2018 Annual Groundwater Monitoring and Corrective Action Report

Edgewater Generating Station I-43 Ash Disposal Facility Town of Wilson Sheboygan County, Wisconsin

Prepared for:

SCS ENGINEERS

25216069.18 | January 31, 2019

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830

Table of Contents

Sect	ion			Page
1.0	Intro	duction.		1
2.0	§257	7.90(e)/	Annual Report Requirements	1
	2.1	§257.9	90(e)(1) Site Map	1
	2.2	§257.9	90(e)(2) Monitoring System Changes	2
	2.3	§257.9	90(e)(3) Summary of Sampling Events	2
	2.4	§257.9	90(e)(4) Monitoring Transition Narrative	2
	2.5	§257.9	00(e)(5) Other Requirements	3
		2.5.1	§257.90(e) General Requirements	3
		2.5.2	§257.94(d) Alternative Detection Monitoring Frequency	3
		2.5.3	§257.94(e)(2) Alternative Source Demonstration for Detection Monitoring	4
		2.5.4	§257.95(c) Alternative Assessment Monitoring Frequency	4
		2.5.5	§257.95(d)(3) Assessment Monitoring Results and Standards	4
		2.5.6	§257.95(g)(3)(ii) Alternative Source Demonstration for Assessment Monitor	ing4
		2.5.7	§257.96(a) Extension of Time for Corrective Measures Assessment	4

Tables

Table 1.CCR Rule Groundwater Samples Summary

Figures

Figure 1. Site Plan and Monitoring Well Location Map

Appendix A – Laboratory Reports

- A1 April 2018 Detection Monitoring
- A2 October 2018 Detection Monitoring

Appendix B – Alternative Source Demonstrations

- B1 Alternative Source Demonstration, October 2017 Detection Monitoring
- B2 Alternative Source Demonstration, April 2018 Detection Monitoring

 $\label{eq:linear} I:\25216069.00\Deliverables\2018\CCR\Fed.\ Annual\ Report\190131_2018\ I-43\ Annual\ GW\ Mon.\ and\ Cor.\ Actn\ Rpt_Final.docx$

[This page left blank intentionally]

1.0 INTRODUCTION

This 2018 Annual Groundwater Monitoring and Corrective Action Report was prepared to support compliance with the groundwater monitoring requirements of the Coal Combustion Residuals (CCR) Rule [40 CFR 257.50-107]. Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.90(e). The applicable sections of the Rule are provided below in italics, followed by applicable information relative to the 2018 Annual Groundwater Monitoring and Corrective Action Report for the CCR Units.

This report covers the period of groundwater monitoring from January 1, 2018, through December 31, 2018.

The groundwater monitoring system at the I-43 Ash Disposal Facility (ADF) is a multiunit system. The I-43 ADF is a landfill and consists of three existing CCR units that are contiguous:

- Phase 3, Module 1 (existing CCR Landfill)
- Phase 3, Module 2 (existing CCR Landfill)
- Phase 4, Module 1 (existing CCR Landfill)

The multiunit system is designed to detect monitored constituents at the waste boundary of the I-43 ADF as required by 40 CFR 257.91(d). The groundwater monitoring system consists of two background wells and three downgradient monitoring wells.

2.0 §257.90(E) ANNUAL REPORT REQUIREMENTS

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1). At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

2.1 §257.90(E)(1) SITE MAP

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

A map with an aerial image showing the I-43 Landfill CCR Units, and all background (or upgradient) and downgradient monitoring wells with identification numbers for the groundwater monitoring program, is provided as **Figure 1**.

2.2 §257.90(e)(2) Monitoring System Changes

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No new monitoring wells were installed and no wells were decommissioned as part of the groundwater monitoring program for the I-43 Landfill in 2018.

2.3 §257.90(e)(3) Summary of Sampling Events

In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

Two groundwater sampling events were completed in 2018 at the I-43 Landfill. The samples were collected under the detection monitoring program, which was established on October 17, 2017.

Groundwater samples collected during the semiannual events, April and October 2018, were analyzed for the Appendix III constituents. The samples from upgradient well MW-305 were also analyzed for Appendix IV constituents to complete background groundwater sampling at that monitoring well.

A summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs is included in **Table 1**. The results of the analytical laboratory analyses are provided in the laboratory reports in **Appendices A1** through **A2**.

Assessment monitoring has not been initiated for the CCR Units at the I-43 Landfill.

2.4 §257.90(e)(4) Monitoring Transition Narrative

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels);

There were no transitions between monitoring programs in 2018. The I-43 Landfill remained in the detection monitoring program.

In 2018, the monitoring results for the October 2017 and April 2018 monitoring events were evaluated for statistically significant increases (SSIs) in detection monitoring parameters relative to background. For both events, SSIs for boron were identified; however, alternative source demonstrations (ASDs) were completed, demonstrating that a source other than the CCR units was the likely cause of the observed concentrations. The ASD reports are provided in **Appendix B**.

2.5 §257.90(e)(5) Other Requirements

Other information required to be included in the annual report as specified in §§ 257.90 through 257.98.

Additional potentially applicable requirements for the annual report, and the location of the requirement within the Rule, are provided in the following sections. For each cited section of the Rule, the portion referencing the annual report requirement is provided below in italics, followed by applicable information relative to the 2018 Annual Groundwater Monitoring and Corrective Action Report for the I-43 Landfill.

2.5.1 §257.90(e) General Requirements

For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year.

Status of Groundwater Monitoring and Corrective Action Program. The groundwater monitoring and corrective action program is currently in detection monitoring.

Summary of Key Actions Completed.

- Statistical evaluation and determination of SSIs for the October 2017 and April 2018 monitoring events.
- ASD reports for the SSIs identified from the October 2017 and April 2018 monitoring events.
- Two semiannual groundwater sampling and analysis events (April and October 2018).

Description of Any Problems Encountered. No problems were encountered in 2018.

Discussion of Actions to Resolve the Problems. Not applicable.

Projection of Key Activities for the Upcoming Year (2019):

- Statistical evaluation and determination of any SSIs for the October 2018 and April 2019 monitoring events.
- If an SSI is determined, then within 90 days either:
 - Complete alternative source demonstration (if applicable), or
 Establish an assessment monitoring program.
- Two semiannual groundwater sampling and analysis events (April and October 2019).

2.5.2 §257.94(d) Alternative Detection Monitoring Frequency

The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer in the annual groundwater monitoring and corrective action report required by § 257.90(e).

Not applicable. No alternative detection monitoring frequency has been proposed.

2.5.3 §257.94(e)(2) Alternative Source Demonstration for Detection Monitoring

The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

The ASD reports prepared to address the SSIs observed for the October 2017 and April 2018 sampling events are provided in **Appendix B**. The ASD reports are certified by a qualified professional engineer.

2.5.4 §257.95(c) Alternative Assessment Monitoring Frequency

The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer in the annual groundwater monitoring and corrective action report required by § 257.90(e).

Not applicable. Assessment monitoring has not been initiated.

2.5.5 §257.95(d)(3) Assessment Monitoring Results and Standards

Include the recorded concentrations required by paragraph (d)(1) of this section, identify the background concentrations established under § 257.94(b), and identify the groundwater protection standards established under paragraph (d)(2) of this section in the annual groundwater monitoring and corrective action report required by § 257.90(e).

Not applicable. Assessment monitoring has not been initiated.

2.5.6 §257.95(g)(3)(ii) Alternative Source Demonstration for Assessment Monitoring

The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

Not applicable. Assessment monitoring has not been initiated.

2.5.7 §257.96(a) Extension of Time for Corrective Measures Assessment

The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measure due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

Not applicable. Corrective measures assessment has not been initiated.

Table 1

CCR Rule Groundwater Samples Summary

Table 1. CCR Rule Groundwater Samples Summary Edgewater Generating Station I-43 Landfill SCS Engineers Project #25216069.18

Sample Dates	Dov	vngradient \	Background Wells			
	MW-301	MW-302	MW-303	MW-304	MW-305	
4/3/2018	D	D	D	D	D/B	
10/4/2018	D	D	D	D	D/B	
Total Samples	2	2	2	2	2	

Abbreviations:

B = Background Sample

D = Required by Detection Monitoring Program

-- = Not Sampled

Notes:

MW-305 was installed in February 2017.

Created by:	NDK	Date:	1/4/2018
Last revision by:	NDK	Date:	12/19/2018
Checked by:	MDB	Date:	12/19/2018

I:\25216069.00\Deliverables\2018 CCR Fed. Annual Report\Table\[Table 1. GW

Figure 1

Site Plan and Monitoring Well Locations

	LEGEND
	APPROXIMATE PROPERTY LINE
	MODULE LIMITS
	GRADE (2' CONTOUR)
	GRADE (10' CONTOUR)
	EDGE OF WATER
	SWALE
\succ	CULVERT
O MH	MANHOLE
W	CONTACT WATER TRANSFER PIPE
———— AB ————	ABANDONED 3" DIA. HDPE PIPE
····· »	TREELINE/TREES
	PAVED ROAD
	UNPAVED ACCESS ROAD
$\cdots \cdots $	RAILROAD TRACKS
x x x x	FENCE
Ø¢	UTILITY/LIGHT POLE
lacksquare	MONITORING WELL (UNCONSOLIDATED)
۲	PIEZOMETER (UNCONSOLIDATED)
	PRIVATE WATER SUPPLY WELL
۲	CCR RULE PIEZOMETER (BEDROCK)
	CCR RULE UNITS

NOTE:

Appendix A

Laboratory Reports

A1 April 2018 Detection Monitoring

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

May 02, 2018

Meghan Blodgett SCS ENGINEERS 2830 Dairy Drive Madison, WI 53718

RE: Project: 26216069 EDGEWATER I-43 CCR Pace Project No.: 40167040

Dear Meghan Blodgett:

Enclosed are the analytical results for sample(s) received by the laboratory on April 05, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Day Milent

Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: Tom Karwoski, SCS ENGINEERS Kyle Kramer, SCS ENGINEERS Nicole Kron, SCS ENGINEERS Jeff Maxted, ALLIANT ENERGY Marc Morandi, ALLIANT ENERGY

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: 26216069 EDGEWATER I-43 CCR

Pace Project No.: 40167040

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

Virginia VELAP ID: 460263 South Carolina Certification #: 83006001 Texas Certification #: 1104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: 26216069 EDGEWATER I-43 CCR

Pace Project No.: 4016

lo.:	40167040	

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40167040001	MW-301	Water	04/03/18 11:51	04/05/18 14:02
40167040002	MW-302	Water	04/03/18 12:48	04/05/18 14:02
40167040003	MW-303	Water	04/03/18 14:36	04/05/18 14:02
40167040004	MW-304	Water	04/03/18 09:16	04/05/18 14:02
40167040005	MW-305	Water	04/03/18 11:01	04/05/18 14:02
40167040006	FIELD BLANK	Water	04/03/18 14:45	04/05/18 14:02

SAMPLE ANALYTE COUNT

Project: 26216069 EDGEWATER I-43 CCR

Pace Project No.: 40167040

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40167040001	MW-301	EPA 6020	 DS1	2	PASI-G
			RMW	7	PASI-G
		SM 2540C	ТМК	1	PASI-G
		EPA 9040	ALY	1	PASI-G
		EPA 300.0	HMB	3	PASI-G
40167040002	MW-302	EPA 6020	DS1	2	PASI-G
			RMW	7	PASI-G
		SM 2540C	ТМК	1	PASI-G
		EPA 9040	ALY	1	PASI-G
		EPA 300.0	HMB	3	PASI-G
40167040003	MW-303	EPA 6020	DS1	2	PASI-G
			RMW	7	PASI-G
		SM 2540C	ТМК	1	PASI-G
		EPA 9040	ALY	1	PASI-G
		EPA 300.0	HMB	3	PASI-G
40167040004	MW-304	EPA 6020	DS1	2	PASI-G
			RMW	7	PASI-G
		SM 2540C	ТМК	1	PASI-G
		EPA 9040	ALY	1	PASI-G
		EPA 300.0	HMB	3	PASI-G
40167040005	MW-305	EPA 6020	DS1	14	PASI-G
		EPA 7470	AJT	1	PASI-G
			RMW	7	PASI-G
		EPA 903.1	KAC	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		SM 2540C	ТМК	1	PASI-G
		EPA 9040	ALY	1	PASI-G
		EPA 300.0	HMB	3	PASI-G
40167040006	FIELD BLANK	EPA 6020	DS1	14	PASI-G
		EPA 7470	AJT	1	PASI-G
		SM 2540C	ТМК	1	PASI-G
		EPA 9040	ALY	1	PASI-G
		EPA 300.0	HMB	3	PASI-G

Project: 26216069 EDGEWATER I-43 CCR

Pace Project No.:

No.: 40167040

Sample: MW-301	Lab ID:	40167040001	Collected:	04/03/18	3 11:51	Received: 04/	05/18 14:02 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	ation Meth	od: EPA	3010			
Boron Calcium	136 36700	ug/L ug/L	11.0 250	3.3 69.8	1 1	04/11/18 07:09 04/11/18 07:09	04/12/18 06:31 04/12/18 06:31	7440-42-8 7440-70-2	
Field Data	Analytical	Method:							
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	8.02 384 0.1 -138 89.45 651.28 8.6	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1		04/03/18 11:51 04/03/18 11:51 04/03/18 11:51 04/03/18 11:51 04/03/18 11:51 04/03/18 11:51 04/03/18 11:51	7782-44-7	
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	214	mg/L	20.0	8.7	1		04/10/18 16:19		
9040 pH	Analytical	Method: EPA 9	040						
pH at 25 Degrees C	8.0	Std. Units	0.10	0.010	1		04/10/18 10:04		H6
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride Fluoride Sulfate	4.7 0.62 9.3	mg/L mg/L mg/L	2.0 0.30 3.0	0.50 0.10 1.0	1 1 1		04/13/18 11:26 04/13/18 11:26 04/13/18 11:26	16887-00-6 16984-48-8 14808-79-8	
Sample: MW-302	Lab ID:	40167040002	Collected:	04/03/18	3 12:48	Received: 04/	05/18 14:02 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	ation Meth	od: EPA	3010			
Boron Calcium	124 30000	ug/L ug/L	11.0 250	3.3 69.8	1 1	04/11/18 07:09 04/11/18 07:09	04/12/18 06:39 04/12/18 06:39	7440-42-8 7440-70-2	
Field Data	Analytical	Method:							
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	8.02 434 0.2 -75 35.46 651.25 8.8	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1		04/03/18 12:48 04/03/18 12:48 04/03/18 12:48 04/03/18 12:48 04/03/18 12:48 04/03/18 12:48 04/03/18 12:48	7782-44-7	
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	248	mg/L	20.0	8.7	1		04/10/18 16:20		

Project: 26216069 EDGEWATER I-43 CCR

Pace Project No.: 40167040

Sample: MW-302	Lab ID:	40167040002	Collected	04/03/18	3 12:48	Received: 04/	05/18 14:02 Ma	atrix: Water					
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual				
9040 pH	Analytical I	Method: EPA 9	040										
pH at 25 Degrees C	8.0	Std. Units	0.10	0.010	1		04/10/18 10:06		H6				
300.0 IC Anions 28 Days	Analytical N	Method: EPA 3	00.0										
Chloride Fluoride Sulfate	5.2 0.73 22.6	mg/L mg/L mg/L	2.0 0.30 3.0	0.50 0.10 1.0	1 1 1		04/13/18 11:39 04/13/18 11:39 04/13/18 11:39	16887-00-6 16984-48-8 14808-79-8					
Sample: MW-303	Lab ID: 40167040003 Collected: 04/03/18 14:36 Received: 04/05/18 14:02 Matrix: Water							atrix: Water					
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual				
6020 MET ICPMS	Analytical I	Analytical Method: EPA 6020 Preparation Method: EPA 3010											
Boron Calcium	94.6 31900	ug/L ug/L	11.0 250	3.3 69.8	1 1	04/11/18 07:09 04/11/18 07:09	04/12/18 06:46 04/12/18 06:46	7440-42-8 7440-70-2					
Field Data	Analytical N	Method:											
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	7.98 494 0.2 -125 6.62 651.30 8.9	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1		04/03/18 14:36 04/03/18 14:36 04/03/18 14:36 04/03/18 14:36 04/03/18 14:36 04/03/18 14:36 04/03/18 14:36	7782-44-7					
2540C Total Dissolved Solids	Analytical N	Method: SM 25	40C										
Total Dissolved Solids	260	mg/L	20.0	8.7	1		04/10/18 16:20						
9040 pH	Analytical I	Method: EPA 9	040										
pH at 25 Degrees C	7.8	Std. Units	0.10	0.010	1		04/10/18 10:14		H6				
300.0 IC Anions 28 Days	Analytical I	Method: EPA 3	00.0										
Chloride Fluoride Sulfate	5.0 0.54 27.3	mg/L mg/L mg/L	2.0 0.30 3.0	0.50 0.10 1.0	1 1 1		04/13/18 11:52 04/13/18 11:52 04/13/18 11:52	16887-00-6 16984-48-8 14808-79-8					
Sample: MW-304	Lab ID:	40167040004	Collected	04/03/18	3 09:16	Received: 04/	05/18 14:02 Ma	atrix: Water					
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual				
6020 MET ICPMS	Analytical I	Method: EPA 6	020 Prepara	ation Meth	od: EPA	3010							
Boron Calcium	98.6 20200	ug/L ug/L	11.0 250	3.3 69.8	1 1	04/11/18 07:09 04/11/18 07:09	04/12/18 06:54 04/12/18 06:54	7440-42-8 7440-70-2					

REPORT OF LABORATORY ANALYSIS

Project: 26216069 EDGEWATER I-43 CCR

Pace Project No.: 40167040

Sample: MW-304	Lab ID:	40167040004	Collecte	d: 04/03/18	3 09:16	Received: 04/	05/18 14:02 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
Field pH	7.99	Std. Units			1		04/03/18 09:16		
Field Specific Conductance	398	umhos/cm			1		04/03/18 09:16		
Oxygen, Dissolved	0.3	mg/L			1		04/03/18 09:16	7782-44-7	
REDOX	-103	mV			1		04/03/18 09:16		
Turbidity	9.62	NTU			1		04/03/18 09:16		
Static Water Level	652.86	feet			1		04/03/18 09:16		
Temperature, Water (C)	8.9	deg C			1		04/03/18 09:16		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	222	mg/L	20.0	8.7	1		04/10/18 16:20		
9040 pH	Analytical	Method: EPA 9	040						
pH at 25 Degrees C	8.0	Std. Units	0.10	0.010	1		04/10/18 10:14		H6
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	1.7J	mg/L	2.0	0.50	1		04/13/18 12:06	16887-00-6	MO
Fluoride	0.50	mg/L	0.30	0.10	1		04/13/18 12:06	16984-48-8	M0
Sulfate	15.2	mg/L	3.0	1.0	1		04/13/18 12:06	14808-79-8	M0
Sample: MW-305	Lab ID:	40167040005	Collecte	d: 04/03/18	3 11:01	Received: 04/	05/18 14:02 Ma	atrix: Water	
•									
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepa	ration Methe	od: EPA	3010			
Antimony	<0.15	ug/L	1.0	0.15	1	04/11/18 07:09	04/12/18 07:17	7440-36-0	
Arsenic	2.2	ug/L	1.0	0.28	1	04/11/18 07:09	04/12/18 07:17	7440-38-2	
Barium	177	ug/L	1.1	0.34	1	04/11/18 07:09	04/12/18 07:17	7440-39-3	
Beryllium	<0.18	ug/L	1.0	0.18	1	04/11/18 07:09	04/12/18 07:17	7440-41-7	
Boron	71.7	ug/L	11.0	3.3	1	04/11/18 07:09	04/12/18 07:17	7440-42-8	
Cadmium	<0.081	ug/L	1.0	0.081	1	04/11/18 07:09	04/12/18 07:17	7440-43-9	
Calcium	83000	ug/L	250	69.8	1	04/11/18 07:09	04/12/18 07:17	7440-70-2	
Chromium	<1.0	ug/L	3.4	1.0	1	04/11/18 07:09	04/12/18 07:17	7440-47-3	
Cobalt	<0.085	ug/L	1.0	0.085	1	04/11/18 07:09	04/12/18 07:17	7440-48-4	
Lead	<0.20	ug/L	1.0	0.20	1	04/11/18 07:09	04/12/18 07:17	7439-92-1	
Litnium	12.0	ug/∟	1.0	0.14	1 4	04/11/18 07:09	04/12/18 07:17	7439-93-2	
	2.5	ug/L	1.5	0.44	1	04/11/18 07:09	04/12/18 07:17	1439-98-1	
Thellium	<0.32	ug/L	1.1	0.32	1	04/11/18 07:09	04/12/18 07:17	1102-49-2	
Inamulli	<0.14	ug/L	1.0	0.14	1	04/11/16 07:09	04/12/10 07:17	1440-20-0	
7470 Mercury	Analytical	Method: EPA 7	470 Prepa	ration Methe	od: EPA	7470			
Mercury	<0.13	ug/L	0.42	0.13	1	04/12/18 12:25	04/13/18 08:09	7439-97-6	

Project: 26216069 EDGEWATER I-43 CCR

Pace Project No.: 40167040

Sample: MW-305	Lab ID:	40167040005	Collected	1: 04/03/18	3 11:01	Received: 04/	05/18 14:02 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytical	Method:							
Field pH	7.54	Std. Units			1		04/03/18 11:01		
Field Specific Conductance	915	umhos/cm			1		04/03/18 11:01		
Oxygen, Dissolved	0.2	mg/L			1		04/03/18 11:01	7782-44-7	
REDOX	-120	mV			1		04/03/18 11:01		
Turbidity	13.01	NTU			1		04/03/18 11:01		
Static Water Level	656.24	feet			1		04/03/18 11:01		
Temperature, Water (C)	8.9	deg C			1		04/03/18 11:01		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	566	mg/L	20.0	8.7	1		04/10/18 16:20		
9040 pH	Analytical	Method: EPA 9	040						
pH at 25 Degrees C	7.5	Std. Units	0.10	0.010	1		04/10/18 10:16		H6
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	21.8	mg/L	2.0	0.50	1		04/12/18 20:51	16887-00-6	
Fluoride	0.63	mg/L	0.30	0.10	1		04/12/18 20:51	16984-48-8	MO
Sulfate	129	mg/L	30.0	10.0	10		04/13/18 11:31	14808-79-8	
Sample: FIELD BLANK	Lab ID:	40167040006	Collected	I: 04/03/18	3 14:45	Received: 04/	05/18 14:02 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepar	ation Meth	od: EPA	3010		-	
Antimony	<0.15	ug/L	1.0	0.15	1	04/11/18 07:09	04/12/18 04:29	7440-36-0	
Arsenic	<0.28	ug/L	1.0	0.28	1	04/11/18 07:09	04/12/18 04:29	7440-38-2	
Barium	<0.34	ug/L	1.1	0.34	1	04/11/18 07:09	04/12/18 04:29	7440-39-3	
Beryllium	<0.18	ug/L	1.0	0.18	1	04/11/18 07:09	04/12/18 04:29	7440-41-7	
Boron	<3.3	ug/L	11.0	3.3	1	04/11/18 07:09	04/12/18 04:29	7440-42-8	
Cadmium	<0.081	ug/L	1.0	0.081	1	04/11/18 07:09	04/12/18 04:29	7440-43-9	
Calcium	<69.8	ug/L	250	69.8	1	04/11/18 07:09	04/12/18 04:29	7440-70-2	
Chromium	<1.0	ug/L	3.4	1.0	1	04/11/18 07:09	04/12/18 04:29	7440-47-3	
Cobalt	<0.085	ug/L	1.0	0.085	1	04/11/18 07:09	04/12/18 04:29	7440-48-4	
Lead	<0.20	ug/L	1.0	0.20	1	04/11/18 07:09	04/12/18 04:29	7439-92-1	
Lithium	<0.14	ug/L	1.0	0.14	1	04/11/18 07:09	04/12/18 04:29	7439-93-2	
	<0.44	ug/L	1.5	0.44	1	04/11/18 07:09	04/12/18 04:29	1439-98-1	
Thallium	<0.32	ug/L	1.1	0.32	1	04/11/18 07:09	04/12/18 04:29	71102-49-2	
	<0.14		1.0	0.14		04/11/10 07:09	04/12/10 04:29	1440-20-0	
1410 Mercury	Analytical	wethod: EPA 7	470 Prepar	ation Meth	ua: EPA	N 747U			
Mercury	<0.13	ug/L	0.42	0.13	1	04/12/18 12:25	04/13/18 08:11	7439-97-6	

Project: 26216069 EDGEWATER I-43 CCR

Pace Project No.: 40167040

Sample: FIELD BLANK Lab ID: 40167040006 Collected: 04/03/18 14:45 Received: 04/05/18 14:02 Matrix: Water Results Units LOQ LOD DF CAS No. Parameters Prepared Analyzed Qual 2540C Total Dissolved Solids Analytical Method: SM 2540C **Total Dissolved Solids** <8.7 mg/L 20.0 8.7 1 04/10/18 16:40 9040 pH Analytical Method: EPA 9040 pH at 25 Degrees C 6.1 Std. Units 0.10 0.010 1 04/10/18 10:18 H6 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Chloride <0.50 mg/L 2.0 0.50 1 04/12/18 21:23 16887-00-6 Fluoride <0.10 mg/L 0.30 0.10 1 04/12/18 21:23 16984-48-8 Sulfate <1.0 mg/L 3.0 1.0 1 04/12/18 21:23 14808-79-8

