2021 Annual Groundwater Monitoring and Corrective Action Report

Edgewater Generating Station I-43 Ash Disposal Facility Town of Wilson Sheboygan County, Wisconsin

Prepared for:

SCS ENGINEERS

25221069.00 | January 31, 2022

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830

OVERVIEW OF CURRENT STATUS

Edgewater Generating Station, I-43 Ash Disposal Facility 2021 Annual Report

In accordance with $\S257.90(e)(6)$, this section at the beginning of the annual report provides an overview of the current status of groundwater monitoring and corrective action programs for the coal combustion residual (CCR) unit. Supporting information is provided in the text of the annual report.

Category	Rule Requirement	Site Status
Monitoring Status – Start of Year	(i) At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95;	Detection
Monitoring Status – End of Year	(ii) At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95;	Detection
Statistically Significant Increases (SSIs)	(iii) If it was determined that there was an SSI over background for one or more constituents listed in Appendix III to this part pursuant to §257.94(e):	
	(A) Identify those constituents listed in Appendix III to this part and the names of the monitoring wells associated with such an increase; and	April/May 2021 Fluoride: MW-302 Field pH: MW-302 October 2021 None
	(B) Provide the date when the assessment monitoring program was initiated for the CCR unit.	Alternative Source Demonstration prepared for the April 2021 event during 2021. Assessment monitoring not required.

Category	Rule Requirement	Site Status
Statistically Significant Levels (SSL) Above Groundwater Protection	(iv) If it was determined that there was an SSL above the groundwater protection standard for one or more constituents listed in Appendix IV to this part pursuant to §257.95(g) include all of the following:	Not applicable – Appendix IV sampling not required
Standard (GPS)	 (A) Identify those constituents listed in Appendix IV to this part and the names of the monitoring wells associated with such an increase; 	
	(B) Provide the date when the assessment of corrective measures was initiated for the CCR unit;	
	(C) Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and	
	(D) Provide the date when the assessment of corrective measures was completed for the CCR unit.	
Selection of Remedy	(v) Whether a remedy was selected pursuant to §257.97 during the current annual reporting period, and if so, the date of remedy selection; and	Not applicable – Site is in detection monitoring
Corrective Action	(vi) Whether remedial activities were initiated or are ongoing pursuant to §257.98 during the current annual reporting period.	Not applicable – Site is in detection monitoring

Table of Contents

Sect	ion			Page
Oven	view o	f Currer	nt Status	i
1.0	Intro	duction.		1
2.0	Back	ground.		1
	2.1	Geolog	gic and Hydrogeologic Setting	1
		2.1.1	Regional Information	1
		2.1.2	Site Information	2
	2.2	CCR Ru	ule Monitoring System	2
3.0	§257	7.90(e) A	Annual Report Requirements	2
	3.1	§257.9	90(e)(1) Site Map	3
	3.2	§257.9	90(e)(2) Monitoring System Changes	3
	3.3	§257.9	90(e)(3) Summary of Sampling Events	3
	3.4	§257.9	90(e)(4) Monitoring Transition Narrative	3
	3.5	§257.9	90(e)(5) Other Requirements	4
		3.5.1	§257.90(e) General Requirements	4
		3.5.2	§257.94(d) Alternative Detection Monitoring Frequency	5
		3.5.3	§257.94(e)(2) Alternative Source Demonstration for Detection Monitoring	5
		3.5.4	§257.95(c) Alternative Assessment Monitoring Frequency	5
		3.5.5	§257.95(d)(3) Assessment Monitoring Results and Standards	6
		3.5.6	§257.95(g)(3)(ii) Alternative Source Demonstration for Assessment Monito	ring6
		3.5.7	§257.96(a) Extension of Time for Corrective Measures Assessment	
	3.6	§257.9	90(e)(6) Overview	6
4.0	Refe	rences		6
			Tables	
Table	. 1	Gro	oundwater Monitoring Well Network	
Table			R Rule Groundwater Samples Summary	
Table			ater Level Summary	
Table	4.		rizontal Gradients and Flow Velocity	
Table			oundwater Analytical Results Summary	
Table	6.	Gro	oundwater Field Data Summary – 2021	
			Figures	
			Figures	
Figur			e Location Map	
Figur			e Plan and Monitoring Well Locations	
Figur			drock Potentiometric Surface Map – April 13, 2021	
Figur	e 4.	Red	drock Potentiometric Surface Map – October 26, 2021	

Appendices

Appendix A Regional Hydrogeologic Information

Appendix B Boring Logs and Well Construction Documentation

Appendix C Laboratory Reports

C1 April 2021 Detection Monitoring

C2 June 2021 Resample

C3 October 2021 Detection Monitoring

Appendix D Historical Monitoring Results

Appendix E Statistical Evaluation

Appendix F Alternative Source Demonstration – April 2021

 $\label{thm:linear_lin$

1.0 INTRODUCTION

This 2021 Annual Groundwater Monitoring and Corrective Action Report was prepared to support compliance with the groundwater monitoring requirements of the Coal Combustion Residuals (CCR) Rule [40 Code of Federal Regulations (CFR) 257.50-107]. Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.90(e). The applicable sections of the Rule are provided below in italics, followed by applicable information relative to the 2021 Annual Groundwater Monitoring and Corrective Action Report for the CCR Unit.

This report covers the period of groundwater monitoring from January 1, 2021, through December 31, 2021.

The groundwater monitoring system at the Edgewater (EDG) I-43 Ash Disposal Facility (ADF) monitors a single existing CCR Unit:

• EDG I-43 Phase 3, Module 1 and 2, and Phase 4, Module 1 (existing CCR Landfill)

The monitoring system is designed to detect monitored constituents at the waste boundary of the I-43 ADF as required by 40 CFR 257.91(d). The groundwater monitoring system consists of two background wells and three downgradient monitoring wells (**Table 1** and **Figure 2**).

2.0 BACKGROUND

To provide context for the annual report, the following background information is provided in this section of the report, prior to the annual report requirement sections:

- · Geologic and hydrogeologic setting
- CCR Rule monitoring system

2.1 GEOLOGIC AND HYDROGEOLOGIC SETTING

2.1.1 Regional Information

For the purposes of groundwater monitoring, the Niagara Dolomite Aquifer is considered to be the uppermost aquifer unit, as defined under 40 CFR 257.53, at the I-43 ADF. The dolomite aquifer is underlain by the Maquoketa shale, which is a confining unit. The Maquoketa shale is underlain by the Cambrian-Ordovician sandstone aquifer. This sequence of sedimentary bedrock units is over 1,500 feet thick in the area of the I-43 ADF. The sedimentary sequence is underlain by Precambrian crystalline rocks that are not considered an aquifer in eastern Wisconsin. A summary of the regional hydrogeologic stratigraphy is presented in **Appendix A**.

An unconsolidated sand and gravel aquifer is present in some parts of Sheboygan County (Skinner and Borman, 1973), but does not appear laterally extensive.

Regional groundwater flow in the dolomite aquifer, in the vicinity of the site, is to the east or northeast. A map showing the regional water table elevations is included with the regional hydrogeologic information in **Appendix A**.

2.1.2 Site Information

Soils at the site are primarily clay with discontinuous layers of sand and silty sand to a depth of at least 100 feet. During drilling of the CCR wells, the unconsolidated materials were identified as consisting primarily of clay. Zones of sand and gravel are known to be present within the clay, but these appear to be discontinuous, and no nearby private wells screened within the unconsolidated material have been identified. Soils encountered in borings MW-301, MW-302, MW-303, and MW-304 were primarily lean clay, silty clay, and silty sand. The upper 70 feet of soils in boring MW-305 were similar, but in approximately the lower 40 feet above bedrock, sand was the primary soil type. The depth to bedrock in the five wells ranged from approximately 109 feet to 133 feet below ground surface (bgs), and the elevation of the top of bedrock ranged from approximately 568 feet above mean sea level (amsl) to 605 feet amsl. The boring logs, well construction, and well development forms for the I-43 CCR monitoring wells are provided in Appendix B. All CCR monitoring wells are screened within the dolomite bedrock unit.

Shallow groundwater in the clay unit at the site generally flows east to west towards Weedens Creek, a tributary of the Sheboygan River, based on water levels measured under the state monitoring program. The flow direction to the west at the water table is consistent with previous water table maps prepared since the site was developed in the mid-1980s.

In the dolomite aquifer, groundwater flow is generally to the north and northeast as shown on the April and October 2021 bedrock potentiometric surface maps based on groundwater elevations from monitoring wells MW-301 through MW-305 (Figures 3 and 4). The groundwater elevation data for the CCR monitoring wells are provided in Table 3. Calculated horizontal gradients and flow velocities for representative flow paths are provided in Table 4.

2.2 CCR RULE MONITORING SYSTEM

The groundwater monitoring system established in accordance with the CCR Rule consists of two upgradient (background) monitoring wells and three downgradient monitoring wells (**Table 1** and **Figure 2**). The background wells include MW-304 and MW-305. The downgradient wells include MW-301, MW-302, and MW-303. The CCR Rule wells are installed in the upper portion of the dolomite aquifer. Well depths range from approximately 119 to 145 feet, measured from the top of the well casing.

3.0 §257.90(e) ANNUAL REPORT REQUIREMENTS

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by §257.105(h)(1). At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

3.1 §257.90(e)(1) SITE MAP

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

A map of the site location is provided on **Figure 1**. A map with an aerial image showing the I-43 CCR unit, and all background (or upgradient) and downgradient monitoring wells with identification numbers for the groundwater monitoring program, is provided as **Figure 2**.

3.2 §257.90(E)(2) MONITORING SYSTEM CHANGES

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No new monitoring wells were installed and no wells were decommissioned as part of the groundwater monitoring program for the I-43 CCR unit in 2021.

3.3 §257.90(E)(3) SUMMARY OF SAMPLING EVENTS

In addition to all the monitoring data obtained under §§257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

Two semiannual groundwater sampling events and one resampling event were completed in 2021 at the I-43 Landfill. The samples were collected under the detection monitoring program, which was established on October 17, 2017. A summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs is included in **Table 2**.

Groundwater samples collected during the semiannual events, in April and October 2021, were analyzed for the Appendix III constituents. A resample event occurred in June 2021 at well MW-302 for fluoride and wells MW-301 and MW-302 for field pH. The resampling was performed in accordance with the Sampling and Analysis Plan for the site, which allows for 1-of-2 testing for evaluation of statistically significant increases (SSIs) above background in detection monitoring.

The sampling results for Appendix III parameters in 2021 are summarized in **Table 5.** Field parameter results for the 2021 sampling events are provided in **Table 6**. The analytical laboratory reports are provided in **Appendix C**. Historical results for each monitoring well are summarized in **Appendix D**.

3.4 §257.90(E)(4) MONITORING TRANSITION NARRATIVE

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels);

There were no transitions between monitoring programs in 2021. The I-43 Landfill remained in the detection monitoring program.

In 2021, the monitoring results for the October 2020 and April 2021 monitoring events were evaluated for SSIs in detection monitoring parameters relative to background. For all parameters except boron, the comparison to background was based on a prediction limit approach, comparing the results to interwell upper prediction limits (UPLs) based on background monitoring results from the upgradient wells (MW-304 and MW-305). For boron, the comparison to background used intrawell UPLs based on background monitoring results from the compliance wells (MW-301, MW-302 and MW-303). As described in the technical memorandum in **Appendix E**, interwell UPLs were initially used for all Appendix III parameters, but the site transitioned to intrawell evaluation for boron beginning with the October 2018 monitoring event. The change in approach was implemented after determining that natural spatial variability was the most likely cause of boron concentrations slightly above the UPL in two compliance wells in the October 2017 and April 2018 monitoring events. Evidence for this conclusion included long term monitoring data from the state monitoring program, boron monitoring results for water supply wells in the area, the site geology, and the CCR unit construction, as described in more detail in the Alternative Source Demonstrations prepared for these events.

The interwell and intrawell UPLs were most recently updated in January 2021, using background data collected through October 2020 for interwell UPLs and through April 2020 for intrawell UPLs. The Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at Resource Conservation and Recovery Act (RCRA) Facilities (U.S. Environmental Protection Agency, 2009; Section 5.3.1) recommends periodic updating of background for both intrawell and interwell analyses. For semiannual monitoring, an update interval of 2 to 3 years is recommended; therefore, the next UPL update is planned for 2023 or 2024. The UPL calculations are included in **Appendix E**. The UPLs calculated in January 2021 were applied to the evaluation of the October 2020 and April 2021 monitoring results, completed in 2021, and will be applied to the evaluation of the October 2021 monitoring results, to be completed in 2022.

SSIs for fluoride and field pH were observed at MW-302 for the April 2021 monitoring event and June 2021 resampling event. As shown in **Table 5**, one additional individual pH result at MW-301 in April 2021 exceeded the UPL, but the retesting results was below the UPL; therefore, there is no SSI under the 1-of-2 retesting approach established for statistical evaluation at I-43.

3.5 §257.90(E)(5) OTHER REQUIREMENTS

Other information required to be included in the annual report as specified in §§257.90 through 257.98.

Additional potentially applicable requirements for the annual report, and the location of the requirement within the Rule, are provided in the following sections. For each cited section of the Rule, the portion referencing the annual report requirement is provided below in italics, followed by applicable information relative to the 2021 Annual Groundwater Monitoring and Corrective Action Report for the I-43 CCR unit.

3.5.1 §257.90(e) General Requirements

For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year.

Status of Groundwater Monitoring and Corrective Action Program. The groundwater monitoring and corrective action program is currently in detection monitoring.

Summary of Key Actions Completed.

- Statistical evaluation and determination of SSIs for the October 2020 and April 2021 monitoring events.
- Two semiannual groundwater sampling and analysis events (April and October 2021).
- One resample groundwater sampling and analysis event (June 2021).

Description of Any Problems Encountered. No problems were encountered in 2021.

Discussion of Actions to Resolve the Problems. Not applicable.

Projection of Key Activities for the Upcoming Year (2022):

- Statistical evaluation and determination of any SSIs for the October 2021 and April 2022 monitoring events.
- If an SSI is determined, then within 90 days either:
 - Complete alternative source demonstration (if applicable), or
 - Establish an assessment monitoring program.
- Two semiannual groundwater sampling and analysis events (April and October 2022).

3.5.2 §257.94(d) Alternative Detection Monitoring Frequency

The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer in the annual groundwater monitoring and corrective action report required by §257.90(e).

Not applicable. No alternative detection monitoring frequency has been proposed.

3.5.3 §257.94(e)(2) Alternative Source Demonstration for Detection Monitoring

The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by §257.90(e), in addition to the certification by a qualified professional engineer.

The Alternative Source Demonstration (ASD) report prepared to address the SSIs observed for the April 2021 sampling event is provided in **Appendix F**. The ASD report is certified by a qualified professional engineer.

3.5.4 §257.95(c) Alternative Assessment Monitoring Frequency

The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer in the annual groundwater monitoring and corrective action report required by §257.90(e).

Not applicable. Assessment monitoring has not been initiated.

3.5.5 §257.95(d)(3) Assessment Monitoring Results and Standards

Include the recorded concentrations required by paragraph (d)(1) of this section, identify the background concentrations established under §257.94(b), and identify the groundwater protection standards established under paragraph (d)(2) of this section in the annual groundwater monitoring and corrective action report required by §257.90(e).

Not applicable. Assessment monitoring has not been initiated.

3.5.6 §257.95(g)(3)(ii) Alternative Source Demonstration for Assessment Monitoring

The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by §257.90(e), in addition to the certification by a qualified professional engineer.

Not applicable. Assessment monitoring has not been initiated.

3.5.7 §257.96(a) Extension of Time for Corrective Measures Assessment

The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measure due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by §257.90(e), in addition to the certification by a qualified professional engineer.

Not applicable. Corrective measures assessment has not been initiated.

3.6 §257.90(E)(6) OVERVIEW

A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit.

The specific requirements for the overview under §257.90(e)(6) are listed and the information is provided at the beginning of this report, before the Table of Contents.

4.0 REFERENCES

Skinner, Earl L. and Ronald G. Borman, Water Resources of Wisconsin-Lake Michigan Basin,
Department of the Interior United States Geological Survey Hydrogeologic Investigations Atlas
HA-432, 1973.

Tables

- 1. Groundwater Monitoring Well Network
- 2. CCR Rule Groundwater Samples Summary
- 3. Water Level Summary
- 4. Horizontal Gradients and Flow Velocity
- 5. Groundwater Analytical Results Summary
- 6. Groundwater Field Data Summary 2021

Table 1. Groundwater Monitoring Well Network
Edgewater I-43 Landfill / SCS Engineers Project #25221069.00

Monitoring Well	Location in Monitoring Network	Role in Monitoring Network
MW-301	Downgradient	Compliance
MW-302	Downgradient	Compliance
MW-303	Downgradient	Compliance
MW-304	Upgradient	Background
MW-305	Upgradient	Background

 Created by:
 RM
 Date: 12/14/2020

 Last revision by:
 RM
 Date: 1/7/2021

 Checked by:
 NDK
 Date: 1/7/2021

Table 2. CCR Rule Groundwater Samples Summary Edgewater Generating Station I-43 Landfill SCS Engineers Project #25221069.00

Sample Dates	Co MW-301	mpliance W	Background Wells MW-304 MW-305			
4/13/2021	D	D	D	D	D	
6/24/2021	D-R	D-R				
10/26/2021	D	D	D	D	D	
Total Samples	3	3	2	2	2	

Abbreviations:

D = Required by Detection Monitoring Program

D-R = Detection Monitoring Retest Sample

-- = Not Sampled

 Created by:
 MDB
 Date: 12/15/2021

 Last revision by:
 MDB
 Date: 12/22/2021

 Checked by:
 JAO
 Date: 12/22/2021

Table 3. Water Level Summary WPL - I43 / SCS Engineers Project #25221069.00

Well Number	Ground Water Elevation in feet above mean sea level (amsl)								
well Number	MW-301	MW-302	MW-303	MW-304	MW-305				
Top of Casing Elevation (feet amsl)	696.96	702.57	719.25	691.97	717.67				
Screen Length (ft)	5.00	5.00	5.00	5.00	5.00				
Total Depth (ft from top of casing)	134.56	144.33	144.65	119.49	122.97				
Top of Well Screen Elevation (ft)	567.40	563.24	579.60	577.48	600.46				
Measurement Date									
April 8, 2016	692.29	683.61	696.30						
April 26, 2016	653.54	653.56	653.59	655.90					
June 20, 2016	652.01	651.89	651.80	653.79					
August 9, 2016	649.68	649.30	649.37	651.55					
October 19, 2016	652.32	652.38	652.18	654.00					
December 19, 2016	652.85	652.79	652.82	654.26					
January 5, 2017	652.86	652.82	652.80	654.15					
January 23, 2017	652.98	664.97	652.92	654.37					
February 23, 2017	653.14	653.10	653.10	654.49	658.02				
April 7, 2017	654.43	654.72	654.55	654.85	659.65				
June 6, 2017	654.11	654.12	654.14	655.70	659.70				
August 1, 2017	652.64	652.55	652.50	654.49	658.54				
October 23, 2017	652.03	652.05	652.03	653.65	657.22				
April 3, 2018	651.28	651.25	651.30	652.86	656.24				
October 4, 2018	650.71	650.70	650.70	652.26	655.89				
April 8-9, 2019	653.06	654.06	654.06	655.59	659.03				
October 8, 2019	653.26	653.21	653.27	654.77	658.77				
November 26, 2019			655.56						
April 7, 2020	656.59	656.47	656.46	658.16	661.58				
May 20, 2020		655.81							
October 13, 2020	652.16	652.17	652.20	654.17	658.08				
December 18, 2020	653.91	653.88							
April 13, 2021	654.56	654.57	654.53	656.36	659.69				
June 16, 2021	649.78	649.75							
October 26, 2021	650.76	650.88	650.90	652.54	655.86				
Bottom of Well Elevation (ft)	562.40	558.24	574.60	572.48	594.70				

 Notes: -- = not measured
 Created by: NDK
 Date: 1/10/2020

 None
 Last rev. by: REO
 Date: 11/8/2021

 Checked by: MDB
 Date: 11/8/2021

I:\25221069.00\Data and Calculations\Tables\[I43_wlstat_CCR.xls]levels

Table 4. Horizontal Gradients and Flow Velocity Table Edgewater I-43 Landfill SCS Engineers Project #25221069.00 January - December 2021

	North								
Sampling Dates	h1 (ft)	h2 (ft)	ΔI (ft)	Δh/Δl (ft/ft)	V (ft/d)				
4/13/2021	658.0	655.0	1310	0.002	0.10				
10/26/2021	655.0	652.0	1296	0.002	0.10				

Wells	K Value (ft/d)	K Value (ft/d)
MW-301	1.7E-03	4.9
MW-302	4.8E-03	14
MW-303	6.8E-03	19
Geometric		
Mean	3.8E-03	11

Groundwater flow velocity equation: $V = [K^*(\Delta h/\Delta I)] / n$

ft = feet

ft/d = feet per day

K = hydraulic conductivity

n = effective porosity

V = groundwater flow velocity

h1, h2 = point interpreted groundwater

elevations at locations 1 and 2

 ΔI = distance between location 1 and 2

 $\Delta h/\Delta l$ = hydraulic gradient

 Created by: RM
 Date: 12/29/2020

 Last revision by: MDB
 Date: 12/27/2021

 Checked by: RM
 Date: 12/27/2021

Table 5. Groundwater Analytical Results Summary Edgewater I-43 Ash Disposal Facility, Sheboygan, WI / SCS Engineers Project #25221069.00

	Background Wells				Compliance Wells											
		MW-304	MW-304	MW-305	MW-305		M۱	W-301			MV	V-302		MW-303		
Parameter Name	Interwell UPL	4/13/2021	10/26/2021	4/13/2021	10/26/2021	Intrawell UPL	4/13/2021	6/16/2021	10/26/2021	Intrawell UPL	4/13/2021	6/16/2021	10/26/2021	Intrawell UPL	4/13/2021	10/26/2021
Boron, ug/L		91.7	89.8	66.6	67.8	184	132		130	149	121		122	100	84.7	83.3
Calcium, ug/L	103,000	19,700	21,600	86,800	87,800		53,900		30,200		28,700		27,200		29,600	29,300
Chloride, mg/L	24.9	2.1	2.3	25.3	24.9		3.9		3.3		4.1		3.8		4.5	4.2
Fluoride, mg/L	0.753	0.53	0.49	0.67	0.72 J		0.64		0.61		0.76	0.77	0.74		0.62	0.61
Field pH, Std. Units	8.34	8.31	8.12	7.76	7.76		8.48	8.14	8.23		8.36	8.37	8.23		8.26	8.05
Sulfate, mg/L	140	15.3	15.6	127	125		10.2		10.2		17.4		15.9		25.6	28.9
Total Dissolved Solids, mg/L	598	224	218	540	556		238		200		232		220		260	268

4.4 Blue shaded cell indicates the compliance well result exceeds the UPL (background) and the Limit of Quantitation (LOQ).

Abbreviations:

UPL = Upper Prediction Limit SSI = Statistically Significant Increase

ug/L = micrograms per liter mg/L = milligrams per liter LOQ = Limit of Quantitation LOD = Limit of Detection -- = Not Analyzed

Notes:

1. An individual result above the UPL does not constitute an SSI above background. See the accompanying letter text for identification of statistically significant results.

2.Interwell UPLs calculated based on results from background wells MW-304 and MW-305. Interwell UPLs based on 1-of-2 retesting approach. Interwell UPLs were calculated with background results from the May 2016 through the October 2020 sampling event.

3. Following the completion of the April 2018 Alternative Source Demonstration (ASD) Report, dated October 31, 2018, the statistical method for evaluating boron data at the three compliance monitoring wells was modified to an intrawell approach. Intrawell UPLs were caculated using results from the May 2016 through the April 2020 sampling events.

 Created by: NDK
 Date: 1/7/2021

 Last revision by: MDB
 Date: 12/9/2021

 Checked by: JAO
 Date: 12/10/2021

 Proj Mgr QA/QC: TK
 Date: 1/6/2022

I:\25221069.00\Deliverables\2021 Fed CCR Annual Report\Tables\[Table 5 - 2021 GW Analytical Summary.xlsx]Table

Table 6. Groundwater Field Data Summary Edgewater I-43 Ash Disposal Facility / SCS Engineers Project #25221069.00 2021

Well	Sample Date	Groundwater Elevation (feet)	Field Temperature (deg C)	Field pH (Std. Units)	Oxygen, Dissolved (mg/L)	Field Specific Conductance (umhos/cm)	Field Oxidation Potential (mV)	Turbidity (NTU)
MW-301	4/13/2021	654.56	9.10	8.48	0.2	387	-16	179.0
	10/26/2021	650.76	11.20	8.23	1.3	356	291	130.0
MW-302	4/13/2021	654.57	9.20	8.36	0.4	412	189	19.6
	6/24/2021	649.75	10.3	8.37	0.6	386	24	18.1
	10/13/2020	650.88	9.8	8.23	0.6	393	207	38.3
MW-303	4/13/2021	654.53	9.4	8.26	0.5	475	154	<0.02
	10/26/2021	650.90	9.7	8.05	0.6	478	244	71.5
MW-304	4/13/2021	656.36	9.1	8.31	0.5	403	216	<0.02
	10/26/2021	652.54	9.60	8.12	0.6	398	205	96.3
MW-305	4/13/2021	659.69	9.4	7.76	0.8	891	128	0.93
	10/26/2021	655.86	11.0	7.76	1.6	863	136	21.7

 Created by:
 MDB
 Date:
 12/15/2021

 Last revision by:
 MDB
 Date:
 12/15/2021

 Checked by:
 JAO
 Date:
 12/22/2021

Figures

- 1. Site Location Map
- 2. Site Plan and Monitoring Well Locations
- 3. Bedrock Potentiometric Surface Map April 13, 2021
- 4. Bedrock Potentiometric Surface Map October 26, 2021

Appendix A Regional Hydrogeologic Information

Source: Skinner, Earl L. and Ronald G. Borman, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigations Atlas HA-432, 1973.

Regional Groundwater Flow Map - Uppermost Aquifer

Source: Skinner, Earl L. and Ronald G. Borman, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigations Atlas HA-432, 1973.

Table 143-3. Regional Hydrogeologic Stratigraphy Edgewater I-43 Landfill / SCS Engineers Project #25216069

Age	Hydrogeologic Unit	General Thickness (feet)	Name of Rock Unit*	Predominant Lithology
Quaternary	Sand and Gravel	0 to 235	Surface sand and gravel	Sand and Gravel
	Aquifer	0 to 300	Buried sand and gravel	
Devonian	Niagara Dolomite	0 to 750	Dolomite	Dolomite
Silurian	Aquifer	0 10 7 30	(undifferentiated)	Dolonne
	Confining Unit	0 to 400	Maquoketa Shale	Shale and dolomite
Ordovician		100 to 340	Galena Decorah Platteville	Dolomite
		0 to 330	St. Peter	Sandstone
	Sandstone Aquifer	0 to 140	Prairie du Chien	Dolomite
Cambrian		0 to 3,500?	Trempeleau Franconia Galesville Eau Claire Mt. Simon	Sandstone, some Dolomite and Shale
Precambrian	Not an Aquifer	Unknown	Crystalline Rocks	Igneous and metamorphic rocks

Source:

Skinner, Earl L. and Ronald G. Borman, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigations Atlas HA-432, 1973.

Appendix B

Boring Logs and Well Construction Documentation

State of Wisconsin		
Department of Natural	Resources	

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

					2,700	n/Redevelopment	- 4.347							Pa	_	of	6
	ty/Proje					WAR	to the same of the same of	e/Permit	/Monit	oring 1	Number		Boring	Numb		11 20	i.
	L-Edg			of crew	chief (first, last)	SCS#: 25215135.20 and Firm		rilling S	tarted		D	ate Drilli	ing Cor	nnleted		W-30	ing Method
	vin Du			5-2-5-11	and the state of											11700	SA/rotary
	dger S			The same		To avenue	D: 10		5/201		la a		12/19/	2015	-	(n	nud)
WLU	nique W	7864		DNR	R Well ID No.	Common Well Name	Final S	tatic Wa	iter Lev eet	/el	Surfac	e Eleva	tion 40 Fe	ot	Bo		Diameter .0 in.
Local	Grid O			estimated	d: 🗌) or Bo	oring Location 🖂	1.1	10	ò	ú -			Grid Lo			0	.0 111.
	Plane				N, 2,559,679		1	.at				4-21	Feet				Feet \square E
SE		of N	1E	1/4 of S		T 14 N, R 23 E	Lo		I Consti	T	City/ or	17'11					□ W
Facili	ly ID				County Sheboygan		County 0	ode		son T		Village					
Sar	nple				Bheodygan		100	T	17.41	T I			Soil	Prope	erties		
	_		+		Soil	Rock Description						-					
· o	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			ieologic Origin For						Hoi			>		ats
Number and Type	gth	Š	oth In		Ea	ch Major Unit		CS	Graphic		PID/FID	Standard	Moisture	uid iit	Plasticity Index	00	RQD/ Comments
Nu	Ler	Blo	Dep					n S	Grap	Well	P P	Star	Co No	Liquid Limit	Plastic Index	P 200	RQ Cor
	10		Ē	LEA	N CLAY, brown	ı (fill).						lai					
Г			-1					.CJ.									
	17	25	E_2	LEA	N CLAY, red br	own (7.5YR 4/6), moist	t, with					7.0					
SI	17	78	E	fracti	ures, diamicton (ne gravel, stiff, gray coatill).	atings on	1				3.0	М				
H			=3														
		47	E_4							ш		6.51		}			
S2	22	911	E 2							MI		2.25					
L			-5							ш							
	10		E								1						
			F-6														
S3-	24	4 5 8 8	-7							Ш		2.25					
		0.0	E					1		ш							
	1		E-8	Softe	r, brittle, crumble	es.		CL									
S4		24	-9									1.5					
		2.3	Ē	Color	r changes to (10.5	5YR 4/2).		l l									
			=10								1						
			-11								М					1	
			Ē.									1					
			-12							ш							
п			-13	LEAN	NCT AV doub v	addish amou (SVD 4/2)	Gasa.							7 1			
Ш	-			coarso	e sand, fine crum	eddish gray (5YR 4/2), sably texture.	uace			ш							
S5	22	3 4 7 7	E 14									2.25					
Ц			-15														
hereb	y certif	y that		ormation	on this form is t	rue and correct to the be	est of my k	nowled	ge.						-		
Signati	ire	,	70	1-	in	Firm SC	S Engin									Tel: (60	08) 224-2830
Joe 1	Larson	1	M	12/1/	for J.		0 Dairy D		dison,	WI 53	718					(3)	Fax:

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

	g Num nple			V-301 Use only as an attachment to Form 4400-1			-			Soil	Prope		of (
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic Log	Well	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/
			16	LEAN CLAY, red brown, trace coarse sand and fine gravel. Same as above.										
6	24	3 5 8 8	-19 -20 -21	Same except dark brown (7.5YR 4/4).					2.5	М				
7	14	5588	-21 -22 -23 -24 -25	Dark brown (7.5YR 4/2).					1.0					
	24	45	-27 -28 -29 -30	LEAN CLAY, dark brown (7.5YR 4/4), trace medium to coarse sand, few fine sand partings, massive, diamicton (till).	CI.				1.5					
	23	4 5 9 10	-31 -32 -33 -34 -35	Same, massive to indistinctly laminated, trace fine gravel (dolomite), subrounded (till).					1.0	M				
0	24	5 5 8 10	36 37 38 39	Same					1.25					

San	nple									Soil	Prop	ge 3		-
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic	Well	Diagram PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/
S11	24	55	-41 -42 -43 -44 -45 -46	LEAN CLAY, red brown (7.5YR 4/2). Same as above.					1.75	M				
S12	24	57	-48 -49 -50 -51 -52	Same.					0.75					
313	24	67	54 55		α				1.75					
14	24	5 7 10 10	-56 -57 -58 -59 -60						1.75					
15	24	5 6 7 8	-62 -63 -64 -65	Same, except less sand and fine gravel					2.0					

San	-		172 7	V-301 Use only as an attachment to Form 4400-				1		Soil	Prope		of	
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/
П			-66 -67 -68	LEAN CLAY, same as above.	cı.									
5	24	3 8 8 14	-69 -70 -71 -72	SILT, light grey (5YR 6/1), laminated (lake sediment).	ML				2.5					
	18	77	-73 -74 -75	SILTY SAND, grey, fine, with medium to coarse sand, trace fine gravel, mostly very fine sand					0.5					
	12	16 18 23	76	(outwash).	SM									
, []	24	13 9 12 14	-78 -79 -80 -81	LEAN CLAY, dark brown (7.5YR 4/2) with trace fine to coarse sand, fine gravel (sub-rounded dolomite), massive, diamicton, peds have fine crumbling texture.					2.25	М				
	. 24		-82 -83 -84	Same, except less sand and gravel					4.5	М				
	. 24	23	-85 -86 -87		CL				7.0	IVI				
	24	9 14 19							4.0					

San	nple	per		V-301 Use only as an attachment to Form 4400						Soil	Prop		of	
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic Log	Well	Diagram PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
222	24	10 12 14	-91 -92 -93 -94 -95	LEAN CLAY, same as above. Same.	CL.				2.5					
3	22	9 11 15	-97 -98 -99 -100	LEAN CLAY, dark grayish brown (10YR 4/2), massive to very indistinctly laminated, very plastic.					3.0	М				
	24	7.8 10	-102 -103 -104 -105	LEAN CLAY, dark grayish brown (10YR 4/2), massive to indistinclty laminated, very plastic (lake sediment).	CL				1.5	М				
; []	22	8 10 12			d				2.0	М				
	NR		112											

San										Soil	Propo	erties		
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
27	24	WOR	-116 -117 -118 -119	LEAN CLAY, same as above. Thinly laminated (lake sediment).	CL.				3.5	М				Rods dropped
8 -	22	17 20 21	121 121 122	SILT, greyish brown (10YR 5/2), with clay (lake sediment).	ML				2.0	М				
	-9		-124 -125 -126 -127 -128 -129 -130 -131 -132 -133	SILTY GRAVEL, dolomite fragments, grey, with clayey silt (weathered bedrock). DOLOMITE (bedrock).	DOLOMI									S30 sampled chips from 124'-128'. Lost circulation water/murreturning.
			135	End of boring @ 135.0' Checked and edited by: BJS 3/30/2016										

State of Wisconsin Department of Natural Resources

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

				Rem	ediatio	on/Redevelopment	Other											
Facili	ty/Proje	et Nan	ne				License	/Permit	/Monito	oring	Num	ber		Boring	Pag		of '	7
	L-Edg					SCS#: 25215135.20	and the second second	i ciline	TVIOTIL	ormg	. ,	C		Doring	1441110		V-30	2
			Name (of crew chief (firs	st, last	and Firm	Date Dr	illing S	tarted			Da	te Drilli	ng Cor	npleted		100	ing Method
	vin Du Iger S							12/4	1/2015	5				12/7/2	2015			SA/rotary ud)
	nique V).	DNR Well ID	No.	Common Well Nam	e Final St				Su	rfac	e Eleva		.015	Bo		Diameter
		V863						Fe	et					24 Fe		4 9	8.	0 in.
	Grid O Plane	rigin		5,788 N, 2,55		oring Location 9 E S/C/N	L	at	0	7		16	Local C		ation		r	Feet 🗆 E
NE		of S		1/4 of Section	8,	T 14 N, R 23 E	Lor	ıg	٥	1				100			- (3	□ W
Facili	y ID			County			County Co	ode				or V	Village					
Car	nple			Shebo	oygar	1,	60		Wils	on 1	n.	-	-	Soil	Prope	ortios		
Sai		15	1.5		Soil	/Rock Description								3011	Порс	lites		
	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			Geologic Origin For		1.0		1			_ uo	45				st
Number and Type	gth A	S ×	th In	- 4		ach Major Unit		CS	Graphic	1	Diagram	PID/FID	Standard Penetration	Moisture Content	pir it	Plasticity Index	00	RQD/ Comments
Nur	Len	Blo	Dep					C S	Grap	Well	Dia	<u> </u>	Star	Con	Liquid Limit	Plastic Index	P 200	Co.
			E	LEAN CLAY brown (7.5YR	, stron	g brown (7.5YR 4/6) to nottled, trace fine to coa	dark urse sand.		TE									
Г			1	1.5	2000	247644.224.225				П								
	13	36	-2					}		ш			3.7	М				
SI	13	8 10	E							П			3.7	IVI				
ŀ			-3	LEAN CLAY	, brow	n (7.5YR 4/4), trace sm	all, fine to			н								
S2	11	36	-4	fill @5' very h	d fine ard, d	gravel, possible clay an ry, diamicton (till).	d gravel			П	Ш		3.5	М			1	
32	10	3 6 9 11	E						1		U		5.5	141				
L			-5															
			-6							П								
			E	LEAN CLAY	, mottl	ed, strong brown (7.5Y	R 4/6) and			ш								
S3	18	5 8 10 14	-7 -	brown, trace fi	ine to	coarse sand, fine gravel,	very	CL					2.5-	M				
			_8	winging means	().			- San						10			1	
			E						1 3									
S4	15	4 4 7 8	-9							1	115		2.0	M				
L			-10					1			И.							
			Ξ.,						K J		W.							
			E-11							1	M							
			-12					N.			M							
			=						b 1		W				1			
			-13	Same as above cohesive (till).	e, exce	pt brown (7.5YR 4/4), v	ery hard,				W.							
S5	19	3 6 10 12	-14	Concorvo (ma).					1 3				2.0-	M				
		10.12	-15										4.0					
I herel	v certif	y that		rmation on this fo	orm is	true and correct to the b	est of my ki	nowled	ge.	1	-							
Signat	ure	3.5		0.1.1	100	Total	CS Engine	W. W. 1410				_				1.7	Tel: (60	08) 224-2830
Meg	han B	Blodge	ett 🚽	Mul			30 Dairy Dr		dison,	WI 53	3718						120	Fax:

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

	g Num nple			V-302 Use only as an attachment to Form 4400-							Soil		ge 2 erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic	Log	Well	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/
S6	24	3469	-16 -17 -18 -19 -20	LEAN CLAY, brown (7.5YR 4/4), trace fine to coarse sand, fine gravel, as above (till).						1.5	М				
S7	24	23 56	-22 -23 -24 -25 -26	Same as above, except dark brown (7.5YR 4/2), more moist (till).						1.5	М				
58	20	78 79	-27 -28 -29 -30	LEAN CLAY, brown (7.5YR 4/2), massive, trace fine to coarse sand, fine gravel (till).	cı					1.0					
59	6	5 6 8 8	-31 -32 -33 -34 -35 -36 -37							1.0					
10	24		-38 -39 -40							1.0					

	g Num iple		IVI	W-302 Use only as an attachment to Form 4400-1	22.				Soil	Prope	ge 3 erties	Q1	
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
П			-41 -42 -43	LEAN CLAY, brown (7.5YR 4/2), trace fine to coarse sand, fine gravel (till).									
	19	79 11 12	-44 -45 -46 -47					1.5- 2.75	W				
	18	6 10 12 12	-48 -49 -50		CL			1.5	w				
	24	77 10 10	-51 -52 -53 -54	Same as above, except less sand and gravel.				1.25	w				
	24	79 1112	-56 -57 -58 -59 -60	LEAN CLAY, brown, trace fine to coarse sand, 1/8-3/4" fine to coarse sand seams at 58.5',59', and 59.75', laminated with very thin silt partings (lake sediment).	сі			1.5	w				
	24	79 1212	-62 -63 -64 -65	SILT, brown (7.5YR 5/2), massive, little clay (lake sediment).	ML			1.5	w				

	g Num nple			V-302 Use only as an attachment to Form 4400-							Soil	Prope		of	
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic	Log	Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
6	18	14 18 30 26	66	SILT with sand, brown, massive, sand is very fine to fine.	ML			ĺ			w				
Ш			E_67	SILTY SAND, fine, massive. SILT WITH SAND, fine, loose, mostly very fine sand	SM	I		Ш							
Ш		14.05	E	(lake sediment).		Ш									
7	20	14 25 38 32	-68 -69								M-W				Sand appea barely wet.
8	18	21 30	-70								w				
	18	21 30 34 34	71	Same.							W				
9	18	14 12 25 24	72			Ш		П							
		25 24													
Ш				Same.	MI.										
Ш	18	19 27 28 28	74					П							
Н			75					П) J					
	18	21 29 33 30	-76				H								
	10	33 30													
П			- 77					B	Ш,						
2	16	23 32 30 28	78	11											
H			-79	1				В							
II		10.21	-80					1							
II	16	19 21 21 27		POORLY GRADED SAND WITH SILT, fine with medium, brown to gray, loose (outwash).							W				
Ħ			-81		SP-SM										
	14	9 19 19 16	82								W				
Ц			83	SILT, brown, little fine sand, massive to indistinctly laminated (lake sediment).		T	Ī	W,			12				
				annua (and seamon)											
			84 					Ш							
			-85		ML.										
1			86												
			- "												
П			-88	LEAN CLAY, dark brown (7.5YR 4/2), massive, trace fine to coarse sand, fine gravel, very stiff,											
11	18	10 20 23 24	-89	cohesive, diamicton (till).	-CL					3.0-	w				
Ш		-	90				13			4.5					

San				V-302 Use only as an attachment to Form 4400-							Soil	Prope		of	
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic	Well	Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/
26	20	12 18 21 25	_95 _	LEAN CLAY, brown, massive, trace fine to coarse sand, fine gravel, as above (till). Same.	ct					2.5	W				
7	14	17 20 22 12	-96 -97 -98 -99 -100	LEAN CLAY, brown (7.5YR 5/2), massive to indistinctly laminated, trace fine gravel, red/gray laminations (lake sediment).						2.5					
88	24	8 10 13 14	-102 -103 -104 -105 -106	LEAN CLAY, grayish brown (10YR 5/2), laminated, with very thin silt partings, very stiff, hard (lake sediment).	CL.					2.0					
9	24	7 9 12 14	-107 -108 -109 -110	Same as above, except silt is concentrated in 1mm layers spaced 2-6" apart.						1.5					
o			112	Same except dark grayish brown (10YR 4/2), laminated, fewer silt partings, very plastic (lake sediment).											

