | Surfac | æ | 14 | | 6 | 22 | 178 | | | | | - | | San | đ | | | | - | 14 | <u> </u> | 20 | | 7. CASING | , LINER, CL | JRBING
ind and W | • | EN From (| (f+) | To (ft.) | | | Cla | У | | • | | . | 20 | , | 85 | | 6 | New b] | | | Surfa | | 163 | | | San | <u></u> | | | | | 85 | | 135 | | | _ | | | | | | | | Cla | | <u> </u> | | | | 135 | | | | | pipe, threaded & coupled .280 | | | | | | | | | * | . | | | | | | 155 | | | | ea .28 | 80 | | | | · . | | | d Pa | | | | | 155 | \rightarrow | 163 | | | A 53 | | | | | | \
\
\
\ | <u>.</u> | Lime | esto | ne R | ock | | | 163 | ,
———— | 178 | | C. CDOUT | OD OTHER | CEALIA | 10 MA TED | | | | | | <i>*</i> | | | | | | | | | | 8. GROUT | OR OTHER | | NG MATERI | 4 | 44.3 | To 164.) | | ² ه ــــــــــــــــــــــــــــــــــــ | , | | LING | MACH
— | IINE US | ED | | | | | | <u>Kin</u> | <u>a</u> | | From (| (TT_) | To (ft.) | | | ole Too | I | | Dir
 | ect Rotar | У | Re | everse | Rotary | | C | lay slu | rry | | Surfac | ce | 22 | | .77 | tary — a
drilling - | | | | tary — ha
rilling mu | | | tting (| | | | | | | | | | 1 | - <u>* </u> | | | | | | | 18. | | Water 75 | | 11. MISCE | LLANEOUS | DΔTΔ | | | | | . ! | Well Co | nstruc | tion co | mplete | a on | 00 | TO THE STREET | above | | 9 75 | | Yield test: | | | 24 Hrs. a | t | 2 | 2 GPI | м | Well is | termin | nated | 10 | <u> </u> | inches | | below | fi
—— | nal grade | | Depth from | surface to n | ormal wa | ater level | | 6 | 8 1 | ft. | Well di | sinfect | ted upo | n comp | letion | 1 | | X | Yes | ☐ No | | Depth to wa | ter level who | en pump | ing | | 8 | 3 1 | ft. | Well se | aled w | atertigh | nt upon | comp | etion | | X | Yes | ☐ No | | Water sample | le sent to | | | | | Ţ | Vad | ison | | | labora | tory o | n: | (| Oct. | 20 | ¹⁹ 75 | | Your opinio
type of casir
be given on | | | | - | | | • | | | | - | | • | | • | • | | | SIGNATURE | | | | | 1 | | | COMPL | ETE M. | AIL AD | DRESS | | | | | | | | ۶ | uni | W | An m | break | _ | | | | | | | an be | trees. | म्बर ब | scen | o ÷ | | | 624 | un. | <i>7</i> • | , , | Registered | | | | | | | rir 9t | 10 DE | 1 2 au | , 17 | - DUGII | | | | 352
COLUEDRA | - | r | | | | do not | | ·- - | | | FIDMER | | ית | EM A D I | 78 | | | | COLFORM | TEST RESUL | 1 | | GAS – 24 F | iks. | 6 | AS - | - 48 HRS | • | COM | FIRMED | , | KI | EMARI | 7.0 | | | | REN25-3 lass fication | : Internal - ECRM13565889 | | l | | | 1 | | | | I | | | l | | | | | ## State of Wisconsin Department of Natural Resources Box 450 Madison, Wisconsin 53701 ## NOTE: Division's CopyDriller's CopyOwner's Copy White Copy Green Copy Yellow Copy WELL CONSTRUCTOR'S REPORT Form 3300-15 Rev. 10 · 75 | I. COUNTY | CHECK (✓) ONE: | | | . 5 | Name | · · · · · · · · · · · · · · · · · · · | ···· | |--|--|----------------------------------|---------------------------------------|--------------|--|---------------------------------------|--------------------------| | She boygan | X Town | ☐ Village | City | | Wilson | | | | 2. LOCATION N.E. 2 | Township Range
T.14N. R.2 | | NAME LE OV | Wil | □agentattime
liam Behre | OF DRILLING | CHECK (4) ONE | | OR - Grid or Street No. Street Nam | | | ADDRESS | Q+5 | hl Rd. | | | | AND If available subdivision name, lo | ntage Rd.
i & block No. | | POST OFFICE | | | | | | 4. Distance in feet from well Building | Sanitary Bldg. Drain 5 | ianitary Bldg | Savuár | | boygan, Wi | | Storm Bldg Store | | to nearest: (Record answer in appropriate 14 | C.I. Other | | Other C.I. | Sewer | Orain
ted To: 5torm
Other Sewer C.I. | Bldg, Drain
Other | Storm Bldg, Sewe | | Street Sewer Other Sewers Foundation | 55 ¦
i Drain Connected to∤ Sev | wage Sump | _ | 75
Septic | Holding : Sewage At | sorption Unit | | | San. Storm C.I. Other Sewer
Clearwater
Dr. | Sewage C.I. | | Sump | Tank | 90 Seepage B | ed ed | | | Privy Pet Pit: Nonconforming Existin | | Barn | | | Glass Lined S | ilo . Earthen Sil | | | Waste Well Pump | Nonconforming Existing | ng Gutter | Barn Yarı
Pen | | | r/o Storage⊤re
It Pit
 | ench Or | | Temporary Watertight Solid Manure Manure Storage | Subsurface Waste Por
Gasoline or Disposal (| nd or Land
Unit | Other (Give D | escripti: | on) | | | | Stack Tank Structure | Oil Tank (Specify | | | None | : | | | | 5. Well is intended to supply water for: | ······································ | 9. | FORMATIONS | Š | | | | | | arehouse | | · · · <u></u> · <u></u> | Kind | <u> </u> | From (ft.) | To (ft.) | | 6. DRILLHOLE Dia. (in.) From (tt.) To (ft.) Dia. (in.) | From (ft.) To (f | (t.) | Clay | | | Surface | 15 | | 10 Surface 22 | | | Sand | | _ | 15 | 20 | | 6 22 192 | | | Clay | | | 20 | 92 | | 7. CASING, LINER, CURBING AND SCRE Material, Weight, Specification Dia. (in.) & Method of Assembly | EN From (ft.) To (f | `t.) | Sand | | | 92 | 125 | | 6 New black steel | Surface 17 | 71 | Clay | . <u>.</u> . | | 125 | 165 | | pipe, threaded & | <u> </u> | | Hard Par | n. | | 165 | 171 | | coupled .280 | | | Limesto | ne R | Rock | 171 | 192 | | +ASTM A 53 | | | | | | !
 | | | | | 10. | TYPE OF DR | ILLING | S MACHINE USED Rotary-hamm | ner : | | | 8. GROUT OR OTHER SEALING MATERI | ΔΤ. | | X Cable To | ol | w/driffing
mud & air | | Jetting with | | Kind | From (ft.) To (f | t.) | Rotary-ai
W/dritting | ir
Tanud | Rotary-hamm | ner | ☐ Air | | Clay slurry | Surface 22 | 2 | Rotary-w | | | ry : | Water | | | | Wei | Il construction o | omplet | ed on Dec | . 23 | 19.76 | | 11. MISCELLANEOUS DATA | | | . – | | | above | ıl grade | | Yield Test: | Hrs. at 22 | - GPM Wel | ll is terminated | | 9 inches | below | | | Depth from surface to normal water l | evel 70 | Ft. Wel | l disinfected upo | on com | pletion | Yes 🗔 No | | | Depth of water level when pumping85. Ft. | | | l sealed watertig | ht upoi | n completion | 🕽 Yes 🗀 No | | | Water sample sent to | | lison _ | · | laborat | - | an5 | ¹⁹ 7 7 | | Your opinion concerning other pollution has finishing the well, amount of cement used in | zards, information concern
grouting, blasting, etc., sh | ning difficulti
rould be give | ies encountered,
n on reverse side | and da | ta relating to nearby | wells, screens, se | als, method of | | Signature | 2 ->- | Cor | mplete Mail Add | 1ress | | | | | Signature Emin M. | Registered Well Dri | iller | Route # | 3 K | (Sheboygan | n, Wisco | nsi n | ## Table 1. Water Level Summary WPL - I43 / SCS Engineers Project #25224069.00 | Well Number | | Ground Wate | er Elevation in fe | et above mean | sea level (amsl) | | |---|------------|-------------|--------------------|---------------|------------------|----------| | Well Number | MW-301 | MW-302 | MW-303 | MW-304 | MW-305 | MW-306 | | Top of Casing Elevation (feet amsl) - resurveyed 12/12/2023 | 697.19 | 702.81 | 719.47 | 692.12 | 717.97 | 693.61 | | Top of Casing Elevation (feet amsl) | 696.96 | 702.57 | 719.25 | 691.97 | 717.67 | | | Screen Length (ft) | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | | Total Depth (ft from top of casing) | 134.56 | 144.33 | 144.65 | 119.49 | 122.97 | 138.31 | | Top of Well Screen Elevation (ft) | 567.40 | 563.24 | 579.60 | 577.48 | 600.46 | 560.30 | | Measurement Date | | | | | | | | April 26, 2016 | 653.54 | 653.56 | 653.59 | 655.90 | | NI | | June 20, 2016 | 652.01 | 651.89 | 651.80 | 653.79 | | NI | | August 9, 2016 | 649.68 | 649.30 | 649.37 | 651.55 | | NI | | October 19, 2016 | 652.32 | 652.38 | 652.18 | 654.00 | | NI | | December 19, 2016 | 652.85 | 652.79 | 652.82 | 654.26 | | NI | | January 5, 2017 | 652.86 | 652.82 | 652.80 | 654.15 | | NI | | January 23, 2017 | 652.98 | 664.97* | 652.92 | 654.37 | | NI | | February 23, 2017 | 653.14 | 653.10 | 653.10 | 654.49 | | NI | | April 7, 2017 | 654.43 | 654.72 | 654.55 | 654.85 | | NI | | June 6, 2017 | 654.11 | 654.12 | 654.14 | 655.70 | | NI | | August 1, 2017 | 652.64 | 652.55 | 652.50 | 654.49 | | NI | | October 23, 2017 | 652.03 | 652.05 | 652.03 | 653.65 | | NI | | April 3, 2018 | 651.28 | 651.25 | 651.30 | 652.86 | | NI | | October 4, 2018 | 650.71 | 650.70 | 650.70 | 652.26 | | NI | | April 8-9, 2019 | 653.06 | 654.06 | 654.06 | 655.59 | | NI | | October 8, 2019 | 653.26 | 653.21 | 653.27 | 654.77 | | NI | | • | 653.26 | 653.21 | 655.56 | 654.// | | NI | | November 26, 2019 | 656.59 | 656.47 | 656.46 | 658.16 | | NI
NI | | April 7, 2020 | | | 656.46 | | | NI
NI | | May 20, 2020 |
652.16 | 655.81 | 652.20 | 654.17 | | NI | | October 13, 2020 | | 652.17 | 652.20 | 634.17 | 636.06 | | | December 18, 2020 | 653.91 | 653.88 | | | | NI | | April 13, 2021 | 654.56 | 654.57 | 654.53 | 656.36 | | NI |
| June 16, 2021 | 649.78 | 649.75 | | | | NI | | October 26, 2021 | 650.76 | 650.88 | 650.90 | 652.54 | | NI | | April 11-13, 2022 | 651.65 | 651.62 | 651.58 | 653.08 | | NI | | June 16, 2022 | | 650.55 | | | | NI | | October 4, 2022 | 648.87 | 648.85 | 648.89 | 650.51 | | NI | | February 14, 2023 | 651.61 | 651.60 | 651.61 | 653.17 | | NI | | March 22, 2023 | 652.44 | 652.43 | 652.42 | 654.04 | | NI | | April 24-25, 2023 | 653.26 | 653.25 | 653.31 | 654.83 | | NI | | May 25, 2023 | 651.28 | 651.24 | 651.30 | 653.17 | | NI | | June 26, 2023 | 648.06 | 648.05 | 648.07 | 649.86 | | NI | | July 26, 2023 | 647.08 | 647.02 | 647.17 | 649.15 | | NI | | October 11, 2023 | 648.65 | 648.67 | 648.65 | 650.24 | | NI | | November 14, 2023 | 649.98 | 649.97 | 649.95 | 651.37 | | NI | | November 14, 2023 elevations based on re-surveyed TOC | 650.21 | 650.21 | 650.17 | 651.52 | | NI | | April 15, 2024 | 652.95 | 652.93 | 652.96 | 654.82 | | NI | | July 19, 2024 | 653.41 | 653.41 | 653.39 | 655.04 | 659.29 | | | August 8, 2024 | 650.96 | 650.98 | 650.96 | 653.07 | 657.85 | 651.58 | | October 2, 2024 | 650.21 | 650.48 | 650.15 | 652.01 | 656.60 | 650.47 | | January 16, 2025 | 652.30 | 652.34 | 652.32 | 653.92 | 657.50 | 652.27 | | | | | | | | | | Bottom of Well Elevation (ft) | 562.40 | 558.24 | 574.60 | 572.48 | 594.70 | 555.30 | Created by: RM Last rev. by: MDB Checked by: RM Date: 1/10/2020 Date: 3/25/2025 Date: 3/25/2025 $\verb|l:\25224069.00\Data and Calculations\Tables\[|43_w|| stat_CCR_with 231212\ resurvey.x|s]| levels \\$ Notes: -- = not measured *: The calculated groundwater elevation at MW-302 on January 23, 2017 appears to reflect an error in recording the pre-purge depth to water during sampling. # Appendix B Wetland Information ### U.S. Fish and Wildlife Service ## **National Wetlands Inventory** ### Wetlands July 7, 2025 ### Wetlands Estuarine and Marine Deepwater Estuarine and Marine Wetland Freshwater Emergent Wetland Lake Freshwater Forested/Shrub Wetland Other Freshwater Pond This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site. S8, T14N, R23E; Town of Wilson, Sheboygan Co., WI Project Information Project Number: 009-0074-01 Modified March 11, 2010 08/15/2025 - Classification: Internal - ECRM13565889 The information presented in this map document is advisory and is intended. Figure 4.mxd Map Created by C. Pekar State of Wisconsin DEPARTMENT OF NATURAL RESOURCES 101 S. Webster Street P.O. Box 7921 Madison, WI 53707-7921 Scott Walker, Governor Cathy Stepp, Secretary Telephone 608-266-2621 Toll Free 1-888-936-7463 TTY Access via relay - 711 May 20, 2014 IP-SE-2014-60-N00754 Ted Shonts Wisconsin Power & Light Company 3739 Lakeshore Drive Sheboygan, WI 53081 Dear Mr. Shonts: The Department has completed review of your application to discharge fill material into wetlands for the Edgewater Landfill Expansion (Phases III & IV) Project. We have determined that your project meets state wetland standards. Enclosed is your state wetland permit which authorizes the permanent and temporary wetland fill for your project, and lists the conditions which must be followed. Please read your permit carefully so that you are fully aware of what is expected of you. The attached permit is not an approval from the WDNR Solid Waste Program. Please note you are required to submit photographs of the completed project within 7 days after you've finished construction. This helps both of us to document the completion of the project and compliance with the permit conditions. If you have any questions, please feel free to call me at 608.266.3524, or you can email me at benjamin.callan@wisconsin.gov Sincerely, Benjamin Callan Water Management Specialist cc: Chuck Hermann, Stantec Sheboygan County Zoning Anthony Jernigan, US Army Corps of Engineers Kathi Kramasz, WDNR (SER – Plymouth) Bob Grefe, WDNR (WA/5) Rob Grosch, WDNR (SER - Waukesha) ## STATE OF WISCONSIN DEPARTMENT OF NATURAL RESOURCES Wetland Individual Permit IP-SE-2014-60-N00754 Wisconsin Power and Light Company (WPL) is hereby granted under Section 281.36, Wisconsin Statutes, and 33 U.S.C.S §1341 (CWA §401) a permit to discharge fill material into wetlands in the Town of Wilson, Sheboygan County, also described as in the NE1/4 of Section 08, Township 14 North, Range 23 East, subject to the following conditions: ### **PERMIT** - 1. You must notify Ben Callan (phone 608.266.3524 or email Benjamin.Callan@wisconsin.gov) before starting the discharge and again not more than 5 days after the discharge is complete. - 2. You must complete the discharge as described on or before 05/13/2019. If you will not complete the discharge by this date, you must submit a written request for an extension prior to the expiration date of the permit. Your request must identify the requested extension date and the reason for the extension. A permit extension may be granted, for good cause, by the Department. You may not begin or continue construction after the original permit expiration date unless the Department grants a new permit or permit extension in writing. - 3. This permit does not authorize any work other than what you specifically describe in your application and plans dated 09/13/2011, and as modified by the conditions of this permit. If you wish to alter the project or permit conditions, you must first obtain written approval of the Department. - 4. No wetlands may be disturbed other than where specifically authorized in the plans approved by the Department. - 5. You are responsible for obtaining any permit or approval that may be required for your project by local zoning ordinances, the state of Wisconsin, and by the U.S. Army Corps of Engineers before starting your project. - Upon reasonable notice, you shall allow access to your project site during reasonable hours to any Department employee who is investigating the project's construction, operation, maintenance or permit compliance. - 7. The Department may modify or revoke this permit if the project is not completed according to the terms of the permit, or if the Department determines the activity results in significant adverse impact to wetland functional values, in significant adverse impact to water quality, or in other significant adverse environmental consequences. - 8. You must post a copy of this permit at the main construction entrance to the project site, for at least five days prior to construction, and remaining while active wetland filling is occurring. You must also have a copy of the permit and approved plan available at the project site at all times until the project is complete. - 9. Your acceptance of this permit and efforts to begin work on this project signify that you have read, understood and agreed to follow all conditions of this permit. - 10. You must submit a series of photographs to the Department documenting the before / during / after conditions where temporary wetland impacts occur. The photographs must be taken from different vantage points and depict all work authorized by this permit. - 11. You, your agent, and any involved contractors or consultants may be considered a party to the violation pursuant to Section 281.36 (13), Wis. Stats., for any violations of Section 281.36, Wisconsin Statutes, or this permit. - 12. This permit has been issued with the understanding that all construction vehicles and equipment used are appropriate for the job, and can be brought to and removed from the project site without causing harm to fish, wildlife, and their habitats. - 13. You must restrict the removal of native vegetative cover in wetlands to the minimum amount necessary for construction. - 14. Construction shall be accomplished in such a manner as to minimize erosion and siltation into surface waters. All erosion control measures must meet or exceed the technical standards of ch. NR 151, Wis. Adm. Code. The technical standards are found at: http://dnr.wi.gov/topic/stormwater/standards/const_standards.html. - 15. Appropriate erosion control must be in place and effective during every phase of this project. - 16. Erosion control measures must be in place at the end of each working day. - 17. Erosion control measures must be inspected, and any necessary repairs or maintenance performed, after every rainfall exceeding ½ inch and at least once per week. - 18. Dewatering of work areas shall be conducted in accordance with the standards of the applicable permit under Wisconsin's Pollutant Discharge Elimination System and approved technical standards. - 19. At no time shall dewatering activities directly discharge to wetlands or waterways without prior effective water quality treatment. - 20. All vehicles and equipment used in wetlands must be checked at least once per work day for fluid (e.g. fuel, oil, hydraulic, coolant, etc.) leaks. All leaks must be immediately corrected before the equipment is allowed back into operation. - 21. All equipment used for the project, including but not limited to, vehicles, mats, hoses and pumps, shall be free of invasive and exotic species and viruses prior to use and after use in any waterway and wetland. Decontamination protocols can be found at: http://dnr.wi.gov/invasives/action.htm. - 22. Work for this project must comply with all conditions that are part of any required Incidental Take Authorization / Permit, or avoidance measures provided by BER. - 23. Except where permanent fill is authorized, this project shall not result in adverse hydrologic impacts to wetlands. - 24. Construction and operation of the landfill expansion shall be in conformance with the plans submitted to the
Department and comply with the conditions specified in the Feasibility Determination and any other subsequent approvals by the Waste and Materials Management Program. - 25. Final site stabilization requires the re-establishment of vegetation and should not contain any plant species listed as invasive by the Department. A listing of what the Department considers invasive species can be found on the Department's website http://dnr.wi.gov/org/caer/ce/invasives/. - 26. Authorization hereby granted by the Department is transferable upon prior written approval of the transfer by the Department. ### FINDINGS OF FACT - 1. Wisconsin Power and Light (WPL) has filed an application for a permit to discharge fill material into wetlands west of I-43 and north of Stahl Road, in the Town of Wilson, Sheboygan County, also described as NE1/4 S08, T14N, R23E. - 2. The Edgewater Landfill Expansion (Phases III & IV) Project includes permanent fill of 0.81 acres of wetland, and temporary fill of 0.08 acres of wetland. - 3. The existing landfill site is approximately 125 acres in size, and is comprised of active landfill cells, covered landfill cells maintained in rough grass, stabilized soil stockpile areas, accessory buildings, stormwater management systems, fallow areas, and wetlands. - 4. The landfill site began operation in 1985, and is used to dispose of ash from the Edgewater Electric Generating Station. - 5. The WPL application for the project was originally submitted on 9-13-2011, and wetland compensatory mitigation is not required. - 6. No practicable alternative exists which would avoid impacts to wetlands, and the project will result in the least environmentally damaging practicable alternative taking into consideration practicable alternatives that avoid wetland impacts. Expansion of the existing landfill facility will utilize the site's capacity, minimize the need for additional waste ash handling, and take advantage of existing infrastructure for waste handling and stormwater management. - 7. All practicable measures to minimize adverse impacts to the functional values of the wetland have been taken. Alternative considerations varied in their ability to address design requirements necessary to satisfy the Feasibility Determination by the Waste Program. Alternatives (including no-build and off-site locations) have been examined, but were demonstrated to not be practicable due to the constraints associated with the Feasibility Determination from the Waste Program. - 8. The proposed project will not result in significant adverse impacts to wetland functional values, significant impacts to water quality, or other significant adverse environmental consequences. - 9. The Department has completed an investigation of the project site and has evaluated the project as described in the application and plans. - 10. The Department of Natural Resources has completed all procedural requirements and the project as permitted will comply with all applicable requirements of 33 U.S.C.S. §1341 (CWA §401); Sections 1.11, 281.36, Wisconsin Statutes and Chapters NR 102, 103, 150, and 299 of the Wisconsin Administrative Code. - 11. The applicant was responsible for fulfilling the procedural requirements for publication of notices under s. 281.36(3p)(d)1m., Stats., and was responsible for publication of the notice of pending application under s. 281.36(3m)(g), Stats. or the notice of public informational hearing under s. 281.36(3m)(h), Stats., or both. S. 281.36(3m)(i), Stats., provides that if no public hearing is held, the Department must issue its decision within 30 days of the 30-day public comment period, and if a public hearing is held, the Department must issue its decision within 20 days after the 10-day period for public comment after the public hearing. S. 281.36(3p)(c), Stats., requires the Department to consider the date on which the department publishes a notice on its web site as the date of notice. ### **CONCLUSIONS OF LAW** 1. The Department has authority under the above indicated Statutes and Administrative Codes, to issue a permit for the construction and maintenance of this project. ### **NOTICE OF APPEAL RIGHTS** If you believe that you have a right to challenge this decision, you should know that the Wisconsin statutes and administrative rules establish time periods within which requests to review Department decisions shall be filed. For judicial review of a decision pursuant to sections 227.52 and 227.53, Wis. Stats., you have 30 days after the decision is mailed, or otherwise served by the Department, to file your petition with the appropriate circuit court and serve the petition on the Department. Such a petition for judicial review shall name the Department of Natural Resources as the respondent. To request a contested case hearing of any individual permit decision pursuant to section 281.36.