Project:	26216069 ED	GEWATE	R I-43 CCR										
Pace Project No.:	40167040												
QC Batch:	285894			Analys	sis Metho	od: E	PA 7470						
QC Batch Method:	EPA 7470			Analys	sis Descr	ription: 7	470 Mercury	/					
Associated Lab Samples: 40167040005, 40167040006													
METHOD BLANK:	1672433			Ν	Matrix: V	Vater							
Associated Lab San	nples: 40167	040005, 4	0167040006										
			Blank	ĸ	Reporting								
Parameter Units			Resu	lt	Limit	Analyz	zed Qualifiers						
Mercury			ug/L		<0.13	0.42	04/13/18	07:37					
	NTROL SAMPL	E: 1672	434										
				Spike	L	CS	LCS	% Re	C				
Paran	neter		Units	Conc.	Re	sult	% Rec	Limit	mits Qualifiers				
Mercury			ug/L	5	5	5.0	101	8	5-115		-		
MATRIX SPIKE & M	IATRIX SPIKE I	DUPLICAT	E: 16724	35		1672436							
				MS	MSD								
		40	166928001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	er	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mercury		ug/L	<0.20	5		5 5.1	5.0	101	100	85-115	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 26216069 EDGEWATER I-43 CCR

Pace Project No.: 40167040

QC Batch:	28570)9		Analysis M	ethod:	EPA 6020	
QC Batch Method:	EPA 3	8010		Analysis De	escription:	6020 MET	
Associated Lab Samp	oles:	40167040001,	40167040002,	40167040003,	40167040004,	,40167040005,	40167040006

METHOD BLANK: 1671714 Matrix: Water

Associated Lab Samples: 40167040001, 40167040002, 40167040003, 40167040004, 40167040005, 40167040006

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Antimony	ug/L	<0.15	1.0	04/12/18 04:13	
Arsenic	ug/L	<0.28	1.0	04/12/18 04:13	
Barium	ug/L	<0.34	1.1	04/12/18 04:13	
Beryllium	ug/L	<0.18	1.0	04/12/18 04:13	
Boron	ug/L	<3.3	11.0	04/12/18 04:13	
Cadmium	ug/L	<0.081	1.0	04/12/18 04:13	
Calcium	ug/L	<69.8	250	04/12/18 04:13	
Chromium	ug/L	<1.0	3.4	04/12/18 04:13	
Cobalt	ug/L	<0.085	1.0	04/12/18 04:13	
Lead	ug/L	<0.20	1.0	04/12/18 04:13	
Lithium	ug/L	<0.14	1.0	04/12/18 04:13	
Molybdenum	ug/L	<0.44	1.5	04/12/18 04:13	
Selenium	ug/L	<0.32	1.1	04/12/18 04:13	
Thallium	ug/L	<0.14	1.0	04/12/18 04:13	

LABORATORY CONTROL SAMPLE: 1671715

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	ug/L	500	533	107	80-120	
Arsenic	ug/L	500	505	101	80-120	
Barium	ug/L	500	502	100	80-120	
Beryllium	ug/L	500	523	105	80-120	
Boron	ug/L	500	486	97	80-120	
Cadmium	ug/L	500	524	105	80-120	
Calcium	ug/L	5000	4990	100	80-120	
Chromium	ug/L	500	497	99	80-120	
Cobalt	ug/L	500	492	98	80-120	
Lead	ug/L	500	488	98	80-120	
Lithium	ug/L	500	490	98	80-120	
Molybdenum	ug/L	500	509	102	80-120	
Selenium	ug/L	500	535	107	80-120	
Thallium	ug/L	500	484	97	80-120	
MATRIX SPIKE & MATRIX SPIKE DUPI	_ICATE: 1671	716	167171	17		

Parameter	Units	12106686010 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Antimony	ug/L	0.80J	500	500	514	526	103	105	75-125	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 26216069 EDGEWATER I-43 CCR

Pace Project No.: 40167040

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1671716 1671717												
			MS	MSD								
		12106686010	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	ug/L	7.6	500	500	518	530	102	104	75-125	2	20	
Barium	ug/L	124	500	500	626	631	100	101	75-125	1	20	
Beryllium	ug/L	<0.18	500	500	425	422	85	84	75-125	1	20	
Boron	ug/L	6840	500	500	7260	7240	83	80	75-125	0	20	
Cadmium	ug/L	0.31J	500	500	485	496	97	99	75-125	2	20	
Calcium	ug/L	524000	5000	5000	512000	499000	-230	-486	75-125	3	20	P6
Chromium	ug/L	24.3	500	500	509	512	97	97	75-125	1	20	
Cobalt	ug/L	1.2	500	500	468	473	93	94	75-125	1	20	
Lead	ug/L	2.1	500	500	506	511	101	102	75-125	1	20	
Lithium	ug/L	15.8	500	500	450	447	87	86	75-125	1	20	
Molybdenum	ug/L	1.2J	500	500	511	517	102	103	75-125	1	20	
Selenium	ug/L	0.49J	500	500	523	538	104	107	75-125	3	20	
Thallium	ug/L	<0.14	500	500	515	519	103	104	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	26216069 EDGE	WATER I-43 CCR						
Pace Project No.:	40167040							
QC Batch:	285653	Analysis Method:			SM 2540C			
QC Batch Method:	SM 2540C		Analysis D	escription:	2540C Total Di	ssolved Solids		
Associated Lab San	nples: 40167040	001, 40167040002	, 40167040003,	40167040004,	40167040005			
METHOD BLANK:	1671427		Matri	x: Water				
Associated Lab San	nples: 40167040	001, 40167040002	, 40167040003,	40167040004,	40167040005			
			Blank	Reporting				
Paran	neter	Units	Result	Limit	Analyze	d Qualif	iers	
Total Dissolved Solid	ds	mg/L	<8.7	7 20	.0 04/10/18 10	6:16		
LABORATORY COM	NTROL SAMPLE:	1671428	0	1.00	1.00	04 D		
Paran	neter	Units	Spike Conc.	Result	% Rec	% Rec Limits	Qualifiers	
Total Dissolved Solie	ds	mg/L	610	582	95	80-120		
SAMPLE DUPLICA	TE: 1671429							
			40166946005	Dup		Max		
Paran	neter	Units	Result	Result	RPD	RPD	Qualifiers	
Total Dissolved Solie	ds	mg/L	332	2 38	50	5	5	
SAMPLE DUPLICA	TE: 1671430							
			40166988002	Dup		Max		
Paran	neter	Units	Result	Result	RPD	RPD	Qualifiers	
Total Dissolved Solie	ds	mg/L	2400	234	40	2	5	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 26216069 EDGE	WATER I-43 CCR							
Pace Project No.: 40167040								
QC Batch: 285658	QC Batch: 285658		Analysis Method: SM		SM 2540C			
QC Batch Method: SM 2540C		Analysis Description:		2540C Total Dis	ssolved Solids			
Associated Lab Samples: 40167040	0006							
METHOD BLANK: 1671457		Matri	x: Water					
Associated Lab Samples: 40167040	0006							
Parameter	Units	Blank Result	Reporting Limit	Analyze	d Qualif	ïers		
Total Dissolved Solids	mg/L	<8.	7 20	0.0 04/10/18 16	5:39			
LABORATORY CONTROL SAMPLE:	1671458							
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers		
Total Dissolved Solids	mg/L	610	552	90	80-120			
SAMPLE DUPLICATE: 1671459								
_		40167158002	2 Dup		Max			
Parameter	Units	Result	Result	RPD	RPD	Qualifiers		
Total Dissolved Solids	mg/L	296	0 29	30	1	5		
SAMPLE DUPLICATE: 1671460								
Parameter	Units	40167161003 Result	B Dup Result	RPD	Max RPD	Qualifiers		
Total Dissolved Solids	mg/L	60	0 5	596	1	5		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Qualifiers

QUALITY CONTROL DATA

Project: 26216069 EDGEWATER I-43 CCR

Pace Project No.: 40167040

QC Batch:	2855	85	Analysis Method:	EPA 9040
QC Batch Method:	EPA	9040	Analysis Description:	9040 pH
Associated Lab Sam	ples:	40167040001, 40167040002,	40167040003, 4016704000	4, 40167040005, 40167040006

SAMPLE DUPLICATE: 1671121						
		40167002006	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	(
pH at 25 Degrees C	Std. Units	6.8	6.9	0		20 H6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	26216069	FDGFWATER	I-43 CCR

Pace Projec	t No.:	40167040
,		

QC Batch:	2856	43
QC Batch Method:	EPA	300.0
Associated Lab Sam	ples:	40167040

00.0 Analysis Description: 300.0 IC Anions 40167040001, 40167040002, 40167040003, 40167040004

EPA 300.0

Analysis Method:

METHOD BLANK: 16	571381	Matrix: Water								
Associated Lab Sample	es: 40167040001, 40167040002,	40167040003,	40167040004							
		Blank	Reporting							
Paramete	or Linite	Recult	Limit							

Parameter	Units	Result	Limit	Analyzed	Qualifiers
Chloride	mg/L	<0.50	2.0	04/12/18 11:19	
Fluoride	mg/L	<0.10	0.30	04/12/18 11:19	
Sulfate	mg/L	<1.0	3.0	04/12/18 11:19	

LABORATORY CONTROL SAMPLE: 1671382

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L	20	21.9	109	90-110	
Fluoride	mg/L	2	2.2	110	90-110	
Sulfate	mg/L	20	21.7	109	90-110	

MATRIX SPIKE & MATRIX SPIK	MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1671383 1671384														
			MS	MSD											
		40167002004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max				
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual			
Chloride	mg/L	36.8	100	100	146	146	109	109	90-110	0	15				
Fluoride	mg/L	<0.50	10	10	11.4	11.5	114	115	90-110	0	15	MO			
Sulfate	mg/L	88.1	100	100	193	193	105	105	90-110	0	15				

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1671385 1671386													
		40467040004	MS Spiles	MSD Spiles	MC	MCD	MC	MCD	0/ Dee		Max		
		40167040004	Spike	Бріке	IVIS	MSD	IVIS	IVISD	% Rec		Max		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual	
Chloride	mg/L	1.7J	20	20	24.6	24.9	114	116	90-110	1	15	MO	
Fluoride	mg/L	0.50	2	2	2.8	2.8	113	115	90-110	1	15	M0	
Sulfate	mg/L	15.2	20	20	37.4	37.7	111	113	90-110	1	15	M0	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	26216069 EDGE	VATER I-43 CCR										
Pace Project No .:	40167040											
QC Batch:	285647		Analys	sis Method:	E	PA 300.0						
QC Batch Method:	EPA 300.0		Analys	sis Descript	tion: 30	0.0 IC Anic	ons					
Associated Lab Sar	mples: 40167040	005, 40167040006		·								
METHOD BLANK:	1671393			Matrix: Wa	ter							
Associated Lab Sar	mples: 40167040	005, 40167040006										
			Blanl	k R	eporting							
Parar	neter	Units	Resu	lt	Limit	Analyz	zed	Qualifiers				
Chloride		mg/L		<0.50		04/12/18	20:30		_			
Fluoride		mg/L		<0.10	0.30	04/12/18	20:30					
Sulfate		mg/L		<1.0	3.0	04/12/18	20:30					
		1671204										
LABORATORT CO	NTROL SAMPLE.	10/1394	Spike	LCS	5	LCS	% Rec	:				
Parar	neter	Units	Conc.	Resu	ılt	% Rec	Limits	Qı	alifiers			
Chloride		mg/L	20)	20.4	102	90)-110		-		
Fluoride		mg/L	2	2	2.0	99	90)-110				
Sulfate		mg/L	20)	20.3	101	90)-110				
			05		1671206							
MATRIX SPIRE & N	ATRIA SPIRE DUP	LICATE. 10/13	MS	MSD	107 1390							
		40167040005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	er Uni	ts Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/	 ′L21.8	20	20	43.6	43.0	109	106	90-110	1	15	
Fluoride	mg/	L 0.63	2	2	2.8	2.8	111	107	90-110	2	15	MO
Sulfate	mg/	Ľ 129	200	200	335	336	103	103	90-110	0	15	
MATRIX SPIKE & M		LICATE: 16713	97		1671398							
			MS	MSD								
		40167187002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	er Uni	ts Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/	′L 466	400	400	868	881	100	104	90-110	1	15	
Fluoride	mg/	′L <2.0	40	40	41.6	42.7	104	107	90-110	2	15	
Sulfate	mg/	L 123	400	400	535	544	103	105	90-110	2	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 26216069 EDGEWATER I-43 CCR

Pace Project No.: 40167040

Sample: MW-305 PWS:	Lab ID: 401670400 Site ID:	005 Collected: 04/03/18 11:01 Sample Type:	Received:	04/05/18 14:02	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.597 ± 0.436 (0.488) C:NA T:79%	pCi/L	04/25/18 20:5	1 13982-63-3	
Radium-228	EPA 904.0	0.730 ± 0.410 (0.750) C:73% T:84%	pCi/L	04/27/18 14:14	4 15262-20-1	
Total Radium	Total Radium	1.33 ± 0.846 (1.24)	pCi/L	05/01/18 12:3	7 7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project:	26216069 EDGE	WATER I-43 CO	R				
Pace Project No .:	40167040						
QC Batch:	294497		Analysis Method:	EPA 903.1			
QC Batch Method:	EPA 903.1		Analysis Description:	m-226			
Associated Lab San	nples: 40167040	005					
METHOD BLANK:	1441725		Matrix: Water				
Associated Lab San	nples: 40167040	005					
Paran	neter	Act ±	Jnc (MDC) Carr Trac	Units	Analyzed	Qualifiers	
Radium-226		0.232 ± 0.361	(0.625) C:NA T:80%	pCi/L	04/25/18 20:36	-	-

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project:	26216069 EDGE	VATER I-43 CO	R				
Pace Project No.:	40167040						
QC Batch:	294499		Analysis Method:	EPA 904.0			
QC Batch Method:	EPA 904.0		Analysis Description:	904.0 Radiu	m 228		
Associated Lab Sar	nples: 40167040	005					
METHOD BLANK:	1441726		Matrix: Water				
Associated Lab Sar	nples: 40167040	005					
Parar	neter	Act ±	Jnc (MDC) Carr Trac	Units	Analyzed	Qualifiers	
Radium-228		0.258 ± 0.321	(0.681) C:81% T:89%	pCi/L	04/27/18 14:14		-

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 26216069 EDGEWATER I-43 CCR

Pace Project No.: 40167040

DEFINITIONS

Act - Activity

Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval) (MDC) - Minimum Detectable Concentration Trac - Tracer Recovery (%) Carr - Carrier Recovery (%) DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot. ND - Not Detected at or above LOD. J - Estimated concentration at or above the LOD and below the LOQ. LOD - Limit of Detection adjusted for dilution factor and percent moisture. LOQ - Limit of Quantitation adjusted for dilution factor and percent moisture. S - Surrogate 1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration. Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values. LCS(D) - Laboratory Control Sample (Duplicate) MS(D) - Matrix Spike (Duplicate) **DUP - Sample Duplicate RPD** - Relative Percent Difference NC - Not Calculable. SG - Silica Gel - Clean-Up

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval).

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

- PASI-G Pace Analytical Services Green Bay
- PASI-PA Pace Analytical Services Greensburg

ANALYTE QUALIFIERS

- H6 Analysis initiated outside of the 15 minute EPA required holding time.
- M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
- P6 Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 26216069 EDGEWATER I-43 CCR

Pace Project No.: 40167040

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40167040001	MW-301	EPA 3010	285709	EPA 6020	285797
40167040002	MW-302	EPA 3010	285709	EPA 6020	285797
40167040003	MW-303	EPA 3010	285709	EPA 6020	285797
40167040004	MW-304	EPA 3010	285709	EPA 6020	285797
40167040005	MW-305	EPA 3010	285709	EPA 6020	285797
40167040006	FIELD BLANK	EPA 3010	285709	EPA 6020	285797
40167040005	MW-305	EPA 7470	285894	EPA 7470	285949
40167040006	FIELD BLANK	EPA 7470	285894	EPA 7470	285949
40167040001	MW-301				
40167040002	MW-302				
40167040003	MW-303				
40167040004	MW-304				
40167040005	MW-305				
40167040005	MW-305	EPA 903.1	294497		
40167040005	MW-305	EPA 904.0	294499		
40167040005	MW-305	Total Radium Calculation	296594		
40167040001	MW-301	SM 2540C	285653		
40167040002	MW-302	SM 2540C	285653		
40167040003	MW-303	SM 2540C	285653		
40167040004	MW-304	SM 2540C	285653		
40167040005	MW-305	SM 2540C	285653		
40167040006	FIELD BLANK	SM 2540C	285658		
40167040001	MW-301	EPA 9040	285585		
40167040002	MW-302	EPA 9040	285585		
40167040003	MW-303	EPA 9040	285585		
40167040004	MW-304	EPA 9040	285585		
40167040005	MW-305	EPA 9040	285585		
40167040006	FIELD BLANK	EPA 9040	285585		
40167040001	MW-301	EPA 300.0	285643		
40167040002	MW-302	EPA 300.0	285643		
40167040003	MW-303	EPA 300.0	285643		
40167040004	MW-304	EPA 300.0	285643		
40167040005	MW-305	EPA 300.0	285647		
40167040006	FIELD BLANK	EPA 300.0	285647		

	San	Fax:	Email #2:	Email #1:	Transmit Prelin	(Rush TA	Rush Turn					06	005	004	603	002	001	PACE LAB #		Data Packag	PO #:	Sampled By (S	Sampled By (P	Project State:	Project Name:	Project Numbe	Phone:	Project Contac	Branch/Locatic	Company Nam	
	iples on HOLD are subject to It pricing and release of Itability		n man man man an a		Rush Results by (complete what you with	T subject to approval/surcharge	around Time Requested - Prelin			re feri de de la companya de la comp	sen fra men and a second a second second a second as second	Field Black	mw- 305	mu - 304	Mut-303	Mw-302	MW-301	CLIENT FIELD ID	Level IV DV NOT needed on		0	Ign): Car Stat	rint): Gam Stirke(e L	Allert Edwarter 2-4	r: 262/6069		" Tom Karowski	m: Madisia WI	(Please Print Clearly)	
	Relinquished By:	Relinquished By:	F Thur	Relivering States	ant): MANU Th) Sary Xh	1S Relinquished By:					4/3/18 H45 W	4/3/18 1101 Gw	43/18 0912 GW	m9 7211 20/5/h	4/3/10/1248 GW	4/3/18 1151 60	SI = Sludge WP = Wipe COLLECTION MATRIX DATE TIME	Generation C = Charcoal GW = Ground Water O = Oil SW = Surface Water S = Soil WW = Waste Water	A = Air W = Water 3 = Biota DW = Drinking Water	Regulatory Program:		PRESERVATION (CODE)*	FILTERED? (YES/NO)	H=Sodium Bisul	A=None B=t					
			, Y QU		- man	hed	+1					X	×	×	X	X	X	An Chlo Sulk	nite nite	s Req Fluc TD>	ueste md	d	Pick A	V NIA	fate Solution	HCL C=H2SO4 [HAIN		Pace Anal	J	
	Date/Time:	Date/Time:	415118	Datertime	4/5/18	4/5/18	Date/Time;			:		X	XXX	XX	XX	X X	XX	povi	nca PH		** **		I A D	x x	-Sodium Thiosulfate)=HNO3 E=DI Wa	OFCU		vtical *		
	Re	Ke	Har .	Re	11:05	0800	Re					×	メ					Antin Barin	nony, In Ba	Arsa Arsa Yllinin	nic, n <u>Cade</u>	K NIUM d	0	2 2	J=Other	ter F=Methanol	ISTOR	2	Š	2 10	en de la compañía de
	ceived By:	ceived by:	Mean	ceived By:		TH AM	ceived By:					XX	メス					<u>Lithi</u> Moly Tha	úm, A Ibden 11:un	nercu	, rea vy clenu	ám	n n	א א א		G=NaOH	Y			N: 6, 2-607-170	
	Date/Time:	Date/11me:	Sperce 415/18	Date/Time:	The ARX	Mart mart	Se Darge/Jinkes/	,										COMMENTS	Invoice To Phone:		Invoice To Address:	Invoice To Company:	Invoice To Contact:		Mail To Address:	Mail To Company:	Mail To Contact:	Quote #:		T REGION 10 WI: 920-469-2436	
Version 6.0 0074/06 OPICINAI	Present Not Present Intact Not Intact	Cooler Custody Seal	(/ U/X Sample Receipt pH	C TO = duel temp	TA TA	040L910h 523	PACE Project No.											(Lab Use Only)		61587	2830 Pairs Pr	SCS Engineers	3	<i>p</i> .				Ρα	\$ LOLOIOL	Page 1 of f 25	

C019a(27Jun2006)
AG5U 10	AG45 12 AG4U 12	AG1U 1 1 AG1H 1 1	Exceptio	020	1610	018	017	016	015	014	013	012	011	010	600	800	007	900	005	004	003	002	001	Lab #			7
	0 mL	iter ar	ns to p												┢									AG1H		1	
amber amber	ambei	nber (nber (resen														\vdash				$\left \right $		\vdash	AG4S			
glass glass	glass glass	glass glass H	vation				\square				-		┢		\vdash		┢──				+		┢	AG4U	Glas		
unpre H2SO	H2SC unpre	10	check												┢						\vdash		\square	AG5U	Š		
4 S	3° 4	2	:: V0/								-		1				 				┢			AG2S		J	
			, Coli												F						T		\square	BG3U			
BP BP	BP BP	3 8 8	form,							Section of the sectio													1	BP1U			1
30 °G	ЗС Х	Ň Ž Č	TOC,																	Sec. 2				BP2N]	
250 n 250 n	500 n 250 n	1 lite 500 n	TOX		07070																			BP2Z	-		
nL pla	nL pla nL pla	r plast nL pla	тон,															ø	لع	ø	نو	မာ	ຍ	BP3U	Plast		
stic N stic H	stic N stic ur	tic unj stic Hi	0&G,																				· · · · · ·	врзс	īc		
aOH NO3	aOH, ;	NO3	M N																_		_			ВРЗN			abor.
	Znact	ř.	RO, P																					BP3S			į
			henoli																					DG9A			Ľ
VGS	VG		cs, Ot																					DG9T			
ĕž	ž č	4 F	her:																					VG9U	Via		Ę
40 mL 40 mL	40 m. 1	40 mL											L											VG9H	slt		
clear	. clear clear	ambe											<u> </u>											VG9M			0 9 7
vial N vial D	vial u	er asco er Na	Heads																					VG9D			1000
ЛеОН	npres CL	orbic Thio	pace																					JGFU			Vauon
			in VO,																					WGFU	Jars		
			A Viak																					WPFU	L		aujus
SP5	MP	VG	s (>6n			調整に																		SP5T	Ge		steru).
	Ļ		י : (mר																					ZPLC	nera		
120 m ziploc	4 oz p	4 oz a 4 oz ci	⊡Yes ເ																າ					GN			
L plas	lastic	mber lear ja	J ONC																	No.				VOA Vials	(>6m	m) *	
tic Na	jar un	jar un Ir unpi	A.	·																				H2SO4 pH	≤2		
Thios	pres	pres res	lf yes																					NaOH+Zn .	Act p⊦	≥9	
sulfate			look																					NaOH pH ≥	212		
(2			in head															2	2	12	~	15	\$	HNO3 pH ≤	\$2		t
			space c																	$\mathcal{A}_{\mathcal{A}}$				pH after ad	justed		
			solumn	2.5/5/10	2.5 / 5 / 10	2.5/5/10	2.5 / 5 / 10	2.5/5/10	2.5 / 5 / 10	2.5/5/10	2.5 / 5 / 10	2.5/5/10	2.5 / 5 / 10	2.5/5/10	2.5/5/10	2.5/5/10	2.5/5/10	2.5/5/10	2.5 / 5 / 10	2.5/5/10	2.5 / 5 / 10	2.5/5/10	2.5 / 5 / 10	(mL)	Volume		

F-GB-C-046-Rev.02 (29Mar2018) Sample Preservation Receipt Form

Page 1 of 2

Pace Analytical Services, LLC 1241 Bellevue Street, Suite Green Bay, WI 54392 24 X Date/ Page

Client Name:

Sample Preservation Receipt Form

Project #

1016

Pace Analytical"	Doc Sample Condit	ument Name: ion Upon Receipt (SCUR)	Document Revised: 31Jan2018
	Do	cument No.:	Issuing Authority
1241 Bellevue Street, Green Bay, WI 5430	02 F-G	B-C-031-rev.06	Pace Green Bay Quality Office
Sample	Condition Up	on Receipt Form (§	SCUR)
		Project #	104.40167040
Client Name: <u>SCS</u>	Wester all concerning and a second		
Courier: CS Logistics Fed Ex Speed	lee TUPS T	Waltco	
Client Pace Other:	·		167640
Tracking #:			
Custody Seal on Samples Present: Ves	no Seals inta		
Packing Material:	he Para E No		
Thermometer Used SR - M/A	Type of Ice: Allo	t Blue Day Nene	
Cooler Temperature Uncorr: MOL /Corr:	Type of ice. We	C blue bly None 1/	Samples on ice, cooling process has begun
Temp Blank Present: ves Vno	Biologica	Tissue is Frozen:	Person examining contents:
Temp should be above freezing to 6°C. Biota Samples may be received at ≤ 0°C.	-	. ,-	Date://\S
Chain of Custody Present:	Øyes 🗆 No 🗆 N/	A 1.	
Chain of Custody Filled Out:		A 2.	
Chain of Custody Relinquished:		A 3.	
Sampler Name & Signature on COC:	ZYes No N/	A 4.	
Samples Arrived within Hold Time:	ØYes □No □N/	A 5.	
- VOA Samples frozen upon receipt	□Yes □No	Date/Time:	
Short Hold Time Analysis (<72hr):		A 6.	
Rush Turn Around Time Requested:		4 7.	
Sufficient Volume: DYes DNo DN/A MS/MS	D 🗆 Yes Dino 🗆 N/	A 8.	
Correct Containers Used:	ØYes □No □N/	9.	
-Pace Containers Used:	ØYes □No □N/		
-Pace IR Containers Used:		4	
Containers Intact:		A 10.	
Filtered volume received for Dissolved tests		11.	
Sample Labels match COC:		12.	
-Includes date/time/ID/Analysis Matrix:			
Trip Blank Present:	□Yes QNo □N/	13.	
Trip Blank Custody Seals Present	□Yes □No ØN/		
Pace Trip Blank Lot # (if purchased):	_	1	
Person Contacted	Date	/Time [.]	d, see attached form for additional comments
Comments/ Resolution:			

