

Interstate Power and Light Company

Columbia Energy Center

CCR Surface Impoundment Structural Stability Assessment – Revision 2

154.018.028.005.001

Report issued: October 13, 2025

Hard Hat Services

ph: 630-688-1314 hardhatinc.com 245 Kenilworth Ave Glen Ellyn, IL 60137

Executive Summary

This Structural Stability Assessment (Report) is prepared in accordance with the requirements of the United States Environmental Protection Agency (USEPA) published Final Rule for Hazardous and Solid Waste Management System — Disposal of Coal Combustion Residual from Electric Utilities (40 CFR Parts 257 and 261, also known as the CCR Rule) published on April 17, 2015 (effective October 19, 2015) and subsequent amendments.

This Report serves as the second periodic review since the initial report dated September 29, 2016, at the Columbia Energy Center in Pardeeville, Wisconsin. It assesses the structural stability of the former COL Secondary Pond, as the former COL Primary Pond is now certified as closed. This Report has been completed in accordance with §257.73(b) and §257.73(d) of the CCR Rule and is focused on documenting whether the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices for the maximum volume of CCR and CCR wastewater which can be impounded within each CCR unit.

ı

Table of Contents

1.	INTR	ODUCTION	1
	1.1	CCR Rule Applicability	1
	1.2	Structural Stability Assessment Applicability	1
2.	FACI	LITY DESCRIPTION	3
	2.1	Former COL Primary Ash Pond (Closed)	3
	2.2	Former COL Secondary Ash Pond (Inactive)	5
3.	STRU	ICTURAL STABILITY ASSESSMENT- §257.73(d)	7
	3.1	Former COL Primary Ash Pond (Closed)	
	3.2	Former COL Secondary Ash Pond (Inactive)	7
	3.2.1	CCR Unit Foundation and Abutments - §257.73(d)(1)(i)	8
	3.2.2		
	3.2.3	CCR Embankment Density- §257.73(d)(1)(iii)	ç
	3.2.4	Vegetation Management - §257.73(d)(1)(iv)	ç
	3.2.5		
	3.2.6		. (
	3.2.7	Sudden Drawdown - §257.73(d)(1)(vii)1	. (
4.	OUAI	LIFIED PROFESSIONAL ENGINEER CERTIFICATION1	1

Figures

Figure 1: Site Location

Figure 2: Storm Water Routing

Figure 3: Soil Boring and Analyses Cross- Sections

Appendices

Appendix A: Construction Drawings

Appendix B: Soil Borings on Embankments and Foundation Soils

Appendix C: 100 Year Flood Prediction

ii

1. INTRODUCTION

The owner or operator of Coal Combustion Residual (CCR) units must conduct an initial and periodic structural stability assessment and document whether the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices for the maximum volume of CCR and CCR wastewater which can be impounded therein. This Report serves as the second periodic review from the initial dated September 19, 2016, and has been prepared in accordance with the requirements of §257.73(b) and §257.73(d) of the CCR Rule.

1.1 CCR Rule Applicability

The CCR Rule requires a periodic structural stability assessment by a qualified professional engineer (PE) for existing CCR surface impoundments with a height of 5 feet or more and a storage volume of 20 acre-feet or more; or the existing CCR surface impoundment has a height of 20 feet or more (40 CFR §§ 257.73(b), 257.73(d) and 257.83(b)).

1.2 Structural Stability Assessment Applicability

The Wisconsin Power and Light Company (WPL) Columbia Energy Center (COL) in Pardeeville, Wisconsin (Figure 1) has one closed and one inactive CCR surface impoundment, identified as follows:

- Former COL Primary Ash Pond (closed)
- Former COL Secondary Ash Pond (inactive)

The former COL Secondary Ash Pond has not received CCR after October 2015. In 2023, closure earthwork was completed within both impoundments which involved dewatering, removal of CCR, backfilling, restoration and CCR placement into the onsite landfill. The former COL

Secondary Ash Pond meets the requirements of §257.73(b)(1) and/or §257.73(b)(2), and is subject to the periodic structural stability assessment requirements of §257.73(d) of the CCR Rule.

2. FACILITY DESCRIPTION

COL is located southeast of the City of Portage on the eastern shore of the Wisconsin River in Columbia County at W8375 Murray Road, Pardeeville, Wisconsin (Figure 1). Wisconsin River backwaters are located north of the generating station, while Lake Columbia, south of the generating plant, is a 480-acre non-contact cooling water pond.

COL is a fossil-fueled electric generating station that initiated operations in 1975. COL consists of two steam electric generating units. Sub-bituminous coal is the primary fuel for producing steam. The burning of coal produces a by-product of CCR. The CCR at COL includes bottom ash, fly ash, and spray dryer absorber waste from scrubbers. The fly ash can also be subdivided into two types; economizer fly ash and precipitator fly ash.

General Facility Information:

Date of Initial Facility Operations: 1975

WPDES Permit Number: WI-0002780-08-0

Latitude / Longitude: 43° 29′ 9.73″ N 89° 25′ 8.40″ W

Unit Nameplate Ratings: Unit 1 (1975): 512 MW

Unit 2 (1978): 511 MW

2.1 Former COL Primary Ash Pond (Closed)

The former COL Primary Ash Pond was located north of the generating plant and west of the former COL Secondary Pond. The COL Primary Ash Pond was the primary receiver of process flows from the generating plant. When the impoundment was active, process flows included CCR sluice water (bottom ash and economizer fly ash), boiler/precipitator wash water, plant floor drains, ash line freeze protection flows, bottom ash area sump water, demineralizer area sump water, and air heater sump water. The former COL Primary Ash Pond area currently receives storm water

runoff from the surrounding area, inclusive of the closed ash landfill, located south of the former CCR surface impoundments.

Prior to closure, the western half of the COL Primary Ash Pond was a CCR handling area. A shallow narrow drainage channel was located along the south, west, and north sides of the CCR handling area. The sluiced CCR was discharged into the southeast corner of the western half of the former COL Primary Ash Pond. The sluiced CCR settled out through the water column as it follows the flow of the narrow channel around the southern, western, and northern sides of the CCR surface impoundment. The water in the channel flowed to the east and discharged through a narrow cutout of an interior dike into the northwest corner of the large open area in the eastern half of the former COL Primary Ash Pond.