(3q), Wis. Stats., you have 30 days after the decision is mailed, or otherwise served by the Department, to serve a petition for hearing on the Secretary of the Department of Natural Resources, P.O. Box 7921, Madison, WI, 53707-7921. The petition shall be in writing, shall be dated and signed by the petitioner, and shall include as an attachment a copy of the decision for which administrative review is sought. If you are not the applicant, you must simultaneously provide a copy of the petition to the applicant. If you wish to request a stay of the project, you must provide information, as outlined below, to show that a stay is necessary to prevent significant adverse impacts or irreversible harm to the environment. If you are not the permit applicant, you must provide a copy of the petition to the permit applicant at the same time that you serve the petition on the Department. The filing of a request for a contested case hearing is not a prerequisite for judicial review and does <u>not</u> extend the 30 day period for filing a petition for judicial review. A request for contested case hearing must meet the requirements of section 281.36 (3q), Wis. Stats., and section NR 2.03, Wis. Adm. Code, and if the petitioner is not the applicant the petition must include the following information: - 1. A description of the objection that is sufficiently specific to allow the department to determine which provisions of this section may be violated if the proposed discharge under the wetland individual permit is allowed to proceed. - 2. A description of the facts supporting the petition that is sufficiently specific to determine how the petitioner believes the discharge, as proposed, may result in a violation of the provisions of this section. - 3. A commitment by the petitioner to appear at the administrative hearing and present information supporting the petitioner's objection. - 4. If the petition contains a request for a stay of the project, the petition must also include information showing that a stay is necessary to prevent significant adverse impacts or irreversible harm to the environment. Dated at Department Headquarters in Madison, Wisconsin on 05/20/2014. | STA | TE OF WISCONSIN DEPARTMENT OF NATURAL RESOURCES | |-----|---| | For | the Secretary | | | | | | | | Ву_ | | | | Benjamin Callan | Water Management Specialist # Appendix C Fault Location Map ## U.S. Geological Survey Quaternary Faults # Appendix D Seismic Hazard Map U.S. Department of the Interior U.S. Geological Survey Scientific Investigations Map 3325 Sheet 1 of 6 CANADA Edgewater I-43 Ash Disposal Facility **EXPLANATION**Peak acceleration expressed as a percent of gravity (%g) The acceleration values contoured are the random horizontal component. Reference site condition is firm rock, defined as having an average shear-wave velocity of 760 m/s in the top 30 meters, corresponding to the boundary between NEHRP (National Earthquake Hazards Reduction Program) site classes B and C. Documentation, gridded values, interactive maps, and GIS data used to make the map are available online at Contours of peak acceleration expressed ttp://earthquake.usgs.gov/hazards or http://dx.doi.org/10.3133/sim3325. as a percent of gravity (%g) **ACKNOWLEDGMENTS** We would like the thank the hundreds of workshop participants who made valuable — 10 — Offshore suggestions that significantly improved the quality of the maps. The California part of the maps was produced jointly with the California Geological Survey. Point values of peak acceleration REFERENCES expressed as a percent of gravity (%g) Petersen, M.D., Moschetti, M.P., Powers, P.M., Mueller, C.S., Haller, K.M., Frankel, A.D., Local maximum Zeng, Yuehua, Rezaeian, Sanaz, Harmsen, S.C., Boyd, O.S., Field, Ned, Chen, Rui, Rukstales, K.S., Luco, Nico, Wheeler, R.L., Williams, R.A., and Olsen, A.H., 2014, Local minimum Documentation for the 2014 Update of the United States National Seismic Hazard Maps: U.S. Geological Survey Open-File Report 2014–1091, 243 p., http://dx.doi.org/10.3133/ofr20141091. Shaded relief base from Esri Inc., 2008, Data and Maps Digital data prepared with ArcGIS 10.1 running under Windows 7 All other base map data from Esri Inc., 1993, Digital Chart of the World United States County base map from the U.S. Geological Survey National Atlas, available at http://nationalatlas.gov/ Projection: Albers equal-area conic 100 200 300 400 500 600 700 800 900 1000 KILOMETERS Standard parallels 29.5°N. and 45.5°N., central meridian 95°W This and other USGS information products are available at http://store.usgs.gov/. U.S. Geological Survey Box 25286, Denver Federal Center Denver Publishing Service Center Edit and digital layout by L.J. Binder Seismic-Hazard Maps for the Conterminous United States, 2014 Manuscript approved for publication on April 6, 2015 For more information concerning this publication, contact: Center Director, USGS Geologic Hazards Science Center Denver, CO 80225 To learn about the USGS and its information
products visit http://www.usgs.gov/ 1-888-ASK-USGS Peak Horizontal Acceleration with 10 Percent Probability of Exceedance in 50 Years Denver, CO 80225 (303) 273-8579 This report is available at: Or visit the Geologic Hazards Science Center Web site at: http://pubs.usgs.gov/sim/3325/ Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Mark D. Petersen,¹ Morgan P. Moschetti,¹ Peter M. Powers,¹ Charles S. Mueller,¹ Kathleen M. Haller,¹Arthur D. Frankel,¹ Yuehua Zeng,¹ Sanaz Rezaeian,¹ Stephen C. Harmsen,¹ Oliver S. Boyd,¹ Edward H. Field,¹ Rui Chen,² Nicolas Luco,¹Russell L. Wheeler,¹ Robert A. Williams,¹ Anna H. Olsen,¹ and Kenneth S. Rukstales¹ Although this information product, for the most part, is in the public domain, it also contains copyrighted materials as Suggested citation: Petersen, M.D., Moschetti, M.P., Powers, P.M., Mueller, noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. C.S., Haller, K.M., Frankel, A.D., Zeng, Yuehua, Rezaeian, Sanaz, Harmsen, This database, identified as SIM 3325, has been approved for release and publication by the U.S. Geological Survey S.C., Boyd, O.S., Field, E.H., Chen, Rui, Luco, Nicolas, Wheeler, R.L., (USGS). Although this database has been subjected to rigorous review and is substantially complete, the USGS Williams, R.A., Olsen, A.H., and Rukstales, K.S., 2015, Seismic-hazard maps reserves the right to revise the data pursuant to further analysis and review. Furthermore, it is released on condition for the conterminous United States, 2014: U.S. Geological Survey Scientific ISSN 2329-132X (online) http://dx.doi.org/10.3133/sim3325 Investigations Map 3325, 6 sheets, scale 1: 7,000,000, http://dx.doi.org/10.3133/sim3325. that neither the USGS nor the U.S. Government may be held liable for any damages resulting from its authorized or # Appendix E Site Description and Geologic Summary #### **Site Description and Geologic Summary** #### **Site Information** The I-43 ash disposal facility encompasses approximately 75 acres, and is located in an agricultural area. The site location is the East ½ of Section 8, T14N, R23E, in the Town of Wilson, located in Sheboygan County, Wisconsin. The facility is bounded by a frontage road to Interstate Highway I-43 to the east and by a rail line to the west. #### **Regional Geology** The I-43 disposal facility is located in an area of thick glacial sediment overlying Silurian carbonate bedrock. The uppermost bedrock in the area is Silurian dolostone, a unit in which karst features such as closed depression, sinkholes and caves may develop by solution along fractures, joints, and bedding planes. However, in areas covered by Pleistocene ice sheets such as northeastern Wisconsin, glacial processes have eroded away or filled in most karst features. A regional report for northeastern Wisconsin notes that the Silurian dolostone is characterized by complex fracturing and anisotropic flow, but that extensive weathering is generally absent, and caves are rare (Erb and Stiglitz, eds., 2007). In addition, most karst features in northeastern Wisconsin appear to have formed prior to Pleistocene glaciation of the area (more than about 2.4 million years ago) and sinkholes, caves, and solution-enlarged joints are filled in with a wide variety of sediments, some of which was emplaced by subglacial water under high pressure in an interconnected karst/subglacial drainage system (Luczaj and Stieglitz, 2008). If these sediment-filled features are located below the water table, they are supported by the hydrostatic pressure of groundwater, and are not expected to be zones of instability. The I-43 area has been covered by Pleistocene ice sheets several times (Carlson and others, 2011), and borings drilled on the I-43 disposal facility penetrate up to 90 feet of predominantly clay till with some sand and sorted sediment layers. The total sequence of sediment is about 150 feet thick, as indicated by water supply records in the area of the facility. Because of the multiple glacial advances and associated erosional and depositional processes resulting in a thick sediment layer overlying the bedrock, the area is not likely to be unstable due to karstic processes. #### **Previous Geologic Investigations** The disposal facility area was investigated by Mead & Hunt prior to construction by performing 9 borings within and adjacent to the facility footprint. Four of the borings were instrumented with groundwater monitoring wells. The borings extended to depths of up to 90 feet. Soil samples were collected for laboratory testing that includes Atterberg limits and permeability. The boring locations and geologic cross sections are shown in **Appendix G**. The boring locations and geologic cross sections are also shown on drawings in **Appendix G** from the 2008 Plan of Operation prepared by BT2, Inc. Based on the results of the subsurface investigation performed prior to disposal facility construction, the soils below the liner system within the facility footprint consist primarily of stiff to very stiff lean clays with scattered sand seams to the maximum drilling depth of 90 feet. #### References BT2, Inc., 2008, Plan of Operation, Edgewater I-43 Ash Disposal Facility, Phases 3 and 4. Carlson, A.E., Principato, S.M., Chapel, D.M., and Mickelson, D.M., 2011, Quaternary Geology of Sheboygan County, Wisconsin: Wisconsin Geological and Natural History Survey Bulletin 106, 32 p., 2 pls. Erb, K., and Stieglitz, R., eds., 2007, Final Report of the Northeast Karst Task Force (G3836), University of Wisconsin Extension, Green Bay, Wisconsin. Luczaj, J.A., and Stieglitz, R.D., 2008, Geologic History of New Hope Cave, Manitowoc County, Wisconsin. https://www.uwgb.edu/luczajj/reprints/New Hope Cave 4-08.pdf Mead & Hunt, Inc., 1977, Preliminary Site Feasibility Report, Ash Disposal Site, Beeck-Goebel Properties, Wilson Township, Sheboygan County, Wisconsin. BJS/DLN/AJR/EJN MJT, 12/7/2022 $I:\ \ 1:\ \ 25222259.00\ \ \ Deliverables\ \ \ \ Modification\ \ \ \ \ A4_Site\ and\ Geologic\ Summary.docx$ # Appendix F Liquefaction and Settlement Potential Evaluation #### **Liquefaction and Settlement Potential Evaluation** Based on the results of the site investigation borings and laboratory soil test results performed by Mead & Hunt (**Appendix G**), the disposal facility soils are not subject to liquefaction or settlement concerns for the performance of the disposal facility. Liquefaction is the process by which a saturated, loose, cohesionless soil influenced by external forces can suddenly loses its shear strength and behave as a fluid. The external forces result from ground motion from an earthquake. The disposal facility site soils in borings consist primarily of stiff to very stiff clay that is not subject to liquefaction. In addition, liquefaction is not a concern given the low magnitude (less than 0.04 g, 2 percent in 50 years) of maximum ground accelerations expected in the area; see **Attachment F**. Settlement below a disposal facility can be a concern if the facility is underlain by extensive soft, fine-grained soils. Soft soils are subject to consolidation settlement depending on the load over the soft soils. The disposal facility soils consist of stiff to very stiff clay till. Because the clays are stiff to very stiff rather than soft, consolidation settlement is not a concern for the performance of the disposal facility. #### References USGS seismic impact zones map website: https://earthquake.usgs.gov/static/lfs/nshm/conterminous/2014/2014pga2pct.pdf DLN/AJR/EJN MJT, 12/7/2022 I:\25222259.00\Deliverables\Plan Modification\Appendix\A5 Liquefaction and Settlement Potential Evaluation.docx Two-percent probability of exceedance in 50 years map of peak ground acceleration # Appendix G Geologic Cross Sections MEAD AND HUNT, INC. CONSULTING ENGINEER: MEAD AND HUNT, INC. | | LEGEND | 도 (1) [2] 전경에 가진 - 크리크리크로 등 교통 등 교통 (1) 교통 (1) 경우 (2) 교통 (2) 기본 (1) 경우 (2) 교통 (2) 기본 | |---------|---
--| | | REDDISH BROWN SILTY FINE TO MEDIUM SAND TRACE CLAY (SM) | | | - 10 MT | STIFF REDDISH BROWN LEAN CLAY (CL) TRACE FINE SAND AND GRAVEL | | | | STIFF GRAYISH BROWN LEAN CLAY (CL) TRACE FINE
SAND AND GRAVEL, OCCASIONAL THIN SEAMS OF
CLAYEY SILT, SANDY CLAY OR GRAVEL | | | | TOPSOIL | 그림은 얼마 가는 아름다면 되어 하는데 모양하는 사람이 되었다면 하는데 하는데 하나 되는데 하나 되었다. | | 760 | CONTRACTOR OF THE SECOND STATES | 그렇게 하다면 하다. 이번에 가게 되었는데 하다 가게 모양하는 데 그리고 있다. | | | | 760 | | | | [전문] [1882년 - 1982년 -
1982년 - 1982년 | | | | w w | | 740 | | | | | | 740 | | | | PROPERT | | | | | | 720 . | | 720 | | 120 | | | | | [기계 교육] 그 모든 경소 공원 | SECTION | | | | 11-11 | | | | | | 700 | | 700 | | | | | | | | | | | | | | 680 | | 680 | | | | | | | | 보이트 내용 가는 보이는 보이 되었다. 그 그는 사람들은 그는 사람들이 되었다. | | | | | | 660 | | [요일 [요] | | | | 660 | | | | 요하다 얼마 뭐하다 하네요 말이 되는 말이 되는 그 가게 하나 그리는 그 그 가게 되는 다음이 다른 사람들이 되었다. | | | | | | 640 | | 그리다 마리스 사람들이 하는 아들로 나왔다. 그 그리고 하는 경기와 하나 나고 되었다. | | | | 640 | | | | MEAD AND HUNT, INC | CONSULTING ENGINEERS MEAD AND HUNT, INC. LEGEND FILL/TOPSOIL SILT (ML) LEAN CLAY (CL) SILTY SAND (SM) —▼— WATER TABLE ON APRIL 4, 2006 WELL DETAIL ## NOTES: - BORINGS B4, B16, AND B20 WERE INSTALLED BY SOILS & ENGINEERING SERVICES, INC. IN 1977 AND 1978. - 2. BORINGS B26 AND B28 WERE INSTALLED BY WARZYN ENGINEERING, INC. IN 1981. CROSS SECTION LOCATION r = 500° | nera | | | | | | | | | | | | |--------|-------------|------------|--------------|----|-------------|-----------------|--|----------------------------------|--|-----------------------------|----------| | ngs-Ge | PROJECT NO. | 3391 | DRAWN BY: | KP | \triangle | BT ² | 2830 DAIRY DRIVE | WISCONSIN POWER AND LIGHT | PLAN OF OPERATION PHASES 3 AND 4 | ODOSS SECTION | SHFFT | | awir | DRAWN• | 11 /23 /07 | CHECKED BY: | KG | | | MADISON, W 53718-6751
PHONE: (608) 224-2830 | 집 EDGEWATER GENERATING STATION 발 | EDGEWATER I-43 ASH DISPOSAL FACILITY | CROSS SECTION
1,000 EAST | SITELT | | چَ | DIO/MIN. | 11/20/07 | ONEONED DI: | | | <u> </u> © | PHONE: (608) 224-2830 | 국 3739 LAKESHORE DRIVE 교 | WILCON WILCON CONTROL TO THE THE CONTROL TO TH | 1.000 FAST | 1 10 17 | | \363€ | REVISED: | 12/10/07 | APPROVED BY: | | | 圖 Inc. | FAX: (608) 224-2839 | SHEBOYGAN, WI 53081 | WILSON, WISCONSIN | ., | 12 OF 17 | Note: Design information depicted here has been superseded by design updates in the March 2015 Plan of Operation Modification for Phases 3 and 4 prepared by SCS Engineers. —▼.— WATER TABLE ON APRIL 4, 2006 WELL DETAIL ## IOTES: 1. BORINGS B17 AND B23 WERE INSTALLED BY SOILS & ENGINEERING SERVICES, INC. IN 1978. CROSS SECTION LOCATION | neral\ | | | | | | | | | | | | |--------|-------------|----------|--------------|----|-------------|-----------------|-----------------------|---|--------------------------------------|-----------------------------|----------| | ngs-Ge | PROJECT NO. | 3391 | DRAWN BY: | KP | \triangle | BT ² | 2830 DAIRY DRIVE | WISCONSIN POWER AND LIGHT | PLAN OF OPERATION PHASES 3 AND 4 | CDOSS SECTION | SHFFT | | Drawir | DRAWN: | 11/23/07 | CHECKED BY: | KG | | | PHONE: (608) 224-2830 | EDGEWATER GENERATING STATION 3 3739 LAKESHORE DRIVE | EDGEWATER I-43 ASH DISPOSAL FACILITY | CROSS SECTION
2,000 EAST | 17 05 17 | | :\3635 | REVISED: | 12/10/07 | APPROVED BY: | | | a inc. | FAX: (608) 224–2839 | SHEBOYGAN, WI 53081 | WILSON, WISCONSIN | 2,000 1/01 | 13 OF 17 | Note: Design information depicted here has been superseded by design updates in the March 2015 Plan of Operation Modification for Phases 3 and 4 prepared by SCS Engineers. —▼.— WATER TABLE ON APRIL 4, 2006 WELL DETAIL ## NOTES: - BORINGS B5 AND B23 WERE INSTALLED BY SOILS & ENGINEERING SERVICES, INC. IN 1977 AND 1978. - BORINGS B28, B29, AND B30 WERE INSTALLED BY WARZYN ENGINEERING, INC. IN 1981. # CROSS SECTION LOCATION | <u> </u> | | | | | | | | | | | | |----------|-------------|----------|--------------|----|-------------|--------|---|---|--------------------------------------|------------------------------|----------| | eg-s6 | PROJECT NO. | 3391 | DRAWN BY: | KP | \triangle | H BT2 | 2830 DAIRY DRIVE | WISCONSIN POWER AND LIGHT | PLAN OF OPERATION PHASES 3 AND 4 | CDOSS SECTION | SHFFT | | Drawir | DRAWN: | 11/23/07 | CHECKED BY: | KG | | GINE | MADISON, WI 53718-6751
PHONE: (608) 224-2830 | EDGEWATER GENERATING STATION 3739 LAKESHORE DRIVE | EDGEWATER I-43 ASH DISPOSAL FACILITY | CROSS SECTION
1,500 NORTH | 44 47 | | /3635 | REVISED: | 12/10/07 | APPROVED BY: | | | ≝ Inc. | FAX: (608) 224-2839 | SHEBOYGAN, WI 53081 | WILSON, WISCONSIN | 1,000 101(111 | 14 OF 1/ | LEGEND FILL/TOPSOIL SILT (ML) LEAN CLAY (CL) SILTY SAND (SM) WATER TABLE ON APRIL 4, 2006 WELL DETAIL ## NOTES: - 1. BORINGS B2, B4, B19, AND B23 WERE INSTALLED BY SOILS & ENGINEERING SERVICES, INC. IN 1977 AND 1978. - 2. BORING B31 WAS INSTALLED BY WARZYN ENGINEERING, INC. IN 1981. CROSS SECTION LOCATION r = 500° | neral | | | | | | | | | | | | |---------|-------------|----------|--------------|----|--|-----------------|--|---|--------------------------------------|------------------------------|----------| | ngs-Ge | PROJECT NO. | 3391 | DRAWN BY: | KP | | BT ² | 2830 DAIRY DRIVE | WISCONSIN POWER AND LIGHT | PLAN OF OPERATION PHASES 3 AND 4 | CDOSS SECTION | SHFFT | | Orawir | DRAWN: | 11/23/07 | CHECKED BY: | KG | | | MADISON, WI 53718-6751 PHONE: (608) 224-2830 | 집 EDGEWATER GENERATING STATION 발 3739 LAKESHORE DRIVE / / / / / / / / / / / / / / / / / / / | EDGEWATER I-43 ASH DISPOSAL FACILITY | CROSS SECTION
2,000 NORTH | OTTEE! | | \3635\I | REVISED: | 12/10/07 | APPROVED BY: | | | inc. |
PHONE: (608) 224-2830
FAX: (608) 224-2839 | SHEBOYGAN, WI 53081 | WILSON, WISCONSIN | 2,000 NORTH | 15 of 17 | # Appendix H Slope Stability Analyses #### SCS ENGINEERS September 26, 2018 File No. 25218091.00 #### TECHNICAL MEMORANDUM ANALYSIS BY: Brandon Suchomel REVIEWED BY: Deb Nelson Phil Gearing SUBJECT: Interim Waste Slope Stability Analyses Unstable Areas Restriction Compliance Demonstration Report Edgewater I-43 Ash Disposal Facility #### **PURPOSE** The purposes of the slope stability analyses were to evaluate: • The interim 3H:1V west waste slope in Phase 3, Module 2 at the highest waste grade #### CONCLUSION The attached results confirm that the interim waste slope will be stable during the construction and operation of the disposal facility modules. #### APPROACH SCS Engineers (SCS) evaluated the waste mass slope stability of the west interim slope of Module 2 at the most critical/highest waste grade cross-section (i.e. at the time of final cover placement). The Module 2 interim 3H:1V waste slope analyzed at the west filling face has a maximum waste fill height of approximately 48 feet corresponding to a peak elevation of approximately 724 feet above mean sea level. The interim waste slope was evaluated for block and circular failure. #### **RESULTS** The calculated safety factors for each failure type are shown in the attached summary table. SCS recommends a minimum safety factor of 1.3 for the interim waste slopes. The recommended safety factor of 1.3 for an interim waste slope is based on end-of-construction safety factors discussed in the U.S. Army Corps of Engineers engineer manual on slope stability (USACE 2003) and in Wisconsin Administrative Code Chapter NR 514.07(1)(b). The results MEMORANDUM September 26, 2018 Page 2 indicate that the 3H:1V waste slope for Module 2 has an acceptable minimum safety factor of approximately 1.33. #### REFERENCES - 1. SCS Engineers, Edgewater I-43 Ash Disposal Facility, Plan Modification, 2015, module design interim waste grades. - 2. SCS Engineers, Edgewater I-43 Ash Disposal Facility, Phase 3, Module 2 Liner and Area 1 Final Cover Construction Construction Documentation Report, 2016, existing as-built composite liner grades, material properties for subbase, clay liner, drainage layer, and geosynthetics. - 3. TRI/Environmental, Interface Friction Test Results, 2015, for 2015 Module 2 Liner Construction. - 4. TRI/Environmental, Consolidated-Undrained Triaxial Compression Test Results for FGD Material, 2015, material properties for CCR. - 5. U.S. Department of Transportation, Federal Highway Administration, Recycled Materials, Coal Ash User's Guide. - 6. Stabilization of FGD By-Products by Using Fly Ash, Cement, and Sialite, 2009 WOCA Conference. - 7. Geo-Slope International, Ltd., GeoStudio 2016, Version 8.16.2.14053, Slope/W slope stability software. - 8. U.S. Army Corps of Engineers, Slope Stability Engineer Manual EM 1110-2-1902, October 2003. #### **ASSUMPTIONS** - Circular and sliding block failure stability analyses are appropriate to evaluate the waste interim slope stability. - Material properties are as shown in the table below, based on the indicated references and assumed values based on experience. Friction angles for soils are conservative assumed values based on soil type, published typical values, and SCS experience. The coal combustion residual (CCR) friction angle is a conservative assumed value based on published values and 2015 triaxial compression test results by TRI/Environmental for CCR. | Material | Unit Weight
(pcf) | Friction Angle (degrees) | Cohesion
(psf) | Reference | |-----------------------|----------------------|--------------------------|-------------------|-----------| | Subbase Soil (Clay) | 135 | 28 | 0 | 2 | | Clay Liner | 130 | 28 | 0 | 2 | | Geosynthetics | 58 | 19.5 | 0 | 3 | | Drainage Layer (Sand) | 115 | 30 | 0 | 2 | | CCR | 86 | 20 | 0 | 4, 5, 6 | Attachments: Calculations organized as follows: - Factor of Safety Summary Table - Cross Section Location Figure - Slope/W Outputs #### BSS/AJR/DLN/PEG Coordinates checked by BJM I:\25218091.00\Data and Calculations\Slope Stability_Deliverable Memo\Tech Memo_Unstable Areas Analysis_180926.docx # Slope Stability Analyses Factors of Safety Results Summary #### Edgewater I-43 Ash Disposal Facility - Location Restriction Compliance Demonstration | Phase 3, Module 2 Western Interim Waste Slope | | | | | | | | |---|--------------------------|-----------------------------------|--|--|--|--|--| | Failure Type | Calculated Safety Factor | Recommended Min.
