SCS ENGINEERS

Run-On and Run-Off Control Plan

Phase 1 Module 1 Phase 1 Module 2

Phase 1 Module 3

Columbia Dry Ash Disposal Facility

Prepared for:

Wisconsin Power and Light Company

Columbia Energy Center W8375 Murray Road Pardeeville, Wisconsin 53954

Prepared by:

SCS ENGINEERS

2830 Dairy Drive Madison, Wisconsin 53718-6751 (608) 224-2830

> October 2016 File No. 25216112.00

Offices Nationwide www.scsengineers.com

Run-On and Run-Off Control Plan

Phase 1 Module 1

Phase 1 Module 2 Phase 1 Module 3

Columbia Dry Ash Disposal Facility

Prepared for:

Wisconsin Power and Light Company

Columbia Energy Center W8375 Murray Road Pardeeville, Wisconsin 53954

Prepared by:

SCS ENGINEERS

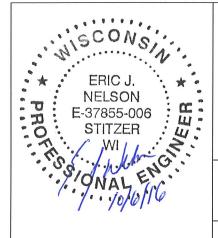
2830 Dairy Drive Madison, Wisconsin 53718-6751 (608) 224-2830

> October 2016 File No. 25216112.00

Table of Contents

Secti	ion	Page
PE C	Certification	iii
1.0	Introduction and Project Summary	1
2.0	Run-On and Run-Off Control Plan	1
	2.1 Design Criteria	2
	2.2 Design with Calculations	3
	2.3 Construction	3
3.0	Certifications	3
4.0	Recordkeeping and Periodic Updates	3

List of Figures


- 1 Site Location Map
- 2 Run-On/Run-Off Control Plan

Appendix

A Storm Water Design Calculations

[This page left blank intentionally.]

PE CERTIFICATION

I, Eric J. Nelson, hereby certify that this Run-On and Run-Off Control Plan meets the requirements of 40 CFR 257.81(c), was prepared by me or under my direct supervision, and that I am a duly licensed Professional Engineer under the laws of the State of Wisconsin.

(signature)

10/6/2016 (date)

ERIC J. NELSON

(printed or typed name)

License number <u>E-37855-6</u>

My license renewal date is $\frac{7/31/18}{}$

Pages or sheets covered by this seal:

iii

WPL COLUMBIA DRY ASK DISPOSAL FACILITY

[This page left blank intentionally.]

1.0 INTRODUCTION AND PROJECT SUMMARY

On behalf of Wisconsin Power and Light Company (WPL), SCS Engineers (SCS) has prepared this Run-on and Run-off Control Plan for the Columbia (COL) Dry Ash Disposal Facility in accordance with 40 CFR 257.81(c) as follows.

40 CFR 257.81(c). "Run-on and run-off control system plan - (1) Content of the plan. The owner or operator must prepare initial and periodic run-on and run-off control system plans for the CCR unit according to the timeframes specified in paragraphs (c)(3), and (4) of [section 257.81]. These plans must document how the run-on and run-off control systems have been designed and constructed to meet the applicable requirements of this section. Each plan must be supported by appropriate engineering calculations. The owner or operator has completed the initial run-on and run-off control system plan when the plan has been placed in the facility's operating record as required by section 257.105(g)(3)."

The COL facility includes an active coal combustion residue (CCR) landfill, which currently consists of three CCR units, all located in Phase 1 of the facility:

- Phase 1, Module 1 This unit has received some final cover over completed outer sideslope areas that will no longer receive additional CCR.
- Phase 1, Module 2 This unit is currently being filled.
- Phase 1, Module 3 Construction of this unit was recently completed and approved by the Wisconsin Department of Natural Resources (WDNR) to receive CCR.

Future CCR units (Phase 1 Modules 4-6 and Phase 2 Modules 7-13) are permitted with the WDNR, but have not been developed. When developed, the units will be new CCR landfills, as defined at 40 CFR 257.53.

This plan applies to Phase 1 Modules 1–3 only. Future CCR units are not discussed further herein.

Figure 1 shows the site location. **Figure 2** shows the run-on and run-off drainage areas.

2.0 RUN-ON AND RUN-OFF CONTROL PLAN

<u>40 CFR 257.81(a).</u> "The owner or operator of an existing or new CCR landfill or any lateral expansion of a CCR landfill must design, construct, operate, and maintain:

(1) A run-on control system to prevent flow onto the active portion of the CCR unit during the peak discharge from a 24-hour, 25-year storm."

The entire facility has run-on and run-off control in place, as approved by the WDNR. Run-on is controlled by berms and swales around the perimeter of the landfill that divert storm water away from the landfill to a sedimentation basin.

(2) "A run-off control system from the active portion of the CCR unit to collect and control at least the water volume resulting from a 24-hour, 25-year storm."

Run-off from the active portions of the facility is handled as contact water and is collected by a leachate collection system and internal swales, which route the contact water run-off to a lined contact water basin. The contact water in the basin is used for dust control or other actions within the active landfill or, if needed, is transported with a water wagon to the Primary Ash Pond at the generating station where it may be discharged through a Wisconsin Pollutant Discharge Elimination System (WPDES) permitted outfall.

Run-off from areas of the existing CCR units where final cover is in place is diverted into the perimeter drainage swales, which drain to the South Sedimentation Basin. Intermediate swales/berms and downslope channels on the final cover help minimize erosion of the final cover. These features divert water to the perimeter drainage system, and ultimately to the on-site detention/sedimentation basin. Per 40 CFR 257.81(b), this is consistent with the surface water requirements under 40 CFR 257.3-3.

In addition to these controls, a temporary rain cover has been installed to limit leachate and contact water production in Module 3. Storm water collected on the rain cover is diverted to perimeter swales, and ultimately to the sedimentation basin. The rain cover will be removed in sections to accommodate waste placement. As the rain cover is removed, new diversion berms will be constructed to form the perimeter of a storm water containment area. The berms will prevent contact water from running onto the rain cover and will anchor or ballast the rain cover at the new limits. When the rain cover has been fully removed, run-off will be controlled by the limits of Module 3 and all water inside the limits of Module 3 will be considered and handled as contract water.