	A - X	~ .	1.1-1.0
Project Manager Review: /	12 Or	DM	Date: 415118

A2 October 2018 Detection Monitoring

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

October 23, 2018

Meghan Blodgett SCS ENGINEERS 2830 Dairy Drive Madison, WI 53718

RE: Project: 25214069.19 EDGEWATER I-43 CCR Pace Project No.: 40177175

Dear Meghan Blodgett:

Enclosed are the analytical results for sample(s) received by the laboratory on October 05, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Day Milent

Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: Tom Karwoski, SCS ENGINEERS Nicole Kron, SCS ENGINEERS Jeff Maxted, ALLIANT ENERGY Marc Morandi, ALLIANT ENERGY

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: 25214069.19 EDGEWATER I-43 CCR

Pace Project No.: 40177175

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 Virginia VELAP ID: 460263 South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: 25214069.19 EDGEWATER I-43 CCR

Pace Project No.: 40177175

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40177175001	MW-301	Water	10/04/18 10:26	10/05/18 15:35
40177175002	MW-302	Water	10/04/18 11:16	10/05/18 15:35
40177175003	MW-303	Water	10/04/18 12:06	10/05/18 15:35
40177175004	MW-304	Water	10/04/18 09:26	10/05/18 15:35

SAMPLE ANALYTE COUNT

Project: 25214069.19 EDGEWATER I-43 CCR

Pace Project No.: 40177175

Sample ID	Method	Analysts	Analytes Reported
MW-301	EPA 6020	KXS	2
		AXL	7
	SM 2540C	ТМК	1
	EPA 9040	ALY	1
	EPA 300.0	HMB	3
MW-302	EPA 6020	KXS	2
		AXL	7
	SM 2540C	ТМК	1
	EPA 9040	ALY	1
	EPA 300.0	HMB	3
MW-303	EPA 6020	KXS	2
		AXL	7
	SM 2540C	ТМК	1
	EPA 9040	ALY	1
	EPA 300.0	HMB	3
MW-304	EPA 6020	KXS	2
		AXL	7
	SM 2540C	ТМК	1
	EPA 9040	ALY	1
	EPA 300.0	HMB	3
	Sample ID MW-301 MW-302 MW-303 MW-304	Sample ID Method MW-301 EPA 6020 SM 2540C EPA 9040 EPA 300.0 EPA 6020 MW-302 SM 2540C EPA 9040 EPA 6020 MW-303 SM 2540C EPA 9040 EPA 300.0 MW-303 EPA 6020 MW-304 SM 2540C EPA 9040 EPA 6020 SM 2540C EPA 9040 EPA 6020 SM 2540C SM 2540C EPA 9040 EPA 9040 EPA 9040 EPA 9040 EPA 300.0 EPA 6020 SM 2540C EPA 9040 EPA 300.0 EPA 9040 EPA 6020 MW-304 EPA 6020	Sample ID Method Analysts MW-301 EPA 6020 KXS SM 2540C TMK EPA 9040 ALY EPA 300.0 HMB MW-302 EPA 6020 KXS MW-303 EPA 6020 KXS MW-303 EPA 6020 KXS MW-303 EPA 6020 KXS MW-304 EPA 6020 KXS MW-305 EPA 6020 KXS MW-303 EPA 6020 KXS MW-303 EPA 6020 KXS MW-304 EPA 9040 ALY EPA 9040 ALY EPA 300.0 MW-304 EPA 9040 ALY EPA 9040 ALY EPA 9040 MW-304 EPA 6020 KXS AXL SM 2540C TMK EPA 9040 ALY AXL SM 2540C TMK AXL EPA 9040 ALY EPA 9040 ALY EPA 9040 ALY EPA 9040 ALY

Project: 25214069.19 EDGEWATER I-43 CCR

Pace Project No.:

.: 40177175

Sample: MW-301	Lab ID:	40177175001	Collected:	10/04/18	3 10:26	Received: 10/	05/18 15:35 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	tion Meth	od: EPA	3010			
Boron Calcium	120 43700	ug/L ug/L	11.0 250	3.3 69.8	1 1	10/15/18 06:38 10/15/18 06:38	10/23/18 03:49 10/18/18 20:16	7440-42-8 7440-70-2	
Field Data	Analytical	Method:							
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	8.15 387 0.2 -97 136.6 650.71 9.5	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1 1		10/04/18 10:26 10/04/18 10:26 10/04/18 10:26 10/04/18 10:26 10/04/18 10:26 10/04/18 10:26 10/04/18 10:26	7782-44-7	
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	260	mg/L	20.0	8.7	1		10/09/18 16:00		
9040 pH	Analytical	Method: EPA 9	040						
pH at 25 Degrees C	7.2	Std. Units	0.10	0.010	1		10/09/18 09:26		H6
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride Fluoride Sulfate	4.1 0.61 8.8	mg/L mg/L mg/L	2.0 0.30 3.0	0.50 0.10 1.0	1 1 1		10/17/18 01:18 10/17/18 01:18 10/17/18 01:18	16887-00-6 16984-48-8 14808-79-8	
Sample: MW-302	Lab ID:	40177175002	Collected:	10/04/18	3 11:16	Received: 10/	05/18 15:35 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	tion Meth	od: EPA	3010			
Boron Calcium	115 28200	ug/L ug/L	11.0 250	3.3 69.8	1 1	10/15/18 06:38 10/15/18 06:38	10/23/18 03:56 10/18/18 20:36	7440-42-8 7440-70-2	
Field Data	Analytical	Method:							
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	8.08 433 0.3 60 23.32 650.70 10.1	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1 1		10/04/18 11:16 10/04/18 11:16 10/04/18 11:16 10/04/18 11:16 10/04/18 11:16 10/04/18 11:16 10/04/18 11:16	7782-44-7	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	250	mg/L	20.0	8.7	1		10/09/18 16:01		

Project: 25214069.19 EDGEWATER I-43 CCR

Pace Project No.: 40177175

Sample: MW-302	Lab ID:	40177175002	Collected:	10/04/18	8 11:16	Received: 10/	05/18 15:35 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
9040 pH	Analytical	Method: EPA 9	040						
pH at 25 Degrees C	7.9	Std. Units	0.10	0.010	1		10/09/18 09:28		H6
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride Fluoride Sulfate	4.5 0.71 19.6	mg/L mg/L mg/L	2.0 0.30 3.0	0.50 0.10 1.0	1 1 1		10/17/18 02:07 10/17/18 02:07 10/17/18 02:07	16887-00-6 16984-48-8 14808-79-8	
Sample: MW-303	Lab ID:	40177175003	Collected:	10/04/18	8 12:06	Received: 10/	05/18 15:35 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	tion Meth	od: EPA	3010			
Boron Calcium	87.3 31600	ug/L ug/L	11.0 250	3.3 69.8	1 1	10/15/18 06:38 10/15/18 06:38	10/23/18 04:03 10/18/18 20:43	7440-42-8 7440-70-2	
Field Data	Analytical	Method:							
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	8.04 500 0.2 -105 17.2 650.70 10	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1		10/04/18 12:06 10/04/18 12:06 10/04/18 12:06 10/04/18 12:06 10/04/18 12:06 10/04/18 12:06 10/04/18 12:06	7782-44-7	
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	270	mg/L	20.0	8.7	1		10/09/18 16:01		
9040 pH	Analytical	Method: EPA 9	040						
pH at 25 Degrees C	7.9	Std. Units	0.10	0.010	1		10/09/18 09:29		H6
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride Fluoride Sulfate	4.4 0.56 26.1	mg/L mg/L mg/L	2.0 0.30 3.0	0.50 0.10 1.0	1 1 1		10/17/18 02:19 10/17/18 02:19 10/17/18 02:19	16887-00-6 16984-48-8 14808-79-8	
Sample: MW-304	Lab ID:	40177175004	Collected:	10/04/18	8 09:26	Received: 10/	05/18 15:35 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	tion Meth	od: EPA	3010			
Boron Calcium	90.2 19400	ug/L ug/L	11.0 250	3.3 69.8	1 1	10/15/18 06:38 10/15/18 06:38	10/23/18 04:10 10/18/18 20:50	7440-42-8 7440-70-2	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 25214069.19 EDGEWATER I-43 CCR

Pace Project No.:

40177175

Sample: MW-304	Lab ID:	4017717500	4 Collecte	d: 10/04/18	8 09:26	Received: 10	/05/18 15:35 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Field Data	Analytica	I Method:							
Field pH	8.1	Std. Units			1		10/04/18 09:26		
Field Specific Conductance	400	umhos/cm			1		10/04/18 09:26		
Oxygen, Dissolved	0.2	mg/L			1		10/04/18 09:26	7782-44-7	
REDOX	-81	mV			1		10/04/18 09:26		
Turbidity	3	NTU			1		10/04/18 09:26		
Static Water Level	652.26	feet			1		10/04/18 09:26		
Temperature, Water (C)	9.5	deg C			1		10/04/18 09:26		
2540C Total Dissolved Solids	Analytica	I Method: SM 2	2540C						
Total Dissolved Solids	224	mg/L	20.0	8.7	1		10/09/18 16:01		
9040 pH	Analytica	I Method: EPA	9040						
pH at 25 Degrees C	7.9	Std. Units	0.10	0.010	1		10/09/18 09:30		H6
300.0 IC Anions 28 Days	Analytica	I Method: EPA	300.0						
Chloride	1.8J	mg/L	2.0	0.50	1		10/17/18 02:31	16887-00-6	
Fluoride	0.50	mg/L	0.30	0.10	1		10/17/18 02:31	16984-48-8	
Sulfate	13.5	mg/L	3.0	1.0	1		10/17/18 02:31	14808-79-8	

Project:	25214069.19 ED	GEWATER I-43 CC	R									
Pace Project No.:	40177175											
QC Batch:	303129		Analysi	is Method:	E	PA 6020						
QC Batch Method:	EPA 3010		Analysi	is Descript	tion: 6	020 MET						
Associated Lab Sa	mples: 4017717	5001, 40177175002	, 401771750	003, 4017	7175004							
METHOD BLANK:	1770724		N	latrix: Wa	ter							
Associated Lab Sa	mples: 4017717	5001, 40177175002	, 401771750	003, 4017	7175004							
			Blank	R	eporting							
Para	meter	Units	Result	t	Limit	Analyz	ed	Qualifiers				
Boron		ug/L		<3.3	11.0	10/23/18	01:46					
Calcium		ug/L	<	69.8	250) 10/18/18	17:12					
LABORATORY CO	NTROL SAMPLE:	1770725										
			Spike	LCS	5	LCS	% Re	C				
Para	meter	Units	Conc.	Resu	ılt	% Rec	Limit	s G	ualifiers			
Boron		ug/L	500		461	92	8	0-120		-		
Calcium		ug/L	5000		5090	102	8	0-120				
MATRIX SPIKE & I	MATRIX SPIKE DU	IPLICATE: 17707	26		1770727							
			MS	MSD								
		40177434002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramet	er U	nits Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	u	g/L 73.0	500	500	516	509	89	87	75-125	1	20	
Calcium	u	g/L 38500	5000	5000	46300	46400	156	157	75-125	0	20	P6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	25214069.19 ED0	GEWATER I-43 CCF	र				
Pace Project No.:	40177175						
QC Batch:	302650		Analysis Me	ethod: S	SM 2540C		
QC Batch Method:	SM 2540C		Analysis De	escription: 2	540C Total Di	ssolved Solids	
Associated Lab San	nples: 40177175	6001, 40177175002	, 40177175003,	40177175004			
METHOD BLANK:	1767760		Matrix	: Water			
Associated Lab San	nples: 40177175	6001, 40177175002	, 40177175003,	40177175004			
-			Blank	Reporting			
Paran	neter	Units	Result	Limit	Analyze	d Qualif	
Total Dissolved Soli	ds	mg/L	<8.7	20.0) 10/09/18 1	5:57	
LABORATORY COM	NTROL SAMPLE:	1767761					
_			Spike	LCS	LCS	% Rec	
Paran	neter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Total Dissolved Soli	ds	mg/L	615	554	90	80-120	
SAMPLE DUPLICA	TE: 1767762						
			40177100001	Dup		Max	
Paran	neter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Soli	ds	mg/L	460	444	ŀ	4	5
	TE: 1767763						
			40177175001	Dup		Max	
Paran	neter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Soli	ds	mg/L	260	258	3	1	5

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 25214069.19 EDGEWATER I-43 CCR

Pace Project No.: 40177175

QC Batch:	302556	Analysis Method:	EPA 9040				
QC Batch Method:	EPA 9040	Analysis Description:	9040 pH				
Associated Lab Samples: 40177175001, 40177175002, 40177175003, 40177175004							
SAMPLE DUPLICATE: 1767295							

SAMPLE DUPLICATE. 1707295		40176756001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
pH at 25 Degrees C	Std. Units	8.0	8.1	0	2	0 H6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

EPA 300.0

300.0 IC Anions

Project: 25214069.19 EDGEWATER I-43 CCR

Pace Project No.:	40177175
-------------------	----------

QC Batch:	30266	65	Analysis Method:
QC Batch Method:	EPA 3	300.0	Analysis Description:
Associated Lab Samp	oles:	40177175001, 40	0177175002, 40177175003, 40177175004

METHOD BLANK: 17678	40	Matrix:	Water		
Associated Lab Samples:	40177175001, 40177175002, 4	0177175003, 4	0177175004		
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Chloride	mg/L	<0.50	2.0	10/16/18 20:50	
Fluoride	mg/L	<0.10	0.30	10/16/18 20:50	
Sulfate	mg/L	<1.0	3.0	10/16/18 20:50	

LABORATORY CONTROL SAMPLE: 1767841

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L	20	19.6	98	90-110	
Fluoride	mg/L	2	2.0	101	90-110	
Sulfate	mg/L	20	19.7	98	90-110	

MATRIX SPIKE & MATRIX SPIKI	E DUPLI	CATE: 176784	42		1767843							
			MS	MSD								
		40177030001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	236	400	400	632	630	99	98	90-110	0	15	
Fluoride	mg/L	<2.0	40	40	41.4	41.3	103	103	90-110	0	15	
Sulfate	mg/L	229	400	400	618	616	97	97	90-110	0	15	

MATRIX SPIKE & MATRIX SPIK	E DUPLIC	CATE: 176784	14		1767845							
			MS	MSD								
		40177177001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	22.7	20	20	42.7	41.9	100	96	90-110	2	15	
Fluoride	mg/L	0.58	2	2	2.6	2.5	99	97	90-110	2	15	
Sulfate	mg/L	130	200	200	330	329	100	100	90-110	0	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALIFIERS

Project: 25214069.19 EDGEWATER I-43 CCR

Pace Project No.: 40177175

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor and percent moisture.

LOQ - Limit of Quantitation adjusted for dilution factor and percent moisture.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- H6 Analysis initiated outside of the 15 minute EPA required holding time.
- P6 Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 25214069.19 EDGEWATER I-43 CCR

Pace Project No.: 40177175

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40177175001	 MW-301	EPA 3010	303129	EPA 6020	303240
40177175002	MW-302	EPA 3010	303129	EPA 6020	303240
40177175003	MW-303	EPA 3010	303129	EPA 6020	303240
40177175004	MW-304	EPA 3010	303129	EPA 6020	303240
40177175001	MW-301				
40177175002	MW-302				
40177175003	MW-303				
40177175004	MW-304				
40177175001	MW-301	SM 2540C	302650		
40177175002	MW-302	SM 2540C	302650		
40177175003	MW-303	SM 2540C	302650		
40177175004	MW-304	SM 2540C	302650		
40177175001	MW-301	EPA 9040	302556		
40177175002	MW-302	EPA 9040	302556		
40177175003	MW-303	EPA 9040	302556		
40177175004	MW-304	EPA 9040	302556		
40177175001	MW-301	EPA 300.0	302665		
40177175002	MW-302	EPA 300.0	302665		
40177175003	MW-303	EPA 300.0	302665		
40177175004	MW-304	EPA 300.0	302665		

C019a(27Jun2		2. 17. 	Fav.	Email #2:	Email #1:	Transmit Prelim	(Rush TA	Rush Tum		Net-lega (1999)	94105-6578-2549 9410-941-94		and a second					CCAL	ŝ	602	l and	PACE LAB #	None of the second s		Data Packag	PO#:	Sampled By (S	Sampled By (P	Project State:	Project Name:	Project Numb	Phone:	Project Conta	Branch/Locati	Company Nan	
2006)	i pricting and release of Hability monocommencements of Hability	environenseerenvironenvironenvironenvironenvironenvironenvironenvironenvironenvironenvironenvironenvironenviron Verland Aviv FAAVIII vara eritetaarte fa	وللمرامع المراسية والمراسية والمراسية والمراسية والمرامية والمرامية والمرامية والمرامعة والمرامية والمرامي	والمتعاونة والأرابة فالمحمد محمد محارب المسابقة المرابعة والمناسبة محاربها والمحاربة والمحاربة والمحاربة والمحمد ومحمد ومحمد والمحمد		Rush Results by (complete what you	T subject to approval/surcharg	around Time Requested - Prel	يعدينهم والانترابي والمارية والمعارية والمعارية والمحاولة والمحاولة والمحاولة والمحاولة والمحاولة والمحاولة والمحاولة			na na porte de la constanción de la con	new a weather a start of the star	ne ne volgen en de la constante en la constante	والمعاومة ومعاومة ومعاومة والمعاونة والمعاونة والمعاونة والمعارجة والمعاومة والمعاومة والمعاولة والمعاولة والمع	n fer en an an Arman Arman Barran Barran Anna an Barran Anna Anna Anna Anna Anna Anna Anna	والتبارة ووجر بالإيران والمراجع	mw 304	MW - 303	Mw - 302	MW-301	CLIENT FIELD ID	your sample	Level IV IN (billable)	ie) On your sample		Sign): (Samy Stute	nm): Gary Stockel	υT	Forewalter I-4	er: 25214067, 19	608-345-92	at Mey Blodget	ion: Madisér UI	no: SS Engineer	(Please Print Clearly)
	ingininginingi by.		Relinquished By:	v Mithematica Anno 1999 - Anno 1990	Relinquished By:	want):	e Carlo	menodemenogrammenosemenosemenosemenosemenosemenosemenosemenosemenosemenosemenosemenosemenosemenosemenosemenose MINS Realinguistante revensionemenosemenosemenosemenosemenosemenosemenosemenosemenosemenosemenosemenosemenosemen	**************************************									194/18 0926 G	10/4/18 ROC G	5 7111 BI/H/4	10/1/18 1026 G	COLLECTION M	S = Soil WW = Wasts Wa SI = Sludge WP = Wipe	C = Charcoal GW = Ground W O = Oil SW = Surface W	A = Air W = Water	Program:		PRESERVA (CODE)	FILTEREI (YES/NC	B St H=Sodiu	A=10ne	27	+			
		الا کلید به کلید و این است. این از معارضه این	Da	vo đenoven Advizana je pravljava je u pravljava je pravljava je do je u prava u pravljava bate se na se sa sa s		NS Man -	tichel 10											3 × ×	e X X	3 × ×	τές X X	ch F	10 74		Reg Reg le	ll Jeste	d	TION Prick A A	N N NIA LO	m Bisulfate Solution (=Sod	B=HCL C=H2SO4 D=HN	CHAIN O		Face Analyn		
	(IG/) (ITTE) Annonexemptementations	n and a second and the second seco	ie/ime:		ster Time:	1281 X-12	0080 31/5/											× × ×	× × ×	$ \lambda \times x $		S E C	su Son Pal	lla on Cu	te in			ADD	NRN	ium Thiosulfate J=Other	O3 E=DI Water F=Methan	FCUSTO			* **	
	eceived By:	Bahd kabalang pangang pangang sa kang kang kang kang kang kang kang kan	leceived By:		Weaved By	leceived ay	NW SU						1					× ×	××	× ×	× 入		р1 Т1	+ 25				AA	NN		IOI G=NaOH	20	NIC 12		MN: 612-607-1700 V	UPPER MIDWEST RE
	Oate/Time:	علي معالمة المراجعة المراجعة المراجعة المراجعة المحاصر معاملة معامل المراجعة المراجعة المراجعة المحاصر المحاصر	Date/Time;		Data/Tirca	Date/Tithe:	211901 - Mar		والمرابع ومواقفة ومواقفة ومحافظة المراجعة أعداء المراجع ومحافظ والمراجع والمراجعة والمراجعة والمراجعة ومحافظ													COMMENTS	CLIENT	Invoice To Phone:		Invoice To Address:	Invoice To Company:	Invoice To Contact:		Mail To Address:	Mail To Company:	Mail To Contact:	Quote #:		NI: 920-469-2436	GION
ANDRO ANDRO anterna na usea	Present / N Intact / N	Cooler Cu	E A		Receipt Temp =	57-10-1-	The Charles	act 27.42	n Bry Law Room and Anna and Anna and Anna Anna Anna An	adara fan ar se an an an ar an	۵۰٬۰۰۰ کار این از این از این	ى مىيە بىلەركىيىلىغىنىيە بىلەركىيىلىغىنىيە بىلەركىيىلىغانىيە بىلەركىيىلىغانىيە بىلەركىيىلىغانىيە بىلەركىيىلىغىن	میں بنیان میں اور						מות איז			(Lab Use Only)	LAB COMMENTS		(V)adise c	142,0585	SS Engine							7117117	n .	Page
	loCr/sent lot intact	stody Seal	djusted	leceipt pH	° Z	(//2			and and a set of the s		renze o constructivo e de la construcción de la construcción de la construcción de la construcción de la const	an sin she she and a sin she	vijijača A. V. zasneli ne sla se v svene slava posetje je je je v svene se V. de si sta i de slava je je je je			143			فيمانينا البعد بالتلافاتين اللاسب التصويف فسيت عدامهم بالمسابقة بمواجعة والمرافقة				Profile #		01 53/18	なる	5.4						Pa	کر ge 14	of 16	о́

25 500	340 120	545 125	G1U 11 II	xception	JAU I			110		215									38		204		2002			·	7	Clien
mL a	a la	mLa	ter an	s to p						T															AG1H	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		conta
mber Imber lear gi	mber	mber	iber e	reserv										-						T					AG4S			ame
glass ass u	glass	glass n	lass Lass	ation												┢						┢			AG4U	ଦ୍ୱାର		
unpre H2SO npres	unpre	H2SO	2	check									6998												AG5U	S		
4 ö	ŭ	4		: Vo					9830 4950		0996					Γ									AG2S			
				, Coli																T					BG3U			
BP BP	- P	<u>8</u>	9 9	form,																					BP1U			
a a S a a S a	Ű.	27 27	2 E	TOC,												T									BP2N			en l
250 r 250 r 250 r	250 1	500 r	1 lite	TOX,																Γ				Γ	BP2Z		Lab	Poked
nt pla nt pla	nL pla	nt pla	r plas	ТОН,																	8	9		9	BP3U	Plas	Lot#	and
stic N stic H stic H	stic u	stic N	tic uni	0&G,										Γ		Γ						T		T	ВР3С	<u>F</u>	of pH	ter
aOH NO3 2SO4	npres	HOP NOS	ores	Ň																Γ		-	-	1-	BP3N		paper	
		Znact		RO, P																				Γ	BP3S		ê	
				'henol																Γ				Ī	DG9A			Pro
V6 V6	٧G	VG DG	, g	ics, O										Γ						Γ					DG9T		S IN	Djec
90 90	9H	99	9A	ther:																				Γ	VG9U	Ś	La	- t #
40 m	40 m	40 m	40 m																						VG9H	als	o Std ;	
L clea	L clea	L amb	Lamb																10g						VG9M		#D of	2
- vial f . vial [vial	er Na r vial u	er asc	Head															10000						VG9D		prese	2
DI VIEOH	Ċ.	Thio	orbic	space														Γ				Ī			JGFU		rvatio	2
		v ,		in ∕o																Γ					WGFU	Jars	n (if p	12
)A Via					N-GHO							Γ									WPFU		Hadju	/
dZ dS		<u>ج</u> ج	٦	9<) sl																Γ					SP5T	ഒ	isted)	
GN: GN:		έĉ	2	mm) :			1.605							Γ		Γ								Γ	ZPLC	ener		1
120 r ziplo		4 oz 4 oz	4 oz	aYes														Ī				ſ		F	GN	2		
nL pla c bag		clear j plastic	ambe	No.																	1 (8) (1 (8))				VOA Viais (>	>6mm) *		
istic N		; jar un	r jar u	ANIA																					H2SO4 pH ≲	2	1	
la Thic		pres	npres	*If ye								-													NaOH+Zn Ad	ctpH≥9	com	
osulfa				s looi		Γ																 			NaOH nH >1	2	il whe pleted	
ŧ				(in he																		×			HNO3 nH <2	-	n d d	
				edsp		╞															\bigcirc	~~~		S		÷.		
	L			ace c		<u> </u>												ļ							pH after adju	sted	Date/ Time:	
				olumi	2.5/	2.5 /	2.5/	2.5 /	2.5/	2.5/	2.5/	2.5 /	2.5/	2.5/	2.5/	2.5 /	2.5/	2.5 /	2.5/	2.5 /	2.5/	2.5 /	2.5/	2.5 /	(r o			
				-	5/10	5/10	5/10	5/10	5/10	5/10	5/10	5 / 1C	5 / IC	5 / 1C	5/10	5/10	<u>5/10</u>	5/10	5/10	5/10	5/10	5/10	5/10	5/10	nL)			1