Safety Factor | | | | | | | Block | 1.33 | 1.3 | | | | | | | Circular | 1.37 | 1.3 | | | | | | Created by: BSS, 8/28/18 Last Revision by: BSS, 9/5/18 Checked by:DLN, 9/5/18 Edgewater Unstable Areas Analysis 2018 - West Slope Name: Block F of S: 1.332 | Color | Name | Model | Unit
Weight
(pcf) | Cohesion'
(psf) | Phi'
(°) | |-------|----------------|--------------|-------------------------|--------------------|-------------| | | CCR | Mohr-Coulomb | 86 | 0 | 20 | | | Clay Liner | Mohr-Coulomb | 130 | 0 | 28 | | | Drainage Layer | Mohr-Coulomb | 115 | 0 | 30 | | | Geosynthetics | Mohr-Coulomb | 58 | 0 | 19.5 | | | Subbase | Mohr-Coulomb | 135 | 0 | 28 | ## **Block** Report generated using GeoStudio 2016. Copyright © 1991-2017 GEO-SLOPE International Ltd. #### **File Information** File Version: 8.16 Title: Edgewater Unstable Areas Analysis 2018 - West Slope Comments: Running slope stability analysis on the west waste slope of Phase 3, Module 2 of the Edgewater I-43 Ash Disposal Facility. Location of analysis was selected based on longest and steepest slope at the time of peak waste placement within Module 2. Created By: Suchomel, Brandon Last Edited By: Suchomel, Brandon Revision Number: 45 Date: 9/5/2018 Time: 1:09:20 PM Tool Version: 8.16.3.14580 File Name: Western Slope of Module 2 Phase 3.gsz Directory: I:\25218091.00\Data and Calculations\Slope Stability\ Last Solved Date: 9/5/2018 Last Solved Time: 1:13:42 PM ## **Project Settings** Length(L) Units: Feet Time(t) Units: Seconds Force(F) Units: Pounds Pressure(p) Units: psf Strength Units: psf Unit Weight of Water: 62.4 pcf View: 2D Element Thickness: 1 ## **Analysis Settings** #### **Block** Kind: SLOPE/W Method: Janbu Settings PWP Conditions Source: (none) Slip Surface Direction of movement: Left to Right Use Passive Mode: No Slip Surface Option: Block Critical slip surfaces saved: 10 Resisting Side Maximum Convex Angle: 1 ° Driving Side Maximum Convex Angle: 5 ° Restrict Block Crossing: No Optimize Critical Slip Surface Location: No **Tension Crack** Tension Crack Option: (none) F of S Distribution F of S Calculation Option: Constant Advanced Number of Slices: 150 F of S Tolerance: 0.001 Minimum Slip Surface Depth: 0.1 ft #### **Materials** #### Subbase Model: Mohr-Coulomb Unit Weight: 135 pcf Cohesion': 0 psf Phi': 28 ° Phi-B: 0 ° #### **Clay Liner** Model: Mohr-Coulomb Unit Weight: 130 pcf Cohesion': 0 psf Phi': 28 ° Phi-B: 0 ° #### Geosynthetics Model: Mohr-Coulomb Unit Weight: 58 pcf Cohesion': 0 psf Phi': 19.5 ° Phi-B: 0 ° #### **Drainage Layer** Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion': 0 psf Phi': 30 ° Phi-B: 0 ° CCR Model: Mohr-Coulomb Unit Weight: 86 pcf Cohesion': 0 psf Phi': 20 ° Phi-B: 0 ° ## **Slip Surface Limits** Left Coordinate: (0, 124.95) ft Right Coordinate: (440.79, 86.91) ft # **Slip Surface Block** Left Grid Upper Left: (289.08, 73.32) ft Lower Left: (289.08, 73.22) ft Lower Right: (292.05, 73.19) ft X Increments: 10 Y Increments: 5 Starting Angle: 115° Ending Angle: 135° Angle Increments: 2 Right Grid Upper Left: (350, 72.7) ft Lower Left: (349.99, 72.6) ft Lower Right: (350.8, 72.59) ft X Increments: 10 Y Increments: 5 Starting Angle: 0 ° Ending Angle: 45 ° Angle Increments: 2 ## **Points** | | X (ft) | Y (ft) | |----------|--------|--------| | Point 1 | 0 | 0 | | Point 2 | 0 | 87.05 | | Point 3 | 0 | 85.05 | | Point 4 | 0 | 87.15 | | Point 5 | 34.01 | 75.82 | | Point 6 | 34.01 | 73.82 | | Point 7 | 34.01 | 75.92 | | Point 8 | 350.8 | 72.59 | | Point 9 | 350.8 | 70.59 | | Point 10 | 350.8 | 72.69 | | Point 11 | 353.74 | 71.61 | | Point 12 | 353.74 | 69.61 | | Point 13 | 353.74 | 71.71 | | Point 14 | 371.54 | 71.58 | | Point 15 | 371.54 | 69.58 | | Point 16 | 371.54 | 71.68 | | Point 17 | 379.67 | 70.31 | | Point 18 | 379.67 | 68.31 | | Point
19 | 379.67 | 70.41 | |-------------|--------|--------| | Point
20 | 380.33 | 70.37 | | Point
21 | 380.33 | 68.37 | | Point
22 | 380.33 | 70.47 | | Point 23 | 429.74 | 86.05 | | Point
24 | 429.74 | 84.05 | | Point
25 | 429.74 | 86.15 | | Point
26 | 440.79 | 86.05 | | Point
27 | 440.79 | 84.05 | | Point 28 | 440.79 | 86.15 | | Point
29 | 440.79 | 0 | | Point
30 | 0 | 88.06 | | Point
31 | 34.01 | 76.88 | | Point
32 | 364.01 | 73.53 | | Point
33 | 371.98 | 72.92 | | Point
34 | 378.75 | 74.32 | | Point
35 | 397.24 | 78.26 | | Point
36 | 425.51 | 87.13 | | Point
37 | 430.24 | 89.04 | | Point
38 | 440.79 | 86.91 | | Point
39 | 0 | 124.95 | | Point
40 | 2.89 | 125.01 | | Point
41 | 247.62 | 118.03 | **Regions** | | Material | Points | Area (ft²) | |----------|----------------|---|------------| | Region 1 | Subbase | 1,3,6,9,12,15,18,21,24,27,29 | 32,320 | | Region 2 | Clay Liner | 3,2,5,8,11,14,17,20,23,26,27,24,21,18,15,12,9,6 | 881.58 | | Region 3 | Geosynthetics | 2,4,7,10,13,16,19,22,25,28,26,23,20,17,14,11,8,5 | 44.079 | | Region 4 | Drainage Layer | 4,30,31,32,33,34,35,36,37,38,28,25,22,19,16,13,10,7 | 551.77 | | Region 5 | CCR | 30,39,40,41,34,33,32,31 | 14,008 | ## **Current Slip Surface** Slip Surface: 22,397 F of S: 1.332 Volume: 2,037.6438 ft³ Weight: 176,875.14 lbs Resisting Force: 59,709.489 lbs Activating Force: 44,812.944 lbs F of S Rank (Analysis): 1 of 39,204 slip surfaces F of S Rank (Query): 1 of 39,204 slip
surfaces Exit: (365.43856, 78.757145) ft Entry: (245.44394, 118.09206) ft Radius: 65.463717 ft Center: (315.11191, 127.92579) ft ### **Slip Slices** | | X (ft) | Y (ft) | PWP
(psf) | Base Normal
Stress (psf) | Frictional
Strength (psf) | Cohesive
Strength (psf) | |-------------|-----------|-----------|--------------|-----------------------------|------------------------------|----------------------------| | Slice 1 | 245.80661 | 117.72939 | 0 | 23.800692 | 8.6627436 | 0 | | Slice 2 | 246.53197 | 117.00403 | 0 | 71.402077 | 25.988231 | 0 | | Slice 3 | 247.25732 | 116.27868 | 0 | 119.00346 | 43.313718 | 0 | | Slice 4 | 248.02026 | 115.51574 | 0 | 160.82963 | 58.537199 | 0 | | Slice 5 | 248.82078 | 114.71522 | 0 | 196.88059 | 71.658675 | 0 | | Slice 6 | 249.6213 | 113.9147 | 0 | 232.93155 | 84.780151 | 0 | | Slice 7 | 250.42182 | 113.11418 | 0 | 268.98251 | 97.901626 | 0 | | Slice 8 | 251.22234 | 112.31366 | 0 | 305.03347 | 111.0231 | 0 | | Slice 9 | 252.02286 | 111.51314 | 0 | 341.08442 | 124.14458 | 0 | | Slice
10 | 252.82338 | 110.71262 | 0 | 377.13538 | 137.26605 | 0 | | Slice
11 | 253.6239 | 109.9121 | 0 | 413.18634 | 150.38753 | 0 | | Slice
12 | 254.42442 | 109.11158 | 0 | 449.2373 | 163.50901 | 0 | | Slice
13 | 255.22494 | 108.31106 | 0 | 485.28826 | 176.63048 | 0 | | Slice
14 | 256.02546 | 107.51054 | 0 | 521.33922 | 189.75196 | 0 | | | 256.82598 | 106.71002 | 0 | 557.39017 | 202.87343 | 0 | | Slice
15 | | | | | | | |-------------|-----------|-----------|---|------------|-----------|---| | Slice
16 | 257.6265 | 105.9095 | 0 | 593.44113 | 215.99491 | 0 | | Slice
17 | 258.42702 | 105.10898 | 0 | 629.49209 | 229.11638 | 0 | | Slice
18 | 259.22754 | 104.30846 | 0 | 665.54305 | 242.23786 | 0 | | Slice
19 | 260.02806 | 103.50794 | 0 | 701.59401 | 255.35934 | 0 | | Slice
20 | 260.82858 | 102.70742 | 0 | 737.64497 | 268.48081 | 0 | | Slice
21 | 261.6291 | 101.9069 | 0 | 773.69592 | 281.60229 | 0 | | Slice
22 | 262.42962 | 101.10638 | 0 | 809.74688 | 294.72376 | 0 | | Slice
23 | 263.23014 | 100.30586 | 0 | 845.79784 | 307.84524 | 0 | | Slice
24 | 264.03066 | 99.505339 | 0 | 881.8488 | 320.96671 | 0 | | Slice
25 | 264.83118 | 98.704819 | 0 | 917.89976 | 334.08819 | 0 | | Slice
26 | 265.6317 | 97.904299 | 0 | 953.95072 | 347.20967 | 0 | | Slice
27 | 266.43222 | 97.103779 | 0 | 990.00167 | 360.33114 | 0 | | Slice
28 | 267.23274 | 96.303259 | 0 | 1,026.0526 | 373.45262 | 0 | | Slice
29 | 268.03326 | 95.502739 | 0 | 1,062.1036 | 386.57409 | 0 | | Slice
30 | 268.83378 | 94.702219 | 0 | 1,098.1545 | 399.69557 | 0 | | Slice
31 | 269.6343 | 93.901699 | 0 | 1,134.2055 | 412.81704 | 0 | | Slice
32 | 270.43482 | 93.101179 | 0 | 1,170.2565 | 425.93852 | 0 | | Slice
33 | 271.23534 | 92.300658 | 0 | 1,206.3074 | 439.06 | 0 | | Slice
34 | 272.03586 | 91.500138 | 0 | 1,242.3584 | 452.18147 | 0 | | Slice
35 | 272.83638 | 90.699618 | 0 | 1,278.4093 | 465.30295 | 0 | | Slice
36 | 273.6369 | 89.899098 | 0 | 1,314.4603 | 478.42442 | 0 | | Slice
37 | 274.43742 | 89.098578 | 0 | 1,350.5113 | 491.5459 | 0 | | Slice
38 | 275.23794 | 88.298058 | 0 | 1,386.5622 | 504.66737 | 0 | | Slice
39 | 276.03846 | 87.497538 | 0 | 1,422.6132 | 517.78885 | 0 | |-------------|-----------|-----------|---|------------|------------|---| | Slice
40 | 276.83898 | 86.697018 | 0 | 1,458.6641 | 530.91033 | 0 | | Slice
41 | 277.6395 | 85.896498 | 0 | 1,494.7151 | 544.0318 | 0 | | Slice
42 | 278.44002 | 85.095978 | 0 | 1,530.766 | 557.15328 | 0 | | Slice
43 | 279.24054 | 84.295458 | 0 | 1,566.817 | 570.27475 | 0 | | Slice
44 | 280.04106 | 83.494938 | 0 | 1,602.868 | 583.39623 | 0 | | Slice
45 | 280.84158 | 82.694418 | 0 | 1,638.9189 | 596.5177 | 0 | | Slice
46 | 281.6421 | 81.893898 | 0 | 1,674.9699 | 609.63918 | 0 | | Slice
47 | 282.44262 | 81.093378 | 0 | 1,711.0208 | 622.76066 | 0 | | Slice
48 | 283.24314 | 80.292858 | 0 | 1,747.0718 | 635.88213 | 0 | | Slice
49 | 284.04366 | 79.492338 | 0 | 1,783.1228 | 649.00361 | 0 | | Slice
50 | 284.84418 | 78.691818 | 0 | 1,819.1737 | 662.12508 | 0 | | Slice
51 | 285.6447 | 77.891298 | 0 | 1,855.2247 | 675.24656 | 0 | | Slice
52 | 286.44522 | 77.090777 | 0 | 1,891.2756 | 688.36803 | 0 | | Slice
53 | 287.24574 | 76.290257 | 0 | 1,927.3266 | 701.48951 | 0 | | Slice
54 | 288.04626 | 75.489737 | 0 | 1,963.3775 | 714.61099 | 0 | | Slice
55 | 288.84678 | 74.689217 | 0 | 1,999.4285 | 727.73246 | 0 | | Slice
56 | 289.73773 | 73.798273 | 0 | 1,821.5365 | 1,051.6646 | 0 | | Slice
57 | 290.65013 | 73.283295 | 0 | 2,602.4557 | 921.57791 | 0 | | Slice
58 | 291.47378 | 73.2545 | 0 | 2,612.8198 | 925.24804 | 0 | | Slice
59 | 292.27763 | 73.2455 | 0 | 2,590.5947 | 917.3777 | 0 | | Slice
60 | 293.08149 | 73.2365 | 0 | 2,568.3695 | 909.50736 | 0 | | Slice
61 | 293.88534 | 73.2275 | 0 | 2,546.1444 | 901.63702 | 0 | | Slice
62 | 294.68919 | 73.2185 | 0 | 2,523.9193 | 893.76668 | 0 | | Slice
63 | 295.49305 | 73.2095 | 0 | 2,501.6941 | 885.89634 | 0 | |-------------|-----------|---------|---|------------|-----------|---| | Slice
64 | 296.2969 | 73.2005 | 0 | 2,479.469 | 878.02601 | 0 | | Slice
65 | 297.10075 | 73.1915 | 0 | 2,457.2438 | 870.15567 | 0 | | Slice
66 | 297.90461 | 73.1825 | 0 | 2,435.0187 | 862.28533 | 0 | | Slice
67 | 298.70846 | 73.1735 | 0 | 2,412.7935 | 854.41499 | 0 | | Slice
68 | 299.51231 | 73.1645 | 0 | 2,390.5684 | 846.54465 | 0 | | Slice
69 | 300.31617 | 73.1555 | 0 | 2,368.3432 | 838.67432 | 0 | | Slice
70 | 301.12002 | 73.1465 | 0 | 2,346.1181 | 830.80398 | 0 | | Slice
71 | 301.92387 | 73.1375 | 0 | 2,323.8929 | 822.93364 | 0 | | Slice
72 | 302.72773 | 73.1285 | 0 | 2,301.6678 | 815.0633 | 0 | | Slice
73 | 303.53158 | 73.1195 | 0 | 2,279.4426 | 807.19296 | 0 | | Slice
74 | 304.33543 | 73.1105 | 0 | 2,257.2175 | 799.32262 | 0 | | Slice
75 | 305.13929 | 73.1015 | 0 | 2,234.9923 | 791.45229 | 0 | | Slice
76 | 305.94314 | 73.0925 | 0 | 2,212.7672 | 783.58195 | 0 | | Slice
77 | 306.74699 | 73.0835 | 0 | 2,190.542 | 775.71161 | 0 | | Slice
78 | 307.55085 | 73.0745 | 0 | 2,168.3169 | 767.84127 | 0 | | Slice
79 | 308.3547 | 73.0655 | 0 | 2,146.0917 | 759.97093 | 0 | | Slice
80 | 309.15855 | 73.0565 | 0 | 2,123.8666 | 752.1006 | 0 | | Slice
81 | 309.96241 | 73.0475 | 0 | 2,101.6414 | 744.23026 | 0 | | Slice
82 | 310.76626 | 73.0385 | 0 | 2,079.4163 | 736.35992 | 0 | | Slice
83 | 311.57011 | 73.0295 | 0 | 2,057.1911 | 728.48958 | 0 | | Slice
84 | 312.37397 | 73.0205 | 0 | 2,034.966 | 720.61924 | 0 | | Slice
85 | 313.17782 | 73.0115 | 0 | 2,012.7408 | 712.7489 | 0 | | Slice
86 | 313.98167 | 73.0025 | 0 | 1,990.5157 | 704.87857 | 0 | | Slice
87 | 314.78553 | 72.9935 | 0 | 1,968.2905 | 697.00823 | 0 | |--------------|-----------|---------|---|------------|-----------|---| | Slice
88 | 315.58938 | 72.9845 | 0 | 1,946.0654 | 689.13789 | 0 | | Slice
89 | 316.39323 | 72.9755 | 0 | 1,923.8402 | 681.26755 | 0 | | Slice
90 | 317.19709 | 72.9665 | 0 | 1,901.6151 | 673.39721 | 0 | | Slice
91 | 318.00094 | 72.9575 | 0 | 1,879.3899 | 665.52688 | 0 | | Slice
92 | 318.80479 | 72.9485 | 0 | 1,857.1648 | 657.65654 | 0 | | Slice
93 | 319.60865 | 72.9395 | 0 | 1,834.9396 | 649.7862 | 0 | | Slice
94 | 320.4125 | 72.9305 | 0 | 1,812.7145 | 641.91586 | 0 | | Slice
95 | 321.21635 | 72.9215 | 0 | 1,790.4893 | 634.04552 | 0 | | Slice
96 | 322.02021 | 72.9125 | 0 | 1,768.2642 | 626.17518 | 0 | | Slice
97 | 322.82406 | 72.9035 | 0 | 1,746.039 | 618.30485 | 0 | | Slice
98 | 323.62791 | 72.8945 | 0 | 1,723.8139 | 610.43451 | 0 | | Slice
99 | 324.43177 | 72.8855 | 0 | 1,701.5887 | 602.56417 | 0 | | Slice
100 | 325.23562 | 72.8765 | 0 | 1,679.3636 | 594.69383 | 0 | | Slice
101 | 326.03947 | 72.8675 | 0 | 1,657.1384 | 586.82349 | 0 | | Slice
102 | 326.84333 | 72.8585 | 0 | 1,634.9133 | 578.95316 | 0 | | Slice
103 | 327.64718 | 72.8495 | 0 | 1,612.6881 | 571.08282 | 0 | | Slice
104 | 328.45103 | 72.8405 | 0 | 1,590.463 | 563.21248 | 0 | | Slice
105 | 329.25489 | 72.8315 | 0 | 1,568.2378 | 555.34214 | 0 | | Slice
106 | 330.05874 | 72.8225 | 0 | 1,546.0127 | 547.4718 | 0 | | Slice
107 | 330.86259 | 72.8135 | 0 | 1,523.7875 | 539.60146 | 0 | | Slice
108 | 331.66645 | 72.8045 | 0 | 1,501.5624 | 531.73113 | 0 | | Slice
109 | 332.4703 | 72.7955 | 0 | 1,479.3372 | 523.86079 | 0 | | Slice
110 | 333.27415 | 72.7865 | 0 | 1,457.1121 | 515.99045 | 0 | | Slice
111 | 334.07801 | 72.7775 | 0 | 1,434.8869 | 508.12011 | 0 | |--------------|-----------|-----------|---|------------|-----------|---| | Slice
112 | 334.88186 | 72.7685 | 0 | 1,412.6618 | 500.24977 | 0 | | Slice
113 | 335.68571 | 72.7595 | 0 | 1,390.4366 | 492.37944 | 0 | | Slice
114 | 336.48957 | 72.7505 | 0 | 1,368.2115 | 484.5091 | 0 | | Slice
115 | 337.29342 | 72.7415 | 0 | 1,345.9863 | 476.63876 | 0 | | Slice
116 | 338.09727 | 72.7325 | 0 | 1,323.7612 | 468.76842 | 0 | | Slice
117 | 338.90113 | 72.7235 | 0 | 1,301.536 | 460.89808 | 0 | | Slice
118 | 339.70498 | 72.7145 | 0 | 1,279.3109 | 453.02774 | 0 | | Slice
119 | 340.50883 | 72.7055 | 0 | 1,257.0857 | 445.15741 | 0 | | Slice
120 | 341.31269 | 72.6965 | 0 | 1,234.8606 | 437.28707 | 0 | | Slice
121 | 342.11654 | 72.6875 | 0 | 1,212.6354 | 429.41673 | 0 | | Slice
122 | 342.92039 | 72.6785 | 0 | 1,190.4103 | 421.54639 | 0 | | Slice
123 | 343.72425 | 72.6695 | 0 | 1,168.1851 | 413.67605 | 0 | | Slice
124 | 344.5281 | 72.6605 | 0 | 1,145.96 | 405.80572 | 0 | | Slice
125 | 345.33195 | 72.6515 | 0 | 1,123.7348 | 397.93538 | 0 | | Slice
126 | 346.13581 | 72.6425 | 0 | 1,101.5097 | 390.06504 | 0 | | Slice
127 | 346.93966 | 72.6335 | 0 | 1,079.2845 | 382.1947 | 0 | | Slice
128 | 347.74351 | 72.6245 | 0 | 1,057.0594 | 374.32436 | 0 | | Slice
129 | 348.54737 | 72.6155 | 0 | 1,034.8342 | 366.45402 | 0 | |
Slice
130 | 349.35122 | 72.6065 | 0 | 1,012.6091 | 358.58369 | 0 | | Slice
131 | 350.15507 | 72.5975 | 0 | 990.38394 | 350.71335 | 0 | | Slice
132 | 350.6742 | 72.641544 | 0 | 1,096.7514 | 388.38005 | 0 | | Slice
133 | 351.17396 | 72.848554 | 0 | 1,146.2885 | 661.80996 | 0 | | Slice
134 | 351.93911 | 73.165487 | 0 | 1,074.8657 | 620.57398 | 0 | | Slice
135 | 352.70425 | 73.48242 | 0 | 1,003.4429 | 579.33801 | 0 | |--------------|-----------|-----------|---|------------|-----------|---| | Slice
136 | 353.49855 | 73.811429 | 0 | 865.52147 | 315.02405 | 0 | | Slice
137 | 354.322 | 74.152513 | 0 | 805.83033 | 293.29825 | 0 | | Slice
138 | 355.14545 | 74.493597 | 0 | 746.13919 | 271.57246 | 0 | | Slice
139 | 355.9689 | 74.83468 | 0 | 686.44806 | 249.84666 | 0 | | Slice
140 | 356.79234 | 75.175764 | 0 | 626.75692 | 228.12086 | 0 | | Slice
141 | 357.61579 | 75.516848 | 0 | 567.06579 | 206.39507 | 0 | | Slice
142 | 358.43924 | 75.857932 | 0 | 507.37465 | 184.66927 | 0 | | Slice
143 | 359.26269 | 76.199016 | 0 | 447.68352 | 162.94347 | 0 | | Slice
144 | 360.08614 | 76.5401 | 0 | 387.99238 | 141.21768 | 0 | | Slice
145 | 360.90959 | 76.881184 | 0 | 328.30125 | 119.49188 | 0 | | Slice
146 | 361.73304 | 77.222268 | 0 | 268.61011 | 97.766085 | 0 | | Slice
147 | 362.55649 | 77.563352 | 0 | 208.91897 | 76.040288 | 0 | | Slice
148 | 363.37994 | 77.904436 | 0 | 149.22784 | 54.314492 | 0 | | Slice
149 | 364.20339 | 78.24552 | 0 | 89.536703 | 32.588695 | 0 | | Slice
150 | 365.02684 | 78.586604 | 0 | 29.845568 | 10.862898 | 0 | Edgewater Unstable Areas Analysis 2018 - West Slope Name: Circular F of S: 1.369 | Color | Name | Model | Unit
Weight
(pcf) | Cohesion'
(psf) | Phi'
(°) | |-------|----------------|--------------|-------------------------|--------------------|-------------| | | CCR | Mohr-Coulomb | 86 | 0 | 20 | | | Clay Liner | Mohr-Coulomb | 130 | 0 | 28 | | | Drainage Layer | Mohr-Coulomb | 115 | 0 | 30 | | | Geosynthetics | Mohr-Coulomb | 58 | 0 | 19.5 | | | Subbase | Mohr-Coulomb | 135 | 0 | 28 | # Circular Report generated using GeoStudio 2016. Copyright © 1991-2017 GEO-SLOPE International Ltd. ## **File Information** File Version: 8.16 Title: Edgewater Unstable Areas Analysis 2018 - West Slope Comments: Running slope stability analysis on the west waste slope of Phase 3, Module 2 of the Edgewater I-43 Ash Disposal Facility. Location of analysis was selected based on longest and steepest slope at the time of peak waste placement within Module 2. Created By: Suchomel, Brandon Last Edited By: Suchomel, Brandon Revision Number: 45 Date: 9/5/2018 Time: 1:09:20 PM Tool Version: 8.16.3.14580 File Name: Western Slope of Module 2 Phase 3.gsz Directory: I:\25218091.00\Data and Calculations\Slope Stability\ Last Solved Date: 9/5/2018 Last Solved Time: 1:17:09 PM ## **Project Settings** Length(L) Units: Feet Time(t) Units: Seconds Force(F) Units: Pounds Pressure(p) Units: psf Strength Units: psf Unit Weight of Water: 62.4 pcf View: 2D Element Thickness: 1 ## **Analysis Settings** #### Circular Kind: SLOPE/W Method: Bishop Settings PWP Conditions Source: (none) Slip Surface Direction of movement: Left to Right Use Passive Mode: No Slip Surface Option: Entry and Exit Critical slip surfaces saved: 10 Resisting Side Maximum Convex Angle: 1 ° Driving Side Maximum Convex Angle: 5 ° Optimize Critical Slip Surface Location: No **Tension Crack** Tension Crack Option: (none) F of S Distribution F of S Calculation Option: Constant Advanced Number of Slices: 150 F of S Tolerance: 0.001 Minimum Slip Surface Depth: 0.1 ft ### **Materials** #### **Subbase** Model: Mohr-Coulomb Unit Weight: 135 pcf Cohesion': 0 psf Phi': 28 ° Phi-B: 0 ° ### **Clay Liner** Model: Mohr-Coulomb Unit Weight: 130 pcf Cohesion': 0 psf Phi': 28 ° Phi-B: 0 ° ### Geosynthetics Model: Mohr-Coulomb Unit Weight: 58 pcf Cohesion': 0 psf Phi': 19.5 ° Phi-B: 0 ° ### **Drainage Layer** Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion': 0 psf Phi': 30 ° Phi-B: 0 ° CCR Model: Mohr-Coulomb Unit Weight: 86 pcf Cohesion': 0 psf Phi': 20 ° Phi-B: 0 ° ## **Slip Surface Entry and Exit** Left Projection: Range Left-Zone Left Coordinate: (243.97, 118.1341) ft Left-Zone Right Coordinate: (247.34, 118.03799) ft Left-Zone Increment: 100 Right Projection: Range Right-Zone Left Coordinate: (393.76, 77.51845) ft Right-Zone Right Coordinate: (396.92, 78.19181) ft Right-Zone Increment: 100 Radius Increments: 30 ## **Slip Surface Limits** Left Coordinate: (0, 124.95) ft Right Coordinate: (440.79, 86.91) ft ## **Points** | | X (ft) | Y (ft) | |----------|--------|--------| | Point 1 | 0 | 0 | | Point 2 | 0 | 87.05 | | Point 3 | 0 | 85.05 | | Point 4 | 0 | 87.15 | | Point 5 | 34.01 | 75.82 | | Point 6 | 34.01 | 73.82 | | Point 7 | 34.01 | 75.92 | | Point 8 | 350.8 | 72.59 | | Point 9 | 350.8 | 70.59 | | Point 10 | 350.8 | 72.69 | | Point 11 | 353.74 | 71.61 | | Point 12 | 353.74 | 69.61 | | Point 13 | 353.74 | 71.71 | | Point 14 | 371.54 | 71.58 | | Point 15 | 371.54 | 69.58 | | Point 16 | 371.54 | 71.68 | | Point 17 | 379.67 | 70.31 | | Point 18 | 379.67 | 68.31 | | Point 19 | 379.67 | 70.41 | | Point 20 | 380.33 | 70.37 | | Point 21 | 380.33 | 68.37 | | Point 22 | 380.33 | 70.47 | | Point 23 | 429.74 | 86.05 | | Point 24 | 429.74 | 84.05 | | Point 25 | 429.74 | 86.15 | | Point 26 | 440.79 | 86.05 | | | | | | Point
27 | 440.79 | 84.05 | |-------------|--------|--------| | Point
28 | 440.79 | 86.15 | | Point
29 | 440.79 | 0 | | Point
30 | 0 | 88.06 | | Point
31 | 34.01 | 76.88 | | Point
32 | 364.01 | 73.53 | | Point 33 | 371.98 | 72.92 | | Point
34 | 378.75 | 74.32 | | Point
35 | 397.24 | 78.26 | | Point
36 | 425.51 | 87.13 | | Point
37 | 430.24 | 89.04 | | Point
38 | 440.79 | 86.91 | | Point
39 | 0 | 124.95 | | Point
40 | 2.89 | 125.01 | | Point
41 | 247.62 | 118.03 | # Regions | | Material | Points | Area (ft²) | |----------|----------------|---|------------| | Region 1 | Subbase | 1,3,6,9,12,15,18,21,24,27,29 | 32,320 | | Region 2 | Clay Liner | 3,2,5,8,11,14,17,20,23,26,27,24,21,18,15,12,9,6 | 881.58 | | Region 3 | Geosynthetics | 2,4,7,10,13,16,19,22,25,28,26,23,20,17,14,11,8,5 | 44.079 | | Region 4 | Drainage Layer | 4,30,31,32,33,34,35,36,37,38,28,25,22,19,16,13,10,7 | 551.77 | | Region 5 | CCR | 30,39,40,41,34,33,32,31 | 14,008 | # **Current Slip Surface** Slip Surface: 106,000 F of S: 1.369 Volume: 1,644.7877 ft³ Weight: 142,278.76 lbs Resisting Moment: 8,872,216.2 lbs-ft Activating Moment: 6,479,605.3 lbs-ft F of S Rank (Analysis): 1 of 316,231 slip surfaces F of S Rank (Query): 1 of 316,231 slip surfaces Exit: (396.4776, 78.097542) ft Entry: (245.0821, 118.10238) ft Radius: 155.79743 ft Center: (355.19053, 228.32476) ft ## Slip Slices | | X (ft) | Y (ft) | PWP