_	g Num nple	1		V-302 Use only as an attachment to Form 4400-						Soil	Prope		of	7
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic Log	Well	PID/FID	Standard Penetration	Moisture Content	Liquid	Plasticity Index	P 200	RQD/ Comments
			116	LEAN CLAY, same as above, very plastic, laminated (lake sediment).										
П			-118											
1	24	7 8 10 12	-119		CL				1.0					S30 was no collected
1		0.10	F-120	Same.	0	,		1						
2	24	9 10 12 13	121						0.5- 1.0					
3	24	11 13 18 18	123	Same as above, very plastic, laminated, few silt partings (lake sediment).				ı	2.0					
ŧ F			124	LEAN CLAY WITH SAND, grayish brown, sand is										
5 5	24	14 22 30/5	125	fine. SILT WITH SAND, grayish brown, mostly very fine	CL				0.5					
I		20.25	126	sand, cohesive.	ML									
7 3 =	24	30 25 28 24	127	LEAN CLAY WITH SAND, grayish brown, sand is fine, some silt, laminated to thinly bedded clay and silt (lake sediment).					0.5					
,	24	15.17 19.17	-129 -130	Thinly bedded silty fine sand and clay.	CL.				0.5- 1.0					
	6	21 19 50/3	131	With dolomite gravel.										
			-132 -133	DOLOMITE, light gray and brownish gray, dark and light laminations, massive, some pitted and vuggy, mostly without mineralization, vertical fractures common.		1								
			134			1								
			136		DOLOMIT	/								
		50/3	-137 - - - 138			1								Company
	0	J. H. J.	139	Shaly zone (6') at ~138.5. gray, mineralized fractures below 139'.		/								Convert to n coring. Run 133'-143'-No water return below 139'.
			140	20.03.00		1								JEIOW 139

_	g Numb nple			V-302 Use only as an attachment to Form 4400-					11. =	Soil	Prope	ge 7 erties		
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
			141 	DOLOMITE (bedrock). Very vuggy and mineralized vugs and fractures below 142'. Blind drilled 144-148'	DOLOMIT	1 1 1								TCR=126/12 TCR=100% SCR=(03/12 SCR=86% MCR=68.5/1 MCR=57% RQD=57% Fair
				End of boring @ 148' Logged by: Zach Watson: 0-28' Meghan Blodgett: 28-110' Tony Kollasch: 110-144' Checked and edited by: BJS 3/30/2016										

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

Facilit	y/Proje	ct Na	me			License	Permit	/Monite	ring M	umber		Boring	Pag		of	1
	L-Edg				SCS#: 25215135.20	License	Cilin	/ WiGilla	ning ivi	unoci		Bornig	INUITIO		W-30	3
				of crew chief (first, last)		Date Dr	illing S	tarted		Da	te Drilli	ng Con	npleted			ing Method
	in Du						11/0	0.001	_	11/1-		10/16				SA/rotary
	lger S		0 -	DNR Well ID No.	Common Well Name	Final St		0/201.		Surfac	e Elevat	12/4/2	2015	Bo		ud) Diameter
111.01		7865		Divisi Well ID 110.	Common Tren Funda	I man de	Fe			During		60 Fe	et	0.0		0 in.
	Grid O	rigin		stimated:) or B		1 .		0	,	100	Local C			-		
State				,616 N, 2,560,45		L		0	-,			Feet			1	Feet E
NE Facilit		of S	E	County 8,	T 14 N, R 23 E	Lon County Co		Civil 7	own/C	ity/ or	Village		□ s			□ w
	,			Sheboygan		60			on Tn							
San	nple											Soil	Prope	erties		-
	3 (ii)	8	t	Soil	Rock Description		1				-				-	
r be	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	And (Geologic Origin For		co.	- 13	F	0	Standard Penetration	2 _		ty (t		suts
Number and Type	ngth	JW C	pth]	E	ach Major Unit		SC	Graphic	Well Diagram	PID/FID	ndan	Moisture Content	Liquid	Plasticity Index	P 200	RQD/ Comments
N E	Le Re	BI	ğ	7 E 137 GY 137	(5.00)		ב	Grap	Well	PI	Sta	ŽÖ	2 2	Pla	P	2 3
			E	plasticity, mottled co	g brown (7.5YR 4/6), me loring, trace coarse sand.	ed .			-							
П			F-1													
SI	14	12	-2								1.5	M				
31	14	12	E				CL		М		1.3	IVI	7			
ш			_3													
П			E_4						8 I							
52	14	41	E *						11		0.75	М				
S2 A, B	120	22	<u>-5</u>	SILTY SAND laver	fine to coarse @ 5-5.5'.		SM	1	1 I		0.73	343				
ч			E	DIDIT DI LID ILIJON,	Time to country to 5 2.2.	-	54.11		11							
- 11			-6	LEAN CLAY, (7.5Y	R 4/4), trace sand, fine to	o coarse,			B B		-					
S3	24	47	E-7	nne gravei, very sun	, min, massive, diamicie	on (uu).					2.8-	w		8		
		10 11	E								4.0	100				
			-8						U A						1	
П			E-9						8 8							
S4	18	25 79	E	Same.							3.0	w				
		19	-10	Same.			CL					-				
-			Ε,				H		W 11							
			E11						K I		8 1					
			-12				k .		8 H	1						
			E						8 1							
2			=13						A M							
			E 14													
S5	22	23 46	E								1-1.8	w	1			
95 1	1	40	F-15					1			1	100				

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

	g Numl		171	V-303 Use only as an attachment to Form 440	122.		-	1		Soil	Pag Prope		of	
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic Log	Well	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/
66	24	3468	16 -17 -18 -19 -20 -21	LEAN CLAY, (7.5YR 4/4), as above.					2.0	w				
, []	24	3567	-23 -24 -25 -26	Same.					1.5-2.0	w				
	24		-28 -29 -30	Same.	CI.				1.5	W				
	24		-31 -32 -33 -34 -35 -36						2.2	W				
,[]	6		38 39 40	Same as above, except very soft and saturated.					NA	w				

San			IVIV	V-303 Use only as an attachment to Form 4400	-122.					Soil	Propo	ge 3	- OI	,
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic	Well	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
	6	10 12 12 16	46	LEAN CLAY, (7.5YR 4/4).						w				
2	24	5 6 8 10	-49 -50 -51	(no sample retained)					1.3	w				
	21	3 7 7 9	53 54 55	LEAN CLAY (7.5YR 4/4), fine to coarse sand, fine gravel, firm, massive, diamicton (till).	CI.				1,0	w				
	19	10 11 13 10	-57 -58 -59 -60	Same.					1.0	w				
	11	46 911	-62 -63 -64 -65						0.5	w				

_	g Numl ple	ЭСГ	IVIV	V-303 Use only as an attachment to Form 4400-1	22.			1	91	Soil	Prope		of	7
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
			66	Same.										
5	4	9 34 50/5	-70 -71	LEAN CLAY WITH SAND, brown (7.5YR 4/4), soft, sand fine to coarse.					0	w				
, [7	8 12 12 13		Some as above, except trace fine to coarse sand.	CL.				0	w				
	24	3 6 5 7	-76 -77 -78 -79 -80	Same as above except, soft in some areas and stiff in others.					0.5	w				
	15		-82 -83 -84 -85	SANDY SILT, (10YR 5/4), fine sand, very uniform grains, loose, mostly very fine sand, non-plastic.						W				
	3	16 16 23 25	-86 -87		ML					w				
	20	20 18 13 14		LEAN CLAY, brown (7.5YR 4/4), trace coarse sand, massive to indistinctly laminated (lake sediment).	CL					w				

	g Num nple			7-303 Use only as an attachment to Form 4400-	T			1		Soil	Prop	ge 5 erties		
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic Log	Well	Diagram PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
22	18		-91 -92 -93 -94 -95 -96 -97 -98 -99 -100 -101	Same with layers of SANDY SILT, yellowish brown (10YR 5/4), fine, loose (lake sediment).	CL				1.0	w				
4 _		24 28 34 50/4 36 50/5	-103 -104 -105 -106	SANDY SILT, yellowish brown (10YR 5/4) fine, mostly very fine sand, loose (lake sediment).	ML					w				
5	23	32 22 = 20 24 =	-107 -108 -109	LEAN CLAY, with layers of SILT, SAND (lake sediment as above).					3.2	w				
П			-111 -112 -113		CL									
,	3	50/5	-115	SILTY SAND, (10YR 5/4).	SM	П			1.2	w				

	g Num nple			V-303 Use only as an attachment to Form 4400		T						Soil	Pa Prop	ge 6 erties	of	7
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic	Log	Well	Diagram PID/FID	Standard	Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/
28	5	50/4	116	LEAN CLAY, 7.5 YR 5/2, trace gravel.	SM CL					2.	5	w				
29	5	50/5	119	SILTY SAND WITH GRAVEL, fine, with medium and coarse sand, greys, blues whites and browns, gravel is fine and coarse.								W				
30	8	41 50/4	121	SILTY SAND, fine to coarse grained, trace fine gravel, fine (outwash).								W				
31	2	50/4	-123 -124 -125		SM							W				
32	10	31 50/4	126	Same.								W				
	3	50/5	128									W				
33	3		-130 -131	SILT, some gravel, very dense/stiff (weathered					ı			W				
34	4	50/4	132	bedrock). DOLOMITE (bedrock).	ML					4	5	w				
			134				/									
			-		DOLOMIT		/									
			136 -137 -138 -139			1	,									
			139				,									

_	g Numb	Jei	141 (V-303 Use only as an attachment to Form	7-100-122.					Soil	Prop	ge 7 erties	OI .	
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid	Plasticity Index	P 200	RQD/
			141	DOLOMITE (bedrock).	DOLOMIT	/								
				End of boring @ 143.5' Checked and edited by: BJS 3/30/2016										

SOIL BORING LOG INFORMATION

			Re	oute To:		d/Wastewater .ion/Redevelopm	nent 🗆	Other Other		ement					D		-6	6
	ty/Proje					3.00.04	N 40 4 5 5	License/	Permit	/Monito	oring N	Vumber		Boring	Numb	er	of v	
Borin	L-Edg g Drille vin Du dger S	d By: irst		of crew chi	ief (first, las		215135.20	Date Dri		tarted 5/2016		Di	ate Drilli	ing Cor			HS	ing Method SA/rotary aud)
WIU	nique V	Vell No V866			Vell ID No.	Common V		Final Sta	tic Wa		el	Surfa		48 Fe		Во		Diameter 0 in.
State		rigin of S	624		2,558,1	Boring Location 56 E S/C T 14 N,	C/N	Long	g	ò	0 <u>.</u> 1 <u>.</u>		Local C		cation □ N □ S		1	Feet DE
Facili					County Sheboyga	ın		County Co 60	de	Civil 7 Wils			Village					
Sai	nple													Soil	Propo	erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		And	il/Rock Descrip I Geologic Origi Each Major Un	in For		uscs	Graphic	Well	PID/FID	Standard Penetration	Moisture	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
S1 S2	14	25 611 46 59	3	Same as	ne gravel. s above, exc	eept dark brown wn (7.5YR 4/6)			CL				3.5	M				
S3	24	25 811 45 910	-6 -7 -8 -9 -10	LEAN (sand, fin	e, stiff. CLAY, browne gravel, m	wn (7.5YR 4/4), nassive, stiff, dia and, fine to med	, with fine amicton (til	to coarse	CL				3.25	M				
S6	24	2 4 4 5	-12 -13 -14 -15		CLAY, as a		at to the V						1.5	М				
Signat	9		Myh	That on or	4	is true and corre	Firm SC	S Engine Dairy Dri	ers		WI 53	718					Tel: (60	08) 224-2830 Fax:

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

San		761	141.4	V-304 Use only as an attachment to Form 4400	144.			1		Soil	Prop	ge 2 erties	OI.	
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic	Well	Diagram PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/
П			-16 -17 -18	LEAN CLAY, brown (7.5YR 4/4), as above (till).										
	22	3 4 4 6	-19 -20						1.25	М				
-			-21 -22 -23											
	22	23 56	-24 -25											
			26		CL.									
	24	2 4 6 7	-28 -29 -30						1.0	М				
			-31 -32											
	24	35	-34 -35						1.0	М				
			36 37 38											
	24	3 6 8 12	-38 -39	Same with fine silt partings.					2.5	М				

	g Num			V-304 Use only as an attachment to Form 4400-						1	Soil	Prop	ge 3		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic	Log	Well	PID/FID	Standard Penetration	Moisture	Liquid	Plasticity Index	P 200	RQD/ Comments
			-41 -42	LEAN CLAY, brown.	CL										
12	24	44 58	-43 -44	CLAYEY SILT, brown (7,5YR 4/6).	ML						М				
			-45 -46 -47	LEAN CLAY WITH SAND, brown (7.5YR 4/6), fine to coarse.	CI.										
13	24	24 46	-48 -49 -50							0.75	w				
П			-51 -52 -53	LEAN CLAY, brown (7.5YR 4/6).	cr										
ا	24	4 5 8 11	-54	SILTY SAND, brown, fine to medium grained.	SM	+	H			1.5	М				
Ш			55	CLAYEY SAND, fine to coarse.	sc										
	16	5 13 23 25	-58 -59 -60	POORLY GRADED SAND WITH SILT, grey (10YR 4/2), fine to medium grained (outwash).			T			0.5	w				
	12	8 LI 18 20	E	Same.	SP-SM						W				
,	20	15 23 31 30	E	Same except mostly very fine sand.											
H			-64	LEAN CLAY, with fine to coarse sand, fine gravel, diamicton (till)	CL	-	++				1				

	g Num nple			V-304 Use only as an attachment to Form 4400-1							Soil	Prop		of	
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic	Log	Well	PID/FID	Standard	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/
	20	14 19	66	LEAN CLAY, brown (7.5YR 4/6).	CL					2.5	М				
19	8	50/5	-68 -69 -70	LEAN CLAY, with layers of SILT, fine to coarse sand (lake sediment).						4.5	М				
0		8 10 15 17	-71 -72 -73 -74 -75	LEAN CLAY, dark brown (7.5YR 4/2), laminated, very plastic (lake sediment).						1.25	М				
1	24	711 1415	76	Same with few silt partings, very stiff.	ct.					2.75					
П			-80 -81 -82 -83	*											
2	12	25 50/5	84 85	SILTY SAND, grey, fine to coarse grained, dense, trace gravel.						>4.5					
3	16		-86 -87	Limestone rock fragments, with fine and coarse gravel.	SM						w				
4	1	50/2	-88 -89												

	g Num nple	.,сі	141 4	V-304 Use only as an attachment to Form 4400	125.						Soil	Prop	ge 5 erties	- UI	
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic	Log	Well	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
	,	50/4	Ē,	Same, diamicton.				Ш							
26	2	50/5	-91 -92		SM										S26 was skippe
.7	24	34 31 42 52/	-93 -94	SILTY SAND and SILT, except dark grayish brown (10YR 4/2), sandstone fragments, fine sand, fine gravel, cohesive, brittle.							w				
8	14	30 39 50/3	E		SM						w				
9	12	20 34 50/5	E								w				
0	12	37 50/-	-99 	FAT CLAY WITH GRAVEL, brown (7.5 4/3), sandstone fragments, fine to coarse sand, fine gravel.	СН					4.5	w				
ıt	12	16 35 50/4	101	SILTY SAND, dark grayish brown (10YR 4/2).	SM					1.5	w				
Ш	. 1		E-103	LEAN CLAY, very dark brown (7.5 YR 2.5/2).	CL			Ш							
2	18	17 35 50/4	E	SILTY SAND, dark grayish brown (10YR 4/2), fine grained.	SM			Ш			w				
3	8	17 50/2	105	SANDY LEAN CLAY, dark brown (7.5YR 3/2), trace gravel.	CL					4.0	w				Bedrock at 106. ft bgs.
4	2	50/3	-107 -108	SILTY SAND, dark grayish brown (10YR 4/2), fine grained, (weathered bedrock).	SM										
5 \	NA		109	DOLOMITE, gray (7.5YR 6/1), angular fragments.		1									
			-111 -112		DOLOMIT	1	,								
V			113			/	7								

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A

Samp	Numb			V-304 Use only as an attachment to Form 4400-						Soil	Prop	ge 6 erties		
and Type	Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid	Plasticity Index	P 200	RQD/ Comments
	NA		-116 	DOLOMITE, gray (7.5YR 6/1), angular fragments.	рогомп	1							f	
			-118	End of boring @ 118' Logged by: Joe Larson: 0-93' Kyle Kramer: 93-118' Checked and edited by: BJS 3/30/2016										

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			<u>Rc</u>	oute To:		Wastewater /Redevelopment		ste Ma er 🔲	_	ement									
																Pag	ge 1	of	7
	y/Projec L I43	ct Nar	ne			0.00 25215022 00	1	se/Per	mit/l	Monito	ring N	lumb	oer		Boring	Numbe MW-			
		d Bv:	Name o	f crew cl	nief (first, last)	SCS#: 25217032.00 and Firm		Drillin	g St	arted			Date	Drilli	ng Con		202	Drill	ing Method
	in Du	-			. (,,				0										6
Bac	ger S	tate I	Orilling							/2017					2/2/2	017			SA/Rotary
WI Ur	ique W).	DNR '	Well ID No.	Common Well Name	Final	Static		er Leve	el	Sur		Elevat			В		Diameter
Lagal	V Y Grid Oı	7819	(es	***************************************		MW-305 oring Location ⊠			Fee	et					46 Fee			6	.3 in.
State		ııgın			, 2,559,946			Lat _		o	<u> </u>		_"	ocai C		ation N			Feet 🗌 E
SE		of S		/4 of Sec		T 14 N, R 23 E	L	ong _		0	1		11		reet				rect □ E
Facilit					County		County			Civil T	own/C	City/	or Vi	llage					
		,			Sheboygan		60			Wilse	on Ti	1.							
San	nple														Soil	Prope	rties		_
	% (ii)	2	t c		Soil/	Rock Description													
_ e	Att.	Blow Counts	Depth In Feet		And C	eologic Origin For					ء	ے ا	, ,	d tion	ر و		≥		nts
Number and Type	igth cove	×	th I		Ea	ich Major Unit			CS	Graphic Log	Well	DID/FID	. .	etra	Moisture Content	Liquid Limit	Plasticity Index	9	D/ nme
Nulland	Length Att. & Recovered (in)	Blo	Dep						sn		Well	7 P		Standard Penetration	Cor	Liquic Limit	Plastic Index	P 200	RQD/ Comments
			_	TOPS	OIL.					71 7		3							
			F .							2 24									
			_ '	LEAN	CLAY, strong	brown (7.5YR 4/6).													
S1	8	2 2 4	F .											1.75					
		+	_2									Í							
			_																
			-3																TO THE PERSON NAMED IN THE
П			E							-									
S2	14	48	-4					į						4.5+					
32	14	11	E											4.5⊤					
L			_5																
			F																
П			<u>-</u> 6																
		7.11	-						CL										
S3	18	7 I I 14	<u>-</u> 7											4.5+					
L			E																
			-8																
п			E																
H			<u>_9</u>																
S4	18	410	-											4.5+					
U			E -10																
			F																
			<u> </u>																
			F ''																
			-12																
7 1- 1		C 1. ·			41-2 C		C	. 1-	.1. 1	<u> </u>					1	<u> </u>			
Signat		y mat	uie into	imation (on ans form is	Firm SC				ge.									
oignat		lyl	2 <i>]]</i> [d	in -	AND THE PROPERTY OF THE PROPER	1 50	CS Engi 30 Dairy l			dison, '	WI 53	711						Tel: (6	508) 224-2830 Fax:

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

Form 4400-122A

Borin	g Numl	oer	MV	√-305 Use only as an attachment to Form 440	0-122.						Pag	ge 2	of	7
Sar	nple									Soil	Propo	erties		
	tt. & d (in)	ınts	Feet	Soil/Rock Description And Geologic Origin For					l ŭ					S
Number and Type	gth. A	Blow Counts	Depth In Feet	Each Major Unit	CS	hic	Well	PID/FID	dard	Moisture Content	iid	Plasticity Index	0	RQD/ Comments
Num	Length Att. & Recovered (in)	Blou	Dep		USC	Graphic	Well	Î Î	Standard Penetration	Moi	Liquid	Plastic Index	P 200	RQI
			_13											
and the second			F	Same as above except, brown (7.5 YR4/3).										
S5	18	4 6 8	<u>-</u> 11						2.5					:
1972			F - 15		PROPERTY STATEMENT				annuture recentures					Mud Roatary @ 15 ft bgs.
									200 p. 100 p					15 ft bgs.
			- 16											
			L -17								-			
			_								-			
			- 18				in and a second	an on						
PORTER CONTRACTOR			- -19	Same as above except, trace gravel.										
S6	18	4 6 9	- 1						4.5+					
			-20				graves see	wide 1972						
			- 21											
			22		CI.			-						
			F 32					2						
			23 											
S7	18	4.6	24						2.0					
3/	10	4 6 7	E						3.0					
***			25											
			26											
			- 25											
			27 											
			-28											
			-											
S8	18	4 6 7	29						2.0					
IJ			E 30	· ·										
			-31 -											
			_ 											

Form 4400-122A

	g Numl	er	MW	V-305	Use only	as an attac	hment to l	Form 4400-1	22.						Pag	ge 3	of	7
San	nple													Soil	Prope	erties		
	Length Att. & Recovered (in)	nts	eet			ock Descrip							_					
er /pe	Att ered	Blow Counts	Depth In Feet			ologic Origi			S	్లు			Standard Penetration	ıre	_	ity		RQD/ Comments
Number and Type	ength	MO.	epth		Eac	h Major Un	it		USCS	Graphic Log	Well	Diagram PID/FID	anda	Moisture Content	Liquid Limit	Plasticity Index	P 200	QD/
Ż a	L.C.	<u> </u>	Ď			-	····		D	<u>5 3</u>	≥ 2		St. P. P.	Σŭ	<u> </u>	P T	Д,	<u> </u>
			_															
			33											ŀ				
П			-															
S9	18	5 8	34										2.5					
39	10	5 8 9	E										2.5					
L			35															
			E I							-								
			-36															
			- 27															
			_37 _															
			_ 															
r			F "															
			_ 39															
S10	18	4 7 9											2.5					
U			- 40															
			-															
			-41															
			_															
			42						CL									
			43 															
			- 44															
SII	18	3 7 8	<u></u> 44 -										2.5					
		Ü	_ 45															
			5															
			- 46															
			-47															
			-															
			48															
П																		
S12	18	3 9 13	49 -										2.0					
	10	13	E										2.0					
			_50 _												Parvalance and the second			
			_ 51															
			- "															
			_ 52							·								
	i I		1 22							!	ı	I	I	I	I	ı .		l

Borin	g Numl	oer	MV	√-305 Use only as an attachment to Form 4400-1	22.						Pa		of	7
San	nple									Soil	Prop	erties		
	& (E)	ıts	eet	Soil/Rock Description		-			_					
ar De	Att ered	Cour	In F	And Geologic Origin For	s	.2	=	<u> </u> e	rd atior	ire it		ij		ents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Fect	Each Major Unit	usc	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
Z =	Le Re	<u> </u>	LÃ			<u> </u>	3 0	I I	St.	ŬΣ		교		<u> </u>
			E											
			_53											
# 1			F	Same as above except, brown (7.5YR 4/3).										
Zimbesedi		5.5	54	Same all acord concept, order (7.5 FR 4.5).										
S13	18	5 5 8	F						2.5					
1002.00			55											
			-											
			56											
			<u></u> 57 □											
			-											
a			- 58 -				100-00 100 100-00 100 100-00 100	eros etos	-					
2200			-59											
S14	18	5 5 6	- ′′						1.5					
			_ <u>−</u> 60											
			<u>-</u> -		CL									
			-61									-		
			E									- Control of Control o		
			- 62									of the state of th		
			-											
			63						-					
givates														
S15	12	5 5 16	-64						3.0					
	,,,	16							2.0					
idii			65 -											
			66 -											
			_ 67											
			- "											
			- 68											
			E	BOODLY CRADED GAME. (1970 511)										
		12.11	- 69	POORLY GRADED SAND, gray (10YR 5/1), medium to coarse grained.										
S16	12	13 16 16	E											4 Table 1 Tabl
			70		SP									
			-											
S17	20	14 19 20 22	F-71											
			E	SILTY SAND, brown (7.5YR 4/3), fine grained.	SM								ŀ	
L			F 72					-			·			

Form 4400-122A

	ng Num	ber	MV	V-305 Use only as an attachment to Form 4400-	122.								ge 5	of	7
Sar	nple										Soil	Prope	erties		
	. & (ii)	ıts	eet	Soil/Rock Description		1									
er	h Att	Cour	In F	And Geologic Origin For	S	.2		E	9	urd atior	re l	_	ity		ents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each Major Unit	USC	Graphic Log	Well	iagra	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
Z 8	 	<u> </u>			<u> </u>		≥	Ω	P	N N	≥ ∪	77	P H		<u> </u>
			_		SM										
S18	16	99 1016	73	LEAN CLAY, brown (7.5YR 4/3).											
			E		CL										
			74 	POORLY GRADED SAND, gray (10YR 5/1), fine to									:		
		9 14	F 7.	medium grained.									:		
S19	18	8 16 18 21	— 75 —												
			<u>-</u> 76												
			F /												
S20	16	8 18 20 23	_ 77												
320	10	20 23	_												
			 78												
			ļ-												
S21	16	15 20 23 30	- 79												
		25 50													
l			-80			:	ı								
S22	16	15 23 26 31	-81 -												
			-												
			- 82												
gaa	10	21 18	- 83		SP		ı								
S23	18	21 18 29 31	- 63				ı								
1			84												
l															
S24	18	17 30 33 33	_ 85				I								
į,		33 33	-												
L			86												
							I								
			- 87				ı								
			- 88												
		15.20	_ 89				ı								
S25	16	15 20 30 30	_ U7 _												
			_ 90												
			- · · ·												
			- 91												
			_												
			_ _92									The state of the s			

Boring Number	MW	V-305 Use only as an attachment to Form 4400-	122.							ge 6	of	7
Sample								Soil	Prope	erties	1	
Number and Type Length Att. & Recovered (in) Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
S26 18 18 23 25 29	93 - 94 - 95 - 96											
S27 14 10 22 24 25		Same as above except, trace coarse gravel.	SP									
S28 12 13 13 13 10 18	102	Same as above except, trae coarse gravel.										
S29 12 23 42 50/0.5	107	DOLOMITE, gray (10YR 5/1), weathered.										

Boring Numb	er	MW	V-305 Use only as an attachment to Form 4400-13	22.						Pag	e 7	of '	7
Sample									Soil	Prope	rties		
Number and Type Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	nscs	Graphic Log	Well Diagram	PID/FID	Standard Penetration	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
S30 —		- 113 - 114 - 115 - 116 - 117 - 118 - 120 - 121	End of boring at 121 ft bgs.										

	Watershed/Wastewater Remediation/Redevelopment	Waste Manageme		MONITORING WELL Form 4400-113A	CONSTRUCTION Rev. 7-98
Facility/Project Name WPL-Edgewater I43	Local Grid Location of Well 626196.3 ft.	N. 2559679		Well Name MW-301	-
Facility License, Permit or Monitoring No. 02853	Local Grid Origin (estima	nted:) or Well l	Location X	Wis. Unique Well No. VV864	ONR Well ID No.
Facility ID 460022090	St. Plane626196.3 ft. N Section Location of Waste/Sou	, <u>2559679.0</u> ft		Date Well Installed m m d	_14/2016
Type of Well Well Code 12 / PZ	SW _{1/4} of NE 1/4 of Sec_	8, T. <u>14</u> N, R.		Well Installed By: Name Kevin Durst	
Distance from Waste/ Enf. Stds. Sourceft. Apply	Location of Well Relative to W u Upgradient s d X Downgradient n	Sidegradient Not Known Not Known	Lot Number	Badger State Drillir	ng
	7 _ 21 ft. MSL	1. Cap	and lock?		X Yes No
B. Well casing, top elevation 69	696 ft, MSL	1137	ective cover p side diameter	•	4 in.
C. Land surface elevation	94. 40 ft. MSL		ength:		7 ft.
D. Surface seal, bottom69390 ft. MS	SL or 0.5 ft.	c. M	laterial:		Steel X 04 Other \[\sum_{\text{\tint{\text{\tint{\text{\te}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\te}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\te}\til\text{\te}\til\til\text{\texi}\text{\text{\texit{\texi}\til\til\til\titt{\text{\texitil{\text{\text{\texi}\text{\text{\text{\texi{\text{\texit{\texi{\texi{\texi{\texi{\tex{
12. USCS classification of soil near screen			dditional prot		X Yes No
	SW SP SP	11	yes, describe	: yes, bumper posts (
SM SC ML MH C Bedrock X		3. Surfa	acc scal:		Bentonite X 30 Concrete 01
13. Sieve analysis performed?	Yes No		8 bags 3/8ir	Bentonite chips	Other
	tary 🔀 5 0	4. Mate	erial between	well casing and protective	* *
Hollow Stem Au	- C		Ohio #5		Bentonite 30
	ther	5 4	ular space sea	sand- 2 bags a. Granular/Chipped	Other 3 3
15. Drilling fiuid used: Water 20 2	Air 0 1	b		ud weight Bentonite-s	
Drilling Mud 0 3	None 99	c. <u>2</u>	00 Lbs/gal m	ud weight Bentor	nite slurry 🔀 31
16. Drilling additives used?	Yes No	d	% Bentoni	te Bentonite-cer	ment grout 50
		e. —	Ft = low installed:	volume added for any of	Tremie 🔀 0 1
Describe		f. H	iow mstaneti.	Tremie	e pumped X 02
17. Source of water (attach analysis, if requ	iired):				Gravity 0 8
Site Supply Well		KUX 2	tonite seal:	a. Bentonite	
E. Bentonite seal, top566.40 ft. MS	L or118 ft.	/ c		3/8 in. 1/2 in. Bento 2 Bags	Other 32
F. Fine sand, top571.40 ft. MS	L or123 ft.	7. Fine	sand materia	l: Manufacturer, product Ohio #7	name & mesh size
G. Filter pack, top 569.40 ft. MS	L or125 ft.	a	olume added		— Ц
	L or 127 ft.	1		al: Manufacturer, product	t name & mesh size
		a	olume added	Ohio #5 3 lbs ft ³	_ Ц
I. Well bottom 562.40 ft. MS	L or 132 ft.		casing:	Flush threaded PVC sche	edule 40 2 3
J. Filter pack, bottom562.40 ft. MS	L or132 ft.			Flush threaded PVC sch	Other 24
K. Borehole, bottom 559.40 ft. MS	L or 135 ft.		en material:	PVC	actory cut 11
	2	* · · ·	creen type.		actory cut 11 uous slot X 01
L. Borehole, diameter $-\frac{8.0}{100}$ in.	N. C.	_			Other
M. O.D. well casing $-\frac{2.4}{}$ in.		\ c. S	lanufacturer : lot size: lotted length:	Monoflex	0 <u>01</u> in.
N. I.D. well casing		,	-	below filter pack):	5 ft. None 14
The first work country			Bedroo	k cuttings/slough	Other X
I hereby certify that the information on this		pest of my knowledge	ò.		
Signature Full for T. L	Firm SCS EN	GINEERS. 2830 D	airy Drive	Madison. WI 53718-67	751

	Watershed/Wastewater	Waste Managemen	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Facility/Project Name WPL-143	Remediation/Redevelopment Local Grid Location of Well 625788.4 ft.	Other	Well Name MW-302
Facility License, Permit or Monitoring No. 02853	Local Grid Origin (estimat		Wis. Unique Well No. DNR Well ID No.
Facility ID 460022090	St. Plane 625788.4 ft. N, Section Location of Waste/Sour	2539719.0 ft. E. S/C/N	Date Well Installed 1 /15 /2016m m d d v v v v v
Type of Well Well Code 12 / PZ	SW _{1/4} of NE 1/4 of Sec.	8, T14 N, R23 □ W	Well Installed By: Name (first, last) and Firm Kevin Durst
Distance from Waste/ Enf. Stds. Source ft. Apply	Location of Well Relative to W u Upgradient s d Downgradient n	aste/Source Gov. Lot Number Sidegradient Not Known	Badger State Drilling
	d Downgradient n 2. 81 ft. MSL	1. Cap and lock?	X Yes No
	2. 57 ft. MSL	2. Protective cover a. Inside diamete	pipe:
U	00. 24 ft. MSL	a. Inside diamete	er: in 7 ft.
D. Surface seal, bottom _ 69974 ft. MS	water of	c. Material:	Steel X 04
12. USCS classification of soil near screen	#2500 C. A. C.	d. Additional pro	Other No
	SW SP I		ve: ves. bumper posts (3)
SM SC ML MH C Bedrock X	CL CH CH	3. Surface scal:	Bentonite X 30
	Yes No	KSSI \	Concrete 0 1 Bin Bentonite chips Other 1
	tary 🔀 5 0	53.00	n well casing and protective pipe:
Hollow Stem Av	nger 🔀 4 1		Bentonite 30
	ther	553	5 sand- 2 bags Other 3
15. Drilling fiuid used: Water X 0 2	Air 01	5. Annular space so	eal: a. Granular/Chipped Bentonite 3 3 mud weight Bentonite-sand slurry 3 5
	None 99		mud weight Bentonite slurry X 31
16. Drilling additives used?	Yes 🛛 No	d % Benton	nite Bentonite-cement grout 50
		600	volume added for any of the above Tremie 💢 0 1
Describe		f. How installed	Tremie pumped X 02
17. Source of water (attach analysis, if requ	iired):		Gravity 🔲 08
Site supply well		6. Bentonite seal:	a. Bentonite granules 33 3 3/8 in. 1/2 in. Bentonite chips 32
E. Bentonite seal, top 572.24 ft. MS	L or128 ft.	6	3/8 in. 1/2 in. Bentonite chips 3 2 2 Bags Other
F. Fine sand, top 567.24 ft. MS	L or 133 ft.	7. Fine sand materi	al: Manufacturer, product name & mesh size 1 bag Ohio #7
G. Filter pack, top565.24 ft. MS	L or 135 ft.	a b. Volume adde	
H. Screen joint, top 563.24 ft. MS	L or 137 ft.	8. Filter pack mater	rial: Manufacturer, product name & mesh size Ohio #5
558.24 & MS	Lor142ft.	b. Volume adde	
I. Well bottom		9. Well casing:	Flush threaded PVC schedule 40 2 3 Flush threaded PVC schedule 80 2 4
J. Filter pack, bottom558.24 ft. MS	L or 142 ft.		Other
K. Borehole, bottom 552.24 ft. MS	L or 148 ft.	10. Screen material: a. Screen type:	Factory cut 11
L. Borehole, diameter 8.0 in.			Continuous slot
M. O.D. well casing 2.4 in.		b. Manufacturer c. Slot size:	0 <u>01</u> in.
N. I.D. well casing			(below filter pack): None 14
I hereby certify that the information on this	form is true and correct to the b		mestone Chips Other 🔀 🏥
Signature/	Firm		
Min fla for N. H.	SCS ENG	GINEERS, 2830 Dairy Drive,	Madison, WI 53718-6751

_	Watershed/Wastewater Remediation/Redevelopment	Waste Managemen X	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Facility/Project Name WPL-143	Local Grid Location of Well Services	N. 2560451 ft. W	Well Name MW-303
Facility License, Permit or Monitoring No. 02853	Local Grid Origin (estimated)	J. 77.	1 10/065
Facility ID 460022090	St. Plane 625615.5 ft. N, Section Location of Waste/Sour	2560451.0 ft. E. S/C/N	m m d d v v v v
Type of Well Well Code 12 / PZ	SW _{1/4} of NE 1/4 of Sec.	8, T14 N, R23 📑 🕏	Well Installed By: Name (first, last) and Firm Kevin Durst
Distance from Waste/ Enf. Stds. Sourceft. Apply	u Upgradient s d Downgradient n	Sidegradient Not Known	Badger State Drilling
	948 ft. MSL	1. Cap and lock? 2. Protective cover	Yes No
b. Well casing, top elevation = = = =	1925 ft. MSL	a. Inside diamete	6
C. Land surface elevation 71	1660 ft. MSL	b. Length:	5 ft.
D. Surface seal, bottom71610 ft. MS	SL or50 ft.	c. Material:	Steel Other Other ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
12. USCS classification of soil near screen	n:	d. Additional pr	otection? X Yes No
	SW SP CL CH CH	If yes, descri	be: yes, bumper posts (3)
Bedrock X		3, Surface scal:	Bentonite X 30 Concrete 01
13. Sieve analysis performed?	Yes No		Other
	tary 🔀 5 0	4. Material betwee	n well casing and protective pipe:
Hollow Stem A	uger X 4 1		Bentonite 30 hio #5 sand Other X
		5. Annular space s	
15. Drilling fluid used: Water \(\overline{\infty} 0 2 \) Drilling Mud \(\overline{\infty} 0 3 \)	Air 01 None 99	bLbs/gal	mud weight Bentonite-sand slurry 35
	None 99	c. 150 Lbs/gal	mud weight Bentonite slurry X 31 nite Bentonite-cement grout 50
16. Drilling additives used?	Yes 🛛 No	d 76 Bento	volume added for any of the above
Describe		f. How installed	d: Tremie 0 1
17. Source of water (attach analysis, if requ	uired):		Tremie pumped 😾 02 Gravity 🗍 08
Site supply well		6. Bentonite seal:	a. Bentonite granules 33
		F004	3/8 in. 1/2 in. Bentonite chips 3 2
E. Bentonite seal, top 588.60 ft. MS	L or128 ft.	C	Other
F. Fine sand, top 583.60 ft. MS	SL or133 ft.	7. Fine sand mater	ial: Manufacturer, product name & mesh size Ohio #7
G. Filter pack, top 581.60 ft. MS	SL or135 ft.	b. Volume adde	ad 0.5 ft ³
H. Screen joint, top 579.60 ft. MS	SL or137_ft.	8. Filter pack mate	rial: Manufacturer, product name & mesh size Ohio #5
I. Well bottom574.60 ft. MS	3L or142 ft.	b. Volume adde 9. Well casing:	Flush threaded PVC schedule 40 2 3
J. Filter pack, bottom 574.60 ft. MS	SL or142 ft.		Flush threaded PVC schedule 80
K. Borehole, bottomft. MS	SL or 143 ft.	10. Screen material a. Screen type:	Factory cut X 11
L. Borehole, diameter $-\frac{6.0}{}$ in.			Other
M. O.D. well easing $-\frac{2.4}{}$ in.		b. Manufacturer c. Slot size: d. Slotted lengt	0 <u>01</u> in.
N. I.D. well casing $-\frac{1.9}{}$ in.		,	I (below filter pack): None 1 4 Native Other X
I hereby certify that the information on this		est of my knowledge.	
Signature School State Control	Firm SCS FNG	GINEERS 2830 Dairy Drive	Madison WI 53718-6751

-	Watershed/Wastewater Remediation/Redevelopment	Waste Managemen Other	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Facility/Project Name WPL-I43	Local Grid Location of Well 624204 ft.	× _{N.} 2558156 ft. w	Well Name MW-304
Facility License, Permit or Monitoring No. 02853	Local Grid Origin (estin	nated:) or Well Location X	r VV866
Facility ID 460022090	St. Plane 624204.0 ft. 1	N, 2558156.0 ft. E. S/C/N	
Type of Well	Section Location of Waste/So SW _{1/4} of NE 1/4 of Sec		Well Installed By: Name (first, last) and Firm
Well Code 12 / PZ Distance from Waste/ Enf. Stds.	Location of Well Relative to	Waste/Source Gov. Lot Number	Kevin Duerst
Sourceft. Apply	u Upgradient s d Downgradient n	Sidegradient Not Known	Badger State Drilling
	238 ft. MSL ———	1. Cap and lock? 2. Protective cover	X Yes No
B. Well casing, top elevation = 69	197 ft. MSL	a. Inside diamete	6
C. Land surface elevation68	39. 48 ft. MSL	b. Length:	5 ft. Steel X 0 4
D. Surface seal, bottom68898 ft. MS	SL or 0.5 ft. 553	c. Material:	Other
12. USCS classification of soil near screen		d. Additional pr	
SM SC ML MH	SW SP SP SP ST ST ST SP ST ST SP ST		be: ves, bumper posts Bentonite X 30
Bedrock X		3. Surface scal:	Concrete 01
	Yes X No tary X 50	4 Material betwee	Other Other on well casing and protective pipe:
Hollow Stem At	· == 1 1000	4. Material Setwee	Bentonite 30
o	ther		sand Other 🗵 🧱
15. Drilling fiuid used: Water 20 2	Air 01	5. Annular space s	eal: a. Granular/Chipped Bentonite 3 3 3 mud weight Bentonite-sand slurry 3 5
Drilling Mud 0 3	None 99	c. <u>200</u> Lbs/gal	mud weight Bentonite slurry 2 1
16. Drilling additives used?	Yes X No		nite Bentonite-cement grout 5 0 3 volume added for any of the above
D3		f. How installed	d: Tremie 🔀 0 1
Describe	uired):		Tremie pumped 0 2 Gravity 0 8
Site supply well		6. Bentonite seal:	a. Bentonite granules 33
E. Bentonite seal, top586.48 ft. MS	103.6		3/8 in. 1/2 in. Bentonite chips 3 2 ck Hills Bentonite Other
223 23	1000		· · · · · · · · · · · · · · · · · · ·
F. Fine sand, top581.48 ft. MS	SL or108 ft.	7. Fine sand mater	ial: Manufacturer, product name & mesh size Ohio #5
G. Filter pack, top 579.48 ft. MS	L or110 ft.	b. Volume adde	ed ft ³
577 48 6 146	SL or 112 ft.		rial: Manufacturer, product name & mesh size
	6	a b. Volume add	Ohio #7
I. Well bottomft. MS	SL or 117 ft.	9. Well casing:	Flush threaded PVC schedule 40 2 3
J. Filter pack, bottom 572.48 ft. MS	SL or 117 ft.		Flush threaded PVC schedule 80 24 Other Other
	63	10. Screen material	
K. Borehole, bottom	SL or 118 ft.	a. Screen type:	Factory cut X 1 1 Continuous slot 0 1
L. Borehole, diameter $-\frac{8.0}{100}$ in.			Other
M. O.D. well casing 2.4 in.		b. Manufactures c. Slot size:	0 <u>01</u> in.
N. I.D. well casing 1.9 in.		d. Slotted lengt	th:5 ft. If (below filter pack): None 14
-			Other Other
I hereby certify that the information on this Signature	form is true and correct to the	best of my knowledge.	
Signature for July		NGINEERS, 2830 Dairy Drive	, Madison, WI 53718-6751

	Watershed/Wastewate: Remediation/Redevelo		Waste <u>Mana</u> Other	gemen	MONITORING WEL Form 4400-113A	L CONSTRUCTION Rev. 7-98
Facility/Project Name WPL - Edgewater I43	Local Grid Location			ft. W	Well Name MW-305	
Facility License, Permit or Monitoring No.	Local Grid Origin	(estimated	l: 🔲) or	Well Location or	Wis. Unique Well No. VY819	DNR Well ID No.
Facility ID	St. Plane 62343	5.13 ft. N, _	2559945	.85 ft. E. S/C/N	Date Well Installed 2	/2/2017
Type of Well	Section Location of V			,, , , , , , , , , , , , , , , , , , ,	Well Installed By: Na	me (first, last) and Firm
Well Code12/PZ	1/4 of1 Location of Well Rel	/4 of Sec	,T	N, R. W	Kevin Duerst	***
Distance from Waste/ Sourceft. Enf. Stds.	u Upgradient d Downgradien	s S	idegradient		Badger State D	rilling
A. Protective pipe, top elevation	717.88 ft. MSL —		1.	Cap and lock?		X Yes No
B. Well casing, top elevation	717.67 ft. MSL	 #A	2.	Protective cover p a. Inside diameter	-	_ 6.0 in.
C. Land surface elevation	715.46 ft. MSL			b. Length:		5 ft.
D. Surface seal, bottom 713.46 ft. MS				c. Material:		Steel X 04
						Other 🔲 🚆
12. USCS classification of soil near screen	sw sp		X	d. Additional pro	tection? e: yes, bumper post	X Yes ∏No
SM SC ML MH				ii yes, describe	<u>. 700, bampa pool</u>	Bentonite 30
Bedrock X			⊗ \ 3.	Surface scal:		Concrete X 01
	Yes No			-	6-99-90-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Other
100 miles	tary 🔀 5 0		4.	Material between	well casing and protect	
Hollow Stem At			3	#5 R.W. Sidley		Bentonite 30
	ther		<u> </u>		al: a. Granular/Chipp	Other 🔀 🚞
15. Drilling fluid used: Water X 0 2	Air 01			Annular space sea	ud weight Bentonit	
Drilling Mud 0 3	None 99		ă D		nud weight Ben	, <u>—</u>
16. Drilling additives used?	Yes No		d d	% Benton	ite Bentonite-	cement grout 50
10. Diming additives used?	Yes X No		е е	. <u>9.4</u> Ft	volume added for any	
Describe			f.	. How installed:		Tremie 0 1
17. Source of water (attach analysis, if requ	iired):		8		Tre	mie pumped 0 2 Gravity 0 8
Site Supply Well			6.	Bentonite seal:	a. Benton	nite granules 33
000.40	400		XI	b /4 in. X	3/8 in. 1/2 in. Be	entonite chips 3 2
E. Bentonite seal, top 609.46 ft. MS	L or106 ft.			c.100 lbs		Other
F. Fine sand, top603.46 ft. MS	L or 112 ft.		7.		l: Manufacturer, produ	ict name & mesh size
602.46	. 113 .		7/	a. #7 R.W. Sidle		🗆
G. Filter pack, top ft. MS	L or 113 ft.			b. Volume added		
H. Screen joint, top600.46 ft. MS	L or 115 ft.			a	al: Manufacturer, prod #5 R.W. Sidley	🗆
I. Well bottom _ 595.46 ft. MS	L or 120 ft.		-1	b. Volume addedWell casing:	I 1.5 f Flush threaded PVC s	
1. Wen bottom	Lu			wen casing:	Flush threaded PVC s	
J. Filter pack, bottom594.46 ft. MS	L or 121 ft.					Other 🔲 🚚
K. Borehole, bottom594.46 ft. MS	L or 121 ft.		4	Screen material: a. Screen type:	PVC	Factory cut 11
L. Borehole, diameter 6.25 in.			4		Con	tinuous slot 🗵 01
				b. Manufacturer	Monoflex	
M. O.D. well casing -2.4 in.			/ '	c. Slot size: d. Slotted length:		0. <u>01</u> in. 5 ft.
N. I.D. well casing $-\frac{1.9}{}$ in.			-	-	(below filter pack):	None X 1 4 Other
I hereby certify that the information on this	form is true and corre	ct to the best	of my know	ledge.		
Signature Phyle Mu	Firm	SCS ENGI	NEERS, 28	330 Dairy Drive,	Madison, WI 53718	