F-GB-C-046-Rev.02 (29Mar2018) Sample Preservation Receipt Form

Page 1 of R

Page 15 hold for the second se

		-			
Pace Analytical	Sample (Doci Conditi	Iment Name: on Upon Receipt (SCUP)	Docum	ent Revised: 25Apr2018
- woorway uga		Doc	cument No.:		Issuing Authority
1241 Bellevue Street, Green Bay, WI 543	02	F-GB	-C-031-Rev.07	Pace G	Breen Bay Quality Office
Sample	Conditior	n Upo	on Receipt Form (SCUR)	
Client Name: SCS ENG	MCI D.	a f	Project #:	1	40477475
Courier: CS Logistics Fed Fx Spee				U# ·	401//1/5
Client Pace Other	uce i Ore) i : V	Valleo		
Tracking #:				177175	
Custody Seal on Cooler/Box Present: Tyes	no Seal	s intact	yes no		
Custody Seal on Samples Present: Tyes	no Seal	s intact	r yes T no		
Packing Material: T Bubble Wrap T Bul	oble Bags	Non	e TOther		
Cooler Temperature Used SR - MA	Type of Ice	: Wet	Blue Dry None 🔀	Samples of	on ice, cooling process has begun
Temp Blank Present:	Biol	— Onical i	Tissue is Frozen: The		
Temp should be above freezing to 6° C. Biota Samples may be received at $\leq 0^{\circ}$ C.		- <u>-</u>	i i su i su i su i su	55¥ 110	Person examining contents: Date: $(0/0)/6$ Initials: $0/0/6$
Chain of Custody Present:	Hes INO	□n/A	1.		
Chain of Custody Filled Out:	🗆 Yes 🕅 🕅	□n/a	2. 10 00 H, Ma	1	JM10105
Chain of Custody Relinquished:	Vres 🗆 No	□n/a	3.		<u> </u>
Sampler Name & Signature on COC:		□n/A	4.		
Samples Arrived within Hold Time:	Yes DNo		5.		
- VOA Samples frozen upon receipt	□Yes □No		Date/Time:		
Short Hold Time Analysis (<72hr):	⊡Yes Q No		6.		
Rush Turn Around Time Requested:	□Yes ØNo		7.		
Sufficient Volume:			8.		······································
For Analysis: 🖓 es 🗆 No 🛛 MS/MSI	D: 🗆 Yes XINo	□n/a			
Correct Containers Used:	Ves 🗆 No		9.		
-Pace Containers Used:	Øres □No	⊡n/a			
-Pace IR Containers Used:	□Yes □No	G NIA			
Containers Intact:	Res 🗆 No	,	10.		
Filtered volume received for Dissolved tests	□Yes □No	XX/N/A	11.		
Sample Labels match COC:	ØYes □No		12.		· · · · · · · · · · · · · · · · · · ·
-Includes date/time/ID/Analysis Matrix:	<u> </u>				
Trip Blank Present:	□Yes □No	10NIA	13.		
Trip Blank Custody Seals Present	□Yes □No	DOWA			
Pace Trip Blank Lot # (if purchased):		~			
Person Contacted: Comments/ Resolution:		Date/	If checke	d, see attac	hed form for additional comments
Person Contacted: Comments/ Resolution: Project Manager Review:	for	Date/	If checke	d, see attac	1075/18
					Page Pager 6

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

October 30, 2018

Meghan Blodgett SCS ENGINEERS 2830 Dairy Drive Madison, WI 53718

RE: Project: 25214069.19 EDGEWATER I-43 CCR Pace Project No.: 40177177

Dear Meghan Blodgett:

Enclosed are the analytical results for sample(s) received by the laboratory on October 05, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Day Milent

Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: Tom Karwoski, SCS ENGINEERS Nicole Kron, SCS ENGINEERS Jeff Maxted, ALLIANT ENERGY Marc Morandi, ALLIANT ENERGY

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: 25214069.19 EDGEWATER I-43 CCR

Pace Project No.: 40177177

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

Virginia VELAP ID: 460263 South Carolina Certification #: 83006001 Texas Certification #: 1104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: 25214069.19 EDGEWATER I-43 CCR

Pace Project No.: 40177177

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40177177001	MW-305	Water	10/04/18 12:56	10/05/18 15:35
40177177002	FIELD BLANK	Water	10/04/18 13:10	10/05/18 15:35

SAMPLE ANALYTE COUNT

Project: 25214069.19 EDGEWATER I-43 CCR

Pace Project No.: 40177177

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40177177001	MW-305	EPA 6020	KXS	14	PASI-G
		EPA 7470	AJT	1	PASI-G
			AXL	7	PASI-G
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		SM 2540C	ТМК	1	PASI-G
		EPA 9040	ALY	1	PASI-G
		EPA 300.0	HMB	3	PASI-G
40177177002	FIELD BLANK	EPA 6020	KXS	14	PASI-G
		EPA 7470	AJT	1	PASI-G
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		SM 2540C	ТМК	1	PASI-G
		EPA 9040	ALY	1	PASI-G
		EPA 300.0	HMB	3	PASI-G

Project: 25214069.19 EDGEWATER I-43 CCR

Pace Project No ·

40177177

Taceric	ject No	4017117
Sample	MW-305	

Sample: MW-305	Lab ID:	40177177001	Collected:	10/04/18	3 12:56	Received: 10/	05/18 15:35 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytica	I Method: EPA 6	020 Prepara	tion Meth	od: EPA	3010			
Antimony	<0.15	ug/L	1.0	0.15	1	10/15/18 06:38	10/18/18 06:13	7440-36-0	
Arsenic	2.3	ug/L	1.0	0.28	1	10/15/18 06:38	10/18/18 20:57	7440-38-2	
Barium	169	ug/L	4.9	1.5	1	10/15/18 06:38	10/18/18 06:13	7440-39-3	
Beryllium	<0.18	ug/L	1.0	0.18	1	10/15/18 06:38	10/23/18 04:30	7440-41-7	
Boron	65.9	ug/L	11.0	3.3	1	10/15/18 06:38	10/23/18 04:30	7440-42-8	
Cadmium	<0.15	ug/L	1.0	0.15	1	10/15/18 06:38	10/18/18 20:57	7440-43-9	
Calcium	82200	ug/L	250	69.8	1	10/15/18 06:38	10/18/18 20:57	7440-70-2	
Chromium	<1.0	ug/L	3.4	1.0	1	10/15/18 06:38	10/18/18 20:57	7440-47-3	
Cobalt	<0.12	ug/L	1.0	0.12	1	10/15/18 06:38	10/18/18 20:57	7440-48-4	
Lead	<0.24	ug/L	1.0	0.24	1	10/15/18 06:38	10/18/18 06:13	7439-92-1	
Lithium	11.2	ug/L	1.0	0.19	1	10/15/18 06:38	10/23/18 04:30	7439-93-2	
Molybdenum	2.3	ug/L	1.5	0.44	1	10/15/18 06:38	10/18/18 20:57	7439-98-7	
Selenium	<0.32	ug/L	1.1	0.32	1	10/15/18 06:38	10/18/18 20:57	7782-49-2	
Thallium	<0.14	ug/L	1.0	0.14	1	10/15/18 06:38	10/18/18 06:13	7440-28-0	
7470 Mercury	Analytica	I Method: EPA 7	470 Prepara	tion Meth	od: EPA	7470			
Mercury	<0.084	ug/L	0.28	0.084	1	10/11/18 10:15	10/12/18 08:08	7439-97-6	
Field Data	Analytica	I Method:							
Field pH	7.65	Std. Units			1		10/04/18 12:56		
Field Specific Conductance	941	umhos/cm			1		10/04/18 12:56		
Oxygen, Dissolved	0.2	mg/L			1		10/04/18 12:56	7782-44-7	
REDOX	-101	mV			1		10/04/18 12:56		
Turbidity	10.56	NTU			1		10/04/18 12:56		
Static Water Level	655.89	feet			1		10/04/18 12:56		
Temperature, Water (C)	9.9	deg C			1		10/04/18 12:56		
2540C Total Dissolved Solids	Analytica	I Method: SM 25	540C						
Total Dissolved Solids	572	mg/L	20.0	8.7	1		10/10/18 17:07		
9040 pH	Analytica	I Method: EPA 9	040						
pH at 25 Degrees C	7.5	Std. Units	0.10	0.010	1		10/09/18 09:31		H6
300.0 IC Anions 28 Days	Analytica	I Method: EPA 3	00.0						
Chloride	22.7	mg/L	2.0	0.50	1		10/17/18 02:43	16887-00-6	
Fluoride	0.58	mg/L	0.30	0.10	1		10/17/18 02:43	16984-48-8	
Sulfate	130	mg/L	30.0	10.0	10		10/17/18 16:18	14808-79-8	

Project: 25214069.19 EDGEWATER I-43 CCR

Pace Project No .:

o.: 40177177

Sample: FIELD BLANK	Lab ID:	40177177002	Collected: 10/04/18 13:10			Received: 10/05/18 15:35 Matrix: Water				
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual	
6020 MET ICPMS	Analytical	I Method: EPA 6	020 Prepa	ration Meth	od: EPA	3010				
Antimony	<0.15	ug/L	1.0	0.15	1	10/15/18 06:38	10/18/18 06:20	7440-36-0		
Arsenic	<0.28	ug/L	1.0	0.28	1	10/15/18 06:38	10/18/18 17:25	7440-38-2		
Barium	<1.5	ug/L	4.9	1.5	1	10/15/18 06:38	10/18/18 06:20	7440-39-3		
Beryllium	<0.18	ug/L	1.0	0.18	1	10/15/18 06:38	10/23/18 02:00	7440-41-7		
Boron	<3.3	ug/L	11.0	3.3	1	10/15/18 06:38	10/23/18 02:00	7440-42-8		
Cadmium	<0.15	ug/L	1.0	0.15	1	10/15/18 06:38	10/18/18 17:25	7440-43-9		
Calcium	<69.8	ug/L	250	69.8	1	10/15/18 06:38	10/18/18 17:25	7440-70-2		
Chromium	<1.0	ug/L	3.4	1.0	1	10/15/18 06:38	10/18/18 17:25	7440-47-3		
Cobalt	<0.12	ug/L	1.0	0.12	1	10/15/18 06:38	10/18/18 17:25	7440-48-4		
Lead	<0.24	ug/L	1.0	0.24	1	10/15/18 06:38	10/18/18 06:20	7439-92-1		
Lithium	<0.19	ug/L	1.0	0.19	1	10/15/18 06:38	10/23/18 02:00	7439-93-2		
Molybdenum	<0.44	ug/L	1.5	0.44	1	10/15/18 06:38	10/18/18 17:25	7439-98-7		
Selenium	<0.32	ug/L	1.1	0.32	1	10/15/18 06:38	10/18/18 17:25	7782-49-2		
Thallium	<0.14	ug/L	1.0	0.14	1	10/15/18 06:38	10/18/18 06:20	7440-28-0		
7470 Mercury	Analytical	Method: EPA 7	470 Prepa	ration Meth	od: EPA	7470				
Mercury	<0.084	ug/L	0.28	0.084	1	10/11/18 10:15	10/12/18 08:11	7439-97-6		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C							
Total Dissolved Solids	<8.7	mg/L	20.0	8.7	1		10/10/18 17:08			
9040 pH	Analytical	Method: EPA 9	040							
pH at 25 Degrees C	6.5	Std. Units	0.10	0.010	1		10/09/18 09:33		H6	
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0							
Chloride	<0.50	mg/L	2.0	0.50	1		10/16/18 13:07	16887-00-6		
Fluoride	<0.10	mg/L	0.30	0.10	1		10/16/18 13:07	16984-48-8		
Sulfate	<1.0	mg/L	3.0	1.0	1		10/16/18 13:07	14808-79-8		

Project: Pace Project No.:	25214069.19 ED 40177177	GEWATER I-43 C	CR									
QC Batch:	302886		Analys	is Method:	E	PA 7470						
QC Batch Method:	EPA 7470		Analys	is Descript	ion: 74	470 Mercury	,					
Associated Lab Sam	ples: 4017717	7001, 401771770	02									
METHOD BLANK:	1769065		Ν	Aatrix: Wa	ter							
Associated Lab Sam	ples: 4017717	7001, 401771770	02									
Param	eter	Units	Blank Resul	t R	eporting Limit	Analyz	ed	Qualifiers				
Mercury		ug/L	<(0.084	0.28	10/12/18	07:29					
LABORATORY CON	TROL SAMPLE:	1769066										
Param	eter	Units	Spike Conc.	LCS Resu	; Ilt	LCS % Rec	% Rec Limits	c G QI	ualifiers			
Mercury		ug/L	5		5.0	100	85	5-115		-		
MATRIX SPIKE & M	ATRIX SPIKE DU	PLICATE: 1769	9067 MS	MSD	1769068							
		4017737500	1 Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Ur	nits Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mercury	ug	J/L <0.00008 mg/	4 5 L	5	5.0	5.1	100	103	85-115	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 25214069.19 EDGEWATER I-43 CCR

Pace Project No.: 40177177

OC Batch	30312

QC Batch:	303129	Analysis Method:	EPA 6020
		··· · ····	
QC Batch Method:	EPA 3010	Analysis Description:	6020 MET
Acception of Lab Com	nloo: 40177177001 40177177002		
ASSOCIATED LAD SAIN	pies. 40177177001, 40177177002		
METHOD BLANK:	1770724	Matrix: Water	
Associated Lab Sam	nles: 10177177001 10177177002		
Associated Lab Sam	μc_{3} . $40177177001, 40177177002$		

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Antimony	ug/L	<0.15	1.0	10/18/18 03:02	
Arsenic	ug/L	<0.28	1.0	10/18/18 17:12	
Barium	ug/L	<1.5	4.9	10/18/18 03:02	
Beryllium	ug/L	<0.18	1.0	10/23/18 01:46	
Boron	ug/L	<3.3	11.0	10/23/18 01:46	
Cadmium	ug/L	<0.15	1.0	10/18/18 17:12	
Calcium	ug/L	<69.8	250	10/18/18 17:12	
Chromium	ug/L	<1.0	3.4	10/18/18 17:12	
Cobalt	ug/L	<0.12	1.0	10/18/18 17:12	
Lead	ug/L	<0.24	1.0	10/18/18 03:02	
Lithium	ug/L	<0.19	1.0	10/23/18 01:46	
Molybdenum	ug/L	<0.44	1.5	10/18/18 17:12	
Selenium	ug/L	<0.32	1.1	10/18/18 17:12	
Thallium	ug/L	<0.14	1.0	10/18/18 03:02	

LABORATORY CONTROL SAMPLE: 1770725

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	ug/L	500	524	105	80-120	
Arsenic	ug/L	500	458	92	80-120	
Barium	ug/L	500	477	95	80-120	
Beryllium	ug/L	500	462	92	80-120	
Boron	ug/L	500	461	92	80-120	
Cadmium	ug/L	500	483	97	80-120	
Calcium	ug/L	5000	5090	102	80-120	
Chromium	ug/L	500	476	95	80-120	
Cobalt	ug/L	500	448	90	80-120	
Lead	ug/L	500	458	92	80-120	
Lithium	ug/L	500	446	89	80-120	
Molybdenum	ug/L	500	500	100	80-120	
Selenium	ug/L	500	478	96	80-120	
Thallium	ug/L	500	438	88	80-120	
MATRIX SPIKE & MATRIX SPIKE DI	IPLICATE: 1770	1726	177072	77		

Antimony	ug/L	0.41J	500	500	526	532	105	106	75-125	1	20	
Parameter	Units	40177434002 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
	DOI LIC		MS	MSD								
WATKIN SPIKE & WATKIN	SPIKE DUPLIC	JAIE: 17707	20		1//0/2/							

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 25214069.19 EDGEWATER I-43 CCR

Pace Project No.: 40177177

1770727 MATRIX SPIKE DUPLICATE: 1770726 1770727												
			MSD									
		40177434002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	ug/L	2.5	500	500	473	483	94	96	75-125	2	20	
Barium	ug/L	87.8	500	500	567	574	96	97	75-125	1	20	
Beryllium	ug/L	<0.18	500	500	440	431	88	86	75-125	2	20	
Boron	ug/L	73.0	500	500	516	509	89	87	75-125	1	20	
Cadmium	ug/L	0.69J	500	500	477	483	95	97	75-125	1	20	
Calcium	ug/L	38500	5000	5000	46300	46400	156	157	75-125	0	20	P6
Chromium	ug/L	1.1J	500	500	483	487	96	97	75-125	1	20	
Cobalt	ug/L	0.54J	500	500	456	463	91	92	75-125	1	20	
Lead	ug/L	0.83J	500	500	457	464	91	93	75-125	2	20	
Lithium	ug/L	0.24J	500	500	424	420	85	84	75-125	1	20	
Molybdenum	ug/L	1.5	500	500	504	509	100	102	75-125	1	20	
Selenium	ug/L	0.96J	500	500	487	497	97	99	75-125	2	20	
Thallium	ug/L	0.33J	500	500	442	449	88	90	75-125	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	25214069.19 ED	GEWATER I-43 CCF	R				
Pace Project No .:	40177177						
QC Batch:	302782		Analysis M	lethod:	SM 2540C		
QC Batch Method:	SM 2540C		Analysis D	escription:	2540C Total D	issolved Solids	
Associated Lab Sam	ples: 40177177	7001, 40177177002					
METHOD BLANK:	1768461		Matri	x: Water			
Associated Lab Sam	ples: 40177177	7001, 40177177002					
Param	eter	Units	Blank Result	Reporting Limit	Analyze	ed Qualif	iers
Total Dissolved Solic	ls	mg/L	<8.	7 20.	0 10/10/18 1	7:04	
LABORATORY CON	TROL SAMPLE:	1768462					
Param	eter	Units	Spike Conc.	Result	% Rec	% Rec Limits	Qualifiers
Total Dissolved Solic	ls	mg/L	615	568	92	80-120	
SAMPLE DUPLICAT	E: 1768463						
Dorom	otor	Linito	40177177001 Recult	Dup Booult	חמם	Max	Qualifiara
Tatal Disselved Salia							
Total Dissolved Solid	15	mg/∟	57.	2 57	0	0	5
SAMPLE DUPLICAT	E: 1768464						
Daram	otor	Linite	40177289001 Result	Dup Result	חסק	Max	Qualifiers
Iotal Dissolved Solid	15	mg/∟	33	0 34	4	2	ວ

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 25214069.19 EDGEWATER I-43 CCR

Pace Project No.: 40177177

QC Batch:	302556	Analysis Method:		EPA 9040	
QC Batch Method:	EPA 9040	Analysis Descript	ion:	9040 pH	
Associated Lab Samp	bles: 40177177001, 40177177002				
SAMPLE DUPLICATE	: 1767295				
	2	0176756001	Dup		Max

Parameter	Units	Result	Result	RPD	RPD	Qualifiers
pH at 25 Degrees C	Std. Units	8.0	8.1	0	2	0 H6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Proiect:	25214069.19 EDGEWATER I-43 CCR	
10,000	20214000.10 EBGEW/(IEI(140.00))	

mg/L

229

400

Pace Project No.:	40177177
-------------------	----------

QC Batch:	C Batch: 302665 Analysi			is Method	: E	PA 300.0							
QC Batch Method:	EPA 300.0			Analys	Analysis Description:		00.0 IC Anio	ons					
Associated Lab Sar	nples: 40177	177001											
METHOD BLANK:	1767840			N	latrix: Wa	iter							
Associated Lab Sar	nples: 40177 [,]	177001											
				Blank	F	Reporting							
Paran	neter		Units	Resul	t	Limit	Analyz	ed	Qualifiers				
Chloride			mg/L	<	<0.50	2.0	10/16/18	20:50		_			
Fluoride			mg/L	<	:0.10	0.30	10/16/18	20:50					
Sulfate			mg/L		<1.0	3.0) 10/16/18	20:50					
LABORATORY COI		E: 1767	'841										
				Spike	LCS	5	LCS	% Red	>				
Parar	neter		Units	Conc.	Res	ult	% Rec	Limits	a Qu	ualifiers			
Chloride			mg/L	20		19.6	98	90)-110		-		
Fluoride			mg/L	2		2.0	101	90)-110				
Sulfate			mg/L	20		19.7	98	90)-110				
MATRIX SPIKE & M	IATRIX SPIKE D		TE: 176784	42		1767843							
				MS	MSD								
		40	177030001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	er	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride		mg/L	236	400	400	632	630	99	98	90-110	0	15	
Fluoride		mg/L	<2.0	40	40	41.4	41.3	103	103	90-110	0	15	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1767844 1767845												
		40177177001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Мах	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L		20	20	42.7	41.9	100	96	90-110	2	15	
Fluoride	mg/L	0.58	2	2	2.6	2.5	99	97	90-110	2	15	
Sulfate	mg/L	130	200	200	330	329	100	100	90-110	0	15	

400

618

616

97

97

90-110

0 15

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Sulfate

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 25214069.19 EDGEWATER I-43 CCR

mg/L

mg/L

1.5

43.2

10

100

Pace Project No.: 40177177

QC Batch: 3	atch: 302799 Analysis			is Method	: E	PA 300.0						
QC Batch Method: E	PA 300.0		Analys	is Descrip	otion: 3	00.0 IC Anio	ns					
Associated Lab Sample	s: 4017717700	2										
METHOD BLANK: 176	8575		Ν	latrix: Wa	ater							
Associated Lab Sample	s: 4017717700	2										
			Blank	F	Reporting							
Paramete	r	Units	Result	t	Limit	Analyz	ed	Qualifiers				
Chloride		mg/L	<	:0.50	2.0	10/16/18	10:04		_			
Fluoride		mg/L	<	:0.10	0.30	10/16/18	10:04					
Sulfate		mg/L		<1.0	3.0	10/16/18	10:04					
LABORATORY CONTR	OL SAMPLE: 1	768576										
			Spike	LCS	S	LCS	% Rec	;				
Paramete	r	Units	Conc.	Res	ult	% Rec	Limits	Q	ualifiers			
Chloride		mg/L	20		20.0	100	90	-110		•		
Fluoride		mg/L	2		2.0	98	90	-110				
Sulfate		mg/L	20		20.0	100	90	-110				
MATRIX SPIKE & MATF		CATE: 17685	77		1768578							
			MS	MSD								
		40177207001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	20.8	100	100	123	119	102	98	90-110	3	15	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1768579 1768580												
			MS	MSD								
		40177208001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	9.6	20	20	29.9	30.1	101	102	90-110	1	15	
Fluoride	mg/L	<0.50	10	10	10.3	10.3	103	103	90-110	0	15	
Sulfate	mg/L	65.1	100	100	167	166	102	101	90-110	1	15	

10

100

11.7

145

11.3

140

101

102

98

97

90-110

90-110

3 15

3 15

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Fluoride

Sulfate

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 25214069.19 EDGEWATER I-43 CCR

Pace Project No.:	40177177
-------------------	----------

Sample: MW-305	Lab ID: 40177	177001 Collected: 10/04/18 12:56	Received:	10/05/18 15:35 Ma	trix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.323 ± 0.449 (0.749) C:NA T:89%	pCi/L	10/19/18 20:15	13982-63-3	
Radium-228	EPA 904.0	0.716 ± 0.491 (0.949) C:67% T:83%	pCi/L	10/25/18 16:20 1	15262-20-1	
Total Radium	Total Radium Calculation	1.04 ± 0.940 (1.70)	pCi/L	10/30/18 14:45 7	7440-14-4	
Sample: FIELD BLANK	Lab ID: 40177	177002 Collected: 10/04/18 13:10	Received:	10/05/18 15:35 Ma	trix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.221 ± 0.382 (0.683) C:NA T:94%	pCi/L	10/19/18 20:15	13982-63-3	
Radium-228	EPA 904.0	1.40 ± 0.586 (0.953) C:69% T:83%	pCi/L	10/25/18 16:21 1	15262-20-1	
Total Radium	Total Radium Calculation	1.62 ± 0.968 (1.64)	pCi/L	10/30/18 14:45 7	7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project:	25214069.19 EDG	EWATER I-43	CCR				
Pace Project No.:	40177177						
QC Batch:	316251		Analysis Method:	EPA 904.0			
QC Batch Method:	EPA 904.0		Analysis Description:	904.0 Radiu	m 228		
Associated Lab San	nples: 40177177	001, 40177177	002				
METHOD BLANK:	1543386		Matrix: Water				
Associated Lab San	nples: 40177177	001, 40177177	002				
Paran	neter	Act ±	Jnc (MDC) Carr Trac	Units	Analyzed	Qualifiers	
Radium-228		0.371 ± 0.321	(0.644) C:80% T:84%	pCi/L	10/25/18 12:58		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project:	25214069.19 EDG	EWATER I-43	CCR				
Pace Project No.:	40177177						
QC Batch:	316250		Analysis Method:	EPA 903.1			
QC Batch Method:	EPA 903.1		Analysis Description:	903.1 Radiu	m-226		
Associated Lab San	nples: 40177177	001, 40177177	002				
METHOD BLANK:	1543385		Matrix: Water				
Associated Lab San	nples: 40177177	001, 40177177	002				
Paran	neter	Act ±	Jnc (MDC) Carr Trac	Units	Analyzed	Qualifiers	
Radium-226		0.295 ± 0.356	(0.543) C:NA T:90%	pCi/L	10/19/18 19:46	-	-