(psf) | Base Normal
Stress (psf) | Frictional
Strength (psf) | Cohesive
Strength (psf) | |-------------|-----------|-----------|--------------|-----------------------------|------------------------------|----------------------------| | Slice 1 | 245.50508 | 117.68306 | 0 | 27.722323 | 10.0901 | 0 | | Slice 2 | 246.35105 | 116.85074 | 0 | 82.997012 | 30.208442 | 0 | | Slice 3 | 247.19702 | 116.03097 | 0 | 137.75366 | 50.138233 | 0 | | Slice 4 | 248.12298 | 115.14835 | 0 | 186.51865 | 67.887238 | 0 | | Slice 5 | 249.12894 | 114.20505 | 0 | 229.11109 | 83.389617 | 0 | | Slice 6 | 250.13491 | 113.27829 | 0 | 270.839 | 98.577333 | 0 | | Slice 7 | 251.14087 | 112.36765 | 0 | 311.71134 | 113.45365 | 0 | | Slice 8 | 252.14683 | 111.47278 | 0 | 351.73691 | 128.02177 | 0 | | Slice 9 | 253.1528 | 110.5933 | 0 | 390.92429 | 142.28481 | 0 | | Slice
10 | 254.15876 | 109.72888 | 0 | 429.28189 | 156.24583 | 0 | | Slice
11 | 255.16472 | 108.87918 | 0 | 466.8179 | 169.90782 | 0 | | Slice
12 | 256.17069 | 108.0439 | 0 | 503.54035 | 183.2737 | 0 | | Slice
13 | 257.17665 | 107.22274 | 0 | 539.45704 | 196.3463 | 0 | | Slice
14 | 258.18261 | 106.41541 | 0 | 574.5756 | 209.12842 | 0 | | Slice
15 | 259.18858 | 105.62164 | 0 | 608.90346 | 221.62273 | 0 | | Slice
16 | 260.19454 | 104.84117 | 0 | 642.44785 | 233.83189 | 0 | | Slice
17 | 261.2005 | 104.07374 | 0 | 675.21582 | 245.75846 | 0 | | Slice
18 | 262.20647 | 103.31912 | 0 | 707.21423 | 257.40493 | 0 | | Slice
19 | 263.21243 | 102.57708 | 0 | 738.44975 | 268.77373 | 0 | | Slice
20 | 264.21839 | 101.84739 | 0 | 768.92888 | 279.86723 | 0 | | Slice
21 | 265.22436 | 101.12984 | 0 | 798.65794 | 290.68772 | 0 | | Slice
22 | 266.23032 | 100.42424 | 0 | 827.64305 | 301.23744 | 0 | | | 267.23628 | 99.730368 | 0 | 855.89019 | 311.51855 | 0 | | Slice
23 | | | | | | | |-------------|-----------|-----------|---|------------|-----------|---| | Slice
24 | 268.24225 | 99.048052 | 0 | 883.40516 | 321.53318 | 0 | | Slice
25 | 269.24821 | 98.377107 | 0 | 910.19358 | 331.28337 | 0 | | Slice
26 | 270.25417 | 97.717356 | 0 | 936.26092 | 340.77111 | 0 | | Slice
27 | 271.26014 | 97.068632 | 0 | 961.61249 | 349.99832 | 0 | | Slice
28 | 272.2661 | 96.43077 | 0 | 986.25345 | 358.9669 | 0 | | Slice
29 | 273.27206 | 95.803616 | 0 | 1,010.1888 | 367.67865 | 0 | | Slice
30 | 274.27803 | 95.187016 | 0 | 1,033.4234 | 376.13535 | 0 | | Slice
31 | 275.28399 | 94.580825 | 0 | 1,055.9619 | 384.33869 | 0 | | Slice
32 | 276.28995 | 93.984903 | 0 | 1,077.8089 | 392.29035 | 0 | | Slice
33 | 277.29592 | 93.399112 | 0 | 1,098.9688 | 399.99193 | 0 | | Slice
34 | 278.30188 | 92.823322 | 0 | 1,119.4459 | 407.44499 | 0 | | Slice
35 | 279.30784 | 92.257406 | 0 | 1,139.2443 | 414.65103 | 0 | | Slice
36 | 280.31381 | 91.701241 | 0 | 1,158.3681 | 421.61152 | 0 | | Slice
37 | 281.31977 | 91.154709 | 0 | 1,176.8211 | 428.32787 | 0 | | Slice
38 | 282.32573 | 90.617694 | 0 | 1,194.6071 | 434.80144 | 0 | | Slice
39 | 283.3317 | 90.090086 | 0 | 1,211.7297 | 441.03356 | 0 | | Slice
40 |
284.33766 | 89.571777 | 0 | 1,228.1925 | 447.0255 | 0 | | Slice
41 | 285.34362 | 89.062664 | 0 | 1,243.9987 | 452.77849 | 0 | | Slice
42 | 286.34959 | 88.562646 | 0 | 1,259.1517 | 458.29373 | 0 | | Slice
43 | 287.35555 | 88.071625 | 0 | 1,273.6546 | 463.57237 | 0 | | Slice
44 | 288.36151 | 87.589509 | 0 | 1,287.5105 | 468.6155 | 0 | | Slice
45 | 289.36748 | 87.116204 | 0 | 1,300.7223 | 473.42419 | 0 | | Slice
46 | 290.37344 | 86.651624 | 0 | 1,313.2928 | 477.99948 | 0 | | Slice
47 | 291.3794 | 86.195683 | 0 | 1,325.2247 | 482.34234 | 0 | |-------------|-----------|-----------|---|------------|-----------|---| | Slice
48 | 292.38537 | 85.748297 | 0 | 1,336.5206 | 486.45373 | 0 | | Slice
49 | 293.39133 | 85.309386 | 0 | 1,347.1831 | 490.33455 | 0 | | Slice
50 | 294.39729 | 84.878873 | 0 | 1,357.2145 | 493.98568 | 0 | | Slice
51 | 295.40326 | 84.456682 | 0 | 1,366.6171 | 497.40795 | 0 | | Slice
52 | 296.40922 | 84.042741 | 0 | 1,375.3932 | 500.60217 | 0 | | Slice
53 | 297.41518 | 83.636977 | 0 | 1,383.5447 | 503.5691 | 0 | | Slice
54 | 298.42115 | 83.239324 | 0 | 1,391.0738 | 506.30946 | 0 | | Slice
55 | 299.42711 | 82.849713 | 0 | 1,397.9823 | 508.82395 | 0 | | Slice
56 | 300.43307 | 82.468081 | 0 | 1,404.2721 | 511.11323 | 0 | | Slice
57 | 301.43903 | 82.094366 | 0 | 1,409.9448 | 513.17793 | 0 | | Slice
58 | 302.445 | 81.728506 | 0 | 1,415.0021 | 515.01863 | 0 | | Slice
59 | 303.45096 | 81.370443 | 0 | 1,419.4455 | 516.63591 | 0 | | Slice
60 | 304.45692 | 81.02012 | 0 | 1,423.2765 | 518.03028 | 0 | | Slice
61 | 305.46289 | 80.677482 | 0 | 1,426.4964 | 519.20225 | 0 | | Slice
62 | 306.46885 | 80.342476 | 0 | 1,429.1066 | 520.15226 | 0 | | Slice
63 | 307.47481 | 80.01505 | 0 | 1,431.1081 | 520.88076 | 0 | | Slice
64 | 308.48078 | 79.695154 | 0 | 1,432.5022 | 521.38815 | 0 | | Slice
65 | 309.48674 | 79.382739 | 0 | 1,433.2897 | 521.67479 | 0 | | Slice
66 | 310.4927 | 79.077759 | 0 | 1,433.4717 | 521.74101 | 0 | | Slice
67 | 311.49867 | 78.780167 | 0 | 1,433.0489 | 521.58714 | 0 | | Slice
68 | 312.50463 | 78.48992 | 0 | 1,432.0221 | 521.21343 | 0 | | Slice
69 | 313.51059 | 78.206976 | 0 | 1,430.3921 | 520.62015 | 0 | | Slice
70 | 314.51656 | 77.931292 | 0 | 1,428.1594 | 519.80749 | 0 | | Slice
71 | 315.52252 | 77.66283 | 0 | 1,425.3244 | 518.77566 | 0 | |-------------|-----------|-----------|---|------------|-----------|---| | Slice
72 | 316.52848 | 77.40155 | 0 | 1,421.8877 | 517.52481 | 0 | | Slice
73 | 317.53445 | 77.147415 | 0 | 1,417.8496 | 516.05505 | 0 | | Slice
74 | 318.54041 | 76.90039 | 0 | 1,413.2103 | 514.3665 | 0 | | Slice
75 | 319.54637 | 76.66044 | 0 | 1,407.9701 | 512.45921 | 0 | | Slice
76 | 320.55234 | 76.427531 | 0 | 1,402.129 | 510.33322 | 0 | | Slice
77 | 321.5583 | 76.20163 | 0 | 1,395.687 | 507.98854 | 0 | | Slice
78 | 322.56426 | 75.982708 | 0 | 1,388.6442 | 505.42515 | 0 | | Slice
79 | 323.57023 | 75.770732 | 0 | 1,381.0003 | 502.643 | 0 | | Slice
80 | 324.57619 | 75.565676 | 0 | 1,372.7551 | 499.642 | 0 | | Slice
81 | 325.58215 | 75.36751 | 0 | 1,363.9084 | 496.42204 | 0 | | Slice
82 | 326.58812 | 75.176208 | 0 | 1,354.4596 | 492.98299 | 0 | | Slice
83 | 327.59408 | 74.991745 | 0 | 1,344.4085 | 489.32468 | 0 | | Slice
84 | 328.60004 | 74.814095 | 0 | 1,333.7544 | 485.44689 | 0 | | Slice
85 | 329.60601 | 74.643236 | 0 | 1,322.4966 | 481.34941 | 0 | | Slice
86 | 330.61197 | 74.479143 | 0 | 1,310.6346 | 477.03198 | 0 | | Slice
87 | 331.61793 | 74.321797 | 0 | 1,298.1674 | 472.4943 | 0 | | Slice
88 | 332.6239 | 74.171176 | 0 | 1,285.0942 | 467.73605 | 0 | | Slice
89 | 333.62986 | 74.02726 | 0 | 1,271.4141 | 462.75689 | 0 | | Slice
90 | 334.63582 | 73.890031 | 0 | 1,257.1259 | 457.55643 | 0 | | Slice
91 | 335.64716 | 73.75881 | 0 | 1,220.5462 | 704.68269 | 0 | | Slice
92 | 336.66386 | 73.633651 | 0 | 1,209.4867 | 698.29749 | 0 | | Slice
93 | 337.68056 | 73.51527 | 0 | 1,197.6162 | 691.44404 | 0 | | Slice
94 | 338.69727 | 73.403652 | 0 | 1,184.9305 | 684.11996 | 0 | | Slice
95 | 339.71397 | 73.298781 | 0 | 1,171.4254 | 676.32274 | 0 | |--------------|-----------|-----------|---|------------|-----------|---| | Slice
96 | 340.73068 | 73.200646 | 0 | 1,157.0963 | 668.04984 | 0 | | Slice
97 | 341.74738 | 73.109232 | 0 | 1,141.9387 | 659.29859 | 0 | | Slice
98 | 342.76408 | 73.024527 | 0 | 1,125.9478 | 650.06627 | 0 | | Slice
99 | 343.78079 | 72.946522 | 0 | 1,109.1188 | 640.35003 | 0 | | Slice
100 | 344.79749 | 72.875205 | 0 | 1,091.4466 | 630.14698 | 0 | | Slice
101 | 345.81419 | 72.810568 | 0 | 1,072.9259 | 619.45408 | 0 | | Slice
102 | 346.8309 | 72.752602 | 0 | 1,053.5515 | 608.26825 | 0 | | Slice
103 | 347.90876 | 72.698638 | 0 | 1,038.6508 | 367.80553 | 0 | | Slice
104 | 349.04779 | 72.649519 | 0 | 1,011.4207 | 358.16284 | 0 | | Slice
105 | 350.20865 | 72.608127 | 0 | 983.05651 | 348.11857 | 0 | | Slice
106 | 350.96459 | 72.584742 | 0 | 967.36629 | 342.56237 | 0 | | Slice
107 | 351.62459 | 72.568934 | 0 | 950.53176 | 548.78977 | 0 | | Slice
108 | 352.61542 | 72.549402 | 0 | 926.79715 | 535.08658 | 0 | | Slice
109 | 353.60625 | 72.536174 | 0 | 902.21312 | 520.89299 | 0 | | Slice
110 | 354.59709 | 72.529249 | 0 | 876.77337 | 506.20534 | 0 | | Slice
111 | 355.58792 | 72.528625 | 0 | 850.47144 | 491.01991 | 0 | | Slice
112 | 356.57875 | 72.534303 | 0 | 823.30065 | 475.33285 | 0 | | Slice
113 | 357.56959 | 72.546284 | 0 | 795.25415 | 459.1402 | 0 | | Slice
114 | 358.56042 | 72.564568 | 0 | 766.32486 | 442.43787 | 0 | | Slice
115 | 359.55125 | 72.589159 | 0 | 736.50553 | 425.22166 | 0 | | Slice
116 | 360.54208 | 72.620058 | 0 | 705.78865 | 407.48727 | 0 | | Slice
117 | 361.53292 | 72.65727 | 0 | 674.16654 | 389.23023 | 0 | | Slice
118 | 362.52375 | 72.7008 | 0 | 641.63126 | 370.44598 | 0 | | Slice
119 | 363.51458 | 72.750652 | 0 | 608.17464 | 351.12979 | 0 | |--------------|-----------|-----------|---|-----------|-----------|---| | Slice
120 | 364.51354 | 72.807346 | 0 | 572.50478 | 330.53579 | 0 | | Slice
121 | 365.52063 | 72.870994 | 0 | 534.5874 | 308.64418 | 0 | | Slice
122 | 366.52771 | 72.941194 | 0 | 495.67986 | 286.1809 | 0 | | Slice
123 | 367.5348 | 73.017957 | 0 | 455.77241 | 263.14032 | 0 | | Slice
124 | 368.54188 | 73.101292 | 0 | 414.85499 | 239.51664 | 0 | | Slice
125 | 369.52968 | 73.189363 | 0 | 370.6537 | 134.90691 | 0 | | Slice
126 | 370.49818 | 73.281933 | 0 | 334.60383 | 121.78583 | 0 | | Slice
127 | 371.46668 | 73.380612 | 0 | 297.89026 | 108.42319 | 0 | | Slice
128 | 372.43518 | 73.485412 | 0 | 260.50822 | 94.817238 | 0 | | Slice
129 | 373.40369 | 73.596345 | 0 | 222.45278 | 80.966192 | 0 | | Slice
130 | 374.37219 | 73.713425 | 0 | 183.71888 | 66.868205 | 0 | | Slice
131 | 375.34069 | 73.836665 | 0 | 144.3013 | 52.521378 | 0 | | Slice
132 | 376.3092 | 73.96608 | 0 | 104.19466 | 37.923753 | 0 | | Slice
133 | 377.2777 | 74.101685 | 0 | 63.393407 | 23.073313 | 0 | | Slice
134 | 378.25597 | 74.244992 | 0 | 21.46659 | 7.8131999 | 0 | | Slice
135 | 379.24243 | 74.395891 | 0 | 3.5751225 | 2.0640979 | 0 | | Slice
136 | 380.2273 | 74.553012 | 0 | 10.097993 | 5.8300792 | 0 | | Slice
137 | 381.21217 | 74.716609 | 0 | 15.857989 | 9.1556139 | 0 | | Slice
138 | 382.19703 | 74.886701 | 0 | 20.845845 | 12.035354 | 0 | | Slice
139 | 383.1819 | 75.063311 | 0 | 25.052037 | 14.4638 | 0 | | Slice
140 | 384.16677 | 75.246461 | 0 | 28.466768 | 16.435296 | 0 | | Slice
141 | 385.15163 | 75.436174 | 0 | 31.079959 | 17.944023 | 0 | | Slice
142 | 386.1365 | 75.632476 | 0 | 32.881238 | 18.983992 | 0 | | Slice
143 | 387.12137 | 75.835391 | 0 | 33.859928 | 19.549038 | 0 | |--------------|-----------|-----------|---|-----------|-----------|---| | Slice
144 | 388.10623 | 76.044946 | 0 | 34.005036 | 19.632817 | 0 | | Slice
145 | 389.0911 | 76.261168 | 0 | 33.30524 | 19.228789 | 0 | | Slice
146 | 390.07597 | 76.484086 | 0 | 31.748877 | 18.330223 | 0 | | Slice
147 | 391.06083 | 76.71373 | 0 | 29.323927 | 16.930177 | 0 | | Slice
148 | 392.0457 | 76.950129 | 0 | 26.018001 | 15.0215 | 0 | | Slice
149 | 393.03057 | 77.193316 | 0 | 21.818323 | 12.596815 | 0 | | Slice
150 | 394.01543 | 77.443324 | 0 | 16.711717 | 9.6485145 | 0 | | Slice
151 | 395.0003 | 77.700187 | 0 | 10.684588 | 6.1687499 | 0 | | Slice
152 | 395.98517 | 77.963939 | 0 | 3.7229049 | 2.1494202 | 0 | ## SCS ENGINEERS April 5, 2024 File No. 25222259.00 #### TECHNICAL MEMORANDUM ANALYSIS BY: Niko Villaneuva **Brandon Suchomel** REVIEWED BY: Deb Nelson Phil Gearing SUBJECT: Slope Stability Analysis Plan of Operation Modification Edgewater I-43 Ash Disposal Facility, License #2853 #### **PURPOSE** The purpose of the slope stability analyses was to evaluate the most critical future slope: • The final cover 4H:1V slope in Phase 3 at the highest final cover grade #### CONCLUSION The attached results confirm that the final cover slope will be stable during the construction and operation of the disposal facility modules. #### **APPROACH** SCS Engineers (SCS) evaluated the slope stability of the southern slope of Phase 3 final cover slope at the most critical/highest final cover grade cross-section (i.e., at the time of final cover placement) after the filling of the proposed converted contact water swale liner. The 4H:1V final cover slope analyzed at the south side has a maximum final cover fill height of approximately 50 feet above base grades, and a peak elevation of approximately 731 feet above mean sea level. A piezometric surface was assumed just below the landfill clay liner. The final cover slope was evaluated for block and optimized circular failure. #### **RESULTS** The calculated safety factors for each slope section and failure type are shown in the summary table. SCS recommends a minimum safety factor of 1.5 for the
final grade slopes. The results indicate that the final grade slopes have acceptable minimum safety factors. Table 1. Factor of Safety Results Summary | Scenario Analyzed | Calculated Safety Factor | Recommended Minimum
Safety Factor | |---|--------------------------|--------------------------------------| | Critical Future Final Grades (See Figur | re 1) | | | Optimized Circular | 1.548 | 1.500 | | (Rotational Failure) | | | | Block | 1.877 | 1.500 | | (Translational Failure) | | | | Left of Intercell Berm | | | | Block | 1.896 | 1.500 | | (Translational Failure) | | | | Contact Water Swale | | | ### **REFERENCES** - 1. SCS Engineers, Edgewater I-43 Ash Disposal Facility, Plan Modification Request Addendum No. 1, 2024. - 2. SCS Engineers, Edgewater I-43 Ash Disposal Facility, Phase 3, Module 2 Liner and Area 1 Final Cover Construction Construction Documentation Report, 2016, existing as-built composite liner grades, material properties for subbase, clay liner, drainage layer, and geosynthetics. - 3. TRI/Environmental, Interface Friction Test Results, 2015, for 2015 Phase 3 Module 2 Liner Construction. - 4. TRI/Environmental, Consolidated-Undrained Triaxial Compression Test Results for FGD Material, 2015, material properties for CCR. - 5. U.S. Department of Transportation, Federal Highway Administration, Recycled Materials, Coal Ash User's Guide. - Stabilization of FGD By-Products by Using Fly Ash, Cement, and Sialite, 2009 WOCA Conference. - 7. Geo-Slope International, Ltd., GeoStudio 2023.1.1, Slope/W slope stability software. - 8. U.S. Army Corps of Engineers, Slope Stability Engineer Manual EM 1110-2-1902, October 2003. - 9. SCS Engineers, Edgewater I-43 Ash Disposal Facility, Unstable Areas Compliance Demonstration Phase 3 Modules 1 and 2, Phase 4 Module 1, 2018. #### **ASSUMPTIONS** The critical final grades are the worst-case scenario (shown on Figure 1) for the longest/highest final grade slope. This includes the full buildout of approved and proposed module construction. - Drainage layers in each of the existing and future modules and leachate drainage materials in the contact water swale area have the same properties. - Geosynthetics installed for each of the module composite liners have the same properties. - Clay material for each of the existing and future module composite liners have the same properties. - Coal combustion residual (CCR) waste material will be the same in each of the existing and future modules. - A final grade slope of 4H:1V is representative of the design final cover grades. - The groundwater elevation will remain below the elevation at the base of the landfill liner system. - The disposal facility will be operated to prevent development of liquid pressures, or seepage forces, within the waste, and there will be no buildup of leachate above the top of the drainage layer. - The disposal facility will be operated to prevent placement of weak layers of waste within the overall waste mass. - Optimized circular and sliding block failure stability analyses are appropriate to evaluate the final cover slope stability. - Material properties are as shown in the table below, based on the indicated references and assumed values based on experience. Friction angles for soils are conservative assumed values based on soil type, published typical values, and SCS experience. The CCR friction angle is a conservative assumed value based on published values and 2015 triaxial compression test results by TRI/Environmental for CCR. Table 2. Material Properties Summary Table | Material | Unit Weight
(pcf) | Friction Angle (degrees) | Cohesion (psf) | Reference | |----------------|----------------------|--------------------------|----------------|----------------| | Final Cover | 125 | 28 | 0 | 2 | | CCR | 86 | 20 | 0 | 4, 5, 6, and 9 | | Drainage Layer | 115 | 30 | 0 | 2 and 9 | | Geosynthetics | 58 | 19.5 | 0 | 3 and 9 | | Clay Liner | 130 | 28 | 0 | 2 and 9 | | Subbase | 135 | 28 | 0 | 2 and 9 | MEMORANDUM April 5, 2024 Page 4 Attachments: Calculations organized as follows: - Figure 1. Slope Stability Cross Section Location - Slope/W Outputs ### BSS/NV/REO_LMH/DLN/PEG $\label{loope} I:\25222259.00\Data\ and\ Calculations\Geotechnical\Slope\ Stability\Tech\ Memo\240405_Tech\ Memo_I-43\ POO\ Modification\ Addendum\ No.\ 1_Stability\ Analysis.docx$ I-43 Plan of Operation Modification - Final Grade Stability Analysis Block Failure-Intercell Berm Analysis Type: Janbu Last Solved Date: 03/27/2024, 04:20:20 PM Factor of Safety: 1.877 | Color | Name | Unit
Weight
(pcf) | Effective
Cohesion
(psf) | Effective
Friction
Angle (°) | Piezometric
Surface | |-------|----------------|-------------------------|--------------------------------|------------------------------------|------------------------| | | CCR | 86 | 0 | 20 | | | | Clay Liner | 130 | 0 | 28 | | | | Drainage Layer | 115 | 0 | 30 | | | | Final Cover | 125 | 0 | 28 | | | | Geosynthetics | 58 | 0 | 19.5 | | | | Subbase | 135 | 0 | 28 | 1 | # Block Failure-Intercell Berm Report generated using GeoStudio 2023.1.1. Copyright © 2023 Bentley Systems, Incorporated. ## **File Information** File Version: 11.05 Title: I-43 Plan of Operation Modification - Final Grade Stability Analysis Created By: Villanueva, Niko Last Edited By: Villanueva, Niko Revision Number: 52 Date: 03/27/2024 Time: 04:16:14 PM Tool Version: 23.1.1.829 File Name: I-43 Proposed Final Grades_Section A_240327.gsz Directory: I:\25222259.00\Data and Calculations\Geotechnical\Slope Stability\SlopeW Analysis\ Last Solved Date: 03/27/2024 Last Solved Time: 04:20:20 PM ## **Project Settings** Unit System: U.S. Customary Units ## **Analysis Settings** #### **Block Failure-Intercell Berm** Kind: SLOPE/W Analysis Type: Janbu Settings PWP Conditions from: Piezometric Surfaces Apply Phreatic Correction: No Use Staged Rapid Drawdown: No Unit Weight of Water: 62.430189 pcf Slip Surface Direction of movement: Left to Right Use Passive Mode: No Slip Surface Option: Block Critical slip surfaces saved: 10 Restrict Block Crossing: No Optimize Critical Slip Surface Location: No Tension Crack Option: (none) Distribution F of S Calculation Option: Constant Convergence **Geometry Settings** Minimum Slip Surface Depth: 0.1 ft Minimum Slip Surface Volume: 35.314667 ft³ Number of Columns: 150 **Factor of Safety Convergence Settings** Maximum Number of Iterations: 100 Tolerable difference in F of S: 0.001 08/15/2025 - Classification: Internal - ECRM13565889 **Under-Relaxation Criteria** Initial Rate: 1 Minimum Rate: 0.1 Rate Reduction Factor: 0.65 Reduction Frequency (iterations): 50 ## **Materials** #### **CCR** Slope Stability Material Model: Mohr-Coulomb Unit Weight: 86 pcf Effective Cohesion: 0 psf Effective Friction Angle: 20 ° Phi-B: 0° ### **Clay Liner** Slope Stability Material Model: Mohr-Coulomb Unit Weight: 130 pcf Effective Cohesion: 0 psf Effective Friction Angle: 28 ° Phi-B: 0° ### **Drainage Layer** Slope Stability Material Model: Mohr-Coulomb Unit Weight: 115 pcf Effective Cohesion: 0 psf Effective Friction Angle: 30 ° Phi-B: 0° ### Geosynthetics Slope Stability Material Model: Mohr-Coulomb Unit Weight: 58 pcf Effective Cohesion: 0 psf Effective Friction Angle: 19.5 ° Phi-B: 0° #### **Subbase** Slope Stability Material Model: Mohr-Coulomb Unit Weight: 135 pcf Effective Cohesion: 0 psf Effective Friction Angle: 28 ° Phi-B: 0° Pore Water Pressure Piezometric Surface: 1 #### **Final Cover** Slope Stability Material Model: Mohr-Coulomb Unit Weight: 125 pcf Effective Cohesion: 0 psf Effective Friction Angle: 28 ° Phi-B: 0° ## **Slip Surface Limits** Left Coordinate: (0, 730.2) ft Right Coordinate: (377.2, 692.2) ft ## **Slip Surface Block** Left Grid Upper Left: (167.74, 682.79) ft Lower Left: (167.74, 682.69) ft Lower Right: (177.24, 682.96) ft X Increments: 10 Y Increments: 4 Starting Angle: 115 ° Ending Angle: 160 ° Angle Increments: 10 Right Grid Upper Left: (177.94, 683.07) ft Lower Left: (177.94, 682.97) ft Lower Right: (182.5, 683.1) ft X Increments: 10 Y Increments: 4 Angle Increments: 10 ## **Piezometric Surfaces** ### Piezometric Surface 1 #### **Coordinates** | | Х | Υ | |--------------|----------|----------| | Coordinate 1 | 0 ft | 676 ft | | Coordinate 2 | 182.5 ft | 681.1 ft | | Coordinate 3 | 201.2 ft | 682.1 ft | | Coordinate 4 | 203.7 ft | 682 ft | | Coordinate 5 | 223.8 ft | 675.8 ft | | Coordinate 6 | 234.9 ft | 675.9 ft | | Coordinate 7 | 263 ft | 684.3 ft | | Coordinate 8 | 377.2 ft | 684 ft | ## Geometry Name: 2D Geometry ### **Settings** View: 2D Element Thickness: 1 ft ### **Points** | | Х | Υ | |---------|------|--------| | Point 1 | 0 ft | 640 ft | | Point 2 | 377.2 ft | 640 ft | |----------|--------------|--------------| | Point 3 | 377.2 ft | 692.2 ft | | Point 4 | 343.6 ft | 695.9 ft | | Point 5 | 302.7 ft | 697.9 ft | | Point 6 | 265.2 ft | 690.1 ft | | Point 7 | 263.1 ft | 689.3 ft | | Point 8 | 263.1 ft | 688.4 ft | | Point 9 | 263.1 ft | 688.3 ft | | Point 10 | 263.1 ft | 684.3 ft | | Point 11 | 234.9 ft | 675.9 ft | | Point 12 | 223.8 ft | 675.8 ft | | Point 13 | 203.7 ft | 682 ft | | Point 14 | 201.2 ft | 682.1 ft | | Point 15 | 201.2 ft | 684.1 ft | | Point 16 | 191.6 ft | 684 ft | | Point 17 | 182.5 ft | 681.1 ft | | Point 18 | 0 ft | 676 ft | | Point 19 | 0 ft | 678 ft | | Point 20 | 182.5 ft | 683.1 ft | | Point 21 | 191.6 ft | 686 ft | | Point 22 | 201.2 ft | 686.1 ft | | Point 23 | 203.7 ft | 686 ft | | Point 24 | 223.8 ft | 679.8 ft | | Point 25 | 234.9 ft | 679.9 ft | | Point 26 | 0 ft | 678.1 ft | | Point 27 | 182.5 ft | 683.2 ft | | Point 28 | 191.6 ft | 686.1 ft | | Point 29 | 201.2 ft | 686.2 ft | | Point 30 | 203.7 ft | 686.1 ft | | Point 31 | 223.8 ft | 679.9 ft | | Point 32 | 234.9 ft | 680 ft | | Point 33 | 0 ft | 679 ft | | Point 34 | 182.5 ft | 684.1 ft | | Point 35 | 191.6 ft | 687 ft | | Point 36 | 201.2 ft | 687.1 ft | | Point 37 | 203.7 ft | 688 ft | | Point 38 | 0 ft | 725.2 ft | |