The majority of the CCR that was discharged into the former COL Primary Ash Pond was removed during routine maintenance dredging activities of the shallow narrow channel. The CCR that was dredged was stockpiled in the western half of the COL Primary Ash Pond for dewatering. Once dewatered, the CCR was run through a sieve shaker machine to separate the coarsely graded CCR from the finely graded CCR. The CCR was then transported off-site for beneficial reuse or transported to the on-site active dry ash landfill.

The water in the former COL Primary Ash Pond was recirculated to the generating plant via effluent pumps located in the ash recirculating pump house in the northeast corner of the eastern half of the COL Primary Ash Pond. The recirculating pumps returned water to the generating plant for reuse and/or treatment and disposal per the facility's Wisconsin Pollution Discharge Elimination System (WPDES) permit.

4

The surface area of the former COL Primary Ash Pond was and is approximately 14.7 acres and has an embankment height of approximately 23 feet from the crest to the toe of the downstream slope. The interior storage depth of the COL Primary Ash Pond was approximately 15 feet. In 2023, the CCR was removed and placed into the on-site dry ash landfill. Closure construction activities have been completed and the impoundment has been certified as closed, Therefore the former CCR impoundment is not discussed further as part of this Report.

2.2 Former COL Secondary Ash Pond (Inactive)

The former COL Secondary Pond is located north of the generating plant and east of the former COL Primary Ash Pond. The former COL Secondary Ash Pond was previously a downstream receiver of influent flows from the COL Primary Ash Pond. The water within the former COL Secondary Pond, prior to 2004, was pumped to a surface impoundment identified as the polishing pond. The polishing pond was located east of the generating plant. The water pumped to the polishing pond would flow to the south through the facility's WPDES Outfall 002 into "Mint Ditch" and eventually flow into the backwaters of the Wisconsin River. Presently, the former COL Secondary Pond acts as a storm water detention impoundment with the only influent sources being precipitation and storm water runoff from the surrounding area. The water within the former COL Secondary Pond either infiltrates or evaporates. The water elevation within the former COL Secondary Pond is typically near the ground water elevation in that area.

The surface area of the former COL Secondary Ash Pond is approximately 9.6 acres and has an embankment height of approximately 23 feet from the crest to the toe of the downstream slope. The interior storage depth of the former COL Secondary Ash Pond is approximately 12 feet. In 2023, the CCR was removed and placed into the on-site dry ash landfill. Closure construction

activities have been completed, although the former CCR impoundment has not been certified as closed.

3. STRUCTURAL STABILITY ASSESSMENT- §257.73(d)

This Report documents whether the design, construction, operation, and maintenance of the former COL Secondary Ash Pond CCR unit is consistent with recognized and generally accepted good engineering practices for maximum volume of CCR and CCR wastewater which can be impounded.

3.1 Former COL Primary Ash Pond (Closed)

The former COL Primary Ash Pond is certified closed and is no longer subject to a Structural Stability Assessment.

3.2 Former COL Secondary Ash Pond (Inactive)

The former COL Secondary Ash Pond was constructed in 1975 on the north end of the generating station. Plant construction documents indicate the embankments were constructed of fine glacial till sand from the upland areas where COL is located. The former COL Secondary Ash Pond area extends to the edge of the Wisconsin River flood plain to the north. Details of the original COL Secondary Ash Pond are shown in drawings prepared by Sargent & Lundy in 1974, Appendix A.

The embankment is constructed with four horizontal to one vertical side slopes that are vegetated and mowed to control the growth of woody vegetation. There is no groundwater gradient at the toe of the embankment since the water elevation in the impoundment is approximately the same elevation as the toe of the slope.

The former COL Secondary Ash Pond had a concrete wet well with pumps and an outlet structure that formerly allowed overflow to a ditch just east of the railroad tracks on the east side of the impoundment. This discharge structure has been demolished. In addition, all CCR has been

removed from the former COL Secondary Ash Pond and the only remaining surface water feature is a storm water infiltration pond in the northern portions of former impoundment footprint.

In 2011 and 2015, subsurface soil investigations were undertaken to collect soil samples and determine the in-situ density of the embankments and install monitoring wells. The soil borings were advanced using a Geoprobe and hollow stem augers and sampling was completed with a standard split spoon (ASTM D1556), Figure 2. The density information, Appendix B, indicates the conditions of the embankments.

Based on the annual inspections conducted by Hard Hat Services since the last Report revision, there have been no significant changes regarding settlement, instability, or reconfiguration of the former COL Secondary Ash Pond, aside from the CCR removal activities.

3.2.1 CCR Unit Foundation and Abutments - §257.73(d)(1)(i)

The former COL Secondary Ash Pond is constructed on an existing layer of loose fine sand that grades to very dense with depth. The exact thickness of the loose sand found near the toe of the embankment is not great and very dense sand is the likely foundation material at greater depths. Analysis of safety factor for the slope was completed for a soil profile that ignores the deeper very dense sand, COL Safety Factor Assessment Report, Revision 2. The results indicate the loose sand is an acceptable foundation for the long-term stability of the embankment.

3.2.2 Slope Protection - §257.73(d)(1)(ii)

The former COL Secondary Ash Pond is incised on the south and east sides. The north embankment crest is about 20 feet wide. The upstream and downstream slopes are four feet horizontal to one foot vertical and is comprised of shallow rooting vegetation, which is adequate to protect against surface erosion. The west embankment separates the former COL Primary Ash

Pond and the former COL Secondary Ash Pond and is about 20 feet wide. The upstream and downstream slopes are three feet horizontal to one foot vertical and is comprised of shallow rooting vegetation, which is adequate to protect against surface erosion. Protection against erosion from wave action does not apply as the COL Secondary Ash Pond has been dewatered.

Sudden drawdown is addressed in Section 3.2.7.

3.2.3 CCR Embankment Density- §257.73(d)(1)(iii)

The embankment is constructed of fine sand that is native to the COL site. The results of soil borings taken in 2011 and 2015 show that the sand was compacted to near optimum density and the strength of the embankment sand is greater than the loose layer of sand that remains below the embankment. The stability of the four horizontal to one vertical embankment slope is controlled by the strength of the loose sand below the embankment and the embankment is stable for the normal and flood operating conditions of the COL Secondary Ash Pond. Analysis of the slope safety factor in the COL Safety Factor Assessment Report, Revision 2 indicates the foundation soils control the minimum safety factors for the slope.