2.1 DESIGN CRITERIA

The storm water features described above are designed to handle run-on and run-off from a 25-year, 24-hour storm event, as required by 40 CFR 257.81(a)(1) and (2).

The storm water run-on calculations were performed in 2000 as part of the 2000 Plan of Operation Update, with an update to run-on to a ditch along the north end of Module 3 performed in 2016. The 2000 calculations were performed assuming a 25-year, 24-hour precipitation depth of 4.7 inches, based on Technical Paper-40 (TP-40) precipitation data published in May 1961. The 2016 update for the ditch north of Module 3 assumed a 25-year, 24-hour precipitation depth of 4.9 inches, based on NOAA Atlas 14 precipitation data published in April 2013.

The run-off calculations were performed in 2010 as part of the 2010 Plan of Operation Update. A subsequent update was made to the leachate/surface water pond calculations in 2015. Calculations to evaluate installation of a rain cover in Module 3 were also performed in 2016. The 2010 calculations were performed assuming a 25-year, 24-hour precipitation depth of 4.7 inches, based on TP-40 precipitation data published in May 1961. The 2015 and 2016

calculations assumed a 25-year, 24-hour precipitation depth of 4.9 inches, based on NOAA Atlas 14 precipitation data published in April 2013.

2.2 DESIGN WITH CALCULATIONS

Storm water management design calculations are contained in **Appendix A**. As described in **Section 2.1**, the calculations from the 2000 Plan of Operation Update and the 2016 update for the swale located north of Module 3 describe the storm water management design and provide calculations showing that the run-on control system will prevent flow onto the active portion of the CCR units during the peak discharge from a 25-year, 24-hour storm. The calculations from the 2010 Plan of Operation Update and subsequent update in 2015 describe the storm water management design and provide calculations showing that the run-off control system for the active portions of the CCR units will collect and control the water volume resulting from a 25-year, 24-hour storm. The calculations were performed by or overseen by a professional engineer licensed in the State of Wisconsin.

2.3 CONSTRUCTION

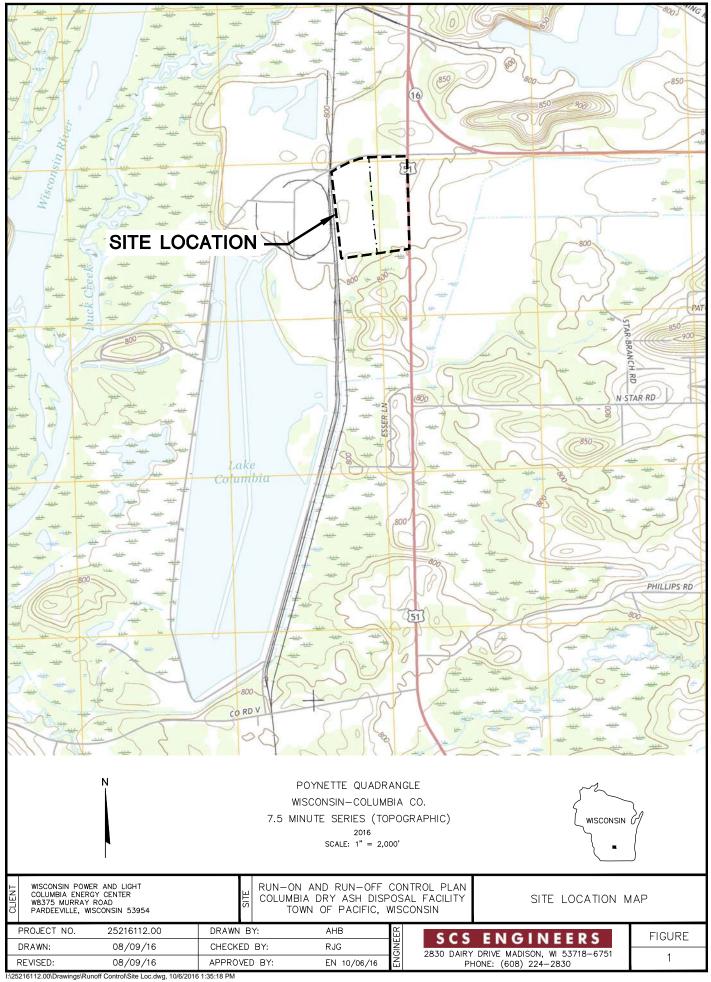
Existing storm water management features were constructed to site specifications with construction oversight directed by a professional engineer licensed in the State of Wisconsin. Construction documentation reports for the storm water management features were prepared, submitted to the WDNR, and approved by the WDNR.