Point 39 | 113.97399 ft | 726.5815 ft | | Point 40 | 256.51003 ft | 688.33703 ft | | Point 41 | 234.9 ft | 681.9 ft | | Point 42 | 223.8 ft | 681.8 ft | | Point 43 | 0 ft | 730.2 ft | | Point 44 | 113.97399 ft | 731.5815 ft | | Point 45 | 273.22402 ft | 691.769 ft | | | | | # Regions | | Material | Points | Area | |----------|------------|---|------------------------| | Region 1 | Subbase | 1,2,3,4,5,45,6,7,8,9,10,11,12,13,14,15,16,17,18 | 16,534 ft ² | | Region 2 | Clay Liner | 18,19,20,21,22,23,24,25,9,10,11,12,13,14,15,16,17 | 650 ft ² | | Region 3 | Geosynthetics | 19,26,27,28,29,30,31,32,8,9,25,24,23,22,21,20 | 26.31 ft ² | |----------|----------------|---|-------------------------| | Region 4 | Drainage Layer | 26,33,34,35,36,37,30,29,28,27 | 184.58 ft² | | Region 5 | CCR | 33,38,39,7,40,41,42,37,36,35,34 | 8,689.4 ft ² | | Region 6 | Final Cover | 38,39,7,6,45,44,43 | 1,339.4 ft ² | | Region 7 | Drainage Layer | 37,42,41,40,7,8,32,31,30 | 109.57 ft ² | ## **Slip Results** Slip Surfaces Analysed: 302676 of 366025 converged ## **Current Slip Surface** Slip Surface: 290,515 Factor of Safety: 1.877 Volume: 2,302.6823 ft³ Weight: 222,792.19 lbf Resisting Moment: 3,771,783.9 lbf·ft Activating Moment: 1,699,412.1 lbf·ft Resisting Force: 80,759.502 lbf Activating Force: 43,014.985 lbf Slip Rank: 1 of 366,025 slip surfaces Exit: (237.02936, 700.81766) ft Entry: (104.07551, 731.46152) ft Radius: 65.431871 ft Center: (175.84965, 739.12248) ft ### **Slip Columns** | | Х | Y | PWP | Base
Normal
Stress | Frictional
Strength | Cohesive
Strength | Suction
Strength | Base Material | |--------------|-----------------|-----------------|----------|--------------------------|------------------------|----------------------|---------------------|---------------| | Column
1 | 104.53916
ft | 731.15464
ft | 0
psf | 32.895362
psf | 17.490774
psf | 0 psf | 0 psf | Final Cover | | Column
2 | 105.46645
ft | 730.54088
ft | 0
psf | 98.686086
psf | 52.472323
psf | 0 psf | 0 psf | Final Cover | | Column
3 | 106.39374
ft | 729.92712
ft | 0
psf | 164.47681
psf | 87.453871
psf | 0 psf | 0 psf | Final Cover | | Column
4 | 107.32103
ft | 729.31336
ft | 0
psf | 230.26753
psf | 122.43542
psf | 0 psf | 0 psf | Final Cover | | Column
5 | 108.24832
ft | 728.69960
ft | 0
psf | 296.05826
psf | 157.41697
psf | 0 psf | 0 psf | Final Cover | | Column
6 | 109.17561
ft | 728.08584
ft | 0
psf | 361.84898
psf | 192.39852
psf | 0 psf | 0 psf | Final Cover | | Column
7 | 110.10290
ft | 727.47208
ft | 0
psf | 427.63971
psf | 227.38006
psf | 0 psf | 0 psf | Final Cover | | Column
8 | 111.03019
ft | 726.85832
ft | 0
psf | 493.43043
psf | 262.36161
psf | 0 psf | 0 psf | Final Cover | | Column
9 | 111.90719
ft | 726.27784
ft | 0
psf | 575.1492
psf | 209.33719
psf | 0 psf | 0 psf | CCR | | Column
10 | 112.73391
ft | 725.73065
ft | 0
psf | 617.61926
psf | 224.79503
psf | 0 psf | 0 psf | CCR | | Column
11 | 113.56063
ft | 725.18346
ft | 0
psf | 660.08931
psf | 240.25286
psf | 0 psf | 0 psf | CCR | | Column | 114.41638 | 724.61704 | 0 | 695.21258 | 253.03669 | | | | |--------|-----------|-----------|-----|------------|-----------|--------|--------|-----| | 12 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 115.30117 | 724.03141 | 0 | 722.98907 | 263.1465 | | | | | 13 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 116.18596 | 723.44579 | 0 | 750.76555 | 273.25631 | | | | | 14 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 117.07075 | 722.86016 | 0 | 778.54204 | 283.36613 | | | | | 15 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 117.95554 | 722.27453 | 0 | 806.31852 | 293.47594 | | | | | 16 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 118.84033 | 721.68890 | 0 | 834.09501 | 303.58576 | | | | | 17 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 119.72512 | 721.10327 | 0 | 861.8715 | 313.69557 | 1 | 1 | | | 18 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 120.60991 | 720.51764 | 0 | 889.64798 | 323.80539 | _ | _ | | | 19 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 121.49470 | 719.93201 | 0 | 917.42447 | 333.9152 | _ | _ | | | 20 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 122.37949 | 719.34638 | 0 | 945.20096 | 344.02501 | | | | | 21 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 123.26428 | 718.76075 | 0 | 972.97744 | 354.13483 | | | | | 22 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 124.14906 | 718.17512 | 0 | 1,000.7539 | 364.24464 | | | | | 23 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 125.03385 | 717.58949 | 0 | 1,028.5304 | 374.35446 | 0 6 | 0 (| | | 24 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 125.91864 | 717.00387 | 0 | 1,056.3069 | 384.46427 | 0 | 0 | CCD | | 25 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 126.80343 | 716.41824 | 0 | 1,084.0834 | 394.57409 | 0 psf | Onef | CCD | | 26 | ft | ft | psf | psf | psf | U psi | 0 psf | CCR | | Column | 127.68822 | 715.83261 | 0 | 1,111.8599 | 404.6839 | 0 psf | Onef | CCR | | 27 | ft | ft | psf | psf | psf | 0 psi | 0 psf | CCK | | Column | 128.57301 | 715.24698 | 0 | 1,139.6364 | 414.79371 | 0 psf | 0 psf | CCR | | 28 | ft | ft | psf | psf | psf | υ μει | 0 psi | CCK | | Column | 129.45780 | 714.66135 | 0 | 1,167.4128 | 424.90353 | 0 psf | 0 psf | CCR | | 29 | ft | ft | psf | psf | psf | 0 psi | 0 psi | CCI | | Column | 130.34259 | 714.07572 | 0 | 1,195.1893 | 435.01334 | 0 psf | 0 psf | CCR | | 30 | ft | ft | psf | psf | psf | 0 psi | 0 psi | CCI | | Column | 131.22738 | 713.49009 | 0 | 1,222.9658 | 445.12316 | 0 psf | 0 psf | CCR | | 31 | ft | ft | psf | psf | psf | O P31 | O P31 | | | Column | 132.11217 | 712.90446 | 0 | 1,250.7423 | 455.23297 | 0 psf | 0 psf | CCR | | 32 | ft | ft | psf | psf | psf | - Po. | - Po. | | | Column | 132.99696 | 712.31883 | 0 | 1,278.5188 | 465.34279 | 0 psf | 0 psf | CCR | | 33 | ft | ft | psf | psf | psf | 1 100. | - 150. | | | Column | 133.88174 | 711.73320 | 0 | 1,306.2953 | 475.4526 | 0 psf | 0 psf | CCR | | 34 | ft | ft | psf | psf | psf | 1 100. | - 150. | | | Column | 134.76653 | 711.14757 | 0 | 1,334.0718 | 485.56241 | 0 psf | 0 psf | CCR | | 35 | ft | ft | psf | psf | psf | 1 - | 1 | | | Column | 135.65132 | 710.56194 | 0 | 1,361.8483 | 495.67223 | 0 psf | 0 psf | CCR | | 36 | ft | ft | psf | psf | psf | ' | ' | | | Column | 136.53611 | 709.97632 | 0 | 1,389.6247 | 505.78204 | 0 psf | 0 psf | CCR | | 37 | ft | ft | psf | psf | psf | _ ' | _ ' | | | Column | 137.42090 | 709.39069 | 0 | 1,417.4012 | 515.89186 | 0.50 | Oraș | CCD | |--------------|-----------------|-----------------|----------|-------------------|------------------|-------|-------|-----| | 38 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column
39 | 138.30569
ft | 708.80506
ft | 0
psf | 1,445.1777
psf | 526.00167
psf | 0 psf | 0 psf | CCR | | Column
40 | 139.19048
ft | 708.21943
ft | 0
psf | 1,472.9542
psf | 536.11149
psf | 0 psf | 0 psf | CCR | | Column
41 | 140.07527
ft | 707.63380
ft | 0
psf | 1,500.7307
psf | 546.2213
psf | 0 psf | 0 psf | CCR | | Column
42 | 140.96006
ft | 707.04817
ft | 0
psf | 1,528.5072
psf | 556.33111
psf | 0 psf | 0 psf | CCR | | Column
43 | 141.84485
ft | 706.46254
ft | 0
psf | 1,556.2837
psf | 566.44093
psf | 0 psf | 0 psf | CCR | | Column
44 | 142.72964
ft | 705.87691
ft | 0
psf | 1,584.0601
psf | 576.55074
psf | 0 psf | 0 psf | CCR | | Column
45 | 143.61442
ft | 705.29128
ft | 0
psf | 1,611.8366
psf | 586.66056
psf | 0 psf | 0 psf | CCR | | Column
46 | 144.49921
ft | 704.70565
ft | 0
psf | 1,639.6131
psf | 596.77037
psf | 0 psf | 0 psf | CCR | | Column
47 | 145.38400
ft | 704.12002
ft | 0
psf | 1,667.3896
psf | 606.88019
psf | 0 psf | 0 psf | CCR | | Column
48 | 146.26879
ft | 703.53440
ft | 0
psf | 1,695.1661
psf | 616.99 psf | 0 psf | 0 psf | CCR | | Column
49 | 147.15358
ft | 702.94877
ft | 0
psf | 1,722.9426
psf | 627.09981
psf | 0 psf | 0 psf | CCR | | Column
50 | 148.03837
ft | 702.36314
ft | 0
psf | 1,750.7191
psf | 637.20963
psf | 0 psf | 0 psf | CCR | | Column
51 | 148.92316
ft | 701.77751
ft | 0
psf | 1,778.4956
psf | 647.31944
psf | 0 psf | 0 psf | CCR | | Column
52 | 149.80795
ft | 701.19188
ft | 0
psf | 1,806.272
psf | 657.42926
psf | 0 psf | 0 psf | CCR | | Column
53 | 150.69274
ft | 700.60625
ft | 0
psf | 1,834.0485
psf | 667.53907
psf | 0 psf | 0 psf | CCR | | Column
54 | 151.57753
ft | 700.02062
ft | 0
psf | 1,861.825
psf | 677.64889
psf | 0 psf | 0 psf | CCR | | Column
55 | 152.46232
ft | 699.43499
ft | 0
psf | 1,889.6015
psf | 687.7587
psf | 0 psf | 0 psf | CCR | | Column
56 | 153.34710
ft | 698.84936
ft | 0
psf | 1,917.378
psf | 697.86851
psf | 0 psf | 0 psf | CCR | | Column
57 | 154.23189
ft | 698.26373
ft | 0
psf | 1,945.1545
psf | 707.97833
psf | 0 psf | 0 psf | CCR | | Column
58 | 155.11668
ft | 697.67810
ft | 0
psf | 1,972.931
psf | 718.08814
psf | 0 psf | 0 psf | CCR | | Column
59 | 156.00147
ft | 697.09247
ft | 0
psf | 2,000.7074
psf | 728.19796
psf | 0 psf | 0 psf | CCR | | Column
60 | 156.88626
ft | 696.50685
ft | 0
psf | 2,028.4839
psf | 738.30777
psf | 0 psf | 0 psf | CCR | | Column
61 | 157.77105
ft | 695.92122
ft | 0
psf | 2,056.2604
psf | 748.41759
psf | 0 psf | 0 psf | CCR | | Column
62 |
158.65584
ft | 695.33559
ft | 0
psf | 2,084.0369
psf | 758.5274
psf | 0 psf | 0 psf | CCR | | Column
63 | 159.54063
ft | 694.74996
ft | 0
psf | 2,111.8134
psf | 768.63722
psf | 0 psf | 0 psf | CCR | | Column | 160.42542 | 694.16433 | 0 | 2,139.5899 | 778.74703 | 0 psf | 0 psf | CCR | |--------------|-----------------|-----------------|----------|-------------------|-------------------|-------|-------|-------------------| | 64 | ft | ft | psf | psf | psf | υ μει | o psi | CCN | | Column
65 | 161.31021
ft | 693.57870
ft | 0
psf | 2,167.3664
psf | 788.85684
psf | 0 psf | 0 psf | CCR | | Column
66 | 162.19500
ft | 692.99307
ft | 0
psf | 2,195.1429
psf | 798.96666
psf | 0 psf | 0 psf | CCR | | Column
67 | 163.07978
ft | 692.40744
ft | 0
psf | 2,222.9193
psf | 809.07647
psf | 0 psf | 0 psf | CCR | | Column
68 | 163.96457
ft | 691.82181
ft | 0
psf | 2,250.6958
psf | 819.18629
psf | 0 psf | 0 psf | CCR | | Column
69 | 164.84936
ft | 691.23618
ft | 0
psf | 2,278.4723
psf | 829.2961
psf | 0 psf | 0 psf | CCR | | Column
70 | 165.73415
ft | 690.65055
ft | 0
psf | 2,306.2488
psf | 839.40592
psf | 0 psf | 0 psf | CCR | | Column
71 | 166.61894
ft | 690.06493
ft | 0
psf | 2,334.0253
psf | 849.51573
psf | 0 psf | 0 psf | CCR | | Column
72 | 167.50373
ft | 689.47930
ft | 0
psf | 2,361.8018
psf | 859.62554
psf | 0 psf | 0 psf | CCR | | Column
73 | 168.38852
ft | 688.89367
ft | 0
psf | 2,389.5783
psf | 869.73536
psf | 0 psf | 0 psf | CCR | | Column
74 | 169.27331
ft | 688.30804
ft | 0
psf | 2,417.3547
psf | 879.84517
psf | 0 psf | 0 psf | CCR | | Column
75 | 170.15810
ft | 687.72241
ft | 0
psf | 2,445.1312
psf | 889.95499
psf | 0 psf | 0 psf | CCR | | Column
76 | 171.04289
ft | 687.13678
ft | 0
psf | 2,472.9077
psf | 900.0648
psf | 0 psf | 0 psf | CCR | | Column
77 | 171.92768
ft | 686.55115
ft | 0
psf | 2,500.6842
psf | 910.17462
psf | 0 psf | 0 psf | CCR | | Column
78 | 172.81247
ft | 685.96552
ft | 0
psf | 2,528.4607
psf | 920.28443
psf | 0 psf | 0 psf | CCR | | Column
79 | 173.69725
ft | 685.37989
ft | 0
psf | 2,556.2372
psf | 930.39424
psf | 0 psf | 0 psf | CCR | | Column
80 | 174.58204
ft | 684.79426
ft | 0
psf | 2,584.0137
psf | 940.50406
psf | 0 psf | 0 psf | CCR | | Column
81 | 175.46683
ft | 684.20863
ft | 0
psf | 2,611.7902
psf | 950.61387
psf | 0 psf | 0 psf | CCR | | Column
82 | 176.56156
ft | 683.48405
ft | 0
psf | 2,491.5859
psf | 1,438.5178
psf | 0 psf | 0 psf | Drainage
Layer | | Column
83 | 177.66528
ft | 683.04906
ft | 0
psf | 3,021.1325
psf | 1,069.8391
psf | 0 psf | 0 psf | Geosynthetics | | Column
84 | 178.55500
ft | 683.05125
ft | 0
psf | 3,012.1537
psf | 1,066.6596
psf | 0 psf | 0 psf | Geosynthetics | | Column
85 | 179.43167
ft | 683.06208
ft | 0
psf | 2,991.944
psf | 1,059.5029
psf | 0 psf | 0 psf | Geosynthetics | | Column
86 | 180.30833
ft | 683.07292
ft | 0
psf | 2,971.7342
psf | 1,052.3463
psf | 0 psf | 0 psf | Geosynthetics | | Column
87 | 181.18500
ft | 683.08375
ft | 0
psf | 2,951.5245
psf | 1,045.1896
psf | 0 psf | 0 psf | Geosynthetics | | Column
88 | 182.06167
ft | 683.09458
ft | 0
psf | 2,931.3148
psf | 1,038.033
psf | 0 psf | 0 psf | Geosynthetics | | Column
89 | 182.95500
ft | 683.24784
ft | 0
psf | 3,080.818
psf | 1,090.9749
psf | 0 psf | 0 psf | Geosynthetics | | Column
90 | 183.86500
ft | 683.54352
ft | 0
psf | 3,033.0563
psf | 1,074.0616
psf | 0 psf | 0 psf | Geosynthetics | |---------------|-----------------|-----------------|----------|-------------------|-------------------|-------|-------|-------------------| | Column
91 | 184.77500
ft | 683.83919
ft | 0
psf | 2,985.2945
psf | 1,057.1482
psf | 0 psf | 0 psf | Geosynthetics | | Column
92 | 185.68500
ft | 684.13487
ft | 0
psf | 2,937.5328
psf | 1,040.2349
psf | 0 psf | 0 psf | Geosynthetics | | Column
93 | 186.59500
ft | 684.43055
ft | 0
psf | 2,889.771
psf | 1,023.3216
psf | 0 psf | 0 psf | Geosynthetics | | Column
94 | 187.50500
ft | 684.72622
ft | 0
psf | 2,842.0092
psf | 1,006.4083
psf | 0 psf | 0 psf | Geosynthetics | | Column
95 | 188.41500
ft | 685.02190
ft | 0
psf | 2,794.2475
psf | 989.49493
psf | 0 psf | 0 psf | Geosynthetics | | Column
96 | 189.32500
ft | 685.31758
ft | 0
psf | 2,746.4857
psf | 972.58161
psf | 0 psf | 0 psf | Geosynthetics | | Column
97 | 190.23500
ft | 685.61325
ft | 0
psf | 2,698.724
psf | 955.66828
psf | 0 psf | 0 psf | Geosynthetics | | Column
98 | 191.14500
ft | 685.90893
ft | 0
psf | 2,650.9622
psf | 938.75496
psf | 0 psf | 0 psf | Geosynthetics | | Column
99 | 191.66873
ft | 686.07910
ft | 0
psf | 2,624.1061
psf | 929.24469
psf | 0 psf | 0 psf | Geosynthetics | | Column
100 | 192.21440
ft | 686.25640
ft | 0
psf | 2,702.62
psf | 1,560.3584
psf | 0 psf | 0 psf | Drainage
Layer | | Column
101 | 193.16829
ft | 686.56634
ft | 0
psf | 2,640.5546
psf | 1,524.5249
psf | 0 psf | 0 psf | Drainage
Layer | | Column
102 | 194.12217
ft | 686.87627
ft | 0
psf | 2,578.4892
psf | 1,488.6914
psf | 0 psf | 0 psf | Drainage
Layer | | Column
103 | 195.07061
ft | 687.18444
ft | 0
psf | 2,422.1644
psf | 881.59576
psf | 0 psf | 0 psf | CCR | | Column
104 | 196.01359
ft | 687.49083
ft | 0
psf | 2,372.4057
psf | 863.48505
psf | 0 psf | 0 psf | CCR | | Column
105 | 196.95657
ft | 687.79723
ft | 0
psf | 2,322.6469
psf | 845.37434
psf | 0 psf | 0 psf | CCR | | Column
106 | 197.89956
ft | 688.10362
ft | 0
psf | 2,272.8881
psf | 827.26362
psf | 0 psf | 0 psf | CCR | | Column
107 | 198.84254
ft | 688.41001
ft | 0
psf | 2,223.1294
psf | 809.15291
psf | 0 psf | 0 psf | CCR | | Column
108 | 199.78552
ft | 688.71641
ft | 0
psf | 2,173.3706
psf | 791.0422
psf | 0 psf | 0 psf | CCR | | Column
109 | 200.72851
ft | 689.02280
ft | 0
psf | 2,123.6118
psf | 772.93149
psf | 0 psf | 0 psf | CCR | | Column
110 | 201.61667
ft | 689.31138
ft | 0
psf | 2,076.746
psf | 755.87373
psf | 0 psf | 0 psf | CCR | | Column
111 | 202.45000
ft | 689.58215
ft | 0
psf | 2,032.7732
psf | 739.86894
psf | 0 psf | 0 psf | CCR | | Column
112 | 203.28333
ft | 689.85291
ft | 0
psf | 1,988.8004
psf | 723.86414
psf | 0 psf | 0 psf | CCR | | Column
113 | 204.13696
ft | 690.13027
ft | 0
psf | 1,943.7569
psf | 707.46966
psf | 0 psf | 0 psf | CCR | | Column
114 | 205.01087
ft | 690.41422
ft | 0
psf | 1,897.6428
psf | 690.6855
psf | 0 psf | 0 psf | CCR | | Column
115 | 205.88478
ft | 690.69818
ft | 0
psf | 1,851.5287
psf | 673.90134
psf | 0 psf | 0 psf | CCR | | Column
116 | 206.75870
ft | 690.98213
ft | 0
psf | 1,805.4146
psf | 657.11718
psf | 0 psf | 0 psf | CCR | |---------------|-----------------|-----------------|----------|-------------------|------------------|-------|-------|-------------| | Column
117 | 207.63261
ft | 691.26608
ft | 0
psf | 1,759.3005
psf | 640.33302
psf | 0 psf | 0 psf | CCR | | Column
118 | 208.50652
ft | 691.55003
ft | 0
psf | 1,713.1864
psf | 623.54886
psf | 0 psf | 0 psf | CCR | | Column
119 | 209.38043
ft | 691.83398
ft | 0
psf | 1,667.0723
psf | 606.7647
psf | 0 psf | 0 psf | CCR | | Column
120 | 210.25435
ft | 692.11793
ft | 0
psf | 1,620.9582
psf | 589.98054
psf | 0 psf | 0 psf | CCR | | Column
121 | 211.12826
ft | 692.40189
ft | 0
psf | 1,574.8441
psf | 573.19638
psf | 0 psf | 0 psf | CCR | | Column
122 | 212.00217
ft | 692.68584
ft | 0
psf | 1,528.73
psf | 556.41222
psf | 0 psf | 0 psf | CCR | | Column
123 | 212.87609
ft | 692.96979
ft | 0
psf | 1,482.6159
psf | 539.62806
psf | 0 psf | 0 psf | CCR | | Column
124 | 213.75000
ft | 693.25374
ft | 0
psf | 1,436.5018
psf | 522.8439
psf | 0 psf | 0 psf | CCR | | Column
125 | 214.62391
ft | 693.53769
ft | 0
psf | 1,390.3877
psf | 506.05973
psf | 0 psf | 0 psf | CCR | | Column
126 | 215.49783
ft | 693.82164
ft | 0
psf | 1,344.2736
psf | 489.27557
psf | 0 psf | 0 psf | CCR | | Column
127 | 216.37174
ft | 694.10560
ft | 0
psf | 1,298.1595
psf | 472.49141
psf | 0 psf | 0 psf | CCR | | Column
128 | 217.24565
ft | 694.38955
ft | 0
psf | 1,252.0454
psf | 455.70725
psf | 0 psf | 0 psf | CCR | | Column
129 | 218.11957
ft | 694.67350
ft | 0
psf | 1,205.9313
psf | 438.92309
psf | 0 psf | 0 psf | CCR | | Column
130 | 218.99348
ft | 694.95745
ft | 0
psf | 1,159.8172
psf | 422.13893
psf | 0 psf | 0 psf | CCR | | Column
131 | 219.86739
ft | 695.24140
ft | 0
psf | 1,113.7031
psf | 405.35477
psf | 0 psf | 0 psf | CCR | | Column
132 | 220.74130
ft | 695.52535
ft | 0
psf | 1,067.589
psf | 388.57061
psf | 0 psf | 0 psf | CCR | | Column
133 | 221.61522
ft | 695.80930
ft | 0
psf | 1,021.4749
psf | 371.78645
psf | 0 psf | 0 psf | CCR | | Column
134 | 222.48913
ft | 696.09326
ft | 0
psf | 975.36077
psf | 355.00229
psf | 0 psf | 0 psf | CCR | | Column
135 | 223.36304
ft | 696.37721
ft | 0
psf | 929.24667
psf | 338.21813
psf | 0 psf | 0 psf | CCR | | Column
136 | 224.25325
ft | 696.66645
ft | 0
psf |
882.27287
psf | 321.12106
psf | 0 psf | 0 psf | CCR | | Column
137 | 225.15975
ft | 696.96099
ft | 0
psf | 834.43938
psf | 303.7111
psf | 0 psf | 0 psf | CCR | | Column
138 | 226.06624
ft | 697.25553
ft | 0
psf | 786.60589
psf | 286.30113
psf | 0 psf | 0 psf | CCR | | Column
139 | 226.97274
ft | 697.55007
ft | 0
psf | 738.7724
psf | 268.89116
psf | 0 psf | 0 psf | CCR | | Column
140 | 227.87924
ft | 697.84461
ft | 0
psf | 690.93891
psf | 251.4812
psf | 0 psf | 0 psf | CCR | | Column
141 | 228.80159
ft | 698.14430
ft | 0
psf | 651.22169
psf | 346.26071
psf | 0 psf | 0 psf | Final Cover | | Column
142 | 229.73981
ft | 698.44915
ft | 0
psf | 576.96256
psf | 306.77643
psf | 0 psf | 0 psf | Final Cover | |---------------|-----------------|-----------------|----------|------------------|------------------|-------|-------|-------------| | Column
143 | 230.67803
ft | 698.75399
ft | 0
psf | 502.70343
psf | 267.29215
psf | 0 psf | 0 psf | Final Cover | | Column
144 | 231.61624
ft | 699.05883
ft | 0
psf | 428.44429
psf | 227.80787
psf | 0 psf | 0 psf | Final Cover | | Column
145 | 232.55446
ft | 699.36368
ft | 0
psf | 354.18516
psf | 188.32359
psf | 0 psf | 0 psf | Final Cover | | Column
146 | 233.49268
ft | 699.66852
ft | 0
psf | 279.92603
psf | 148.83931
psf | 0 psf | 0 psf | Final Cover | | Column
147 | 234.43089
ft | 699.97337
ft | 0
psf | 205.6669
psf | 109.35503