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 25214069.19 EDGEWATER I-43 CCR

Pace Project No.: 40177177

DEFINITIONS

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval) (MDC) - Minimum Detectable Concentration Trac - Tracer Recovery (%) Carr - Carrier Recovery (%) DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot. ND - Not Detected at or above LOD. J - Estimated concentration at or above the LOD and below the LOQ. LOD - Limit of Detection adjusted for dilution factor and percent moisture. LOQ - Limit of Quantitation adjusted for dilution factor and percent moisture. S - Surrogate 1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration. Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values. LCS(D) - Laboratory Control Sample (Duplicate) MS(D) - Matrix Spike (Duplicate) **DUP - Sample Duplicate RPD** - Relative Percent Difference NC - Not Calculable. SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

- PASI-G Pace Analytical Services Green Bay
- PASI-PA Pace Analytical Services Greensburg

ANALYTE QUALIFIERS

- H6 Analysis initiated outside of the 15 minute EPA required holding time.
- P6 Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 25214069.19 EDGEWATER I-43 CCR

Pace Project No.: 40177177

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40177177001	MW-305	EPA 3010	303129	EPA 6020	303240
40177177002	FIELD BLANK	EPA 3010	303129	EPA 6020	303240
40177177001	MW-305	EPA 7470	302886	EPA 7470	302920
40177177002	FIELD BLANK	EPA 7470	302886	EPA 7470	302920
40177177001	MW-305				
40177177001	MW-305	EPA 903.1	316250		
40177177002	FIELD BLANK	EPA 903.1	316250		
40177177001	MW-305	EPA 904.0	316251		
40177177002	FIELD BLANK	EPA 904.0	316251		
40177177001	MW-305	Total Radium Calculation	318524		
40177177002	FIELD BLANK	Total Radium Calculation	318524		
40177177001	MW-305	SM 2540C	302782		
40177177002	FIELD BLANK	SM 2540C	302782		
40177177001	MW-305	EPA 9040	302556		
40177177002	FIELD BLANK	EPA 9040	302556		
40177177001	MW-305	EPA 300.0	302665		
40177177002	FIELD BLANK	EPA 300.0	302799		

REPORT OF LABORATORY ANALYSIS

C019a(27Jun2006)

Samples on HOLD are subject to special pricing and release of Itability		Email #2: Telephone:	Email#1:	Transmit Prelim Rush Results by (complete what you w)	(Rush) AT subject to approval/surcharge Date Needed:	Rush Turnaround Time Requested - Prelin						Wa Field Blank	(U) mw. 305	PACE LAB # CLIENT FIELD ID	EPA Level IV NOT needed on your sample	(billable) Dn your sample	Data Package Options MS/MSD	PO#:	Sampled By (Sign): Can Study	Sampled By (Print): Gavy Stevile	Project State:	Project Name: Edgewater 7.4	Project Number: 252/4069, 19	Phone: 658-345-922	Project Contact: Wey Blodgett	Branch/Location: Madison wt	Company Name: SCS Engineer	(Please Print Clearly)
Relinquished By:		Delinguished By:	Relinquished By:	vanti NSUNS Durc	3) Can Carlas	The Rejinquished By A+ ()						W 0/8/ 81/14/01	1256 Gw	DATE TIME MATRIX	O = OR SW = Sufface Water O = OR SW = Sufface Water S = Soli WW = Waste Water SI = Sludge WP = Wilee	A = Ar W = Water B = Biota DW = Drinking Water B = Biota DW = Drinking Water B	Matrix Codes	Program:		PRESERVATION Pick (CODE)* Laster /	FILTERED? (YESINO) VIN /	13 Site H=Sodium Bisulfate Solution	A=None B=HCL C=H2S	CHA		Vacer/	5	
Date/Time:	Date: Hme:	ranne i de mais de la companya de la	Date/Time:	MS18 1535	10/1/10 0900	Date/Tipe:						X X X X X	XXXXXX		Sal TD DH Rad	Flu fat S	e Z	<u>d</u> e 28/2	26	AAAD	$\mathcal{N} \mid \mathcal{N} \mid \mathcal{N} \mid \mathcal{N} \mid \mathcal{N}$	J≍Sodium Thiosulfate J≃Other	*Preservation Codes // 304 D=HNO3 E=Di Water F=Methal	N OF CUSTO		unalytical		
Received By:	Received By:		Received By:	MAN MCC	W CANKT	Received Water // ACC						$\frac{\times}{\times}$	$ \times \times \times \times $	B,C Cd, Hg	Cr, , ma	b, A: Co 27 S	s, p P e,	Ba, L b, L TI Invoice	N ' Invoice	DDD Involc	NNN	Mai	nol G=NaOH	DY Mail	٥		MN/6/12-607-1700 W1: 920	UPPER MIDWEST REGION
Date/Time:	Date/Time:	n structure et al a fait of the second se	Date/Time:	10/03/11 (())	MS WS 1010	Date/Time:								MMENTS (Lab Use	I LENT I AR COM		mad	e To Address: 293c	To Company:	e To Contact:	- <u></u>	To Address:	To Company:	To Contact:	luote #:	-101-	-469-2436	
Present / Not Present Intact / Not Intact	Cooler Custody Seal	Sample Receipt pH	o _∞ Ωλ = duel refe	1/1/100	Cr 12-1 M	PACE Project No.								• Only)		31/8	Ison UT	> Dairy Dr	Engineers						Pag	77/77 e 19	of 21	Page 1 of

ORIGINAL

32S 5	AG1H 1645	AG1U	Except	0201	019	018	710	016	015	014	013	012	011		200		220	807	SUC	805	202	003		Pace Lab #		_	Clie
500 m	l liter 125 m 120 m	l liter	ions t																					AG1U			ent
iL am L am	il amb	amb	o pre:		<u></u>																			AG1H	-	THOM IN	Nar
berg berg argla	ergla berg berg	er gla	serval		N Press																			AG4S			ne:
ass u ass H	ss HC lass H	55	lion d															ineering)						AG4U	Glass	Û IDBC	
npres 2SO4 2res	L I2SO4 Inpres		neck												4			NAMAN.						AG5U	S	pies	
			Š												T							T		AG2S		ervan	
			Colif																					BG3U		on na	
BP BP	89 89 89	₽₽	orm,												Ī									BP1U		Vebe	
8 8 8 1	2 2 N	Ē	Ŗ												T									BP2N		ench	
250 n 250 n 250 n	500 r 500 r	1 lite	žõ												T									BP2Z	11111111111111111111111111111111111111	Lab	
nt pla nt pla	nt pla	r plas	Ē												Γ							a	9	BP3U	Plast	Lot#	
stic N stic H	stic H	ić un	086												1									ВРЗС	ö	of pH	
NO3	INO3 IaOH,	ores	₹																				-	BP3N		paper	
•	Znact		RO.				F								T									BP3S		ie s	5.
			Pheno								·						1						-	DG9A		E O I	Pr
\$ 5 5	5 5 0 1		lics, (-				_†				\uparrow		┢							DG9T		SC N	oje
39M	С91 С91	GS .	Other:												1		-		1				1	VG9U	<		+ +
40 n	à à à à	8													+		-							VG9H	ials	ib Std	.
nt cle	nt am	nt am									-+						1							VG9M		#0 0	6
ar via ar via	ber N ar via	bera	Hea												┢						1		1	VG9D	L., 7	fpres	5
	a Thi	Scorb -	dspac												┢─				\mathbf{f}		\mathbf{T}			JGFU		ervati	2
Ŧ	S C S		ă in												-		$\left \right $		-				-	WGEU	Ja	on (if	5
									2 1 2 2						┢─		1		╉					WPFII	ŝ	pH ad	5
N 14	55.		iais (>						Nites Vites					-904 2004 2007	┝		-		-		+		$\mathbf{+}$	SP5T		justed	
PLC	/PFU		6mm)		\neg				EN NAV			┨	-		┢				1		$\ $		┢		Jene	, e	
12(zipl	44						-								┝		 		+	No. No.	╞	0		GN	ra		
	z clea z plas										and Maria												f	VOA Viais (ر • (100 - 100 -	1	
)lastic	rjaru ticjar		í,																1		1					1	
Na T	Inpres			ł	-		-						-		-		┝		┢		-		-	r1∠504 pH ≲	~	8 파	
hiosul	10° '' 9	Yes Id		4			-	$\left \right $		1						1 <u>98</u> 128	 		-		<u> </u>		<u> </u>	NaOH+Zn A	ct pH ≥9	tial wh mplet	
fate		NOX II											1										-	NaOH pH ≥1	2	ed:	
		DEau									Sec. 19											X	X	HNO3 pH ≤2		F	
		space											T						Γ					pH after adju	sted	Date/ Time:	-
		colun	C:2	3	2.5	N .	2.5	25	2		5 N		25	25	2.5	2.5	2.5	2.5	2.5	2.5	2.5	25	2.5	~ <	5		Greer
		30	11 / C/	2	¹ S/10	15/10	/5/10	<u>/////////////////////////////////////</u>	12/10				15/10	/5/10	/5/10	/5/10	/5/10	//5//10	/5/10	/5/10	/5/10	/5/10	/5/10	mL)			۱ Bay, ۱

F-GB-C-046-Rev.02 (29Mar2018) Sample Preservation Receipt Form

Page 1 of Q

Pare Analytical"	Sample Car	Document Name:	Document Revised: 25Apr2018
acoAnalytical	Jampie Con	Document No.:	9 Issuing Authority:
1241 Bellevue Street, Green Bay, WI 543	02 F	-GB-C-031-Rev.07	Pace Green Bay Quality Office
Sample	Condition L	Jpon Receipt Form	(SCUR)
5.00		Project #:	• ••••••••••••••••••••••••••••••••••••
Client Name: SCS ENG	INEC RIDE	`	
Courier: CS Logistics Fed Ex F Spee	dee TUPS I	Waltco	WU# · 401//1//
Client 🗭 Pace Other:			
Tracking #:			
Custody Seal on Cooler/Box Present: yes	no Seals in	tact: 🔽 yes 🖵 no	
Packing Material: C Bubble Wrop C Dut	7no Seals in	tact: 「yes 「no	
Thermometer Used SR - ANA	Type of Ice	Volte j Other	
Cooler Temperature Uncorr: TOU / /Corr:	-,,-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- Dido Diy None 👌	- Gamples of ice, cooling process has begun
Temp Blank Present: Fyes X no	Biologi	cal Tissue is Frozen: 🏳 y	es no Person examining contents
Temp should be above freezing to 6°C.			Date: $(0/0)^{\prime}B$
Chain of Custody Present:		3	
Chain of Custody Filled Out			1 <u>5</u> \
Chain of Custody Relinguished	Whee This I	INVALO NO UN #, MC	miolos-
Sampler Name & Signature on COC:			
Samples Arrived within Hold Time		ия/А 4. с	
- VOA Samples frozen upon receint		5.	
Short Hold Time Analysis (<72hr)		Date/Time:	
Rush Turn Around Time Requested:		0. 	
Sufficient Volume	LI 103 (0140	1.	
For Analysis View DNo MS/MSC		ю. 	
Correct Containers Lised			
-Pace Containers Used		9.	
-Pace IR Containers Used		ΦA	
Containers Intact:		10	
Filtered volume received for Dissolved tests		10.	
Sample Labels match COC:		v/A 12	
-Includes date/time/ID/Analysis Matrix	$\overline{\mathcal{W}}$	False	
Trip Blank Present:		2 VA 13	
Frip Blank Custody Seals Present	⊡Yes ⊡No DXX		
Pace Trip Blank Lot # (if purchased):			
Client Notification/ Resolution:		If check	ed, see attached form for additional comments
Comments/ Resolution: (Lien+ Rotro	Dat		2 Dorth I BerAl Va.
		- Kery KNO3	~ KPILI MILIN M
		·····	
		······································	
Project Manager Review RA	× fa	1 12.0	- (01510)
	<u>yc</u> 197	<i>pvu</i>	Date: 10/3//8
			Pageof

Appendix B

Alternative Source Demonstration Reports

B1 Alternative Source Demonstration, October 2017 Detection Monitoring

SCS ENGINEERS

Alternative Source Demonstration October 2017 Detection Monitoring

Edgewater Generating Station I-43 Ash Disposal Facility Town of Wilson Sheboygan County, Wisconsin

Prepared for:

Prepared by:

SCS ENGINEERS

2830 Dairy Drive Madison, Wisconsin 53718-6751 (608) 224-2830

> April 16, 2018 File No. 25216069.18

Offices Nationwide www.scsengineers.com Alternative Source Demonstration October 2017 Detection Monitoring Edgewater Generating Station I-43 Ash Disposal Facility Town of Wilson Sheboygan County, Wisconsin

Prepared for:

Alliant Energy

Prepared by:

SCS ENGINEERS

2830 Dairy Drive Madison, Wisconsin 53718-6751 (608) 224-2830

> April 16, 2018 File No. 25216069.18

Table of Contents

Section

Page

PE Ce	ertificc	ıtioniii
1.0	Introd	duction1
	1.1	§257.94(e)(2) Alternative Source Demonstration Requirements1
	1.2	Site Information and Map1
	1.3	Statistically Significant Increases Identified2
	1.4	Overview of ASD
2.0	Back	ground
	2.1	Geologic and Hydrogeologic Setting
	2.2	CCR Rule Monitoring System4
	2.3	Other Monitoring Wells4
3.0	Meth	odology and Analysis Review
	3.1	Sampling and Field Analysis Review5
	3.2	Laboratory Analysis Review
	3.3	Statistical Evaluation Review
	3.4	Summary of Methodology and Analysis Review Findings
4.0	Alter	native Sources
	4.1	Potential Causes of SSI64.1.1Natural Variation4.1.2Man-made Alternative Sources
	4.2	Lines of Evidence74.2.1Glacial Clay Till Hydraulic Conductivity
5.0	ASD	Conclusions9
6.0	Site (Groundwater Monitoring Recommendations
7.0	Refer	rences

i

Contents (Continued)

Tables

- 1 Detection Monitoring Results Summary October 2017
- 2 Boron Concentrations CCR Rule Monitoring Well Network
- 3 Groundwater Elevation Table State Monitoring Program
- 4 Groundwater Elevation Table CCR Rule Monitoring Well Network
- 5 Historical Boron Concentrations State Monitoring Wells W-18 and W-33
- 6 Boron Concentrations 2016-2017 State Monitoring Program
- 7 Boron Concentrations Private Wells
- 8 Boron Concentrations Site Supply Well WS-1

Figures

- 1 Site Location Map
- 2 Monitoring Well Location Map
- 3 Water Table Map October 2017
- 4 Bedrock Potentiometric Surface Map April 2016
- 5 Bedrock Potentiometric Surface Map October 2017
- 6 Bedrock Aquifer Boron Concentrations Private Wells

Appendices

- A CCR Well Trend Plot Boron
- B Regional Geologic and Hydrogeologic Background Information
- C Geologic Cross Sections from 2010 Weston Report
- D Long-Term Boron Trend Plots Selected State Monitoring Program Wells

I:\25216069.00\Reports\2018 ASD Report\180416_ASD_Edgewater I-43_Final.docx

PE CERTIFICATION

Sherren C. Clark E-29863 Madison, Wis Sional Englishing	I, Sherren Clark, hereby certify that that the information in this alternate source demonstration is accurate and meets the requirements of 40 CFR 257.94(e)(2). This certification is based on my review of the groundwater and data and related site information available for the Edgewater Generating Station I-43 Ash Disposal Facility. I am a duly licensed Professional Engineer under the laws of the State of Wisconsin.
4-16-18	(printed or typed name)
	License number $E - 29863$
	My license renewal date is July 31, 2018.
	Pages or sheets covered by this seal: All - 1-43 Ash Disposal Facility Alternative Source Demonstration

[This page left blank intentionally]

1.0 INTRODUCTION

This Alternative Source Demonstration (ASD) was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" published by the U.S. Environmental Protection Agency (USEPA) in the *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule*, dated April 17, 2015 (USEPA, 2015), and subsequent amendments. Specifically, this report is prepared to fulfill the requirements of 40 CFR 257.94(e)(2). The applicable sections of the CCR Rule are provided below in *italics*.

1.1 §257.94(E)(2) ALTERNATIVE SOURCE DEMONSTRATION REQUIREMENTS

The owner and operator may demonstrate that a source other than the CCR Unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels.

An ASD is completed when there are exceedances of one or more benchmarks established within the groundwater monitoring program. The ASD is completed to determine if any other sources are likely causes of the identified exceedance(s) of established benchmark(s) at the site. This ASD was performed in response to results indicating a statistically significant increase (SSI) over background levels during detection monitoring under the CCR Rule.

The ASD report is evaluating the SSIs observed in the statistical evaluation of the October 2017 detection monitoring event at the Edgewater I-43 Ash Disposal Facility (I-43 ADF).

1.2 SITE INFORMATION AND MAP

The I-43 ADF is located in the Town of Wilson, Sheboygan County, Wisconsin (**Figure 1**). The I-43 ADF receives CCR from the Edgewater Generating Station. The layout of the site on an aerial photograph base is shown on **Figure 2**. The I-43 ADF is operated under Wisconsin Department of Natural Resources (WDNR) License No. 02853.

The I-43 ADF includes a closed landfill (Phases 1 and 2) and multiple existing CCR Units which are landfill modules in Phases 3 and 4 of the facility. Contact water basins and storm water runoff basins, which do not receive CCR, are also present at the site. The existing CCR Units evaluated for this ASD are listed below:

- Phase 3, Module 1 (existing CCR Landfill)
- Phase 3, Module 2 (existing CCR Landfill)
- Phase 4, Module 1 (existing CCR Landfill)

These CCR Units are monitored with a multi-unit groundwater monitoring system.

The closed landfill (Phase 1 and Phase 2) was completely closed in 2012. The closed landfill did not accept CCR after October 19, 2015; therefore, it is not subject to the requirements of 40 CFR 257.50-107. The closed landfill was constructed with a 5-foot compacted clay liner.

The active landfill, which comprises the three CCR Units, is constructed with a composite liner system including 2 feet of compacted clay and a 60-mil high density polyethylene (HDPE) geomembrane, overlain by a leachate collection drainage layer. The active landfill first accepted CCR for disposal in October 2011.

A map showing the CCR Units and all background (or upgradient) and downgradient monitoring wells with identification numbers for the CCR groundwater monitoring program and the state monitoring program is provided as **Figure 2**.

1.3 STATISTICALLY SIGNIFICANT INCREASES IDENTIFIED

The only SSIs for the October 2017 monitoring event were for boron at monitoring wells MW-301 and MW-302. A summary of the October 2017 constituent concentrations and the established benchmark concentrations is provided in **Table 1**. The constituent concentrations with SSIs above the background concentration are highlighted in the table.

1.4 OVERVIEW OF ASD

This ASD report includes:

- Background information (Section 2.0)
- Evaluation of potential that SSIs are due to methodology or analysis (Section 3.0)
- Evaluation of potential that SSIs are due to natural sources or man-made sources other than the CCR Units (Section 4.0)
- ASD conclusions (Section 5.0)
- Monitoring recommendations (Section 6.0)

The CCR Rule constituent results from background and compliance sampling are provided in **Table 2** and concentration trends are shown in **Appendix A**. Complete laboratory reports for the background monitoring events and the October 2017 detection monitoring event were included in the 2017 Annual Groundwater Monitoring and Corrective Action Report for the I-43 ADF.

2.0 BACKGROUND

To provide context for the ASD evaluation, the following background information is provided in this section of the report, prior to the ASD evaluation sections:

- Geologic and hydrogeologic setting
- CCR Rule monitoring system
- Other monitoring wells

2.1 GEOLOGIC AND HYDROGEOLOGIC SETTING

2.1.1 Regional Information

For the purposes of groundwater monitoring, the Niagara Dolomite Aquifer is considered to be the uppermost aquifer unit, as defined under 40 CFR 257.53, at the I-43 ADF. This aquifer unit is present throughout Sheboygan County and is a water supply source in much of Eastern Wisconsin (Skinner and Borman, 1973). A regional geologic cross section and table summarizing the regional hydrogeologic stratigraphy are included in **Appendix B**.

The dolomite aquifer is underlain by the Maquoketa shale, which is a confining unit. The Maquoketa shale is underlain by the Cambrian-Ordovician sandstone aquifer. This sequence of sedimentary bedrock units is over 1,500 feet thick in the area of the I-43 ADF. The sedimentary sequence is underlain by Precambrian crystalline rocks that are not considered an aquifer in eastern Wisconsin.

An unconsolidated sand and gravel aquifer is present in some parts of Sheboygan County (Skinner and Borman, 1973), but does not appear laterally extensive.

Regional groundwater flow in the dolomite aquifer in the vicinity of the site is to the east or northeast. A map of regional flow is included in **Appendix B**.

2.1.2 Site Information

Soils at the site are primarily clay with discontinuous layers of sand and silty sand to a depth of at least 100 feet. Soils encountered during the site feasibility study for the I-43 ADF were described as homogeneous clay to a depth of 60 feet. In the one feasibility study boring advanced to a depth greater than 60 feet, varved clay with layers of silty fine sand was encountered from 60 to 75 feet, and hard clay was encountered from 75 feet to the total boring depth of 90 feet (Mead and Hunt, 1977). During drilling of the CCR wells, the unconsolidated materials were identified as consisting primarily of clay. Zones of sand and gravel are known to be present within the clay, but these appear to be discontinuous and no nearby private wells screened within the unconsolidated material have been identified. Soils encountered in borings MW-301, MW-302, MW-303, and MW-304 were primarily lean clay, silty clay, and silty sand. The upper 70 feet of soils in boring MW-305 were similar, but in approximately the lower 40 feet above bedrock, sand was the primary soil type. All borings were advanced into the dolomite bedrock unit. The depth to bedrock in the five wells ranged from approximately 109 feet to 133 feet below ground surface (bgs), and the elevation of the top of bedrock ranged from approximately 568 feet above mean sea level (amsl) to 605 feet amsl.

A 2010 report prepared for USEPA by Weston included an assessment of local aquifers and cross sections created using both site monitoring well logs and nearby private well logs. The cross sections of the local geology are provided in **Appendix C**.

Shallow groundwater at the site generally flows east to west towards Weedens Creek, a tributary of the Sheboygan River, as shown on **Figure 3**. Shallow monitoring well groundwater

elevations are provided in **Table 3**. The October 2017 flow direction to the west at the water table is consistent with previous water table maps since the site was developed in the mid-1980s.

Potentiometric surface maps were constructed using the CCR monitoring network wells, to understand the potentiometric surface conditions during the background sampling period. Potentiometric contours for the dolomite aquifer are shown for April 2016 on **Figure 4** and for October 2017 on **Figure 5**. Groundwater elevation data for the CCR monitoring wells are provided in **Table 4**.

The April 2016 potentiometric surface map (**Figure 4**), based on groundwater elevations from monitoring wells MW-301 through MW-304, shows groundwater flow to the northeast, consistent with regional information. The potentiometric surface map for October 2017 (**Figure 5**), which incorporates additional background well MW-305 (installed February 2017), shows a more northerly flow direction. For either of these flow directions, monitoring wells MW-301 and MW-302 are downgradient from active CCR Units.

2.2 CCR RULE MONITORING SYSTEM

The groundwater monitoring system established in accordance with the CCR Rule consists of two upgradient (background) monitoring wells and three downgradient monitoring wells. The background wells include MW-304 and MW-305. The downgradient wells include MW-301, MW-302, and MW-303. The CCR Rule wells are installed in the upper portion of the dolomite aquifer. Well depths range from approximately 119 to 145 feet, measured from the top of the well casing.

2.3 OTHER MONITORING WELLS

Thirty-four groundwater monitoring wells currently exist at the I-43 ADF as part of the monitoring system developed for the state monitoring program. The well locations are shown on **Figure 2**. These monitoring wells and one on-site water supply well (WS-1) are used to monitor groundwater conditions at the site under WDNR License No. 02853, which includes the closed Phase 1/2 Landfill and the active Phase 3/4 Landfill.

Monitoring wells for the state monitoring program are installed in the unconsolidated glacial till unit, which is not the uppermost aquifer as defined under 40 CFR 257.53. This shallow monitoring system includes water table wells, mid-depth piezometers, and deep piezometers. Well depths range from approximately 15 to 49 feet, measured from the top of the well casing.

3.0 METHODOLOGY AND ANALYSIS REVIEW

To evaluate the potential that an SSI is due to a source other than the regulated CCR Unit, SCS Engineers (SCS) used a two-step evaluation process. First, the sample collection, field and laboratory analysis, and statistical evaluation were reviewed to identify any potential error or analysis that led to an exceedance of the benchmark. Second, potential alternative sources, including natural variation and man-made sources other than the CCR Unit, were evaluated. This section of the report provides the findings of the methodology and analysis review. **Section 4.0** of the report addresses the potential alternative sources.

3.1 SAMPLING AND FIELD ANALYSIS REVIEW

Field notes and sampling results were reviewed to determine if any sampling error may have caused or contributed to the observed SSIs for boron. Potential field sampling errors or issues could include mislabeling of samples, improper sample handling, missed holding times, cross contamination during sampling, or other field error. Field blank sample results were also reviewed for any indication of potential contamination from sampling equipment or containers. Based on the review of the field notes and results, SCS did not identify any indication that the boron SSIs were due to a sampling error.

Because boron is a laboratory parameter, there is little potential for a field analysis error to contribute to an SSI.