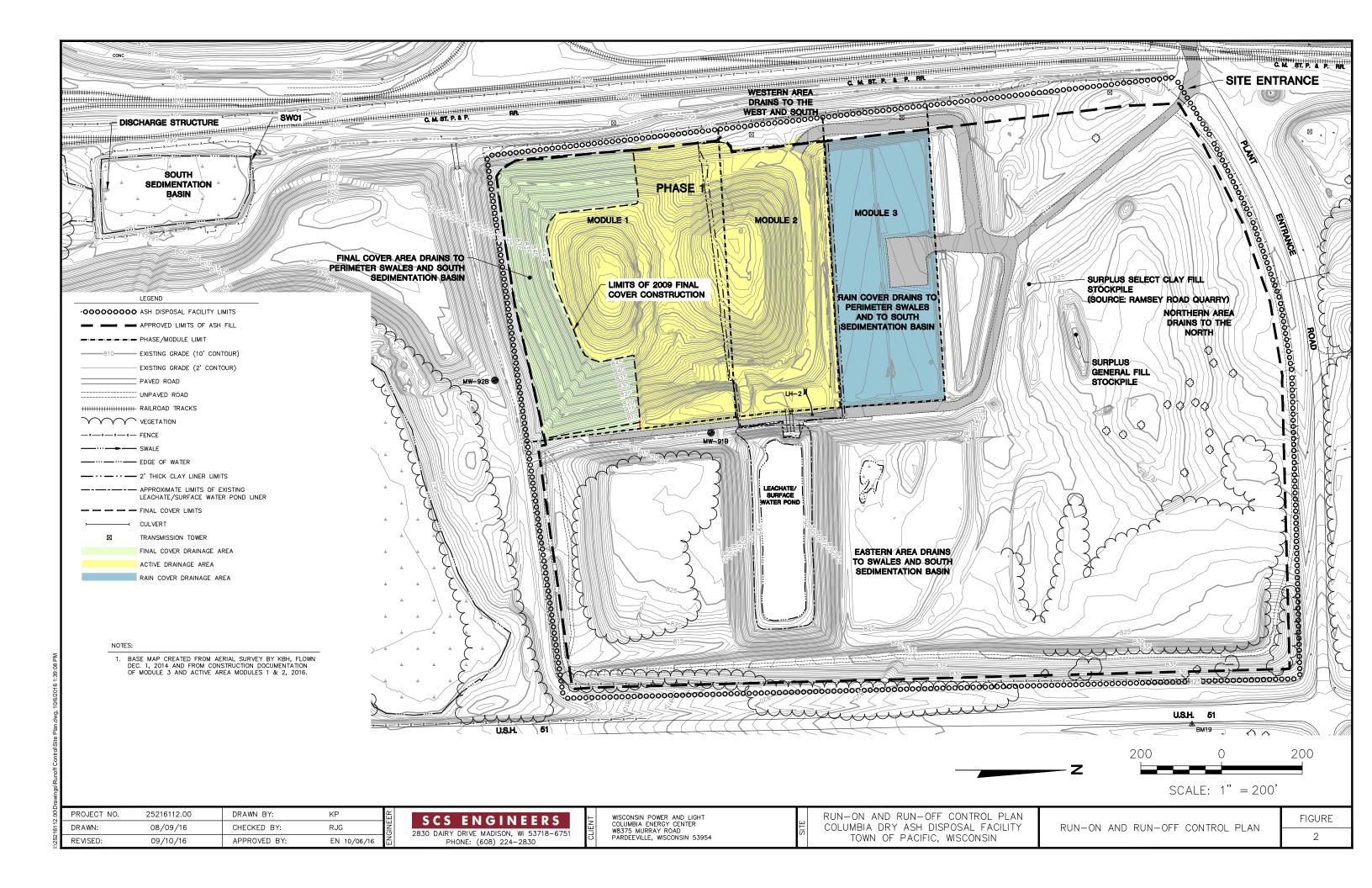
3.0 CERTIFICATIONS

<u>40 CFR 257.81(c)(5).</u> "The owner or operator must obtain a certification from a qualified professional engineer stating that the initial and periodic run-on and run-off control system plans meet the requirements of this section."

Eric Nelson, PE, a licensed profession engineer in the State of Wisconsin, has overseen the preparation of this Run-on and Run-off Control Plan. A certification statement is provided on **page iii** of this plan.

4.0 RECORDKEEPING AND PERIODIC UPDATES


<u>40 CFR257.81(d).</u> "The owner or operator of the CCR unit must comply with the recordkeeping requirements specified in section 257.105(g), the notification requirements specified in section 257.106(g), and the internet requirements specified in section 257.107(g)."


This Run-On and Run-Off Control Plan, and all periodic plans, will be placed in the facility's operating record and on Alliant Energy's CCR Rule Compliance Data and Information website, as will all amendments. Periodic plans will be completed every 5 years per 40 CFR 257.81(c)(4).

Notification will be provided when this Run-On and Run-Off Control Plan, and all periodic plans, are available in the facility's operating record and on the facility's website per 40 CFR 257.105(g), 257.106(g), and 257.107(g).

FIGURES

- Site Location Map Run-On/Run-Off Control Plan 2

APPENDIX A

Storm Water Design Calculations

PURPOSE:

The purpose of the surface water runoff calculations is to demonstrate that the surface water control features incorporated into the proposed design will collect and transfer surface water from the landfill in a controlled manner and will minimize erosion. The surface water runoff calculations were performed for the western half (Phase 1) of the landfill, which this 10-year Plan of Operation Update report addresses.

SITE GEOMETRY:

The surface water runoff from Phase 1 of the landfill will be routed to the existing South Sedimentation Basin. Diversion berms, downslope channels, and perimeter ditches are incorporated into the design to route the surface water to the southwestern corner of the landfill, where it is then routed to the South Sedimentation Basin. The South Sedimentation Basin was constructed during construction of Module 1 North. The south sedimentation pond discharges to a wetland area to the south of the pond.

METHODOLOGIES:

The following methods and procedures were used to demonstrate that the proposed surface water control features will collect and transfer surface water in controlled manner and minimize erosion potential:

Hydrograph Generation

Peak stormwater flows for the 25-year, 24-hour and 100-year, 24-hour storm events were calculated using the Quick TR-55 computer model developed by the National Resources Conservation Service (NRCS) (formerly known as the Soil Conservation Service (SCS)). The Quick TR-55 methods for computing hydrographs are based on the methodologies presented in the Urban Hydrology for Small Watersheds manual. The Quick TR-55 model is designed to simulate the surface runoff response of a watershed to a precipitation event. Input parameters for the model include precipitation depth for a particular storm event, contributing drainage areas, runoff curve numbers, and time of concentration.

The time of concentration calculations combine overland flow time (i.e., sheet flow), shallow concentrated flow time, and channel flow time. Curve numbers for a specified drainage area were also calculated using the methodologies and tables presented in TR-55 (see **Reference** section at the end of this appendix).

Diversion Berm, Downslope Channels, and Perimeter Ditch Sizing

These control structures are sized to channel the peak storm runoff to the sedimentation basin while maintaining low enough velocities to limit the erosion potential. The proposed design allows storm water which comes into contact with the final cover to be routed by diversion berms and downslope channels to the perimeter ditches, which will then transport the water to the south sedimentation basin.

Diversion berm, downslope channels, and perimeter ditch locations and details are shown on the Plan Sheets. A portion of the perimeter ditch along the western side of the landfill was constructed as part of the construction of Module 1 North.

In conjunction with the graphical peak discharge methods as presented in TR-55, the Flowmaster computer modeling program was used to assist in the design of these control structures. This program allows the user to input the channel geometry, the slope of the channel, an estimated Manning's "n" value for the channel, and the peak flow in the channel. The program then determines the peak flow depth and the peak velocity for the given geometry of the control feature.