3.2.4 Vegetation Management - §257.73(d)(1)(iv)

Historically, vegetation management has been conducted on a periodic basis. Annual inspections have been completed since the Revision 0 of this Report. Based on those inspections, the facility has continued to routinely manage vegetation, minimizing animal activity and deep rooting vegetation. The vegetation management has been maintained with recognized and generally accepted good engineering practices.

3.2.5 Spillway Management - §257.73(d)(1)(v)

The former COL Secondary Ash Pond is operated as a zero liquid discharge impoundment and does not contain a spillway in operations.

3.2.6 Hydraulic Structures - §257.73(d)(1)(vi)

The former COL Secondary Ash Pond is operated as a zero liquid discharge impoundment and there are no hydraulic structures associated with the CCR impoundment.

3.2.7 Sudden Drawdown - §257.73(d)(1)(vii)

The toe of the embankment is in the floodplain of the Wisconsin River. When the plant was constructed in 1974, the U.S. Army Corps of Engineers (USACE) calculated the 100-year flood elevation would be 794 feet on the north embankment of COL due to construction in the floodplain, Appendix C. The drawdown caused by the flood receding would result in drainage from the toe of the embankment. The embankment is constructed of fine sand (expected permeability of 10^{-2} to 10^{-3} cm/sec) and is not susceptible to rapid drawdown hydraulic pressure¹. River flooding will not lead to toe stability issues.

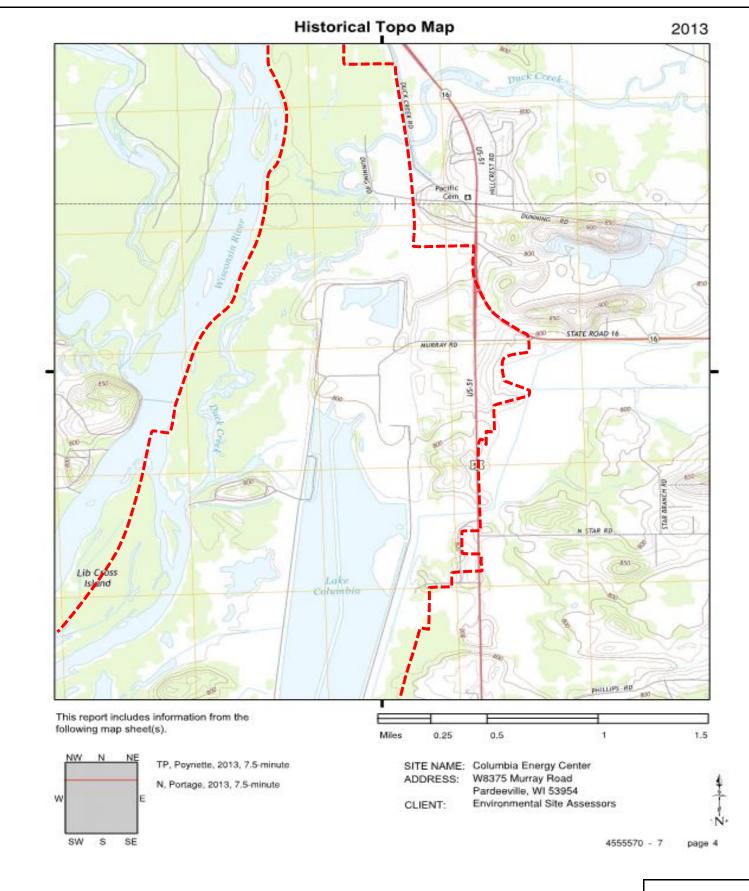
¹ USACE, Slope Stability, EM1110-2-1902, October 2003

4. QUALIFIED PROFESSIONAL ENGINEER CERTIFICATION

To meet the requirements of 40 CFR 257.73(d)(3), I Mark W. Loerop hereby certify that I am a licensed professional engineer in the State of Wisconsin; and that, to the best of my knowledge, all information contained in this document is correct and the document was prepared in compliance with all applicable requirements in 40 CFR 257.73(b) and 40 CFR 257.73(d).

. .