3.2 LABORATORY ANALYSIS REVIEW

Laboratory reports for the background monitoring and the October 2017 detection monitoring were reviewed to determine if any laboratory analysis error or issue may have caused or contributed to the observed SSIs for boron. The laboratory report review included reviewing the laboratory quality control flags and narrative, verifying that correct methods were used and desired detection limits were achieved, and checking the field and laboratory blank sample results. Laboratory reports were included in the 2017 Annual Groundwater Monitoring and Corrective Action Report for the facility.

Based on the review of the laboratory reports, SCS did not identify any indication that the boron SSIs were due to a laboratory analysis error. There were no laboratory quality control flags or issues identified in the laboratory report that affect the usability of the data for detection monitoring.

A time series plot of the boron analytical data were also reviewed for any anomalous results that might indicate a possible sampling or laboratory error (e.g., dilution error or incorrect sample labeling). The time series plot for boron is provided in **Appendix A**. The boron concentration trend appears to be stable during the background and the compliance sampling with the exception of the first sampling results for MW-301 and MW-302. The higher concentrations of boron in the initial sampling event are likely an artifact of drilling the new wells, and do not appear to be due to a sampling or analysis error. Because an interwell analysis was used for the SSI evaluation, comparing compliance well results to background well results, the initial background results for these two compliance wells do not affect the SSI determination for the October 2017 detection monitoring.

3.3 STATISTICAL EVALUATION REVIEW

The review of the statistical results and methods include a quality control check of the following:

- Input analytical data vs. laboratory analytical reports
- Review of statistical method and outlier concentration lists for each monitoring well/CCR Unit

Based on the review of the statistical evaluation, SCS did not identify any errors or issues in the statistical evaluation that caused or contributed to the determination of interwell SSIs for boron at wells MW-301 and MW-302.

3.4 SUMMARY OF METHODOLOGY AND ANALYSIS REVIEW FINDINGS

In summary, there were no changes to the SSI determinations for the October 2017 monitoring event based on the methodology and analysis review, and no errors or issues causing or contributing to the reported boron SSIs were identified.

4.0 ALTERNATIVE SOURCES

This section of the report discusses the potential alternative sources for the boron SSIs at MW-301 and MW-302, identifies the most likely alternative source(s), and presents the lines of evidence indicating that an alternative source is the most likely cause of the observed SSIs for boron.

4.1 POTENTIAL CAUSES OF SSI

4.1.1 Natural Variation

The statistical analysis was completed using an interwell approach, comparing the October 2017 detection monitoring results to the Upper Prediction Limits (UPLs) calculated based on sampling of the background wells (MW-304 and MW-305). If concentrations of a constituent that is naturally present in the aquifer vary spatially, then the potential exists that the downgradient concentrations may be higher than upgradient concentrations due to natural variation.

Boron was detected in both the upgradient (background) and downgradient (compliance) monitoring wells, which is an indication that it is naturally present in the aquifer. Additional regional and site information is discussed below, indicating that natural variation is a likely cause of the boron SSIs for wells MW-301 and MW-302.

4.1.2 Man-made Alternative Sources

Man-made alternative sources that could potentially contribute to the boron SSIs at MW-301 and MW-302 include the closed I-43 Phase 1/2 Landfill, the contact water basin, or the ash unloading

area. Based on monitoring performed since the mid-1980s under the state monitoring program, these potential sources do not appear to be the cause of the SSIs in MW-301 or MW-302. The highest boron concentrations in the shallow unconsolidated deposits monitored for the state program have typically been observed in samples from upgradient piezometers. Further, the closed Phase 1/2 Landfill was constructed with a 5-foot-thick compacted clay liner that is designed to inhibit the movement of leachate beyond the footprint of the closed landfill.

4.2 LINES OF EVIDENCE

The lines of evidence indicating that the SSIs for boron in compliance wells MW-301 and MW-302, relative to the background wells, are due to natural variability include:

- 1. The hydraulic conductivity of the thick glacial till aquitard overlying the dolomite aquifer is very low, and there is limited hydrogeologic connection between the shallow groundwater and the aquifer.
- 2. Groundwater monitoring in the glacial till before and after disposal of CCR at the I-43 ADF shows boron is naturally occurring in the till.
- 3. The boron results for MW-301 and MW-302 are within the range of boron detected in water supply wells obtaining water from the dolomite aquifer in the site vicinity.
- 4. Boron concentrations in the on-site water supply well have been generally decreasing or stable since the first samples were collected prior to the initial CCR disposal in the closed landfill (Phases 1 and 2) in 1986.
- 5. The active Phase 3/4 landfill was constructed with a clay and/or composite liner system, so the potential for a release is very low.

Each of these lines of evidence and the supporting data are discussed in more detail in the following sections.

4.2.1 Glacial Clay Till Hydraulic Conductivity

The glacial clay till at the I-43 ADF is an aquitard with very low vertical hydraulic conductivity. A site review completed by Weston for the USEPA in 2010 found that samples of the native upper clay till collected by Warzyn Engineering, Inc. (Warzyn) in 1981 contained 65 to 85 percent clay size particles, indicating low hydraulic conductivity.

Vertical hydraulic conductivity tests of the clay till, completed as part of the 1981 Warzyn study, found the upper clay till ranged from 5 to 9 x 10^{-8} cm/s. The 1981 Warzyn study estimated the time required for groundwater to traverse vertically through the till to be "on the order of hundreds if not thousands of years" (Warzyn, 1981). Observed high vertical gradients provide further documentation of very low vertical hydraulic conductivity at the site (Weston, 2010). These results suggest there is limited hydrogeologic connection between the upper shallow till aquitard and the uppermost bedrock aquifer.

4.2.2 Upgradient Mid-Depth Piezometers Boron Concentrations

Groundwater monitoring in the glacial till before and after disposal of CCR at the I-43 ADF shows boron is naturally occurring in the till. Samples from upgradient mid-depth piezometers W-18 and W-33A (both approximately 50 feet deep) have had boron concentrations in the range of 200 to 400 micrograms per liter (μ g/L) (**Table 5**) since the first samples were collected in the mid-1980s, prior to CCR disposal (**Appendix D**). Recent boron concentrations, from the state monitoring program, are provided in **Table 6**. The W-18 and W-33A results suggest that a natural source of boron is present in the glacial till.

4.2.3 Private Well Boron Concentrations

The boron results for MW-301 and MW-302 are within the range of boron detected in private water supply wells obtaining water from the dolomite aquifer in the site vicinity. Private well locations and boron concentrations are provided in **Table 7** and shown on **Figure 6**.

Boron was detected in samples collected in 1978, prior to CCR disposal, from two private wells located on the site property (Goebel and Beeck wells). The remaining private wells listed in **Table 7** were sampled in 2011 and had boron concentrations within a similar range of the 1978 sampled private wells, or had higher concentrations. The private wells with the highest boron concentrations are located upgradient and west of the I-43 ADF, including the wells at 5331 County Rd A, 5326 County Rd A, 4928 County Rd A, 5327 Stahl Rd, and 5228 County Rd A.

The presence of high boron concentrations observed within the bedrock upgradient and west of the site indicates 1) there is a natural source of boron in the bedrock aquifer, and 2) that the concentrations of boron reported for samples from MW-301 and MW-302 are within the range of natural background concentrations.

4.2.4 Site Supply Well Boron Concentrations

Boron concentrations in the on-site water supply well (WS-1) have been generally decreasing or stable since the first samples were collected prior to the initial CCR disposal in the closed landfill (Phases 1 and 2) in 1986. The site supply well obtains water from the dolomite bedrock. The boron concentrations at the downgradient monitoring wells, MW-301 and MW-302, are within range of the concentrations observed in the site supply well, WS-1 (**Table 8**). The long-term trend in boron concentrations is shown on a trend plot in **Appendix D**. These results are consistent with a natural source of boron and show no impact from CCR disposal at the I-43 site.

4.2.5 Liner Construction

The active landfill, which comprises the three CCR Units, is constructed with a low permeability liner system that minimizes potential leakage. Phase 4 Module 1 was constructed with a 5-foot compacted clay liner. Phase 3 Modules 1 and 2 were constructed with a composite liner system including 2 feet of compacted clay and a 60-mil HDPE geomembrane. The compacted clay hydraulic conductivity is less than 10^{-7} centimeter per second for all modules, documented through construction quality assurance testing. All constructed modules have a leachate

collection drainage layer overlying the liner. The collected leachate flows by gravity and/or is pumped to the contact water basin. The leachate/contact water swales and contact water basin have composite liners, consisting of compacted clay overlain by a 60-mil HDPE geomembrane.

5.0 ASD CONCLUSIONS

The lines of evidence discussed above regarding the SSIs reported for boron concentrations in downgradient monitoring wells MW-301 and MW-302 demonstrate that the SSIs are likely due to naturally occurring boron in the bedrock aquifer at the I-43 ADF.

6.0 SITE GROUNDWATER MONITORING RECOMMENDATIONS

In accordance with section 257.94(e)(2) of the CCR Rule, the I-43 site may continue with detection monitoring based on this ASD. The ASD report will be included in the 2018 Annual Report due January 31, 2019.

7.0 REFERENCES

Mead and Hunt, Inc., 1977, Preliminary Site Feasibility Report for Ash Disposal Site, Beeck-Goebel Properties, Wilson Township, Sheboygan County, WI, December, 1977.

SCS Engineers, 2018, 2017 Annual Groundwater Monitoring and Corrective Action Report, I-43 Ash Disposal Facility, 2018.

Skinner, Earl L. and Ronald G. Borman, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigations Atlas HA-432, 1973.

U.S. Environmental Protection Agency, 2015, Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule, April 2015.

Weston Solutions, Inc., 2010, Technical Memorandum: Alliant Energy Site – Site Historical Information Review and Evaluation, Sheboygan County, WI, December 2010.

Warzyn Engineering, Inc., 1981, Summary Report, Proposed Fly Ash Disposal Facility, Beeck-Goebel Properties, Edgewater Power Plant – Unit 5, Wisconsin Power and Light Company, 1981.

[This page left blank intentionally]

TABLES

- 1 Detection Monitoring Results Summary October 2017
- 2 Boron Concentrations CCR Rule Monitoring Well Network
- 3 Groundwater Elevation Table State Monitoring Program
- 4 Groundwater Elevation Table CCR Rule Monitoring Well Network
- 5 Historical Boron Concentrations State Monitoring Wells W-18 and W-33
- 6 Boron Concentrations 2016-2017 State Monitoring Program
- 7 Boron Concentrations Private Wells
- 8 Boron Concentrations Site Supply Well WS-1

Table 1. Detection Monitoring Results Summary - October 2017

WPL-Edgewater I-43 Ash Disposal Facility Sheybogan, Wisconsin

Parameter Name	Units	Interwell Upper	Backgrou	und Wells	Co	mpliance W	ells
		Prediction Limit (UPL)	MW 304	MW 305	MW 301	MW 302	MW 303
Boron	µg/L	116.3	104	70	149	128	89
Calcium	mg/L	118100	20100	90700	48700	31200	29100
Chloride	mg/L	26.75	1.7 J	21.5	4.7	5.5	6.8
Fluoride	mg/L	0.747	0.54	0.64	0.62	0.71	0.66
Field pH	Std. Units	8.77	7.74	7.55	7.82	7.7	7.59
Sulfate	mg/L	140	14.2	134	8.6	26.3	67.1
Total Dissolved Solids	mg/L	678	208	540	236	238	304

149	Statistically	significant	increase	at com	pliance	well
-----	---------------	-------------	----------	--------	---------	------

Notes:

- 1. UPL based on parametric prediction limit based on 1-of-2 resampling methodology for all parameters except sulfate. Optional resampling was not performed for boron.
- 2. UPL for sulfate based on non-parametric prediction limit (highest background value).
- 3. UPLs calculated from background well results for April 2016 through October 2017.
- 4. Analytical laboratory reports provided in the 2017 Annual Groundwater Monitoring and Corrective Action Report.

I:\25216069.00\Reports\2018 ASD Report\Tables \[Tables 2, and 4-8, Leachate Table.xlsx]Table 1. Detection Monit. Sum

Table 2. Boron Concentrations - CCR Rule Monitoring Well Network

WPL-Edgewater I-43 Ash Disposal Facility Sheybogan, Wisconsin

Well Group	Well	Collection Date	Boron (Ua/L)
		4/26/2016	92.1
		6/21/2016	90.9
		8/9/2016	102
		10/19/2016	106
		12/19/2016	102
	MW 304	1/23/2017	101
g		2/23/2017	99.8
uno		4/7/2017	96.9
ckgı		6/6/2017	102
Ba		8/1/2017	103
		10/23/2017	104
		2/23/2017	94.4
		4/7/2017	86.4
	MW 305	6/6/2017	78.8
		8/1/2017	76.5
		10/23/2017	70
		4/26/2016	298*
		6/21/2016	157
		8/10/2016	151
		10/19/2016	148
		12/19/2016	174
	MW 301	1/23/2017	177
		2/23/2017	181
		4/6/2017	144
		6/6/2017	138
e		8/1/2017	145
lian		10/23/2017	149
dwc		4/26/2016	198*
Ŭ		6/21/2016	121
		8/9/2016	131
		10/19/2016	126
		12/19/2016	127
	MW 302	1/23/2017	151
		2/23/2017	149
		4/6/2017	132
		6/6/2017	124
		8/1/2017	130
		10/23/2017	128

Table 2. Boron Concentrations - CCR Rule Monitoring Well Network

WPL-Edgewater I-43 Ash Disposal Facility Sheybogan, Wisconsin

Well Group	Well	Collection Date	Boron (µg/L)
		4/26/2016	86.4
		6/21/2016	85
		8/9/2016	96
		10/19/2016	90.8
pliance		12/19/2016	81.6
	MW 303	1/23/2017	99.8
Lo		2/23/2017	93.9
0		4/7/2017	89.8
		6/6/2017	89.1
		8/1/2017	95
		10/23/2017	89

Abbreviations:

 $\mu g/L$ = micrograms per liter or parts per billion (ppb)

Notes:

Analytical laboratory reports provided in the 2017 Annual Groundwater Monitoring and Corrective Action Report.

Created by:	NDK	Date:	Date:	2/21/2018
Last revision by:	NDK	Date:	Date:	2/21/2018
Checked by:	JD	Date:	Date:	2/22/2018

I:\25216069.00\Reports\2018 ASD Report\Tables\[Tables 2, and 4-8, Leachate Table.xlsx]Table 2-Analytical-CCR wells

Table 3. Groundwater Elevation Table - State Monitoring Program

WPL-Edgewater I-43 Ash Disposal Facility

Sheybogan, Wisconsin

Groundwater Elevation	roundwater Elevation in feet above mean sea level (amsl)													
Well Number	W-6R	W-10A	W-11R	W-12R	W-17	W-18	W-19BR	W-21	W-33	W-34R	W-37	W-38	W-39	W-40
Top of Casing Elevation (feet amsl)	696.21	688.59	692.181	712.86	709.63	720.77	688.38	694.29	726.19	702.15	728.09	720.93	722.08	685.53
Screen Length (ft)														
Total Depth (ft from top of casing)	21.75	33.04	18.50	18.06	31.08	47.51	19.40	28.65	22.70	15.76	20.33	21.05	19.75	18.24
Measurement Date														
April 7, 2016	691.73	669.99	687.84	707.45	695.25	682.09	685.03	691.71	718.84	693.93	723.14	717.71	717.26	680.85
October 17-19, 2016	677.43	669.55	687.73	704.53	696.27	680.99	683.80	690.16	718.52	691.65	dry	715.88	715.86	680.62
April 11, 2017	691.71	671.05	688.72	707.32	695.46	683.51	684.55	688.99	718.86	691.47	724.03	716.58	717.77	680.79
October 10-11, 2017	684.79	667.96	685.07	697.55	694.68	681.92	679.29	686.01	718.06	684.88	dry	710.42	710.76	680.45
December 7, 2017	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
Bottom of Well Elevation (ft)	674.46	655.55	673.68	694.80	678.55	673.26	668.98	665.64	703.49	686.39	707.76	699.88	702.33	667.29

Notes:	Created by:	NDK	Date:	2/21/2018
NM = not measured	Last revision by:	NDK	Date:	2/21/2018
Water levels collected during Sample	Checked by:	JD	Date:	2/22/2018

Collection

l:\25216069.00\Reports\2018 ASD Report\Tables\[Tables 2, and 4-8, Leachate Table.xlsx]Table 3. GW Elev -State

Table 4. Groundwater Elevation Table - CCR Rule Monitoring Well Network

WPL-Edgewater I-43 Ash Disposal Facility Sheybogan, Wisconsin

Well Number	Ground Water Elevation in feet above mean sea level (amsl)				
	MW-301	MW-302	MW-303	MW-304	MW-305
Top of Casing Elevation (feet amsl)	696.96	702.57	719.25	691.97	717.67
Screen Length (ft)	5.00	5.00	5.00	5.00	5.00
Total Depth (ft from top of casing)	134.56	144.33	144.65	119.49	122.97
Top of Well Screen Elevation (ft)	567.40	563.24	579.60	577.48	600.46
Measurement Date					
April 8, 2016	653.54	653.56	653.59	655.90	
Octoebr 23, 2017	652.03	652.05	652.03	653.65	657.22
Bottom of Well Elevation (ft)	562.40	558.24	574.60	572.48	594.70
Notes: NM = not measured	Created by: Last revision by:	NDK NDK	Date: Date:	2/21/2018 2/21/2018	
	Checked by:	JD	Date:	2/22/2018	

I:\25216069.00\Reports\2018 ASD Report\Tables\[Tables 2, and 4-8, Leachate Table.xlsx]Table 4. GW Elev -CCR

WPL-Edgewater I-43 Ash Disposal Facility Sheboygan, Wisconsin

Well ID	Date	Boron, Dissolved (µg/L)	Boron, Total (µg/L)
	11/9/1983		350
	1/11/1984		350
	3/27/1984		420
	7/12/1984	340	
	9/13/1984	390	
	12/22/1984	420	
	3/14/1985		430
	6/20/1985		350
	9/20/1985		340
	12/18/1985		350
	3/17/1986		410
	6/18/1986		350
	9/22/1986		410
	12/18/1986		460
	3/17/1987		400
	6/10/1987		300
	3/9/1988		280
	6/9/1988		290
	9/21/1988	370	
W-18	12/9/1988	160	
	3/23/1989	1320	
	6/28/1989	140	
	9/25/1989	110	
	12/18/1989	50	
	3/29/1990	300	
	6/15/1990	300	
	9/21/1990	300	
	12/17/1990	300	
	3/15/1991	400	
	6/3/1991	<200	
	9/6/1991	250	
	12/9/1991	280	
	3/13/1992	360	
	9/11/1992	300	
	12/11/1992	340	
	3/11/1993	310	
	10/6/2009	262	
	7/20/2010	240	
	10/7/2010	280	

WPL-Edgewater I-43 Ash Disposal Facility Sheboygan, Wisconsin

Well ID	Date	Boron, Dissolved (µg/L)	Boron, Total (µg/L)
	1/19/2011	300	
	4/22/2011	250	
	10/28/2011	250	
	4/19/2012	250	
	10/25/2012	270	
	4/9/2013	250	
	10/23/2013	243	
W-18	4/22/2014	296	
	10/29/2014	255	
	4/8/2015	250	
	10/7/2015	198	
	4/7/2016	211	
	10/18/2016	252	
	4/12/2017	241	
	10/11/2017	233	
	3/14/1985	300	
	3/14/1985		300
	6/20/1985	250	
	6/20/1985		250
	9/20/1985		310
	12/18/1985		260
	3/17/1986		340
	6/18/1986	320	
	6/18/1986		320
	9/22/1986	340	
	9/22/1986		340
	12/18/1986	280	
14/ 224	3/17/1987	350	
W-33A	6/10/1987	190	
	9/10/1987	280	
	12/14/1987	260	
	3/9/1988	220	
	3/23/1989	180	
	6/28/1989	100	
	9/25/1989	60	
	12/18/1989	140	
	3/29/1990	300	
	6/15/1990	300	
	9/21/1990	300	
	12/17/1990	300	
	3/15/1991	400	

WPL-Edgewater I-43 Ash Disposal Facility Sheboygan, Wisconsin

Well ID	Date	Boron, Dissolved (μg/L)	Boron, Total (µg/L)
	6/3/1991	280	
	9/6/1991	250	
	12/9/1991	310	
	3/13/1992	330	
	6/12/1992	310	
	9/11/1992	270	
	12/11/1992	280	
	3/11/1993	280	
	6/11/1993	250	
	9/17/1993	300	
	12/9/1993	230	
	3/18/1994	210	
	9/9/1994	280	
	12/9/1994	260	
	3/10/1995	330	
	6/14/1995	280	
	9/15/1995	200	
	3/22/1996	270	
	9/18/1996	270	
	3/18/1997	280	
W-33A	9/17/1997	250	
	3/19/1998	250	
	10/22/1998	270	
	4/27/1999	290	
	10/20/1999	280	
	4/11/2000	290	
	10/11/2000	290	
	4/13/2001	290	
	10/9/2001	270	
	4/16/2002	270	
	10/23/2002	270	
	4/24/2003	270	
	10/22/2003	240	
	4/7/2004	260	
	10/6/2004	260	
	4/21/2005	270	
	10/5/2005	300	
	4/5/2006	270	
	10/17/2006	260	
	4/18/2007	240	
	10/25/2007	240	

WPL-Edgewater I-43 Ash Disposal Facility Sheboygan, Wisconsin

Well ID	Date	Boron, Dissolved (µg/L)	Boron, Total (µg/L)
	4/10/2008	266	
	10/7/2008	267	
	4/28/2009	255	
	10/6/2009	271	
	4/8/2010	230	
	7/20/2010	260	
	10/7/2010	300	
	1/19/2011	280	
	4/22/2011	250	
	10/28/2011	250	
W-33A	4/18/2012	250	
	10/25/2012	260	
	4/11/2013	221	
	10/24/2013	246	
	4/23/2014	239	
	10/30/2014	250	
	4/9/2015	246	
	10/7/2015	250	
	4/7/2016	209	
	10/20/2016	244	
	4/12/2017	230	

Abbreviations:

 $\mu g/L$ = micrograms per liter or parts per billion (ppb)

-- = not analyzed

Notes:

Data provided by the WDNR Groundwater and Environmental Monitoring System (GEMS).

Created by:	NDK	Date:	2/21/2018
Last revision by:	NDK	Date:	2/21/2018
Checked by:	JD	Date:	2/22/2018

l:\25216069.00 Reports
\2018 ASD Report
Tables
(Tables 2, and 4-8, Leachate Table.xlsx]
Table 5 -Historical

WPL -Edgewater I-43 Ash Disposal Facility Sheboygan, Wisconsin

Point Name	Reporting Period	Boron, dissolved (µg/L as B)
W-2	2016-Apr	99.4
	2016-Oct	97.4
	2017-Apr	98.4
	2017-Oct	138
W-6	2016-Apr	190
	2016-Oct	192
	2017-Apr	172
	2017-Oct	171
W-6A	2016-Apr	107
	2016-Oct	132
	2017-Apr	130
	2017-Oct	123
W-6R	2016-Apr	146
	2016-Oct	221
	2017-Apr	159
	2017-Oct	240
W-10	2016-Apr	174
	2016-Oct	193
	2017-Apr	179
	2017-Oct	324
W-10A	2016-Apr	122
	2016-Oct	139
	2017-Apr	138
	2017-Oct	193
W-10B	2016-Apr	35
	2016-Oct	62.5
	2017-Apr	34.2
	2017-Oct	79.6
W-11A	2016-Apr	126
	2016-Oct	132
	2017-Apr	136
	2017-Oct	132
W-11R	2016-Apr	86.4
	2016-Oct	108
	2017-Apr	154
	2017-Oct	44.4

WPL -Edgewater I-43 Ash Disposal Facility Sheboygan, Wisconsin

		Boron,
	Reporting	dissolved
Point Name	Period	(µg/L as B)
W-12AR	2016-Apr	133
	2016-Oct	144
	2017-Apr	141
	2017-Oct	146
W-12R	2016-Apr	47.9
	2016-Oct	63.3
	2017-Apr	41.4
	2017-Oct	55.6
W-17	2016-Apr	118
	2016-Oct	128
	2017-Apr	130
	2017-Oct	124
W-17AR	2016-Apr	116
	2016-Oct	125
	2017-Apr	124
	2017-Oct	126
W-17B	2016-Apr	60.6
	2016-Oct	48.8
	2017-Apr	41.5
	2017-Oct	49.9
W-18	2016-Apr	211
	2016-Oct	252
	2017-Apr	241
	2017-Oct	233
W-18AR	2016-Apr	
	2016-Oct	
	2017-Apr	
	2017-Oct	160
W-18BR	2016-Apr	7.3 J
	2016-Oct	20.8
	2017-Apr	13.5
	2017-Oct	21.1
W-19	2016-Apr	88.8
	2016-Oct	84.8
	2017-Apr	87.5
	2017-Oct	81.6

WPL -Edgewater I-43 Ash Disposal Facility Sheboygan, Wisconsin

		Boron,
	Reporting	dissolved
Point Name	Period	(µg/L as B)
W-19A	2016-Apr	51.8
	2016-Oct	93.3
	2017-Apr	72.8
	2017-Oct	58.5
W-19BR	2016-Apr	35.1
	2016-Oct	56.2
	2017-Apr	49.5
	2017-Oct	33
W-21	2016-Apr	32.6
	2016-Oct	61.8
	2017-Apr	68.1
	2017-Oct	41.6
W-22	2016-Apr	27.4
	2016-Oct	55.5
	2017-Apr	34.9
	2017-Oct	46.9
W-22A	2016-Apr	101
	2016-Oct	187
	2017-Apr	116
	2017-Oct	123
W-22B	2016-Apr	28.4
	2016-Oct	35.8
	2017-Apr	26.7
	2017-Oct	36
W-33	2016-Apr	58.1
	2016-Oct	80
	2017-Apr	66.3
	2017-Oct	77.6
W-33A	2016-Apr	209
	2016-Oct	244
	2017-Apr	230
	2017-Oct	241
W-34R	2016-Apr	34
	2016-Oct	67.8
	2017-Apr	37.8
	2017-Oct	46.9

WPL -Edgewater I-43 Ash Disposal Facility Sheboygan, Wisconsin

	Reporting	Boron, dissolved
Point Name	Period	(µg/L as B)
W-37	2016-Apr	22.9
	2016-Oct	
	2017-Apr	17.4 2q
	2017-Oct	
W-38	2016-Apr	18.6
	2016-Oct	18.0
	2017-Apr	15.3
	2017-Oct	20.2
W-39	2016-Apr	22.9
	2016-Oct	22.7
	2017-Apr	25.2 2q
	2017-Oct	27.5
W-40	2016-Apr	189
	2016-Oct	273
	2017-Apr	222
	2017-Oct	333
W-40A	2016-Apr	138
	2016-Oct	154
	2017-Apr	146
	2017-Dec	163

Abbreviations:

 $\mu g/L$ = micrograms per liter or parts per billion (ppb) mg/L = milligrams per liter or parts per million (ppm)

Notes:

Data provided by the WDNR Groundwater and Environmental Monitoring System (GEMS).