psf | 0 psf | 0 psf | Final Cover | | Column
148 | 235.43234
ft | 700.29876
ft | 0
psf | 126.403 psf | 67.209668
psf | 0 psf | 0 psf | Final Cover | | Column
149 | 236.49702
ft | 700.64470
ft | 0
psf | 42.134333
psf | 22.403223
psf | 0 psf | 0 psf | Final Cover | I-43 Plan of Operation Modification - Final Grade Stability Analysis Block Failure-Contact Water Swale Analysis Type: Janbu Last Solved Date: 03/27/2024, 04:18:15 PM Factor of Safety: 1.896 | Color | Name | Unit
Weight
(pcf) | Effective
Cohesion
(psf) | Effective
Friction
Angle (°) | Piezometric
Surface | |-------|----------------|-------------------------|--------------------------------|------------------------------------|------------------------| | | CCR | 86 | 0 | 20 | | | | Clay Liner | 130 | 0 | 28 | | | | Drainage Layer | 115 | 0 | 30 | | | | Final Cover | 125 | 0 | 28 | | | | Geosynthetics | 58 | 0 | 19.5 | | | | Subbase | 135 | 0 | 28 | 1 | # Block Failure-Contact Water Swale Report generated using GeoStudio 2023.1.1. Copyright © 2023 Bentley Systems, Incorporated. ### **File Information** File Version: 11.05 Title: I-43 Plan of Operation Modification - Final Grade Stability Analysis Created By: Villanueva, Niko Last Edited By: Villanueva, Niko Revision Number: 52 Date: 03/27/2024 Time: 04:16:14 PM Tool Version: 23.1.1.829 File Name: I-43 Proposed Final Grades_Section A_240327.gsz Directory: I:\25222259.00\Data and Calculations\Geotechnical\Slope Stability\SlopeW Analysis\ Last Solved Date: 03/27/2024 Last Solved Time: 04:18:15 PM ### **Project Settings** Unit System: U.S. Customary Units ### **Analysis Settings** #### **Block Failure-Contact Water Swale** Kind: SLOPE/W Analysis Type: Janbu Settings PWP Conditions from: Piezometric Surfaces Apply Phreatic Correction: No Use Staged Rapid Drawdown: No Unit Weight of Water: 62.430189 pcf Slip Surface Direction of movement: Left to Right Use Passive Mode: No Slip Surface Option: Block Critical slip surfaces saved: 10 Restrict Block Crossing: No Optimize Critical Slip Surface Location: No Tension Crack Option: (none) Distribution F of S Calculation Option: Constant Convergence **Geometry Settings** Minimum Slip Surface Depth: 0.1 ft Minimum Slip Surface Volume: 35.314667 ft³ Number of Columns: 150 **Factor of Safety Convergence Settings** Maximum Number of Iterations: 100 Tolerable difference in F of S: 0.001 **Under-Relaxation Criteria** Initial Rate: 1 Minimum Rate: 0.1 Rate Reduction Factor: 0.65 Reduction Frequency (iterations): 50 ### **Materials** #### **CCR** Slope Stability Material Model: Mohr-Coulomb Unit Weight: 86 pcf Effective Cohesion: 0 psf Effective Friction Angle: 20 ° Phi-B: 0° ### **Clay Liner** Slope Stability Material Model: Mohr-Coulomb Unit Weight: 130 pcf Effective Cohesion: 0 psf Effective Friction Angle: 28 ° Phi-B: 0° ### **Drainage Layer** Slope Stability Material Model: Mohr-Coulomb Unit Weight: 115 pcf Effective Cohesion: 0 psf Effective Friction Angle: 30 ° Phi-B: 0° #### Geosynthetics Slope Stability Material Model: Mohr-Coulomb Unit Weight: 58 pcf Effective Cohesion: 0 psf Effective Friction Angle: 19.5 ° Phi-B: 0° #### **Subbase** Slope Stability Material Model: Mohr-Coulomb Unit Weight: 135 pcf Effective Cohesion: 0 psf Effective Friction Angle: 28 ° Phi-B: 0° Pore Water Pressure Piezometric Surface: 1 #### **Final Cover** Slope Stability Material Model: Mohr-Coulomb Unit Weight: 125 pcf Effective Cohesion: 0 psf Effective Friction Angle: 28 ° Phi-B: 0° ### **Slip Surface Limits** Left Coordinate: (0, 730.2) ft Right Coordinate: (377.2, 692.2) ft # **Slip Surface Block** Left Grid Upper Left: (223.8, 679.9) ft Lower Left: (223.8, 679.8) ft Lower Right: (225.2, 679.81) ft X Increments: 10 Y Increments: 4 Starting Angle: 115 ° Ending Angle: 160 ° Angle Increments: 10 Right Grid Upper Left: (232.55, 679.97) ft Lower Left: (232.55, 679.88) ft Lower Right: (234.9, 679.9) ft X Increments: 10 Y Increments: 4 Angle Increments: 10 ### **Piezometric Surfaces** #### Piezometric Surface 1 #### **Coordinates** | | Х | Υ | |--------------|----------|----------| | Coordinate 1 | 0 ft | 676 ft | | Coordinate 2 | 182.5 ft | 681.1 ft | | Coordinate 3 | 201.2 ft | 682.1 ft | | Coordinate 4 | 203.7 ft | 682 ft | | Coordinate 5 | 223.8 ft | 675.8 ft | | Coordinate 6 | 234.9 ft | 675.9 ft | | Coordinate 7 | 263 ft | 684.3 ft | | Coordinate 8 | 377.2 ft | 684 ft | ### Geometry Name: 2D Geometry ### **Settings** View: 2D Element Thickness: 1 ft #### **Points** | | X | Υ | |---------|------|--------| | Point 1 | 0 ft | 640 ft | | Point 2 | 377.2 ft | 640 ft | |----------|--------------|--------------| | Point 3 | 377.2 ft | 692.2 ft | | Point 4 | 343.6 ft | 695.9 ft | | Point 5 | 302.7 ft | 697.9 ft | | Point 6 | 265.2 ft | 690.1 ft | | Point 7 | 263.1 ft | 689.3 ft | | Point 8 | 263.1 ft | 688.4 ft | | Point 9 | 263.1 ft | 688.3 ft | | Point 10 | 263.1 ft | 684.3 ft | | Point 11 | 234.9 ft | 675.9 ft | | Point 12 | 223.8 ft | 675.8 ft | | Point 13 | 203.7 ft | 682 ft | | Point 14 | 201.2 ft | 682.1 ft | | Point 15 | 201.2 ft | 684.1 ft | | Point 16 | 191.6 ft | 684 ft | | Point 17 | 182.5 ft | 681.1 ft | | Point 18 | 0 ft | 676 ft | | Point 19 | 0 ft | 678 ft | | Point 20 | 182.5 ft | 683.1 ft | | Point 21 | 191.6 ft | 686 ft | | Point 22 | 201.2 ft | 686.1 ft | | Point 23 | 203.7 ft | 686 ft | | Point 24 | 223.8 ft | 679.8 ft | | Point 25 | 234.9 ft | 679.9 ft | | Point 26 | 0 ft | 678.1 ft | | Point 27 | 182.5 ft | 683.2 ft | | Point 28 | 191.6 ft | 686.1 ft | | Point 29 | 201.2 ft | 686.2 ft | | Point 30 | 203.7 ft | 686.1 ft | | Point 31 | 223.8 ft | 679.9 ft | | Point 32 | 234.9 ft | 680 ft | | Point 33 | 0 ft | 679 ft | | Point 34 | 182.5 ft | 684.1 ft | | Point 35 | 191.6 ft | 687 ft | | Point 36 | 201.2 ft | 687.1 ft | | Point 37 | 203.7 ft | 688 ft | | Point 38 | 0 ft | 725.2 ft | | Point 39 | 113.97399 ft | 726.5815 ft | | Point 40 | 256.51003 ft | 688.33703 ft | | Point 41 | 234.9 ft | 681.9 ft | | Point 42 | 223.8 ft | 681.8 ft | | Point 43 | 0 ft | 730.2 ft | | Point 44 | 113.97399 ft | 731.5815 ft | | Point 45 | 273.22402 ft | 691.769 ft | | | • | | # Regions | | Material | Points | Area | |----------|------------|---|------------------------| | Region 1 | Subbase | 1,2,3,4,5,45,6,7,8,9,10,11,12,13,14,15,16,17,18 | 16,534 ft ² | | Region 2 | Clay Liner | 18,19,20,21,22,23,24,25,9,10,11,12,13,14,15,16,17 | 650 ft ² | | Region 3 | Geosynthetics | 19,26,27,28,29,30,31,32,8,9,25,24,23,22,21,20 | 26.31 ft ² | |----------|----------------|---|-------------------------| | Region 4 | Drainage Layer | 26,33,34,35,36,37,30,29,28,27 | 184.58 ft² | | Region 5 | CCR | 33,38,39,7,40,41,42,37,36,35,34 | 8,689.4 ft ² | | Region 6 | Final Cover | 38,39,7,6,45,44,43 | 1,339.4 ft ² | | Region 7 | Drainage Layer | 37,42,41,40,7,8,32,31,30 | 109.57 ft ² | # **Slip Results** Slip Surfaces Analysed: 278762 of 366025 converged # **Current Slip Surface** Slip Surface: 365,306 Factor of Safety: 1.896 Volume: 1,869.0061 ft³ Weight: 188,114.67 lbf Resisting Moment: 3,457,558.8 lbf·ft Activating Moment: 1,372,842.6 lbf·ft Resisting Force: 73,805.371 lbf Activating Force: 38,935.764 lbf Slip Rank: 1 of 366,025 slip surfaces Exit: (261.47267, 694.70684) ft Entry: (111.87312, 731.55603) ft Radius: 69.361184 ft Center: (193.48039, 740.76833) ft ### **Slip Columns** | | Х | Y | PWP | Base
Normal
Stress | Frictional
Strength | Cohesive
Strength | Suction
Strength | Base Material | |--------------|-----------------|-----------------|----------|--------------------------|------------------------|----------------------|---------------------|---------------| | Column
1 | 112.39834
ft | 731.31668
ft | 0
psf | 27.23483
psf | 14.481016
psf | 0 psf | 0 psf | Final Cover | | Column
2 | 113.44877
ft | 730.83797
ft | 0
psf | 81.704491
psf | 43.443048
psf | 0 psf | 0 psf | Final Cover | | Column
3 | 114.46215
ft | 730.37614
ft | 0
psf | 120.07035
psf | 63.842537
psf | 0 psf | 0 psf | Final Cover | | Column
4 | 115.43848
ft | 729.93121
ft | 0
psf | 142.3324
psf | 75.67948
psf | 0 psf | 0 psf | Final Cover | | Column
5 | 116.41480
ft | 729.48627
ft | 0
psf | 164.59445
psf | 87.516424
psf | 0 psf | 0 psf | Final Cover |
| Column
6 | 117.39113
ft | 729.04133
ft | 0
psf | 186.85651
psf | 99.353368
psf | 0 psf | 0 psf | Final Cover | | Column
7 | 118.36745
ft | 728.59640
ft | 0
psf | 209.11856
psf | 111.19031
psf | 0 psf | 0 psf | Final Cover | | Column
8 | 119.34378
ft | 728.15146
ft | 0
psf | 231.38062
psf | 123.02726
psf | 0 psf | 0 psf | Final Cover | | Column
9 | 120.32010
ft | 727.70652
ft | 0
psf | 253.64267
psf | 134.8642
psf | 0 psf | 0 psf | Final Cover | | Column
10 | 121.29643
ft | 727.26159
ft | 0
psf | 275.90472
psf | 146.70114
psf | 0 psf | 0 psf | Final Cover | | Column
11 | 122.27275
ft | 726.81665
ft | 0
psf | 298.16678
psf | 158.53809
psf | 0 psf | 0 psf | Final Cover | | Column | 123.24908 | 726.37171 | 0 | 320.42883 | 170.37503 | | | | |--------------|-----------------|-----------------|----------|------------------|------------------|---------|-------|--------------| | 12 | ft | ft | psf | psf | psf | 0 psf | 0 psf | Final Cover | | Column | 124.22540 | 725.92678 | 0 | 342.69088 | 182.21197 | 0(| 0 (| First Co | | 13 | ft | ft | psf | psf | psf | 0 psf | 0 psf | Final Cover | | Column | 125.20172 | 725.48184 | 0 | 364.95294 | 194.04892 | 0 psf | 0 psf | Final Cover | | 14 | ft | ft | psf | psf | psf | 0 psi | 0 psi | Tillal Cover | | Column | 126.17805 | 725.03690 | 0 | 387.21499 | 205.88586 | 0 psf | 0 psf | Final Cover | | 15 | ft | ft | psf | psf | psf | 0 psi | О рэт | Tillar cover | | Column | 127.15437 | 724.59197 | 0 | 409.47704 | 217.72281 | 0 psf | 0 psf | Final Cover | | 16 | ft | ft | psf | psf | psf | о ро. | о ро. | | | Column | 128.13070 | 724.14703 | 0 | 431.7391 | 229.55975 | 0 psf | 0 psf | Final Cover | | 17 | ft | ft | psf | psf | psf | ' | ' | | | Column | 129.10702 | 723.70209 | 0 | 454.00115 | 241.39669 | 0 psf | 0 psf | Final Cover | | 18 | ft | ft | psf | psf | psf | | | | | Column
19 | 130.08335
ft | 723.25716
ft | 0
psf | 476.2632
psf | 253.23364
psf | 0 psf | 0 psf | Final Cover | | Column | 131.05967 | 722.81222 | 0 | 498.52526 | 265.07058 | | | | | 20 | ft 131.05967 | ft /22.81222 | psf | psf | psf | 0 psf | 0 psf | Final Cover | | Column | 132.03600 | 722.36728 | 0 | 520.78731 | 276.90752 | | | | | 21 | ft | ft | psf | psf | psf | 0 psf | 0 psf | Final Cover | | Column | 133.01232 | 721.92234 | 0 | 543.04936 | 288.74447 | | | | | 22 | ft | ft | psf | psf | psf | 0 psf | 0 psf | Final Cover | | Column | 134.00048 | 721.47202 | 0 | 582.85938 | 212.14346 | | | | | 23 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 135.00047 | 721.01629 | 0 | 599.12849 | 218.06494 | | | | | 24 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 136.00046 | 720.56057 | 0 | 615.3976 | 223.98641 | 0 | Onef | CCD | | 25 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 137.00045 | 720.10485 | 0 | 631.66672 | 229.90788 | 0 psf | 0 psf | CCR | | 26 | ft | ft | psf | psf | psf | 0 psi | o psi | CCN | | Column | 138.00044 | 719.64913 | 0 | 647.93583 | 235.82936 | 0 psf | 0 psf | CCR | | 27 | ft | ft | psf | psf | psf | 0 psi | О рэт | CCI | | Column | 139.00043 | 719.19341 | 0 | 664.20494 | 241.75083 | 0 psf | 0 psf | CCR | | 28 | ft | ft | psf | psf | psf | 1 1 1 1 | | | | Column | 140.00042 | 718.73769 | 0 | 680.47406 | 247.6723 | 0 psf | 0 psf | CCR | | 29 | ft | ft | psf | psf | psf | | | | | Column
30 | 141.00041
ft | 718.28196
ft | 0
psf | 696.74317 | 253.59377
psf | 0 psf | 0 psf | CCR | | Column | 142.00040 | 717.82624 | 0 | psf | | | | | | 31 | ft | ft /17.82824 | psf | 713.01228
psf | 259.51525
psf | 0 psf | 0 psf | CCR | | Column | 143.00039 | 717.37052 | 0 | 729.2814 | 265.43672 | | | | | 32 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 144.00038 | 716.91480 | 0 | 745.55051 | 271.35819 | | | | | 33 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 145.00037 | 716.45908 | 0 | 761.81962 | 277.27967 | | | | | 34 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 146.00036 | 716.00335 | 0 | 778.08874 | 283.20114 | 0 === | 0 === | CCD | | 35 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 147.00035 | 715.54763 | 0 | 794.35785 | 289.12261 | Onef | Onef | CCP | | 36 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 148.00034 | 715.09191 | 0 | 810.62696 | 295.04409 | 0 psf | 0 psf | CCR | | 37 | ft | ft | psf | psf | psf | o pai | o pai | CCIN | | Column
38 | 149.00033
ft | 714.63619
ft | 0
psf | 826.89608
psf | 300.96556
psf | 0 psf | 0 psf | CCR | |--------------|-----------------|-----------------|----------|-------------------|------------------|-------|-------|-----| | Column | 150.00032 | 714.18047 | 0 | 843.16519 | 306.88703 | 0 psf | 0 psf | CCR | | 39 | ft | ft | psf | psf | psf | U psi | o psi | CCR | | Column
40 | 151.00031
ft | 713.72475
ft | 0
psf | 859.4343
psf | 312.8085
psf | 0 psf | 0 psf | CCR | | Column
41 | 152.00030
ft | 713.26902
ft | 0
psf | 875.70342
psf | 318.72998
psf | 0 psf | 0 psf | CCR | | Column
42 | 153.00029
ft | 712.81330
ft | 0
psf | 891.97253
psf | 324.65145
psf | 0 psf | 0 psf | CCR | | Column
43 | 154.00028
ft | 712.35758
ft | 0
psf | 908.24164
psf | 330.57292
psf | 0 psf | 0 psf | CCR | | Column
44 | 155.00027
ft | 711.90186
ft | 0
psf | 924.51076
psf | 336.4944
psf | 0 psf | 0 psf | CCR | | Column
45 | 156.00026
ft | 711.44614
ft | 0
psf | 940.77987
psf | 342.41587
psf | 0 psf | 0 psf | CCR | | Column
46 | 157.00025
ft | 710.99042
ft | 0
psf | 957.04898
psf | 348.33734
psf | 0 psf | 0 psf | CCR | | Column
47 | 158.00024
ft | 710.53469
ft | 0
psf | 973.3181
psf | 354.25882
psf | 0 psf | 0 psf | CCR | | Column
48 | 159.00023
ft | 710.07897
ft | 0
psf | 989.58721
psf | 360.18029
psf | 0 psf | 0 psf | CCR | | Column
49 | 160.00022
ft | 709.62325
ft | 0
psf | 1,005.8563
psf | 366.10176
psf | 0 psf | 0 psf | CCR | | Column
50 | 161.00021
ft | 709.16753
ft | 0
psf | 1,022.1254
psf | 372.02323
psf | 0 psf | 0 psf | CCR | | Column
51 | 162.00020
ft | 708.71181
ft | 0
psf | 1,038.3945
psf | 377.94471
psf | 0 psf | 0 psf | CCR | | Column
52 | 163.00019
ft | 708.25609
ft | 0
psf | 1,054.6637
psf | 383.86618
psf | 0 psf | 0 psf | CCR | | Column
53 | 164.00018
ft | 707.80036
ft | 0
psf | 1,070.9328
psf | 389.78765
psf | 0 psf | 0 psf | CCR | | Column
54 | 165.00017
ft | 707.34464
ft | 0
psf | 1,087.2019
psf | 395.70913
psf | 0 psf | 0 psf | CCR | | Column
55 | 166.00016
ft | 706.88892
ft | 0
psf | 1,103.471
psf | 401.6306
psf | 0 psf | 0 psf | CCR | | Column
56 | 167.00015
ft | 706.43320
ft | 0
psf | 1,119.7401
psf | 407.55207
psf | 0 psf | 0 psf | CCR | | Column
57 | 168.00014
ft | 705.97748
ft | 0
psf | 1,136.0092
psf | 413.47355
psf | 0 psf | 0 psf | CCR | | Column
58 | 169.00013
ft | 705.52175
ft | 0
psf | 1,152.2783
psf | 419.39502
psf | 0 psf | 0 psf | CCR | | Column
59 | 170.00012
ft | 705.06603
ft | 0
psf | 1,168.5475
psf | 425.31649
psf | 0 psf | 0 psf | CCR | | Column
60 | 171.00011
ft | 704.61031
ft | 0
psf | 1,184.8166
psf | 431.23796
psf | 0 psf | 0 psf | CCR | | Column
61 | 172.00010
ft | 704.15459
ft | 0
psf | 1,201.0857
psf | 437.15944
psf | 0 psf | 0 psf | CCR | | Column
62 | 173.00009
ft | 703.69887
ft | 0
psf | 1,217.3548
psf | 443.08091
psf | 0 psf | 0 psf | CCR | | Column
63 | 174.00008
ft | 703.24315
ft | 0
psf | 1,233.6239
psf | 449.00238
psf | 0 psf | 0 psf | CCR | | Column | 175.00007 | 702.78742 | 0 | 1,249.893 | 454.92386 | | | | |--------------|-----------------|-----------------|----------|-------------------|------------------|--------|-------|-----| | 64 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 176.00006 | 702.33170 | 0 | 1,266.1621 | 460.84533 | | | | | 65 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 177.00005 | 701.87598 | 0 | 1,282.4312 | 466.7668 | | | | | 66 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 178.00004 | 701.42026 | 0 | 1,298.7004 | 472.68828 | 0 6 | | | | 67 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 179.00003 | 700.96454 | 0 | 1,314.9695 | 478.60975 | 0 (| 0 (| 000 | | 68 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 180.00002 | 700.50882 | 0 | 1,331.2386 | 484.53122 | 0 (| 0 5 | 000 | | 69 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 181.00001 | 700.05309 | 0 | 1,347.5077 | 490.45269 | 0 = of | Oref | CCD | | 70 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 182.00000 | 699.59737 | 0 | 1,363.7768 | 496.37417 | Onef | Onef | CCD | | 71 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 182.99211 | 699.14525 | 0 | 1,379.9176 | 502.24892 | 0 psf | Onef | CCR | | 72 | ft | ft | psf | psf | psf | U psi | 0 psf | CCR | | Column | 183.97632 | 698.69672 | 0 | 1,395.93 | 508.07695 | 0 psf | 0 psf | CCR | | 73 | ft | ft | psf | psf | psf | o psi | o psi | CCN | | Column | 184.96053 | 698.24818 | 0 | 1,411.9424 | 513.90499 | 0 psf | 0 psf | CCR | | 74 | ft | ft | psf | psf | psf | 0 psi | 0 psi | CCN | | Column | 185.94474 | 697.79965 | 0 | 1,427.9547 | 519.73302 | 0 psf | 0 psf | CCR | | 75 | ft | ft | psf | psf | psf | 0 psi | 0 psi | CCN | | Column | 186.92895 | 697.35112 | 0 | 1,443.9671 | 525.56106 | 0 psf | 0 psf | CCR | | 76 | ft | ft | psf | psf | psf | 0 psi | 0 psi | CCN | | Column | 187.91316 | 696.90259 | 0 | 1,459.9795 | 531.38909 | 0 psf | 0 psf | CCR | | 77 | ft | ft | psf | psf | psf | O P3. | о рол | CON | | Column | 188.89737 | 696.45406 | 0 | 1,475.9919 | 537.21712 | 0 psf | 0 psf |
CCR | | 78 | ft | ft | psf | psf | psf | - P | - P | | | Column | 189.88158 | 696.00553 | 0 | 1,492.0043 | 543.04516 | 0 psf | 0 psf | CCR | | 79 | ft | ft | psf | psf | psf | ' | ' | | | Column | 190.86579 | 695.55700 | 0 | 1,508.0167 | 548.87319 | 0 psf | 0 psf | CCR | | 80 | ft | ft | psf | psf | psf | | | | | Column | 191.85000 | 695.10847 | 0 | 1,524.0291 | 554.70122 | 0 psf | 0 psf | CCR | | 81 | ft | ft | psf | psf | psf | | | | | Column
82 | 192.83421
ft | 694.65994
ft | 0
psf | 1,540.0415
psf | 560.52926
psf | 0 psf | 0 psf | CCR | | | - | - | 0 | <u> </u> | <u> </u> | | | | | Column
83 | 193.81842
ft | 694.21141
ft | psf | 1,556.0539
psf | 566.35729
psf | 0 psf | 0 psf | CCR | | Column | 194.80263 | 693.76288 | 0 | 1,572.0663 | 572.18533 | | | | | 84 | ft 194.80263 | ft 693.76288 | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 195.78684 | 693.31435 | 0 | 1,588.0787 | 578.01336 | | | | | 85 | ft 193.78084 | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 196.77105 | 692.86582 | 0 | 1,604.091 | 583.84139 | | | | | 86 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 197.75526 | 692.41729 | 0 | 1,620.1034 | 589.66943 | | | | | 87 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 198.73947 | 691.96876 | 0 | 1,636.1158 | 595.49746 | 0.5 | 0 | CCD | | 88 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 199.72368 | 691.52023 | 0 | 1,652.1282 | 601.32549 | 0 | 2 0 | CCD | | 89 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | L | | | | | | - | | | | Column
90 | 200.70789
ft | 691.07170
ft | 0
psf | 1,668.1406
psf | 607.15353
psf | 0 psf | 0 psf | CCR | |---------------|-----------------|-----------------|----------|-------------------|-------------------|-------|-------|-------------------| | Column
91 | 201.61667
ft | 690.65754
ft | 0
psf | 1,682.9257
psf | 612.53485
psf | 0 psf | 0 psf | CCR | | Column
92 | 202.45000
ft | 690.27777
ft | 0
psf | 1,696.4834
psf | 617.46946
psf | 0 psf | 0 psf | CCR | | Column
93 | 203.28333
ft | 689.89800
ft | 0
psf | 1,710.0411
psf | 622.40407
psf | 0 psf | 0 psf | CCR | | Column
94 | 204.18328
ft | 689.48787
ft | 0
psf | 1,724.6825
psf | 627.73311
psf | 0 psf | 0 psf | CCR | | Column
95 | 205.14983
ft | 689.04739
ft | 0
psf | 1,740.4077
psf | 633.45659
psf | 0 psf | 0 psf | CCR | | Column
96 | 206.11638
ft | 688.60691
ft | 0
psf | 1,756.1328
psf | 639.18006
psf | 0 psf | 0 psf | CCR | | Column
97 | 207.08294
ft | 688.16642
ft | 0
psf | 1,771.8579
psf | 644.90354
psf | 0 psf | 0 psf | CCR | | Column
98 | 208.04949
ft | 687.72594
ft | 0
psf | 1,787.583
psf | 650.62701
psf | 0 psf | 0 psf | CCR | | Column
99 | 209.01604
ft | 687.28545 | 0
psf | 1,803.3081
psf | 656.35049
psf | 0 psf | 0 psf | CCR | | Column
100 | 209.98260
ft | 686.84497
ft | 0
psf | 1,819.0333
psf | 662.07396
psf | 0 psf | 0 psf | CCR | | Column
101 | 210.94915
ft | 686.40449 | 0
psf | 1,834.7584
psf | 667.79744
psf | 0 psf | 0 psf | CCR | | Column
102 | 211.91570
ft | 685.96400
ft | 0
psf | 1,850.4835
psf | 673.52091
psf | 0 psf | 0 psf | CCR | | Column
103 | 212.88225
ft | 685.52352
ft | 0
psf | 1,866.2086
psf | 679.24439
psf | 0 psf | 0 psf | CCR | | Column
104 | 213.84881
ft | 685.08304
ft | 0
psf | 1,881.9337
psf | 684.96786
psf | 0 psf | 0 psf | CCR | | Column
105 | 214.81536
ft | 684.64255
ft | 0
psf | 1,897.6589
psf | 690.69134
psf | 0 psf | 0 psf | CCR | | Column
106 | 215.77094
ft | 684.20707
ft | 0
psf | 1,828.8156
psf | 1,055.8672
psf | 0 psf | 0 psf | Drainage
Layer | | Column
107 | 216.71553
ft | 683.77660
ft | 0
psf | 1,847.0339
psf | 1,066.3855
psf | 0 psf | 0 psf | Drainage
Layer | | Column
108 | 217.66013
ft | 683.34612
ft | 0
psf | 1,865.2523
psf | 1,076.9039
psf | 0 psf | 0 psf | Drainage