Name: / / A R iL

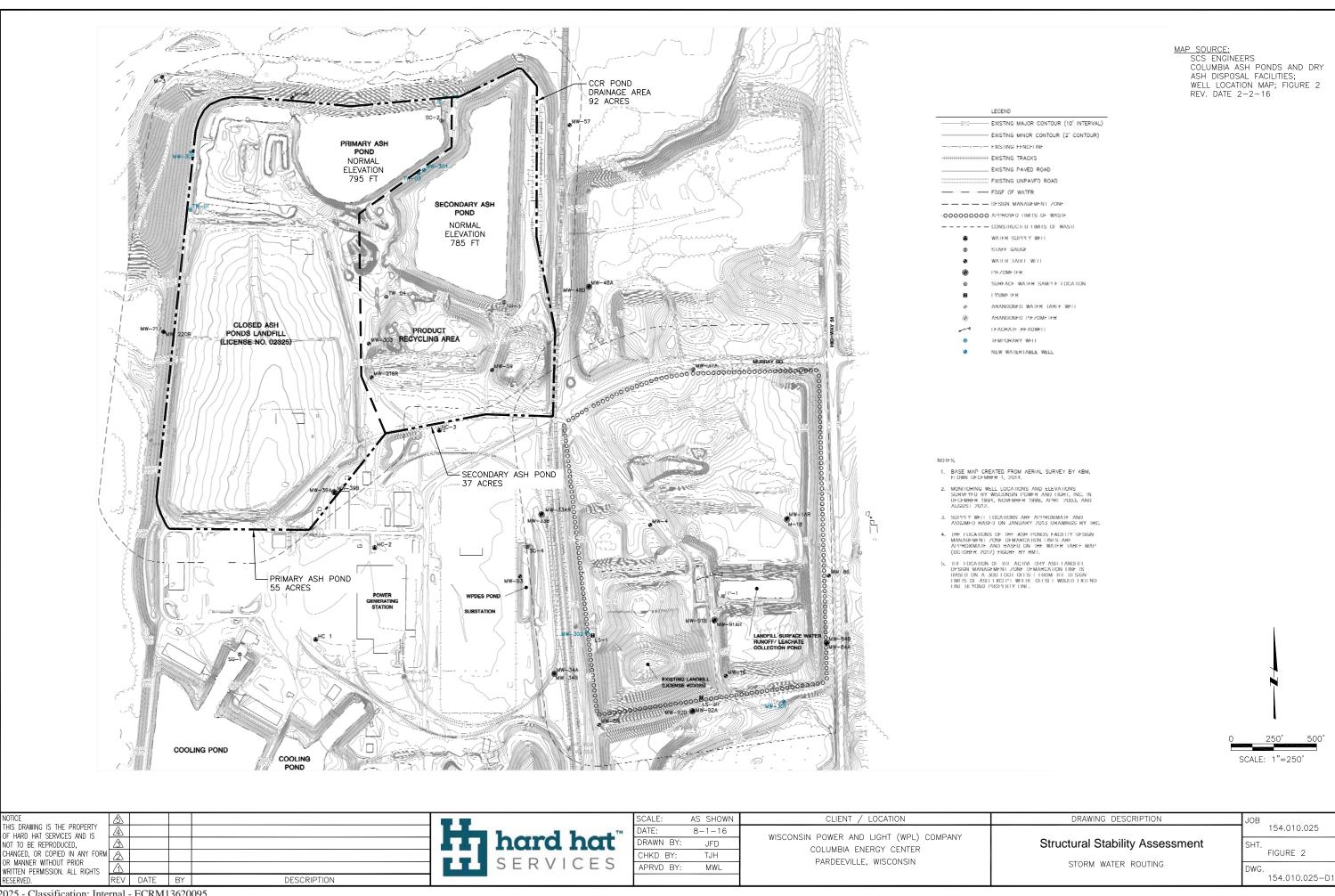

Date:

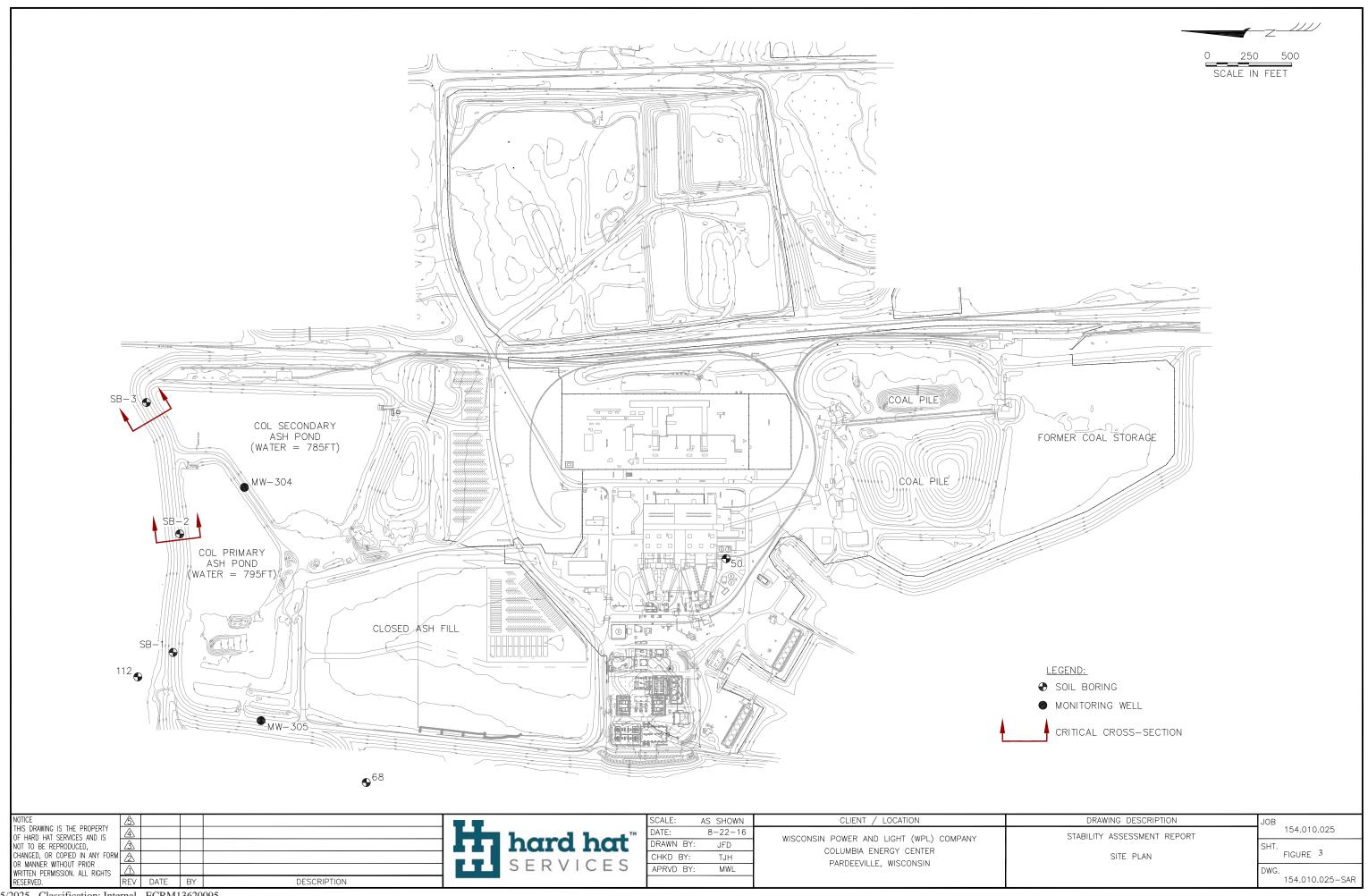
FIGURES

Alliant Energy Wisconsin Power and Light Company Columbia Energy Center Pardeeville, Wisconsin