Route to: Watershed/Waste	water	Waste Management	\boxtimes		
Remediation/Rede	evelopment	Other			
Facility/Project Name	County Name		Well Name		
Alliant Energy I-43	, -	eboygan			MW-301
Facility License, Permit or Monitoring Number	County Code 59	Wis. Unique Well Nu VV-864		DNR We	il ID Number — ———
1. Can this well be purged dry?	s 🗵 No	11. Depth to Water			After Development
-	· 1 i 1	(from top of well casing)	a 46 .	<u>49</u> ft.	<u>46</u> <u>34</u> _ft.
surged with block and bailed 4 surged with block and pumped 6 surged with block, bailed and pumped 7 compressed air 2 bailed only 1 pumped only 5	2 2 2 0 0 0 1		c <u>12</u> : <u>50</u> _	a.m. x p.m. inches	$\frac{2016}{y} \frac{02}{m} \frac{16}{m} \frac{16}{d} \frac{1}{y} \frac{2016}{y} \frac{2016}{y}$ $\frac{16}{y} \frac{00}{m} \frac{a.m.}{m}$ $\frac{16}{y} \frac{16}{m} \frac{16}{m}$
	90 _{min.}	13. Water clarity	Turbid X 1 (Describe)	5	Clear 2 0 Turbid 2 5 (Describe)
4. Depth of well (from top of well casisng)132			Medium brow		Medium brown color
5. Inside diameter of well2.0	in.		Very turbid		Slightly to moderately turbid
	.2 gal.	Fill in if drilling fluid	s were used ar	nd well is a	nt solid waste facility:
7. Volume of water removed from well315 8. Volume of water added (if any)	-	14. Total suspended solids		mg/l	mg/i
9. Source of water added		15. COD		mg/l	mg/l
		16. Well developed by	/: Name (first, la	ast) and Firm	1
10. Analysis performed on water added? Ye (If yes, attach results)	s 🗵 No	First Name: Nate	•	Last Name	
17. Additional comments on development:		1 mu.			
Name and Address of Facility Contact /Owner/Responsible First Name: Jim Last Name: Jakubiak	Party	I hereby certify that of my knowledge.	the above inf	ormation is	s true and correct to the best
Facility/Firm: WP&L Alliant Energy		Signature:	W/ V	Lamone 1	/
Street: 3739 Lakeshore Drive		Print Name:	Nate	1/0	gums
City/State/Zip: Sheboygan, WI 53082		Firm: SCS ENG	SINEERS, 283	0 Dairy Dri	ve, Madison, WI 53718

Route to: Watershed/Wa	Waste Management X				
Remediation/R	Other				
Facility/Project Name	County Name		Well Name		
Alliant Energy I-43		Sheboygan		MW-3	
Facility License, Permit or Monitoring Number	County Code			DNR Well ID N	Vurnber
	<u>59</u>	<u>VV-86</u>	<u>33 </u>		
1. Can this well be purged dry?	Yes 🛭 No	11. Depth to Water	Before Dev	elopment Afte	er Development
2. Well development method surged with bailer and bailed surged with bailer and pumped surged with block and bailed surged with block and pumped surged with block, bailed and pumped compressed air bailed only pumped only pumped slowly Other	41 61 42 62 70 20 10 51	(from top of well casing)	b. $\frac{02}{m} / \frac{1}{d} = \frac{1}{6}$ c. $\frac{11}{m} : \frac{55}{m} = \frac{1}{6}$ Clear $\frac{1}{m} = \frac{1}{6}$	6 / 2016 y y y y a.m p.m inches 0 Clear	
3. Time spent developing well	145 min.		Turbid I (Describe)	5 Turbi (Desc	id 🔲 2 5 ribe)
4. Depth of well (from top of well casisng)1	43 . 8 ft.		Medium brown		ım brown color
5. Inside diameter of well2	0 in.		Very turbid		signt turbidity
	9.3 gal.	Fill in if drilling fluid	ds were used ar	nd well is at solid	waste facility:
	gal.	14. Total suspended solids		mg/l	mg/l
9. Source of water added		15. COD		mg/l	mg/l
		16. Well developed b	y: Name (first, la	ast) and Firm	
10. Analysis performed on water added?	Yes X No	First Name: Nate		Last Name: Hari	ms
(If yes, attach results)		SCO ENCIN	IEEDO 2020	Doint Drive M	ndinon MI 52719
17. Additional comments on development:		Firm: SCS ENGIN	NEEKS, 2030	Daily Drive, ivia	auison, vvi 557 to
17. Additional comments on development.					
Name and Address of Facility Contact /Owner/Responsi First Last Name: Jim Name: Jakubiak	ble Party	I hereby certify that of my knowledge.	t the above info	ormation is true a	and correct to the best
Facility/Firm: WP&L Alliant Energy		Signature:	14/1/X		
Street: 3739 Lakeshore Drive		Print Name:	Jate	Hav.	MS
City/State/Zip: Sheboygan, WI 53082		Firm: SCS ENG	GINEERS, 2830	0 Dairy Drive, Ma	dison, WI 53718

Route to: Watershed/Waster	water	Waste Management	\boxtimes		
Remediation/Rede	evelopment	Other			
Facility/Project Name	County Name	Id	Well Name		
Alliant Energy I-43		eboygan			MW-303
Facility License, Permit or Monitoring Number	County Code 59	Wis. Unique Well Nu VV-865		DNR We	ell ID Number — — —
1. Can this well be purged dry?	s 🗵 No	11. Depth to Water			t After Development
surged with bailer and pumped surged with block and bailed surged with block and pumped surged with block, bailed and pumped compressed air bailed only pumped only	1 1 2 2 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0	well casing) Date	b. $\frac{02}{m} / \frac{1}{d} \frac{1}{c}$ c. $\frac{15}{m} : \frac{10}{m} = \frac{15}{m} = \frac{10}{m}$	6/a.m	
	50 _{min.}	13. Water clarity	Clear 1 Turbid 1 (Describe)		Clear 2 0 Turbid 2 5 (Describe)
4. Depth of well (from top of well casisng)145			Medium brown	n color	Light brown color very slight turbidity
5. Inside diameter of well $\frac{2}{2} \cdot \frac{0}{2}$	in.				
6. Volume of water in filter pack and well casing18	. 4 gal.	Fill in if drilling fluids	s were used ar	nd well is a	at solid waste facility
7. Volume of water removed from well250	gal.				mg/l
8. Volume of water added (if any)	. <u>-</u> _ gal.	solids			
9. Source of water added		15. COD			mg/l
10. Analysis performed on water added? Yes (If yes, attach results)		16. Well developed by First Name: Nate Firm: SCS ENGINE	, ,	Last Nam	
17. Additional comments on development:					
Name and Address of Facility Contact /Owner/Responsible First Last Name: Jakubiak Name: Jakubiak	Party	I hereby certify that of my knowledge.	the above info	ormation/is	s true and correct to the best
Facility/Firm: WP&L Alliant Energy		Signature:		J.,	· · · · · · · · · · · · · · · · · · ·
Street: 3739 Lakeshore Drive		Print Name:	Nati	1/4	ovens
City/State/Zip: Sheboygan, WI 53082		Firm: SCS ENG	INEERS, 2830	Dairy Dri	ve, Madison, WI 53718

Route to: Watershed/Waste	water	Waste Management	\boxtimes		
Remediation/Rede	evelopment	Other			
Facility/Project Name	County Name		Well Name		
Alliant Energy I-43		eboygan			MW-304
Facility License, Permit or Monitoring Number	County Code	Wis. Unique Well Nu	ımber		ell ID Number
	59	<u>VV-866</u>	<u> </u>	1	
1. Can this well be purged dry?	s 🗵 No	11. Depth to Water	Before Dev	elopment	After Development
2. Well development method			a39.	<u> </u>	$=$ $=$ $\frac{39}{1}$ $=$ $\frac{39}{1}$ ft.
surged with bailer and bailed 4	. 1	well casing)	_		
surged with block and bailed 4	2	Date	ь. <u>02</u> / <u>1</u>	<u>6/</u>	2016 <u>02</u> / <u>16</u> / <u>2016</u> y y m m d d y y y y
	2		m m d c	ј ууу	yy mm ddyyyy
	0	Т:	16 . 40	a.m.	$18:40$ $\boxed{\mathbf{x}}$ p.m.
	0	Time	c 10 : 10 -	_ <u>[x]</u> p.m.	<u>10</u> : <u>40 [X]</u> p.m.
-	0	12. Sediment in well		inches	inches
	0	bottom		menes	menes
Other	Ž	13. Water clarity	Clear ☐ 1 Turbid 🔀 1		Clear \boxtimes 2 0 Turbid \square 2 5
3. Time spent developing well1	20 min.		(Describe)		(Describe)
4. Depth of well (from top of well casisng)145	.7_ ft.		Medium brown	n color	Water mostly clear Very slight turbidity
5. Inside diameter of well $\frac{2}{2} \cdot \frac{0}{2}$	in.		- Table		vory olight tailblary
6. Volume of water in filter pack and well casing18	.4 gal.				
7. Volume of water removed from well240	gal.	Fill in if drilling fluids			·
8. Volume of water added (if any)	. <u>-</u> gal.	14. Total suspended solids		mg/l	mg/l
9. Source of water added		15. COD		mg/l	mg/l
		16. Well developed by	: Name (first, la	ast) and Firm	1
10. Analysis performed on water added? Yes (If yes, attach results)	s 🗵 No	First Name: Nate		Last Name	e: Harms
,		Firm: SCS ENGIN	EERS, 2830	Dairy Dri	ve, Madison, WI 53718
17. Additional comments on development:					· www.iii.
Name and Address of Facility Contact /Owner/Responsible	Party				_
First Last Name: Jim Name: Jakubiak		I hereby certify that of my knowledge.	the above infe	ormation is	s true and correct to the best
Facility/Firm: WP&L Alliant Energy		Signature:	<u>lalll</u>		
Street: 3739 Lakeshore Drive		Print Name:	late	Ha	vms
City/State/Zip: Sheboygan, WI 53082		Firm: SCS ENG	INEERS, 2830	Dairy Dri	ve, Madison, WI 53718

Route to: Watershed/Waste	water	Waste Manag	gement 🛭	$\overline{\times}$		
Remediation/Red	evelopment	Other				
Facility/Project Name	County Name			Well Name		_
WPL-I-43	-	eyboygan				MW-305
Facility License, Permit or Monitoring Number	County Code	Wis. Unique		nber	DNR We	ell ID Number
02853	<u>59</u>		VY819			
1. Can this well be purged dry?	es 🗵 No	11. Depth to	Water			t After Development
2. Well development method		(from top	of a.	. <u> </u>	<u> </u>	<u>59 </u>
	1	well casing	3)			
surged with block and bailed surged with block and pumped surged with block, bailed and pumped	51 42 52 70 20	Date Time				$ \frac{2017}{y} \frac{2}{y} \frac{2}{m} \frac{2}{m} \frac{7}{d} \frac{7}{d} \frac{201}{y} \frac{201}{y} $ $ \frac{2}{y} \frac{3}{m} \frac{a.m.}{ x p.m.} $
The state of the s	0					
	5 1	12. Sediment i	n well		inches	inches
		bottom				
Other	5 0	13. Water clar		Clear ☐ 1 Turbid 🔀 1		Clear ⊠ 2 0 Turbid □ 2 5
3. Time spent developing well	162 min.)	(Describe)		(Describe)
4. Depth of well (from top of well casisng)122	97 ft.			Brown		
5. Inside diameter of well1.9	in.					
6. Volume of water in filter pack and well casing14	<u>16</u> gal.		a			
7. Volume of water removed from well135	0 gal.		_			at solid waste facility:
8. Volume of water added (if any)	gal.	14. Total susp solids	ended _	_	mg/l	mg/l
9. Source of water addedNA		15. COD	-		mg/l	mg/l
		16. Well devel	oped by:	Name (first, la	ast) and Fire	n
10. Analysis performed on water added?	s 🔲 No	First Name:		, ,	150	ne: Kramer
(If yes, attach results)						
		Firm: SCS	ENGINE	ERS, 2830	Dairy Dr	ive, Madison, WI 53718
17. Additional comments on development: Water clarity was clear before ten well volumes.						
Name and Address of Facility Contact/Owner/Responsible First Last Name: Jim Name: Jakubiak	e Party	I hereby cer of my know		the above inf	ormation	is true and correct to the best
Facility/Firm: Wisconsin Power and Light		Signature:	Thyle	Mon		
Street: 3739 Lakeshore Drive		Print Name:	yle Kra	mer		
City/State/Zip: Sheyboygan,WI 53081		Firm: S	CS ENGI	NEERS, 283	0 Dairy Dr	rive, Madison, WI 53718

Appendix C Laboratory Reports

C1 April 2021 Detection Monitoring

May 03, 2021

Meghan Blodgett SCS ENGINEERS 2830 Dairy Drive Madison, WI 53718

RE: Project: 25216069 CCR RULE I-43

Pace Project No.: 40225278

Dear Meghan Blodgett:

Enclosed are the analytical results for sample(s) received by the laboratory on April 16, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Green Bay

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436

Lan Mileny

Project Manager

Enclosures

cc: Tom Karwoski, SCS ENGINEERS Nicole Kron, SCS ENGINEERS Jeff Maxted, ALLIANT ENERGY Marc Morandi, ALLIANT ENERGY

CERTIFICATIONS

Project: 25216069 CCR RULE I-43

Pace Project No.: 40225278

Pace Analytical Services Green Bay

North Dakota Certification #: R-150

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 Virginia VELAP ID: 460263

South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: 25216069 CCR RULE I-43

Pace Project No.: 40225278

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40225278001	MW-301	Water	04/13/21 14:15	04/16/21 07:45
40225278002	MW-302	Water	04/13/21 14:40	04/16/21 07:45
40225278003	MW-303	Water	04/13/21 13:10	04/16/21 07:45
40225278004	MW-304	Water	04/13/21 11:45	04/16/21 07:45
40225278005	MW-305	Water	04/13/21 12:30	04/16/21 07:45
40225278006	FIELD BLANK	Water	04/13/21 00:00	04/16/21 07:45

SAMPLE ANALYTE COUNT

Project: 25216069 CCR RULE I-43

Pace Project No.: 40225278

Lab ID	Sample ID	Method	Analysts	Analytes Reported
40225278001	MW-301	EPA 6020	KXS	2
			VGC	7
		SM 2540C	HNT	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40225278002	MW-302	EPA 6020	KXS	2
			VGC	7
		SM 2540C	HNT	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40225278003	MW-303	EPA 6020	KXS	2
			VGC	7
		SM 2540C	HNT	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40225278004	MW-304	EPA 6020	KXS	2
			VGC	7
		SM 2540C	JXM	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40225278005	MW-305	EPA 6020	KXS	2
			VGC	7
		SM 2540C	JXM	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40225278006	FIELD BLANK	EPA 6020	KXS	2
		SM 2540C	JXM	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3

PASI-G = Pace Analytical Services - Green Bay

ANALYTICAL RESULTS

Project: 25216069 CCR RULE I-43

Pace Project No.: 40225278

Date: 05/03/2021 03:24 PM

Sample: MW-301	Lab ID:	40225278001	Collected:	04/13/21	14:15	Received: 04/	/16/21 07:45 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	•	Method: EPA 6	•	ation Meth	od: EPA	A 3010			
	Pace Ana	llytical Services	- Green Bay						
Boron	132	ug/L	10.0	3.0	1	04/20/21 06:26	04/22/21 15:11	7440-42-8	
Calcium	53900	ug/L	254	76.2	1	04/20/21 06:26	04/22/21 15:11	7440-70-2	
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Green Bay						
Field pH	8.48	Std. Units			1		04/13/21 14:15		
Field Specific Conductance	387	umhos/cm			1		04/13/21 14:15		
Oxygen, Dissolved	0.2	mg/L			1		04/13/21 14:15	7782-44-7	
REDOX	-16	mV			1		04/13/21 14:15		
Turbidity	179.00	NTU			1		04/13/21 14:15		
Static Water Level	654.56	feet			1		04/13/21 14:15		
Temperature, Water (C)	9.1	deg C			1		04/13/21 14:15		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
	Pace Ana	lytical Services	- Green Bay						
Total Dissolved Solids	238	mg/L	20.0	8.7	1		04/20/21 12:37		
9040 pH	Analytical	Method: EPA 9	040						
	Pace Ana	lytical Services	- Green Bay						
pH at 25 Degrees C	8.0	Std. Units	0.10	0.010	1		04/19/21 10:18		H6
300.0 IC Anions	Analytical	Method: EPA 3	0.00						
	Pace Ana	lytical Services	- Green Bay						
Chloride	3.9	mg/L	2.0	0.43	1		04/30/21 13:02	16887-00-6	
Fluoride	0.64	mg/L	0.32	0.095	1		04/30/21 13:02	16984-48-8	
Sulfate	10.2	mg/L	2.0	0.44	1		04/30/21 13:02	14808-79-8	

ANALYTICAL RESULTS

Project: 25216069 CCR RULE I-43

Pace Project No.: 40225278

Date: 05/03/2021 03:24 PM

Sample: MW-302	Lab ID:	40225278002	Collected:	04/13/21	14:40	Received: 04/	16/21 07:45 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	•	Method: EPA 6	•	ation Meth	od: EPA	3010			
	Pace Ana	llytical Services	- Green Bay						
Boron	121	ug/L	10.0	3.0	1	04/20/21 06:26	04/22/21 15:18	7440-42-8	
Calcium	28700	ug/L	254	76.2	1	04/20/21 06:26	04/22/21 15:18	7440-70-2	
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Green Bay						
Field pH	8.36	Std. Units			1		04/13/21 14:40		
Field Specific Conductance	412	umhos/cm			1		04/13/21 14:40		
Oxygen, Dissolved	0.4	mg/L			1		04/13/21 14:40	7782-44-7	
REDOX	189	mV			1		04/13/21 14:40		
Turbidity	19.6	NTU			1		04/13/21 14:40		
Static Water Level	654.57	feet			1		04/13/21 14:40		
Temperature, Water (C)	9.2	deg C			1		04/13/21 14:40		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
	Pace Ana	lytical Services	- Green Bay						
Total Dissolved Solids	232	mg/L	20.0	8.7	1		04/20/21 12:37		
9040 pH	Analytical	Method: EPA 9	040						
	Pace Ana	lytical Services	- Green Bay						
pH at 25 Degrees C	8.0	Std. Units	0.10	0.010	1		04/19/21 10:20		H6
300.0 IC Anions	Analytical	Method: EPA 3	0.00						
	Pace Ana	lytical Services	- Green Bay						
Chloride	4.1	mg/L	2.0	0.43	1		04/30/21 13:16	16887-00-6	
Fluoride	0.76	mg/L	0.32	0.095	1		04/30/21 13:16	16984-48-8	
Sulfate	17.4	mg/L	2.0	0.44	1		04/30/21 13:16	14808-79-8	

ANALYTICAL RESULTS

Project: 25216069 CCR RULE I-43

Pace Project No.: 40225278

Date: 05/03/2021 03:24 PM

Sample: MW-303	Lab ID:	40225278003	Collected:	04/13/2	1 13:10	Received: 04/	16/21 07:45 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	•	l Method: EPA (•	ation Meth	od: EPA	A 3010			
Boron Calcium	84.7 29600	ug/L ug/L	10.0 254	3.0 76.2	1 1		04/22/21 15:25 04/22/21 15:25		
Field Data	Analytica Pace Ana	l Method: llytical Services	s - Green Bay						
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	8.26 475 0.5 154 <0.02 654.53 9.4	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1 1		04/13/21 13:10 04/13/21 13:10 04/13/21 13:10 04/13/21 13:10 04/13/21 13:10 04/13/21 13:10 04/13/21 13:10	7782-44-7	
2540C Total Dissolved Solids	•	l Method: SM 2 llytical Services							
Total Dissolved Solids 9040 pH	•	mg/L I Method: EPA s llytical Services		8.7	1		04/20/21 12:37		
pH at 25 Degrees C 300.0 IC Anions	,	Std. Units I Method: EPA 3 Ilytical Services		0.010	1		04/19/21 10:21		H6
Chloride Fluoride Sulfate	4.5 0.62 25.6	mg/L mg/L mg/L	2.0 0.32 2.0	0.43 0.095 0.44	1 1 1		04/30/21 13:30 04/30/21 13:30 04/30/21 13:30	16984-48-8	

ANALYTICAL RESULTS

Project: 25216069 CCR RULE I-43

Pace Project No.: 40225278

Date: 05/03/2021 03:24 PM

Sample: MW-304	Lab ID:	40225278004	Collected:	04/13/2	1 11:45	Received: 04/	/16/21 07:45 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytica	l Method: EPA 6	020 Prepara	ition Meth	od: EPA	A 3010			
	Pace Ana	alytical Services	- Green Bay						
Boron	91.7	ug/L	10.0	3.0	1	04/20/21 06:26	04/22/21 15:32	7440-42-8	
Calcium	19700	ug/L	254	76.2	1	04/20/21 06:26	04/22/21 15:32	7440-70-2	
Field Data	Analytica	l Method:							
	Pace Ana	alytical Services	- Green Bay						
Field pH	8.31	Std. Units			1		04/13/21 11:45		
Field Specific Conductance	403	umhos/cm			1		04/13/21 11:45		
Oxygen, Dissolved	0.5	mg/L			1		04/13/21 11:45	7782-44-7	
REDOX	216	mV			1		04/13/21 11:45		
Turbidity	<0.02	NTU			1		04/13/21 11:45		
Static Water Level	656.36	feet			1		04/13/21 11:45		
Temperature, Water (C)	9.1	deg C			1		04/13/21 11:45		
2540C Total Dissolved Solids	Analytica	l Method: SM 25	540C						
	Pace Ana	alytical Services	- Green Bay						
Total Dissolved Solids	224	mg/L	20.0	8.7	1		04/20/21 15:01		
9040 pH	Analytica	Method: EPA 9	040						
	Pace Ana	alytical Services	- Green Bay						
pH at 25 Degrees C	8.0	Std. Units	0.10	0.010	1		04/19/21 10:22		H6
300.0 IC Anions	Analytica	I Method: EPA 3	0.00						
	Pace Ana	alytical Services	- Green Bay						
Chloride	2.1	mg/L	2.0	0.43	1		04/30/21 17:49	16887-00-6	
Fluoride	0.53	mg/L	0.32	0.095	1		04/30/21 17:49	16984-48-8	
Sulfate	15.3	mg/L	2.0	0.44	1		04/30/21 17:49	14808-79-8	

ANALYTICAL RESULTS

Project: 25216069 CCR RULE I-43

Pace Project No.: 40225278

Date: 05/03/2021 03:24 PM

Sample: MW-305	Lab ID:	40225278005	Collected	: 04/13/2	1 12:30	Received: 04/	/16/21 07:45 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytica	Method: EPA 6	020 Prepara	ation Meth	od: EPA	A 3010			
	Pace Ana	lytical Services	- Green Bay						
Boron	66.6	ug/L	10.0	3.0	1	04/20/21 06:26	04/22/21 15:38	7440-42-8	
Calcium	86800	ug/L	254	76.2	1	04/20/21 06:26	04/22/21 15:38	7440-70-2	
Field Data	Analytica	Method:							
	Pace Ana	lytical Services	- Green Bay						
Field pH	7.76	Std. Units			1		04/13/21 12:30		
Field Specific Conductance	891	umhos/cm			1		04/13/21 12:30		
Oxygen, Dissolved	0.8	mg/L			1		04/13/21 12:30	7782-44-7	
REDOX	128	mV			1		04/13/21 12:30		
Turbidity	0.93	NTU			1		04/13/21 12:30		
Static Water Level	659.69	feet			1		04/13/21 12:30		
Temperature, Water (C)	9.4	deg C			1		04/13/21 12:30		
2540C Total Dissolved Solids	Analytica	Method: SM 25	540C						
	Pace Ana	lytical Services	- Green Bay						
Total Dissolved Solids	540	mg/L	20.0	8.7	1		04/20/21 15:04		
9040 pH	Analytica	Method: EPA 9	040						
	Pace Ana	lytical Services	- Green Bay						
pH at 25 Degrees C	7.6	Std. Units	0.10	0.010	1		04/19/21 10:27		H6
300.0 IC Anions	Analytica	Method: EPA 3	0.00						
	Pace Ana	llytical Services	- Green Bay						
Chloride	25.3	mg/L	2.0	0.43	1		04/30/21 19:07	16887-00-6	
Fluoride	0.67	mg/L	0.32	0.095	1		04/30/21 19:07		
Sulfate	127	mg/L	20.0	4.4	10		04/30/21 22:29		
		3		-	-			, -	

ANALYTICAL RESULTS

Project: 25216069 CCR RULE I-43

Pace Project No.: 40225278

Date: 05/03/2021 03:24 PM

Sample: FIELD BLANK	Lab ID:	40225278006	Collected	d: 04/13/2 ²	00:00	Received: 04/	16/21 07:45 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepar	ation Meth	od: EPA	A 3010			
	Pace Ana	lytical Services	- Green Bay	/					
Boron	<3.0	ug/L	10.0	3.0	1	04/20/21 06:26	04/22/21 12:33	7440-42-8	
Calcium	261	ug/L	254	76.2	1	04/20/21 06:26	04/22/21 12:33	7440-70-2	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
	Pace Ana	lytical Services	- Green Bay	/					
Total Dissolved Solids	<8.7	mg/L	20.0	8.7	1		04/20/21 15:04		
9040 pH	Analytical	Method: EPA 9	040						
	Pace Ana	lytical Services	- Green Bay	/					
pH at 25 Degrees C	6.5	Std. Units	0.10	0.010	1		04/19/21 10:29		H6
300.0 IC Anions	Analytical	Method: EPA 3	0.00						
	Pace Ana	lytical Services	- Green Bay	/					
Chloride	<0.43	mg/L	2.0	0.43	1		04/30/21 19:21	16887-00-6	
Fluoride	<0.095	mg/L	0.32	0.095	1		04/30/21 19:21	16984-48-8	
Sulfate	<0.44	mg/L	2.0	0.44	1		04/30/21 19:21	14808-79-8	

QUALITY CONTROL DATA

Project: 25216069 CCR RULE I-43

Pace Project No.: 40225278

Boron

Calcium

Date: 05/03/2021 03:24 PM

QC Batch: 382877 Analysis Method: EPA 6020
QC Batch Method: EPA 3010 Analysis Description: 6020 MET

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40225278001, 40225278002, 40225278003, 40225278004, 40225278005, 40225278006

METHOD BLANK: 2208603 Matrix: Water

Associated Lab Samples: 40225278001, 40225278002, 40225278003, 40225278004, 40225278005, 40225278006

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed <3.0 10.0 04/22/21 12:26 ug/L <76.2 254 04/22/21 12:26 ug/L

LABORATORY CONTROL SAMPLE: 2208604

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Boron 476 95 80-120 ug/L 500 Calcium 5000 5040 101 80-120 ug/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2208605 2208606 MS MSD 40225338001 Spike Spike MS MSD MS MSD % Rec Max Conc. Parameter Units Result Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Boron ug/L 299 500 500 747 742 90 75-125 20 Calcium 138000 5000 5000 144000 144000 75-125 20 P6 ug/L 110 128

QUALITY CONTROL DATA

Project: 25216069 CCR RULE I-43

Pace Project No.: 40225278

QC Batch: 382941 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40225278001, 40225278002, 40225278003

METHOD BLANK: 2208850 Matrix: Water

Associated Lab Samples: 40225278001, 40225278002, 40225278003

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <8.7 20.0 04/20/21 12:31

LABORATORY CONTROL SAMPLE: 2208851

ParameterUnitsSpike
Conc.LCS
ResultLCS
% Rec
% RecLimitsQualifiers

Total Dissolved Solids mg/L 564 542 96 80-120

SAMPLE DUPLICATE: 2208852

40225218004 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 140 **Total Dissolved Solids** mg/L 0 140 10

SAMPLE DUPLICATE: 2208853

Date: 05/03/2021 03:24 PM

40225218010 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 530 mg/L 556 5 10

QUALITY CONTROL DATA

Project: 25216069 CCR RULE I-43

Pace Project No.: 40225278

QC Batch: 382972 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40225278004, 40225278005, 40225278006

METHOD BLANK: 2209087 Matrix: Water

Associated Lab Samples: 40225278004, 40225278005, 40225278006

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <8.7 20.0 04/20/21 14:59

LABORATORY CONTROL SAMPLE: 2209088

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids mg/L 564 554 98 80-120

SAMPLE DUPLICATE: 2209089

40225276001 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 472 **Total Dissolved Solids** mg/L 486 3 10

SAMPLE DUPLICATE: 2209090

Date: 05/03/2021 03:24 PM

40225343004 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 850 mg/L 808 5 10

QUALITY CONTROL DATA

Project: 25216069 CCR RULE I-43

Pace Project No.: 40225278

QC Batch: 382737 Analysis Method: EPA 9040
QC Batch Method: EPA 9040 Analysis Description: 9040 pH

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40225278001, 40225278002, 40225278003, 40225278004, 40225278005, 40225278006

SAMPLE DUPLICATE: 2207896

Date: 05/03/2021 03:24 PM

 Parameter
 Units
 40225270004 Result
 Dup Result
 Max Result
 RPD
 Qualifiers

 pH at 25 Degrees C
 Std. Units
 6.3
 6.4
 1
 20 H6

QUALITY CONTROL DATA

Project: 25216069 CCR RULE I-43

Pace Project No.: 40225278

QC Batch: 383702 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40225278001, 40225278002, 40225278003

METHOD BLANK: 2213287 Matrix: Water

Associated Lab Samples: 40225278001, 40225278002, 40225278003

Blank Reporting Limit Qualifiers Parameter Units Result Analyzed Chloride mg/L < 0.43 2.0 04/30/21 01:17 Fluoride mg/L < 0.095 0.32 04/30/21 01:17 Sulfate mg/L 04/30/21 01:17 < 0.44 2.0

LABORATORY CONTROL SAMPLE: 2213288

Date: 05/03/2021 03:24 PM

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L		21.5	108	90-110	
Fluoride	mg/L	2	2.1	107	90-110	
Sulfate	mg/L	20	21.6	108	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2213	289		2213290							
		40005070004	MS	MSD		1400		1405	0/ D			
		40225270001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	390	400	400	816	808	107	105	90-110	1	15	
Fluoride	mg/L	< 0.095	2	2	1.8	1.9	91	93	90-110	1	15	
Sulfate	mg/L	30.3	20	20	50.5	50.7	101	102	90-110	0	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 25216069 CCR RULE I-43

Pace Project No.: 40225278

QC Batch: 383892 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40225278004, 40225278005, 40225278006

METHOD BLANK: 2214475 Matrix: Water

Associated Lab Samples: 40225278004, 40225278005, 40225278006

Blank Reporting Limit Qualifiers Parameter Units Result Analyzed Chloride mg/L < 0.43 2.0 04/30/21 17:21 Fluoride mg/L < 0.095 0.32 04/30/21 17:21 Sulfate mg/L 04/30/21 17:21 < 0.44 2.0

LABORATORY CONTROL SAMPLE: 2214476

Date: 05/03/2021 03:24 PM

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	20	20.3	102	90-110	
Fluoride	mg/L	2	2.0	100	90-110	
Sulfate	mg/L	20	20.1	101	90-110	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2213291 2213292												
			MS	MSD								
		40225302001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	437	400	400	844	857	102	105	90-110	1	15	
Fluoride	mg/L	<1.9	40	40	32.6	31.7	77	75	90-110	3	15	M0
Sulfate	mg/L	171	400	400	594	597	106	106	90-110	0	15	

QUALIFIERS

Project: 25216069 CCR RULE I-43

Pace Project No.: 40225278

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 05/03/2021 03:24 PM

H6 Analysis initiated outside of the 15 minute EPA required holding time.

M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

P6 Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the

spike level.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 25216069 CCR RULE I-43

Pace Project No.: 40225278

Date: 05/03/2021 03:24 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40225278001	MW-301	EPA 3010	382877	EPA 6020	382963
40225278002	MW-302	EPA 3010	382877	EPA 6020	382963
40225278003	MW-303	EPA 3010	382877	EPA 6020	382963
40225278004	MW-304	EPA 3010	382877	EPA 6020	382963
40225278005	MW-305	EPA 3010	382877	EPA 6020	382963
40225278006	FIELD BLANK	EPA 3010	382877	EPA 6020	382963
40225278001	MW-301				
40225278002	MW-302				
40225278003	MW-303				
40225278004	MW-304				
40225278005	MW-305				
40225278001	MW-301	SM 2540C	382941		
40225278002	MW-302	SM 2540C	382941		
40225278003	MW-303	SM 2540C	382941		
40225278004	MW-304	SM 2540C	382972		
40225278005	MW-305	SM 2540C	382972		
40225278006	FIELD BLANK	SM 2540C	382972		
40225278001	MW-301	EPA 9040	382737		
40225278002	MW-302	EPA 9040	382737		
40225278003	MW-303	EPA 9040	382737		
40225278004	MW-304	EPA 9040	382737		
40225278005	MW-305	EPA 9040	382737		
40225278006	FIELD BLANK	EPA 9040	382737		
40225278001	MW-301	EPA 300.0	383702		
40225278002	MW-302	EPA 300.0	383702		
40225278003	MW-303	EPA 300.0	383702		
40225278004	MW-304	EPA 300.0	383892		
40225278005	MW-305	EPA 300.0	383892		
40225278006	FIELD BLANK	EPA 300.0	383892		

Client Name: SCS EngineerS Project # _

Sample Preservation Receipt Form 8C25220th

All containers needing preservation have been checked and noted below: Kes and an any Lab Std #ID of preservation (if pH adjusted): Initial when completed:

020	019	U Ta	2 -	010		017	2 2					000				007			9	Pace Lab#		
		The state of the s		62 16		61-19 41-1- 12-18 2-18-1		100 m	50 PK	1800 mg		2007 2007 2007 2007 2007 2007 2007 2007		/		30 T	3. 10. 11.		10 10 10 10	AG1U		
		7.00		193		100 100 100		1.00 mg		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1				The graph of	11/4			The state of the s	BG1U		
			1000	がはない。				1585 1585 1588 1588		1000 2000 2000 2000 2000					1773			6.11 19.40 19.40	1	AG1H		
No.								197	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							10.				AG4S	Glass	
					X 40 40 40 40 40 40 40 40 40 40 40 40 40			District Control of the Control of t	United States	17			C 24 P	100	10.4	72.00 A. C.	44 44 44			AG4U	SSE	
				4.14	10 to			1	or \$60, 000,000				the state of			400 m				AG5U		
\$150 \$150 \$150 \$150 \$150 \$150 \$150 \$150								7.00 7.00 7.40 7.40		\$ 155 5 155						5000 (64) (46)		194.5 1965 1965		AG2S		
				14	1		L					6 A								BG3U		
				1.7			L	107				127.0		15 cm						BP1U		
								110		I				1	1	$^{\prime}$	2	7	2	BP3U		
	in the second							5)614 1375 1376 1376				77		1141				TANK TANK		врзв	Plastic	
	T grant Market							132		1,000 1,000 1,000 1,000 1,000 1,000					-		_	(15) 201		BP3N	ic	
	A PROPERTY AND A PROP								$\ \ $			NAME OF THE PARTY				1000				BP3S	<u></u>	
200	with the state of																			VG9A		
	Trape of carpage			10 P.		が記して												9 (c) (d)		DG9T		
	Prepare the Control							1												VG9U	Vials	
	10 March 12									The year										VG9H	als	
503 1004 2004	0.0000000000000000000000000000000000000			73.54 97.5			7	332 1114 1144												VG9M		
	100000000000000000000000000000000000000						/							100		574.5 177.5 177.5				VG9D		
	0.000							100		31 (5) 2 (4) 3 (4)				7.# [4.6]				100		JGFU		
1000	25000			掘		7						100								JG9U		
							Abrus adu cu.	337				Description of the control of the co				7000				WGFU	lars	
	42 3h 3h 3h 3h				7													100 mm / 100		WPFU		
	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				/									扫描		21/10		11 17 to 12		SP5T	ြု	
	423.4425			7														17.00 17.00		ZPLC	General	
	4 A	201		1										34	\vdash					GN		
#95	And Inc.		7									100 to 10							T	VOA Vials	(>6mn	n) *
1717 1017	1. 10 may 1. 10		/									Alak Ilak						150 140 140	\Box	H2SO4 pH	≤2	
#195 #191	1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /	1			6	1117	,					100								NaOH+Zn	Act pH	≥9
DEA THE	j		_							1000		is it.								NaOH pH ≥		
	/				0								`	X	X	1160	X	X		HNO3 pH ≤		
	400 300 p.									***************************************								MILE.	1	oH after ad	justed	
25/5/10	2.5/5/10	25/5/10	2.5/5/10	2.5/5/10	2.5/5/10	2.5/5/10	2.5/5/10	2.5/5/10	2.5/5/10	2.5/5/10	2.5 / 5 / 10	2.6//5//10	2.5 / 5 / 10	2.5/5/10	2.5/5/10	2.5/5/10	2.5 / 5 / 10	2.5/5/10	2.5/5/10	(mL)	Volume	

40 mL clear ascorbic	VG9A	1 liter plastic unpres	BP1U	AG1U 1 liter amber glass
Headspace in VOA Vi	henolics, Other:	form, TOC, TOX, TOH, O&G, WI DRO, F	form, TOC	exceptions to preservation check: VOA, Col

(>6mm): a Yes a No 知道A *If yes look in headspace column

?			
ZPLC	40 mL clear vial DI	VG9D	
SP5T	40 mL clear vial MeOH	VG9M	250 mL plastic H2SO4
WPFU	40 mL clear vial HCL	VG9H	250 mL plastic HNO3
WGFU	40 mL clear vial unpres	VG9U	250 mL plastic NaOH
neor	40 mL amber Na Thio	DG9T	250 mL plastic unpres
JGFU	VG9A 40 mL clear ascorbic	VG9A	1 liter plastic unpres

4 oz clear jar unpres 9 oz amber jar unpres 4 oz amber jar unpres

4 oz plastic jar unpres

120 mL plastic Na Thiosulfate

ziploc bag

Page 1 of

BG3U 250 mL clear glass unpres

AG2S

AG5U 100 mL amber glass unpres

500 mL amber glass H2SO4

AG4U 120 mL amber glass unpres

BP3S BP3N BP3B BP3U BP1U

125 mL amber glass H2SO4

AG4S

BG1U 1 liter clear glass

AG1H 1 liter amber glass HCL

Pace Analytical *
1241 Bellevue Street, Green Bay, WI 54302

Document Name: Sample Condition Upon Receipt (SCUR)

Document No.: ENV-FRM-GBAY-0014-Rev.00

Document Revised: 26Mar2020

Author:

Pace Green Bay Quality Office

Sample Condition Upon Receipt Form (SCUR)

_		Decided #
Client Name: SCS (M) Meers		Project #: 10# : 40225279
Courier: CS Logistics Fed Ex Speedee FUP	<u>.</u> s = v	WO#: 40225278
Client Pace Other:		
Tracking #:	:	
Custody Seal on Cooler/Box Present: yes on Sea	als intact	T ves T no
		Tyes T no
Packing Material: ■ Bubble Wrap ■ Bubble Bags	☐ None	Other
		Blue Dry None Samples on ice, cooling process has begun
Cooler Temperature Uncorr: /Corr: ,5		Person examining contents:
Temp Blank Present: yes no Bio	logical T	issue is Frozen: TyesTno Date: Ulle Unnitials:
Temp should be above freezing to 6°C. Biola Samples may be received at ≤ 0°C if shipped on Dry Ice.	· ·	Labeled By Initials:
Chain of Custody Present:	o □n/a	1.
Chain of Custody Filled Out: □Yes 🕍	o □N/A	2 Mail, DGH 4/16/21 1/2
Chain of Custody Relinquished:	o □n/a	
Sampler Name & Signature on COC:	o □n/a	4.
Samples Arrived within Hold Time:	0	5.
- VOA Samples frozen upon receipt	0	Date/Time:
Short Hold Time Analysis (<72hr):	0	6.
Rush Turn Around Time Requested:	0	7.
Sufficient Volume:		8.
For Analysis: ☐ Ves ☐ No MS/MSD: ☐ Yes ☐ Ves	€ □N/A	
Correct Containers Used:	· •	9.
-Pace Containers Used:	□ N/A	
-Pace IR Containers Used: □Yes □No	DSW/A	
Containers Intact: □ □ No.	o [;]	10.
Filtered volume received for Dissolved tests	o □N/A	11.
Sample Labels match COC:	□ N/A	^ 1
-Includes date/time/ID/Analysis Matrix: W		No late/time 4/16/21 by
Trip Blank Present: □Yes □No	A/ABE	13.
Trip Blank Custody Seals Present □Yes □No	DW/A	
Pace Trip Blank Lot # (if purchased):	İ	
Client Notification/ Resolution:	Date/	If checked, see attached form for additional comments
Person Contacted: Comments/ Resolution:	Date/	
	1	

PM Review is documented electronically in LIMs. By releasing the project, the PM acknowledges they have reviewed the sample logic

C2 June 2021 Resample

June 24, 2021

Meghan Blodgett SCS ENGINEERS 2830 Dairy Drive Madison, WI 53718

RE: Project: 25221069 ALLIANT I-43

Pace Project No.: 40228570

Dear Meghan Blodgett:

Enclosed are the analytical results for sample(s) received by the laboratory on June 17, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Green Bay

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436

Lan Mileny

Project Manager

Enclosures

cc: Tom Karwoski, SCS ENGINEERS Nicole Kron, SCS ENGINEERS Jeff Maxted, ALLIANT ENERGY Marc Morandi, ALLIANT ENERGY

CERTIFICATIONS

Project: 25221069 ALLIANT I-43

Pace Project No.: 40228570

Pace Analytical Services Green Bay

North Dakota Certification #: R-150

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 Virginia VELAP ID: 460263

South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: 25221069 ALLIANT I-43

Pace Project No.: 40228570

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40228570001	MW-302	Water	06/16/21 10:55	06/17/21 08:30
40228570002	FIELD BLANK	Water	06/16/21 10:55	06/17/21 08:30

Green Bay, WI 54302 (920)469-2436

SAMPLE ANALYTE COUNT

Project: 25221069 ALLIANT I-43

Pace Project No.: 40228570

Lab ID	Sample ID	Method	Analysts	Analytes Reported
40228570001	MW-302		VGC	7
		EPA 300.0	HMB	1
40228570002	FIELD BLANK	EPA 300.0	HMB	1

PASI-G = Pace Analytical Services - Green Bay

ANALYTICAL RESULTS

Project: 25221069 ALLIANT I-43

Pace Project No.: 40228570

Date: 06/24/2021 09:59 AM

Sample: MW-302	Lab ID:	40228570001	Collecte	ed: 06/16/2	1 10:55	Received: 06	/17/21 08:30 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
	Pace Ana	llytical Services	- Green Ba	ıy					
Field pH	8.37	Std. Units			1		06/16/21 10:55		
Field Specific Conductance	386	umhos/cm			1		06/16/21 10:55		
Oxygen, Dissolved	0.6	mg/L			1		06/16/21 10:55	7782-44-7	
REDOX	24	mV			1		06/16/21 10:55		
Turbidity	18.1	NTU			1		06/16/21 10:55		
Static Water Level	649.75	feet			1		06/16/21 10:55		
Temperature, Water (C)	10.3	deg C			1		06/16/21 10:55		
300.0 IC Anions	Analytical	Method: EPA 3	300.0						
	Pace Ana	llytical Services	- Green Ba	ıy					
Fluoride	0.77	mg/L	0.32	0.095	1		06/18/21 15:49	16984-48-8	

ANALYTICAL RESULTS

Project: 25221069 ALLIANT I-43

Pace Project No.: 40228570

Date: 06/24/2021 09:59 AM

Sample: FIELD BLANK Lab ID: 40228570002 Collected: 06/16/21 10:55 Received: 06/17/21 08:30 Matrix: Water **Parameters** Results Units LOQ LOD DF Prepared CAS No. Analyzed Qual Analytical Method: EPA 300.0 300.0 IC Anions Pace Analytical Services - Green Bay Fluoride < 0.095 mg/L 0.32 0.095 06/18/21 16:09 16984-48-8

QUALITY CONTROL DATA

Project: 25221069 ALLIANT I-43

Pace Project No.: 40228570

Date: 06/24/2021 09:59 AM

QC Batch: 388363 QC Batch Method: EPA 300.0 Analysis Method: EPA 300.0

Analysis Description: 300.0 IC Anions

Laboratory:

Pace Analytical Services - Green Bay

Associated Lab Samples: 40228570001, 40228570002

METHOD BLANK: 2240462 Matrix: Water

Associated Lab Samples: 40228570001, 40228570002

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Fluoride mg/L <0.095 0.32 06/18/21 15:21

LABORATORY CONTROL SAMPLE: 2240463

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Fluoride mg/L 1.9 97 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2240464 2240465

MS MSD

40228592001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Limits < 0.095 2 Fluoride mg/L 2 2.0 2.0 102 99 90-110 3 15

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 25221069 ALLIANT I-43

Pace Project No.: 40228570

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 06/24/2021 09:59 AM

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 25221069 ALLIANT I-43

Pace Project No.: 40228570

Date: 06/24/2021 09:59 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40228570001	MW-302				
40228570001 40228570002	MW-302 FIELD BLANK	EPA 300.0 EPA 300.0	388363 388363		

	(Please Print Clearly)											R MIDW			1	Page 1	OT	
Company Name	e: <u>SS</u>				D	And	hdin	~1®		•	MN: 6	12-607-1	1700	WI: 920-469-2436	Vo	1700	D	
Branch/Locatio	on: Madrson u	//		/_/	ract	Al la	llytic	di m						·	-00			ı
Project Contac	t: Meg Blodge	H	$\exists \mid \mid \mid$	/		тт.р.								Quote #:				
Phone:	208		'		CHA	NI	OF	C	US	TO	DY			Mail To Contact:				
Project Number	r. 25221069	<i>†</i>	A=	:None B=	HCL C=	H2SO4	*Preserva D=HNO3			F=Methan	ol G=N	laOH		Mail To Company:				
Project Name:	Alliant	14	<u>₹</u>	Sodium Bisu	ifate Solut	tion	I=Sodiun	n Thiosulf	fate J	l=Other				Mail To Address:				l
Project State:	WI			TERED? ES/NO)	Y/N	1												
Sampled By (P	rint): ZACH WA	750	PRES	ERVATION CODE)*	Pick Letter	A								Invoice To Contact:				
Sampled By (Si	ign): Zac							-						Invoice To Company:		.:		
PO #:		Regulate Program	-		Requested	10/0								Invoice To Address:				١.
Data Packag	1-1	\ = Air	Matrix Cod] nbag	2	1			1.								
☐ EPA	Level III (billable)	3 = Biota C = Charcoa	DW = Dri al GW = Gri	nking Water ound Water	ses I	Las	,		<u> </u>					Invoice To Phone:				
☐ EPA	revel in Figure 1 Figure 1	O = Oil S = Soil SI = Sludge	WW = Wa	rface Water aste Water pe	Analyses	K								CLIENT		OMMENTS	Profile #]
PACE LAB #	CLIENT FIELD ID	DAT	COLLECTION TE TIME	MATRIX			<u> </u>			<u> </u>				COMMENTS	(Lab l	Jse Only)		
001	MN302	6-1	16 105	JW			1											
600	FB	J		$\top t$			1											1
]
					3.5													1
							†	1	†	 	İ							1
								 	╁.	 								1
				- 	100			 	1	 								1
		-	· ·					-	\vdash	-								1
	,						-	ļ		ļ		-						┨
		_			\$2000 PAGE 1	-	-	-	 	 		-						+
					4.014				ļ	<u> </u>					<u> </u>			-
								<u> </u>		<u> </u>	ļ	ļ						4
						i i											-IA Ne	4
	naround Time Requested - Prelir AT subject to approval/surcharge	e) [Relinquierred E	<i>[[[</i>	7		6-1	ate/Time:	2/	1400	Receive			Date/Time:		Jorg Pice Pi	oject No.	
Trong-14 De-15	Date Needed:	vant\:	Relinquished E	Saist	100	1		ate/Time:	1)8	30	Receive	od By: NOLT	79 (Soco (0)17/2	10830		2 0-	1
Email #1:	m Rush Results by (complete what you w		Relinquished E		177			ate/Time:		<u> </u>	Receive		<u>~</u>	Date/Time:	, – , – ,	Recorpt Tomp	3 "	_[
Emall #2:				_												1	teceipt pH djusted	1
Telephone:			Relinquished E	Зу:			Da	ate/Time:			Receive	ed By:		Date/Time:			stody Seal	1
	imples on HOLD are subject to		Relinquished E	Зу:			Di	ate/Time:			Receive	ed By:		Date/Time:		Present / I	Not Present	
	ial pricing and release of liability										1					Intact/I	Not IREGE 10)Т 1

Sample Preservation Receipt Form

Pace Analytical Services, LLC 1241 Bellevue Street, Suite 9 Green Bay, WI 54302

Project # Client Name: SCS-modison All containers needing preservation have been checked and noted below:

Yes

No

No.