Layer | | Column
109 | 218.60472
ft | 682.91564
ft | 0
psf | 1,883.4707
psf | 1,087.4223
psf | 0 psf | 0 psf | Drainage
Layer | | Column
110 | 219.54932
ft | 682.48516
ft | 0
psf | 1,901.6891
psf | 1,097.9407
psf | 0 psf | 0 psf | Drainage
Layer | | Column
111 | 220.49391
ft | 682.05469
ft | 0
psf | 1,919.9075
psf | 1,108.4591
psf | 0 psf | 0 psf | Drainage
Layer | | Column
112 | 221.43851
ft | 681.62421
ft | 0
psf | 1,938.1259
psf | 1,118.9775
psf | 0 psf | 0 psf | Drainage
Layer | | Column
113 | 222.38311
ft | 681.19373
ft | 0
psf | 1,956.3443
psf | 1,129.4959
psf | 0 psf | 0 psf | Drainage
Layer | | Column
114 | 223.32770
ft | 680.76326
ft | 0
psf | 1,974.5627
psf | 1,140.0143
psf | 0 psf | 0 psf | Drainage
Layer | | Column
115 | 224.49719
ft | 680.23029
ft | 0
psf | 2,002.7551
psf | 1,156.2912
psf | 0 psf | 0 psf | Drainage
Layer | | Column
116 | 225.72219
ft | 679.91557
ft | 0
psf | 2,293.2003
psf | 812.06482
psf | 0 psf | 0 psf | Geosynthetics | |---------------|-----------------|-----------------|----------|-------------------|-------------------|-------|-------|-------------------| | Column
117 | 226.77500
ft | 679.92286
ft | 0
psf | 2,270.8737
psf | 804.15857
psf | 0 psf | 0 psf | Geosynthetics | | Column
118 | 227.82500
ft | 679.93143
ft | 0
psf | 2,247.5011
psf | 795.88188
psf | 0 psf | 0 psf | Geosynthetics | | Column
119 | 228.87500
ft | 679.94000
ft | 0
psf | 2,224.1285
psf | 787.6052
psf | 0 psf | 0 psf | Geosynthetics | | Column
120 | 229.92500
ft | 679.94857
ft | 0
psf | 2,200.7558
psf | 779.32851
psf | 0 psf | 0 psf | Geosynthetics | | Column
121 | 230.97500
ft | 679.95714
ft | 0
psf | 2,177.3832
psf | 771.05183
psf | 0 psf | 0 psf | Geosynthetics | | Column
122 | 232.03382
ft | 679.97021
ft | 0
psf | 2,156.8106
psf | 763.76669
psf | 0 psf | 0 psf | Geosynthetics | | Column
123 | 233.15073
ft | 680.27609
ft | 0
psf | 2,475.6858
psf | 1,429.3379
psf | 0 psf | 0 psf | Drainage
Layer | | Column
124 | 234.31691
ft | 680.87029
ft | 0
psf | 2,365.4885
psf | 1,365.7154
psf | 0 psf | 0 psf | Drainage
Layer | | Column
125 | 235.47690
ft | 681.46133
ft | 0
psf | 2,261.5964
psf | 1,305.7333
psf | 0 psf | 0 psf | Drainage
Layer | | Column
126 | 236.63070
ft | 682.04922
ft | 0
psf | 2,164.0094
psf | 1,249.3914
psf | 0 psf | 0 psf | Drainage
Layer | | Column
127 | 237.78450
ft | 682.63711
ft | 0
psf | 2,066.4225
psf | 1,193.0496
psf | 0 psf | 0 psf | Drainage
Layer | | Column
128 | 238.84752
ft | 683.17875
ft | 0
psf | 1,854.2051
psf | 674.87545
psf | 0 psf | 0 psf | CCR | | Column
129 | 239.81977
ft | 683.67413
ft | 0
psf | 1,783.8141
psf | 649.25524
psf | 0 psf | 0 psf | CCR | | Column
130 | 240.79201
ft | 684.16952
ft | 0
psf | 1,713.4232
psf | 623.63504
psf | 0 psf | 0 psf | CCR | | Column
131 | 241.76426
ft | 684.66490
ft | 0
psf | 1,643.0322
psf | 598.01483
psf | 0 psf | 0 psf | CCR | | Column
132 | 242.73651
ft | 685.16029
ft | 0
psf | 1,572.6413
psf | 572.39463
psf | 0 psf | 0 psf | CCR | | Column
133 | 243.70876
ft | 685.65567
ft | 0
psf | 1,502.2504
psf | 546.77442
psf | 0 psf | 0 psf | CCR | | Column
134 | 244.68101
ft | 686.15106
ft | 0
psf | 1,431.8594
psf | 521.15422
psf | 0 psf | 0 psf | CCR | | Column
135 | 245.65325
ft | 686.64644
ft | 0
psf | 1,361.4685
psf | 495.53401
psf | 0 psf | 0 psf | CCR | | Column
136 | 246.62550
ft | 687.14183
ft | 0
psf | 1,291.0776
psf | 469.91381
psf | 0 psf | 0 psf | CCR | | Column
137 | 247.59775
ft | 687.63721
ft | 0
psf | 1,220.6866
psf | 444.2936
psf | 0 psf | 0 psf | CCR | | Column
138 | 248.57000
ft | 688.13260
ft | 0
psf | 1,150.2957
psf | 418.6734
psf | 0 psf | 0 psf | CCR | | Column
139 | 249.54224
ft | 688.62798
ft | 0
psf | 1,079.9048
psf | 393.05319
psf | 0 psf | 0 psf | CCR | | Column
140 | 250.51449
ft | 689.12337
ft | 0
psf | 1,009.5138
psf | 367.43299
psf | 0 psf | 0 psf | CCR | | Column
141 | 251.48674
ft | 689.61875
ft | 0
psf | 939.12291
psf | 341.81278
psf | 0 psf | 0 psf | CCR | | Column
142 | 252.45899
ft | 690.11414
ft | 0
psf | 868.73197
psf | 316.19258
psf | 0 psf | 0 psf | CCR | |---------------|-----------------|-----------------|----------|------------------|------------------|-------|-------|-------------| | Column
143 | 253.43124
ft | 690.60952
ft | 0
psf | 798.34104
psf | 290.57238
psf | 0 psf | 0 psf | CCR | | Column
144 | 254.40348
ft | 691.10491
ft | 0
psf | 727.9501
psf | 264.95217
psf | 0 psf | 0 psf | CCR | | Column
145 | 255.35983
ft | 691.59219
ft | 0
psf | 677.10021
psf | 360.02057
psf | 0 psf | 0 psf | Final Cover | | Column
146 | 256.30026
ft | 692.07136
ft | 0
psf | 572.93094
psf | 304.63279
psf | 0 psf | 0 psf | Final Cover | | Column
147 | 257.24070
ft | 692.55054
ft | 0
psf | 468.76168
psf | 249.24501
psf | 0 psf | 0 psf | Final Cover | | Column
148 | 258.18114
ft | 693.02972
ft | 0
psf | 364.59242
psf | 193.85723
psf | 0 psf | 0 psf | Final Cover | | Column
149 | 259.12158
ft | 693.50889
ft | 0
psf | 260.42316
psf | 138.46945
psf | 0 psf | 0 psf | Final Cover | | Column
150 | 260.06201
ft | 693.98807
ft | 0
psf | 156.25389
psf | 83.081669
psf | 0 psf | 0 psf | Final Cover | | Column
151 |
261.00245
ft | 694.46725
ft | 0
psf | 52.084631
psf | 27.69389
psf | 0 psf | 0 psf | Final Cover | I-43 Plan of Operation Modification - Final Grade Stability Analysis Optimized Circular Failure Analysis Type: Bishop Last Solved Date: 03/27/2024, 12:28:42 PM Factor of Safety: 1.548 | Color | Name | Unit
Weight
(pcf) | Effective
Cohesion
(psf) | Effective
Friction
Angle (°) | Piezometric
Surface | |-------|----------------|-------------------------|--------------------------------|------------------------------------|------------------------| | | CCR | 86 | 0 | 20 | | | | Clay Liner | 130 | 0 | 28 | | | | Drainage Layer | 115 | 0 | 30 | | | | Final Cover | 125 | 0 | 28 | | | | Geosynthetics | 58 | 0 | 19.5 | | | | Subbase | 135 | 0 | 28 | 1 | # Optimized Circular Failure Report generated using GeoStudio 2023.1.1. Copyright © 2023 Bentley Systems, Incorporated. ### **File Information** File Version: 11.05 Title: I-43 Plan of Operation Modification - Final Grade Stability Analysis Created By: Villanueva, Niko Last Edited By: Villanueva, Niko Revision Number: 50 Date: 03/27/2024 Time: 12:27:25 PM Tool Version: 23.1.1.829 File Name: I-43 Proposed Final Grades_Section A_240327.gsz Directory: I:\25222259.00\Data and Calculations\Geotechnical\Slope Stability\SlopeW Analysis\ Last Solved Date: 03/27/2024 Last Solved Time: 12:28:42 PM ### **Project Settings** Unit System: U.S. Customary Units ### **Analysis Settings** ### **Optimized Circular Failure** Kind: SLOPE/W Analysis Type: Bishop Settings PWP Conditions from: Piezometric Surfaces Apply Phreatic Correction: No Use Staged Rapid Drawdown: No Unit Weight of Water: 62.430189 pcf Slip Surface Direction of movement: Left to Right Use Passive Mode: No Slip Surface Option: Entry and Exit Critical slip surfaces saved: 10 Optimize Critical Slip Surface Location: Yes **Optimizations Settings** Maximum Iterations: 2,000 Starting Points: 8 Ending Points: 16 Driving Side Maximum Convex Angle: 5 ° Resisting Side Maximum Convex Angle: 1 ° Tension Crack Option: (none) Distribution F of S Calculation Option: Constant Convergence **Geometry Settings** Minimum Slip Surface Depth: 0.1 ft Minimum Slip Surface Volume: 35.314667 ft³ Number of Columns: 150 **Factor of Safety Convergence Settings** Maximum Number of Iterations: 100 Tolerable difference in F of S: 0.001 **Under-Relaxation Criteria** Initial Rate: 1 Minimum Rate: 0.1 Rate Reduction Factor: 0.65 Reduction Frequency (iterations): 50 #### **Materials** #### **CCR** Slope Stability Material Model: Mohr-Coulomb Unit Weight: 86 pcf Effective Cohesion: 0 psf Effective Friction Angle: 20 ° Phi-B: 0° #### **Clay Liner** Slope Stability Material Model: Mohr-Coulomb Unit Weight: 130 pcf Effective Cohesion: 0 psf Effective Friction Angle: 28 ° Phi-B: 0° #### **Drainage Layer** Slope Stability Material Model: Mohr-Coulomb Unit Weight: 115 pcf Effective Cohesion: 0 psf Effective Friction Angle: 30 ° Phi-B: 0° ### Geosynthetics Slope Stability Material Model: Mohr-Coulomb Unit Weight: 58 pcf Effective Cohesion: 0 psf Effective Friction Angle: 19.5 ° Phi-B: 0° #### Subbase Slope Stability Material Model: Mohr-Coulomb Unit Weight: 135 pcf Effective Cohesion: 0 psf Effective Friction Angle: 28 ° Phi-B: 0° Pore Water Pressure Piezometric Surface: 1 #### **Final Cover** Slope Stability Material Model: Mohr-Coulomb Unit Weight: 125 pcf 08/15/2025 - Classification: Internal - ECRM13565889 Effective Cohesion: 0 psf Effective Friction Angle: 28 ° Phi-B: 0° # **Slip Surface Entry and Exit** Left Type: Range Left-Zone Left Coordinate: (83.06545, 731.20685) ft Left-Zone Right Coordinate: (147, 723.325) ft Left-Zone Increment: 100 Right Type: Range Right-Zone Left Coordinate: (246.03204, 698.56699) ft Right-Zone Right Coordinate: (293, 695.8824) ft Right-Zone Increment: 100 Radius Increments: 10 # **Slip Surface Limits** Left Coordinate: (0, 730.2) ft Right Coordinate: (377.2, 692.2) ft ### **Piezometric Surfaces** #### Piezometric Surface 1 #### **Coordinates** | | Х | Υ | |--------------|----------|----------| | Coordinate 1 | 0 ft | 676 ft | | Coordinate 2 | 182.5 ft | 681.1 ft | | Coordinate 3 | 201.2 ft | 682.1 ft | | Coordinate 4 | 203.7 ft | 682 ft | | Coordinate 5 | 223.8 ft | 675.8 ft | | Coordinate 6 | 234.9 ft | 675.9 ft | | Coordinate 7 | 263.1 ft | 684.3 ft | | Coordinate 8 | 377.2 ft | 684 ft | ### Geometry Name: 2D Geometry ### **Settings** View: 2D Element Thickness: 1 ft #### **Points** | | X | Υ | |---------|----------|----------| | Point 1 | 0 ft | 640 ft | | Point 2 | 377.2 ft | 640 ft | | Point 3 | 377.2 ft | 692.2 ft | | Point 4 Point 5 Point 6 Point 7 Point 8 Point 9 Point 10 Point 11 | 343.6 ft
302.7 ft
265.2 ft
263.1 ft
263.1 ft
263.1 ft
263.1 ft
263.1 ft
234.9 ft
223.8 ft | 695.9 ft
697.9 ft
690.1 ft
689.3 ft
688.4 ft
688.3 ft
684.3 ft | |---|--|--| | Point 6 Point 7 Point 8 Point 9 Point 10 | 265.2 ft 263.1 ft 263.1 ft 263.1 ft 263.1 ft 263.1 ft 234.9 ft | 690.1 ft
689.3 ft
688.4 ft
688.3 ft | | Point 7 Point 8 Point 9 Point 10 | 263.1 ft
263.1 ft
263.1 ft
263.1 ft
234.9 ft | 689.3 ft
688.4 ft
688.3 ft | | Point 8 Point 9 Point 10 | 263.1 ft
263.1 ft
263.1 ft
234.9 ft | 688.4 ft
688.3 ft | | Point 9
Point 10 | 263.1 ft
263.1 ft
234.9 ft | 688.3 ft | | Point 10 | 263.1 ft
234.9 ft | | | | 234.9 ft | 684.3 ft | | Point 11 | | | | | 223.8 ft | 675.9 ft | | Point 12 | | 675.8 ft | | Point 13 | 203.7 ft | 682 ft | | Point 14 | 201.2 ft | 682.1 ft | | Point 15 | 201.2 ft | 684.1 ft | | Point 16 | 191.6 ft | 684 ft | | Point 17 | 182.5 ft | 681.1 ft | | Point 18 | 0 ft | 676 ft | | Point 19 | 0 ft | 678 ft | | Point 20 | 182.5 ft | 683.1 ft | | Point 21 | 191.6 ft | 686 ft | | Point 22 | 201.2 ft | 686.1 ft | | Point 23 | 203.7 ft | 686 ft | | Point 24 | 223.8 ft | 679.8 ft | | Point 25 | 234.9 ft | 679.9 ft | | Point 26 | 0 ft | 678.1 ft | | Point 27 | 182.5 ft | 683.2 ft | | Point 28 | 191.6 ft | 686.1 ft | | Point 29 | 201.2 ft | 686.2 ft | | Point 30 | 203.7 ft | 686.1 ft | | Point 31 | 223.8 ft | 679.9 ft | | Point 32 | 234.9 ft | 680 ft | | Point 33 | 0 ft | 679 ft | | Point 34 | 182.5 ft | 684.1 ft | | Point 35 | 191.6 ft | 687 ft | | Point 36 | 201.2 ft | 687.1 ft | | Point 37 | 203.7 ft | 688 ft | | Point 38 | 0 ft | 725.2 ft | | Point 39 | 113.97399 ft | 726.5815 ft | | Point 40 | 256.51003 ft | 688.33703 ft | | Point 41 | 234.9 ft | 681.9 ft | | Point 42 | 223.8 ft | 681.8 ft | | Point 43 | 0 ft | 730.2 ft | | Point 44 | 113.97399 ft | 731.5815 ft | | Point 45 | 273.22402 ft | 691.769 ft | # Regions | | Material | Points | Area | |----------|----------------|---|-----------------------| | Region 1 | Subbase | 1,2,3,4,5,45,6,7,8,9,10,11,12,13,14,15,16,17,18 | 16,534 ft² | | Region 2 | Clay Liner | 18,19,20,21,22,23,24,25,9,10,11,12,13,14,15,16,17 | 650 ft ² | | Region 3 | Geosynthetics | 19,26,27,28,29,30,31,32,8,9,25,24,23,22,21,20 | 26.31 ft ² | | Region 4 | Drainage Layer | 26,33,34,35,36,37,30,29,28,27 | 184.58 ft² | | Region 5 | CCR | 33,38,39,7,40,41,42,37,36,35,34 | 8,689.4 ft ² | |----------|----------------|---------------------------------|-------------------------| | Region 6 | Final Cover | 38,39,7,6,45,44,43 | 1,339.4 ft² | | Region 7 | Drainage Layer | 37,42,41,40,7,8,32,31,30 | 109.57 ft ² | # **Slip Results** Slip Surfaces Analysed: 109477 of 112212 converged # **Current Slip Surface** Slip Surface: 112,212 Factor of Safety: 1.548 Volume: 1,151.4271 ft³ Weight: 126,959.35 lbf Resisting Moment: 11,504,102 lbf·ft Activating Moment: 7,429,425.5 lbf·ft Resisting Force: 44,501.749 lbf Activating Force: 29,268.743 lbf Slip Rank: 1 of 112,212 slip surfaces Exit: (265.15225, 693.78694) ft Entry: (113.32553, 731.57364) ft Radius: 68.499226 ft Center: (248.51788, 943.53514) ft ### **Slip Columns** | | x | Y | PWP | Base
Normal
Stress | Frictional
Strength | Cohesive
Strength | Suction
Strength | Base
Material | |--------------|-----------------|-----------------|----------|--------------------------|------------------------|----------------------|---------------------|------------------| | Column
1 | 113.64976
ft | 731.24798
ft | 0
psf | 30.636178
psf | 16.289545
psf | 0 psf | 0 psf | Final
Cover | | Column
2 | 114.45348
ft | 730.44071
ft | 0
psf | 94.896169
psf | 50.457188
psf | 0 psf | 0 psf | Final
Cover | | Column
3 | 115.41246
ft | 729.47749
ft | 0
psf | 162.14379
psf | 86.213384
psf | 0 psf | 0 psf | Final
Cover | | Column
4 | 116.37145
ft | 728.51428
ft | 0
psf | 229.39142
psf | 121.96958
psf | 0 psf | 0 psf | Final
Cover | | Column
5 | 117.33043
ft | 727.55106
ft | 0
psf | 296.63904
psf | 157.72578
psf | 0 psf | 0 psf | Final
Cover | | Column
6 | 118.28941
ft | 726.58785
ft | 0
psf | 363.88667
psf | 193.48197
psf | 0 psf | 0 psf | Final
Cover | | Column
7 | 119.24840
ft | 725.62463
ft | 0
psf | 431.13429
psf | 229.23817
psf | 0 psf | 0 psf | Final
Cover | | Column
8 | 119.75223
ft | 725.11858
ft | 0
psf | 506.93471
psf | 184.50915
psf | 0 psf | 0 psf | CCR | | Column
9 | 120.28447
ft | 724.89090
ft | 0
psf | 580.16643
psf | 211.16331
psf | 0 psf | 0 psf | CCR | | Column
10 | 121.30028
ft | 724.48443
ft | 0
psf | 592.15551
psf | 215.52698
psf | 0 psf | 0 psf | CCR | | Column
11 | 122.31609
ft | 724.07796
ft | 0
psf | 604.14459
psf | 219.89065
psf | 0 psf | 0 psf | CCR | | Column
12 | 123.33189
ft | 723.67149
ft | 0
psf |
616.13367
psf | 224.25432
psf | 0 psf | 0 psf | CCR | | | 1 | | | | | | | | |--------------|-----------------|-----------------|----------|------------------|------------------|-------|-------|-----| | Column
13 | 124.34770
ft | 723.26503
ft | 0
psf | 628.12276
psf | 228.61799
psf | 0 psf | 0 psf | CCR | | Column | 125.36351 | 722.85856 | 0 | 640.11184 | 232.98166 | 0 psf | 0 psf | CCR | | 14
Column | ft 126.37931 | ft 722.45209 | psf
0 | psf
652.10092 | psf
237.34532 | | | | | 15 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column
16 | 127.39512
ft | 722.04563
ft | 0
psf | 664.09 psf | 241.70899
psf | 0 psf | 0 psf | CCR | | Column
17 | 128.41092
ft | 721.63916
ft | 0
psf | 676.07908
psf | 246.07266
psf | 0 psf | 0 psf | CCR | | Column
18 | 129.42673
ft | 721.23269
ft | 0
psf | 688.06816
psf | 250.43633
psf | 0 psf | 0 psf | CCR | | Column
19 | 130.44254
ft | 720.82622
ft | 0
psf | 700.05724
psf | 254.8 psf | 0 psf | 0 psf | CCR | | Column
20 | 131.44273
ft | 720.44124
ft | 0
psf | 715.41991
psf | 260.39155
psf | 0 psf | 0 psf | CCR | | Column | 132.42731 | 720.07774 | 0 | 724.70691 | 263.77174 | 0 psf | 0 psf | CCR | | Column | ft 133.41189 | ft 719.71424 | psf
0 | psf
733.99391 | psf
267.15193 | 0 psf | 0 psf | CCR | | Column | ft 134.39647 | ft 719.35073 | psf
0 | psf
743.2809 | psf
270.53212 | 0 psf | 0 psf | CCR | | 23
Column | ft
135.38106 | ft 718.98723 | psf
0 | psf
752.5679 | psf
273.91231 | 0 psf | 0 psf | CCR | | 24
Column | ft 136.36564 | ft 718.62373 | psf
0 | psf
761.8549 | psf
277.2925 | | | | | 25 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column
26 | 137.35022
ft | 718.26023
ft | 0
psf | 771.14189
psf | 280.6727
psf | 0 psf | 0 psf | CCR | | Column
27 | 138.33480
ft | 717.89673
ft | 0
psf | 780.42889
psf | 284.05289
psf | 0 psf | 0 psf | CCR | | Column
28 | 139.31938
ft | 717.53322
ft | 0
psf | 789.71589
psf | 287.43308
psf | 0 psf | 0 psf | CCR | | Column
29 | 140.30396
ft | 717.16972
ft | 0
psf | 799.00288
psf | 290.81327
psf | 0 psf | 0 psf | CCR | | Column
30 | 141.28854
ft | 716.80622
ft | 0
psf | 808.28988
psf | 294.19346
psf | 0 psf | 0 psf | CCR | | Column
31 | 142.27312
ft | 716.44272
ft | 0
psf | 817.57687
psf | 297.57365
psf | 0 psf | 0 psf | CCR | | Column
32 | 143.25771
ft | 716.07922
ft | 0
psf | 826.86387
psf | 300.95384
psf | 0 psf | 0 psf | CCR | | Column
33 | 144.24229
ft | 715.71571
ft | 0
psf | 836.15087
psf | 304.33403
psf | 0 psf | 0 psf | CCR | | Column
34 | 145.22687
ft | 715.35221
ft | 0 | 845.43786 | 307.71422 | 0 psf | 0 psf | CCR | | Column | 146.21145 | 714.98871 | psf
0 | psf
854.72486 | psf
311.09441 | 0 psf | 0 psf | CCR | | 35
Column | ft 147.19203 | ft 714.65207 | psf
0 | psf
871.76299 | psf
317.29578 | 0 psf | 0 psf | CCR | | 36
Column | ft 148.16861 | ft 714.34228 | psf
0 | psf
877.01669 | psf
319.20797 | | | | | 37 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column | 149.14518 | 714.03249 | 0 | 882.2704 | 321.12016 | | | | | Column | 150.12176 | 713.72270 | 0 | 887.5241 | 323.03236 | 0 psf | 0 psf | CCR | |--------------|-----------------|-----------------|----------|------------------|------------------|----------|----------|------| | 39 | ft | ft | psf | psf | psf | о ра | о ра | Cert | | Column
40 | 151.09834
ft | 713.41292
ft | 0
psf | 892.77781
psf | 324.94455
psf | 0 psf | 0 psf | CCR | | Column
41 | 152.07492
ft | 713.10313
ft | 0
psf | 898.03152
psf | 326.85674
psf | 0 psf | 0 psf | CCR | | Column
42 | 153.05149
ft | 712.79334
ft | 0 | 903.28522 | 328.76893 | 0 psf | 0 psf | CCR | | Column | 154.02807 | 712.48355 | psf
0 | psf
908.53893 | psf
330.68113 | | | | | 43 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column
44 | 154.99993
ft | 712.18105
ft | 0
psf | 915.69988
psf | 333.2875
psf | 0 psf | 0 psf | CCR | | Column
45 | 155.96706
ft | 711.88583
ft | 0
psf | 919.98796
psf | 334.84823
psf | 0 psf | 0 psf | CCR | | Column
46 | 156.93419
ft | 711.59061
ft | 0
psf | 924.27604
psf | 336.40897
psf | 0 psf | 0 psf | CCR | | Column | 157.90133 | 711.29539 | 0 | 928.56412 | 337.9697 | | | | | 47 | ft 157.90155 | ft ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column
48 | 158.86846
ft | 711.00016
ft | 0
psf | 932.8522
psf | 339.53043
psf | 0 psf | 0 psf | CCR | | Column
49 | 159.83560
ft | 710.70494
ft | 0
psf | 937.14028
psf | 341.09117
psf | 0 psf | 0 psf | CCR | | Column
50 | 160.80273
ft | 710.40972
ft | 0
psf | 941.42836
psf | 342.6519
psf | 0 psf | 0 psf | CCR | | Column | 161.76986 | 710.11450 | 0 | 945.71644 | 344.21263 | 0 psf | 0 psf | CCR | | 51 | ft | ft | psf | psf | psf | <u>'</u> | <u>'</u> | | | Column
52 | 162.77145
ft | 709.81460
ft | 0
psf | 952.03993
psf | 346.5142
psf | 0 psf | 0 psf | CCR | | Column
53 | 163.80748
ft | 709.51001
ft | 0
psf | 955.70627
psf | 347.84863
psf | 0 psf | 0 psf | CCR | | Column
54 | 164.84351
ft | 709.20543
ft | 0
psf | 959.37261
psf | 349.18307
psf | 0 psf | 0 psf | CCR | | Column | 165.87954 | 708.90084 | 0 | 963.03895 | 350.51751 | 0 psf | 0 psf | CCR | | 55
Column | ft
166.90076 | ft 708.62504 | psf
0 | psf
975.09128 | psf
354.9042 | 0 psf | 0 psf | CCR | | 56 | ft | ft | psf | psf | psf | 0 100 | 9 601 | | | Column
57 | 167.90716
ft | 708.37802
ft | 0
psf | 974.71902
psf | 354.76871
psf | 0 psf | 0 psf | CCR | | Column
58 | 168.91357
ft | 708.13099
ft | 0
psf | 974.34675
psf | 354.63322
psf | 0 psf | 0 psf | CCR | | Column | 169.91997 | 707.88397 | 0 | 973.97449 | 354.49772 | 0 psf | 0 psf | CCR | | 59
Column | ft 170.92637 | ft 707.63695 | psf
0 | psf
973.60222 | psf
354.36223 | | | | | 60 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column
61 | 171.93277
ft | 707.38993
ft | 0
psf | 973.22996
psf | 354.22674
psf | 0 psf | 0 psf | CCR | | Column
62 | 172.93918
ft | 707.14291
ft | 0
psf | 972.8577
psf | 354.09124
psf | 0 psf | 0 psf | CCR | | Column
63 | 173.94558
ft | 706.89588
ft | 0 | 972.48543 | 353.95575 | 0 psf | 0 psf | CCR | | Column | 174.95198 | 706.64886 | psf
0 | psf
972.11317 | psf
353.82026 | 0 psf | 0 psf | CCR | | 64 | ft | ft | psf | psf | psf | <u> </u> | <u> </u> | | | | | | | | | 1 | | | |--------------------|-----------------|-----------------|----------|------------------|------------------|----------------|----------------|---------| | Column
65 | 175.95838
ft | 706.40184
ft | 0
psf | 971.7409
psf | 353.68476
psf | 0 psf | 0 psf | CCR | | Column | 176.96479 | 706.15482 | 0 | 971.36864 | 353.54927 | Onef | 0.55 | CCD | | 66 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column
67 | 177.97119
ft | 705.90779
ft | 0
psf | 970.99638
psf | 353.41378
psf | 0 psf | 0 psf | CCR | | Column
68 | 178.97759
ft | 705.66077
ft | 0
psf | 970.62411
psf | 353.27829
psf | 0 psf | 0 psf | CCR | | Column
69 | 179.98399
ft | 705.41375
ft | 0