Structural Stability Assessment

Historical Aerial Photo 6/12/2014

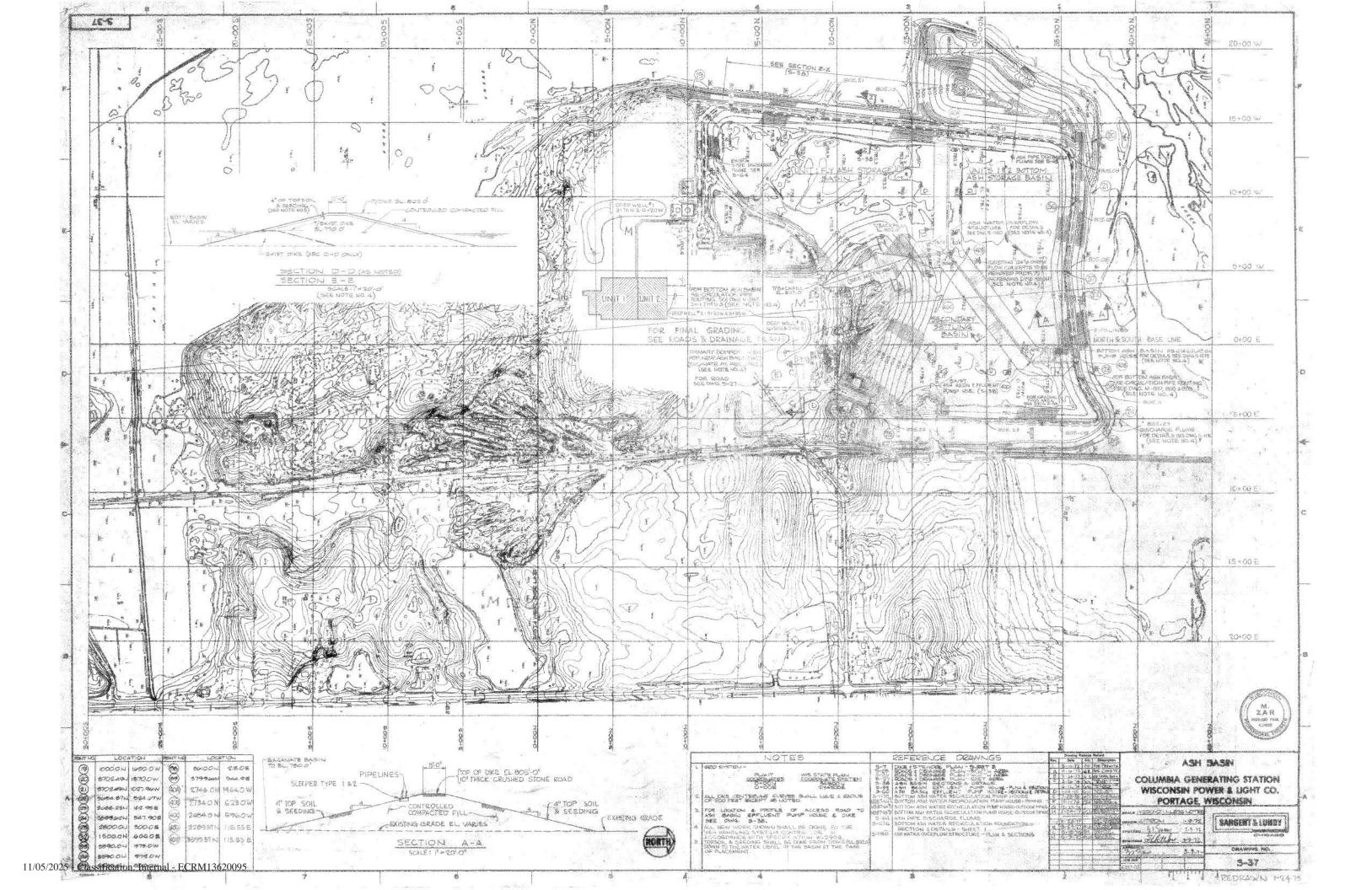

____ Approximate Property Boundary



Site Location Columbia Energy Center Wisconsin Power and Light Company

Figure 1

7/12/2016



APPENDIX A – Ash Pond Construction Drawing

Alliant Energy Wisconsin Power and Light Company Columbia Energy Center Pardeeville, Wisconsin

Structural Stability Assessment

APPENDIX B – Soil Borings on Embankment and Foundation Soils

Alliant Energy Wisconsin Power and Light Company Columbia Energy Center Pardeeville, Wisconsin

Structural Stability Assessment

State of Wisconsin Department of Natural Resources

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Ro		Wastewater n/Redevelopment	Waste Other		ement	П									
Facilia	y/Proje	set Mass	ne			License/	Domesis/	Monte	min - NT	neste ar		Page 1 of 2 Boring Number						
	L-Co				SCS#: 25215135.00	License	Permit	Monito	oring in	umber	MW-304					4		
				f crew chief (first, last)		Date Dri	Da	te Drilli	ng Con	npleted	111	Drilling Method						
	vin Du					Van Bissoo										llow stem		
	iger S		Drilling	DNR Well ID No.	Common Wall Name	Figure 1 Sta		2/201		CC.		1/12/	2015	ID-	auger Borehole Diameter			
WIUI		Y703),	DNK Well ID No.	Common Well Name	Final Sta	Final Static Water Level Surface Feet 802							Во		5 in.		
Local	Grid O		[] (es	stimated:) or Bo	oring Location X	1	10				Local C	Feet irid Loc	eation		0.	J III.		
State	Plane		54467	71 N, 2122897 E	/C/N	La	ıt	0	-	="			□ N			□Е		
B		of	1	/4 of Section 27,	T 12 N, R 9 E	Lon		0		. "		Feet	\Box s		I	eet 🗌 W		
Facilit				County Columbia		County Co	de	Porta		ity/ or `	Village							
San	nple		111						-			Soil	Prope	erties				
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	And G	Rock Description leologic Origin For ach Major Unit		scs	Graphic Log	Well Diagram	PID/FID	Pocket Penetration (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments		
ZB	JA	B	Δ	TOPSOIL.			D	Grap	30	P	P P	≥ ೮	22	Pl In	д	20		
			E		y fine, brown/tan (10YR	5/6).	TOPSOIL	Ti										
SI	24	7 8 10 12	2 3	Same as above except	In grey						М							
S2	24	14 22 26 31	5	(top to bottom) IOYR	5/4.							М						
S3	24	16 18 22 24	E	Same as above except coloring.	Same as above except, brown/tan/grey assorted coloring.							М						
S4	24	11 15 15 14	-9 -10	Same as above except area about 2" thick.	, black/grey/brown, satur	rated						М						
S5	24	23 31 30 29	12	Same as above except	, 10YR 5/3.							М						
S6	20	9 10 7 5	14 -15	trace gravel.								М						