NA. Initial when Date/ completed: Time: Lab Lot# of pH paper: Lab Std #ID of preservation (if pH adjusted): VaOH+Zn Act pH ≥9 'OA Vials (>6mm) after adjusted Glass **Plastic** Vials Jars General 12SO4 pH ≤2 JaOH pH ≥12 Volume INO3 pH ≤2 (mL) WGFU WPFU BG3U VG9A JGFU AG10 AG1H AG4S AG5U AG2S BP1U врзв **BP3N /G9**U VG9H **VG9M** VG9D JG9U **ZPLC BP3U BP3S** DG9T SP5T Pace S Lab # 001 2.5 / 5 / 10 002 2.5/5/10 003 2.5 / 5 / 10 2.5/5/10 004 005 2.5 / 5 / 10 006 2.5/5/10 007 2.5 / 5 / 10 008 2.5/5/10 009 2.5 / 5 / 10 010 2.5/5/10 2.5 / 5 / 10 011 2.5/5/10 012 013 2.5 / 5 / 10 014 2.5/5/10 015 2.5 / 5 / 10 016 2.5/5/10 017 2.5 / 5 / 10 018 2.5/5/10 2.5 / 5 / 10 019 2.5/5/10 020 Headspace in VOA Vials (>6mm): □Yes □No kN/A *If yes look in headspace column Exceptions to preservation check: VOA, Coliform, TOC, TOX, TOH, O&G, WI DRO, Phenolics, Other: AG1U 1 liter amber glass BP1U 1 liter plastic unpres 40 mL clear ascorbic JGFU 4 oz amber jar unpres VG9A BG1U 1 liter clear glass 250 mL plastic unpres BP3U JG9U DG9T 40 mL amber Na Thio 9 oz amber jar unpres AG1H 1 liter amber glass HCL BP3B 250 mL plastic NaOH VG9U 40 mL clear vial unpres WGFU 4 oz clear jar unpres AG4S 125 mL amber glass H2SO4 BP3N 250 mL plastic HNO3 VG9H 40 mL clear vial HCL **WPFU** 4 oz plastic jar unpres AG4U 120 mL amber glass unpres BP3S 250 mL plastic H2SO4 40 mL clear vial MeOH SP5T 120 mL plastic Na Thiosulfate VG9M AG5U 100 mL amber glass unpres 40 mL clear vial DI **ZPLC** VG9D ziploc bag AG2S 500 mL amber glass H2SO4 GN

BG3U 250 mL clear glass unpres

Pace Analytical® 1241 Bellevue Street, Green Bay, WI 54302

Document Name:

Sample Condition Upon Receipt (SCUR)

Document No.: ENV-FRM-GBAY-0014-Rev.00 Document Revised: 26Mar2020

Author:

Pace Green Bay Quality Office

0830

Sample Condition Upon Receipt Form (SCUR)

		Project #:		
Client Name: SCS - MOCISON)		WO#: 40228570	D
Courier: CS Logistics Fed Ex Speed	dee 🗖 UPS	☐ Waltco		_
☐ Client ☐ Pace Other:		· 		
Tracking #: 2231 ((0)(02)			40228570	
Custody Seal on Cooler/Box Present: yes	no Seals	intact: 🔀 yes 🗖 no		
Custody Seal on Samples Present: 🗀 yes 🄀	no Seals	intact: ☐ yes ☐ no		
Packing Material:	•	\frown		
Thermometer Used SR - 9	Type of Ice:	(Wet) Blue Dry None	Samples on ice, cooling process has be Person examining co	
Cooler Temperature Uncorr: // /Corr:	<u> </u>	oisst Tissus is Essent.		
Temp Blank Present:	Biolo	gical Tissue is Frozen: 🗖	yes no Date: 1721/Initials:	
Temp should be above freezing to 6°C. Biota Samples may be received at ≤ 0°C if shipped on [Ory Ice.		Labeled By Initials:_&	14
Chain of Custody Present:	XYes □No	□N/A 1.		
Chain of Custody Filled Out:	□Yes XNo	□N/A 2. pg #, mail	+ invoice info	<u>18 61171</u>
Chain of Custody Relinquished:	XYes □No	□N/A 3.		
Sampler Name & Signature on COC:	¥Yes □No	□N/A 4.		
Samples Arrived within Hold Time:	X Yes □No	5.		
- VOA Samples frozen upon receipt	□Yes □No	Date/Time:		
Short Hold Time Analysis (<72hr):	□Yes 🗷 No	6.		
Rush Turn Around Time Requested:	□Yes 🗖 No	7.		
Sufficient Volume:		8.		
For Analysis: XYes □No MS/MSI	D: □Yes □No	⊠ N/A		
Correct Containers Used:	X Yes □No	9.		
-Pace Containers Used:	⊠ Yes □No	□N/A		
-Pace IR Containers Used:	□Yes □No	Ż N/A		
Containers Intact:	X Yes □No	10.		
Filtered volume received for Dissolved tests	□Yes □No	X N/A 11.		
Sample Labels match COC:	X iYes □No	□N/A 12.		
-Includes date/time/ID/Analysis Matrix:	W			
Trip Blank Present:	□Yes □No	⋈ N/A 13.		
Trip Blank Custody Seals Present	□Yes □No	⊠ N/A		
Pace Trip Blank Lot # (if purchased):		,		
Client Notification/ Resolution: Person Contacted:		If che Date/Time:	ecked, see attached form for additional comn	nents
		Date/ Hille.		
Comments/ Resolution:				

PM Review is documented electronically in LIMs. By releasing the project, the PM acknowledges they have reviewed the sample logir

C3 October 2021 Detection Monitoring

November 16, 2021

Meghan Blodgett SCS ENGINEERS 2830 Dairy Drive Madison, WI 53718

RE: Project: CCR RULE EDGEWATER I-43 ASH

Pace Project No.: 40236018

Dear Meghan Blodgett:

Enclosed are the analytical results for sample(s) received by the laboratory on October 29, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Green Bay

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436

Lan Mileny

Project Manager

Enclosures

cc: Sherren Clark, SCS Engineers
Tom Karwoski, SCS ENGINEERS
Nicole Kron, SCS ENGINEERS
Ryan Matzuk, SCS Engineers
Jeff Maxted, ALLIANT ENERGY
Marc Morandi, ALLIANT ENERGY

CERTIFICATIONS

Project: CCR RULE EDGEWATER I-43 ASH

Pace Project No.: 40236018

Pace Analytical Services Green Bay

North Dakota Certification #: R-150

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 Virginia VELAP ID: 460263

South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157

Federal Fish & Wildlife Permit #: LE51774A-0

(920)469-2436

SAMPLE SUMMARY

Project: CCR RULE EDGEWATER I-43 ASH

Pace Project No.: 40236018

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40236018001	MW-305	Water	10/26/21 12:55	10/29/21 07:20
40236018002	FIELD BLANK	Water	10/26/21 14:00	10/29/21 07:20
40236018003	MW-301	Water	10/26/21 14:05	10/29/21 07:20
40236018004	MW-302	Water	10/26/21 14:35	10/29/21 07:20
40236018005	MW-303	Water	10/26/21 15:40	10/29/21 07:20
40236018006	MW-304	Water	10/26/21 15:05	10/29/21 07:20

SAMPLE ANALYTE COUNT

Project: CCR RULE EDGEWATER I-43 ASH

Pace Project No.: 40236018

Lab ID	Sample ID	Method	Analysts	Analytes Reported
40236018001	MW-305	EPA 6020B	KXS	2
			MEA	7
		SM 2540C	HNT	1
		EPA 9040	ALY	1
		EPA 300.0	НМВ	3
40236018002	FIELD BLANK	EPA 6020B	KXS	2
		SM 2540C	HNT	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40236018003	MW-301	EPA 6020B	KXS	2
			MEA	7
		SM 2540C	HNT	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40236018004	MW-302	EPA 6020B	KXS	2
			MEA	7
		SM 2540C	HNT	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40236018005	MW-303	EPA 6020B	KXS	2
			MEA	7
		SM 2540C	HNT	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40236018006	MW-304	EPA 6020B	KXS	2
			MEA	7
		SM 2540C	HNT	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3

PASI-G = Pace Analytical Services - Green Bay

Project: CCR RULE EDGEWATER I-43 ASH

Pace Project No.: 40236018

Date: 11/16/2021 02:07 PM

Sample: MW-305	Lab ID:	40236018001	Collected:	10/26/21	12:55	Received: 10/	/29/21 07:20 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytica	Method: EPA 6	020B Prepa	ration Met	hod: EF	PA 3010A			
	Pace Ana	lytical Services	- Green Bay						
Boron	67.8	ug/L	10.0	3.0	1	11/03/21 05:24	11/11/21 20:36	7440-42-8	
Calcium	87800	ug/L	254	76.2	1	11/03/21 05:24	11/11/21 20:36	7440-70-2	
Field Data	Analytica	Method:							
	Pace Ana	lytical Services	- Green Bay						
Field pH	7.76	Std. Units			1		10/26/21 12:55		
Field Specific Conductance	863	umhos/cm			1		10/26/21 12:55		
Oxygen, Dissolved	1.6	mg/L			1		10/26/21 12:55	7782-44-7	
REDOX	136	mV			1		10/26/21 12:55		
Turbidity	21.7	NTU			1		10/26/21 12:55		
Static Water Level	655.86	feet			1		10/26/21 12:55		
Temperature, Water (C)	11.0	deg C			1		10/26/21 12:55		
2540C Total Dissolved Solids	Analytica	Method: SM 25	540C						
	Pace Ana	lytical Services	- Green Bay						
Total Dissolved Solids	556	mg/L	20.0	8.7	1		11/02/21 14:38		
9040 pH	Analytica	Method: EPA 9	040						
	Pace Ana	lytical Services	- Green Bay						
pH at 25 Degrees C	7.6	Std. Units	0.10	0.010	1		11/05/21 10:10		H6
300.0 IC Anions	Analytica	Method: EPA 3	0.00						
	Pace Ana	lytical Services	- Green Bay						
Chloride	24.9	mg/L	10.0	2.2	5		11/15/21 14:16	16887-00-6	
Fluoride	0.72J	mg/L	1.6	0.48	5		11/15/21 14:16	16984-48-8	D3
Sulfate	125	mg/L	10.0	2.2	5		11/15/21 14:16	14808-79-8	

Project: CCR RULE EDGEWATER I-43 ASH

Pace Project No.: 40236018

Date: 11/16/2021 02:07 PM

Sample: FIELD BLANK	Lab ID:	40236018002	Collected	d: 10/26/2 ²	1 14:00	Received: 10/	29/21 07:20 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	•	Method: EPA 6	•		hod: Ef	PA 3010A			
	Pace Anal	ytical Services	- Green Bay	У					
Boron	<3.0	ug/L	10.0	3.0	1	11/03/21 05:24	11/11/21 18:38	7440-42-8	
Calcium	<76.2	ug/L	254	76.2	1	11/03/21 05:24	11/11/21 18:38	7440-70-2	
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
	Pace Anal	ytical Services	- Green Bay	y					
Total Dissolved Solids	18.0J	mg/L	20.0	8.7	1		11/02/21 14:39		
9040 pH	Analytical	Method: EPA 9	040						
·	Pace Anal	ytical Services	- Green Bay	y					
pH at 25 Degrees C	8.0	Std. Units	0.10	0.010	1		11/05/21 10:13		H6
300.0 IC Anions	Analytical	Method: EPA 3	0.00						
	Pace Anal	ytical Services	- Green Bay	y					
Chloride	<0.43	mg/L	2.0	0.43	1		11/15/21 15:13	16887-00-6	
Fluoride	< 0.095	mg/L	0.32	0.095	1		11/15/21 15:13	16984-48-8	
Sulfate	<0.44	mg/L	2.0	0.44	1		11/15/21 15:13	14808-79-8	

Project: CCR RULE EDGEWATER I-43 ASH

Pace Project No.: 40236018

Date: 11/16/2021 02:07 PM

Sample: MW-301	Lab ID:	40236018003	Collected:	10/26/21	14:05	Received: 10/	/29/21 07:20 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytica	Method: EPA 6	020B Prepa	ration Met	hod: EF	PA 3010A			
	Pace Ana	lytical Services	- Green Bay						
Boron	130	ug/L	10.0	3.0	1	11/03/21 05:24	11/11/21 20:43	7440-42-8	
Calcium	30200	ug/L	254	76.2	1	11/03/21 05:24	11/11/21 20:43	7440-70-2	
Field Data	Analytica	Method:							
	Pace Ana	lytical Services	- Green Bay						
Field pH	8.23	Std. Units			1		10/26/21 14:05		
Field Specific Conductance	356	umhos/cm			1		10/26/21 14:05		
Oxygen, Dissolved	1.3	mg/L			1		10/26/21 14:05	7782-44-7	
REDOX	291	mV			1		10/26/21 14:05		
Turbidity	130.0	NTU			1		10/26/21 14:05		
Static Water Level	650.76	feet			1		10/26/21 14:05		
Temperature, Water (C)	11.2	deg C			1		10/26/21 14:05		
2540C Total Dissolved Solids	Analytica	Method: SM 25	540C						
	Pace Ana	lytical Services	- Green Bay						
Total Dissolved Solids	200	mg/L	20.0	8.7	1		11/02/21 14:39		
9040 pH	Analytica	Method: EPA 9	040						
	Pace Ana	lytical Services	- Green Bay						
pH at 25 Degrees C	7.9	Std. Units	0.10	0.010	1		11/05/21 10:20		H6
300.0 IC Anions	Analytica	Method: EPA 3	0.00						
	Pace Ana	lytical Services	- Green Bay						
Chloride	3.3	mg/L	2.0	0.43	1		11/15/21 15:28	16887-00-6	
Fluoride	0.61	mg/L	0.32	0.095	1		11/15/21 15:28	16984-48-8	
Sulfate	10.2	mg/L	2.0	0.44	1		11/15/21 15:28	14808-79-8	

Project: CCR RULE EDGEWATER I-43 ASH

Pace Project No.: 40236018

Date: 11/16/2021 02:07 PM

Sample: MW-302	Lab ID:	40236018004	Collected	10/26/21	14:35	Received: 10/	/29/21 07:20 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	•	Method: EPA	•	ration Met	hod: EF	PA 3010A			
Boron Calcium	122 27200	ug/L ug/L	10.0 254	3.0 76.2	1 1	11/03/21 05:24 11/03/21 05:24	11/11/21 20:50 11/11/21 20:50		
Field Data	Analytica Pace Ana	l Method: llytical Services	s - Green Bay						
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	8.23 393 0.6 207 38.3 644.88 9.8	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1 1		10/26/21 14:35 10/26/21 14:35 10/26/21 14:35 10/26/21 14:35 10/26/21 14:35 10/26/21 14:35 10/26/21 14:35	7782-44-7	
2540C Total Dissolved Solids	•	l Method: SM 2 llytical Services							
Total Dissolved Solids 9040 pH	•	mg/L I Method: EPA alytical Services		8.7	1		11/02/21 14:39		
pH at 25 Degrees C 300.0 IC Anions	8.0 Analytica	Std. Units I Method: EPA	0.10 300.0	0.010	1		11/05/21 10:21		H6
Chloride Fluoride Sulfate	Pace Ana 3.8 0.74 15.9	nlytical Services mg/L mg/L mg/L	2.0 0.32 2.0	0.43 0.095 0.44	1 1 1		11/15/21 15:42 11/15/21 15:42 11/15/21 15:42	16984-48-8	

Project: CCR RULE EDGEWATER I-43 ASH

Pace Project No.: 40236018

Date: 11/16/2021 02:07 PM

Sample: MW-303	Lab ID:	40236018005	Collected:	10/26/2	1 15:40	Received: 10/	/29/21 07:20 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	020B Prepa	ration Met	hod: EF	PA 3010A			
	Pace Ana	lytical Services	- Green Bay						
Boron	83.3	ug/L	10.0	3.0	1	11/03/21 05:24	11/11/21 20:58	7440-42-8	
Calcium	29300	ug/L	254	76.2	1	11/03/21 05:24	11/11/21 20:58	7440-70-2	
Field Data	Analytical	Method:							
	Pace Ana	lytical Services	- Green Bay						
Field pH	8.05	Std. Units			1		10/26/21 15:40		
Field Specific Conductance	478	umhos/cm			1		10/26/21 15:40		
Oxygen, Dissolved	0.6	mg/L			1		10/26/21 15:40	7782-44-7	
REDOX	244	mV			1		10/26/21 15:40		
Turbidity	71.5	NTU			1		10/26/21 15:40		
Static Water Level	650.90	feet			1		10/26/21 15:40		
Temperature, Water (C)	9.7	deg C			1		10/26/21 15:40		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
	Pace Ana	lytical Services	- Green Bay						
Total Dissolved Solids	268	mg/L	20.0	8.7	1		11/02/21 14:39		
9040 pH	Analytical	Method: EPA 9	040						
	Pace Ana	lytical Services	- Green Bay						
pH at 25 Degrees C	8.0	Std. Units	0.10	0.010	1		11/05/21 10:22		H6
300.0 IC Anions	Analytical	Method: EPA 3	0.00						
	Pace Ana	lytical Services	- Green Bay						
Chloride	4.2	mg/L	2.0	0.43	1		11/15/21 15:56	16887-00-6	
Fluoride	0.61	mg/L	0.32	0.095	1		11/15/21 15:56	16984-48-8	
Sulfate	28.9	mg/L	2.0	0.44	1		11/15/21 15:56		

(920)469-2436

ANALYTICAL RESULTS

Project: CCR RULE EDGEWATER I-43 ASH

Pace Project No.: 40236018

Date: 11/16/2021 02:07 PM

Sample: MW-304	Lab ID:	40236018006	Collected	10/26/2	15:05	Received: 10/	/29/21 07:20 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	•	l Method: EPA (•		hod: EF	PA 3010A			
Boron Calcium	89.8 21600	ug/L ug/L	10.0 254	3.0 76.2	1 1	11/03/21 05:24 11/03/21 05:24	11/11/21 21:05 11/11/21 21:05		
Field Data	Analytica Pace Ana	l Method: alytical Services	s - Green Bay						
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	8.12 398 0.6 205 96.3 652.54 9.6	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1 1		10/26/21 15:05 10/26/21 15:05 10/26/21 15:05 10/26/21 15:05 10/26/21 15:05 10/26/21 15:05 10/26/21 15:05	7782-44-7	
2540C Total Dissolved Solids	•	l Method: SM 2 alytical Services							
Total Dissolved Solids 9040 pH	•	mg/L I Method: EPA s alytical Services		8.7	1		11/02/21 14:40		
pH at 25 Degrees C 300.0 IC Anions	•	Std. Units		0.010	1		11/05/21 10:23		H6
Chloride Fluoride Sulfate	2.3 0.49 15.6	alytical Services mg/L mg/L mg/L	2.0 0.32 2.0	0.43 0.095 0.44	1 1 1		11/15/21 16:11 11/15/21 16:11 11/15/21 16:11	16887-00-6 16984-48-8 14808-79-8	

(920)469-2436

QUALITY CONTROL DATA

Project: CCR RULE EDGEWATER I-43 ASH

Pace Project No.: 40236018

Boron

Calcium

Date: 11/16/2021 02:07 PM

QC Batch: 400458 Analysis Method: EPA 6020B
QC Batch Method: EPA 3010A Analysis Description: 6020B MET

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40236018001, 40236018002, 40236018003, 40236018004, 40236018005, 40236018006

METHOD BLANK: 2312698 Matrix: Water

Associated Lab Samples: 40236018001, 40236018002, 40236018003, 40236018004, 40236018005, 40236018006

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed <3.0 10.0 11/11/21 18:23 ug/L <76.2 254 11/11/21 18:23 ug/L

LABORATORY CONTROL SAMPLE: 2312699

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Boron 250 243 97 80-120 ug/L Calcium 10000 10200 102 80-120 ug/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2312700 2312701 MS MSD 40235995001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Boron ug/L 1040 250 250 1240 1250 84 75-125 0 20 Calcium 65600 10000 10000 74200 75300 86 98 75-125 20 ug/L 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: CCR RULE EDGEWATER I-43 ASH

Pace Project No.: 40236018

QC Batch: 400426 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40236018001, 40236018002, 40236018003, 40236018004, 40236018005, 40236018006

METHOD BLANK: 2312359 Matrix: Water

Associated Lab Samples: 40236018001, 40236018002, 40236018003, 40236018004, 40236018005, 40236018006

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <8.7 20.0 11/02/21 14:36

LABORATORY CONTROL SAMPLE: 2312360

Spike LCS LCS % Rec Conc. % Rec Limits Qualifiers Parameter Units Result mg/L **Total Dissolved Solids** 575 554 96 80-120

SAMPLE DUPLICATE: 2312362

40235914001 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 810 **Total Dissolved Solids** mg/L 3 834 10

SAMPLE DUPLICATE: 2312363

Date: 11/16/2021 02:07 PM

40236018001 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 556 mg/L 584 5 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: CCR RULE EDGEWATER I-43 ASH

Pace Project No.: 40236018

QC Batch: 400795 Analysis Method: EPA 9040
QC Batch Method: EPA 9040 Analysis Description: 9040 pH

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40236018001, 40236018002, 40236018003, 40236018004, 40236018005, 40236018006

SAMPLE DUPLICATE: 2314419

Date: 11/16/2021 02:07 PM

 Parameter
 Units
 40235873001 Result
 Dup Result
 Max RPD
 Max RPD
 Qualifiers

 pH at 25 Degrees C
 Std. Units
 7.3
 7.4
 1
 20 H6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: CCR RULE EDGEWATER I-43 ASH

LABORATORY CONTROL SAMPLE: 2216044

Date: 11/16/2021 02:07 PM

Pace Project No.: 40236018

QC Batch: 401294 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40236018001, 40236018002, 40236018003, 40236018004, 40236018005, 40236018006

METHOD BLANK: 2316943 Matrix: Water

Associated Lab Samples: 40236018001, 40236018002, 40236018003, 40236018004, 40236018005, 40236018006

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Chloride	mg/L	<0.43	2.0	11/13/21 10:50	
Fluoride	mg/L	< 0.095	0.32	11/13/21 10:50	
Sulfate	mg/L	< 0.44	2.0	11/13/21 10:50	

LABORATORT CONTROL SAMPLE.	2310944	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L		18.8	94	90-110	
Fluoride	mg/L	2	1.8	91	90-110	
Sulfate	mg/L	20	18.3	92	90-110	

MATRIX SPIKE & MATRIX SP		2316946										
		40235999003	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	21.6	100	100	127	132	106	110	90-110	4	15	
Fluoride	mg/L	<0.48	10	10	10.0	10.6	100	106	90-110	6	15	
Sulfate	mg/L	<2.2	100	100	101	108	101	108	90-110	6	15	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2316		2316948								
			MS	MSD								
		40236058005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	5.4	20	20	28.2	28.2	114	114	90-110	0	15	M0
Fluoride	mg/L	1.2	2	2	3.4	3.4	109	109	90-110	0	15	
Sulfate	mg/L	75.2	100	100	183	183	108	108	90-110	0	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: CCR RULE EDGEWATER I-43 ASH

Pace Project No.: 40236018

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 11/16/2021 02:07 PM

D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

H6 Analysis initiated outside of the 15 minute EPA required holding time.

M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: CCR RULE EDGEWATER I-43 ASH

Pace Project No.: 40236018

Date: 11/16/2021 02:07 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40236018001	MW-305	EPA 3010A	400458	EPA 6020B	400581
40236018002	FIELD BLANK	EPA 3010A	400458	EPA 6020B	400581
40236018003	MW-301	EPA 3010A	400458	EPA 6020B	400581
40236018004	MW-302	EPA 3010A	400458	EPA 6020B	400581
40236018005	MW-303	EPA 3010A	400458	EPA 6020B	400581
40236018006	MW-304	EPA 3010A	400458	EPA 6020B	400581
10236018001	MW-305				
40236018003	MW-301				
40236018004	MW-302				
10236018005	MW-303				
40236018006	MW-304				
10236018001	MW-305	SM 2540C	400426		
10236018002	FIELD BLANK	SM 2540C	400426		
10236018003	MW-301	SM 2540C	400426		
10236018004	MW-302	SM 2540C	400426		
10236018005	MW-303	SM 2540C	400426		
10236018006	MW-304	SM 2540C	400426		
40236018001	MW-305	EPA 9040	400795		
40236018002	FIELD BLANK	EPA 9040	400795		
40236018003	MW-301	EPA 9040	400795		
40236018004	MW-302	EPA 9040	400795		
40236018005	MW-303	EPA 9040	400795		
40236018006	MW-304	EPA 9040	400795		
10236018001	MW-305	EPA 300.0	401294		
40236018002	FIELD BLANK	EPA 300.0	401294		
40236018003	MW-301	EPA 300.0	401294		
40236018004	MW-302	EPA 300.0	401294		
40236018005	MW-303	EPA 300.0	401294		
40236018006	MW-304	EPA 300.0	401294		

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

																							_					
Section	A	Section B							Sectio														- 1					
Require	d Client Information:	Required P	roject In	formation:						e Infor	matic	on:											L	Pag	e :	1	Of	
Compan		Report To:	Megha	n Blodgett					Attenti																			
Address		Copy To:								any Na	me:										_		. Person 1					et forder to
	, WI 53718								Addre													4 - 2 - 5	3 : 60; r :	R	egulato	ory Agen	<u>:y</u>	Section of the re-
	mblodgett@scsengineers.com	Purchase O								Quote:	Mone	205					-1-1				-		I say 1		Ctata I	Location	il sis sai yat ƙa	40.00 \$1.00 12
Phone:	608-216-7362 Fax.	Project Nam	e: C	CR Rule Ed	gewater I-	43 Ash (2	5216069)	_		Project Profile			dar	n.mile	NSKY(@pac	elabs.co	om,				-			State /	Location		
request	ed Due Date:	Project #:					-	<u>l'</u>	ace	Tonie	+.	3946			\neg			ocuos	tod A	aaluei	s Filtere	d (V)	NI)		7 13	War.		
	MATRIX Drinking V Water	CODE ater DW WT	(see valid codes to left)		COLLE	CTED		LECTION		1	Pre	serv	atives	3		N/A												
	SAMPLE ID One Character per box. (A.7.0.9.(,) Waste Wate Wate Wate Wate Wate Wate Wate Wa	er WW P SL OL WP AR			ART	EN		SOL	TAINERS	Da/						Analyses Test		1 I	TDS, Cl, F, SO4 Metals, Boron/Calcium						Residual Chlorine (Y/N)			,
ITEM #	Sample Ids must be unique Tissue	OT TS	MATRIX CODE	DATE	TIME	DATE	TIME	SAMPLET	-	Unpreserved H2SO4	HNO3	고 모	NaOH Na2S2O3	Methanol	Other	Analy		Hd	TDS, CI, I						Residual			1
1	MW-305		wt	10-21	i255	-		3	2	۱ ا	()							x	x x			L			╛	B/Ca	001	
2	FIELD BLANK		WT		1400			Ţ		1	1							x	x x						_ [B/Ca	002	
3	MW-301		WT	1026	1405			71		Π	П	П						x	x x						╛╽	B/Ca	003	
4	MW-302		WT	10-20	1435	1		\prod										x	x x							B/Ca	004	
5	MW-303		wr		1540			1	1		Π	П						x	x x						╛╽	B/Ca	005	
6	MW-304		WT	10-26	1					7	V							x	x x	T						B/Ca	006	
7																												
. 8	-		11									\Box				1		П										
9			$\dagger \dagger$					T							Γ					1								
10			$\dagger \dagger$								T																	
11			$\dagger \dagger$						\dashv						Γ			\prod]			
12			11							\top		\Box		T	T	1		\prod			\prod							
14_	ADDITIONAL COMMENTS		RELINQ	JISHED BY I	AFFILIATIO	ON	DATE		T	IME			AC	CEPT	ED B	Y / AF	FILIATIO	N			DATE		TIME	E		SAMPLI	CONDITION	s .
all sampl	es unfiltered	Zero	h l	Oats	an S	325																\prod						
		- (gist		l	012	?',	07	20	1	10	M	L	:[<u> </u>	Pa	w		11	21	0	72	0	1.1	λ	Y	У
					SAMPLE	R NAME	AND SIG	NATL	JRE			20 - 10 20 - 10 8									i ana		77		. <u></u>	<u> </u>	-	
					PRII	NT Name	of SAMP	LER:		7A	<u> </u>	7	N	I A	7.	50	DA	TE Sig	ned:	/	v-2	9-	2		TEMP in C	Received on	Custody Sealed Cooler	Samples Intact (Y/N)

A560518 Pace Container Order #869035 Addresses Order By: Ship To: **Return To:** Company SCS ENGINEERS Company SCS Engineers Company Pace Analytical Green Bay Contact Blodgett, Meghan Contact Zach Watson Contact Milewsky, Dan Email mblodgett@scsengineers.com Email zwatson@scsengineers.com Email dan.milewsky@pacelabs.com Address N84 W13540 Leon Road Address 2830 Dairy Drive Address 1241 Bellevue Street Address 2 Suite 9 Address 2 Address 2 City Madison City Menomonee Falls City Green Bay Zip 54302 State WI Zip 53718 Zip 53051 State Phone (608) 225-2972 (920)469-2436 Phone 608-216-7362 Phone _ Info . CCR Rule Edgewater I-43 Ash Project Name (25216069) Due Date 10/22/2021 Profile 3946 Project Manager Milewsky, Dan **Return Date** Carrier FedEx Ground Bottles -Trip Blanks : Bottle Labels : **Boxed Cases** Blank Include Trip Blanks Individually Wrapped Pre-Printed No Sample IDs Pre-Printed With Sample IDs Grouped By Sample ID/Matrix Return Shipping Labels Misc No Shipper Sampling Instructions Extra Bubble Wrap With Shipper Short Hold/Rush Stickers **Custody Seal** DI Water 1 Liter(s) Temp. Blanks COC Options **USDA Regulated Soils** Coolers Number of Blanks Syringes Pre-Printed Notes Total # of Lot# # of Samples Matrix Test Container M-1-203-03BB WT 0 pН 250mL plastic unpres M-1-203-03BB 7 lo. WT TDS, CI, F, SO4 250mL plastic unpres M-1-203-04BB 0 WΤ 250mL plastic w/HNO3 B/Ca Metals, Boron/Calcium LAB USE: Hazard Shipping Placard In Place: NA Ship Date: 10/20/2021 'Sample receiving hours are typically 8am-5pm, but may differ by location. Please check with your Pace Project Manager. Prepared By: Mai Yer Her 'Pace Analytical reserves the right to return hazardous, toxic, or radioactive samples to you. Verified By: 'Pace Analytical reserves the right to charge for unused bottles, as well as cost associated with sample storage/disposal. 'Payment term are net 30 days. 'Please include the proposal number on the chain of custody to insure proper billing. **CLIENT USE (Optional):** Sample Date Rec'd: ALL SAMPLES UNFILTERED Received By:

F-ALL-C-009-rev.00. 19Dec2016

Page 1 of 1

Verified By:

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section		Section B								ion C														Γ					
	ed Client Information:	Required Pr							_	ice Infe	orma	ion:										_		L	Page) : <u> </u>	1	Of	1
Compar			Meghar	n Blodgett					Atter													-							
Address		Сору То:							-	pany N	iame:											Joseph	die Galei	1 NOT 18 18			A Alygramach	DEARS INVEST	NESC/342569
	n, WI 53718	Durahasa Or	d = a 44.						Addr													90.00	PER COL	A CAN	- Re	gulat	ory Agenc	Yestrine 2 Paris.	51-12-12-13-13-13-13-13-13-13-13-13-13-13-13-13-
	mblodgett@scsengineers.com	Purchase Or		20.0.1.5		10 A-1- //	25040000		-	Quote		20505		.								-	. 1 44 6,	40.344.0	. A	4040	Lacation	136/85.77	i sloviči s ovi
hone:	608-216-7362 Fax: ted Due Date:	Project Name Project #:	s. C(CR Rule E	igewater i	-43 Ash (2	25216069			Project Profile				dan.m	ilewsk	у@ра	ceiabs	.com,				+	. 44	one of the		tate /	Location	\$250 At 2 1 2 1 1	1 10000-0000
reques	ned Due Date.	FTOJOCI #.							race	FIOIN	3 11.	394	ь			663.7	ye. 25	Don		d And	lysis l	Eiltoro	d (V/A	n.			5788 E.M.C.	add for a	interior
	MATRIX Drinking Water	· wt	(see valid codes to left)		COLL	ECTED		CTION			Pı	esei	vati	/es	T	Y/N:		Req	ueste	Alla	ilysis	rittere							
	SAMPLE ID Waste Wat Product Soil/Solid Oil	P SL	(see valid ca	ST	ART	EI	ND	COLLE	ဖွ							Test				alcium						Chlorine (Y/N)		•	i
ITEM#	One Character per box. Wipe (A-Z, 0-9 / , -) Air Other Sample Ids must be unique Tissue	OL WP AR OT TS	MATRIX CODE (SAMPLE TYPE (TIME	DATE	TIME	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Unpreserved	HNO3	HCI	NaOH	Na2S203	Methanol	Analyses Test		Ę	TDS, CI, F, SO4	Metals, Boron/Calcium						Residual Chlorir			
1	MW-305		wr															x	x	x		_					B/Ca		
2	FIELD BLANK		wr						Ш									x	x	x							B/Ca		
3	MW-301		wt															x	x	х					\perp		B/Ca		
4	MW-302		wr															x	x	х							B/Ca		
5	MW-303		wt												\bot			x	_x	х							B/Ca		
6	MW-304		wr]		x	x	х							B/Ca		
7																													
8																1													
9																1													
10									П			Γ				1													
11									П				П			1										$ \ $			
12																1					\neg		П						
	ADDITIONAL COMMENTS		RELINQUI	SHED BY I	AFFILIATIO	ON.	DATE			rime .				ACCE	TED B	Y/AFI	FILIATI	ON			DA	\TE	1	TIME	7 H.		SAMPLE C	ONDITIONS	S
l sample	es unfiltered																												
											\perp												-		+	_			
											╁												+		╁				
					1,900,004	R NAME	Complete Contract	No respon	280277, 2.						. 6/s							F. A.				ပ <u>မ</u>	no pe	À	es
					SIG	NATURE	of SAMPI	LER:									D.	ATE S	Signe	d:					\exists	EMP in C	e (N)	ustody ealed cooler Y/N)	samples stact Y/N)

Sample Preservation Receipt Form
Project # <u>リンろ(かり</u>

Client Name: 56

Name: Project # 405(6)

All containers needing preservation have been checked and noted below: ★Yes □No □N/A completed: Date/ Initial when Lab Lot# of pH paper: 1050104 Lab Std #ID of preservation (if pH adjusted): 8 'OA Vials (>6mm) Act pH after adjusted Glass **Plastic Vials** General Jars Volume 핍 HNO3 pH: JaOH+Zn VaOH pH (mL) WGFU VG9M WPFU BG3U BG1U AG1H AG5U AG2S BP1U VG9A VG9D JGFU AG10 AG4U **BP3U BP3B BP3N BP3S** DG9T VG9U VG9H JG9N ZPLC **SP5T** 12SO4 Pace S S S Lab a 2.5 / 5 / 10 2 001 2.5/5/10 002 2.5 / 5 / 10 003 2 004 2.5/5/10 005 2.5 / 5 / 10 006 2.5/5/10 2.5 / 5 / 10 007 2.5/5/10 800 2.5 / 5 / 10 009 010 2.5/5/10 2.5 / 5 / 10 011 2.5/5/10 012 2.5 / 5 / 10 013 2.5/5/10 014 2.5 / 5 / 10 015 2.5/5/10 016 017 2.5 / 5 / 10 2.5/5/10 018 2.5 / 5 / 10 019 2.5/5/10 020 Headspace in VOA Vials (>6mm): □Yes □No AN/A *If yes look in headspace column Exceptions to preservation check: VOA, Coliform, TOC, TOX, TOH, O&G, WI DRO, Phenolics, Other: AG1U 1 liter amber glass BP1U 1 liter plastic unpres 40 mL clear ascorbic **JGFU** 4 oz amber jar unpres VG9A JG9U BG1U 1 liter clear glass BP3U 9 oz amber jar unpres 250 mL plastic unpres DG9T 40 mL amber Na Thio AG1H 1 liter amber glass HCL BP3B 250 mL plastic NaOH VG9U 40 mL clear vial unpres WGFU 4 oz clear jar unpres AG4S 125 mL amber glass H2SO4 BP3N 250 mL plastic HNO3 VG9H 40 mL clear vial HCL WPFU 4 oz plastic jar unpres AG4U 120 mL amber glass unpres BP3S SP5T 120 mL plastic Na Thiosulfate 250 mL plastic H2SO4 VG9M 40 mL clear vial MeOH **ZPLC** ziploc bag AG5U 100 mL amber glass unpres VG9D 40 mL clear vial DI AG2S 500 mL amber glass H2SO4 GN BG3U 250 mL clear glass unpres

Pace Analytical® 1241 Bellevue Street, Green Bay, WI 54302

Document Name: Sample Condition Upon Receipt (SCUR)

Document No.: ENV-FRM-GBAY-0014-Rev.00 Document Revised: 26Mar2020

Author:

Pace Green Bay Quality Office

Sample Condition Upon Receipt Form (SCUR)

				Project #:		
Client Name: 5					WO# : 4	40236018
Courier: CS Logistics Fed Ex Speeder	e 🗖	UPS	□W	'altco		
Client Pace Other:						
Tracking #: N/A					40236018	
Custody Seal on Cooler/Box Present: yes	no	Seals	intact:	🗶 yes 🗖 no		
Custody Seal on Samples Present: Lyes 🔀				☐ yes ☐ no		
Packing Material: Subble Wrap Subble	e Bag	s C	None	Other		
Thermometer Used SR - \\4	Туре	of Ice:	(Wext	Blue Dry None	Samples or	n ice, cooling process has begun Person examining contents:
Cooler Temperature Uncorr: /Corr:	. [Person examining contents:
Temp Blank Present: ☐ yes 📉 no	•	Biolo	gical T	issue is Frozen: 👖	□ yes 🔲 no	Date: S / 29/7 Initials:
Temp should be above freezing to 6°C. Biota Samples may be received at ≤ 0°C if shipped on Dry	lce.					Labeled By Initials: LC
Chain of Custody Present:	Yes	□No	□n/a	1.	212 1 MP	
Chain of Custody Filled Out:	□Yes	X N₀	□n/a	1. 2. proj# 10/2	<i></i>	
Chain of Custody Relinquished:	Yes	□No	□n/a	3.		
Sampler Name & Signature on COC:	Yes	□No	□n/a	4.		
Samples Arrived within Hold Time:	Yes	□No		5.		
- VOA Samples frozen upon receipt	□Yes	□No		Date/Time:		
Short Hold Time Analysis (<72hr):	12 Yes	□No		6.		
Rush Turn Around Time Requested:	□Yes	XV0		7.	·	
Sufficient Volume:				8.		
For Analysis: Xyes □No MS/MSD:	□Yes	XNο	□N/A			
Correct Containers Used:	Yes	□No		9.		
-Pace Containers Used:	Yes	□No	□N/A			
-Pace IR Containers Used:	□Yes	□No	X N/A			
Containers Intact:	Yes	□No		10.		
Filtered volume received for Dissolved tests	□Yes	□No	XVVA	11.		
Sample Labels match COC:	Xyes	□No	□n/a	12.		
-Includes date/time/ID/Analysis Matrix:	<u>/</u>			<u> </u>		
Trip Blank Present:	□Yes	□No	KINIA	13.		
Trip Blank Custody Seals Present	□Yes	□No	MIA			
Pace Trip Blank Lot # (if purchased):				15.	L - L - d	ned form for additional comments
Client Notification/ Resolution:			Date/		necked, see allaci	red form for additional comments
Person Contacted:Comments/ Resolution:			- Date/			
Comments/ Nesolution.						