The diversion berms, downslope channels, and perimeter ditches were sized by calculating the peak flow each structure would have to manage in a worst-case design scenario (i.e., surface water runoff from the largest area of landfill final cover during the 25-year, 24-hour storm event). The drainage structure was modeled using the Flowmaster computer model to verify channel depth and velocity in the structure.

Sedimentation Pond Sizing

The sedimentation pond sizing process involved determining the proper ratio of surface area to flowrate that would allow a 15 micron particle size to settle out during a design storm event.

A table presented in the <u>Erosion and Sediment Control Handbook</u> (Goldman et al., 1986) provides the surface area-to-discharge ratios required to achieve settlement of the desired particle sizes (see the **Reference** section of this appendix).

The Pond Pack 6.0 computer program was used in conjunction with accepted formulas and engineering calculations to size the sedimentation basins. Calculations were performed to determine the performance of the basins as follows:

- 1. The inflow hydrograph for the basin was calculated as part of the hydrograph computations. The regulations require that sediment basins be sized for a 25-year, 6-hour storm event. Sediment basin calculations for the Alliant Columbia Ash Disposal Facility were based on the basin's peak discharge during the 25-year, 24-hour storm which equals or exceeds the basin inflow for average rainfall intensity of the 25-year, 6-hour storm.
- 2. Outlet structures were designed to provide the necessary detention of peak stormwater runoff from the final cover for the 25-year, 24-hour storm event.
- 3. The inflow hydrograph was routed through the sedimentation pond using the Pond Pack 6.0 program to determine the basin's peak water elevation and discharge during the 25-year, 24-hour storm.
- 4. The emergency spillways for the sedimentation basins were sized for the 100-year, 24-hour storm event.

ASSUMPTIONS:

Summarized below are some of the major assumptions and data used in the computations:

1. Due to the presence of a drainage layer in the proposed landfill final cover, the soil for the landfill area was modeled between a Type B and C soil to account for greater water infiltration

through the cover. The final cover was modeled as a grassland in good condition, which resulted in a runoff curve number of 67.5.

- 2. SCS Type II storm was selected according to SCS storm distribution maps for the United States.
- 3. A 2-year, 24-hour storm event in the vicinity of the facility equates to 2.7 inches according to figures provided in TR-55.
- 4. A 25-year, 24-hour storm event in the vicinity of the facility equates to 4.7 inches according to precipitation data provided in TR-55.
- 5. A 100-year, 24-hour storm event in the vicinity of the facility equates to 5.9 inches according to precipitation data provided in TR-55.
- 6. Grass-lined berms and channels were designed for a maximum velocity of 4 feet per second (fps).
- 7. A Manning's "n" value of 0.045 was used to model a grass-lined berm or channel, as provided by the parameters set in the Flowmaster model.
- 8. Depths of channels were designed to be a minimum of 1 foot, with a minimum freeboard of 0.5 foot. Depths of diversion berms were designated to be a minimum of 2 feet, with a minimum of 0.5 foot of freeboard.
- 9. A 15-micron particle was targeted to be settled out of the water column. The 15-micron particle is classified as a medium-fine silt by the AASHTO Soil Classification System.

RESULTS:

Based on the results of the surface water runoff computations presented in this appendix, the proposed surface water control features will adequately handle the runoff from a 25-year, 24-hour storm event while minimizing erosion. The drainage features will be constructed as shown on the Plan Sheets.

All diversion berms and perimeter ditches will maintain greater than 0.5 foot of freeboard during the design storm event. The sedimentation basins will settle out particles 15 microns and larger in diameter and will dewater in no less than three days. The detailed calculations are included with this appendix.

I:\1370\Reports\surface water calcs writeup.wpd

Time of Concentration Calculations

Type.... Tc Calcs

Name.... LF TO S BASIN

Page 1.01

File.... I:\1370\Columbia.ppk

Title... Landfill runoff to south basin

Landfill Area (1/2)

TIME OF CONCENTRATION CALCULATOR

Landfill runoff to south basin

Segment #1: Tc: TR-55 Sheet Description: final cover slope

Mannings n .1900 Hydraulic Length 60.00 ft 2yr, 24hr P 2.7000 in Slope .050000 ft/ft

.17 ft/sec Avg. Velocity

Segment #1 Time: .0989 hrs

Segment #2: Tc: TR-55 Sheet Description: final cover slope

Mannings n .1900 Hydraulic Length 60.00 ft 2yr, 24hr P 2.7000 in Slope .250000 ft/ft

Avg. Velocity .32 ft/sec

Segment #2 Time: .0520 hrs

Segment #3: Tc: TR-55 Shallow Description: diversion berm

Hydraulic Length 1530.00 ft Slope .020000 ft/ft

Unpaved

Avg. Velocity 2.28 ft/sec

Segment #3 Time: .1863 hrs

S/N: H0M0L0862791 BT 2, Inc

Pond Pack Ver: 8-01-98 (61) Compute Time: 13:29:40 Date: 08-23-2000

Type.... Tc Calcs

Name.... LF TO S BASIN

Page 1.02

File.... I:\1370\Columbia.ppk

Title... Landfill runoff to south basin

Landfill Area (2/2)

Segment #4: Tc: TR-55 Channel Description: perimeter ditch

Flow Area 32.0000 sq.ft

Wetted Perimeter 22.60 ft

Hydraulic Radius

1.42 ft

Slope

.006000 ft/ft

Slope Mannings n

.0300

Hydraulic Length 320.00 ft

Avg. Velocity

4.85 ft/sec

Segment #4 Time: .0183 hrs

Total Tc: .3555 hrs ______

West peripheral area leading Page 1.01 Type.... Tc Calcs Name.... PERIPH TO S BASI to west perimeter ditch (1/2) File.... I:\1370\COLUMBIA.PPK Title... Peripheral area to south basin (area outside of LF leading to basin) TIME OF CONCENTRATION CALCULATOR Peripheral area to south basin (area outside of LF leading to basin) Segment #1: Tc: TR-55 Sheet Description: flow into ditch Mannings n .1900 Hydraulic Length 10.00 ft 2yr, 24hr P 2.7000 in Slope .330000 ft/ft Avg. Velocity .25 ft/sec Segment #1 Time: .0111 hrs Segment #2: Tc: TR-55 Channel Description: flow along perimeter ditch Flow Area 22.0000 sq.ft Wetted Perimeter 17.60 ft
Hydraulic Radius 1.25 ft
Slope .006000 ft/ft
Mannings n .0300
Hydraulic Length 800.00 ft Avg. Velocity 4.46 ft/sec Segment #2 Time: .0498 hrs Segment #3: Tc: TR-55 Channel Description: flow along perimeter ditch 57.0000 sq.ft Flow Area Wetted Perimeter 29.00 ft
Hydraulic Radius 1.97 ft
Slope .006000 ft/ft
Mannings n .0300
Hydraulic Length 1010.00 ft Avg. Velocity 6.04 ft/sec Segment #3 Time: .0465 hrs