Signature

Firm SCS Engineers
2830 Dairy Drive Madison, WI 53711

Tel: (608) 224-2830
Fax:

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

Sam	Numb			V-304 Use only as an attachment to Form 4400		T						Soil	Prope		of	
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic	Log	Well	Diagram	PID/FID	Pocket Penetration (tsf)	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
SS8 []	4		-16 -17 -18 -19 -20	SILTY SAND, mostly fine, brown/tan (10YR 5/6). Same as above except, 10YR 6/3.	SM							w				dropped spo
				End of boring at 23 ft bgs.												

State of Wisconsin Department of Natural Resources

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

TT - 177														Pag		of .	2	
	ty/Proje PL-Co					SCS#: 25215135.00	License	Permit	Monito	oring N	umber		Boring Number MW-305					
				of crew	chief (first, last)			Date Drilling Started Date Drilling Completed								Drilling Method		
	vin Du						1									hollow stem		
Bac	dger S	tate I	Drillin		R Well ID No.	Common Well Name	F - 1 C	Final Static Water Level Surface						11/13/2015 ace Elevation Bo				
WIU		7716		DINE	well ID No.	Common Well Name	Final St	Final Static Water Level Surface 803.							Bo		Diameter 5 in.	
	Grid O	rigin		estimate	d: 🔲) or Bo		1 -		ò	-60		Local C		cation	_	0.	. III.	
State	Plane				2121537 E	S/C/N		at		-							□Е	
Facili		of	-	1/4 of S	County 27,	T 12 N, R 9 E	County C			'own/C	ity/ or '	Village	Feet	\Box s		F	eet 🗆 W	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7				Columbia		11	ouc	Porta		ity of	ringe						
Sar	nple									Ī			Soil	Prope	erties		7	
	& (in)	53	t t		Soil/I	Rock Description						Pocket Penetration (tsf)						
T be	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	1		eologic Origin For		S		F	0	tion	5 t		4		sints	
Number and Type	ngth) wo	pth		Ea	ch Major Unit		SC	Graphic	Well	PID/FID	cket	Moisture	Liquid Limit	Plasticity Index	P 200	RQD/ Comments	
Z da	Re Be	B	ñ	TOD	COIL			D	27.2	Well	PII	Per	ĭ °	E E	Pla	P2	2 3	
			E	TOP	PSOIL			TOPSOIL								_		
F			-1	SILT	TY SAND, mostly	y fine, brown/tan 10YF	R 5/8.		H	1								
sı	18	5 8 9 7	-2									1	M					
	1.0	9.7	E										191					
			=3									1				-10		
			E-4						Ш		1							
S2	18	23 34	E										М					
		24	-5										-					
			-6		J. 7.		55	SM										
- 1			E	botto		, trace gravel, tan 10Yl	R 6/8 at			1								
S3	18	28 98	-7	1.0.0									M					
L			-8						Ш	1						1		
Г			E	Same	a as above eveent	light ton 10VP 6/6 to	2000										1	
	-		-9	grave	el, some large gra	, light tan 10YR 6/6, tr vel chunks.	ace		111									
S4	20	57 65	= 10						111				M					
ų,	-		= 10						Ш							- 1		
Г	5		-11	POO	RLY GRADED	SAND, tan (10YR 6/8	trace	-	1	-								
2	-	0.12	E	grave	el, some saturated	areas.	, auco											
S5	20	9 12 17 22	-12					SP		6			M					
L			-13															
П			Ē	SILT	Y SAND, trace g	gravel, tan (10YR 5/6).			III									
Ç¢.	24	16 19	-14		through the same			SM					77.7					
S6	24	22 34	-15										W					

SCS Engineers Tel: (608) 224-2830 for Zach watson 2830 Dairy Drive Madison, WI 53711 Fax: This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable

information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form

Firm

Signature

should be sent.

	g Num ple		141 4	V-305 Use only as an attachment to Form 4400	122.	Т						Soil	Prope		of	
and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic	Log	Well	Diagram	PID/FID	Pocket Penetration (tsf)	Moisture Content		Plasticity Index	P 200	RQD/
		31 30 41 50/2	16	SILTY SAND, trace gravel, tan (10YR 5/6), some large dolomite chunks.	SM							W				
u			-18	End of boring at 18 ft bgs.												

Boring Log Legend

Sample

No: (Number) Soil samples are numbered consecutively from the ground surface. Core samples are numbered consecutively from the first core run.

Interval: The depth of sampling interval in feet below ground surface

Blow Count

The number of blows required to drive a 2-inch O.D. split-spoon sampler with a 140 pound hammer falling 30-inches. When appropriate, the sampler is driven 18 inches and blow counts are reported for each 6-inch interval. The sum of blow counts for the last two 6-inch intervals is designated as the standard penetration resistance (N) expressed as blows per foot.

Recovery in Inches

The length of sample recovered by the sampling device.

U.S.C.S. Soil Type

The Unified Soil Classification System symbol for recovered soil samples determined by visual examination or laboratory tests. Refer to ASTM D2487-69 for a detailed description of procedure and symbols. Underlined symbols denote classifications based on laboratory tests (i.e. <u>ML</u>), all others are based on visual classification only.

Percent Moisture

Natural moisture content of sample expressed as percent of dry weight.

q_u TSF

Unconfined compressive strength in tons per square foot obtained by hand penetrometer. Laboratory compression test values are indicated by underlining.

Contact Depth

The contact depth between soil layers is interpreted from significant changes in recovered samples and observations during drilling. Actual changes between soil layers often occur gradually and the contact depths shown on the boring logs should be considered as approximate.

Soil Description and Remarks

Soil descriptions include consistency or density, color, predominant soil types and modifying constituents.