PM Review is documented electronically in LIMs. By releasing the project, the PM acknowledges they have reviewed the sample logir

Appendix D Historical Monitoring Results

Single Location

Name: WPL - Edgewater I43

Location ID:	MW-301																						
Number of Sampling Dates	: 22																						
Parameter Name	Units	4/26/2016	6/21/2016	8/10/2016	10/19/2016	12/19/2016	1/5/2017	1/23/2017	2/23/2017	4/6/2017	6/6/2017	8/1/2017	10/23/2017	4/3/2018	10/4/2018	4/9/2019	10/8/2019	4/7/2020	10/13/2020	12/18/2020	4/13/2021	6/16/2021	10/26/2021
Boron	ug/L	298	157	151	148	174		177	181	144	138	145	149	136	120	126	142	133	142		132		130
Calcium	ug/L	389000	148000	94900	77800	127000		105000	51400	45200	57600	59400	48700	36700	43700	42900	42600	55800	33400		53900		30200
Chloride	mg/L	28.5	18	6.2	7.4	8.9		8.2	6.3	5.6	7.5	5.2	4.7	4.7	4.1	4	3.8	6.9	4.2		3.9		3.3
Fluoride	mg/L	<2	1.1	0.62	0.65	0.86		0.77	0.64	0.61	0.87	0.63	0.62	0.62	0.61	0.63	0.63	0.82	0.83	0.64	0.64		0.61
Field pH	Std. Units	8.24	8.01	8.08	8	8.36		8.21	8.14	8.12	7.89	7.99	7.82	8.02	8.15	8.18	7.7	8.05	7.96	7.64	8.48	8.14	8.23
Sulfate	mg/L	25.9	15.9	7.4	9.5	9.6		9.3	9.1	9.1	9	8.2	8.6	9.3	8.8	9.2	9.3	11.2	19		10.2		10.2
Total Dissolved Solids	mg/L	343	290	306	312	264	194	254	276	240	264	248	236	214	260	230	256	276	228		238		200
Antimony	ug/L	0.98	0.58	0.12	<0.36	1		<0.36	2.7	1.4	<0.15	<0.15											
Arsenic	ug/L	20.8	8.1	5.8	4.6	7.3		6.8	5.6	4.7	3.7	4.2											
Barium	ug/L	596	236	177	141	195		219	128	107	125	115											
Beryllium	ug/L	3.9	1.1	0.54	<0.63	1.1		1.1	4.1	0.49	0.18	0.25											
Cadmium	ug/L	0.47	<0.44	<0.089	<0.44	0.97		<0.44	2.1	1	0.091	<0.081											
Chromium	ug/L	133	37.7	20.8	16	27.7		28.6	14.2	8.6	10.6	8.6											
Cobalt	ug/L	36.3	10.6	5.4	4.2	8.4		7.6	5.2	2.9	2.7	2.3											
Lead	ug/L	35.9	11.3	6.1	5.1	9.6		8.1	5.6	3.3	3.2	3											
Lithium	ug/L	137	49.2	29	24.8	42.2		38.6	25.1	16.2	18.1	16.7											
Mercury	ug/L	<0.18	<0.13	<0.13	<0.13	<0.13		<0.13	<0.13	<0.13	<0.13	<0.13											
Molybdenum	ug/L	12.2	11.5	10.8	9.4	11		10.9	13.3	10.6	10.2	9.7											
Selenium	ug/L	12.2	2.6	1.1	<1	2.5		<1	3.4	1.5	<0.32	0.39											
Thallium	ug/L	0.88	<0.71	<0.14	<0.71	1.2		<0.71	2.6	1.3	<0.14	<0.14											
Radium-226	pCi/L	1.9	1.29	-0.088	-0.595	0.446		0.432	0.546	-0.084	0.408	0.539											
Radium-228	pCi/L	3.54	0.349	0.462	1.58	1.65		0.563	3.3	0.486	1.2	0.557											
Total Radium	pCi/L	5.44	1.64	0.462	1.58	2.09		0.995	3.85	0.486	1.61	1.16											
Field Specific Conductance	umhos/cm	401	394	387	367	384		382	371	390	374	377	378	384	387	395	390	384	354	391	387	358	356
Oxygen, Dissolved	mg/L	1.1	0.9	0.1	0.1	0.09		0.1	1.5	0.3	0.2	0	0.6	0.1	0.2	0.2	0.32	0.3	1.1	0.5	0.2	0.3	1.3
Field Oxidation Potential	mV	-94	-178	-155	-135	-143		-141	33	-53	-171	-161	-46	-138	-97	-99	97	-69	162	1.7	-16	146	291
Groundwater Elevation	feet	653.54	652.01	649.68	652.32	652.85		652.98	653.14	654.43	654.11	652.64	652.03	651.28	650.71	653.06	653.26	656.59	652.16	653.91	654.56	649.78	650.76
Temperature, Water (C)	deg C	8.7	10.9	10.9	11.3	7.5		8.5	9	9.9	11.1	10.5	9.7	8.6	9.5	9.4	9.8	9.5	12.5	8.1	9.1	10.2	11.2
Turbidity	NTU	340.1	916.9	739.9	452.6	895.1		650.8	264.3	207.4	322.2	349.1	150.6	89.45	136.6	125.8	133.7	259	57.28	69.45	179		130
pH, Lab (at 25 Degrees C)	Std. Units	7.8	8	7.6	7.8	7.9		8.1	7.9	8	8	7.9	7.8	8	7.2	7.9	7.9	7.9	7.8		8		7.9

Page 2

Single Location

Name: WPL - Edgewater I43

.ocation ID: Number of Sampling Dates	MW-302 s: 23																							
Parameter Name	Units	4/26/2016	6/21/2016	8/9/2016	10/19/2016	12/19/2016	1/5/2017	1/23/2017	2/23/2017	4/6/2017	6/6/2017	8/1/2017	10/23/2017	4/3/2018	10/4/2018	4/9/2019	10/8/2019	4/8/2020	5/20/2020	10/13/2020	12/18/2020	4/13/2021	6/16/2021	10/26/2021
Boron	ug/L	198	121	131	126	127		151	149	132	124	130	128	124	115	118	129	111		128		121		122
Calcium	ug/L	254000	49000	36500	30900	42600		59300	41900	40800	38700	33900	31200	30000	28200	28400	29900	27200		26900		28700		27200
Chloride	mg/L	19.5	8.9	7.1	7.6	10		8.9	6.9	6.7	6.9	5.6	5.5	5.2	4.5	4.4	3.8	4.4		4.3		4.1		3.8
Fluoride	mg/L	1.1	0.74	0.75	0.69	0.94		0.85	0.67	0.68	0.83	0.74	0.71	0.73	0.71	0.73	0.71	0.75	0.7	0.82	0.73	0.76	0.77	0.74
Field pH	Std. Units	8.33	8.05	6.24	12.2	8.31		8.16	8.16	8	7.95	7.98	7.7	8.02	8.08	8.14	7.67	7.79	8.19	7.85	8.05	8.36	8.37	8.23
Sulfate	mg/L	81.5	36.4	35	42.6	36.4		30.4	27.9	29.6	32.2	24	26.3	22.6	19.6	20.4	18.4	19.4		19		17.4		15.9
Total Dissolved Solids	mg/L	543	346	308	298	302	280	324	344	322	284	262	238	248	250	248	242	254		192		232		220
Antimony	ug/L	4.5	0.73	0.28	0.37	0.97		0.75	0.96	0.41	0.4	0.21												
Arsenic	ug/L	26.7	7.8	6.2	4.5	6.5		9	8.5	5.7	7.2	6.3												
Barium	ug/L	309	100	80.1	60.4	77.5		119	103	90.2	77.2	78.8												
Beryllium	ug/L	3.8	0.69	0.22	<0.13	0.35		1	0.8	<0.63	<0.18	<0.18												
Cadmium	ug/L	0.85	<0.18	<0.089	<0.089	0.6		<0.44	<0.44	<0.44	<0.081	<0.081												
Chromium	ug/L	49.8	5.2	2	0.81	3		7	5.5	3.6	1.6	1.2												
Cobalt	ug/L	14.6	1.8	0.65	0.36	1.1		2.5	2.1	1.1	0.52	0.47												
Lead	ug/L	55	7.1	2.3	0.92	3.6		8.8	6.5	3.5	1.4	1.7												
Lithium	ug/L	79.9	19.2	14.4	14	15.8		22.8	19.6	16.8	12.7	11.2												
Mercury	ug/L	<0.18	<0.13	<0.13	<0.13	<0.13		<0.13	<0.13	<0.13	<0.13	<0.13												
Molybdenum	ug/L	24.4	11.8	11.5	12.7	10.7		11.6	9.8	10.3	10.7	8												
Selenium	ug/L	21.6	2.3	0.64	0.39	1.4		2.1	2.7	1.4	<0.32	0.44												
Thallium	ug/L	<0.71	<0.29	<0.14	<0.14	0.68		<0.71	<0.71	<0.71	<0.14	<0.14												
Radium-226	pCi/L	4.55	1.73	0.0816	0	0.293		0.325	1.21	1.49	0.366	1.1												
Radium-228	pCi/L	3	1.84	1.24	1.12	0.574		2.4	2.64	0.351	0.841	0.208												
Total Radium	pCi/L	7.55	3.57	1.32	1.12	0.867		2.73	3.85	1.84	1.21	0.844												
Field Specific Conductance	umhos/cm	648	508	507	510	497		486	470	491	419	435	455	434	433	426	423	413	420	418	426	412	386	393
Oxygen, Dissolved	mg/L	2.4	0.5	0.5	0	0		0.4	1	0	0.3	0	0.7	0.2	0.3	0.8	0.72	0.7	0.2	0.3	1	0.4	0.6	0.6
Field Oxidation Potential	mV	52	-108	-95	-107	-73		-79	25	-12	-14	-115	70	-75	60	18	90	-3.4	-6	37	163	189	24	207
Groundwater Elevation	feet	653.56	651.89	649.3	652.38	652.79		664.97	653.1	654.72	654.12	652.55	652.05	651.25	650.7	654.06	653.21	656.47	655.81	652.17	653.88	654.57	649.75	644.88
Temperature, Water (C)	deg C	8.8	10.1	11.3	12.2	8.1		8.6	9.1	9.7	12.1	10.7	10.4	8.8	10.1	9.9	9.7	9.3	10	11.9	8.9	9.2	10.3	9.8
Turbidity	NTU	961.9	248.2	85.43	32.08	190.8		372.8	296.2	144.2	84.5	56.73	33.56	35.46	23.32	18.41	11.73	25.99	10.15	14.16	9.23	19.6	18.1	38.3
pH, Lab (at 25 Degrees C)	Std. Units	8	8	7.8	7.8	7.9		8	7.9	8	7.9	7.9	7.9	8	7.9	7.9	7.9	7.7		7.9		8		8

Single Location

Name: WPL - Edgewater I43

_ocation ID:	MW-303																				
Number of Sampling Dates		1/00/00/10	0/04/0040	0/0/00/10	40/40/0040	10/10/0010	4/2/0042	1/00/00/=		4/=/004=	0/0/0047	0///00/=	10/00/00/7	1/0/0010	10///00/0	1/0/0010	10/7/0010	4/0/0000	10/10/0000	44404004	10/00/000
Parameter Name Boron	Units	4/26/2016 86.4	6/21/2016 85	8/9/2016 96	10/19/2016 90.8	12/19/2016 81.6	1/5/2017	1/23/2017 99.8	2/23/2017 93.9	4/7/2017 89.8	6/6/2017 89.1	8/1/2017 95	10/23/2017 89	4/3/2018 94.6	10/4/2018 87.3	4/9/2019 88.4	91.2	4/8/2020 79	10/13/2020 85.8	4/13/2021 84.7	10/26/202 83.3
	ug/L																-				
Calcium	ug/L	48300	36900	36700	31600	50500		46700	32600	33200	35500	35900	29100	31900	31600	31700	30900	29900	29000	29600	29300
Chloride	mg/L	15.5	6.9	6.8	6.8	22.9		8.8	5.3	6.2	6.2	5.7	6.8	5	4.4	4.1	4.7	4.3	5.2	4.5	4.2
Fluoride	mg/L	0.55	0.59	0.59	0.6	0.63		0.8	0.55	0.57	0.69	0.6	0.66	0.54	0.56	0.57	0.6	0.6	0.7	0.62	0.61
Field pH	Std. Units	7.96	7.98	6.24	8.03	8.32		8.23	8.24	8.15	7.9	7.91	7.59	7.98	8.04	8.05	10.12	7.67	8.31	8.26	8.05
Sulfate	mg/L	131	45.2	70.1	137	38.2		113	46.1	79.2	51.1	40.5	67.1	27.3	26.1	23.7	30.3	23.3	33.2	25.6	28.9
Total Dissolved Solids	mg/L	468	314	378	458	312	310	400	300	348	314	290	304	260	270	270	230	274	150	260	268
Antimony	ug/L	0.66	0.1	0.077	0.077	2.3		0.59	0.081	<0.073	<0.15	<0.15									
Arsenic	ug/L	2.8	5.3	4.4	2.7	3.2		3.8	5.5	2.8	4	4.4									
Barium	ug/L	134	80.2	91.2	81.6	90.3		120	81.1	80.7	80.6	81.1									
Beryllium	ug/L	0.18	<0.13	<0.13	<0.13	<0.13		0.13	<0.13	<0.13	<0.18	<0.18									
Cadmium	ug/L	<0.089	<0.089	<0.089	<0.089	0.22		0.098	<0.089	<0.089	<0.081	<0.081									
Chromium	ug/L	8.1	1	0.93	0.41	1.3		8.6	2.1	0.79	<1	<1									
Cobalt	ug/L	2.2	0.5	0.4	0.32	0.63		2	0.75	0.34	0.4	0.44									
Lead	ug/L	1.9	0.26	0.091	0.16	0.3		2.1	0.52	0.082	<0.2	0.22									
Lithium	ug/L	19.3	10.2	13.1	14.8	10.3		20.1	11.9	13.2	11.4	11.4									
Mercury	ug/L	<0.18	<0.13	<0.13	<0.13	<0.13		<0.13	<0.13	<0.13	<0.13	<0.13									
Molybdenum	ug/L	45.4	12.7	23	34	9.4		30.5	11	21.2	14.4	12.4									
Selenium	ug/L	0.66	<0.21	<0.21	<0.21	0.26		0.29	<0.21	<0.21	<0.32	<0.32									
Thallium	ug/L	<0.14	0.17	<0.14	<0.14	<0.14		<0.14	<0.14	<0.14	<0.14	<0.14									
Radium-226	pCi/L	0	0.721	0	0	0.367		-0.066	0.233	0.535	0.298	0.198									
Radium-228	pCi/L	0.392	0.338	0.426	0.921	0.497		0.236	1.37	0.336	0.397	0.454									
Total Radium	pCi/L	0.392	1.06	0.426	0.921	0.864		0.236	1.6	0.871	0.695	0.603									
Field Specific Conductance	umhos/cm	586	589	756	567	582		681	558	617	486	564	557	494	500	486	497	454	570	475	478
Oxygen, Dissolved	mg/L	1.1	0.8	0.4	2.2	0		0.9	0.1	0.6	0.4	0	1	0.2	0.2	0.2	0.56	0.5	0.4	0.5	0.6
Field Oxidation Potential	mV	178	-174	-138	-185	-156		-168	-119	-93	-65	-157	88	-125	-105	-65	127	-75.2	128	154	244
Groundwater Elevation	feet	653.59	651.8	649.37	652.18	652.82		652.92	653.1	654.55	654.14	652.5	652.03	651.3	650.7	654.06	653.27	656.46	652.2	654.53	650.9
Temperature, Water (C)	deg C	8.6	10.2	11.3	11.3	4.4		8.8	8.9	9.7	11	11.7	10.1	8.9	10	9.5	11.8	9.4	10.7	9.4	9.7
Turbidity	NTU	107.6	21.88	13.48	8.9	30.04		103.3	51.76	9.79	22.54	16.29	3.06	6.62	17.2	4.92	9.74	21.08	7.21	<0.02	71.5
pH, Lab (at 25 Degrees C)	Std. Units	7.6	7.9	7.8	7.9	7.7		8.1	7.9	7.9	7.9	7.9	7.9	7.8	7.9	7.8	7.9	7.8	7.9	8	8

Page 2

Single Location

Name: WPL - Edgewater I43

Location ID:	MW-304																				
Number of Sampling Dates Parameter Name	: 20 Units	4/26/2016	6/21/2016	8/9/2016	10/19/2016	12/19/2016	1/5/2017	1/23/2017	2/23/2017	4/7/2017	6/6/2017	8/1/2017	10/23/2017	4/3/2018	10/4/2018	4/8/2019	10/8/2019	4/7/2020	10/15/2020	4/13/2021	10/26/2021
Boron	ug/L	92.1	90.9	102	106	102		101	99.8	96.9	102	103	104	98.6	90.2	100	104	100	94.5	91.7	89.8
Calcium	ug/L	24500	25400	26700	23000	24800		24300	24500	24800	23500	23000	20100	20200	19400	19100	20600	18600	15800	19700	21600
Chloride	mg/L	3.8	3.9	2.7	1.8	2.2		2.1	2.3	1.8	2	1.8	1.7	1.7	1.8	1.8	1.7	5.2	2.1	2.1	2.3
Fluoride	mg/L	0.49	0.55	0.51	0.45	0.59		0.5	0.5	0.48	0.6	0.53	0.54	0.5	0.5	0.51	0.48	0.75	0.58	0.53	0.49
Field pH	Std. Units	8.16	8	6.29	8.17	8.29		8.14	8.22	7.86	8.03	7.9	7.74	7.99	8.1	8.06	7.68	8.07	8.12	8.31	8.12
Sulfate	mg/L	13.8	14.2	13.2	13.5	14.6		14.3	14.6	14.5	14.9	14.2	14.2	15.2	13.5	14.5	13.5	15.4	15.5	15.3	15.6
Total Dissolved Solids	mg/L	222	234	244	232	198	212	214	206	224	218	222	208	222	224	226	172	228	228	224	218
Antimony	ug/L	0.11	0.52	0.36	<0.073	0.23		0.3	0.63	<0.073	<0.15	<0.15									
Arsenic	ug/L	8.8	10	11.2	10.7	11.4		12.2	12.2	10.9	11.8	11.4									
Barium	ug/L	77.6	74.7	81.5	73.4	71		81.1	73.5	73.7	79.1	75.1									
Beryllium	ug/L	<0.13	<0.13	<0.13	<0.13	<0.13		<0.13	<0.13	<0.13	<0.18	<0.18									
Cadmium	ug/L	<0.089	<0.089	<0.089	<0.089	0.17		<0.089	0.45	<0.089	<0.081	<0.081									
Chromium	ug/L	0.75	0.94	0.78	<0.39	0.7		0.8	1	<0.39	<1	<1									
Cobalt	ug/L	0.26	0.23	0.12	0.078	0.18		0.17	0.53	0.047	0.11	0.088									
Lead	ug/L	0.36	0.52	0.24	0.12	0.44		0.54	0.78	0.08	<0.2	<0.2									
Lithium	ug/L	9.1	9.1	9.4	9.1	10.1		9.5	8.9	9.2	9.1	9.2									
Mercury	ug/L	<0.18	<0.13	<0.13	<0.13	<0.13		<0.13	<0.13	<0.13	<0.13	<0.13									
Molybdenum	ug/L	4.6	4	3.9	3.8	3.7		3.8	4.1	3.6	4.7	3.7									
Selenium	ug/L	<0.21	<0.21	<0.21	<0.21	<0.21		<0.21	0.32	<0.21	<0.32	<0.32									
Thallium	ug/L	<0.14	<0.14	<0.14	<0.14	0.19		<0.14	0.59	<0.14	<0.14	<0.14									
Radium-226	pCi/L	-0.215	0.511	0.161	-0.369	0.171		0.181	-0.164	0.326	0.604	2.05									
Radium-228	pCi/L	0.687	0.288	0.137	0.625	-0.101		0.018	1.5	0.274	0.688	0.0736									
Total Radium	pCi/L	0.687	0.799	0.298	0.625	0.171		0.199	1.5	0.6	1.29	1.1									
Field Specific Conductance	umhos/cm	4.9	402	399	397	394		393	382	399	391	382	387	398	400	395	404	392	411	403	398
Oxygen, Dissolved	mg/L	0.8	0.5	0.1	0	0.3		0	1.1	2	0.5	0.4	0.8	0.3	0.2	0.7	0.81	1.9	0.2	0.5	0.6
Field Oxidation Potential	mV	-57	-129	-127	-84	-3		-98	14	-100	-104	-107	145	-103	-81	-23	104	190	-10	216	205
Groundwater Elevation	feet	655.9	653.79	651.55	654	654.26		654.37	654.49	654.85	655.7	654.49	653.65	652.86	652.26	655.59	654.77	658.16	654.17	656.36	652.54
Temperature, Water (C)	deg C	8.9	11.02	12	11.1	7.6		8.6	8.8	12	11.2	14.3	10	8.9	9.5	10.4	11	12.4	9.7	9.1	9.6
Turbidity	NTU	22.36	17.46	7.38	6.77	8.88		10.78	5.06	2.56	3	2.88	1.7	9.62	3	6.25	43.61	227.3	9.1	<0.02	96.3
pH, Lab (at 25 Degrees C)	Std. Units	7.8	8	7.8	7.8	7.9		8	7.9	8	7.8	8	7.9	8	7.9	7.9	8	7.8	8	8	8

Page 2

Single Location

Name: WPL - Edgewater I43

ocation ID: umber of Sampling Dates:	MW-305													
Parameter Name	Units	2/23/2017	4/7/2017	6/6/2017	8/1/2017	10/23/2017	4/3/2018	10/4/2018	4/9/2019	10/8/2019	4/7/2020	10/15/2020	4/13/2021	10/26/202
Boron	ug/L	94.4	86.4	78.8	76.5	70	71.7	65.9	68	73	65.8	65.5	66.6	67.8
Calcium	ug/L	93800	103000	102000	95900	90700	83000	82200	89000	90300	88800	76800	86800	87800
Chloride	mg/L	20.8	20.4	22.5	21.3	21.5	21.8	22.7	23	22.5	24.9	24.5	25.3	24.9
Fluoride	mg/L	0.73	0.59	0.72	0.69	0.64	0.63	0.58	0.65	0.63	0.75	0.72	0.67	0.72
Field pH	Std. Units	7.75	7.62	7.52	7.47	7.55	7.54	7.65	7.85	7.36	7.48	7.63	7.76	7.76
Sulfate	mg/L	127	131	140	130	134	129	130	136	137	135	139	127	125
Total Dissolved Solids	mg/L	576	576	598	570	540	566	572	568	548	580	500	540	556
Antimony	ug/L	0.21	0.088	0.59	0.53	0.23	<0.15	<0.15	0.78	<0.15				
Arsenic	ug/L	3	2.5	2.5	2.3	2.4	2.2	2.3	2.9	2.4				
Barium	ug/L	230	220	208	200	195	177	169	169	169				
Beryllium	ug/L	0.21	0.15	<0.18	<0.18	<0.18	<0.18	<0.18	0.19	<0.25				
Cadmium	ug/L	<0.089	<0.089	<0.081	<0.081	0.1	<0.081	<0.15	0.83	<0.15				
Chromium	ug/L	10.8	6.8	4	2.7	1.8	<1	<1	1.2	<1				
Cobalt	ug/L	2.6	1.5	0.8	0.56	0.5	<0.085	<0.12	0.83	<0.12				
Lead	ug/L	2.4	1.6	0.98	0.87	0.44	<0.2	<0.24	0.81	<0.24				
Lithium	ug/L	23.2	19.7	15.7	14.8	12.4	12	11.2	11.8	12.4				
Mercury	ug/L	<0.13	<0.13	<0.13	<0.13	<0.13	<0.13	<0.084	<0.084	<0.084				
Molybdenum	ug/L	5	4.6	3.3	3.6	3.2	2.5	2.3	3.3	2.6				
Selenium	ug/L	0.56	0.28	<0.32	<0.32	<0.32	<0.32	<0.32	0.92	<0.32				
Thallium	ug/L	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14	<0.14	0.8	<0.14				
Radium-226	pCi/L	0.35	0.0649	0.51	0.791	0.277	0.597	0.323	0.764	0.238				
Radium-228	pCi/L	3.8	0.836	0.555	0.878	0.969	0.73	0.716	0.921	0.473				
Total Radium	pCi/L	4.15	0.901	1.07	1.31	1.25	1.33	1.04	1.69	0.711				
Field Specific Conductance	umhos/cm	856	922	884	901	886	915	941	942	935	917	911	891	863
Oxygen, Dissolved	mg/L	1.2	0.7	0.4	0.74	0.2	0.2	0.2	0.3	0.82	0.53	0.3	0.8	1.6
Field Oxidation Potential	mV	-224	-108	-167	-122	-125	-120	-101	-75	112	28	-41	128	136
Groundwater Elevation	feet	658.02	659.65	659.7	658.54	657.22	656.24	655.89	659.03	658.77	661.58	658.08	659.69	655.86
Temperature, Water (C)	deg C	7.9	9.2	11.3	12.4	10.3	8.9	9.9	9.8	12.4	10.5	10	9.4	11
Turbidity	NTU	613.2	138	140.6	67.21	42.54	13.01	10.56	9.67	6.56	7.35	8.27	0.93	21.7
pH, Lab (at 25 Degrees C)	Std. Units	7.6	7.6	7.5	7.5	7.7	7.5	7.5	7.5	7.6	7.5	7.6	7.6	7.6

Appendix E Statistical Evaluation

Environmental Consultants & Contractors

SCS ENGINEERS

January 25, 2021 File No. 25220069.00

TECHNICAL MEMORANDUM

SUBJECT: Statistical Evaluation of Groundwater Monitoring Results – UPL Update

I-43 Ash Disposal Facility October 2020

PREPARED BY: Nicole Kron

CHECKED BY: Sherren Clark

STATISTICAL METHOD

Groundwater monitoring data for the I-43 Ash Disposal Facility (ADF) is evaluated in accordance with 40 CFR 257.93(f)(3), using a prediction interval procedure, in which an interval for each constituent is established from the distribution of the background data, and the level of each constituent in each compliance well is compared to the upper prediction limit.

Statistical evaluation is performed using commercially available software (Sanitas for Groundwater® or similar) in general accordance with the USEPA's *Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities* dated March 2009 (Unified Guidance) (USEPA, 2009) and generally accepted procedures.

The I-43 ADF monitoring data includes two background monitoring wells, MW-304 and MW-305, as well three compliance monitoring wells, MW-301, MW-302, and MW-303. The statistical analysis includes intrawell evaluation for boron and Interwell evaluation for the remaining Appendix III parameters.

Following the completion of the April 2018 Alternative Source Demonstration (ASD) Report, dated October 31, 2018, the statistical method for evaluating boron data at the three compliance monitoring wells was modified to an intrawell approach. The April 2018 ASD indicated that the boron levels in the compliance wells that exceeded the interwell UPL were due Following the completion of the April 2018 Alternative Source Demonstration (ASD) Report, dated October 31, 2018, the statistical method for evaluating boron data at the three compliance monitoring wells was modified to an intrawell approach. The April 2018 ASD indicated that the boron levels in the compliance wells that exceeded the interwell UPL were due to natural variability and not to a release from the ADF. Therefore, an intrawell approach was recommended. The UPLs for boron were calculated based on a parametric intrawell approach.

The UPLs for boron were calculated based on a parametric intrawell approach.

The initial UPLs were calculated on an interwell basis based on ten rounds of background monitoring performed prior to the initiation of compliance monitoring for the I-43 CCR units, from April 2016 through August 2017. In the October 2017 and April 2018 monitoring events, boron was detected

at concentrations slightly exceeding the interwell UPL. Alternative Source Demonstrations (ASDs) completed for the two events concluded that natural spatial variability in boron background concentrations in the dolomite aquifer was the most likely cause of the UPL exceedances. Evidence for this conclusion included long term monitoring data from the state monitoring program, boron monitoring results for water supply wells in the area, the site geology, and the CCR unit construction. To allow for natural spatial variability in the background concentrations, the statistical evaluation for boron was transitioned to an intrawell approach beginning with the October 2018 monitoring event.

As part of the evaluation of the October 2020 monitoring results, the background data set for the Appendix III UPL calculations is being updated to include data from the background wells collected through October 2020. For the boron intrawell evaluation, the update includes data collected through May 2020. This memo addresses updated UPLs for Appendix III parameters.

TIME SERIES PLOTS

Time series plots are prepared for the required monitoring parameters to show the concentration variations over time. Time series graphs are included in **Attachment 1**.

OUTLIER ANALYSIS - INTERWELL

For interwell analysis, an outlier evaluation is performed for background monitoring results at the upgradient wells. A statistical outlier is a value that is extremely different from the other values in the data set. The Sanitas outlier tests identify data points that do not appear to fit the distribution of the rest of the data set and determine if they differ significantly from the rest of the data. The outlier analysis performed in Sanitas includes the following steps:

- 1) Run normality test (Shapiro Wilk/Francia).
- 2) If normally distributed, run USEPA's 1989 Outlier Test to identify suspected outliers.
 - a) If number of background samples is less than or equal to 25, run Dixon's test for suspected outliers.
 - b) If number of background samples is more than 25, run Rosner's test for suspected outliers.
- 3) If not normally distributed, run Tukey's test for outliers.
- 4) Review data flagged as possible outliers to evaluate whether they should be removed from the background data set. Also review time series plots for possible outliers that were not picked up in the statistical evaluation (e.g., outlier test may not identify outliers when two values are similar to each other, but very different from all other data).

Results identified as statistical outliers are checked for possible lab instrument failure, field collection problems, or data entry errors; however, outliers may exist naturally in the data if there is an extremely wide inherent or temporal variability in the data. The Unified Guidance states that unless a likely error can be identified, the outlier should not be removed.

For the interwell evaluation of the October 2020 sampling event, the following background values were identified as potential outliers and handled as described:

- Field pH (MW-304). One low result from the August 2016 event was flagged as a statistical outlier. This result was removed from the dataset because the pH values recorded on this date for all wells were anomalously low, suggesting a likely field instrument or calibration problem.
- Fluoride (MW-304). One high result from the April 2020 event was flagged as a statistical outlier. This result was not removed from the dataset because there was no known explanation for the higher results and it appeared to be within the range of potential natural variation relative to the other observed fluoride concentrations.
- Total Dissolved Solids (MW-304). One low result from the October 2019 event was
 flagged as a statistical outlier. This result was not removed from the dataset because
 there was no known explanation for the low result and it appeared to be within the range
 of potential natural variation relative to the other observed Total Dissolved Solids (TDS)
 concentrations.
- Total Dissolved Solids (MW-305). One low result from the October 2020 event was flagged as a statistical outlier. The result was not removed from the dataset because there was no known explanation for high result and it appeared to be within the range of potential natural variation relative to the other observed TDS concentrations.

Outlier analysis of results are included in Attachment 2.

OUTLIERS ANALYSIS - INTRAWELL

For the intrawell analysis of boron, an outlier evaluation is performed for background monitoring results at the compliance wells. The outlier analysis is performed in Sanitas using the same steps noted above.

For the October 2020 sampling event, no background values were identified as potential outliers in the compliance monitoring wells (MW-301, MW-302, and MW-303). Outlier analysis of boron results from the compliance wells are included in **Attachment 3.**

BACKGROUND UPDATE

The background data pool was updated in accordance with the Unified Guidance, which recommends updating background every 2 to 3 years for semiannual sampling. Prior to expanding the data pool, the original background data set (4/2016 through 8/2017) and the data to be added (10/2017 through 10/2020 for background wells, 10/2017 through 5/2020 for compliance wells) were compared. The Unified Guidance states that recently collected measurements from the background wells can be added to the existing pool if a Student's t-test or Wilcoxon rank-sum test (inds no significant difference between the two groups at the 1% level of significance.

The Sanitas background group comparison for the I-43 background data sets, included in **Attachment 4**, indicated no signficant difference at the 1% level; therefore, the more recent data can be added to the background pool. The comparison uses Welch's t-test for normally distributed data and the Mann-Whitney test for non-normal data. (Note: The Sanitas output labels the earlier background dataset as "Background" and the later background dataset as "Compliance," but all included data will be used as background data to calculate prediction limits.)

INTERWELL PREDICTION LIMITS

Interwell prediction limits were calculated for all parameters except boron. Interwell prediction limits are calculated using background data from the upgradient monitoring wells (MW-304 and MW-305) for each monitored constituent, with outliers removed as noted above. During this evaluation of compliance monitoring groundwater results from April 2016 through October 2020 were included to calculate the intrawell prediction limits. The prediction limit analysis performed in Sanitas includes the following steps:

- 1) If 100% of the background values are non-detect, the Double Quanitification rule applies and no prediction limit is calculated.
- 2) If 50% or more of results are non-detect, then a non-parametric prediction limit is calculated.
- 3) If fewer than 50% of the results are non-detect, run normality test (Shapiro Wilk/Francia) to assess whether the data fit a normal distribution or can be transformed to fit a normal distribution (e.g., lognormal).
- 4) If normal or transformed normal, calculate parametric prediction limit.
- 5) If not normal or transformed normal, calculate non-parametric prediction limit.

Consistent with the Unified Guidance, parametric prediction limits are calculated based on a 1-of-2 retesting protocol and a 10 percent site-wide false positive rate. Sanitas establishes the per-test significance level based on user inputs of the number of events per year, number of constituents being evaluated, and number of compliance wells. For the October 2020 event, the following values were used:

Parameter	Value	Comments
Evaluations per year	2	Spring and Fall events
Constituents analyzed	7	Total of 7 constituents analyzed
Compliance wells	3	

Non-parametric prediction limits are also based on a 1-of-2 retesting protocol. The non-parametric limit is the highest value in the background dataset. Due to the small sample size, the false positive rate for the non-parametric tests is higher than for the parametric tests, but will go down as more background data are obtained.

Interwell prediction limit analysis results are included in **Attachment 5**.

INTRAWELL PREDICTION LIMITS

Intrawell prediction limits were calculated for boron. Intrawell prediction limits are calculated using background data from the compliance monitoring wells (MW-301, MW-302, and MW303) for each monitored constituent, with outliers removed as noted above.

TECHNICAL MEMORANDUM January 25, 2021 Page 5

During this evaluation of compliance monitoring, groundwater results from April 2016 through April 2020 were included to calculate the intrawell prediction limits. The intrawell prediction limit analysis performed in Sanitas includes the same steps noted above.

Intrawell prediction limit analysis results are included in **Attachment 6**.

NDK/SCC

I:\25220069.00\Data and Calculations\Sanitas\I-43 Appendix III - UPL calcs\I-43 LF CCR Stats Memo_R20210125.docx

Attachment 1 Times Series Graphs

Boron

Time Series Analysis Run 12/1/2020 2:02 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Time Series

Constituent: Boron (ug/L) Analysis Run 12/1/2020 2:06 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-301	MW-302	MW-303	MW-304 (bg)	MW-305 (bg)
4/26/2016	298	198	86.4	92.1	
6/21/2016	157	121	85	90.9	
8/9/2016		131	96	102	
8/10/2016	151				
10/19/2016	148	126	90.8	106	
12/19/2016	174	127	81.6	102	
1/23/2017	177	151	99.8	101	
2/23/2017	181	149	93.9	99.8	94.4
4/6/2017	144	132			
4/7/2017			89.8	96.9	86.4
6/6/2017	138	124	89.1	102	78.8
8/1/2017	145	130	95	103	76.5
10/23/2017	149	128	89	104	70
4/3/2018	136	124	94.6	98.6	71.7
10/4/2018	120	115	87.3	90.2	65.9
4/8/2019				100	
4/9/2019	126	118	88.4		68
10/7/2019			91.2		
10/8/2019	142	129		104	73
4/7/2020	133			100	65.8
4/8/2020		111	79		
10/13/2020	142	128	85.8		
10/15/2020				94.5	65.5

Calcium

Time Series Analysis Run 12/1/2020 2:02 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Time Series

Constituent: Calcium (ug/L) Analysis Run 12/1/2020 2:06 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-301	MW-302	MW-303	MW-304 (bg)	MW-305 (bg)
4/26/2016	389000	254000	48300	24500	
6/21/2016	148000	49000	36900	25400	
8/9/2016		36500	36700	26700	
8/10/2016	94900				
10/19/2016	77800	30900	31600	23000	
12/19/2016	127000	42600	50500	24800	
1/23/2017	105000	59300	46700	24300	
2/23/2017	51400	41900	32600	24500	93800
4/6/2017	45200	40800			
4/7/2017			33200	24800	103000
6/6/2017	57600	38700	35500	23500	102000
8/1/2017	59400	33900	35900	23000	95900
10/23/2017	48700	31200	29100	20100	90700
4/3/2018	36700	30000	31900	20200	83000
10/4/2018	43700	28200	31600	19400	82200
4/8/2019				19100	
4/9/2019	42900	28400	31700		89000
10/7/2019			30900		
10/8/2019	42600	29900		20600	90300
4/7/2020	55800			18600	88800
4/8/2020		27200	29900		
10/13/2020	33400	26900	29000		
10/15/2020				15800	76800

Chloride

Time Series Analysis Run 12/1/2020 2:03 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Time Series

Constituent: Chloride (mg/L) Analysis Run 12/1/2020 2:06 PM View: I-43 LF Detection Monitoring
I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-301	MW-302	MW-303	MW-304 (bg)	MW-305 (bg)
4/26/2016	28.5 (J)	19.5 (J)	15.5	3.8 (J)	
6/21/2016	18 (J)	8.9	6.9	3.9 (J)	
8/9/2016		7.1	6.8	2.7 (J)	
8/10/2016	6.2				
10/19/2016	7.4 (J)	7.6	6.8	1.8 (J)	
12/19/2016	8.9 (J)	10	22.9	2.2	
1/23/2017	8.2 (J)	8.9 (J)	8.8 (J)	2.1	
2/23/2017	6.3	6.9	5.3	2.3	20.8
4/6/2017	5.6	6.7			
4/7/2017			6.2	1.8 (J)	20.4
6/6/2017	7.5 (J)	6.9	6.2	2	22.5
8/1/2017	5.2	5.6	5.7	1.8 (J)	21.3
10/23/2017	4.7	5.5	6.8	1.7 (J)	21.5
4/3/2018	4.7	5.2	5	1.7 (J)	21.8
10/4/2018	4.1	4.5	4.4	1.8 (J)	22.7
4/8/2019				1.8 (J)	
4/9/2019	4	4.4	4.1		23
10/7/2019			4.7		
10/8/2019	3.8	3.8		1.7 (J)	22.5
4/7/2020	6.9 (J)			5.2	24.9
4/8/2020		4.4	4.3		
10/13/2020	4.2	4.3	5.2		
10/15/2020				2.1	24.5

Field pH

Time Series Analysis Run 12/1/2020 2:03 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Time Series

Constituent: Field pH (Std. Units) Analysis Run 12/1/2020 2:06 PM View: I-43 LF Detection Monitoring
I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-301	MW-302	MW-303	MW-304 (bg)	MW-305 (bg)
4/26/2016	8.24	8.33	7.96	8.16	
6/21/2016	8.01	8.05	7.98	8	
8/9/2016		6.24	6.24	6.29	
8/10/2016	8.08				
10/19/2016	8	12.2	8.03	8.17	
12/19/2016	8.36	8.31	8.32	8.29	
1/23/2017	8.21	8.16	8.23	8.14	
2/23/2017	8.14	8.16	8.24	8.22	7.75
4/6/2017	8.12	8			
4/7/2017			8.15	7.86	7.62
6/6/2017	7.89	7.95	7.9	8.03	7.52
8/1/2017	7.99	7.98	7.91	7.9	7.47
10/23/2017	7.82	7.7	7.59	7.74	7.55
4/3/2018	8.02	8.02	7.98	7.99	7.54
10/4/2018	8.15	8.08	8.04	8.1	7.65
4/8/2019				8.06	
4/9/2019	8.18	8.14	8.05		7.85
10/7/2019			10.12		
10/8/2019	7.7	7.67		7.68	7.36
11/26/2019			8.14		
4/7/2020	8.05			8.07	7.48
4/8/2020		7.79	7.67		
5/20/2020		8.19			
10/13/2020	7.96	7.85	8.31		
10/15/2020				8.12	7.63

Fluoride

Time Series Analysis Run 12/1/2020 2:03 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Time Series

Constituent: Fluoride (mg/L) Analysis Run 12/1/2020 2:06 PM View: I-43 LF Detection Monitoring
I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-301	MW-302	MW-303	MW-304 (bg)	MW-305 (bg)
4/26/2016	<2 (U)	1.1 (J)	0.55	0.49	
6/21/2016	1.1 (J)	0.74	0.59	0.55	
8/9/2016		0.75	0.59	0.51	
8/10/2016	0.62				
10/19/2016	0.65 (J)	0.69	0.6	0.45	
12/19/2016	0.86 (J)	0.94 (J)	0.63	0.59	
1/23/2017	0.77 (J)	0.85 (J)	0.8 (J)	0.5	
2/23/2017	0.64	0.67	0.55	0.5	0.73
4/6/2017	0.61	0.68			
4/7/2017			0.57	0.48	0.59
6/6/2017	0.87 (J)	0.83	0.69	0.6	0.72
8/1/2017	0.63	0.74	0.6	0.53	0.69
10/23/2017	0.62	0.71	0.66	0.54	0.64
4/3/2018	0.62	0.73	0.54	0.5	0.63
10/4/2018	0.61	0.71	0.56	0.5	0.58
4/8/2019				0.51	
4/9/2019	0.63	0.73	0.57		0.65
10/7/2019			0.6		
10/8/2019	0.63	0.71		0.48	0.63
4/7/2020	0.82 (J)			0.75	0.75
4/8/2020		0.75	0.6		
5/20/2020		0.7			
10/13/2020	0.83	0.82	0.7		
10/15/2020				0.58	0.72

Sulfate

Time Series Analysis Run 12/1/2020 2:03 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Time Series

Constituent: Sulfate (mg/L) Analysis Run 12/1/2020 2:06 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-301	MW-302	MW-303	MW-304 (bg)	MW-305 (bg)
4/26/2016	25.9 (J)	81.5	131	13.8	
6/21/2016	15.9 (J)	36.4	45.2	14.2	
8/9/2016		35	70.1	13.2	
8/10/2016	7.4				
10/19/2016	9.5 (J)	42.6	137	13.5	
12/19/2016	9.6 (J)	36.4	38.2	14.6	
1/23/2017	9.3 (J)	30.4	113	14.3	
2/23/2017	9.1	27.9	46.1	14.6	127
4/6/2017	9.1	29.6			
4/7/2017			79.2	14.5	131
6/6/2017	9 (J)	32.2	51.1	14.9	140
8/1/2017	8.2	24	40.5	14.2	130
10/23/2017	8.6	26.3	67.1	14.2	134
4/3/2018	9.3	22.6	27.3	15.2	129
10/4/2018	8.8	19.6	26.1	13.5	130
4/8/2019				14.5	
4/9/2019	9.2	20.4	23.7		136
10/7/2019			30.3		
10/8/2019	9.3	18.4		13.5	137
4/7/2020	11.2			15.4	135
4/8/2020		19.4	23.3		
10/13/2020	19	19	33.2		
10/15/2020				15.5	139

Total Dissolved Solids

Time Series Analysis Run 12/1/2020 2:03 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Time Series

Constituent: Total Dissolved Solids (mg/L) Analysis Run 12/1/2020 2:06 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-301	MW-302	MW-303	MW-304 (bg)	MW-305 (bg)
4/26/2016	343	543	468	222	
6/21/2016	290	346	314	234	
8/9/2016		308	378	244	
8/10/2016	306				
10/19/2016	312	298	458	232	
12/19/2016	264	302	312	198	
1/5/2017	194	280	310	212	
1/23/2017	254	324	400	214	
2/23/2017	276	344	300	206	576
4/6/2017	240	322			
4/7/2017			348	224	576
6/6/2017	264	284	314	218	598
8/1/2017	248	262	290	222	570
10/23/2017	236	238	304	208	540
4/3/2018	214	248	260	222	566
10/4/2018	260	250	270	224	572
4/8/2019				226	
4/9/2019	230	248	270		568
10/7/2019			230		
10/8/2019	256	242		172	548
4/7/2020	276			228	580
4/8/2020		254	274		
10/13/2020	228	192	150		
10/15/2020				228	500

Attachment 2 Outlier Analysis – Interwell

Outlier Analysis

		I-43 Ash Dispos	sal Facility	Client: SCS Engine	eers Data: I43_2020_Oct_All	Printed 12	2/30/202	0, 11:46 PN	1		
Constituent	Well	<u>Outlier</u>	Value(s)	Date(s)	Method	<u>Alpha</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	Distribution	Normality Test
Calcium (ug/L)	MW-304 (bg)	No	n/a	n/a	EPA 1989	0.05	17	22253	3003	normal	ShapiroWilk
Calcium (ug/L)	MW-305 (bg)	No	n/a	n/a	EPA 1989	0.05	11	90500	8041	normal	ShapiroWilk
Chloride (mg/L)	MW-304 (bg)	No	n/a	n/a	NP (nrm)	NaN	17	2.376	0.9934	unknown	ShapiroWilk
Chloride (mg/L)	MW-305 (bg)	No	n/a	n/a	EPA 1989	0.05	11	22.35	1.416	normal	ShapiroWilk
Field pH (Std. Units)	MW-304 (bg)	Yes	6.29	8/9/2016	Dixon`s	0.05	17	7.931	0.4529	normal	ShapiroWilk
Field pH (Std. Units)	MW-305 (bg)	No	n/a	n/a	EPA 1989	0.05	11	7.584	0.1368	normal	ShapiroWilk
Fluoride (mg/L)	MW-304 (bg)	Yes	0.75	4/7/2020	Dixon`s	0.05	17	0.5329	0.06944	normal	ShapiroWilk
Fluoride (mg/L)	MW-305 (bg)	No	n/a	n/a	EPA 1989	0.05	11	0.6664	0.05853	normal	ShapiroWilk
Sulfate (mg/L)	MW-304 (bg)	No	n/a	n/a	EPA 1989	0.05	17	14.33	0.6835	normal	ShapiroWilk
Sulfate (mg/L)	MW-305 (bg)	No	n/a	n/a	EPA 1989	0.05	11	133.5	4.321	normal	ShapiroWilk
Total Dissolved Solids (mg/L)	MW-304 (bg)	Yes	172	10/8/2019	Dixon`s	0.05	18	218.6	15.94	normal	ShapiroWilk
Total Dissolved Solids (mg/L)	MW-305 (bg)	Yes	500	10/15/2020	Dixon's	0.05	11	563.1	25.96	normal	ShapiroWilk

EPA Screening (suspected outliers for Dixon's Test)

Constituent: Calcium Analysis Run 12/30/2020 11:44 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

EPA 1989 Outlier Screening

Constituent: Calcium (ug/L) Analysis Run 12/30/2020 11:46 PM View: I-43 LF Detection Monitoring
I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-304 (bg
4/26/2016	24500
6/21/2016	25400
8/9/2016	26700
10/19/2016	23000
12/19/2016	24800
1/23/2017	24300
2/23/2017	24500
4/7/2017	24800
6/6/2017	23500
8/1/2017	23000
10/23/2017	20100
4/3/2018	20200
10/4/2018	19400
4/8/2019	19100
10/8/2019	20600
4/7/2020	18600
10/15/2020	15800

EPA Screening (suspected outliers for Dixon's Test)

Constituent: Calcium Analysis Run 12/30/2020 11:44 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

EPA 1989 Outlier Screening

Constituent: Calcium (ug/L) Analysis Run 12/30/2020 11:46 PM View: I-43 LF Detection Monitoring
I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-305 (bg)
2/23/2017	93800
4/7/2017	103000
6/6/2017	102000
8/1/2017	95900
10/23/2017	90700
4/3/2018	83000
10/4/2018	82200
4/9/2019	89000
10/8/2019	90300
4/7/2020	88800
10/15/2020	76800

Tukey's Outlier Screening

MW-304 (bg)

n = 17

No outliers found. Tukey's method used in lieu of parametric test because the Shapiro Wilk normality test failed at the 0.1 alpha level.