Created by:	SCC	Date:	2/24/2014
Last revision by:	MDB	Date:	1/10/2018
Checked by:	AJR	Date:	2/9/2018
Table 7. Boron Concentrations - Private Wells

WPL-Edgewater I-43 Ash Disposal Facility Sheybogan, Wisconsin

Collection Date	Location I D	Well Location	Boron (µg/L)
5/15/1978	Goebel Well - Historical	Private Well - Previously located onsite	170
6/21/1978	Beeck Well - Historical	Private Well - Previously located onsite	80
10/5/2011	4928 Cty Rd A	Upgradient/sidegradient (northwest)	170
10/5/2011	5228 Cty Rd A	Upgradient (west)	140
10/5/2011	5326 Cty Rd A	Upgradient (west)	180
10/5/2011	5331 Cty Rd A	Upgradient (west)	220
10/6/2011	4632 Frontage Rd	Downgradient (northeast)	120
10/6/2011	4700 Frontage Rd	Downgradient (northeast)	110
10/6/2011	4730 Frontage Rd	Downgradient (northeast)	110
10/6/2011	4820 Frontage Rd	Downgradient (northeast)	100
10/6/2011	4910 Frontage Rd	Downgradient (northeast)	92
10/5/2011	5425 Racetrack Rd	Downgradient (east)	110
10/5/2011	5515 Racetrack Rd	Downgradient (east)	110
10/5/2011	5619 Roehrborn Rd	Upgradient (west)	110
10/5/2011	3836 Stahl Rd	Sidegradient (southeast)	120
10/5/2011			70
	4202 Stahl Rd	Upgradient/sidegradient (south)	72
10/5/2011	5327 Stahl Rd	Upgradient (southwest)	170
10/5/2011	4121 Weeden Creek Rd	Downgradient/sidegradient (north)	150
10/6/2011	4124 Weeden Creek Rd	Downgradient/sidegradient (north)	150
10/6/2011	4701 Weeden Creek Rd	Downgradient/sidegradient (northwest)	130

Abbreviations:

 $\mu g/L = micrograms$ per liter or parts per billion (ppb)

-- = not analyzed

Note: Private Well Search completed by SCS Engineers.

Created by:	NDK	Date:	2/21/2018
Last revision by:	NDK	Date:	2/21/2018
Checked by:	JD	Date:	2/22/2018

I:\25216069.00\Reports\2018 ASD Report\Tables\[Tables 2, and 4-8, Leachate Table.xlsx]Table 7- Private Wells

Table 8. Boron Concentrations - Site Supply Well - WS-1

WPL-Edgewater I-43 Ash Disposal Facility Sheybogan, Wisconsin

Collection Date	Boron	
	(µg/L)	
3/14/1985	150	
7/9/1985	200	
9/20/1985	180	
12/18/1985	190	
3/17/1986	220	
6/18/1986	120	
12/18/1986	160	
3/17/1987	140	
6/10/1987	<100	
9/10/1987	140	
12/14/1987	160	
3/9/1988	120	
9/21/1988	170	
12/9/1988	280	
3/23/1989	<50	
6/28/1989	<50	
6/30/1989	<50	
9/25/1989	<50	
12/19/1989	<50	
3/29/1990	<200	
6/15/1990	<200	
9/21/1990	<400	
12/17/1990	<200	
3/15/1991	<200	
6/3/1991	<400	
9/6/1991	<200	
12/9/1991	<200	
3/13/1992	<200	
9/15/1992	<200	
12/11/1992	<200	
3/11/1993	<200	
6/15/1993	<200	
9/16/1993	<200	
12/9/1993	<200	
3/18/1994	<200	
9/9/1994	<200	
12/8/1994	<200	
3/10/1995	<200	
6/14/1995	<200	
9/15/1995	<200	

Table 8. Boron Concentrations - Site Supply Well - WS-1

WPL-Edgewater I-43 Ash Disposal Facility Sheybogan, Wisconsin

Collection Date	Boron	
	(µg/L)	
3/22/1996	<200	
9/18/1996	88	
3/18/1997	140	
9/17/1997	98	
3/19/1998	130	
10/23/1998	88	
4/27/1999	96	
10/20/1999	89	
4/11/2000	97	
10/11/2000	93	
4/13/2001	95	
10/9/2001	92	
4/16/2002	95	
10/23/2002	96	
4/23/2003	94	
10/22/2003	92	
4/7/2004	87	
10/6/2004	90	
4/21/2005	93	
10/5/2005	90	
4/5/2006	79	
10/17/2006	82	
4/18/2007	78	
10/25/2007	85	
4/10/2008	80.6	
10/7/2008	84.8	
4/28/2009	86.5	
10/6/2009	100	
4/8/2010	74	
7/20/2010	97	
10/7/2010	110	
1/19/2011	120	
4/21/2011	81	
10/27/2011	87	
4/18/2012	89	
10/25/2012	88	
4/11/2013	84.8	
10/24/2013	83.1	
4/23/2014	75.8	
10/29/2014	71.6	

Table 8. Boron Concentrations - Site Supply Well - WS-1

WPL-Edgewater I-43 Ash Disposal Facility Sheybogan, Wisconsin

Collection Date	Boron (µg/L)
4/8/2015	88.7
10/7/2015	65.2
11/6/2015	88
4/28/2016	88.4
10/18/2016	88.3
4/12/2017	87.2
10/11/2017	94.7

Abbreviations:

 $\mu g/L$ = micrograms per liter or parts per billion (ppb)

-- = not analyzed

Notes:

Data provided by the WDNR Groundwater and Environmental Monitoring System (GEMS).

Created by:	NDK	Date:	2/21/2018
Last revision by:	NDK	Date:	2/21/2018
Checked by:	JD	Date:	2/22/2018

l:\25216069.00 \Report
2018 ASD Report
Tables
 [Tables 2, and 4-8, Leachate Table.xlsx]
Table 8. WS-1

FIGURES

- 1 Site Location Map
- 2 Monitoring Well Location Map
- 3 Water Table Map October 2017
- 4 Bedrock Potentiometric Surface Map April 2016
- 5 Bedrock Potentiometric Surface Map October 2017
- 6 Bedrock Aquifer Boron Concentrations Private Wells

:\25216069.00\Drawings\Site Loc.dwg, 4/16/2018 4:17:44 PM

	LEGEND
	APPROXIMATE PROPERTY LINE
	MODULE LIMITS
	GRADE (2' CONTOUR)
690	GRADE (10' CONTOUR)
· · · · · · · ·	EDGE OF WATER
· · · ·	SWALE
	CULVERT
O MH	MANHOLE
W	CONTACT WATER TRANSFER PIPE
———— AB ————	ABANDONED 3" DIA. HDPE PIPE
····· •	TREELINE/TREES
	PAVED ROAD
	UNPAVED ACCESS ROAD
++++++++++++++++++++++++++++++++++++	RAILROAD TRACKS
x x x x	FENCE
Ø	UTILITY/LIGHT POLE
Ð	MONITORING WELL (UNCONSOLIDATED)
۲	PIEZOMETER (UNCONSOLIDATED)
	PRIVATE WATER SUPPLY WELL
۲	CCR RULE PIEZOMETER (BEDROCK)
	CCR RULE UNITS

NOTE:

1.	MONITORING WELLS MW-301, MW-303, AND MW-304 WERE INSTALLED BETWEEN NOVEME 30, 2015 AND JANUARY 26, 2016 BY BADG STATE DRILLING INC. DRILLING WAS PERFORM UNDER THE SUPERVISION OF SCS ENGINEERS	BER ER MED S.			
2.	MONITORING WELLS MW-301, MW-302, MW-303 AND MW-304 WERE SURVEYED ON FEBRUARY 8, 2016 BY SCS ENGINEERS.				
3.	MONITORING WELL MW-305 WAS SURVEYED FEBRUARY 15, 2017 BY CQM, INC.	ON			
500 					
SCALE: 1" = 500'					
MONITORING WELL LOCATION MAP					

	LEGEND
	APPROXIMATE PROPERTY LINE
	DESIGN MANAGEMENT ZONE (FOLLOWS PROPERTY LINE WHERE LESS THAN 300 FEET FROM APPROVED LIMITS OF WASTE)
	LIMITS OF WASTE
	MODULE LIMIT
	EXISTING GRADE (2' CONTOUR)
690	EXISTING GRADE (10' CONTOUR)
× ^{686.8}	EXISTING GRADE SPOT ELEVATION
····· 0	TREELINE/TREES
	PAVED ROAD
==========	UNPAVED ROAD
······	TRAIL/PATH
	RAILROAD TRACKS
x x x x	FENCE
Ø \$	UTILITY/LIGHT POLE
	EDGE OF WATER
•	MONITORING WELL
۲	PIEZOMETER
.	LEACHATE HEADWELL
•	WATER SUPPLY WELL
680.21	WATER TABLE ELEVATION MEASURED OCTOBER 6-7, 2015
	WATER TABLE CONTOUR (DASHED WHERE INFERRED)
—	APPROXIMATE GROUNDWATER FLOW DIRECTION
5	PRIVATE WATER SUPPLY WELL

NOTES:

- 1. BASE MAP PREPARED BY KBM, INC. BASED ON AERIAL TOPOGRAPHIC SURVEY FLOWN DECEMBER 1, 2014. BASE MAP PREPARED USING WISCONSIN STATE PLANE COORDINATES. ELEVATIONS BASED ON USGS NATIONAL GEODETIC VERTICAL DATUM, 1929.
- 2. TOPOGRAPHIC CONTOUR INTERVAL IS 2 FEET.
- 3. CONVERSION FROM LOCAL COORDINATE SYSTEM TO STATE PLANE: SHIFT 2558047.2314,624139.6532, ROTATE 0.17° AROUND POINT WITH COORDINATES 2559697.2314,625039.6532.
- 4. SOIL BORING AND MONITORING WELL LOCATIONS BASED ON WELL INFORMATION FORM COORDINATES AND EXISTING CONDITIONS MAP F11 PREPARED BY WARZYN, INC. USING LOCAL COORDINATES.
- 5. WATER LEVELS MEASURED BY SCS IN OCTOBER 2017.

	Ξ	ALTERNATIVE SOURCE DEMONSTRATION	WATER TABLE MAP	SHEET
ANY	S	WILSON, WISCONSIN	OCTOBER 2017	3

	LEGEND	
	APPROXIMATE PROPERTY LIN	ΙE
	MODULE LIMITS	
	GRADE (2' CONTOUR)	
	GRADE (10' CONTOUR)	
· · · · · · · ·	EDGE OF WATER	
	SWALE	
,	CULVERT	
O MH	MANHOLE	
W	CONTACT WATER TRANSFER	PIPE
AB	ABANDONED 3" DIA. HDPE F	PIPE
····· »	TREELINE/TREES	
	PAVED ROAD	
	UNPAVED ACCESS ROAD	
+++++++++++++++++++++++++++++++++++++++	RAILROAD TRACKS	
x x x x	FENCE	
Ø	UTILITY/LIGHT POLE	
•	MONITORING WELL	
۲	PIEZOMETER	
	PRIVATE WATER SUPPLY WE	LL
۲	CCR RULE PIEZOMETER	
653.54	POTENTIOMETRIC SURFACE E MEASURED ON 04/08/16	LEVATION
	WATER TABLE CONTOUR	
->	APPROXIMATE GROUNDWATER	2
	CCR RULE UNITS	
NOTE:		
1. MONITORING WE MW-304 WERE 30, 2015 AND STATE DRILLING UNDER THE SU	ELLS MW-301, MW-303, AND INSTALLED BETWEEN NOVEME JANUARY 26, 2016 BY BADC INC. DRILLING WAS PERFOR PERVISION OF SCS ENGINEER	BER SER MED S.
2. MONITORING WE AND MW-304 8, 2016 BY SC	ELLS MW-301, MW-302, MW- WERE SURVEYED ON FEBRUAF S ENGINEERS.	303 RY
500	0 500	
SCALE:	1" = 500'	
BEDROCK POTENTIO	METRIC SURFACE MAP	FIGURE
APR	4	

I:\25216069.00\Drawings\Wtbl_Large Map.dwg, 4/16/2018 4:12:08 PM

	LEGEND				
	APPROXIMATE PROPERTY LIN	١E			
	MODULE LIMITS				
	GRADE (2' CONTOUR)				
<u> 690 </u>	GRADE (10' CONTOUR)				
· · · · · · · ·	EDGE OF WATER				
· · ·	SWALE				
<u> </u>	CULVERT				
O MH	MANHOLE				
W	CONTACT WATER TRANSFER	PIPE			
AB	ABANDONED 3" DIA. HDPE F	PIPE			
····· ٥	TREELINE/TREES				
	PAVED ROAD				
========	UNPAVED ACCESS ROAD				
+++++++++++++++++++++++++++++++++++++++	RAILROAD TRACKS				
x x x x	FENCE				
Ø¢	UTILITY/LIGHT POLE				
•	MONITORING WELL				
۲	PIEZOMETER				
	PRIVATE WATER SUPPLY WE	LL			
۲	CCR RULE PIEZOMETER				
652.05	POTENTIOMETRIC SURFACE E	LEVATION			
	WATER TABLE CONTOUR				
->	APPROXIMATE GROUNDWATE	2			
	FLOW DIRECTION				
	CCR ROLE UNITS				
NOTE:					
 MONITORING WELLS MW-301, MW-303, AND MW-304 WERE INSTALLED BETWEEN NOVEMBER 30, 2015 AND JANUARY 26, 2016 BY BADGER STATE DRILLING INC. DRILLING WAS PERFORMED UNDER THE SUPERVISION OF SCS ENGINEERS. 					
2. MONITORING W AND MW-304 8, 2016 BY S(ELLS MW-301, MW-302, MW- WERE SURVEYED ON FEBRUAF CS ENGINEERS.	303 RY			
500	0 500	IN			
SCALE:	SCALE: 1" = 500'				
BEDROCK POTENTIC	METRIC SURFACE MAP	FIGURE			
	3ER 2017	5			

I:\25216069.00\Drawings\Private Well Location Map.dwg, 3/14/2018 9:46:53 AM

APPENDIX A

CCR Well Trend Plot – Boron

APPENDIX B

Regional Geologic and Hydrogeologic Background Information

Source: Skinner, Earl L. and Ronald G. Borman, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigations Atlas HA-432, 1973.

Regional Groundwater Flow Map - Uppermost Aquifer

Source: Skinner, Earl L. and Ronald G. Borman, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigations Atlas HA-432, 1973.

Table I43-3. Regional Hydrogeologic StratigraphyEdgewater I-43 Landfill / SCS Engineers Project #25216069

Age	Hydrogeologic Unit	General Thickness (feet)	Name of Rock Unit*	Predominant Lithology
Quaternary	Sand and Gravel Aquifer	0 to 235	Surface sand and gravel	Sand and Gravel
		0 to 300	Buried sand and gravel	
Devonian	Niagara Dolomite	0 to 750	Dolomite (undifferentiated)	Dolomite
Silurian	Aquifer			
Ordovician	Confining Unit	0 to 400	Maquoketa Shale	Shale and dolomite
	Sandstone Aquifer	100 to 340	Galena Decorah Platteville	Dolomite
		0 to 330	St. Peter	Sandstone
		0 to 140	Prairie du Chien	Dolomite
Cambrian		0 to 3,500?	Trempeleau Franconia Galesville Eau Claire Mt. Simon	Sandstone, some Dolomite and Shale
Precambrian	Not an Aquifer	Unknown	Crystalline Rocks	Igneous and metamorphic rocks

Source:

Skinner, Earl L. and Ronald G. Borman, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigations Atlas HA-432, 1973.

I:\25216069.00\Reports\2018 ASD Report\Attachment A Regional Geology and Hydro\Regional_Hydrogeologic_Stratigraphy_143.doc

APPENDIX C

Geologic Cross Sections from 2010 Weston Report

APPENDIX D

Long-Term Boron Trend Plots – Selected State Monitoring Program Wells

Wisconsin Power & Light Company Edgewater I-43 Ash Disposal Facility W-018 - Boron, dissolved (mg/l as B)

Wisconsin Power & Light Company Edgewater I-43 Ash Disposal Facility W-033A - Boron, dissolved (mg/I as B)

I:\25216069.00\Reports\2018 BR\E_Graphs\Bo_EDG I-43W-33A 2/16/2018

Wisconsin Power & Light Company Edgewater I-43 Ash Disposal Facility WS-001 - Boron, µg/L

B2 Alternative Source Demonstration, April 2018 Detection Monitoring

Alternative Source Demonstration April 2018 Detection Monitoring

Edgewater Generating Station I-43 Ash Disposal Facility Town of Wilson Sheboygan County, Wisconsin

Prepared for:

Alliant Energy

SCS ENGINEERS

25216069.18 | October 30, 2018

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830

Sect	ion		Page	Э		
PE Ce	ertifica	ation		ii		
1.0	0 Introduction1					
	1.1	§257.9	04(E)(2) Alternative Source Demonstration Requirements	1		
	1.2	Site Inf	ormation and Map	1		
	1.3	Statisti	cally Significant Increases Identified2	2		
	1.4	Overvie	ew of ASD	2		
2.0	Back	Background2				
	2.1	Geolog	ic and Hydrogeologic Setting	3		
		2.1.1	Regional Information	3		
		2.1.2	Site Information	3		
	2.2	CCR Ru	Ile Monitoring System	3		
	2.3	Other N	Aonitoring Wells	4		
3.0	Meth	odology	and Analysis Review	4		
	3.1	Sampli	ng and Field Analysis Review	4		
	3.2	Labora	tory Analysis Review	4		
	3.3	Statisti	cal Evaluation Review	5		
	3.4	Summa	ary of Methodology and Analysis Review Findings	5		
4.0	Alteri	native S	ources	5		
	4.1	.1 Potential Causes of SSI		5		
		4.1.1	Natural Variation	5		
		4.1.2	Man-Made Alternative Sources	5		
	4.2	Lines o	f Evidence	3		
		4.2.1	Glacial Clay Till Hydraulic Conductivity	3		
		4.2.2	Upgradient Mid-Depth Piezometers Boron Concentrations	3		
		4.2.3	Private Well Boron Concentration	7		
		4.2.4	Site Supply Well Boron Concentrations	7		
		4.2.5	Liner Construction	7		
5.0	ASD	Conclus	ions	7		
6.0	Site Groundwater Monitoring REcommendations 8					
7.0	Refe	rences		3		

Tables

Table 1.	Detection Monitoring Results Summary – April 2018
Table 2	Boron Concentrations – CCR Rule Monitoring Well Network
Table 3	Groundwater Elevation Table – CCR Rule Monitoring Well Network

Figures

- Figure 1 Site Location Map
- Figure 2 Monitoring Well Location Map
- Figure 3 Bedrock Potentiometric Surface Map April 2018

Appendices

Appendix A CCR Well Trend Plot – Baron

I:\25216069.00\Reports\2018 ASD Report #2\181030_ASD_Edgewater I-43.docx

PE CERTIFICATION				
STRATTON ISCO NOT ANTINI	I, Sherren Clark, hereby certify that that the information in this alternate source demonstration is accurate and meets the requirements of 40 CFR 257.94(e)(2). This certification is based on my review of the groundwater data and related site information available for the Edgewater Generating Station I-43 Ash Disposal Facility. I am a duly licensed Professional Engineer under the laws of the State of Wisconsin.			
Sherren C. Clark E-29863 Madison, Wis.	(Signature) (date)			
SALESSAN SUBARTINA	(printed or typed name)			
10-29-18	License number $E - 29863$			
	My license renewal date is July 31, 2020.			
	Pages or sheets covered by this seal:			
	Alternative Source Demonstration			
	April 2018 Detection Monitoring			
	1 12 Nori Disposal Facility			

DE CEDTIEICATION

[This page left blank intentionally]

1.0 INTRODUCTION

This Alternative Source Demonstration (ASD) was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" published by the U.S. Environmental Protection Agency (USEPA) in the *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule,* dated April 17, 2015 (USEPA, 2015), and subsequent amendments. Specifically, this report is prepared to fulfill the requirements of 40 CFR 257.94(e)(2). The applicable sections of the CCR Rule are provided below in *italics*.

1.1 §257.94(E)(2) ALTERNATIVE SOURCE DEMONSTRATION REQUIREMENTS

The owner and operator may demonstrate that a source other than the CCR Unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels.

An ASD is completed when there are exceedances of one or more benchmarks established within the groundwater monitoring program. The ASD is completed to determine if any other sources are likely causes of the identified exceedance(s) of established benchmark(s) at the site. This ASD was performed in response to results indicating a statistically significant increase (SSI) over background levels during detection monitoring under the CCR Rule.

This ASD report is evaluating the SSIs observed in the statistical evaluation of the April 2018 detection monitoring event at the Edgewater I-43 Ash Disposal Facility (I-43 ADF). An ASD was previously prepared for this facility evaluating the SSIs observed in the statistical evaluation of the October 2017 detection monitoring event (SCS Engineers [SCS], 2018b). The October 2017 ASD (dated April 2018) concluded that several lines of evidence demonstrated that SSIs reported for boron concentrations in downgradient monitoring wells MW-301 and MW-302 were likely due to naturally occurring boron in the bedrock aquifer at the I-43 ADF.

As discussed in more detail in **Section 4.2** of this ASD, the findings for the April 2018 monitoring event were consistent with those for the previous event.

1.2 SITE INFORMATION AND MAP

The I-43 ADF is located in the Town of Wilson, Sheboygan County, Wisconsin (**Figure 1**). The I-43 ADF receives CCR from the Edgewater Generating Station. The layout of the site on an aerial photograph base is shown on **Figure 2**. The I-43 ADF is operated under Wisconsin Department of Natural Resources (WDNR) License No. 02853.

The I-43 ADF includes a closed landfill (Phases 1 and 2) and multiple existing CCR Units which are landfill modules in Phases 3 and 4 of the facility. Contact water basins and storm water runoff basins, which do not receive CCR, are also present at the site. The existing CCR Units evaluated for this ASD are listed below:

- Phase 3, Module 1 (existing CCR Landfill)
- Phase 3, Module 2 (existing CCR Landfill)

• Phase 4, Module 1 (existing CCR Landfill)

These CCR Units are monitored with a multi-unit groundwater monitoring system.

The closed landfill (Phase 1 and Phase 2) was completely closed in 2012. The closed landfill did not accept CCR after October 19, 2015; therefore, it is not subject to the requirements of 40 CFR 257.50-107. The closed landfill was constructed with a 5-foot compacted clay liner.

The active landfill, which comprises the three CCR Units, is constructed with a composite liner system including 2 feet of compacted clay and a 60-mil high density polyethylene (HDPE) geomembrane, overlain by a leachate collection drainage layer. The active landfill first accepted CCR for disposal in October 2011.

A map showing the CCR Units and all background (or upgradient) and downgradient monitoring wells with identification numbers for the CCR groundwater monitoring program and the state monitoring program is provided as **Figure 2**.

1.3 STATISTICALLY SIGNIFICANT INCREASES IDENTIFIED

The only SSIs for the April 2018 monitoring event were for boron at monitoring wells MW 301 and MW-302. A summary of the April 2018 constituent concentrations and the established benchmark concentrations is provided in **Table 1**. The October 2017 results are also included for comparison. The constituent concentrations with SSIs above the background concentration are highlighted in the table.

1.4 OVERVIEW OF ASD

This ASD report includes:

- Background information (Section 2.0)
- Evaluation of potential that SSIs are due to methodology or analysis (Section 3.0)
- Evaluation of potential that SSIs are due to natural sources or man-made sources other than the CCR Units (Section 4.0)
- ASD conclusions (Section 5.0)
- Monitoring recommendations (Section 6.0)

The boron results from background and compliance sampling are provided in **Table 2**. Complete laboratory reports for the background monitoring events and the October 2017 detection monitoring event were included in the 2017 Annual Groundwater Monitoring and Corrective Action Report for the I-43 ADF. The laboratory report for the April 2018 detection monitoring event was previously transmitted to WPL and will be included in the 2018 Annual Report due in January 2019.