·	Cohesive Soils		Cohesionle	Cohesionless Soils						
Consistency	q _u (TSF)	Blows/ft.	Density	Blows/ft.						
Very Soft	less than 0.25	0-1	Very Loose	4 or less						
Soft	0.25 to 0.50	2-4	Loose	5 to 10						
Medium Stiff	0.50 to 1.00	5-8	Medium Dense	11 to 30						
Stiff	1.00 to 2.00	9-15	Dense	30 to 50						
Very Stiff	2.00 to 4.00	15-30	Very Dense	Over 50						
Hard	more than 4.00	Over 30								

Definition of Terms

Particle Size Description

Boulder =	Larger than 12 inches	Trace =	5 to 12 percent by weight
Cobble =	3 to 12 inches	Some =	12 to 30 percent by weight
Gravel =	0.187 to 3 inches	And =	Approximately equal fractions
Sand =	0.074 to 4.76 mm	() =	Driller's observation
Silt and Clay =	smaller than 0.074 mm	, ,	

Piezo.

(Piezometer) Screened interval of the piezometer installation is denoted by cross-hatching.

General Note

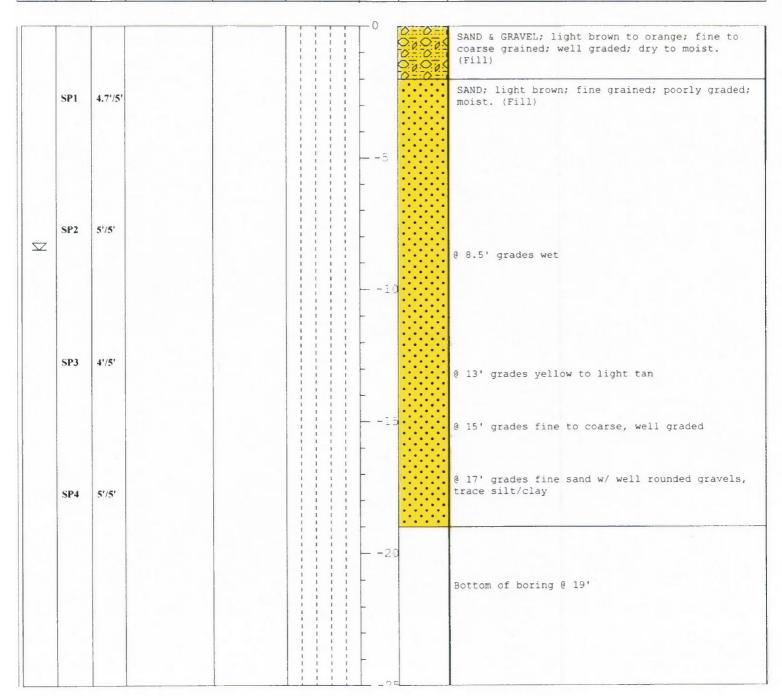
The boring log and related information depicted subsurface conditions only at the specified locations and date indicated. Soil conditions and water levels at other locations may differ from conditions occurring at these boring locations. Also the passage of time may result in a change in the conditions at these boring locations.

Soil Test Boring Refusal

Defined as any material causing a blow count greater that 50 blows/6 inches. Such material may include bedrock, "floating" rock slabs, boulders, dense gravel seams, hard pan clay, or cemented soils. Refusal is usually indicated in fractional notation showing number of blows as the numerator and inches of penetration as the denominator.

BORING LOG

CLIENT: Aether dbs


N NOT SURVEYED COORDINATES: E NOT SURVEYED

Environmental Field Services, LLC

PROJECT: Alliant Columbia Station BORING NO.: SB1

page 1 of 1

ATER		COVERY	NFROMATION	CNETROMETER	[2]	NCY vs. DEPTH	FEET		LOGGED BY: EDITED BY: CHECKED BY: DATE BEGAN:	John Noyes John Noyes Chris Sullivan 06-01-11	
N I	Ž 🖼	S.	<u> </u>	PE	E	3.1			DATE FINISHED	: 06-01-11	
LED	MPLE	MPLE	MPL	CKE	ONS	SISNO	E	FILE	GROUND SURFA	ACE ELEVATION:	
₩ WH	SAN	SA	VS.	PQ	E	5	DEP	PRO		DESCRIPTION	

BORING LOG

N NOT SURVEYED

COORDINATES: E NOT SURVEYED

Environmental Field Services, LLC

PROJECT: Alliant Columbia Station

CLIENT: Aether dbs

BORING NO.: SB2

page 1 of 1

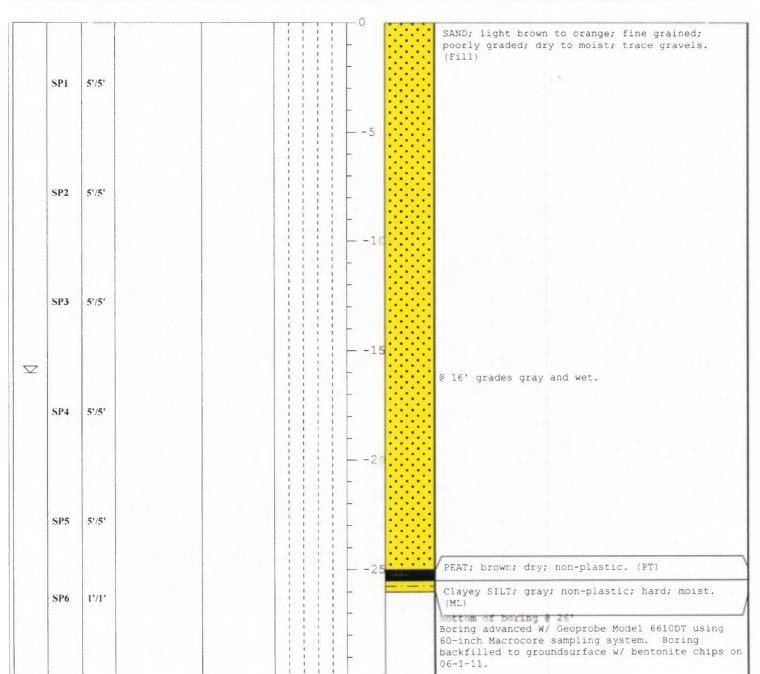
DEPTH TO WATER WHILE DRILLING	SAMPLE NO. AND TYPE	SAMPLE RECOVERY	SAMPLE INFROMATION	POCKET PENETROMETER (TONS/FT2)	CONSISTENCY VS. DEPTH	DEPTH IN FEET	PROFILE	LOGGED BY: John Noyes EDITED BY: John Noyes CHECKED BY: Chris Sullivan DATE BEGAN: 06-01-11 DATE FINISHED: 06-01-11 GROUND SURFACE ELEVATION: DESCRIPTION	
----------------------------------	---------------------	-----------------	--------------------	--------------------------------	-----------------------	---------------	---------	---	--