Data were natural log transformed to achieve best W statistic (graph shown in original units).

High cutoff = 6.613, low cutoff = 0.6783, based on IQR multiplier of 3.

Constituent: Chloride Analysis Run 12/30/2020 11:44 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

mg/L

Tukey's Outlier Screening

Constituent: Chloride (mg/L) Analysis Run 12/30/2020 11:46 PM View: I-43 LF Detection Monitoring
I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-304 (bg)
4/26/2016	3.8 (J)
6/21/2016	3.9 (J)
8/9/2016	2.7 (J)
10/19/2016	1.8 (J)
12/19/2016	2.2
1/23/2017	2.1
2/23/2017	2.3
4/7/2017	1.8 (J)
6/6/2017	2
8/1/2017	1.8 (J)
10/23/2017	1.7 (J)
4/3/2018	1.7 (J)
10/4/2018	1.8 (J)
4/8/2019	1.8 (J)
10/8/2019	1.7 (J)
4/7/2020	5.2
10/15/2020	2.1

mg/L

EPA Screening (suspected outliers for Dixon's Test)

Constituent: Chloride Analysis Run 12/30/2020 11:44 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

EPA 1989 Outlier Screening

Constituent: Chloride (mg/L) Analysis Run 12/30/2020 11:46 PM View: I-43 LF Detection Monitoring
I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-305 (bg
2/23/2017	20.8
4/7/2017	20.4
6/6/2017	22.5
8/1/2017	21.3
10/23/2017	21.5
4/3/2018	21.8
10/4/2018	22.7
4/9/2019	23
10/8/2019	22.5
4/7/2020	24.9
10/15/2020	24.5

Std. Units

Dixon's Outlier Test

MW-304 (bg)

n = 17

Statistical outlier is drawn as solid.
Testing for 1 low outlier.
Mean = 7.931.
Std. Dev. = 0.4529.
6.29 (O): c = 0.7713
tabl = 0.49.
Alpha = 0.05.

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9483 Critical = 0.906 The distribution, after removal of suspect value, was found to be normally distributed.

Constituent: Field pH Analysis Run 12/30/2020 11:44 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Dixon's Outlier Test

Constituent: Field pH (Std. Units) Analysis Run 12/30/2020 11:46 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-304 (bg
4/26/2016	8.16
6/21/2016	8
8/9/2016	6.29 (O)
10/19/2016	8.17
12/19/2016	8.29
1/23/2017	8.14
2/23/2017	8.22
4/7/2017	7.86
6/6/2017	8.03
8/1/2017	7.9
10/23/2017	7.74
4/3/2018	7.99
10/4/2018	8.1
4/8/2019	8.06
10/8/2019	7.68
4/7/2020	8.07
10/15/2020	8.12

EPA Screening (suspected outliers for Dixon's Test)

Constituent: Field pH Analysis Run 12/30/2020 11:45 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

EPA 1989 Outlier Screening

Constituent: Field pH (Std. Units) Analysis Run 12/30/2020 11:46 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-305 (bg
2/23/2017	7.75
4/7/2017	7.62
6/6/2017	7.52
8/1/2017	7.47
10/23/2017	7.55
4/3/2018	7.54
10/4/2018	7.65
4/9/2019	7.85
10/8/2019	7.36
4/7/2020	7.48
10/15/2020	7.63

Dixon's Outlier Test

MW-304 (bg)

n = 17

Statistical outlier is drawn as solid.
Testing for 1 high outlier.
Mean = 0.5329.
Std. Dev. = 0.06944.
0.75: c = 0.5926
tabl = 0.49.
Alpha = 0.05.

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9268 Critical = 0.906 The distribution, after removal of suspect value, was found to be normally distributed.

Constituent: Fluoride Analysis Run 12/30/2020 11:45 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

mg/L

Dixon's Outlier Test

Constituent: Fluoride (mg/L) Analysis Run 12/30/2020 11:46 PM View: I-43 LF Detection Monitoring
I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-304 (bg)
4/26/2016	0.49
6/21/2016	0.55
8/9/2016	0.51
10/19/2016	0.45
12/19/2016	0.59
1/23/2017	0.5
2/23/2017	0.5
4/7/2017	0.48
6/6/2017	0.6
8/1/2017	0.53
10/23/2017	0.54
4/3/2018	0.5
10/4/2018	0.5
4/8/2019	0.51
10/8/2019	0.48
4/7/2020	0.75 (O)
10/15/2020	0.58

EPA Screening (suspected outliers for Dixon's Test)

n = 11

Dixon's will not be run.
No suspect values identified or unable to establish suspect values.
Mean 0.6664, std. dev.
0.05853, critical Tn 2.234

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9281 Critical = 0.876 The distribution was found to be normally distributed.

Constituent: Fluoride Analysis Run 12/30/2020 11:45 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

mg/L

EPA 1989 Outlier Screening

Constituent: Fluoride (mg/L) Analysis Run 12/30/2020 11:46 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-305 (bg)
2/23/2017	0.73
4/7/2017	0.59
6/6/2017	0.72
8/1/2017	0.69
10/23/2017	0.64
4/3/2018	0.63
10/4/2018	0.58
4/9/2019	0.65
10/8/2019	0.63
4/7/2020	0.75
10/15/2020	0.72

EPA Screening (suspected outliers for Dixon's Test)

n = 17

Dixon's will not be run.
No suspect values identified or unable to establish suspect values.
Mean 14.33, std. dev.
0.6835, critical Tn 2.475

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9561 Critical = 0.91 The distribution was found to be normally distributed.

Constituent: Sulfate Analysis Run 12/30/2020 11:45 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Jg/

EPA 1989 Outlier Screening

Constituent: Sulfate (mg/L) Analysis Run 12/30/2020 11:46 PM View: I-43 LF Detection Monitoring
I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-304 (bg)
4/26/2016	13.8
6/21/2016	14.2
8/9/2016	13.2
10/19/2016	13.5
12/19/2016	14.6
1/23/2017	14.3
2/23/2017	14.6
4/7/2017	14.5
6/6/2017	14.9
8/1/2017	14.2
10/23/2017	14.2
4/3/2018	15.2
10/4/2018	13.5
4/8/2019	14.5
10/8/2019	13.5
4/7/2020	15.4
10/15/2020	15.5

EPA Screening (suspected outliers for Dixon's Test)

Constituent: Sulfate Analysis Run 12/30/2020 11:45 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

EPA 1989 Outlier Screening

Constituent: Sulfate (mg/L) Analysis Run 12/30/2020 11:46 PM View: I-43 LF Detection Monitoring
I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-305 (bg)
2/23/2017	127
4/7/2017	131
6/6/2017	140
8/1/2017	130
10/23/2017	134
4/3/2018	129
10/4/2018	130
4/9/2019	136
10/8/2019	137
4/7/2020	135
10/15/2020	139

mg/L

Dixon's Outlier Test

MW-304 (bg)

n = 18

Statistical outlier is drawn as solid. Testing for 1 low outlier. Mean = 218.6. Std. Dev. = 15.94. 172: c = 0.5667 tabl = 0.475. Alpha = 0.05.

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.98 Critical = 0.91 The distribution, after removal of suspect value, was found to be normally distributed.

Constituent: Total Dissolved Solids Analysis Run 12/30/2020 11:45 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Dixon's Outlier Test

Constituent: Total Dissolved Solids (mg/L) Analysis Run 12/30/2020 11:46 PM View: I-43 LF Detection Monitoring
I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-304 (bg)
4/26/2016	222
6/21/2016	234
8/9/2016	244
10/19/2016	232
12/19/2016	198
1/5/2017	212
1/23/2017	214
2/23/2017	206
4/7/2017	224
6/6/2017	218
8/1/2017	222
10/23/2017	208
4/3/2018	222
10/4/2018	224
4/8/2019	226
10/8/2019	172 (O)
4/7/2020	228
10/15/2020	228

Dixon's Outlier Test

Constituent: Total Dissolved Solids Analysis Run 12/30/2020 11:45 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Dixon's Outlier Test

Constituent: Total Dissolved Solids (mg/L) Analysis Run 12/30/2020 11:46 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-305 (bg)
2/23/2017	576
4/7/2017	576
6/6/2017	598
8/1/2017	570
10/23/2017	540
4/3/2018	566
10/4/2018	572
4/9/2019	568
10/8/2019	548
4/7/2020	580
10/15/2020	500 (O)

Attachment 3 Outlier Analysis – Intrawell

Outlier Analysis

		I-43 Ash Dispos	sal Facility	Client: SCS Engineers Data: I43_2020_Oct_		Printed 1	2/1/202	0, 2:52 PM			
Constituent	<u>Well</u>	<u>Outlier</u>	Value(s)	Date(s)	Method	<u>Alpha</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	<u>Distribution</u>	Normality Test
Boron (ug/L)	MW-301	No	n/a	n/a	EPA 1989	0.05	16	147.7	17.38	normal	ShapiroWilk
Boron (ug/L)	MW-302	No	n/a	n/a	EPA 1989	0.05	16	127.8	10.47	ln(x)	ShapiroWilk
Boron (ug/L)	MW-303	No	n/a	n/a	EPA 1989	0.05	17	89.57	5.31	normal	ShapiroWilk

EPA Screening (suspected outliers for Dixon's Test)

n = 16

Dixon's will not be run.

No suspect values identified or unable to establish suspect values.

Mean 147.7, std. dev.

17.38, critical Tn 2.443

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9325 Critical = 0.906 The distribution was found to be normally distributed.

Constituent: Boron Analysis Run 12/1/2020 2:51 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

EPA 1989 Outlier Screening

Constituent: Boron (ug/L) Analysis Run 12/1/2020 2:52 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-301
4/26/2016	298 (R)
6/21/2016	157
8/10/2016	151
10/19/2016	148
12/19/2016	174
1/23/2017	177
2/23/2017	181
4/6/2017	144
6/6/2017	138
8/1/2017	145
10/23/2017	149
4/3/2018	136
10/4/2018	120
4/9/2019	126
10/8/2019	142
4/7/2020	133
10/13/2020	142

EPA Screening (suspected outliers for Dixon's Test)

n = 16

Dixon's will not be run.
No suspect values identified or unable to establish suspect values.
Mean 127.8, std. dev.
10.47, critical Tn 2.443

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9183 Critical = 0.906 (after natural log transformation) The distribution was found to be log-normal.

Constituent: Boron Analysis Run 12/1/2020 2:51 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

<u>ال</u>

EPA 1989 Outlier Screening

Constituent: Boron (ug/L) Analysis Run 12/1/2020 2:52 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-302
4/26/2016	198 (R)
6/21/2016	121
8/9/2016	131
10/19/2016	126
12/19/2016	127
1/23/2017	151
2/23/2017	149
4/6/2017	132
6/6/2017	124
8/1/2017	130
10/23/2017	128
4/3/2018	124
10/4/2018	115
4/9/2019	118
10/8/2019	129
4/8/2020	111
10/13/2020	128

EPA Screening (suspected outliers for Dixon's Test)

n = 17

Dixon's will not be run. No suspect values identified or unable to establish suspect values. Mean 89.57, std. dev. 5.31, critical Tn 2.475

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.988 Critical = 0.91 The distribution was found to be normally distributed.

Constituent: Boron Analysis Run 12/1/2020 2:51 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

EPA 1989 Outlier Screening

Constituent: Boron (ug/L) Analysis Run 12/1/2020 2:52 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-303
4/26/2016	86.4
6/21/2016	85
8/9/2016	96
10/19/2016	90.8
12/19/2016	81.6
1/23/2017	99.8
2/23/2017	93.9
4/7/2017	89.8
6/6/2017	89.1
8/1/2017	95
10/23/2017	89
4/3/2018	94.6
10/4/2018	87.3
4/9/2019	88.4
10/7/2019	91.2
4/8/2020	79
10/13/2020	85.8

Attachment 4 Welch's/Mann-Whitney Comparison

Welch's t-test/Mann-Whitney

	I-43 Ash	I-43 Ash Disposal Facility		Client: SCS Engineers		s Data:	143_2020_Oc	t_All	Printed 1/3/2021, 5:37 PM	
Constituent	<u>Well</u>	Calc.	<u>0.1</u>	<u>0.05</u>	0.025	0.01	<u>Alpha</u>	Sig.	Bg. Wells	Method
Calcium (ug/L)	MW-304 (bg)	-7.549	No	No	No	No	0.01	No	(intrawell)	Welch`s
Calcium (ug/L)	MW-305 (bg)	-4.273	No	No	No	No	0.01	No	(intrawell)	Welch's
Chloride (mg/L)	MW-304 (bg)	-1.784	No	No	No	No	0.01	No	(intrawell)	Mann-W (normality)
Chloride (mg/L)	MW-305 (bg)	2.608	Yes	Yes	Yes	No	0.01	No	(intrawell)	Welch`s
Field pH (Std. Units)	MW-304 (bg)	-1.025	No	No	No	No	0.01	No	(intrawell)	Mann-W (normality)
Field pH (Std. Units)	MW-305 (bg)	-0.118	No	No	No	No	0.01	No	(intrawell)	Welch's
Fluoride (mg/L)	MW-304 (bg)	0.8173	No	No	No	No	0.01	No	(intrawell)	Welch`s
Fluoride (mg/L)	MW-305 (bg)	-0	No	No	No	No	0.01	No	(intrawell)	Welch`s
Sulfate (mg/L)	MW-304 (bg)	0.9964	No	No	No	No	0.01	No	(intrawell)	Welch`s
Sulfate (mg/L)	MW-305 (bg)	0.733	No	No	No	No	0.01	No	(intrawell)	Welch`s
Total Dissolved Solids (mg/L)	MW-304 (bg)	-0	No	No	No	No	0.01	No	(intrawell)	Welch`s
Total Dissolved Solids (mg/L)	MW-305 (bg)	-2.208	No	No	No	No	0.01	No	(intrawell)	Welch`s

Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9326, critical = 0.842.

Constituent: Calcium Analysis Run 1/3/2021 5:36 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8812, critical = 0.748.

Constituent: Calcium Analysis Run 1/3/2021 5:36 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Mann-Whitney (Wilcoxon Rank Sum)

Mann-Whitney (Wilcoxon Rank Sum) used in lieu of Welch's t-test because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level.

Constituent: Chloride Analysis Run 1/3/2021 5:36 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9364, critical = 0.748.

Constituent: Chloride Analysis Run 1/3/2021 5:36 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Mann-Whitney (Wilcoxon Rank Sum)

Mann-Whitney (Wilcoxon Rank Sum) used in lieu of Welch's t-test because the Shapiro Wilk normality test showed the data to be non-normal at the 0.05 alpha level.

Constituent: Field pH Analysis Run 1/3/2021 5:36 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9554, critical = 0.748.

Constituent: Field pH Analysis Run 1/3/2021 5:36 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9407, critical = 0.842.

Constituent: Fluoride Analysis Run 1/3/2021 5:36 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.835, critical = 0.748.

Constituent: Fluoride Analysis Run 1/3/2021 5:36 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9395, critical = 0.842.

Constituent: Sulfate Analysis Run 1/3/2021 5:36 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8812, critical = 0.748.

Constituent: Sulfate Analysis Run 1/3/2021 5:36 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.99, critical = 0.85.

Constituent: Total Dissolved Solids Analysis Run 1/3/2021 5:36 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8119, critical = 0.748.

Constituent: Total Dissolved Solids Analysis Run 1/3/2021 5:36 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Welch's t-test/Mann-Whitney

	I-43 A	sh Disposal Facility	/ Client: S	SCS Engineers	Data: I43_20	20_Oct_All	Printed 1/3/202	1, 5:35 PM
Constituent	Well	<u>Calc.</u> 0.1	0.05	0.025	0.01 <u>Alpha</u>	Sig.	Bg. Wells	Method
Boron (ug/L)	MW-301	-3.339 No	No	No	No 0.01	No	(intrawell)	Welch`s
Boron (ug/L)	MW-302	-2.486 No	No	No	No 0.01	No	(intrawell)	Welch's
Boron (ug/L)	MW-303	-0 No	No	No	No 0.01	No	(intrawell)	Welch's

Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8831, critical = 0.829.

Constituent: Boron Analysis Run 1/3/2021 5:34 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8304, critical = 0.829.

Constituent: Boron Analysis Run 1/3/2021 5:34 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9876, critical = 0.842.

Constituent: Boron Analysis Run 1/3/2021 5:34 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Attachment 5 Interwell Prediction Limit Analysis

Interwell Prediction Limit

I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All Printed 12/28/2020, 11:43 AM

Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	N Bg Wells	Bg Mean	Std. Dev.	%NDs	ND Adj.	Transform	<u>Alpha</u>	Method
Calcium (ug/L)	MW-301	103000	n/a	10/13/2020	33400	No	28	MW-304,MW-305	n/a	n/a	0	n/a	n/a	0.002286	NP (normality) 1 of 2
Calcium (ug/L)	MW-302	103000	n/a	10/13/2020	26900	No	28	MW-304,MW-305	n/a	n/a	0	n/a	n/a	0.002286	NP (normality) 1 of 2
Calcium (ug/L)	MW-303	103000	n/a	10/13/2020	29000	No	28	MW-304,MW-305	n/a	n/a	0	n/a	n/a	0.002286	NP (normality) 1 of 2
Chloride (mg/L)	MW-301	24.9	n/a	10/13/2020	4.2	No	28	MW-304,MW-305	n/a	n/a	0	n/a	n/a	0.002286	NP (normality) 1 of 2
Chloride (mg/L)	MW-302	24.9	n/a	10/13/2020	4.3	No	28	MW-304,MW-305	n/a	n/a	0	n/a	n/a	0.002286	NP (normality) 1 of 2
Chloride (mg/L)	MW-303	24.9	n/a	10/13/2020	5.2	No	28	MW-304,MW-305	n/a	n/a	0	n/a	n/a	0.002286	NP (normality) 1 of 2
Field pH (Std. Units)	MW-301	8.34	n/a	12/18/2020	7.64	No	27	MW-304,MW-305	7.85	0.2722	0	None	No	0.002505	Param 1 of 2
Field pH (Std. Units)	MW-302	8.34	n/a	12/18/2020	8.05	No	27	MW-304,MW-305	7.85	0.2722	0	None	No	0.002505	Param 1 of 2
Field pH (Std. Units)	MW-303	8.34	n/a	10/13/2020	8.31	No	27	MW-304,MW-305	7.85	0.2722	0	None	No	0.002505	Param 1 of 2
Fluoride (mg/L)	MW-301	0.753	n/a	12/18/2020	0.64	No	28	MW-304,MW-305	0.5854	0.09236	0	None	No	0.002505	Param 1 of 2
Fluoride (mg/L)	MW-302	0.753	n/a	12/18/2020	0.73	No	28	MW-304,MW-305	0.5854	0.09236	0	None	No	0.002505	Param 1 of 2
Fluoride (mg/L)	MW-303	0.753	n/a	10/13/2020	0.7	No	28	MW-304,MW-305	0.5854	0.09236	0	None	No	0.002505	Param 1 of 2
Sulfate (mg/L)	MW-301	140	n/a	10/13/2020	19	No	28	MW-304,MW-305	n/a	n/a	0	n/a	n/a	0.002286	NP (normality) 1 of 2
Sulfate (mg/L)	MW-302	140	n/a	10/13/2020	19	No	28	MW-304,MW-305	n/a	n/a	0	n/a	n/a	0.002286	NP (normality) 1 of 2
Sulfate (mg/L)	MW-303	140	n/a	10/13/2020	33.2	No	28	MW-304,MW-305	n/a	n/a	0	n/a	n/a	0.002286	NP (normality) 1 of 2
Total Dissolved Solids (mg/L)	MW-301	598	n/a	10/13/2020	228	No	29	MW-304,MW-305	n/a	n/a	0	n/a	n/a	0.002128	NP (normality) 1 of 2
Total Dissolved Solids (mg/L)	MW-302	598	n/a	10/13/2020	192	No	29	MW-304,MW-305	n/a	n/a	0	n/a	n/a	0.002128	NP (normality) 1 of 2
Total Dissolved Solids (mg/L)	MW-303	598	n/a	10/13/2020	150	No	29	MW-304,MW-305	n/a	n/a	0	n/a	n/a	0.002128	NP (normality) 1 of 2

Within Limit Calcium

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 28 background values. Annual per-constituent alpha = 0.01364. Individual comparison alpha = 0.002286 (1 of 2). Comparing 3 points to limit. Insufficient data to test for seasonality; data will not be deseasonalized.

Prediction Limit Analysis Run 12/28/2020 11:36 AM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43 2020 Oct All

Constituent: Calcium (ug/L) Analysis Run 12/28/2020 11:43 AM View: I-43 LF Detection Monitoring
I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-301	MW-302	MW-303	MW-304 (bg)	MW-305 (bg)
4/26/2016	389000	254000	48300	24500	
6/21/2016	148000	49000	36900	25400	
8/9/2016		36500	36700	26700	
8/10/2016	94900				
10/19/2016	77800	30900	31600	23000	
12/19/2016	127000	42600	50500	24800	
1/23/2017	105000	59300	46700	24300	
2/23/2017	51400	41900	32600	24500	93800
4/6/2017	45200	40800			
4/7/2017			33200	24800	103000
6/6/2017	57600	38700	35500	23500	102000
8/1/2017	59400	33900	35900	23000	95900
10/23/2017	48700	31200	29100	20100	90700
4/3/2018	36700	30000	31900	20200	83000
10/4/2018	43700	28200	31600	19400	82200
4/8/2019				19100	
4/9/2019	42900	28400	31700		89000
10/7/2019			30900		
10/8/2019	42600	29900		20600	90300
4/7/2020	55800			18600	88800
4/8/2020		27200	29900		
10/13/2020	33400	26900	29000		
10/15/2020				15800	76800

Within Limit Chloride

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 28 background values. Annual per-constituent alpha = 0.01364. Individual comparison alpha = 0.002286 (1 of 2). Comparing 3 points to limit. Insufficient data to test for seasonality; data will not be deseasonalized.

Prediction Limit Analysis Run 12/28/2020 11:36 AM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Constituent: Chloride (mg/L) Analysis Run 12/28/2020 11:43 AM View: I-43 LF Detection Monitoring
I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-301	MW-302	MW-303	MW-304 (bg)	MW-305 (bg)
4/26/2016	28.5 (J)	19.5 (J)	15.5	3.8 (J)	
6/21/2016	18 (J)	8.9	6.9	3.9 (J)	
8/9/2016		7.1	6.8	2.7 (J)	
8/10/2016	6.2				
10/19/2016	7.4 (J)	7.6	6.8	1.8 (J)	
12/19/2016	8.9 (J)	10	22.9	2.2	
1/23/2017	8.2 (J)	8.9 (J)	8.8 (J)	2.1	
2/23/2017	6.3	6.9	5.3	2.3	20.8
4/6/2017	5.6	6.7			
4/7/2017			6.2	1.8 (J)	20.4
6/6/2017	7.5 (J)	6.9	6.2	2	22.5
8/1/2017	5.2	5.6	5.7	1.8 (J)	21.3
10/23/2017	4.7	5.5	6.8	1.7 (J)	21.5
4/3/2018	4.7	5.2	5	1.7 (J)	21.8
10/4/2018	4.1	4.5	4.4	1.8 (J)	22.7
4/8/2019				1.8 (J)	
4/9/2019	4	4.4	4.1		23
10/7/2019			4.7		
10/8/2019	3.8	3.8		1.7 (J)	22.5
4/7/2020	6.9 (J)			5.2	24.9
4/8/2020		4.4	4.3		
10/13/2020	4.2	4.3	5.2		
10/15/2020				2.1	24.5

Within Limit Field pH

Interwell Parametric

Background Data Summary: Mean=7.85, Std. Dev.=0.2722, n=27. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9408, critical = 0.894. Kappa = 1.818 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Comparing 3 points to limit.

Prediction Limit Analysis Run 12/28/2020 11:36 AM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Constituent: Field pH (Std. Units) Analysis Run 12/28/2020 11:43 AM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-301	MW-302	MW-303	MW-304 (bg)	MW-305 (bg)
4/26/2016	8.24	8.33	7.96	8.16	
6/21/2016	8.01	8.05	7.98	8	
8/9/2016		6.24 (O)	6.24 (O)		
8/10/2016	8.08				
10/19/2016	8	12.2 (O)	8.03	8.17	
12/19/2016	8.36	8.31	8.32	8.29	
1/23/2017	8.21	8.16	8.23	8.14	
2/23/2017	8.14	8.16	8.24	8.22	7.75
4/6/2017	8.12	8			
4/7/2017			8.15	7.86	7.62
6/6/2017	7.89	7.95	7.9	8.03	7.52
8/1/2017	7.99	7.98	7.91	7.9	7.47
10/23/2017	7.82	7.7	7.59	7.74	7.55
4/3/2018	8.02	8.02	7.98	7.99	7.54
10/4/2018	8.15	8.08	8.04	8.1	7.65
4/8/2019				8.06	
4/9/2019	8.18	8.14	8.05		7.85
10/7/2019			10.12		
10/8/2019	7.7	7.67		7.68	7.36
11/26/2019			8.14		
4/7/2020	8.05			8.07	7.48
4/8/2020		7.79	7.67		
5/20/2020		8.19			
10/13/2020	7.96	7.85	8.31		
10/15/2020				8.12	7.63
12/18/2020	7.64	8.05			

Within Limit

Interwell Parametric

Fluoride

Background Data Summary: Mean=0.5854, Std. Dev.=0.09236, n=28. Insufficient data to test for seasonality; not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9156, critical = 0.896. Kappa = 1.81 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.002505. Comparing 3 points to limit.

Prediction Limit Analysis Run 12/28/2020 11:36 AM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Constituent: Fluoride (mg/L) Analysis Run 12/28/2020 11:43 AM View: I-43 LF Detection Monitoring
I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

		MW-301	MW-302	MW-303	MW-304 (bg)	MW-305 (bg)	
4	4/26/2016	<2 (U)	1.1 (J)	0.55	0.49		
6	6/21/2016	1.1 (J)	0.74	0.59	0.55		
8	3/9/2016		0.75	0.59	0.51		
8	3/10/2016	0.62					
1	10/19/2016	0.65 (J)	0.69	0.6	0.45		
1	12/19/2016	0.86 (J)	0.94 (J)	0.63	0.59		
1	1/23/2017	0.77 (J)	0.85 (J)	0.8 (J)	0.5		
2	2/23/2017	0.64	0.67	0.55	0.5	0.73	
4	4/6/2017	0.61	0.68				
4	4/7/2017			0.57	0.48	0.59	
6	6/6/2017	0.87 (J)	0.83	0.69	0.6	0.72	
8	8/1/2017	0.63	0.74	0.6	0.53	0.69	
1	10/23/2017	0.62	0.71	0.66	0.54	0.64	
4	4/3/2018	0.62	0.73	0.54	0.5	0.63	
1	10/4/2018	0.61	0.71	0.56	0.5	0.58	
4	4/8/2019				0.51		
4	4/9/2019	0.63	0.73	0.57		0.65	
1	10/7/2019			0.6			
1	10/8/2019	0.63	0.71		0.48	0.63	
4	4/7/2020	0.82 (J)			0.75	0.75	
4	4/8/2020		0.75	0.6			
5	5/20/2020		0.7				
1	10/13/2020			0.7			
1	10/15/2020				0.58	0.72	
1	12/18/2020	0.64 (R)	0.73 (R)				

Within Limit Sulfate
Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 28 background values. Annual per-constituent alpha = 0.01364. Individual comparison alpha = 0.002286 (1 of 2). Comparing 3 points to limit. Insufficient data to test for seasonality; data will not be deseasonalized.

Prediction Limit Analysis Run 12/28/2020 11:36 AM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43 2020 Oct All

Constituent: Sulfate (mg/L) Analysis Run 12/28/2020 11:43 AM View: I-43 LF Detection Monitoring
I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-301	MW-302	MW-303	MW-304 (bg)	MW-305 (bg)
4/26/2016	25.9 (J)	81.5	131	13.8	
6/21/2016	15.9 (J)	36.4	45.2	14.2	
8/9/2016		35	70.1	13.2	
8/10/2016	7.4				
10/19/2016	9.5 (J)	42.6	137	13.5	
12/19/2016	9.6 (J)	36.4	38.2	14.6	
1/23/2017	9.3 (J)	30.4	113	14.3	
2/23/2017	9.1	27.9	46.1	14.6	127
4/6/2017	9.1	29.6			
4/7/2017			79.2	14.5	131
6/6/2017	9 (J)	32.2	51.1	14.9	140
8/1/2017	8.2	24	40.5	14.2	130
10/23/2017	8.6	26.3	67.1	14.2	134
4/3/2018	9.3	22.6	27.3	15.2	129
10/4/2018	8.8	19.6	26.1	13.5	130
4/8/2019				14.5	
4/9/2019	9.2	20.4	23.7		136
10/7/2019			30.3		
10/8/2019	9.3	18.4		13.5	137
4/7/2020	11.2			15.4	135
4/8/2020		19.4	23.3		
10/13/2020	19	19	33.2		
10/15/2020				15.5	139

Within Limit

Total Dissolved Solids

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 29 background values. Annual per-constituent alpha = 0.0127. Individual comparison alpha = 0.002128 (1 of 2). Comparing 3 points to limit. Seasonality was not detected with 95% confidence.

Prediction Limit Analysis Run 12/28/2020 11:36 AM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43 2020 Oct All

Constituent: Total Dissolved Solids (mg/L) Analysis Run 12/28/2020 11:43 AM View: I-43 LF Detection Monitoring
I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-301	MW-302	MW-303	MW-304 (bg)	MW-305 (bg)
4/26/2016	343	543	468	222	
6/21/2016	290	346	314	234	
8/9/2016		308	378	244	
8/10/2016	306				
10/19/2016	312	298	458	232	
12/19/2016	264	302	312	198	
1/5/2017	194	280	310	212	
1/23/2017	254	324	400	214	
2/23/2017	276	344	300	206	576
4/6/2017	240	322			
4/7/2017			348	224	576
6/6/2017	264	284	314	218	598
8/1/2017	248	262	290	222	570
10/23/2017	236	238	304	208	540
4/3/2018	214	248	260	222	566
10/4/2018	260	250	270	224	572
4/8/2019				226	
4/9/2019	230	248	270		568
10/7/2019			230		
10/8/2019	256	242		172	548
4/7/2020	276			228	580
4/8/2020		254	274		
10/13/2020	228	192	150		
10/15/2020				228	500

Attachment 6 Intrawell Prediction Limit Analysis

Intrawell Prediction Limit

<u>Constituent</u>	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg I	N Bg Wells	Bg Mean	Std. Dev	. <u>%NDs</u>	ND Adj.	<u>Transform</u>	<u>Alpha</u>	<u>Method</u>
Boron (ug/L)	MW-301	184	n/a	10/13/2020	142	No	15	n/a	148.1	17.92	0	None	No	0.002505	Param 1 of 2
Boron (ug/L)	MW-302	149	n/a	10/13/2020	128	No	15	n/a	127.7	10.83	0	None	No	0.002505	Param 1 of 2
Boron (ug/L)	MW-303	100	n/a	10/13/2020	85.8	No	16	n/a	89.81	5.392	0	None	No	0.002505	Param 1 of 2

Within Limit Boron
Intrawell Parametric

Background Data Summary: Mean=148.1, Std. Dev.=17.92, n=15. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9399, critical = 0.835. Kappa = 2.006 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 12/23/2020 6:01 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Constituent: Boron (ug/L) Analysis Run 12/23/2020 6:01 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-301	MW-301
4/26/2016	298 (R)	
6/21/2016	157	
8/10/2016	151	
10/19/2016	148	
12/19/2016	174	
1/23/2017	177	
2/23/2017	181	
4/6/2017	144	
6/6/2017	138	
8/1/2017	145	
10/23/2017	149	
4/3/2018	136	
10/4/2018	120	
4/9/2019	126	
10/8/2019	142	
4/7/2020	133	
10/13/2020		142

Within Limit Boron
Intrawell Parametric

Background Data Summary: Mean=127.7, Std. Dev.=10.83, n=15. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9045, critical = 0.835. Kappa = 2.006 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 12/23/2020 6:01 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Constituent: Boron (ug/L) Analysis Run 12/23/2020 6:01 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-302	MW-302
4/26/2016	198 (R)	
6/21/2016	121	
8/9/2016	131	
10/19/2016	126	
12/19/2016	127	
1/23/2017	151	
2/23/2017	149	
4/6/2017	132	
6/6/2017	124	
8/1/2017	130	
10/23/2017	128	
4/3/2018	124	
10/4/2018	115	
4/9/2019	118	
10/8/2019	129	
4/8/2020	111	
10/13/2020		128

Within Limit Boron
Intrawell Parametric

Background Data Summary: Mean=89.81, Std. Dev.=5.392, n=16. Insufficient data to test for seasonality: data were not deseasonalized. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9846, critical = 0.844. Kappa = 1.97 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Prediction Limit Analysis Run 12/23/2020 6:01 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Constituent: Boron (ug/L) Analysis Run 12/23/2020 6:01 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-303	MW-303
4/26/2016	86.4	
6/21/2016	85	
8/9/2016	96	
10/19/2016	90.8	
12/19/2016	81.6	
1/23/2017	99.8	
2/23/2017	93.9	
4/7/2017	89.8	
6/6/2017	89.1	
8/1/2017	95	
10/23/2017	89	
4/3/2018	94.6	
10/4/2018	87.3	
4/9/2019	88.4	
10/7/2019	91.2	
4/8/2020	79	
10/13/2020		85.8

Appendix F Alternative Source Demonstration – April 2021

Alternative Source Demonstration April 2021 Detection Monitoring

Edgewater Generating Station I-43 Ash Disposal Facility Town of Wilson Sheboygan County, Wisconsin

Prepared for:

SCS ENGINEERS

25221069.00 | October 13, 2021

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830

Table of Contents

Sect	ion		Page					
PE C	ertific	eation	iii					
1.0	Intro	oduction	1					
	1.1	§257.94(e)(2) Alternative Source Demonstration Requirements	1					
	1.2	1						
	1.3	Statistically Significant Increases Identified	2					
	1.4	Overview of Alternative Source Demonstration	2					
2.0	Back	kground	2					
	2.1	Regional Geology and Hydrogeology	3					
		2.1.1 Regional Information	3					
		2.1.2 Site Information	3					
	2.2	CCR Monitoring System	3					
	2.3	Other Monitoring Wells	4					
3.0	Meth	hodology and Analysis Review	4					
	3.1	Sampling and Field Analysis Review	4					
	3.2	Laboratory Analysis Review	4					
	3.3 Statistical Evaluation Review							
	3.4	Summary of Methodology and Analysis Review Findings	5					
4.0	Alter	rnative Sources	5					
	4.1	Potential Causes of SSI	5					
		4.1.1 Natural Variation	5					
		4.1.2 Man-Made Alternative Sources	6					
	4.2	Lines of Evidences	6					
		4.2.1 Glacial Clay Till Hydraulic Conductivity	6					
		4.2.2 Liner Construction	7					
		4.2.3 Fluoride in Wisconsin Groundwater	7					
		4.2.4 Fluoride in Sheboygan County Groundwater	7					
		4.2.5 State Program Background Data for Fluoride	7					
		4.2.6 Intrawell Evaluation	8					
5.0	Alter	rnative Source Demonstration Conclusions	8					
6.0	Site	Groundwater Monitoring Recommendations	8					
7.0	Refe	erences	9					
		Tables						
Table		Groundwater Analytical Results Summary						
Table		Historical Analytical Results for Parameters with SSIs						
Table	: 3	Groundwater Elevation Table – CCR Rule Monitoring Well Network						

Figures

Figure 1	Site Location Map

Figure 2 Figure 3

Monitoring Well Location Map Bedrock Potentiometric Surface Map – April 2021

Appendices

Appendix A	CCR Well Fluoride and Field pH Trend Plots
Appendix B	Sheboygan County Fluoride Concentrations - WDNR GRN Table
Appendix C	State Program Background Monitoring Data for Fluoride
Appendix D	Intrawell Statistical Analysis

I:\25221069.00\Deliverables\2021 April ASD\211013_I43_April ASD_Final.docx

PE CERTIFICATION

[This page left blank intentionally]

1.0 INTRODUCTION

This Alternative Source Demonstration (ASD) was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" published by the U.S. Environmental Protection Agency (U.S. EPA) in the Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule, dated April 17, 2015 (U.S. EPA, 2015), and subsequent amendments. Specifically, this report is prepared to fulfill the requirements of 40 CFR 257.94(e)(2). The applicable sections of the CCR Rule are provided below in italics.

1.1 §257.94(E)(2) ALTERNATIVE SOURCE DEMONSTRATION REQUIREMENTS

The owner and operator may demonstrate that a source other than the CCR Unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels.

An ASD is completed when there are exceedances of one or more benchmarks established within the groundwater monitoring program. The ASD is completed to determine if any other sources are likely causes of the identified exceedance(s) of established benchmark(s) at the site. This ASD was performed in response to results indicating a statistically significant increase (SSI) over background levels during detection monitoring under the CCR Rule.

This ASD report is evaluating the SSIs observed in the statistical evaluation of the April 2021 detection monitoring event and June 2021 resampling event at the Edgewater I-43 Ash Disposal Facility (I-43 ADF). ASD reports were previously prepared for this facility evaluating the SSIs observed in the statistical evaluation of the October 2017 and April 2018 detection monitoring events (SCS Engineers [SCS], 2018a and 2018b). Those ASDs concluded that several lines of evidence demonstrated that SSIs reported for boron concentrations in downgradient monitoring wells MW-301 and MW-302 were likely due to naturally occurring boron in the bedrock aquifer at the I-43 ADF. This ASD report has been developed for SSIs for fluoride and field pH at monitoring well MW-302.