S/N: H0M0L0862791 BT 2, Inc

Type.... Tc Calcs Name.... PERIPH TO S BASI West peripheral area leading Page 1.02 to West perimeter ditch (z/z)

File.... I:\1370\COLUMBIA.PPK

Title... Peripheral area to south basin (area outside of LF

leading to basin)

Total Tc: .1073 hrs

S/N: H0M0L0862791 BT 2, Inc

Pond Pack Ver: 8-01-98 (61) Compute Time: 08:51:25 Date: 08-30-2000

Type.... Tc Calcs Northeast peripheral Page 1.01 area leading to east perimeter ditch Page 1.01 Name... E PERIPHERAL File.... I:\1370\COLUMBIA.PPK (1/1) Title... Eastern peripheral area (north of leachate basin) leading to east ditch TIME OF CONCENTRATION CALCULATOR Eastern peripheral area (north of leachate basin) leading to east ditch Segment #1: Tc: TR-55 Sheet Mannings n .1900 Hydraulic Length 40.00 ft 2yr, 24hr P 2.7000 in Slope .425000 ft/ft Avg. Velocity .37 ft/sec Segment #1 Time: .0304 hrs Segment #2: Tc: TR-55 Sheet Mannings n .1900 Hydraulic Length 260.00 ft 2yr, 24hr P 2.7000 in Slope .023000 ft/ft .17 ft/sec Avg. Velocity Segment #2 Time: .4362 hrs Segment #3: Tc: TR-55 Shallow Hydraulic Length 520.00 ft .014000 ft/ft Slope Unpaved Avg. Velocity 1.91 ft/sec Segment #3 Time: .0757 hrs Total Tc: .5423 hrs ______

S/N: H0M0L0862791 BT 2, Inc

Pond Pack Ver: 8-01-98 (61) Compute Time: 14:58:36 Date: 08-29-2000

Type Tc Calcs Name BASIN PE File I:\1370\0 Title South pe	RIPHERAL COLUMBIA. ripheral	PPK area to	Southea area lea ditco	st/Sout ading to h (1/2) erimeter	h periq Sowth) ditch	pheral ^P perime	age 1 eter	1.01
TIME OF CONCENTRA				::::::::	:::::::	::::::::	:::::	::::
South peripheral	area to	south p	erimeter	ditch	~			
Segment #1: Tc:	TR-55 Sho	eet						
Mannings n Hydraulic Length 2yr, 24hr P Slope	.1900 300.00 2.7000 .010000	ft in ft/ft						
Avg.Velocity	.12	ft/sec						
				Segment	#1 Time	e:	825	hrs
Segment #2: Tc:	TR-55 Sha	allow					-	
Hydraulic Length Slope Unpaved	110.00 .096000	ft ft/ft						
Avg.Velocity	5.00	ft/sec						÷
				Segment	#2 Time	: .0	061	hrs
Segment #3: Tc:	TR-55 Sha	allow						
Hydraulic Length Slope Unpaved	550.00 .022000							
Avg. Velocity	2.39	ft/sec						
				Seament	#3 Time		630	hra

S/N: H0M0L0862791 BT 2, Inc Pond Pack Ver: 8-01-98 (61) Compute Time: 15:25:03 Date: 08-29-2000

Type.... Tc Calcs

Name... BASIN PERIPHERAL

Southeast/south peripheral Page 1.02 area leading to south perimeter

ditch (2/2)

File.... I:\1370\COLUMBIA.PPK

Title... South peripheral area to south perimeter ditch

Segment #4: Tc: TR-55 Channel

Description: flow along south perimeter ditch

Flow Area 100.0000 sq.ft

Wetted Perimeter 32.40 ft

Hydraulic Radius 3.09 ft

.012000 ft/ft Slope

Slope Mannings n .0300

Hydraulic Length 1030.00 ft

Avg. Velocity 11.53 ft/sec

Segment #4 Time: .0248 hrs

Total Tc: .7773 hrs

S/N: H0M0L0862791 BT 2, Inc

Pond Pack Ver: 8-01-98 (61) Compute Time: 15:25:03 Date: 08-29-2000

Type.... Tc Calcs Name.... LF TO S BASIN

Equations used by PondPack to calculate Tc (1/2)

Page 1.03

File.... I:\1370\Columbia.ppk Title... Landfill runoff to south basin

Tc Equations used ...

Tc = (.007 * ((n * Lf) **0.8)) / ((P**.5) * (Sf**.4))

Where: Tc = Time of concentration, hrs

n = Mannings n

Lf = Flow length, ft

P = 2yr, 24hr Rain depth, inches

Sf = Slope, ft/ft

Unpaved surface:

V = 16.1345 * (Sf**0.5)

Paved surface:

V = 20.3282 * (Sf**0.5)

Tc = (Lf / V) / (3600sec/hr)

Where: V = Velocity, ft/sec

Sf = Slope, ft/ft

Tc = Time of concentration, hrs

Lf = Flow length, ft

```
Type.... Tc Calcs
```

Name.... LF TO S BASIN

Equations used by Pond Pack to Calculate Tc (2/2)

File.... I:\1370\Columbia.ppk

Title... Landfill runoff to south basin

R = Aq / Wp

V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n

Tc = (Lf / V) / (3600sec/hr)

Where: R = Hydraulic radius

Aq = Flow area, sq.ft.