BORING LOG

N NOT SURVEYED

COORDINATES: E NOT SURVEYED

Environmental Field Services, LLC


PROJECT: Alliant Columbia Station

CLIENT: Aether dbs

BORING NO.: SB3

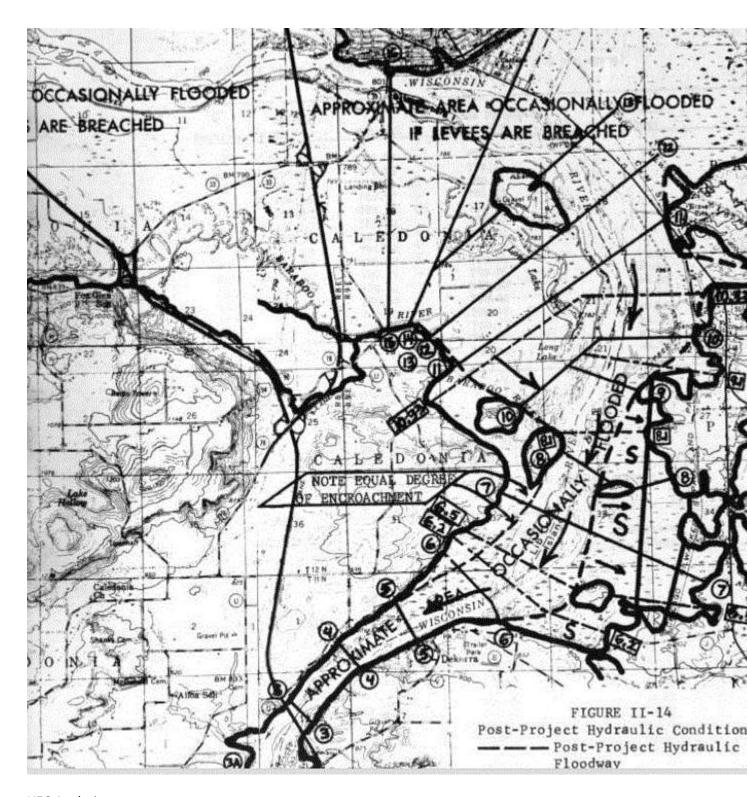
page 1 of 1

DEPTH TO WATER WHILE DRILLING SAMPLE NO. AND TYPE	SAMPLE RECOVERY SAMPLE INFROMATION	POCKET PENETROMETER (TONS/FT2) CONSISTENCY VS. DEPTH	DEPTH IN FEET PROFILE	LOGGED BY: John Noyes EDITED BY: John Noyes CHECKED BY: Chris Sullivan DATE BEGAN: 06-01-11 DATE FINISHED: 06-01-11 GROUND SURFACE ELEVATION: DESCRIPTION
---	------------------------------------	--	-----------------------	---

USED 54-0 OF CASING EL. 873-0 ORANGE-BROWN FINE SAND, LITTLE TO TRACE OF SILT & MEDIUM SAND, TRACE OF SMALL GRAVE 4 FIRM 24 HARD LIGHT BROWN TO GRAY, FINE TO MEDIUM SAND, LITTLE TO TRACE OF COARSE SAND, TRACE OF SILT, OCCASIONAL SMALL TO MEDIUM GRAVEL & STONE CHIPS. 120 .. OH DAYS .. WHILE DRILLING Lacking Gravel & STONE CHIPS (00) BOULDER -a"Black Granite Light Brown to WHITE FINE TO MEDIUN SAND. PROBABLE SANDSTONE 100 14 714-0 Classification: Internal - ECRM13620095

EL. 808-0 TOP SOIL ORANGE - BROWN FINE BAND, LITTLE TO TRACE of silt a medium sand, TRACE OF SMALL GRA HARD 129 TO TRACE OF 120 COAKSE SAND, TEASE OF BLT OCCASIONAL SMALL TO MEDIUM KRAVEL & STONE CHIES. 120 AVED & MOIST @ 24 HO 4(0)* CAVED & WET @ 14 HOUR

11/05/2025 - Classification: Internal - ECRM13620095


11/05/2025 - Classification: Internal - ECRM13620095 end of Ecologi

APPENDIX C – 100 Year Flood Prediction

Alliant Energy Wisconsin Power and Light Company Columbia Energy Center Pardeeville, Wisconsin

Structural Stability Assessment

HEC Analysis 1974 Draft Environmental Impact Report/Impact of Construction of Columbia Energy Center Prepared by USACE River Cross-Section 8 and 10 at North End of COL


Flood Elevation Prediction by Section with COL construction in Flood Plaim

11-20 TABLE II-11 - WISCONSIN RIVER LEVELS*
REGIONAL FLOOD (100 Year)

(123,000 cfs below confluence with Baraboo River & 115,000 cfs above)

Section	River Mile	Natural	v/Dike Proposal*s of 5/26/71	Increased Stage	
14	102.0	780.00	780.00	0	
2A	103.6	782.60	782.60	0	
34	105.3	784.68	784.68	0	
3	106.15	786.69	786.69	0	
4	106.85	789.07	789.07	0	
5	107.65	790.89	790.89	0	
6	108.50	792.40	792.40	0	
7	109.55	793.11	793.11	0	
8	110.50	793.39	793.69	+0.30	
8A.	110.60	793.43	793.74	+0.31	
10	112.10	794.23	794.66	+0.43	
11	112.70	794.46	794.97	+0.51	
12	113.00	794.56	795.06	+0.50	
13	113.50	794.79	795.26	+0.47	
14	114.35	795.29	795.78	+0.49	
16	115.75	797.73	797.99	+0.26	

^{*}After revision, represents a flood with a 100+ year frequency. **Equal degree of encroachment.