1.2 SITE INFORMATION AND MAP

The I-43 ADF is located in the Town of Wilson, Sheboygan County, Wisconsin (**Figure 1**). The I-43 ADF receives CCR from the Edgewater Generating Station. The layout of the site on an aerial photograph base is shown on **Figure 2**. The I-43 ADF is operated under Wisconsin Department of Natural Resources (WDNR) License No. 02853.

The I-43 ADF includes a closed landfill (Phases 1 and 2) and multiple existing CCR Units which are landfill modules in Phases 3 and 4 of the facility. Contact water basins and storm water runoff basins, which do not receive CCR, are also present at the site. The existing CCR Unit evaluated for this ASD is referred to as:

• EDG I-43 Phase 3, Modules 1 & 2, and Phase 4 Module 1 (existing CCR Landfill)

The Phase 3 Module 1, Phase 3 Module 2, and Phase 4 Module 1 units were previously described as separate existing CCR landfills although they are collectively managed and permitted in one footprint as a single existing CCR landfill by the facility and by the WDNR.

The closed landfill (Phase 1 and Phase 2) was completely closed in 2012. The closed landfill did not accept CCR after October 19, 2015; therefore, it is not subject to the requirements of 40 CFR 257.50-107. The closed landfill was constructed with a 5-foot compacted clay liner.

The active landfill, which is the CCR Unit, is constructed with a composite liner system including 2 feet of compacted clay and a 60-mil high density polyethylene (HDPE) geomembrane, overlain by a leachate collection drainage layer. The active landfill first accepted CCR for disposal in October 2011.

A map showing the CCR Unit and all background (or upgradient) and downgradient monitoring wells with identification numbers for the CCR groundwater monitoring program and the state monitoring program is provided as **Figure 2**.

1.3 STATISTICALLY SIGNIFICANT INCREASES IDENTIFIED

SSIs for the April 2021 monitoring event and June 2021 retesting event include fluoride and field pH at monitoring well MW-302. Sample results for MW-302 exceeded upper prediction limits (UPLs) for fluoride and field pH in both the April and June events. Field pH exceeded the UPL in the April 2021 sample at MW-301, but not in the June 2021 resample; therefore, it is not an SSI under the 1-of-2 resampling approach. A summary of the April 2021 and June 2021 constituent concentrations and the established benchmark concentrations is provided in **Table 1**. The constituent concentrations with results above the background concentrations are highlighted in the table.

1.4 OVERVIEW OF ALTERNATIVE SOURCE DEMONSTRATION

This ASD report includes:

- Background information (Section 2.0)
- Evaluation of potential that SSIs are due to methodology or analysis (Section 3.0)
- Evaluation of potential that SSIs are due to natural sources or man-made sources other than the CCR Units (Section 4.0)
- ASD conclusions (**Section 5.0**)
- Monitoring recommendations (Section 6.0)

The CCR Rule constituent results from background and compliance sampling in April and June 2021 are provided in **Table 2**, and concentration trends for fluoride and field pH are shown in **Appendix A**. Complete laboratory reports for the background monitoring events and the April 2021 detection monitoring event will be included in the 2021 Annual Groundwater Monitoring and Corrective Action Report for the I-43 ADF.

2.0 BACKGROUND

To provide context for the ASD evaluation, the following background information is provided in this section of the report, prior to the ASD evaluation sections:

- Geologic and hydrogeologic setting
- CCR Rule monitoring system
- Other monitoring wells

2.1 REGIONAL GEOLOGY AND HYDROGEOLOGY

2.1.1 Regional Information

For the purposes of groundwater monitoring, the Niagara Dolomite Aquifer is considered to be the uppermost aquifer unit, as defined under 40 CFR 257.53, at the I-43 ADF. The dolomite aquifer is underlain by the Maquoketa shale, which is a confining unit. The Maquoketa shale is underlain by the Cambrian-Ordovician sandstone aquifer. This sequence of sedimentary bedrock units is over 1,500 feet thick in the area of the I-43 ADF. The sedimentary sequence is underlain by Precambrian crystalline rocks that are not considered an aquifer in eastern Wisconsin.

An unconsolidated sand and gravel aquifer is present in some parts of Sheboygan County (Skinner and Borman, 1973), but does not appear laterally extensive.

Regional groundwater flow in the dolomite aquifer in the vicinity of the site is to the east or northeast.

2.1.2 Site Information

Soils at the site are primarily clay with discontinuous layers of sand and silty sand to a depth of at least 100 feet. During drilling of the CCR wells, the unconsolidated materials were identified as consisting primarily of clay. Zones of sand and gravel are known to be present within the clay, but these appear to be discontinuous, and no nearby private wells screened within the unconsolidated material have been identified. Soils encountered in borings MW-301, MW-302, MW-303, and MW-304 were primarily lean clay, silty clay, and silty sand. The upper 70 feet of soils in boring MW-305 were similar, but in approximately the lower 40 feet above bedrock, sand was the primary soil type. The depth to bedrock in the five wells ranged from approximately 109 feet to 133 feet below ground surface (bgs), and the elevation of the top of bedrock ranged from approximately 568 feet above mean sea level (amsl) to 605 feet amsl.

Shallow groundwater at the site generally flows east to west towards Weedens Creek, a tributary of the Sheboygan River. The April 2020 flow direction to the west at the water table is consistent with previous water table maps developed since the site was developed in the mid-1980s.

Groundwater elevations at the CCR wells are summarized in **Table 3**. The April 2021 potentiometric surface map for the dolomite aquifer (**Figure 3**), based on groundwater elevations from monitoring wells MW-301 through MW-305, shows groundwater flow to the north and northeast, consistent with previous potentiometric surface maps. The potentiometric surface map confirms that monitoring wells MW-301 and MW-302 are downgradient from the active CCR Units.

2.2 CCR MONITORING SYSTEM

The groundwater monitoring system established in accordance with the CCR Rule consists of two upgradient (background) monitoring wells and three downgradient monitoring wells. The background wells include MW-304 and MW-305. The downgradient wells include MW-301, MW-302, and MW-303. The CCR Rule wells are installed in the upper portion of the dolomite aquifer. Well depths range from approximately 119 to 145 feet, measured from the top of the well casing.

2.3 OTHER MONITORING WELLS

Thirty-four groundwater monitoring wells currently exist at the I-43 ADF as part of the monitoring system developed for the state monitoring program. The well locations are shown on **Figure 2**. These monitoring wells and one on-site water supply well (WS-1) are used to monitor groundwater conditions at the site under WDNR License No. 02853, which includes the closed Phase 1/2 Landfill and the active Phase 3/4 Landfill.

Monitoring wells for the state monitoring program are installed in the unconsolidated glacial till unit, which is not the uppermost aquifer as defined under 40 CFR 257.53. This shallow monitoring system includes water table wells, mid-depth piezometers, and deep piezometers. Well depths range from approximately 15 to 49 feet, measured from the top of the well casing.

3.0 METHODOLOGY AND ANALYSIS REVIEW

To evaluate the potential that an SSI is due to a source other than the regulated CCR Unit, SCS used a two-step evaluation process. First, the sample collection, field and laboratory analysis, and statistical evaluation were reviewed to identify potential errors or analysis that led to an exceedance of the benchmark. Second, potential alternative sources, including natural variation and man-made sources other than the CCR Unit, were evaluated. This section of the report provides the findings of the methodology and analysis review. **Section 4.0** of the report addresses the potential alternative sources.

3.1 SAMPLING AND FIELD ANALYSIS REVIEW

Field notes and sampling results were reviewed to determine if sampling error may have caused or contributed to the observed SSIs for fluoride or field pH. Potential field sampling errors or issues could include mislabeling of samples, improper sample handling, missed holding times, cross contamination during sampling, or other field errors. Field blank sample results were also reviewed for indication of potential contamination from sampling equipment or containers. Based on the review of the field notes and results, SCS did not identify any indication that the fluoride or field pH SSIs were due to a sampling error.

For field analysis of pH, the review of field notes did not identify any apparent errors in the data. However, the readings for which an SSI was indicated during the April 2021 sampling event and June 2021 resampling event exceeded the UPL by only 0.02 to 0.03 pH units. This is within the accuracy range for the YSI pH meter, which is +/- 0.2 pH units. Therefore, the true field pH may or may not have exceeded the UPL and normal instrument error may have contributed to the reported SSI. Because the field pH exceedance of the UPL was well within the range of the instrument accuracy, it cannot be concluded with a high degree of certainty that the true field pH exceeds the UPL.

Because fluoride is a laboratory parameter, there is little potential for a field analysis error to contribute to an SSI.

3.2 LABORATORY ANALYSIS REVIEW

Laboratory reports for the April and June 2021 detection monitoring results were reviewed to determine if a laboratory analysis error or issue may have caused or contributed to the observed SSI for fluoride. The laboratory report review included reviewing the laboratory quality control flags and narrative, verifying that correct methods were used and desired detection limits were achieved, and checking the field and laboratory blank sample results. Laboratory reports for the background

monitoring and the April 2021 detection monitoring event will be included in the 2021 Annual Groundwater Monitoring and Corrective Action Report for the facility.

Based on the review of the laboratory reports, SCS did not identify any indication that the fluoride SSIs were due to a laboratory analysis error. There were no laboratory quality control flags or issues identified in the laboratory report that affect the usability of the data for detection monitoring. Because field pH is a field parameter, there is little potential for a lab analysis error to contribute to an SSI.

A time series plot of the fluoride and field pH analytical data was also reviewed for any anomalous results that might indicate a possible sampling or laboratory error (e.g., dilution error or incorrect sample labeling) (**Appendix A**). The April and June 2021 fluoride and field pH results for MW-302 are consistent with the historical data for this well.

3.3 STATISTICAL EVALUATION REVIEW

The review of the statistical results and methods includes a quality control check of the following:

- Input analytical data vs. laboratory analytical reports
- Review statistical method and outlier concentration lists for each monitoring well/CCR Unit

Based on the review of the statistical evaluation, SCS did not identify any errors or issues in the statistical evaluation that caused or contributed to the determination of interwell SSIs for field pH or fluoride at well MW-302.

3.4 SUMMARY OF METHODOLOGY AND ANALYSIS REVIEW FINDINGS

In summary, there were no changes to the SSI determinations for the April 2021 monitoring event based on the methodology and analysis review; however, measurement error could have caused or contributed to the field pH SSI. The field pH results at MW-302 were found to be above the UPL, but the differences between the UPL and the well results were within the range of the instrument accuracy. No other errors or issues causing or contributing to the reported field pH and fluoride SSIs were identified.

4.0 ALTERNATIVE SOURCES

This section of the report discusses the potential alternative sources for the field pH or fluoride SSIs at MW-302, identifies the most likely alternative source(s), and presents the lines of evidence indicating that an alternative source is the most likely cause of the observed SSIs for fluoride and field pH.

4.1 POTENTIAL CAUSES OF SSI

4.1.1 Natural Variation

The statistical analysis for field pH and fluoride was completed using an interwell approach, comparing the April 2021 detection monitoring results to the UPLs calculated based on sampling of the background wells (MW-304 and MW-305). If concentrations of a constituent that is naturally

present in the aquifer vary spatially, then the potential exists that the downgradient concentrations may be higher than upgradient concentrations due to natural variation.

Fluoride was detected in both the upgradient (background) and downgradient (compliance) monitoring wells, which is an indication that it is naturally present in the aquifer. Additional regional and site information is discussed below, indicating that natural variation is a likely cause of the fluoride and field pH SSIs for well MW-302.

4.1.2 Man-Made Alternative Sources

Man-made alternative sources that could potentially contribute to the fluoride SSI at MW-302 include the closed I-43 Phase 1/2 Landfill, the contact water basin, or the ash unloading area. The closed Phase 1/2 Landfill was constructed with a 5-foot-thick compacted clay liner that is designed to inhibit the movement of leachate beyond the footprint of the closed landfill.

4.2 LINES OF EVIDENCES

The lines of evidence indicating that the SSIs for fluoride and pH in compliance well MW-302, relative to the background wells, are due to natural variability include:

- 1. The hydraulic conductivity of the thick glacial till aquitard overlying the dolomite aquifer is very low, and there is limited hydrogeologic connection between the shallow groundwater and the aquifer.
- 2. The active Phase 3/4 landfill was constructed with a clay and/or composite liner system, so the potential for a release is very low.
- 3. Fluoride has been identified as a naturally occurring groundwater constituent in the region encompassing the I-43 ADF.
- 4. Publicly available data from the WDNR's Groundwater Retrieval Network (GRN) database indicate fluoride is commonly detected in Sheboygan County.
- 5. Publicly available data from the WDNR's Groundwater and Environmental Monitoring System (GEMS) database show that fluoride concentrations in shallow and deep groundwater at the I-43 ADF site, prior to landfilling, were similar to those detected at MW-302.
- Intrawell statistical analysis of the field pH and fluoride results from MW-302 shows that the concentrations of these parameters have not increased significantly since background monitoring was performed.

Each of these lines of evidence and the supporting data are discussed in more detail in the following sections.

4.2.1 Glacial Clay Till Hydraulic Conductivity

The glacial clay till at the I-43 ADF is an aquitard with very low vertical hydraulic conductivity. A site review completed by Weston for the U.S. EPA in 2010 found that samples of the native upper clay till collected by Warzyn Engineering, Inc. (Warzyn) in 1981 contained 65 to 85 percent clay size particles, indicating low hydraulic conductivity.

Vertical hydraulic conductivity tests of the clay till, completed as part of the 1981 Warzyn study, found the upper clay till ranged from 5 to 9 x 10-8 cm/s. The 1981 Warzyn study estimated the time required for groundwater to traverse vertically through the till to be "on the order of hundreds if not thousands of years" (Warzyn, 1981). Observed high vertical gradients provide further documentation of very low vertical hydraulic conductivity at the site (Weston, 2010). These results suggest there is limited hydrogeologic connection between the upper shallow till aquitard and the uppermost bedrock aquifer.

4.2.2 Liner Construction

The active landfill, which comprises the three CCR Units, is constructed with a low permeability liner system that minimizes potential leakage. Phase 4 Module 1 was constructed with a 5-foot compacted clay liner. Phase 3 Modules 1 and 2 were constructed with a composite liner system including 2 feet of compacted clay and a 60-mil HDPE geomembrane. The compacted clay hydraulic conductivity is less than 10-7 centimeter per second for all modules, documented through construction quality assurance testing. All constructed modules have a leachate collection drainage layer overlying the liner. The collected leachate flows by gravity and/or is pumped to the contact water basin. The leachate/contact water swales and contact water basin have composite liners, consisting of compacted clay overlain by a 60-mil HDPE geomembrane.

4.2.3 Fluoride in Wisconsin Groundwater

Elevated natural fluoride concentrations above those reported for the downgradient wells (above 2 milligrams per liter [mg/L]) have been observed in a region in eastern Wisconsin extending along the Lake Michigan shoreline from Kewaunee County in the north to the Illinois border in the south, as described Luczaj, J., and Masarik, K, 2015, *Groundwater Quantity and Quality Issues in a Water-Rich Region: Examples from Wisconsin, USA*. The authors note that most of the wells with elevated fluoride appear to be drawing from the Pleistocene glacial sediments and Silurian dolomite units. Skinner and Borman (1973) and Kammerer (1995) also identify the Lake Michigan shoreline area of eastern Wisconsin as having somewhat elevated fluoride concentrations in groundwater.

4.2.4 Fluoride in Sheboygan County Groundwater

Publicly available data from the WDNR's GRN database indicate fluoride is commonly detected in Sheboygan County. Data retrieved from the GRN database included a total of 527 Sheboygan County water supply well samples analyzed for fluoride. Fluoride was detected in 94 percent of the samples. For the samples with fluoride detections, the average result for fluoride was 0.31 mg/L and the maximum result was 1.3 mg/L. Of the 424 results where fluoride was above the limit of quantitation, 5.2 percent of the results were at or above the UPL concentration of 0.753 mg/L. The fluoride concentrations reported for MW-302 in April and June 2021, 0.76 and 0.77 mg/L, are within the range of concentrations in the GRN database for Sheboygan County. WDNR GRN fluoride concentrations for Sheboygan County are provided in **Appendix B**.

4.2.5 State Program Background Data for Fluoride

Publicly available data from the WDNR's GEMS database show that fluoride concentrations in shallow and deep groundwater at the I-43 ADF site, prior to landfilling, were similar to those detected at MW-302. Fluoride is not included in the state monitoring program for the shallow monitoring wells; however, a limited number of samples were collected in 1978 during baseline monitoring prior to the I-43 landfill construction. The baseline samples indicated fluoride concentrations ranging from 0.43 to 0.84 mg/L in the glacial till. The fluoride concentrations in the samples from MW-302 fall

within this range, indicating they are consistent with a natural source. The baseline monitoring data downloaded from the GEMS database are provided in **Appendix C.**

The GEMS database download also includes results for two water supply wells that were previously located on site. Fluoride results for samples from these two wells in 1978, prior to the I-43 landfill construction, were 0.7 and 0.74 mg/L. These results are very similar to the concentrations detected in 2021 samples from MW-302, indicating that fluoride at these levels was historically present in the aguifer prior to CCR disposal at the site.

4.2.6 Intrawell Evaluation

Intrawell statistical analysis of the field pH and fluoride results from MW-302 shows that the concentrations of these parameters have not increased significantly since background monitoring was completed prior to October 2017. The intrawell analysis for these two parameters at MW-302 is provided in **Appendix D**.

ASDs previously prepared for the October 2017 and April 2018 detection monitoring events concluded that interwell SSIs reported for boron concentrations in downgradient monitoring wells MW-301 and MW-302 were likely due to naturally occurring boron in the bedrock aquifer at the I-43 ADF (SCS, 2018a and 2018b), This conclusion was based on several lines of evidence, including the site geology and historical boron monitoring results for the glacial till and bedrock aquifer. Following these ASDs, the statistical method for boron was modified to an intrawell prediction limit approach to account for natural variation. Since that change, boron levels have remained below the intrawell UPLs indicating no impact from the CCR Unit or the closed CCR landfill.

Review of time series plots for MW-302, included in **Appendix D**, indicates that the other Appendix III parameters, including calcium, chloride, sulfate and total dissolved solids, have had stable or decreasing concentrations background sampling was completed in 2016 and 2017. Based on the results for all Appendix III parameters, it is very unlikely that the interwell SSIs for field pH and fluoride at MW-302 are due to the CCR Unit. The monitoring well concentrations are consistent with regional and historic site background for the bedrock aquifer and the intrawell analyses and time series plots indicate no impact from the CCR Unit.

5.0 ALTERNATIVE SOURCE DEMONSTRATION CONCLUSIONS

The lines of evidence discussed above regarding the SSIs reported for field pH and fluoride concentrations in downgradient monitoring well MW-302 demonstrate that the SSIs are likely due to natural variation in groundwater quality in the bedrock aquifer at the I-43 ADF. Field instrument error could also be a contributing factor for the field pH SSI, given that the results exceed the interwell UPL by less than the stated instrument accuracy range.

6.0 SITE GROUNDWATER MONITORING RECOMMENDATIONS

In accordance with section 257.94(e)(2) of the CCR Rule, the I-43 site may continue with detection monitoring based on this ASD. The ASD report will be included in the 2021 Annual Report due January 31, 2022.

7.0 REFERENCES

Kammerer, Jr., P.A., Ground-Water Flow and Quality in Wisconsin's Shallow Aquifer System. U.S. Geological Survey Water-Resources Investigations Report 90-4171, 1995.

Luczaj, J., and Masarik, K, 2015, Groundwater Quantity and Quality Issues in a Water-Rich Region: Examples from Wisconsin, USA: Resources, 2015, 4, 323-357.

SCS Engineers, 2018a, Alternative Source Demonstration – October 2017 Detection Monitoring, I 43 Ash Disposal Facility, April 2018.

SCS Engineers, 2018b, Alternative Source Demonstration – April 2018 Detection Monitoring, I 43 Ash Disposal Facility, October 2018.

Skinner, Earl L. and Ronald G. Borman, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigations Atlas HA-432, 1973.

U.S. Environmental Protection Agency, 2015, Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule, April 2015.

Warzyn Engineering, Inc., 1981, Summary Report, Proposed Fly Ash Disposal Facility, Beeck-Goebel Properties, Edgewater Power Plant – Unit 5, Wisconsin Power and Light Company, 1981.

[This page left blank intentionally]

Tables

- 1 Groundwater Analytical Results Summary
- 2 Historical Analytical Results for Parameters with SSIs
- 3 Groundwater Elevation Table CCR Rule Monitoring Well Network

Table 1. Groundwater Analytical Results Summary Edgewater I-43 Ash Disposal Facility, Sheboygan, WI / SCS Engineers Project #25221069.00

	Backgro	und Wells			Compliance Wells						
		MW-304	MW-305		MW-301			MW-302		MW-303	
Parameter Name	Interwell UPL	4/13/2021	4/13/2021	Intrawell UPL	4/13/2021	6/16/2021	Intrawell UPL	4/13/2021	6/16/2021	Intrawell UPL	4/13/2021
Boron, ug/L		91.7	66.6	184	132		149	121		100	84.7
Calcium, ug/L	103,000	19,700	86,800		53,900			28,700			29,600
Chloride, mg/L	24.9	2.1	25.3		3.9			4.1			4.5
Fluoride, mg/L	0.753	0.53	0.67		0.64			0.76	0.77		0.62
Field pH, Std. Units	8.34	8.31	7.76		8.48	8.14		8.36	8.37		8.26
Sulfate, mg/L	140	15.3	127		10.2			17.4			25.6
Total Dissolved Solids, mg/L	598	224	540		238			232			260

4.4 Blue shaded cell indicates the compliance well result exceeds the UPL (background) and the Limit of Quantitation (LOQ).

Abbreviations:

UPL = Upper Prediction Limit SSI = Statistically Significant Increase --= Not Analyzed ug/L = micrograms per liter mg/L = milligrams per liter LOQ = Limit of Quantitation LOD = Limit of Detection

Notes:

1. An individual result above the UPL does not constitute an SSI above background. See the accompanying letter text for identification of statistically significant results.

2.Interwell UPLs calculated based on results from background wells MW-304 and MW-305. Interwell UPLs based on 1-of-2 retesting approach. Interwell UPLs were calculated with background results from the May 2016 through the October 2020 sampling event.

3. Following the completion of the April 2018 Alternative Source Demonstration (ASD) Report, dated October 31, 2018, the statistical method for evaluating boron data at the three compliance monitoring wells was modified to an intrawell approach. Intrawell UPLs were calculated using results from the May 2016 through the April 2020 sampling events.

Last revision by: NDK Date: 6/24/2	2021
Checked by: ZTW Date: 6/24/2	2021
Proj Mgr QA/QC: TK Date: 6/25/2	2021

I:\25221069.00\Deliverables\2021 I43 LF April Results Letter\Table\[Table 1-April 2021 GW Analytical Summary.xlsx]Table 1

Table 2. Historical Analytical Results for Parameters with SSIs WPL-Edgewater I-43 Ash Disposal Facility Sheboygan, Wisconsin

Well Group	Well	Collection Date	Fluoride (mg/L)	Field pH (St. Units)
		4/26/2016	0.49	8.16
		6/21/2016	0.55	8.00
		8/9/2016	0.51	6.29
		10/19/2016	0.45	8.17
		12/19/2016	0.59	8.29
		1/23/2017	0.50	8.14
		2/23/2017	0.50	8.22
		4/7/2017	0.48	7.86
	MW-304	6/6/2017	0.60	8.03
	1/11/1/-304	8/1/2017	0.53	7.90
		10/23/2017	0.54	7.74
		4/3/2018	0.50	7.99
		10/4/2018	0.50	8.10
pu		4/8/2019	0.51	8.06
701		10/8/2019	0.48	7.68
Background		4/7/2020	0.75	8.07
βας		10/15/2020	0.58	8.12
_		4/13/2021	0.53	8.31
		2/23/2017	0.73	7.75
		4/7/2017	0.59	7.62
	MW-305	6/6/2017	0.72	7.52
		8/1/2017	0.69	7.47
		10/23/2017	0.64	7.55
		4/3/2018	0.63	7.54
		10/4/2018	0.58	7.65
		4/9/2019	0.65	7.85
		10/8/2019	0.63	7.36
		4/7/2020	0.75	7.48
		10/15/2020	0.72	7.63
		4/13/2021	0.67	7.76
		4/26/2016	<2.0	8.24
		6/21/2016	1.10 J	8.01
		8/10/2016	0.62	8.08
		10/19/2016	0.65 J	8.00
		12/19/2016	0.86 J	8.36
		1/23/2017	0.77 J	8.21
		2/23/2017	0.64	8.14
		4/6/2017	0.61	8.12
Compliance		6/6/2017	0.87 J	7.89
<u>l</u> iar	MW-301	8/1/2017	0.63	7.99
d w	10114-201	10/23/2017	0.62	7.82
Ö		4/3/2018	0.62	8.02
_		10/4/2018	0.61	8.15
		4/9/2019	0.63	8.18
		10/8/2019	0.63	7.70
		4/7/2020	0.82 J	8.05
		10/13/2020	0.83	7.96
		12/18/2020	0.64	7.64
		4/13/2021	0.64	8.48
		6/16/2021		8.14

Table 2. Historical Analytical Results for Parameters with SSIs WPL-Edgewater I-43 Ash Disposal Facility Sheboygan, Wisconsin

Well Group	Well	Collection Date	Fluoride	Field pH
<u> </u>		4/26/2016	(mg/L) 1.10 J	(St. Units) 8.33
		6/21/2016	0.74	
		8/9/2016	0.74	8.05
		10/19/2016	0.69	6.24 12.20
		12/19/2016	0.69 0.94 J	
		1/23/2017	0.74 J 0.85 J	8.31
		2/23/2017	0.67	8.16 8.16
		4/6/2017	0.68	8.00
		6/6/2017	0.83	7.95
Compliance			0.83	
i <u>i</u>	MW-302	8/1/2017 10/23/2017	0.74	7.98 7.70
d E	10100-302	4/3/2018	0.71	8.02
l O		10/4/2018	0.73	
		4/9/2019	0.71	8.08 8.14
		10/8/2019	0.71	7.67
		4/8/2020	0.75	7.79
		5/20/2020	0.70	8.19
		10/13/2020	0.82	7.85
		12/18/2020	0.73	8.05
		4/13/2021	0.76	8.36
		6/16/2021	0.77	8.37
		4/26/2016	0.55	7.96
		6/21/2016	0.59	7.98
		8/9/2016	0.59	6.24
		10/19/2016 12/19/2016	0.60	8.03
			0.63	8.32
		1/23/2017	0.80 J	8.23
		2/23/2017	0.55	8.24
O		4/7/2017 6/6/2017	0.57 0.69	8.15
<u>ia</u>	MW-303			7.90
Compliance	1/11/1-303	8/1/2017	0.60	7.91
Sor		10/23/2017	0.66	7.59
		4/3/2018	0.54	7.98
		10/4/2018	0.56	8.04
		4/9/2019	0.57	8.05
		10/7/2019	0.60	10.12
		11/26/2019		8.14
		4/8/2020	0.60	7.67
		10/13/2020	0.70	8.31
		4/13/2021	0.62	8.26

Abbreviations:

mg/L = milligrams per liter or parts per million (ppm)

LOD = Limit of Detection LOQ = Limit of Quantitation

Notes:

J = Estimated concentration at or above the LOD and below the LOQ.

 Created by: ZTW
 Date: 5/26/2020 7/6/2021/

 Last revision by: RM/NDK
 Date: 9/16/2021

 Checked by: JR
 Date: 9/17/2021

Table 3. Groundwater Elevation Table - CCR Rule Monitoring Well Network WPL - I43 / SCS Engineers Project #25221069.00

Mall Number	Ground Water Elevation in feet above mean sea level (amsl)							
Well Number	MW-301	MW-302	MW-303	MW-304	MW-305			
Top of Casing Elevation (feet amsl)	696.96	702.57	719.25	691.97	717.67			
Screen Length (ft)	5.00	5.00	5.00	5.00	5.00			
Total Depth (ft from top of casing)	134.56	144.33	144.65	119.49	122.97			
Top of Well Screen Elevation (ft)	567.40	563.24	579.60	577.48	600.46			
Measurement Date								
April 8, 2016	692.29	683.61	696.30					
April 26, 2016	653.54	653.56	653.59	655.90				
June 20, 2016	652.01	651.89	651.80	653.79				
August 9, 2016	649.68	649.30	649.37	651.55	-			
October 19, 2016	652.32	652.38	652.18	654.00	-			
December 19, 2016	652.85	652.79	652.82	654.26				
January 5, 2017	652.86	652.82	652.80	654.15				
January 23, 2017	652.98	664.97	652.92	654.37				
February 23, 2017	653.14	653.10	653.10	654.49	658.02			
April 7, 2017	654.43	654.72	654.55	654.85	659.65			
June 6, 2017	654.11	654.12	654.14	655.70	659.70			
August 1, 2017	652.64	652.55	652.50	654.49	658.54			
October 23, 2017	652.03	652.05	652.03	653.65	657.22			
April 3, 2018	651.28	651.25	651.30	652.86	656.24			
October 4, 2018	650.71	650.70	650.70	652.26	655.89			
April 8-9, 2019	653.06	654.06	654.06	655.59	659.03			
October 8, 2019	653.26	653.21	653.27	654.77	658.77			
November 26, 2019			655.56					
April 7, 2020	656.59	656.47	656.46	658.16	661.58			
May 20, 2020		655.81						
October 13, 2020	652.16	652.17	652.20	654.17	658.08			
December 18, 2020	653.91	653.88						
April 13, 2021	654.56	654.57	654.53	656.36	659.69			
June 16, 2021	649.78	649.75						
Bottom of Well Elevation (ft)	562.40	558.24	574.60	572.48	594.70			

Created by: NDK Date: 1/10/2020 Notes: -- = not measured Last rev. by: RM Date: 6/21/2021

Date: 6/21/2021 Checked by: JR

 $\label{thm:linear_constraint} I:\25221069.00\Deliverables\2021\ April\ ASD\Tables\[Table\ 3-I43_wlstat_CCR.xls]\]levels$

Figures

- 1 Site Location Map
- 2 Monitoring Well Location Map
- 3 Bedrock Potentiometric Surface Map April 2021

Appendix A CCR Well Fluoride and Field pH Trend Plots

Constituent: Field pH Analysis Run 7/7/2021 12:52 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Constituent: Field pH (Std. Units) Analysis Run 7/7/2021 12:53 PM View: I-43 LF Detection Monitoring
I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-301	MW-302	MW-303	MW-304 (bg)	MW-305 (bg)
4/26/2016	8.24	8.33	7.96	8.16	
6/21/2016	8.01	8.05	7.98	8	
8/9/2016		6.24 (O)	6.24 (O)	6.29 (O)	
8/10/2016	8.08				
10/19/2016	8	12.2 (O)	8.03	8.17	
12/19/2016	8.36	8.31	8.32	8.29	
1/23/2017	8.21	8.16	8.23	8.14	
2/23/2017	8.14	8.16	8.24	8.22	7.75
4/6/2017	8.12	8			
4/7/2017			8.15	7.86	7.62
6/6/2017	7.89	7.95	7.9	8.03	7.52
8/1/2017	7.99	7.98	7.91	7.9	7.47
10/23/2017	7.82	7.7	7.59	7.74	7.55
4/3/2018	8.02	8.02	7.98	7.99	7.54
10/4/2018	8.15	8.08	8.04	8.1	7.65
4/8/2019				8.06	
4/9/2019	8.18	8.14	8.05		7.85
10/7/2019			10.12		
10/8/2019	7.7	7.67		7.68	7.36
11/26/2019			8.14		
4/7/2020	8.05			8.07	7.48
4/8/2020		7.79	7.67		
5/20/2020		8.19			
10/13/2020	7.96	7.85	8.31		
10/15/2020				8.12	7.63
12/18/2020	7.64	8.05			
4/13/2021			8.26	8.31	7.76
6/16/2021	8.14 (R)	8.37 (R)			

Constituent: Fluoride Analysis Run 7/7/2021 12:52 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Constituent: Fluoride (mg/L) Analysis Run 7/7/2021 12:53 PM View: I-43 LF Detection Monitoring
I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-301	MW-302	MW-303	MW-304 (bg)	MW-305 (bg)
4/26/2016	<2 (U)	1.1 (J)	0.55	0.49	
6/21/2016	1.1 (J)	0.74	0.59	0.55	
8/9/2016		0.75	0.59	0.51	
8/10/2016	0.62				
10/19/2016	0.65 (J)	0.69	0.6	0.45	
12/19/2016	0.86 (J)	0.94 (J)	0.63	0.59	
1/23/2017	0.77 (J)	0.85 (J)	0.8 (J)	0.5	
2/23/2017	0.64	0.67	0.55	0.5	0.73
4/6/2017	0.61	0.68			
4/7/2017			0.57	0.48	0.59
6/6/2017	0.87 (J)	0.83	0.69	0.6	0.72
8/1/2017	0.63	0.74	0.6	0.53	0.69
10/23/2017	0.62	0.71	0.66	0.54	0.64
4/3/2018	0.62	0.73	0.54	0.5	0.63
10/4/2018	0.61	0.71	0.56	0.5	0.58
4/8/2019				0.51	
4/9/2019	0.63	0.73	0.57		0.65
10/7/2019			0.6		
10/8/2019	0.63	0.71		0.48	0.63
4/7/2020	0.82 (J)			0.75	0.75
4/8/2020		0.75	0.6		
5/20/2020		0.7			
10/13/2020			0.7		
10/15/2020				0.58	0.72
12/18/2020	0.64 (R)	0.73 (R)			
4/13/2021	0.64		0.62	0.53	0.67
6/16/2021		0.77 (R)			

Appendix B

Sheboygan County Fluoride Concentrations - WDNR GRN Table

Fluoride Data from WDNR's Groundwater Retrieval Network (GRN) Database for Water Supply Wells Sheboygan County, Wisconsin Summary of Fluoride Detections

Row Labels	Count of Analytical Result
FLUORIDE TOTAL	527
DETECT BETWEEN LOD & LOQ	74
NON-DETECT	29
NORMAL QUANTIFIED RESULT	424
Grand Total	527

Percent with Fluoride Detected

94%

Sample Analytical Qualifier	(Multiple Items)
-----------------------------	------------------

	Average of Sample Analytical	
Count of Sample Analytical Result	Result	Max of Sample Analytical Result2
498	0.31	1.3

Data downloaded by SCS on 9/20/2021

	Commite		Storet	Charact Barrana chara		Sample	House of House of
WI Unique Well #	Sample Collection Date	Labslip # / Sample ID	Parameter Code	Storet Parameter Description	Sample Analytical Qualifier	Analytical Result Units	Limit of Limit of Detection Quantitation
BH038	6/8/1977	10000896	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.4 MG/L	Detection Quantitation
BH037	6/8/1977	10000895	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.25 MG/L	
BH005	8/17/1977	10000736	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.15 MG/L	
BH021	5/20/1980	10000657	951	FLUORIDE TOTAL	NON-DETECT	0 MG/L	
BH003	2/5/1985	10000134	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.1 MG/L	
BH040	9/12/1985	10000882	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.1 MG/L	
CZ365 CW708	8/20/1990 1/18/1991	BB019178 IB059335	951 951	FLUORIDE TOTAL FLUORIDE TOTAL	NON-DETECT NORMAL QUANTIFIED RESULT	MG/L 1.1 MG/L	
AK890	8/13/1991	IC019849	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.3 MG/L	
DE281	9/4/1991	IC027667	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	1.1 MG/L	
AF628	2/3/1992	IC068693	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.38 MG/L	
BH037	2/3/1993	4186-1	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.49 MG/L	0.003
BH038	2/3/1993	4186-2	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.56 MG/L	0.003
BH039	2/10/1993	14266-1	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.12 MG/L	0.003
BH024	2/17/1993	l12171	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.62 MG/L	0.1
AY324	2/17/1993	112170	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.41 MG/L	0.1
JA221	3/29/1993	112945	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.24 MG/L	0.1
BH008 BH007	3/30/1993	I12968 I12967	951 951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.51 MG/L	0.1
DB283	3/30/1993 4/8/1993	ID083426	951	FLUORIDE TOTAL FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT NORMAL QUANTIFIED RESULT	0.75 MG/L 0.15 MG/L	0.1
BH028	9/8/1993	1917	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.65 MG/L	0.1
BH029	9/8/1993	1918	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.42 MG/L	0.1
BH036	10/4/1993	14092997	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.22 MG/L	0.1
BH033	10/4/1993	14092994	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.2 MG/L	0.1
BH034	10/4/1993	14092995	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.14 MG/L	0.1
BH031	10/4/1993	14092992	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.1 MG/L	0.1
BH035	10/4/1993	14092996	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.24 MG/L	0.1
BH030	10/4/1993	14092991	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.11 MG/L	0.1
BH032	10/4/1993	14092993	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.11 MG/L	0.1
BH040	10/4/1993	14092998	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.12 MG/L	0.1
BH022	10/22/1993	I1758 I2202030	951	FLUORIDE TOTAL	NON-DETECT	0 MG/L	0.1
BH027 BH003	11/9/1993 11/29/1993	IE014429	951 951	FLUORIDE TOTAL FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT NORMAL QUANTIFIED RESULT	0.18 MG/L 0.09 MG/L	0.1
BH004	11/29/1993	IE014429	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.09 MG/L	
BH004	11/29/1993	IE014430	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.09 MG/L	0.1
BH003	11/29/1993	IE014429	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.09 MG/L	0.1
BH020	12/28/1993	13398	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.24 MG/L	0.1
BH021	12/28/1993	34333399	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.27 MG/L	0.1
BH005	12/29/1993	146175	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.5 MG/L	0.1
BH006	12/29/1993	146176	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.4 MG/L	0.1
BP300	2/21/1994	14080	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.36 MG/L	0.1
BH025	3/29/1994	14646	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.19 MG/L	0.1
BH026	3/29/1994	14647	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.2 MG/L	0.1
GM365	4/12/1994	IE022511	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.08 MG/L	0.1
ET893 GS070	5/2/1994 7/27/1994	BE080593	951 951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.14 MG/L	0.023 0.085
BP305	11/9/1994	BF008958 13894851	951	FLUORIDE TOTAL FLUORIDE TOTAL	NON-DETECT NON-DETECT	MG/L 0 MG/L	0.023 0.063
JA221	11/10/1994	14025765	951	FLUORIDE TOTAL	NON-DETECT	0 MG/L	0.1
GM370	11/10/1994	14025766	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.2 MG/L	0.1
BP301	11/15/1994	14051214	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.2 MG/L	0.1
EQ831	2/8/1995	BF054999	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.6 MG/L	
BM458	2/28/1995	IF019742	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.33 MG/L	
EF758	3/1/1995	16993	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.15 MG/L	0.1
FX054	3/14/1995	75996	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.37 MG/L	0.1
BP317	3/21/1995	163121	951	FLUORIDE TOTAL	NON-DETECT	0 MG/L	0.1
ES728	3/26/1995	005164	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.46	
FH035	3/27/1995	76608	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.24 MG/L	0.1
FX589	3/27/1995	176607	951 951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.33 MG/L	0.1
BH590 BP313	3/27/1995 3/27/1995	176609 19750881	951	FLUORIDE TOTAL FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT NORMAL QUANTIFIED RESULT	0.23 MG/L 0.2 MG/L	0.1
BP309	4/12/1995	168387	951	FLUORIDE TOTAL	NON-DETECT	0.2 MG/L	0.1
ES865	4/17/1995	IF023130	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.42 MG/L	0.1
AY032	4/17/1995	IF023129	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.42 MG/L	
ES738	4/18/1995	19760630	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	1.3	0.1
EZ004	4/26/1995	169705	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.4 MG/L	0.1
GT012	5/1/1995	95W1111	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.23 MG/L	
GH435	6/6/1995	BF078838	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.09 MG/L	0.06 0.2
ES715	6/7/1995	81867	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.24 MG/L	0.1
AK340	6/7/1995	81868	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.19 MG/L	0.1
BP307	6/14/1995	I134105	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.54 MG/L	
ES716	6/20/1995	82986	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.2 MG/L	0.1
BP306	7/25/1995	18859	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.31 MG/L	0.1
G0596	8/1/1995	14902	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.85 MG/L	0.002
ES724 ES771	9/26/1995 10/31/1995	150806 92848	951 951	FLUORIDE TOTAL FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT NORMAL QUANTIFIED RESULT	0.274 MG/L 0.48 MG/L	0.003
EZ003	10/31/1995	92848 IG018850	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.48 MG/L 0.09 MG/L	0.06 0.2
GM370	3/18/1996	20933436	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.09 MG/L	0.06 0.2
BP300	4/9/1996	21208588	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.4 MG/L	0.1
BP309	5/6/1996	104525	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.1 MG/L	0.1
KU372	5/22/1996	217549	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.6 MG/L	0.1
KU3/2		IH010120	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.07 MG/L	0.06 0.2
GM365	10/7/1996	1010120	331	TEOORIDE TOTAL			
	10/7/1996 1/13/1997	24634446	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.6 MG/L	0.1
GM365							