psf | 970.25185
psf | 353.14279
psf | 0 psf | 0 psf | CCR | | Column | 180.99040 | 705.16673 | 0 | 969.87958 | 353.0073 | 0 psf | 0 psf | CCR | | 70
Column | ft
181.99680 | ft 704.91971 | psf
0 | psf
969.50732 | psf
352.87181 | 0 psf | 0 psf | CCR | | 71 | ft 102.05070 | ft 704.70815 | psf
0 | psf | psf | 0 001 | 0 00. | 0011 | | Column
72 | 182.85870
ft | ft | psf | 969.18851
psf | 352.75577
psf | 0 psf | 0 psf | CCR | | Column
73 | 183.73643
ft | 704.49596
ft | 0
psf | 969.94771
psf | 353.03209
psf | 0 psf | 0 psf | CCR | | Column
74 | 184.77450
ft | 704.24765
ft | 0
psf | 969.03451
psf | 352.69972
psf | 0 psf | 0 psf | CCR | | Column
75 | 185.81258
ft | 703.99935
ft | 0
psf | 968.12132
psf | 352.36734
psf | 0 psf | 0 psf | CCR | | Column
76 | 186.85065
ft | 703.75105
ft | 0
psf | 967.20813
psf | 352.03497
psf | 0 psf | 0 psf | CCR | | Column
77 | 187.88873
ft | 703.50275 | 0 | 966.29493 | 351.70259 | 0 psf | 0 psf | CCR | | Column | 188.92680 | 703.25444 | psf
0 | psf
965.38174 | psf
351.37022 | 0 psf | 0 psf | CCR | | 78 | ft
189.93560 | ft 703.01918 | psf
0 | psf
966.65285 | psf
351.83286 | <u>'</u> | <u>'</u> | | | Column
79 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column
80 | 190.91511
ft | 702.79695
ft | 0
psf | 964.80335
psf | 351.1597
psf | 0 psf | 0 psf | CCR | | Column
81 | 191.89462
ft | 702.57472
ft | 0
psf | 962.95386
psf | 350.48654
psf | 0 psf | 0 psf | CCR | | Column
82 | 192.87414
ft | 702.35250
ft | 0
psf | 961.10436
psf | 349.81338
psf | 0 psf | 0 psf | CCR | | Column
83 | 193.85365
ft | 702.13027
ft | 0
psf | 959.25487
psf | 349.14022
psf | 0 psf | 0 psf | CCR | | Column
84 | 194.83316
ft | 701.90805 | 0
psf | 957.40537
psf | 348.46706
psf | 0 psf | 0 psf | CCR | | Column | 195.81268 | 701.68582 | 0 | 955.55587 | 347.7939 | 0 psf | 0 psf | CCR | | 85
Column | ft
196.79219 | ft
701.46359 | psf
0 | psf
953.70638 | psf
347.12073 | 0 psf | 0 psf | CCR | | 86
Column | ft 107 77170 | ft 701 24127 | psf | psf
051 05600 | psf | 0 001 | O P31 | | | Column | 197.77170
ft | 701.24137
ft | 0
psf | 951.85688
psf | 346.44757
psf | 0 psf | 0 psf | CCR | | 87 | | | | 1 | 245 77444 | | 1 | 1 | | 87
Column
88 | 198.75122
ft | 701.01914
ft | 0
psf | 950.00739
psf |
345.77441
psf | 0 psf | 0 psf | CCR | | Column | 198.75122 | | _ | | | 0 psf
0 psf | 0 psf
0 psf | CCR CCR | | Column | 201.82500 | 700.32178 | 0 | 944.20353 | 343.66198 | 0 psf | 0 psf | CCR | |---------------|-----------------|-----------------|----------|------------------|------------------|----------|----------|------| | 91 | ft | ft | psf | psf | psf | 0 100 | 1 0 100 | | | Column
92 | 203.07500
ft | 700.03819
ft | 0
psf | 941.84331
psf | 342.80293
psf | 0 psf | 0 psf | CCR | | Column
93 | 204.21019
ft | 699.78064
ft | 0
psf | 939.69988
psf | 342.02278
psf | 0 psf | 0 psf | CCR | | Column
94 | 205.23056
ft | 699.54915
ft | 0
psf | 937.77323
psf | 341.32154
psf | 0 psf | 0 psf | CCR | | Column | 206.24366 | 699.33135 | 0 | 939.90027 | 342.09572 | | | | | 95 | ft | ft | psf | psf | psf | 0 psf | 0 psf | CCR | | Column
96 | 207.24947
ft | 699.12726
ft | 0
psf | 936.01276
psf | 340.68079
psf | 0 psf | 0 psf | CCR | | Column
97 | 208.25528
ft | 698.92316
ft | 0
psf | 932.12525
psf | 339.26585
psf | 0 psf | 0 psf | CCR | | Column
98 | 209.26109
ft | 698.71907
ft | 0
psf | 928.23774
psf | 337.85091
psf | 0 psf | 0 psf | CCR | | Column
99 | 210.26690
ft | 698.51498
ft | 0
psf | 924.35024
psf | 336.43597
psf | 0 psf | 0 psf | CCR | | Column
100 | 211.27272
ft | 698.31088 | 0
psf | 920.46273
psf | 335.02103
psf | 0 psf | 0 psf | CCR | | Column
101 | 212.27853
ft | 698.10679
ft | 0
psf | 916.57522
psf | 333.6061
psf | 0 psf | 0 psf | CCR | | Column
102 | 213.28434
ft | 697.90269
ft | 0
psf | 912.68771
psf | 332.19116
psf | 0 psf | 0 psf | CCR | | Column
103 | 214.29015
ft | 697.69860
ft | 0 | 908.8002 | 330.77622 | 0 psf | 0 psf | CCR | | Column | 215.29596 | 697.49451 | psf
0 | psf
904.91269 | psf
329.36128 | 0 psf | 0 psf | CCR | | 104
Column | ft 216.30178 | ft
697.29041 | psf
0 | psf
901.02518 | psf
327.94634 | 0 psf | 0 psf | CCR | | 105 | ft | ft | psf | psf | psf | о рол | 0 ps. | 00.1 | | Column
106 | 217.30759
ft | 697.08632
ft | 0
psf | 897.13767
psf | 326.53141
psf | 0 psf | 0 psf | CCR | | Column
107 | 218.31340
ft | 696.88223
ft | 0
psf | 893.25016
psf | 325.11647
psf | 0 psf | 0 psf | CCR | | Column
108 | 219.31921
ft | 696.67813
ft | 0
psf | 889.36265
psf | 323.70153
psf | 0 psf | 0 psf | CCR | | Column
109 | 220.32502
ft | 696.47404
ft | 0
psf | 885.47514
psf | 322.28659
psf | 0 psf | 0 psf | CCR | | Column
110 | 221.32327
ft | 696.28396
ft | 0
psf | 885.59843
psf | 322.33147
psf | 0 psf | 0 psf | CCR | | Column
111 | 222.31396
ft | 696.10791
ft | 0
psf | 879.68619
psf | 320.17959
psf | 0 psf | 0 psf | CCR | | Column
112 | 223.30465
ft | 695.93185
ft | 0
psf | 873.77396
psf | 318.02771
psf | 0 psf | 0 psf | CCR | | Column
113 | 224.16823
ft | 695.77839
ft | 0 | 868.62031 | 316.15194 | 0 psf | 0 psf | CCR | | Column | 225.02936 | 695.63768 | psf
0 | psf
867.35385 | psf
315.69099 | 0 psf | 0 psf | CCR | | 114 | ft 22C 01F17 | ft 605 40713 | psf | psf | psf | <u>'</u> | <u> </u> | | | Column
115 | 226.01517
ft | 695.48713
ft | 0
psf | 859.39196
psf | 312.79309
psf | 0 psf | 0 psf | CCR | | Column
116 | 227.00097
ft | 695.33658
ft | 0
psf | 851.43006
psf | 309.8952
psf | 0 psf | 0 psf | CCR | | Column 227.98678 695.18603 0 843.48817 psf | | | | | | | | | | |--|--------|-----------|-----------|----------|-----------|----------------|----------|----------|------| | Column C | | | | 1 | | | 0 psf | 0 psf | CCR | | 118 | | | | - | | ' | | | | | 119 | | | | psf | | | 0 psf | 0 psf | CCR | | The column 230,94419 694,73438 0 819,58248 298,30363 0 0 0 0 0 0 0 0 0 | | | | | | | 0 psf | 0 psf | CCR | | 120 | | | | <u> </u> | · · | • | - PO- | - | | | Column C | | | | _ | | | 0 psf | 0 psf | CCR | | 121 | | - | | <u> </u> | - | - | | | | | Column 233.04217 694.41610 0 803.08363 292.29854 0 psf 0 psf CCR | | | _ | _ | | | 0 psf | 0 psf | CCR | | 122 | | | 694.41610 | <u> </u> | · · | + - | 0 (| 2 5 | | | 123 | 122 | 1 | | psf | | | 0 pst | 0 psf | CCR | | Column 235.38552 694.0622 0 783.4794 285.16318 0 psf 0 psf CCR | Column | 234.28072 | 694.23117 | 0 | 792.72201 | 288.52722 | 0 nsf | ∩ nsf | CCR | | 124 | | ft | 1.7 | psf | psf | psf | 0 psi | υ μσι | CCN | | Column 236.35655 693.92123 0 775.35581 282.20644 0 psf 0 psf CCR | | 1 | | | | | 0 psf | 0 psf | CCR | | 125 | | 1 1 1 | - | <u> </u> | · · | + - | <u>'</u> | ' | | | Column 126 237.32758 ft 693.77625 ft 0 psf psf psf 767.23222 psf 279.24969 psf 0 psf 0 psf CCR Column 127 ft 238.2862 ft 693.63126 psf 0 759.10862 psf 276.29294 psf 0 psf 0 psf CCR Column 128 ft 239.26965 ft 693.48628 psf 0 750.98503 psf 273.3362 psf 0 psf 0 psf CCR Column 129 ft 693.34130 psf 0 742.86144 psf 270.37945 psf 0 psf 0 psf CCR Column 130 ft 693.19631 psf 0 734.73785 psf 267.42271 psf 0 psf 0 psf CCR Column 130 ft 693.05133 psf 0 726.61425 psf 264.46596 psf 0 psf 0 psf CCR Column 243.15378 psf 692.06355 psf 0 710.36707 psf 258.55247 psf 0 psf 0 psf CCR Column 33 ft 692.76136 psf 0 70.558199 psf 256.81084 psf 0 psf 0 psf CCR Column 4 ft 246.05400 psf 692.51299 psf 0 692.52873 psf 253.05712 psf 0 psf 0 psf CCR <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>0 psf</td> <td>0 psf</td> <td>CCR</td> | | | | _ | | | 0 psf | 0 psf | CCR | | 126 | | | | - | | ' | | | | | Column 127 238.29862 ft 693.63126 ft 0 759.10862 psf 276.29294 psf 0 psf 0 psf CCR Column 128 239.26965 ft 693.48628 psf 0 750.98503 psf 273.3362 psf 0 psf 0 psf CCR Column 129 ft 240.24068 psf 693.34130 psf 0 742.86144 psf 270.37945 psf 0 psf 0 psf 0 psf CCR Column 130 ft 693.319631 psf 0 734.73785 psf 267.42271 psf 0 psf 0 psf 0 psf CCR Column 242.18275 psf 693.05133 psf 0 726.61425 psf 264.46596 psf 0 psf 0 psf 0 psf CCR Column 243.15378 psf 692.90635 psf 0 710.36707 psf 258.55247 psf 0 psf 0 psf 0 psf CCR Column 244.12481 psf 692.63024 psf 0 750.58199 psf 256.81084 psf 0 psf 0 psf 0 psf CCR Column 245.09155 psf 692.63024 psf 0 750.58199 psf 256.81084 psf 0 psf 0 psf 0 psf CCR Column 246.0400 psf 692.27010 psf 0 684.955 | | | _ | _ | | | 0 psf | 0 psf | CCR | | 127 | | 238.29862 | 693.63126 | <u> </u> | - | • | 0 (| 0 (| 665 | | Table Tabl | | | | psf | | | 0 pst | 0 psf | CCR | | Column 241.2171 693.19631 0 742.86144 270.37945 psf | Column | 239.26965 | 693.48628 | 0 | 750.98503 | 273.3362 | 0 pcf | 0 ncf | CCP | | 129 | | | | · · | | ' | 0 psi | 0 psi | CCN | | Column 241.21171 693.19631 0 734.73785 267.42271 0 psf 0 psf CCR | | | | - | | | 0 psf | 0 psf | CCR | | 130 | | | | - | · · | • | - Po- | - P | | | Column 131 242.18275 ft 693.05133 ft 0 psf psf 726.61425 psf 264.46596 psf 0 psf 0 psf CCR Column 132 243.15378 ft 692.90635 ft 0 718.49066 psf 261.50921 psf 0 psf 0 psf CCR Column 133 244.12481 ft 692.76136 ft 0 710.36707 psf 258.55247 psf 0 psf 0 psf CCR Column 134 245.09155 ft 692.63024 psf 0 705.58199 psf 256.81084 psf 0 psf 0 psf CCR Column 135 ft 692.51299 psf 0 695.26873 psf 253.05712 psf 0 psf 0 psf CCR Column 136 ft 692.51299 psf 0 684.95548 psf 249.30341 psf 0 psf 0 psf CCR Column 136 ft 662.239573 psf 0 674.64222 psf 245.54969 psf 0 psf 0 psf CCR Column 137 ft 662.16122 psf 0 643.32897 psf 241.79597 psf 0 psf 0 psf CCR Column 138 ft 249.90377 ft 692.04396 psf 0 643.70246 psf 234.28853 psf 0 psf 0 psf | | 1 | | _ | | | 0 psf | 0 psf | CCR | | 131 ft ft psf psf psf psf O psf O psf CCR Column 132 243.15378 ft 692.90635 ft 0 718.49066 psf 261.50921 psf 0 psf 0 psf CCR Column 133 244.12481 ft 692.76136 ft 0 710.36707 psf 258.55247 psf 0 psf 0 psf CCR Column 245.09155 ft 692.63024 ft 0 705.58199 psf 256.81084 psf 0 psf 0 psf CCR Column 134 ft 692.51299 ft 0
695.26873 psf 253.05712 psf 0 psf 0 psf CCR Column 136 ft ft psf psf psf psf 0 psf 0 psf CCR Column 136 ft ft psf psf psf psf 0 psf 0 psf CCR Column 137 ft ft psf psf psf psf 0 psf 0 psf CCR Column 137 ft ft psf psf psf psf 0 psf 0 psf CCR Colu | | | | H . | · · | ' | | | | | Column 132 243.15378 ft 692.90635 ft 0 psf 718.49066 psf 261.50921 psf 0 psf 0 psf CCR Column 133 244.12481 ft 692.76136 ft 0 710.36707 psf 258.55247 psf 0 psf 0 psf CCR Column 133 245.09155 ft 692.63024 ft 0 705.58199 psf 256.81084 psf 0 psf 0 psf CCR Column 134 246.05400 ft 692.51299 psf 0 695.26873 psf 253.05712 psf 0 psf 0 psf CCR Column 136 247.01644 ft 692.39573 psf 0 684.95548 psf 249.30341 psf 0 psf 0 psf CCR Column 247.97888 ft 692.27847 psf 0 674.64222 psf 245.54969 psf 0 psf 0 psf CCR Column 248.94133 ft 692.16122 psf 0 664.32897 psf 241.79597 psf 0 psf 0 psf CCR Column 139 249.90377 ft 692.04396 psf 0 654.01571 psf 238.04225 psf 0 psf 0 psf CCR Column 260.0000 ft 691.80945 psf 0 643.70246 psf 234.28853 psf 0 ps | | 1 | | _ | | | 0 psf | 0 psf | CCR | | Column 244.12481 692.76136 0 710.36707 258.55247 0 psf 0 psf CCR | Column | 243.15378 | 692.90635 | 1 - | 718.49066 | 261.50921 | 0 | 0(| CCD | | 133 ft ft psf psf psf psf 0 psf CCR Column 134 245.09155 ft 692.63024 ft 0 705.58199 psf 256.81084 psf 0 psf 0 psf CCR Column 135 246.05400 ft 692.51299 psf 0 695.26873 psf 253.05712 psf 0 psf 0 psf CCR Column 136 247.01644 ft 692.39573 psf 0 684.95548 psf 249.30341 psf 0 psf 0 psf CCR Column 136 247.97888 psf 692.27847 psf 0 674.64222 psf 245.54969 psf 0 psf 0 psf CCR Column 138 1t ft psf psf psf psf 0 psf 0 psf CCR Column 138 249.90377 psf 692.04396 psf 0 654.01571 psf 238.04225 psf 0 psf 0 psf CCR Column 140 250.86622 psf 691.92670 psf 0 643.70246 psf 234.28853 psf 0 psf 0 psf CCR Column 140 251.82866 p | 132 | ft | ft | psf | psf | psf | U pst | U pst | CCR | | Column 136 | | 244.12481 | 692.76136 | 0 | 710.36707 | 258.55247 | 0 nsf | 0 nsf | CCR | | 134 ft ft psf psf psf o psf o psf ccr Column 135 246.05400 ft 692.51299 psf 0 695.26873 psf 253.05712 psf 0 psf 0 psf CCR Column 136 247.01644 ft 692.39573 psf 0 684.95548 psf 249.30341 psf 0 psf 0 psf CCR Column 137 247.97888 psf 692.27847 psf 0 674.64222 psf 245.54969 psf 0 psf 0 psf CCR Column 138 248.94133 psf 692.16122 psf 0 664.32897 psf 241.79597 psf 0 psf 0 psf CCR Column 138 249.90377 psf 692.04396 psf 0 654.01571 psf 238.04225 psf 0 psf 0 psf CCR Column 249.90377 psf 691.92670 psf 0 643.70246 psf 234.28853 psf 0 psf 0 psf CCR Column 250.86622 psf 691.80945 psf 0 633.3892 psf 230.53482 psf 0 psf 0 psf 0 psf CCR Column 251.82866 psf <t< td=""><td></td><td></td><td></td><td>-</td><td>· ·</td><td>+ '</td><td>0 psi</td><td>о ры</td><td>CCIT</td></t<> | | | | - | · · | + ' | 0 psi | о ры | CCIT | | Column 135 246.05400 ft 692.51299 ft 0 psf 695.26873 psf 253.05712 psf 0 psf 0 psf CCR Column 136 247.01644 ft 692.39573 ft 0 684.95548 psf 249.30341 psf 0 psf 0 psf 0 psf CCR Column 137 247.97888 ft 692.27847 ft 0 674.64222 psf 245.54969 psf 0 psf 0 psf CCR Column 138 248.94133 ft 692.16122 ft 0 664.32897 psf 241.79597 psf 0 psf 0 psf CCR Column 139 249.90377 ft 692.04396 ft 0 654.01571 psf 238.04225 psf 0 psf 0 psf CCR Column 250.86622 ft 691.92670 ft 0 643.70246 psf 234.28853 psf 0 psf 0 psf CCR Column 251.82866 ft 691.80945 ft 0 633.3892 psf 230.53482 psf 0 psf 0 psf CCR Column 252.79110 691.69219 0 0 623.07595 226.7811 0 psf 0 psf CCR | | | | | | | 0 psf | 0 psf | CCR | | 135 ft ft psf psf psf psf O psf CCR Column 136 247.01644 ft 692.39573 ft 0 684.95548 psf 249.30341 psf 0 psf 0 psf CCR Column 137 247.97888 ft 692.27847 ft 0 674.64222 psf 245.54969 psf 0 psf 0 psf CCR Column 138 248.94133 ft 692.16122 psf 0 664.32897 psf 241.79597 psf 0 psf 0 psf CCR Column 139 249.90377 ft 692.04396 psf 0 654.01571 psf 238.04225 psf 0 psf 0 psf CCR Column 250.86622 ft 691.92670 psf 0 643.70246 psf 234.28853 psf 0 psf 0 psf CCR Column 251.82866 ft 691.80945 ft 0 633.3892 psf 230.53482 psf 0 psf 0 psf CCR Column 252.79110 691.69219 0 0 623.07595 psf 226.7811 psf 0 psf 0 psf CCR | | | | <u> </u> | <u> </u> | - | | <u> </u> | | | Column 136 247.01644 ft 692.39573 ft 0 psf 684.95548 psf 249.30341 psf 0 psf 0 psf CCR Column 137 247.97888 ft 692.27847 ft 0 ft 674.64222 psf 245.54969 psf 0 psf 0 psf CCR Column 138 248.94133 ft 692.16122 ft 0 psf 664.32897 psf 241.79597 psf 0 psf 0 psf CCR Column 139 249.90377 ft 692.04396 ft 0 psf 654.01571 psf 238.04225 psf 0 psf 0 psf CCR Column 140 250.86622 ft 691.92670 ft 0 psf 643.70246 psf 234.28853 psf 0 psf 0 psf CCR Column 140 251.82866 ft 691.80945 ft 0 psf psf 0 psf 0 psf CCR Column 251.82866 ft 691.80945 ft 0 psf psf 0 psf 0 psf CCR Column 252.79110 691.69219 0 623.07595 226.7811 0 psf 0 psf 0 psf CCR | | | | - | | | 0 psf | 0 psf | CCR | | 136 ft ft psf psf psf psf 0 psf CCR Column 137 247.97888 ft 692.27847 ft 0 674.64222 psf 245.54969 psf 0 psf 0 psf CCR Column 138 248.94133 ft 692.16122 psf 0 664.32897 psf 241.79597 psf 0 psf 0 psf CCR Column 139 249.90377 ft 692.04396 psf 0 654.01571 psf 238.04225 psf 0 psf 0 psf CCR Column 140 250.86622 psf 691.92670 psf 0 643.70246 psf 234.28853 psf 0 psf 0 psf CCR Column 140 251.82866 psf 691.80945 psf 0 633.3892 psf 230.53482 psf 0 psf 0 psf CCR Column 252.79110 691.69219 psf 0 623.07595 psf 226.7811 0 psf 0 psf 0 psf CCR | | | | · · | - | ' | | | | | 137 ft ft psf psf psf psf O psf CCR Column 138 248.94133 ft 692.16122 ft 0 664.32897 psf 241.79597 psf 0 psf 0 psf CCR Column 139 249.90377 ft 692.04396 ft 0 654.01571 psf 238.04225 psf 0 psf 0 psf CCR Column 140 250.86622 ft 691.92670 ft 0 643.70246 psf 234.28853 psf 0 psf 0 psf CCR Column 141 251.82866 ft 691.80945 ft 0 633.3892 psf 230.53482 psf 0 psf 0 psf CCR Column 252.79110 691.69219 0 623.07595 226.7811 0 psf 0 psf CCR | | | | - | | | 0 psf | 0 psf | CCR | | Column 248.94133 692.16122 0 664.32897 241.79597 psf 0 psf CCR Column 249.90377 692.04396 0 654.01571 238.04225 psf 0 psf CCR Column 250.86622 691.92670 0 643.70246 psf psf psf psf CCR Column 251.82866 691.80945 0 633.3892 psf psf CCR Column 252.79110 691.69219 0 623.07595 226.7811 0 psf CCR | Column | 247.97888 | 692.27847 | 0 | 674.64222 | 245.54969 | Onef | Onef | CCD | | 138 ft ft psf psf psf psf O psf CCR Column 139 249.90377 ft 692.04396 ft 0 654.01571 psf 238.04225 psf 0 psf 0 psf CCR Column 140 250.86622 ft 691.92670 psf 0 643.70246 psf 234.28853 psf 0 psf 0 psf CCR Column 141 251.82866 ft 691.80945 psf 0 633.3892 psf 230.53482 psf 0 psf 0 psf CCR Column 252.79110 691.69219 0 623.07595 226.7811 0 psf 0 psf CCR | 137 | ft | ft | psf | psf | psf | U pst | U pst | CCR | | Column 249.90377 692.04396 0 654.01571 238.04225 psf 0 psf CCR Column 250.86622 691.92670 0 643.70246 psf psf psf psf psf CCR Column 251.82866 691.80945 0 633.3892 psf | | 248.94133 | 692.16122 | | | | 0 nsf | 0 nsf | CCR | | 139 ft ft psf psf psf o psf o psf ccr Column 140 250.86622 ft 691.92670 ft 0 psf 643.70246 psf 234.28853 psf 0 psf 0 psf ccr Column 141 251.82866 ft 691.80945 psf 0 psf 633.3892 psf 230.53482 psf 0 psf ccr ccr Column 252.79110 691.69219 0 623.07595 226.7811 0 psf 0 psf ccr | | 1 1 1 | - | - | - | • | - P31 | 0 p3i | | | Column 250.86622 691.92670 0 643.70246 234.28853 psf 0 psf CCR Column 251.82866 691.80945 0 633.3892 230.53482 psf 0 psf CCR Column 252.79110 691.69219 0 623.07595 226.7811 0 psf CCR | | | | _ | | | 0 psf | 0 psf | CCR | | 140 ft ft psf psf psf o psf o psf ccr Column 141 251.82866 ft 691.80945 ft 0 psf 633.3892 psf 230.53482 psf 0 psf 0 psf ccr Column 252.79110 691.69219 0 623.07595 226.7811 0 psf 0 psf ccr | | - | - | - | | ' | | | | | Column 141 251.82866 ft 691.80945 psf 0 psf 633.3892 psf 230.53482 psf 0 psf 0 psf CCR Column 252.79110 691.69219 0 623.07595 226.7811 0 psf 0 psf CCR | | | | _ | | | 0 psf | 0 psf | CCR | | 141 ft ft psf psf psf opsf opsf ccr Column 252.79110 691.69219 0 623.07595 226.7811 0 psf 0 psf 0 psf CCR | | | | <u> </u> | | ' | | | | | Column 252.79110 691.69219 0 623.07595 226.7811 0 nsf CCR | | | | | | | 0 psf | 0 psf | CCR | | I I I I I I I I I I I I I I I I I I I | | | | <u> </u> | <u> </u> | - | Oraf | Onef | CCD | | ps. ps. | 142 | ft | ft | psf | psf | psf | U pst | U pst | CCK | | Column
143 | 253.75358
ft | 691.57493
ft | 0
psf | 612.76209
psf | 223.02716
psf | 0 psf | 0 psf | CCR | |---------------|-----------------|-----------------|----------|------------------|------------------|-------|-------|----------------| | Column
144 | 254.72734
ft | 691.61873
ft | 0
psf | 642.68899
psf | 341.7238
psf | 0 psf | 0 psf | Final
Cover | | Column
145 | 255.71236
ft | 691.82360
ft | 0
psf | 581.96321
psf | 309.43533
psf | 0 psf | 0 psf | Final
Cover | | Column
146 | 256.69738
ft | 692.02847
ft | 0
psf | 521.23743
psf | 277.14686
psf | 0 psf | 0 psf | Final
Cover | | Column
147 | 257.68240
ft | 692.23334
ft | 0
psf | 460.51165
psf | 244.85839
psf | 0 psf | 0 psf | Final
Cover | | Column
148 | 258.66742
ft | 692.43820
ft | 0
psf | 399.78587
psf | 212.56992
psf | 0 psf | 0 psf | Final
Cover | | Column
149 | 259.65243
ft | 692.64307
ft | 0
psf | 339.06009
psf | 180.28145
psf | 0 psf | 0 psf | Final
Cover | | Column
150 | 260.63745
ft | 692.84794
ft | 0
psf | 278.33431
psf | 147.99298
psf | 0 psf | 0 psf | Final
Cover | | Column
151 | 261.62247
ft | 693.05281
ft | 0
psf | 217.60853
psf | 115.70451
psf | 0 psf | 0 psf | Final
Cover | | Column
152 | 262.60749
ft | 693.25767
ft | 0
psf | 156.88275
psf | 83.416036
psf | 0 psf | 0 psf | Final
Cover | | Column
153 | 263.61306
ft | 693.46682
ft | 0
psf | 94.889892
psf | 50.453851
psf | 0 psf | 0 psf | Final
Cover | | Column
154 | 264.63919
ft | 693.68023
ft | 0
psf | 31.629964
psf | 16.81795
psf | 0 psf | 0 psf | Final
Cover | # Appendix I
Seepage Potential and Karst Condition Assessment ### **Seepage Potential and Karst Condition Assessment** The disposal facility is designed and constructed to include storm water run-on and run-off management and leachate collection systems. The clay soils below the facility have a low permeability on the order of 5 x 10-8 cm/sec resulting in groundwater levels that are typically within 10 feet of the ground surface. Groundwater monitoring in 2016 and 2017 at monitoring wells adjacent to the facility show downward hydraulic gradients, confirming that groundwater movement resulting in unstable areas is not a concern. There are currently no concerns that storm water, leachate, or groundwater movement will impact the stability of the landfill. As noted in **Appendix E**, karst features were not observed in the borings within and adjacent to the disposal facility. The borings encountered up to 90 feet of predominantly clay till. The total sequence of sediment is about 150 feet thick as indicated by water supply records in the area of the facility. Because of the multiple glacial advances and associated erosional and depositional processes resulting in a thick sediment layer overlying the bedrock, the area is not likely to be unstable due to karstic processes. #### References BT2, Inc., 2008, Plan of Operation, Edgewater I-43 Ash Disposal Facility, Phases 3 and 4. SCS Engineers, 2018, Biennial Groundwater Monitoring Report for 2016-2017, Wisconsin Power and Light Company, Edgewater I-43 Ash Disposal Facility, Sheboygan, Wisconsin. DLN/AJR/EJN MJT, 12/7/2022 $I:\ 25222259.00 \ Deliverables \ Plan\ Modification \ Appendix \ A8_Seepage\ Potential\ and\ Karst\ Condition\ Assessment. docx$