Wp = Wetted perimeter, ft

V = Velocity, ft/sec

Sf = Slope, ft/ft

n = Mannings n

Tc = Time of concentration, hrs

Lf = Flow length, ft

S/N: HOMOLO862791 BT 2, Inc

Pond Pack Ver: 8-01-98 (61) Compute Time:

Compute Time: 13:29:40 Date: 08-23-2000

Hydrograph Generation

Type.... TR-55 Tabular Hyd.Input Data Name.... TO SOUTH BASIN Tag:

ala ar

File... I:\1370\COLUMBIA.PPK
Title... Runoff to south basin

To South Basin 25-yr, 24-hr Storm

Page 2.01

HYG Dir = $I:\1370$

HYG file = S BASIN.HYG south basin 25

(1/z)

TR-55 TABULAR HYDROGRAPH METHOD
TYPE II Distribution
25yr, 24hr Rainfall Depth = 4.70 in

Total Area = 63.400 acres or .099063 sq.mi.

Peak Discharge = 69 cfs

WARNING: Drainage areas of two or more subareas differ by a factor of 5 or greater.

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip. (in)	Runoff Ia/p (in) input/used
Landfill area W peripheral Basin area NE peripheral SE/5 periphera	29.600 4.600 1.800 13.700 13.700	67.5 67.5 98.0 67.5 67.5	.4000 .1000 .1000 .5000	.0000	4.70 4.70 4.70 4.70 4.70	1.63 I.20 .20 1.63 I.20 .20 4.46 I.01 .10 1.63 I.20 .20 1.63 I.20 .20

^{*} Travel time from subarea outfall to composite watershed outfall point.

>>>> Computer Modifications of Input Parameters <<<<<

Subarea Description	Input Tc (hrs)	Values * Tt (hrs)	Rounded Tc (hrs)	Values * Tt (hrs)	Ia/p Interpolate (Yes/No)	
andfill area peripheral	.3600	.0000	.40	.00	Yes Yes	
∃asin area	.1000	.0000	* *	**		Computed Ia/p < .1
E peripheral	.5400	.0000	.50	.00	Yes	
ES: periphera	.7800	.0000	.75	.00	Yes	

^{*} Travel time from subarea outfall to composite watershed outfall point.

S/N: H0M0L0862791 BT 2, Inc

Pond Pack Ver: 8-01-98 (61) Compute Time: 15:26:34 Date: 08-29-2000

I -- Subarea where user specified interpolation between Ia/p tables.

^{*} Tc & Tt are available in the hydrograph tables.

Type.... TR-55 Tabular Hyd.Peaks

Name.... TO SOUTH BASIN 25

To South Basin

Page 2.02

File.... I:\1370\COLUMBIA.PPK Title... Runoff to south basin

HYG Dir = $I:\1370$

HYG file = S BASIN.HYG south basin 25

25-yr, 24-hr Storm (2/2)

TR-55 TABULAR HYDROGRAPH METHOD TYPE II Distribution 25yr, 24hr Rainfall Depth = 4.70 in

>>>> Summary of Subarea Times to Peak <<<<

Subarea	Peak Discharge at Composite Outfall (cfs)	Time to Peak at Composite Outfall (hrs)
Landfill area	40	12.3
W peripheral	. 11	12.1
Basin area	13	12.1
NE peripheral	17	12.4
SE/S periphera	13	12.6
Composite Watershed	69	12.4

S/N: H0M0L0862791 BT 2, Inc

Pond Pack Ver: 8-01-98 (61) Compute Time: 15:26:34 Date: 08-29-2000

Type.... TR-55 Tabular Hyd.Input Data Name.... TO SOUTH BASIN Taq:

100

Page 2.07 To South Basin 100-yr, 24-hr

File.... I:\1370\COLUMBIA.PPK Title... Runoff to south basin

HYG Dir = $I:\1370$

HYG file = S BASIN.HYG south basin 100

TR-55 TABULAR HYDROGRAPH METHOD TYPE II Distribution 100yr, 24hr Rainfall Depth = 5.90 in

Total Area = 63.400 acres or .099063 sq.mi. Peak Discharge = 110 cfs WARNING: Drainage areas of two or more subareas differ by a factor of 5 or greater.

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip.	Runoff Ia/p (in) input/used
Landfill area W peripheral Basin area E peripheral SE/S periphera	29.600 4.600 1.800 13.700	67.5 67.5 98.0 67.5 67.5	.4000 .1000 .1000 .5000	.0000	5.90 5.90 5.90 5.90 5.90	2.50 I.16 .16 2.50 I.16 .16 5.66 I.01 .10 2.50 I.16 .16 2.50 I.16 .16

^{*} Travel time from subarea outfall to composite watershed outfall point.

>>>> Computer Modifications of Input Parameters <<<<<

Subarea Description	Input Tc (hrs)	Values * Tt (hrs)	Rounded Tc (hrs)	Values * Tt (hrs)	Ia/p Interpolate (Yes/No)	
andfill area w peripheral Basin area peripheral E/5 periphera	.3600 .1000 .1000 .5400	.0000	.40 ** ** .50	.00 ** ** .00	Yes Yes No Yes Yes	 Computed Ia/p < .1

^{*} Travel time from subarea outfall to composite watershed outfall point.

* Tc & Tt are available in the hydrograph tables.

S/N: H0M0L0862791 BT 2, Inc

Pond Pack Ver: 8-01-98 (61) Compute Time: 15:26:34 Date: 08-29-2000

I -- Subarea where user specified interpolation between Ia/p tables.