2.0 BACKGROUND

To provide context for the ASD evaluation, the following background information is provided in this section of the report, prior to the ASD evaluation sections:

- Geologic and hydrogeologic setting
- CCR Rule monitoring system
- Other monitoring wells

A more detailed discussion of the background information for the site is provided in the ASD for the October 2017 event (SCS, 2018b).

2.1 GEOLOGIC AND HYDROGEOLOGIC SETTING

2.1.1 Regional Information

For the purposes of groundwater monitoring, the Niagara Dolomite Aquifer is considered to be the uppermost aquifer unit, as defined under 40 CFR 257.53, at the I-43 ADF. The dolomite aquifer is underlain by the Maquoketa shale, which is a confining unit. The Maquoketa shale is underlain by the Cambrian-Ordovician sandstone aquifer. This sequence of sedimentary bedrock units is over 1,500 feet thick in the area of the I-43 ADF. The sedimentary sequence is underlain by Precambrian crystalline rocks that are not considered an aquifer in eastern Wisconsin.

An unconsolidated sand and gravel aquifer is present in some parts of Sheboygan County (Skinner and Borman, 1973), but does not appear laterally extensive.

Regional groundwater flow in the dolomite aquifer in the vicinity of the site is to the east or northeast.

2.1.2 Site Information

Soils at the site are primarily clay with discontinuous layers of sand and silty sand to a depth of at least 100 feet. During drilling of the CCR wells, the unconsolidated materials were identified as consisting primarily of clay. Zones of sand and gravel are known to be present within the clay, but these appear to be discontinuous and no nearby private wells screened within the unconsolidated material have been identified. Soils encountered in borings MW-301, MW-302, MW-303, and MW-304 were primarily lean clay, silty clay, and silty sand. The upper 70 feet of soils in boring MW-305 were similar, but in approximately the lower 40 feet above bedrock, sand was the primary soil type. The depth to bedrock in the five wells ranged from approximately 109 feet to 133 feet below ground surface (bgs), and the elevation of the top of bedrock ranged from approximately 568 feet above mean sea level (amsl) to 605 feet amsl.

Shallow groundwater at the site generally flows east to west towards Weedens Creek, a tributary of the Sheboygan River. The April 2018 flow direction to the west at the water table is consistent with previous water table maps developed since the site was developed in the mid-1980s.

Groundwater elevations at the CCR wells are summarized in **Table 3**. The April 2018 potentiometric surface map for the dolomite aquifer (**Figure 3**), based on groundwater elevations from monitoring wells MW-301 through MW-305, shows groundwater flow to the north and northeast, consistent with previous potentiometric surface maps. The potentiometric surface map confirms that monitoring wells MW-301 and MW-302 are downgradient from the active CCR Units.

2.2 CCR RULE MONITORING SYSTEM

The groundwater monitoring system established in accordance with the CCR Rule consists of two upgradient (background) monitoring wells and three downgradient monitoring wells. The background wells include MW-304 and MW-305. The downgradient wells include MW-301, MW-302, and MW-303. The CCR Rule wells are installed in the upper portion of the dolomite aquifer. Well depths range from approximately 119 to 145 feet, measured from the top of the well casing.

2.3 OTHER MONITORING WELLS

Thirty-four groundwater monitoring wells currently exist at the I-43 ADF as part of the monitoring system developed for the state monitoring program. The well locations are shown on **Figure 2**. These monitoring wells and one on-site water supply well (WS-1) are used to monitor groundwater conditions at the site under WDNR License No. 02853, which includes the closed Phase 1/2 Landfill and the active Phase 3/4 Landfill.

Monitoring wells for the state monitoring program are installed in the unconsolidated glacial till unit, which is not the uppermost aquifer as defined under 40 CFR 257.53. This shallow monitoring system includes water table wells, mid-depth piezometers, and deep piezometers. Well depths range from approximately 15 to 49 feet, measured from the top of the well casing.

3.0 METHODOLOGY AND ANALYSIS REVIEW

To evaluate the potential that an SSI is due to a source other than the regulated CCR Unit, SCS used a two-step evaluation process. First, the sample collection, field and laboratory analysis, and statistical evaluation were reviewed to identify any potential error or analysis that led to an exceedance of the benchmark. Second, potential alternative sources, including natural variation and man-made sources other than the CCR Unit, were evaluated. This section of the report provides the findings of the methodology and analysis review. **Section 4.0** of the report addresses the potential alternative sources.

3.1 SAMPLING AND FIELD ANALYSIS REVIEW

Field notes and sampling results were reviewed to determine if any sampling error may have caused or contributed to the observed SSIs for boron. Potential field sampling errors or issues could include mislabeling of samples, improper sample handling, missed holding times, cross contamination during sampling, or other field error. Field blank sample results were also reviewed for any indication of potential contamination from sampling equipment or containers. Based on the review of the field notes and results, SCS did not identify any indication that the boron SSIs were due to a sampling error.

Because boron is a laboratory parameter, there is little potential for a field analysis error to contribute to an SSI.

3.2 LABORATORY ANALYSIS REVIEW

Laboratory report for the April 2018 detection monitoring were reviewed to determine if any laboratory analysis error or issue may have caused or contributed to the observed SSIs for boron. The laboratory report review included reviewing the laboratory quality control flags and narrative, verifying that correct methods were used and desired detection limits were achieved, and checking the field and laboratory blank sample results. Laboratory reports for the background monitoring and the October 2017 detection monitoring event were included in the 2017 Annual Groundwater Monitoring and Corrective Action Report for the facility, and were reviewed as part of the ASD preparation for the October 2017 detection monitoring event.

Based on the review of the laboratory reports, SCS did not identify any indication that the boron SSIs were due to a laboratory analysis error. There were no laboratory quality control flags or issues identified in the laboratory report that affect the usability of the data for detection monitoring.

A time series plot of the boron analytical data was also reviewed for any anomalous results that might indicate a possible sampling or laboratory error (e.g., dilution error or incorrect sample labeling). The time series plot for boron is provided in **Appendix A**. The April 2018 boron results for MW-301 and MW-302 are consistent with the historical data.

3.3 STATISTICAL EVALUATION REVIEW

The review of the statistical results and methods include a quality control check of the following:

- Input analytical data vs. laboratory analytical reports
- Review of statistical method and outlier concentration lists for each monitoring well/CCR Unit

Based on the review of the statistical evaluation, SCS did not identify any errors or issues in the statistical evaluation that caused or contributed to the determination of interwell SSIs for boron at wells MW-301 and MW-302.

3.4 SUMMARY OF METHODOLOGY AND ANALYSIS REVIEW FINDINGS

In summary, there were no changes to the SSI determinations for the April 2018 monitoring event based on the methodology and analysis review, and no errors or issues causing or contributing to the reported boron SSIs were identified.

4.0 ALTERNATIVE SOURCES

This section of the report discusses the potential alternative sources for the boron SSIs at MW-301 and MW-302, identifies the most likely alternative source(s), and presents the lines of evidence indicating that an alternative source is the most likely cause of the observed SSIs for boron.

4.1 POTENTIAL CAUSES OF SSI

4.1.1 Natural Variation

The statistical analysis was completed using an interwell approach, comparing the April 2018 detection monitoring results to the Upper Prediction Limits (UPLs) calculated based on sampling of the background wells (MW-304 and MW-305). If concentrations of a constituent that is naturally present in the aquifer vary spatially, then the potential exists that the downgradient concentrations may be higher than upgradient concentrations due to natural variation.

Boron was detected in both the upgradient (background) and downgradient (compliance) monitoring wells, which is an indication that it is naturally present in the aquifer. The boron concentrations detected in the April 2018 monitoring event were consistent with previous results for MW-301 and MW-302. Additional regional and site information is discussed below, indicating that natural variation is a likely cause of the boron SSIs for wells MW-301 and MW 302.

4.1.2 Man-Made Alternative Sources

Man-made alternative sources that could potentially contribute to the boron SSIs at MW-301 and MW-302 include the closed I-43 Phase 1/2 Landfill, the contact water basin, or the ash unloading area. Based on monitoring performed since the mid-1980s under the state monitoring program,
these potential sources do not appear to be the cause of the SSIs in MW-301 or MW-302. The highest boron concentrations in the shallow unconsolidated deposits monitored for the state program have typically been observed in samples from upgradient piezometers. Further, the closed Phase 1/2 Landfill was constructed with a 5-foot-thick compacted clay liner that is designed to inhibit the movement of leachate beyond the footprint of the closed landfill.

4.2 LINES OF EVIDENCE

The lines of evidence indicating that the SSIs for boron in compliance wells MW-301 and MW 302, relative to the background wells, are due to natural variability include:

- 1. The hydraulic conductivity of the thick glacial till aquitard overlying the dolomite aquifer is very low, and there is limited hydrogeologic connection between the shallow groundwater and the aquifer.
- 2. Groundwater monitoring in the glacial till before and after disposal of CCR at the I-43 ADF shows boron is naturally occurring in the till.
- 3. The boron results for MW-301 and MW-302 are within the range of boron detected in water supply wells obtaining water from the dolomite aquifer in the site vicinity.
- 4. Boron concentrations in the on-site water supply well have been generally decreasing or stable since the first samples were collected prior to the initial CCR disposal in the closed landfill (Phases 1 and 2) in 1986.
- 5. The active Phase 3/4 landfill was constructed with a clay and/or composite liner system, so the potential for a release is very low.

Each of these lines of evidence and the supporting data were discussed in detail in the ASD for the October 2017 detection monitoring event (SCS, 2018b). The lines of evidence are discussed briefly below, focusing on any updated information collected since the previous ASD, with references to the previous ASD for additional details.

4.2.1 Glacial Clay Till Hydraulic Conductivity

The glacial clay till at the I-43 ADF is an aquitard with very low vertical hydraulic conductivity. A site review completed by Weston for the USEPA in 2010 found that samples of the native upper clay till collected by Warzyn Engineering, Inc. (Warzyn) in 1981 contained 65 to 85 percent clay size particles, indicating low hydraulic conductivity.

Vertical hydraulic conductivity tests of the clay till, completed as part of the 1981 Warzyn study, found the upper clay till ranged from 5 to 9 x 10-8 cm/s. The 1981 Warzyn study estimated the time required for groundwater to traverse vertically through the till to be "on the order of hundreds if not thousands of years" (Warzyn, 1981). Observed high vertical gradients provide further documentation of very low vertical hydraulic conductivity at the site (Weston, 2010). These results suggest there is limited hydrogeologic connection between the upper shallow till aquitard and the uppermost bedrock aquifer.

4.2.2 Upgradient Mid-Depth Piezometers Boron Concentrations

Groundwater monitoring in the glacial till before and after disposal of CCR at the I-43 ADF shows boron is naturally occurring in the till. Samples from upgradient mid-depth piezometers W-18 and

W-33A (both approximately 50 feet deep) have had boron concentrations in the range of 200 to 400 micrograms per liter (μ g/L) since the first samples were collected in the mid-1980s, prior to CCR disposal. The W-18 and W-33A results suggest that a natural source of boron is present in the glacial till. Historical boron data for the mid-depth piezometers sampled under the state monitoring program are included in the April 2018 ASD (SCS, 2018b). The April 2018 boron results for W-18 and W-33 were consistent with previous results.

4.2.3 Private Well Boron Concentration

The boron results for MW-301 and MW-302 are within the range of boron detected in private water supply wells obtaining water from the dolomite aquifer in the site vicinity. Additional information regarding boron concentrations in nearby private wells is included in the April 2018 ASD (SCS, 2018b). No new private well sampling for boron has been conducted since the April 2018 ASD was prepared.

The presence of high boron concentrations observed within the bedrock upgradient and west of the site indicates 1) there is a natural source of boron in the bedrock aquifer, and 2) that the concentrations of boron reported for samples from MW-301 and MW-302 are within the range of natural background concentrations.

4.2.4 Site Supply Well Boron Concentrations

Boron concentrations in the on-site water supply well (WS-1) have been generally decreasing or stable since the first samples were collected prior to the initial CCR disposal in the closed landfill (Phases 1 and 2) in 1986. The site supply well obtains water from the dolomite bedrock. The boron concentrations at the downgradient monitoring wells, MW-301 and MW-302, are within range of the concentrations observed in the site supply well, WS-1. These results are consistent with a natural source of boron and show no impact from CCR disposal at the I-43 site. Historical boron concentrations at WS-1 are included in the April 2018 ASD (SCS, 2018b). The April 2018 boron result for WS-1 was consistent with previous results.

4.2.5 Liner Construction

The active landfill, which comprises the three CCR Units, is constructed with a low permeability liner system that minimizes potential leakage. Phase 4 Module 1 was constructed with a 5-foot compacted clay liner. Phase 3 Modules 1 and 2 were constructed with a composite liner system including 2 feet of compacted clay and a 60-mil HDPE geomembrane. The compacted clay hydraulic conductivity is less than 10-7 centimeter per second for all modules, documented through construction quality assurance testing. All constructed modules have a leachate collection drainage layer overlying the liner. The collected leachate flows by gravity and/or is pumped to the contact water basin. The leachate/contact water swales and contact water basin have composite liners, consisting of compacted clay overlain by a 60-mil HDPE geomembrane.

5.0 ASD CONCLUSIONS

The lines of evidence discussed above regarding the SSIs reported for boron concentrations in downgradient monitoring wells MW-301 and MW-302 demonstrate that the SSIs are likely due to naturally occurring boron in the bedrock aquifer at the I-43 ADF.

6.0 SITE GROUNDWATER MONITORING RECOMMENDATIONS

In accordance with section 257.94(e)(2) of the CCR Rule, the I-43 site may continue with detection monitoring based on this ASD. The ASD report will be included in the 2018 Annual Report due January 31, 2019.

For future detection monitoring events, SCS recommends that the statistical method for evaluating boron data at the three compliance wells be modified to an intrawell approach. This approach is appropriate for constituents which exhibit natural spatial variability, as has been documented for boron at the I-43 facility.

7.0 **REFERENCES**

Mead and Hunt, Inc., 1977, Preliminary Site Feasibility Report for Ash Disposal Site, Beeck-Goebel Properties, Wilson Township, Sheboygan County, WI, December 1977.

SCS Engineers, 2018a, 2017 Annual Groundwater Monitoring and Corrective Action Report, I 43 Ash Disposal Facility, January 2018.

SCS Engineers, 2018b, Alternative Source Demonstration, October 2017 Monitoring Event, I-43 Ash Disposal Facility, April 2018.

Skinner, Earl L. and Ronald G. Borman, Water Resources of Wisconsin-Lake Michigan Basin, Department of the Interior United States Geological Survey Hydrogeologic Investigations Atlas HA-432, 1973.

U.S. Environmental Protection Agency, 2015, Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule, April 2015.

Warzyn Engineering, Inc., 1981, Summary Report, Proposed Fly Ash Disposal Facility, Beeck-Goebel Properties, Edgewater Power Plant – Unit 5, Wisconsin Power and Light Company, 1981.

Weston Solutions, Inc., 2010, Technical Memorandum: Alliant Energy Site – Site Historical Information Review and Evaluation, Sheboygan County, WI, December 2010.

Tables

- 1. Detection Monitoring Results Summary April 2018
- 2 Boron Concentrations CCR Rule Monitoring Well Network
- 3 Groundwater Elevation Table CCR Rule Monitoring Well Network

Table 1. Detection Monitoring Results Summary - April 2018 WPL-Edgewater I-43 Ash Disposal Facility Sheybogan, Wisconsin

Parameter Name	Units	Interwell Upper Prediction Limit	Background Wells			Compliance Wells						
		(UPL)	MW	304	MW	305	MW	301	MW	302	MW	303
		(01 =)	Oct-17	Apr-18	Oct-17	Apr-18	Oct-17	Apr-18	Oct-17	Apr-18	Oct-17	Apr-18
Boron	µg/L	116.3	104	98.6	70	71.7	149	136	128	124	89	94.6
Calcium	mg/L	118,100	20,100	20,200	90,700	83,000	48,700	36,700	31,200	30,000	29,100	31,900
Chloride	mg/L	26.75	1.7 J	1.7 J, MO	21.5	21.8	4.7	4.7	5.5	5.2	6.8	5
Fluoride	mg/L	0.747	0.54	0.5	0.64	0.63, M0	0.62	0.62	0.71	0.73	0.66	0.54
Field pH	Std. Units	8.77	7.74	7.99	7.55	7.54	7.82	8.02	7.7	8.02	7.59	7.98
Sulfate	mg/L	140	14.2	15.2	134	129	8.6	9.3	26.3	22.6	67.1	27.3
Total Dissolved Solids	mg/L	678	208	222	540	566	236	214	238	248	304	260

136

Statistically significant increase at compliance well

Notes:

- 1. UPL based on parametric prediction limit based on 1-of-2 resampling methodology for all parameters except sulfate. Optional resampling was not performed for boron.
- 2. UPL for sulfate based on non-parametric prediction limit (highest background value).
- 3. UPLs calculated from background well results for April 2016 through October 2017.

J = Estimated concentration at or above the LOD and below the LOQ.

M0 = Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

I:\25216069.00\Reports\2018 ASD Report #2\[Tables 1,2,3.xlsx]Table 1. Detection Monit. Sum

Table 2. Boron Concentrations - CCR Rule Monitoring Well Network WPL-Edgewater I-43 Ash Disposal Facility Sheybogan, Wisconsin

Well Group	Well	Collection Date	Boron (µg/L)
		4/26/2016	92.1
		6/21/2016	90.9
		8/9/2016	102
		10/19/2016	106
		12/19/2016	102
	MANA/ 201	1/23/2017	101
	MW 304	2/23/2017	99.8
ē		4/7/2017	96.9
In or		6/6/2017	102
ckg		8/1/2017	103
Ba		10/23/2017	104
		4/3/2018	98.6
		2/23/2017	94.4
		4/7/2017	86.4
	WWW 205	6/6/2017	78.8
	MW 305	8/1/2017	76.5
		10/23/2017	70
		4/3/2018	71.7
		4/26/2016	298*
		6/21/2016	157
		8/10/2016	151
		10/19/2016	148
	MW 301	12/19/2016	174
		1/23/2017	177
		2/23/2017	181
		4/6/2017	144
		6/6/2017	138
		8/1/2017	145
e		10/23/2017	149
<u>ia</u>		4/3/2018	136
du		4/26/2016	198*
ပိ		6/21/2016	121
		8/9/2016	131
		10/19/2016	126
		12/19/2016	127
	M/M 202	1/23/2017	151
	M VV 302	2/23/2017	149
		4/6/2017	132
		6/6/2017	124
		8/1/2017	130
		10/23/2017	128
		4/3/2018	124

Table 2. Boron Concentrations - CCR Rule Monitoring Well Network WPL-Edgewater I-43 Ash Disposal Facility Sheybogan, Wisconsin

Well Group	Well	Collection Date	Boron (µg/L)
	4/26 6/21 8/9 10/19	4/26/2016	86.4
		6/21/2016	85
		8/9/2016	96
		10/19/2016	90.8
9		12/19/2016	81.6
lian	MANA/ 202	1/23/2017	99.8
duc	MVV 303	2/23/2017	93.9
Ö		4/7/2017	89.8
		6/6/2017	89.1
		8/1/2017	95
		10/23/2017	89
		4/3/2018	94.6

Abbreviations:

 $\mu g/L$ = micrograms per liter or parts per billion (ppb)

Notes:

April 2016 through October 2017 analytical laboratory reports provided in the 2017 Annual Groundwater Monitoring and Corrective Action Report. The April 2018 analytical laboratory report will be provided in the 2018 Annual Groundwater Monitoring and Correction Action Report.

Created by: 1	NDK	Date:	Date:	2/21/2018
Last revision by: /	MDB	Date:	Date:	9/3/2018
Checked by: A	AJR	Date:	Date:	9/12/2018

I:\25216069.00\Reports\2018 ASD Report #2\[Tables 1,2,3.xlsx]Table 2-Analytical-CCR wells

Table 3. Groundwater Elevation Table - CCR Rule Monitoring Well Network WPL-Edgewater I-43 Ash Disposal Facility Sheybogan, Wisconsin

Wall Number	Ground Water Elevation in feet above mean sea level (amsl)						
well Nomber	MW-301	MW-302	MW-303	MW-304	MW-305		
Top of Casing Elevation (feet amsl)	696.96	702.57	719.25	691.97	717.67		
Screen Length (ft)	5.00	5.00	5.00	5.00	5.00		
Total Depth (ft from top of casing)	134.56	144.33	144.65	119.49	122.97		
Top of Well Screen Elevation (ft)	567.40	563.24	579.60	577.48	600.46		
Measurement Date							
April 8, 2016	653.54	653.56	653.59	655.90			
June 20, 2016	652.01	651.89	651.80	653.79			
August 9, 2016	649.68	649.30	649.37	651.55			
October 19, 2016	652.32	652.38	652.18	654.00			
December 19, 2016	652.85	652.79	652.82	654.26			
January 23, 2017	652.98	664.97	652.92	654.37			
February 23, 2017	653.14	653.10	653.10	654.49	658.02		
April 7, 2017	654.43	654.72	654.55	654.85	659.65		
June 6, 2017	654.11	654.12	654.14	655.70	659.70		
August 1, 2017	652.64	652.55	652.50	654.49	658.54		
October 23, 2017	652.03	652.05	652.03	653.65	657.22		
April 3, 2018	651.28	651.25	651.30	652.86	656.24		
Bottom of Well Elevation (ft)	562.40	558.24	574.60	572.48	594.70		

Notes:	Created by:	NDK	Date:	2/21/2018
NM = not measured	Last revision by:	MDB	Date:	9/3/2018
	Checked by:	AJR	Date:	9/12/2018

I:\25216069.00\Reports\2018 ASD Report #2\[Tables 1,2,3.xlsx]Table 3. GW Elev -CCR

Figures

- 1 Site Location Map
- 2 Monitoring Well Location Map
- 3 Bedrock Potentiometric Surface Map April 2018

:\25216069.00\Drawings\Site Loc.dwg, 4/16/2018 4:17:44 PM

	LEGEND
	APPROXIMATE PROPERTY LINE
	MODULE LIMITS
	GRADE (2' CONTOUR)
	GRADE (10' CONTOUR)
· · · · · · · ·	EDGE OF WATER
	SWALE
	CULVERT
o Mh	MANHOLE
W	CONTACT WATER TRANSFER PIPE
AB	ABANDONED 3" DIA. HDPE PIPE
····· ٥	TREELINE/TREES
	PAVED ROAD
==========	UNPAVED ACCESS ROAD
+++++++++++++++++++++++++++++++++++++++	RAILROAD TRACKS
x x x x	FENCE
Ø Þ	UTILITY/LIGHT POLE
lacksquare	MONITORING WELL (UNCONSOLIDATED)
۲	PIEZOMETER (UNCONSOLIDATED)
	PRIVATE WATER SUPPLY WELL
۲	CCR RULE PIEZOMETER (BEDROCK)
	CCR RULE UNITS

NOTE:

1.	MONITORING WELLS MW-301, MW-303, AND MW-304 WERE INSTALLED BETWEEN NOVEME 30, 2015 AND JANUARY 26, 2016 BY BADG STATE DRILLING INC. DRILLING WAS PERFORM UNDER THE SUPERVISION OF SCS ENGINEER	BER ER MED S.					
2.	MONITORING WELLS MW-301, MW-302, MW-303 AND MW-304 WERE SURVEYED ON FEBRUARY 8, 2016 BY SCS ENGINEERS.						
3.	MONITORING WELL MW-305 WAS SURVEYED FEBRUARY 15, 2017 BY CQM, INC.	ON					
500) 0 500 SCALE: 1" = 500'						
MONITORING WELL LOCATION MAP							

	LEGEND				
	APPROXIMATE PROPERTY LINE				
	MODULE LIMITS				
	GRADE (2' CONTOUR)				
690	GRADE (10' CONTOUR)				
· · · · · · · ·	EDGE OF WATER				
	SWALE				
	CULVERT				
O MH	MANHOLE				
W	CONTACT WATER TRANSFER	PIPE			
AB	ABANDONED 3" DIA. HDPE PIPE				
····· »	TREELINE/TREES				
	PAVED ROAD				
	UNPAVED ACCESS ROAD				
+++++++++++++++++++++++++++++++++++++++	RAILROAD TRACKS				
x x x x	FENCE				
Ø¢	UTILITY/LIGHT POLE				
•	MONITORING WELL (UNCONSO	DLIDATED)			
۲	PIEZOMETER (UNCONSOLIDAT	ED)			
	PRIVATE WATER SUPPLY WELL				
۲	CCR RULE PIEZOMETER (BEDROCK) CCR RULE UNITS				
652.86	WATER LEVEL MEASURED APRIL 2018				
656 ——	POTENTIOMETRIC SURFACE C	ONTOUR			
→	APPROXIMATE GROUNDWATER	R FLOW			
NOTE:					
1. MONITORING WE MW-304 WERE 30, 2015 AND STATE DRILLING UNDER THE SU	ELLS MW-301, MW-303, AND INSTALLED BETWEEN NOVEME JANUARY 26, 2016 BY BADO G INC. DRILLING WAS PERFOR PERVISION OF SCS ENGINEER	BER GER MED S.			
2. MONITORING WE AND MW-304 8. 2016 BY SC	ELLS MW-301, MW-302, MW- WERE SURVEYED ON FEBRUAF S ENGINEERS.	303 RY			
3. MONITORING WE FEBRUARY 15,	ELL MW-305 WAS SURVEYED 2017 BY CQM, INC.	ON N			
500 SCALE:	0 500 1" = 500'				
POTENTIOMETR	IC SURFACE MAP	FIGURE			
APRI	L 2018	3			

Appendix A

CCR Well Trend Plot - Boron