			Storet			Sample	
NAVI I Imimum NAVOII #	Sample	Labelia # / Cample ID	Parameter	Storet Parameter	Comple Analytical Ovalifies	Analytical	Limit of Limit of
WI Unique Well # KT498	7/14/1997	Labslip # / Sample ID BI003516	Code 951	Description FLUORIDE TOTAL	Sample Analytical Qualifier DETECT BETWEEN LOD & LOQ	Result Units 0.06 MG/L	Detection Quantitation 0.031 0.10
KX159	2/2/1998	30438183	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.6 MG/L	0.031 0.10
FX054	2/3/1998	28002511	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.39 MG/L	0.1
EF758	2/3/1998	185929	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.11 MG/L	0.05
BP313	2/9/1998	8260408	951	FLUORIDE TOTAL	NON-DETECT	0 MG/L	0.1
BP317	6/4/1998	32815860	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.2 MG/L	0.1
ES771	6/18/1998	8300775	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.4 MG/L	0.1
ES728 BP307	7/19/1998 7/30/1998	8310756 I175243	951 951	FLUORIDE TOTAL FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT NORMAL QUANTIFIED RESULT	0.5 MG/L 0.34 MG/L	0.1 0.1
AY032	8/11/1998	IJ004628	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.45 MG/L	0.1
ES865	8/11/1998	IJ004629	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.44 MG/L	
ES715	8/17/1998	28010845	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.26 MG/L	
ES716	8/17/1998	28010846	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.23 MG/L	
AK340	8/17/1998	28010847	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.22 MG/L	
BM458	9/1/1998	IJ006314	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.3 MG/L	
KS415	9/28/1998	IJ008222	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.26 MG/L	0.000
FH035 FX589	11/5/1998	219266 219265	951 951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.21 MG/L	0.002 0.002
BH590	11/5/1998 11/5/1998	219264	951	FLUORIDE TOTAL FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT NORMAL QUANTIFIED RESULT	0.24 MG/L 0.16 MG/L	0.002
PT012	11/10/1998	1184981	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.24 MG/L	0.1
EZ003	11/10/1998	IJ011156	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.06 MG/L	0.031 0.10
ES724	11/16/1998	173926	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.37 MG/L	0.002
BP309	11/30/1998	IJ012438	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.11 MG/L	
GT012	12/2/1998	887240-1	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.21 MG/L	0.015
GO596	12/3/1998	23146	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.88 MG/L	
EZ004	12/9/1998	37526667	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.4 MG/L	0.1
IZ671 BH039	12/15/1998	188438	951	FLUORIDE TOTAL FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.72 MG/L	0.1
BH039 BH037	3/17/1999	I194987 I197629	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT NORMAL QUANTIFIED RESULT	0.24 MG/L	0.1 0.1
BH037	4/12/1999 4/12/1999	1197629	951 951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.36 MG/L 0.42 MG/L	0.1
BH004	4/13/1999	1197602	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.089 MG/L	0.1
GM365	4/13/1999	1197601	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.092 MG/L	0.1
FR455	4/15/1999	BJ057963	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.21 MG/L	
GM370	5/5/1999	1200120	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.15 MG/L	0.1
JA221	5/5/1999	1200119	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.2 MG/L	0.1
MM036	6/8/1999	IJ024508	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.08 MG/L	0.031 0.10
BH006	6/10/1999	415306-07	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.2 MG/L	0.1
IZ671	6/21/1999	204472	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.73 MG/L	0.1
BH028	7/21/1999	9931582	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.83 MG/L	0.076
BH029	7/21/1999	993158	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.71 MG/L	0.076
MW184 KU372	7/26/1999 8/24/1999	BK006730 I210085	951 951	FLUORIDE TOTAL FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.04 MG/L 0.65 MG/L	0.031 0.10 0.1
AY324	8/24/1999	210083	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.5 MG/L	0.1
BH024	8/24/1999	1210084	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.75 MG/L	0.1
BH025	9/2/1999	249386	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.08 MG/L	0.002
BH020	9/22/1999	1212900	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.13 MG/L	0.1
BH021	9/22/1999	1212901	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.11 MG/L	0.1
BH005	9/22/1999	439416-17	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.1 MG/L	0.1
BH005	9/22/1999	43941617	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.1 MG/L	0.1
BH032	9/28/1999	44167374	951	FLUORIDE TOTAL	NON-DETECT	0 MG/L	0.1
BH034	9/28/1999	44165152	951	FLUORIDE TOTAL FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT NON-DETECT	0.1 MG/L	0.1
BH040 BH033	9/28/1999 9/28/1999	44169394 44163334	951 951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0 MG/L 0.2 MG/L	0.1 0.1
BH030	9/28/1999	44166263	951	FLUORIDE TOTAL	NON-DETECT	0.2 MG/L	0.1
BH035	9/28/1999	44168485	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.2 MG/L	0.1
BH022	9/29/1999	017424	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.74 MG/L	V.1
BH027	10/4/1999	1213961	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.071 MG/L	0.1
BH007	11/2/1999	1217076	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	1.2 MG/L	0.1
BH008	11/2/1999	1217077	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.48 MG/L	0.1
LK037	11/10/1999	1218077	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.073 MG/L	0.1
IZ056	11/18/1999	45397880	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.4 MG/L	0.1
ES724	11/29/1999	180874	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.33 MG/L	0.002
BH026 BP300	12/6/1999 3/6/2000	1787 475751-52	951 951	FLUORIDE TOTAL FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT NORMAL QUANTIFIED RESULT	0.09 MG/L 0.3 MG/L	0.002
IZ056	5/9/2000	492731-33	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.5 MG/L	0.1
NG912	6/27/2000	IK031738	951	FLUORIDE TOTAL	NON-DETECT	MG/L	0.031 0.10
IN090	11/2/2000	IL010968	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.25 MG/L	
BP305	12/6/2000	246470	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.18 MG/L	0.1
EZ004	4/10/2001	593221+23	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.4 MG/L	0.1 4
EF758	4/17/2001	1253485	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.16 MG/L	0.1
BP317	4/24/2001	598160+62	951	FLUORIDE TOTAL	NON-DETECT	0 MG/L	0.1
BM458	5/21/2001	IL024467	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.32 MG/L	0.031 0.10
AY032	6/25/2001	IL028791	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.48 MG/L	0.031 0.10
BP309	6/25/2001	IL028680	951 951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.11 MG/L	0.031 0.10
ES865 FX054	6/25/2001 7/24/2001	IL028790 31012095	951	FLUORIDE TOTAL FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT NORMAL QUANTIFIED RESULT	0.52 MG/L 0.32 MG/L	0.031 0.10
FX589	8/20/2001	83121	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.32 MG/L 0.27 MG/L	0.002
FH035	8/20/2001	83143	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.27 MG/L	0.002
BH590	8/20/2001	83136	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.2 MG/L	0.002
KC243	8/20/2001 16:3		951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.48 MG/L	
ES728	8/22/2001	140079433	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.63 MG/L	0.1
ES771	8/24/2001	263216	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.5 MG/L	0.1
ES716	8/29/2001	31014230	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.18 MG/L	
AK340	8/29/2001	31014231	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.18 MG/L	

	Comple		Storet	Charat Baramatar		Sample Analytical	Limit of Limit of
WI Unique Well#	Sample Collection Date	Labslip # / Sample ID	Parameter Code	Storet Parameter Description	Sample Analytical Qualifier	Result Units	Detection Quantitation
ES715	8/29/2001	31014229	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.18 MG/L	Detection Quantitation
IQ706	9/4/2001	IM006146	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.16 MG/L	0.031 0.10
IZ671	9/4/2001	263888	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.8 MG/L	0.1
ES724	9/11/2001	92193	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.3 MG/L	0.002
IZ047	9/17/2001	1264974	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.19 MG/L	0.1
BP307 GT012	9/27/2001 9/28/2001	IM009195 266362	951 951	FLUORIDE TOTAL FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT NORMAL QUANTIFIED RESULT	0.31 MG/L 0.17 MG/L	0.1
KX159	12/5/2001	992503-04	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.17 MG/L	0.1
BP306	1/21/2002	1273745	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.29 MG/L	0.1
BH037	2/11/2002	274732	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.35 MG/L	0.1
BH038	2/11/2002	1274733	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.48 MG/L	0.1
BH028	2/19/2002	5037537A	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.47 MG/L	
BH029	2/19/2002	5037538A	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.31 MG/L	
BH020	3/6/2002	1276004	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.24 MG/L	0.1
BH021	3/6/2002	1276005	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.13 MG/L	0.1
KX159 GM370	3/12/2002 3/18/2002	712767-68 1276904	951 951	FLUORIDE TOTAL FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT NORMAL QUANTIFIED RESULT	0.5 MG/L 0.17 MG/L	0.1
JA221	3/18/2002	276903	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.22 MG/L	0.1
KU372	5/2/2002	1280799	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.68 MG/L	0.1
AY324	5/2/2002	1280798	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.47 MG/L	0.1
BH024	5/2/2002	1280797	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.72 MG/L	0.1
BH027	6/26/2002	285343	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.068 MG/L	0.1
ВН006	8/20/2002	1289014	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.12 MG/L	0.1
BH005	8/20/2002	289013	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.12 MG/L	0.1
BH039	8/22/2002	289465	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.26 MG/L	0.1
BH025	8/29/2002	145825	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.12 MG/L	0.002
LK037	8/29/2002	145826 1291361	951 951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.12 MG/L	0.002
GM365 BH004	9/17/2002 9/17/2002	291361	951	FLUORIDE TOTAL FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT NORMAL QUANTIFIED RESULT	0.082 MG/L 0.082 MG/L	0.1
PT012	9/26/2002	1292536	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.082 MG/L 0.2 MG/L	0.1
BH034	10/22/2002	805158-59	951	FLUORIDE TOTAL	NON-DETECT	0.2 MG/L	0.1
BH040	10/22/2002	805164-65	951	FLUORIDE TOTAL	NON-DETECT	0 MG/L	0.1
BH030	10/22/2002	805139-40	951	FLUORIDE TOTAL	NON-DETECT	0 MG/L	0.1
BH035	10/22/2002	805161-62	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.1 MG/L	0.1
BH033	10/22/2002	805154-55	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.1 MG/L	0.1
BH032	10/22/2002	805143-44	951	FLUORIDE TOTAL	NON-DETECT	0 MG/L	0.1
00270	11/7/2002 7:55		951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.27 MG/L	
BH022	6/12/2003	312497	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.32 MG/L	0.1
GT012	6/24/2003	1313750	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.19 MG/L	0.1
RD045	8/14/2003	3175251	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.17 MG/L	0.1
GO596 ES715	8/25/2003 1/22/2004	318297 330117	951 951	FLUORIDE TOTAL FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT NORMAL QUANTIFIED RESULT	0.95 MG/L 0.16 MG/L	0.1
ES716	1/28/2004	1330343	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.15 MG/L	0.1
BM458	2/16/2004	IO015386	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.25 MG/L	0.031 0.10
BP317	2/24/2004	1004239-40	951	FLUORIDE TOTAL	NON-DETECT	0 MG/L	0.1
ES716	3/3/2004	1332172	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.15 MG/L	0.1
RM262	3/8/2004	IO016631	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.25 MG/L	0.031 0.10
RM262	3/8/2004 6:00	IO016631	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.25 MG/L	
EZ004	3/16/2004	1013343-44	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.4 MG/L	0.1
IZ671	3/17/2004	1333585	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.75 MG/L	0.1
ES724	3/23/2004	I334018 IO018615	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT NORMAL QUANTIFIED RESULT	0.31 MG/L	0.1 0.031 0.10
RU937 RU937	4/12/2004 4/12/2004 10:00		951 951	FLUORIDE TOTAL FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.53 MG/L 0.53 MG/L	0.031 0.10
ES771	5/12/2004	338824	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.48 MG/L	0.1
FX054	6/8/2004	1341603	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.41 MG/L	0.1
ES865	7/6/2004	IP000636	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.53 MG/L	0.031 0.10
AY032	7/6/2004	IP000514	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.46 MG/L	0.031 0.10
IQ706	8/17/2004	347245	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.17 MG/L	0.1
GO596	8/18/2004	347370	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.87 MG/L	0.05 0.10
FH035	8/30/2004	271584	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.424 MG/L	0.17 0.56
FX589	8/30/2004	271579	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.324 MG/L	0.17 0.56
BH590	8/30/2004	271582	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.227 MG/L	0.17 0.56
BP309	9/13/2004	IP007779	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.08 MG/L	0.031 0.10
KX159	9/21/2004	1106860-61	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.6 MG/L	0.1
RD045 PT012	9/21/2004 9/22/2004	351109 351014	951 951	FLUORIDE TOTAL FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT NORMAL QUANTIFIED RESULT	0.2 MG/L 0.21 MG/L	0.1
BP307	9/29/2004	1351687	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.21 MG/L	0.1
BP306	10/5/2004	352358	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.31 MG/L	0.1
AK340	12/15/2004	358680	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.15 MG/L	0.05 0.10
FA105	1/11/2005	BP038275	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.72 MG/L	0.031 0.10
FA105	1/11/2005 8:35		951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.72 MG/L	
BH038	2/21/2005	362328	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.48 MG/L	0.05 0.10
BH037	2/21/2005	362326	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.36 MG/L	0.05 0.10
BH004	3/15/2005	364324	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.092 MG/L	0.05 0.10
GM365	3/15/2005	364327	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.098 MG/L	0.05 0.10
GM370	4/12/2005	367352	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.17 MG/L	0.05 0.10
JA221	4/12/2005	367351	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.24 MG/L	0.05 0.10
BH027	6/1/2005	372633	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.081 MG/L	0.05 0.10
LK037 BH025	6/22/2005	323828	951	FLUORIDE TOTAL	NON-DETECT	0 MG/L	0.15 0.50
	6/22/2005	323827 35014297	951 951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ NORMAL QUANTIFIED RESULT	0.16 MG/L 0.8 MG/L	0.15 0.50
			221	FLUORIDE TOTAL	INUNIVIAL QUANTIFIED KESULI	0.8 IVIG/L	
BH028	7/28/2005 7/28/2005				NORMAL OLIANTIFIED RESULT	0.15 MG/I	0.05.0.10
	7/28/2005 7/28/2005 7/28/2005	380641 35014298	951 951	FLUORIDE TOTAL FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT NORMAL QUANTIFIED RESULT	0.15 MG/L 0.7 MG/L	0.05 0.10

	Sample		Storet Parameter	Storet Parameter		Sample Analytical	Limit of Limit of
WI Unique Well #		Labslip # / Sample ID	Code	Description	Sample Analytical Qualifier	Result Units	Detection Quantitation
3H006	7/28/2005	380642	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.15 MG/L	0.05 0.10
3H021	8/25/2005	383260	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.13 MG/L	0.05 0.10
3H020	8/25/2005	383258	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.27 MG/L	0.05 0.10
H039	8/30/2005	383562	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.27 MG/L	0.05 0.10
3H024	9/20/2005	385929	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.71 MG/L	0.05 0.10
(U372	9/20/2005	385932	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.73 MG/L	0.05 0.10
Y324	9/20/2005	385926	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.5 MG/L	0.05 0.10
3H032 3H035	9/22/2005 9/22/2005	1315594-97 1315607-10	951 951	FLUORIDE TOTAL FLUORIDE TOTAL	NON-DETECT NORMAL QUANTIFIED RESULT	0 MG/L 0.13 MG/L	0.1
3H034	9/22/2005	1315568-71	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.13 MG/L	0.1
3H034	9/22/2005	1315581-84	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.15 MG/L	0.1
3H040	9/22/2005	1315620-23	951	FLUORIDE TOTAL	NON-DETECT	0 MG/L	0.1
3H030	9/28/2005	1318533-36	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0 MG/L	0.1
3H022	9/30/2005	387532	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.29 MG/L	0.05 0.10
V908	10/31/2005	351632	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.45 MG/L	0.002
QS360	2/3/2006	IQ015413	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.09 MG/L	0.031 0.10
ST012	8/17/2006	415207	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.18 MG/L	0.05 0.10
S771	2/21/2007	431916	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.55 MG/L	0.05 0.10
F666	2/22/2007	IR016077	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.12 MG/L	
X054	3/19/2007	434197	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.38 MG/L	0.05 0.10
RD045	3/19/2007	0703260-01	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.28 MG/L	0.1
SM458	4/2/2007	IR017921	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT NORMAL QUANTIFIED RESULT	0.27 MG/L	0.031 0.10
S865 Y032	4/16/2007 4/16/2007	IR018780 IR018781	951 951	FLUORIDE TOTAL FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.46 MG/L 0.37 MG/L	0.031 0.10 0.031 0.10
P306	5/1/2007	469693	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.37 MG/L 0.49 MG/L	0.031 0.10
8P306 8P309	5/1/2007	IR021407	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.49 MG/L 0.09 MG/L	0.06 0.19
1B022	7/10/2007	IS000866	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.28 MG/L	0.031 0.10
S724	7/17/2007	447136	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.29 MG/L	0.05 0.10
BP317	7/31/2007	1677214	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.19 MG/L	0.1
P307	8/8/2007	AC47300	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.313 MG/L	
E954	8/13/2007	449966	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.59 MG/L	0.05 0.10
Q706	9/5/2007	452566	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.19 MG/L	0.05 0.10
T012	9/11/2007	453547	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.22 MG/L	0.05 0.10
Z873	9/19/2007	454864	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.19 MG/L	0.05 0.10
K340	9/19/2007	454876	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.18 MG/L	0.05 0.10
S716	9/19/2007	454872	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.17 MG/L	0.05 0.10
A121	9/19/2007	454868	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.21 MG/L	0.05 0.10
B898	9/25/2007	1713521	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.19 MG/L	0.1
X589 BH590	9/25/2007	505127	951 951	FLUORIDE TOTAL FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ DETECT BETWEEN LOD & LOQ	0.44 MG/L	0.13 0.45 0.13 0.45
Q043	9/25/2007 10/3/2007	505121 456571	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.38 MG/L 0.14 MG/L	0.13 0.45
Q726	10/3/2007	456579	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.13 MG/L	0.05 0.10
Z671	12/12/2007	7120395-01	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.82 MG/L	0.1
BH037	3/4/2008	469363	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.39 MG/L	0.05 0.10
3H038	3/4/2008	469361	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.48 MG/L	0.05 0.10
3H027	3/13/2008	470617	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.11 MG/L	0.05 0.10
T012	4/22/2008	475526	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.22 MG/L	0.05 0.10
SM365	6/3/2008	480375	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.084 MG/L	0.05 0.10
/L312	6/3/2008	480378	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.1 MG/L	0.05 0.10
H039	7/9/2008	485960	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.3 MG/L	0.05 0.10
A221	7/21/2008	487057	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.21 MG/L	0.05 0.10
M370	7/21/2008	487059	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.14 MG/L	0.05 0.10
3H029	7/22/2008	38015406	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.4 MG/L	0.1
H028	7/22/2008	38015405 38015407	951 951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT NORMAL QUANTIFIED RESULT	0.6 MG/L	0.1 0.1
Z848 H025	7/22/2008 8/13/2008	490125	951	FLUORIDE TOTAL FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.7 MG/L 0.092 MG/L	0.05 0.10
K037	8/13/2008	490127	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ DETECT BETWEEN LOD & LOQ	0.073 MG/L	0.05 0.10
H032	9/3/2008	IT006090	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.05 MG/L	0.031 0.10
H033	9/3/2008	IT006093	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.12 MG/L	0.031 0.10
H030	9/3/2008	IT006091	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.07 MG/L	0.031 0.10
H035	9/3/2008	IT006088	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.12 MG/L	0.031 0.10
H040	9/3/2008	IT006092	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.08 MG/L	0.031 0.10
H034	9/3/2008	IT006089	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.07 MG/L	0.031 0.10
H005	9/4/2008	493046	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.12 MG/L	0.05 0.10
H006	9/4/2008	493048	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.12 MG/L	0.05 0.10
H020	9/16/2008	494926	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.14 MG/L	0.05 0.10
H021	9/16/2008	494925	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.15 MG/L	0.05 0.10
Y324	9/23/2008	496064	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.43 MG/L	0.05 0.10
J372 ⊔024	9/23/2008	496068	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.63 MG/L	0.05 0.10
H024 J514	9/23/2008 9/26/2008	496066 496495	951 951	FLUORIDE TOTAL FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT NORMAL QUANTIFIED RESULT	0.57 MG/L 0.25 MG/L	0.05 0.10 0.05 0.10
J514 H022	9/30/2008	496495	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.23 MG/L	0.05 0.10
S905	10/19/2008	IT010729	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.32 MG/L	0.05 0.10
691	4/22/2009	IT019701	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.49 MG/L	
T012	8/19/2009	533335	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.45 MG/L	0.05 0.10
P305	9/16/2009	536595	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.10 MG/L	0.05 0.10
P300	9/22/2009	302985	951	FLUORIDE TOTAL	NON-DETECT	0 MG/L	0.3
S716	2/3/2010	551181	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.16 MG/L	0.05 0.10
A121	2/3/2010	551191	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.17 MG/L	0.05 0.10
Q043	2/3/2010	551189	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.13 MG/L	0.05 0.10
Z873	2/3/2010	551194	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.17 MG/L	0.05 0.10
Q726	2/3/2010	551186	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.14 MG/L	0.05 0.10
K340	3/8/2010	554765	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.16 MG/L	0.05 0.10
M458	3/10/2010	307897	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.59 MG/L	0.3

			Storet			Sample	
	Sample		Parameter			Analytical	Limit of Limit of
WI Unique Well #	3/24/2010	2 Labslip # / Sample ID 0030897-01	Code 951	Description FLUORIDE TOTAL	Sample Analytical Qualifier NORMAL QUANTIFIED RESULT	Result Units 0.71 MG/L	Detection Quantitation 0.13
ES865	4/20/2010	IU017149	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.53 MG/L	0.031 .1
AY032	4/20/2010	IU017148	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.41 MG/L	0.031 .1
3P309	5/3/2010	IU018151	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.1 MG/L	0.031 .1
BP317	6/1/2010	IU021140	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.15 MG/L	0.031 .1
RD045	6/7/2010	0060255-01	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.21 MG/L	0.14
BP307	7/28/2010	AD17547	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.3 MG/L	
BP306	8/19/2010	1008306-01	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.37 MG/L	0.1
GO596 TE954	8/23/2010 8/23/2010	578016 578014	951 951	FLUORIDE TOTAL FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT NORMAL QUANTIFIED RESULT	0.49 MG/L 0.47 MG/L	0.05 .1 0.05 .1
IQ706	8/25/2010	578638	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.14 MG/L	0.05 .1
ES724	9/7/2010	580581	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.28 MG/L	0.05 .1
ES771	9/17/2010	583225	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.5 MG/L	0.05 .1
PT012	9/21/2010	583439	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.068 MG/L	0.05 .1
ГВ898	9/22/2010	1009429-01	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.3 MG/L	0.1
ВН590	9/22/2010	1009428-01	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.25 MG/L	0.1
FX589	9/22/2010	1009427-01	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.31 MG/L	0.1
3H027 3H038	1/25/2011 1/26/2011	598624 598779	951 951	FLUORIDE TOTAL FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ NORMAL QUANTIFIED RESULT	0.065 MG/L 0.43 MG/L	0.05 .1 0.05 .1
BH037	1/26/2011	598776	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.43 MG/L	0.05 .1
ΓU514	6/7/2011	614913	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.23 MG/L	0.05 .1
3H039	6/7/2011	614917	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.27 MG/L	0.05 .1
GM370	6/7/2011	614910	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.12 MG/L	0.05 .1
IA221	6/7/2011	614908	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.2 MG/L	0.05 .1
BH029	6/21/2011	41014372	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.37 MG/L	0.1
3H028	6/21/2011	41014374	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.56 MG/L	0.1
RZ848	6/21/2011	41014373	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.78 MG/L	0.1
3H025	6/22/2011	618024	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.076 MG/L	0.05 .1
LK037	6/22/2011	618027	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.065 MG/L	0.05 .1
3H005	8/24/2011	628663	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.13 MG/L	0.05 .1
3H006 3M365	8/24/2011 9/15/2011	628664 633036	951 951	FLUORIDE TOTAL FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT DETECT BETWEEN LOD & LOQ	0.13 MG/L 0.098 MG/L	0.05 .1 0.05 .1
/L312	9/15/2011	633039	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.11 MG/L	0.05 .1
3H034	9/19/2011	IW006642	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.11 MG/L	0.031 .1
3H022	9/20/2011	IW006734	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.27 MG/L	0.031 .1
3H033	9/21/2011	IW007052	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.17 MG/L	0.031 .1
3H032	9/21/2011	IW007056	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.1 MG/L	0.031 .1
3H030	9/21/2011	IW007053	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.1 MG/L	0.031 .1
3H035	9/21/2011	IW007054	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.18 MG/L	0.031 .1
3H040	9/21/2011	IW007055	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.1 MG/L	0.031 .1
3H020	9/26/2011	634855	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.15 MG/L	0.05 .1
3H021	9/26/2011	634858	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.13 MG/L	0.05 .1
AY324 BH024	9/27/2011 9/27/2011	635188 635195	951 951	FLUORIDE TOTAL FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.49 MG/L 0.66 MG/L	0.05 .1 0.05 .1
KU372	11/8/2011	641303	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT NORMAL QUANTIFIED RESULT	0.72 MG/L	0.05 .1
TK065	1/10/2012	BW031157	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.33 MG/L	0.05 .1
SN152	5/29/2012	IW019431	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	1.01 MG/L	
WU998	9/10/2012	340488	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.35 MG/L	0.3 .9
GT012	9/11/2012	682644	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.15 MG/L	0.05 .1
ΓU517	9/11/2012	682665	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.16 MG/L	0.05 .1
3P317	3/5/2013	IX016320	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.22 MG/L	0.031 .1
PT012	3/25/2013	711249	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.17 MG/L	0.05 .1
AY032	4/15/2013	IX018898	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.4 MG/L	0.031 .1
5865	4/15/2013	IX018897	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT DETECT BETWEEN LOD & LOQ	0.52 MG/L	0.031 .1
3P309 3M458	6/11/2013 7/23/2013	78819001 352165	951 951	FLUORIDE TOTAL FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ DETECT BETWEEN LOD & LOQ	0.107 MG/L 0.31 MG/L	0.03 .3
3N/458 3P307	7/23/2013	AD68760	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.277 MG/L	0.3 .9
E954	8/6/2013	735501	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.51 MG/L	0.05 .1
RD045	9/9/2013	3090291-01A	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.18 MG/L	0.13
B898	9/9/2013	3090287-01	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.22 MG/L	0.13
BH590	9/9/2013	3090285-01	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.14 MG/L	0.14
X589	9/9/2013	3090283-01	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.21 MG/L	0.13
S771	9/23/2013	747137	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.51 MG/L	0.05 .1
Z671	9/24/2013	3091079-01	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	1.28 MG/L	0.13
Q706	9/25/2013	748089	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.16 MG/L	0.05 .1
S724 WQ175	11/26/2013 12/19/2013	358414 114422001	951 951	FLUORIDE TOTAL FLUORIDE TOTAL	NON-DETECT NORMAL QUANTIFIED RESULT	0 MG/L 0.0956 MG/L	0.3 .9 0.03 .3
NQ175 3H027	2/24/2014	771669	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.052 MG/L	0.03 .3
3H037	3/10/2014	773637	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.31 MG/L	0.05 0.10
3H038	3/10/2014	773640	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.37 MG/L	0.05 0.10
3H033	3/24/2014	124636005	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.192 MG/L	0.03 0.300
3H032	3/24/2014	124636006	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.0879 MG/L	0.03 0.300
3H040	3/24/2014	124636002	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.0976 MG/L	0.03 0.300
3H030	3/24/2014	124636004	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.0844 MG/L	0.03 0.300
3H035	3/24/2014	124636001	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.163 MG/L	0.03 0.300
H034	3/24/2014	124636003	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.102 MG/L	0.03 0.300
BH022	4/8/2014	126687001	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.27 MG/L	0.03 0.300
A221	4/9/2014	779162	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.22 MG/L	0.05 0.10
SM370	4/9/2014	779165	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.2 MG/L	0.05 0.10
U514	4/9/2014	779168	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.22 MG/L	0.05 0.10
3H028	5/28/2014	793271	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.69 MG/L	0.05 0.10
RZ848	5/28/2014	793273	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.95 MG/L	0.05 0.10
BH029 RZ511	5/28/2014	793272	951 951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT DETECT BETWEEN LOD & LOQ	0.45 MG/L	0.05 0.10
,CJ11	7/8/2014	143830001	JJI	FLUORIDE TOTAL	DETECT DETWEEN LOD & LOQ	0.0751 MG/L	0.03 0.300

	Sample			Storet Parameter		Sample Analytical	Limit of Limit of
WI Unique Well #		2 Labslip # / Sample ID 803910	Code	Description	Sample Analytical Qualifier	Result Units	Detection Quantitation
3H025 LK037	7/16/2014 7/16/2014	803910	951 951	FLUORIDE TOTAL FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ DETECT BETWEEN LOD & LOQ	0.078 MG/L 0.068 MG/L	0.05 0.10 0.05 0.10
/L312	7/10/2014	805279	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ DETECT BETWEEN LOD & LOQ	0.086 MG/L	0.05 0.10
GM365	7/23/2014	805275	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ DETECT BETWEEN LOD & LOQ	0.080 MG/L	0.05 0.10
3H039	7/23/2014	805781	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.23 MG/L	0.05 0.10
3H006	8/13/2014	4080509-02	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.12 MG/L	0.005
3H005	8/13/2014	4080509-01	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.12 MG/L	0.006
3H021	8/27/2014	813711	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.12 MG/L	0.05 0.10
3H020	8/27/2014	813710	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.14 MG/L	0.05 0.10
KU372	9/16/2014	819202	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.67 MG/L	0.05 0.10
AY324	9/16/2014	819198	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.43 MG/L	0.05 0.10
3H024	9/16/2014	819200	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.7 MG/L	0.05 0.10
NU998	7/28/2015	389212	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.46 MG/L	0.3 .9
GT012	8/25/2015	5081033-02	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.18 MG/L	0.004
U517	8/25/2015	5081033-01	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.19 MG/L	0.004
MW167	1/26/2016	903148	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.55 MG/L	0.05 .1
(P679	2/23/2016	906486	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.76 MG/L	0.05 .1
PU277	2/23/2016	906482	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.76 MG/L	0.05 .1
BP307	4/5/2016	AE11318	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.294 MG/L	
S865	6/6/2016	258379001	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.572 MG/L	0.03 .1
AY032	6/6/2016	258378001	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.414 MG/L	0.03 .1
RD045	6/7/2016	6060308-06	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.16 MG/L	0.004
S724	6/15/2016	411352	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.27 MG/L	0.11 .36
BM458	6/15/2016	411343	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.19 MG/L	0.11 .36
3P309	8/23/2016	273859001	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.075 MG/L	0.03 .1
3H590	9/7/2016	6090252-01	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.16 MG/L	0.003
ΓE954	9/12/2016	944497	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.55 MG/L	0.05 .1
GO596	9/12/2016	944494	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.55 MG/L	0.05 .1
PT012	9/20/2016	946819	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.2 MG/L	0.05 .1
X589	9/20/2016	6090816-06	951	FLUORIDE TOTAL	NON-DETECT	0 MG/L	0.003
B898	9/20/2016	6090827-06	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.19 MG/L	0.003
Q706	9/21/2016	947474	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.18 MG/L	0.05 .1
/R115	11/16/2016	1611C78-001C	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.17 MG/L	0.017 .053
J161	12/20/2016	967211	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.54 MG/L	0.05 .1
3H032	1/16/2017	296326004	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.0795 MG/L	0.03 .1
BH034	1/16/2017	296326006	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.0966 MG/L	0.03 .1
H033	1/16/2017	296326003	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.175 MG/L	0.03 .1
3H040	1/16/2017	296326002	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.0834 MG/L	0.03 .1
WQ175	1/16/2017	296326005	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.0843 MG/L	0.03 .1
3H035	1/16/2017	296326001	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.157 MG/L	0.03 .1
3H030	1/30/2017	297917001	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.108 MG/L	0.03 .1
3H027	2/13/2017	973320	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.085 MG/L	0.05 .1
3H020	3/20/2017	1703D23-001B	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.16 MG/L	0.017 .053
3H021	3/20/2017	1703D30-001B	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.13 MG/L	0.017 .053
AY324	5/1/2017	1705208-001B	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.47 MG/L	0.017 .053
3H024	5/1/2017	1705208-002B	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.64 MG/L	0.017 .053
W168	6/1/2017	438196	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.23 MG/L	0.12 .4
3H028	6/20/2017	999087	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.7 MG/L	0.05 .1
RZ848	6/20/2017	999093	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	1 MG/L	0.05 .1
3H029	6/20/2017	999090	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.47 MG/L	0.05 .1
(U372	7/19/2017	1707F53-001B	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.73 MG/L	0.017 .053
GM365	8/1/2017	1007981	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.086 MG/L	0.05 .1
/L312	8/1/2017	1007984	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.099 MG/L	0.05 .1
3H037	8/2/2017	1008433	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.33 MG/L	0.05 .1
3H038	8/2/2017	1008438	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.44 MG/L	0.05 .1
3H022	8/15/2017	336271001	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.244 MG/L	0.03 .1
GM370	8/21/2017	1012757	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT NORMAL QUANTIFIED RESULT	0.14 MG/L	0.05 .1
TU514 BH006	8/21/2017 8/21/2017	1012762 1012884	951 951	FLUORIDE TOTAL FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.25 MG/L	0.05 .1 0.05 .1
A221	8/21/2017	1012884	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.15 MG/L 0.19 MG/L	0.05 .1
H005	8/21/2017	1012755	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.19 MG/L 0.12 MG/L	0.05 .1
H039	8/21/2017	1012772	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.26 MG/L	0.05 .1
K037	9/12/2017	1017515	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.067 MG/L	0.05 .1
P984	9/12/2017	1017643	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.8 MG/L	0.05 .1
P985	9/12/2017	1017646	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.54 MG/L	0.05 .1
H025	9/12/2017	1017512	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.08 MG/L	0.05 .1
VU998	1/30/2018	458304	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.31 MG/L	0.12 .4
P300	1/30/2018	458291	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.38 MG/L	0.12 .4
W168	1/31/2018	458356	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.34 MG/L	0.12 .4
U517	8/20/2018	1074827	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.18 MG/L	0.05 .1
T012	11/12/2018	1811B07-001A	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.2 MG/L	0.017 .053
T012	11/12/2018	1811B07-001A	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.18 MG/L	0.0217 .069
S724	2/18/2019	489675	951	FLUORIDE TOTAL	NON-DETECT	0 MG/L	0.2 .67
BP305	2/26/2019	490295	951	FLUORIDE TOTAL	NON-DETECT	0 MG/L	0.2 .67
W168	3/4/2019	490574	951	FLUORIDE TOTAL	NON-DETECT	0 MG/L	0.2 .67
M458	3/6/2019	490804	951	FLUORIDE TOTAL	NON-DETECT	0 MG/L	0.2 .67
E954	3/22/2019	491868	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.4 MG/L	0.2 .67
D045	4/5/2019	493015	951	FLUORIDE TOTAL	NON-DETECT	0 MG/L	0.2 .67
Q706	4/16/2019	493782	951	FLUORIDE TOTAL	NON-DETECT	0 MG/L	0.2 .67
R115	4/23/2019	1116845	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.16 MG/L	0.046 .16
T012	4/23/2019	494294	951	FLUORIDE TOTAL	NON-DETECT	0 MG/L	0.2 .67
лW167	5/14/2019	1120996	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.49 MG/L	0.046 .16
Y032	5/22/2019	447769001	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.409 MG/L	0.03 .1
S865	5/22/2019	447769002	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.585 MG/L	0.03 .1
	-,,,					3.3033/1	00 .1

			Storet			Sample			
	Sample		Parameter	Storet Parameter		Analytical		Limit of	Limit of
WI Unique Well #	Collection Date	Labslip # / Sample ID	Code	Description	Sample Analytical Qualifier	Result	Units	Detection	Quantitation
BP307	5/29/2019	1905208-01	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT		.32 MG/L		
XP679	6/11/2019	1126874	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0	.66 MG/L		16 .16
PU277	6/11/2019	1126870	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0	.66 MG/L	0.0	16 .16
BP307	6/12/2019	1127378	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0	.28 MG/L	0.0	46 .16
IN260	6/18/2019	500174	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0	.24 MG/L	0.	17 .57
SJ161	6/18/2019	1128775	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0	.54 MG/L	0.0	46 .16
YP984	7/23/2019	1136220	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0	.61 MG/L	0.0	46 .16
YP985	7/23/2019	1136222	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0	.74 MG/L	0.0	46 .16
TB898	8/12/2019	1139995	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0	.22 MG/L	0.0	46 .16
BH590	8/13/2019	1140414	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0	.14 MG/L	0.0	16 .16
FX589	8/14/2019	1140884	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0	.22 MG/L	0.0	16 .16
BH035	1/21/2020	490304001	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.1	164 MG/L	0.	03 .1
BH040	1/21/2020	490307001	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.09	929 MG/L	0.	03 .1
WQ175	1/21/2020	490305001	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.1	107 MG/L	0.	03 .1
BH030	1/21/2020	490310001	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.09	937 MG/L	0.	03 .1
BH033	1/21/2020	490309001	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.1	145 MG/L	0.	03 .1
BH032	1/21/2020	490306001	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.08	866 MG/L	0.	03 .1
BH034	1/21/2020	490308001	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0.3	104 MG/L	0.	03 .1
FW168	2/24/2020	522752	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ		0.2 MG/L	0.	17 .57
BH027	5/4/2020	1186150	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0.0	052 MG/L	0.0	46 .16
GM370	6/1/2020	1190744	951	FLUORIDE TOTAL	DETECT BETWEEN LOD & LOQ	0	.14 MG/L	0.0	46 .16
TU514	6/1/2020	1190745	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0	.23 MG/L	0.0	46 .16
JA221	6/1/2020	1190743	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0	.19 MG/L	0.0	46 .16
RZ848	7/23/2020	1201843	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0	.99 MG/L	0.0	46 .16
BH029	7/23/2020	1201841	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0	.44 MG/L	0.0	46 .16
BH028	7/23/2020	1201842	951	FLUORIDE TOTAL	NORMAL QUANTIFIED RESULT	0	.69 MG/L	0.0	46 .16

Appendix C

State Program Background Monitoring Data for Fluoride

GEMS Data Download - Edgewater I-43 Landfill, License 2853, Fluoride Results

Total Rows: 12

Lic#	Point	Dup	Point Name	Point Type Description	Parm	Parameter Description	Sample	Result	Result Unit	Rslt	Point	QC1	QC2	QC3	LOD	LOQ	RL	Analysis Method	Report	Lab Anal.	Sample ID	Lab ID	Pt Key
	ID	Samp			Code		Date	Value										Code	Period	Date			
		No								Code									Date				
2853	201	1 01	W-002	WT Obs Well-Non Sub D	951	FLUORIDE, TOTAL (MG/L F)	6/21/1978	0.52	2 mg/L	D	Α							NOT REPORTED					5108
2853	201	1 01	W-002	WT Obs Well-Non Sub D	951	FLUORIDE, TOTAL (MG/L F)	5/15/1978	0.43	mg/L	D	Α							NOT REPORTED					5108
2853	202	2 01	W-009	WT Obs Well-Non Sub D	951	FLUORIDE, TOTAL (MG/L F)	6/21/1978	0.84	mg/L	D	I							NOT REPORTED					5109
2853	202	2 01	W-009	WT Obs Well-Non Sub D	951	FLUORIDE, TOTAL (MG/L F)	5/15/1978	0.5	mg/L	D	I							NOT REPORTED					5109
2853	203	3 01	W-010B	Piezometer-Non Sub D Well	951	FLUORIDE, TOTAL (MG/L F)	6/21/1978	0.7	l mg/L	D	Α							NOT REPORTED					5110
2853	203	3 01	W-010B	Piezometer-Non Sub D Well	951	FLUORIDE, TOTAL (MG/L F)	5/15/1978	0.5	mg/L	D	Α							NOT REPORTED					5110
2853	204	1 01	W-019B	Piezometer-Non Sub D Well	951	FLUORIDE, TOTAL (MG/L F)	6/21/1978	0.49	mg/L	D	Р							NOT REPORTED					5111
2853	204	1 01	W-019B	Piezometer-Non Sub D Well	951	FLUORIDE, TOTAL (MG/L F)	5/15/1978	0.43	mg/L	D	Р							NOT REPORTED					5111
2853	205	5 01	W-022B	Piezometer-Non Sub D Well	951	FLUORIDE, TOTAL (MG/L F)	6/21/1978	0.47	mg/L	D	Α							NOT REPORTED					5112
2853	205	5 01	W-022B	Piezometer-Non Sub D Well	951	FLUORIDE, TOTAL (MG/L F)	5/15/1978	0.48	3 mg/L	D	Α							NOT REPORTED					5112
2853	226	01	GOEBEL WELL	Private Well - Potable	951	FLUORIDE, TOTAL (MG/L F)	5/15/1978	0.74	1 mg/L	D	Α							NOT REPORTED					5133
2853	227	7 01	BEECK WELL	Private Well - Potable	951	FLUORIDE, TOTAL (MG/L F)	6/21/1978	0.7	mg/L	D	Α							NOT REPORTED					5134

Appendix D Intrawell Statistical Analysis

Outlier Analysis

		I-43 Ash Dispo	sai Facility	Client: SCS Engin	eers Data: 143_2020_Oct_All	Printed 9	/30/202	1, 7:40 PM			
Constituent	<u>Well</u>	<u>Outlier</u>	Value(s)	Date(s)	Method	<u>Alpha</u>	<u>N</u>	<u>Mean</u>	Std. Dev.	<u>Distribution</u>	Normality Test
Field pH (Std. Units)	MW-302	No	n/a	n/a	EPA 1989	0.05	8	8.118	0.1469	normal	ShapiroWilk
Fluoride (mg/L)	MW-302	No	n/a	n/a	EPA 1989	0.05	9	0.7656	0.09043	normal	ShapiroWilk

Std. Units

EPA Screening (suspected outliers for Dixon's Test)

n = 8

Dixon's will not be run.

No suspect values identified or unable to establish suspect values.

Mean 8.118, std. dev.
0.1469, critical Tn 2.032

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.8981 Critical = 0.851 The distribution was found to be normally distributed.

Constituent: Field pH Analysis Run 9/30/2021 7:39 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

EPA 1989 Outlier Screening

Constituent: Field pH (Std. Units) Analysis Run 9/30/2021 7:40 PM View: I-43 LF Detection Monitoring
I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-302
4/26/2016	8.33
6/21/2016	8.05
8/9/2016	6.24 (X)
10/19/2016	12.2 (X)
12/19/2016	8.31
1/23/2017	8.16
2/23/2017	8.16
4/6/2017	8
6/6/2017	7.95
8/1/2017	7.98

EPA Screening (suspected outliers for Dixon's Test)

n = 9

Dixon's will not be run.
No suspect values identified or unable to establish suspect values.
Mean 0.7656, std. dev.
0.09043, critical Tn 2.11

Normality test used: Shapiro Wilk@alpha = 0.1 Calculated = 0.9006 Critical = 0.859 The distribution was found to be normally distributed.

mg/L

Constituent: Fluoride Analysis Run 9/30/2021 7:39 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

EPA 1989 Outlier Screening

Constituent: Fluoride (mg/L) Analysis Run 9/30/2021 7:40 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-302
4/26/2016	1.1 (J,X)
6/21/2016	0.74
8/9/2016	0.75
10/19/2016	0.69
12/19/2016	0.94 (J)
1/23/2017	0.85 (J)
2/23/2017	0.67
4/6/2017	0.68
6/6/2017	0.83
8/1/2017	0.74

Intrawell Prediction Limit

Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg	N Bg Wells	Bg Mean	Std. Dev.	%NDs	ND Adj	<u>Transform</u>	<u>Alpha</u>	<u>Method</u>
Field pH (Std. Units)	MW-302	8.48	n/a	6/16/2021	8.37	No	8	n/a	8.118	0.1469	0	None	No	0.002505	Param 1 of 2
Fluoride (mg/L)	MW-302	0.978	n/a	6/16/2021	0.77	No	9	n/a	0.7656	0.09043	0	None	No	0.002505	Param 1 of 2

Within Limit

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=8.118, Std. Dev.=0.1469, n=8. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.8981, critical = 0.818. Kappa = 2.458 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Constituent: Field pH Analysis Run 9/30/2021 7:41 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Prediction Limit

Constituent: Field pH (Std. Units) Analysis Run 9/30/2021 7:43 PM View: I-43 LF Detection Monitoring
I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-302	MW-302
4/26/2016	8.33	
6/21/2016	8.05	
8/9/2016	6.24 (X)	
10/19/2016	12.2 (X)	
12/19/2016	8.31	
1/23/2017	8.16	
2/23/2017	8.16	
4/6/2017	8	
6/6/2017	7.95	
8/1/2017	7.98	
10/23/2017		7.7
4/3/2018		8.02
10/4/2018		8.08
4/9/2019		8.14
10/8/2019		7.67
4/8/2020		7.79
5/20/2020		8.19
10/13/2020		7.85
12/18/2020		8.05
4/13/2021		8.36
6/16/2021		8.37 (R)

Within Limit

Prediction Limit

Intrawell Parametric

Background Data Summary: Mean=0.7656, Std. Dev.=0.09043, n=9. Normality test: Shapiro Wilk @alpha = 0.05, calculated = 0.9006, critical = 0.829. Kappa = 2.348 (c=7, w=3, 1 of 2, event alpha = 0.05132). Report alpha = 0.002505.

Constituent: Fluoride Analysis Run 9/30/2021 7:41 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Prediction Limit

Constituent: Fluoride (mg/L) Analysis Run 9/30/2021 7:43 PM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

	MW-302	MW-302
4/26/2016	1.1 (J,X)	
6/21/2016	0.74	
8/9/2016	0.75	
10/19/2016	0.69	
12/19/2016	0.94 (J)	
1/23/2017	0.85 (J)	
2/23/2017	0.67	
4/6/2017	0.68	
6/6/2017	0.83	
8/1/2017	0.74	
10/23/2017		0.71
4/3/2018		0.73
10/4/2018		0.71
4/9/2019		0.73
10/8/2019		0.71
4/8/2020		0.75
5/20/2020		0.7
10/13/2020		0.82
12/18/2020		0.73 (R)
4/13/2021		0.76
6/16/2021		0.77 (R)

Constituent: Boron Analysis Run 10/12/2021 10:44 AM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Constituent: Calcium Analysis Run 10/12/2021 10:44 AM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Constituent: Chloride Analysis Run 10/12/2021 10:44 AM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Constituent: Field pH Analysis Run 10/12/2021 10:44 AM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Constituent: Fluoride Analysis Run 10/12/2021 10:44 AM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Constituent: Sulfate Analysis Run 10/12/2021 10:44 AM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All

Constituent: Total Dissolved Solids Analysis Run 10/12/2021 10:44 AM View: I-43 LF Detection Monitoring I-43 Ash Disposal Facility Client: SCS Engineers Data: I43_2020_Oct_All