Type.... TR-55 Tabular Hyd.Peaks

Name.... TO SOUTH BASIN Tag: 100

Page 2.08

File... I:\1370\COLUMBIA.PPK Title... Runoff to south basin

HYG Dir = I: 1370

HYG file = S BASIN.HYG south basin 100

TR-55 TABULAR HYDROGRAPH METHOD
TYPE II Distribution
100yr, 24hr Rainfall Depth = 5.90 in

>>>> Summary of Subarea Times to Peak <<<<

Subarea	Peak Discharge at Composite Outfall (cfs)	Time to Peak at Composite Outfall (hrs)
Landfill area	65	12.3
W peripheral	18	12.1
Basin area	16	12.1
N E peripheral .	27	12.4
SE/S periphera	21	12.6
Composite Watershed	110	12.4

S/N: H0M0L0862791 BT 2, Inc

Pond Pack Ver: 8-01-98 (61) Compute Time: 15:26:34 Date: 08-29-2000

Diversion Berm, Downslope Swale, and Perimeter Ditch Sizzing Calculations

Worst- case diversion Berm (1 Title... To for worst case diversion berm sizing calcs

Segment #1: Tc: TR-55 Sheet

Type.... Tc Calcs

Name.... WORSTCASE DIV BE

File.... I:\1370\COLUMBIA.PPK

TIME OF CONCENTRATION CALCULATOR

Description: final cover slope - 25%

Tc for worst case diversion berm sizing calcs

Mannings n .1900 Hydraulic Length 95.00 ft 2yr, 24hr P 2.7000 in Slope .250000 ft/ft

Avg. Velocity .35 ft/sec

Segment #1 Time:

Segment #2: Tc: TR-55 Shallow Description: diversion berm

Hydraulic Length 2090.00 ft .020000 ft/ft Slope Unpaved

Avg. Velocity 2.28 ft/sec

Segment #2 Time: .2544 hrs

Total Tc: .3295 hrs

Pond Pack Ver: 8-01-98 (61) Compute Time: 14:33:16 Date: 08-29-2000

Worst-case diversion berm

Type.... TR-55 Tabular Hyd.Input Data Name.... WORSTCASE DIV BE Taq: 25

Page 1.01

File.... I:\1370\COLUMBIA.PPK

Title... Hydrograph for worst-case diversion berm sizing calcs

HYG Dir = $I:\1370$

HYG file = NONE STORED WORSTCASE DIV BE 25

TR-55 TABULAR HYDROGRAPH METHOD
TYPE II Distribution
25yr, 24hr Rainfall Depth = 4.70 in

Total Area = 4.600 acres or .007187 sq.mi.

Peak Discharge = 7 cfs

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip.		f Ia/p input/used
east side ph 1	4.600	67.5	.3000	.0000	4.70	1.63	I.20 .20

^{*} Travel time from subarea outfall to composite watershed outfall point. I -- Subarea where user specified interpolation between Ia/p tables.

>>>> Computer Modifications of Input Parameters <<<<<

Subarea Description	Input Tc (hrs)	Values * Tt (hrs)	Rounded Tc (hrs)		Ia/p Interpolated (Yes/No)	Ia/p Messages
east side ph 1	.3300	.0000	.30	.00	Yes	

^{*} Travel time from subarea outfall to composite watershed outfall point.

S/N: H0M0L0862791 BT 2, Inc

Worst-case diversion berm

Type.... TR-55 Tabular Hyd.Peaks

Name.... WORSTCASE DIV BE

Page 1.02

File.... I:\1370\COLUMBIA.PPK

Title... Hydrograph for worst-case diversion berm sizing calcs HYG Dir = $I:\1370\$

HYG file = NONE STORED WORSTCASE DIV BE 25

TR-55 TABULAR HYDROGRAPH METHOD TYPE II Distribution 25yr, 24hr Rainfall Depth = 4.70 in

25

>>>> Summary of Subarea Times to Peak <<<<

	Peak Discharge at Composite Outfall	Time to Peak at Composite Outfall
Subarea	(cfs)	(hrs)
east side ph 1	7	12.2
Composite Watershed	7	12.2

S/N: H0M0L0862791 BT 2, Inc

Worksheet Worksheet for Triangular Channel

Project Description	1
Worksheet	Triangular Channe
Flow Element	Triangular Channe
Method	Manning's Formula
Solve For	Channel Depth

Worst-case diversion berm

Input Data		
Mannings Coeffic	0.030	
Slope	020000	ft/ft
Left Side Slope	4.00	H:V
Right Side Slope	3.00	H:V
Discharge	7.00	cfs

Results		
Depth	0.75	ft
Flow Area	2.0	ft²
Wetted Perimi	5.47	ft
Top Width	5.25	ft
Critical Depth	0.76	ft
Critical Slope	0.019122	ft/ft
Velocity	3.55	ft/s
Velocity Head	0.20	ft
Specific Energ	0.95	ft
Froude Numb	1.02	
Flow Type	upercritical	

Worst-case downslope channel Type.... Tc Calcs Page 1.01 Name.... WORST CASE FLUME File.... I:\1370\COLUMBIA.PPK Title... To for worst case downslope flume sizing calcs TIME OF CONCENTRATION CALCULATOR To for worst case downslope flume sizing calcs Segment #1: Tc: TR-55 Sheet Description: final cover slope - 5% Mannings n .1900 Hydraulic Length 60.00 ft 2yr, 24hr P 2.7000 in Slope .050000 ft/ft .17 ft/sec Avg. Velocity Segment #1 Time: .0989 hrs Segment #2: Tc: TR-55 Sheet Description: final cover slope - 25% Mannings n .1900 Hydraulic Length 60.00 ft 2yr, 24hr P 2.7000 in Slope .250000 ft/ft Avg. Velocity .32 ft/sec Segment #2 Time: .0520 hrs Segment #3: Tc: TR-55 Shallow Description: diversion berm Hydraulic Length 1790.00 ft Slope .020000 ft/ft Unpaved

Avg. Velocity 2.28 ft/sec

Segment #3 Time: .2179 hrs

______ Total Tc: .3688 hrs

S/N: H0M0L0862791 BT 2, Inc

Worst-case downslope channel

Type.... TR-55 Tabular Hyd.Input Data Name.... WORST CASE FLUME Taq: 29

Page 1.01

File.... I:\1370\COLUMBIA.PPK

Title... Hydrograph for worst-case downslope flume sizing calcs

HYG Dir = I: 1370

HYG file = NONE STORED WORST CASE FLUME 25

TR-55 TABULAR HYDROGRAPH METHOD
TYPE II Distribution
25yr, 24hr Rainfall Depth = 4.70 in

Total Area = 7.500 acres or .011719 sq.mi.

Peak Discharge = 10 cfs

>>>> Input Parameters Used to Compute Hydrograph <<<<

Subarea Description	AREA (acres)	CN	Tc (hrs)	* Tt (hrs)	Precip.		off I input	a/p :/used
To SE flume	7.500	67.5	.4000	.0000	4.70	1.6	3 I.20	.20

^{*} Travel time from subarea outfall to composite watershed outfall point. I -- Subarea where user specified interpolation between Ia/p tables.

>>>> Computer Modifications of Input Parameters <<<<<

Subarea Description	Input Tc (hrs)	Values * Tt (hrs)	Rounded Tc (hrs)		Ia/p Interpolated (Yes/No)	Ia/p Messages
To SE flume	.3700	.0000	.40	.00	Yes	

^{*} Travel time from subarea outfall to composite watershed outfall point.

S/N: H0M0L0862791 BT 2, Inc

Worst-case downslope channel

Type.... TR-55 Tabular Hyd.Peaks Name.... WORST CASE FLUME Tag: Page 1.02

25

File.... I:\1370\COLUMBIA.PPK

Title... Hydrograph for worst-case downslope flume sizing calcs

HYG Dir = $I: \langle 1370 \rangle$

HYG file = NONE STORED WORST CASE FLUME 25

TR-55 TABULAR HYDROGRAPH METHOD TYPE II Distribution 25yr, 24hr Rainfall Depth = 4.70 in

>>>> Summary of Subarea Times to Peak <<<<

•		Time to Peak at Composite Outfall
Subarea	(cfs)	(hrs)
To SE flume	10	12.3
Composite Watershed	10	12.3

Project Description	1
Worksheet	downslope flume
Flow Element	Trapezoidal Cha
Method	Manning's Form
Solve For	Channel Depth

Worst-case downslope channel (SW channel)

Input Data		
Mannings Coeffic	0.040	
Slope	200000	ft/ft
Left Side Slope	3.00	H : V
Right Side Slope	3.00	H : V
Bottom Width	10.00	ft
Discharge	10.00	cfs

Results		
Depth	0.18	ft
Flow Area	1.9	ft²
Wetted Perim	11.16	ft
Top Width	11.10	ft
Critical Depth	0.30	ft
Critical Slope	0.035988	ft/ft
Velocity	5.17	ft/s
Velocity Head	0.41	ft
Specific Enerç	0.60	ft
Froude Numb	2.18	
Flow Type 3	upercritical	

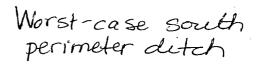
Page 1 of 1

Project Description	
Worksheet	worst-case west perimeter
Flow Element	Trapezoidal Channel
Method	Manning's Formula
Solve For	Channel Depth

Worst-case west perimeter dutch

Input Data		
Mannings Coeffic	0.030	
Slope	006000	ft/ft
Left Side Slope	3.00	H:V
Right Side Slope	3.00	H:V
Bottom Width	5.00	ft
Discharge	31.00	cfs

Results		
Depth	1.13	ft
Flow Area	9.5	ft²
Wetted Perim	12.17	ft
Top Width	11.80	ft
Critical Depth	0.88	ft
Critical Slope	0.015659	ft/ft
Velocity	3.26	ft/s
Velocity Head	0.16	ft
Specific Energ	1.30	ft
Froude Numb	0.64	
Flow Type	Subcritical	


Project Description	
Worksheet	worst-case east perimeter
Flow Element	Trapezoidal Channel
Method	Manning's Formula
Solve For	Channel Depth

Worst-case east perimeter dütch

Input Data		
Mannings Coeffic	0.030	
Slope	005000	ft/ft
Left Side Slope	3.00	H : V
Right Side Slope	3.00	H : V
Bottom Width	10.00	ft
Discharge	57.00	cfs

Results		
Depth	1.23	ft
Flow Area	16.9	ft²
Wetted Perim	17.79	ft
Top Width	17.39	ft
Critical Depth	0.91	ft
Critical Slope	0.014803	ft/ft
Velocity	3.38	ft/s
Velocity Head	0.18	ft
Specific Enerç	1.41	ft
Froude Numb	0.61	
Flow Type	Subcritical	

Project Description	
Worksheet	worst case south perimeter
Flow Element	Trapezoidal Channel
Method	Manning's Formula
Solve For	Channel Depth

Input Data		
Mannings Coeffic	0.030	
Slope	012000	ft/ft
Left Side Slope	3.00	H:V
Right Side Slope	3.00	H : V
Bottom Width	10.00	ft
Discharge	70.00	cfs

Results		
Depth	1.08	ft
Flow Area	14.4	ft²
Wetted Perime	16.85	ft
Top Width	16.50	ft
Critical Depth	1.03	ft
Critical Slope	0.014316	ft/ft
Velocity	4.88	ft/s
Velocity Head	0.37	ft
Specific Energ	1.45	ft
Froude Numb	0.92	
Flow Type	Subcritical	

Project Description	1
Worksheet	ditch from SW corner of LF to \$
Flow Element	Trapezoidal Channel
Method	Manning's Formula
Solve For	Channel Depth

Ditch from SW corner of Landfill to South Basin

Input Data		
Mannings Coeffic	0.030	
Slope	006000	ft/ft
Left Side Slope	3.00	H:V
Right Side Slope	3.00	H:V
Bottom Width	15.00	ft
Discharge	69.00	cfs

Results		
Depth	1.07	ft
Flow Area	19.4	ft²
Wetted Perim	21.74	ft
Top Width	21.40	ft
Critical Depth	0.82	ft
Critical Slope	0.014896	ft/ft
Velocity	3.56	ft/s
Velocity Head	0.20	ft
Specific Enerç	1.26	ft
Froude Numb	0.66	
Flow Type	Subcritical	

Basin Volume Computations

Type.... Vol: Planimeter

Page 1.01 Name.... SOUTH BASIN

File.... I:\1370\COLUMBIA.PPK Title... south basin volume

POND VOLUME CALCULATIONS

Planimeter scale: 1.00 ft/in

Elevation (ft)	Planimeter (sq.in)	Area (acres)	A1+A2+sqr(A1*A2) (acres)	Volume (ac-ft)	Volume Sum (ac-ft)
789.00	62411.000	1.4328	.0000	.000	.000
790.00	68355.000	1.5692	4.5014	1.500	1.500
792.00	74865.000	1.7187	4.9301	3.287	4.787
794.00	82150.000	1.8859	5.4049	3.603	8.390

POND VOLUME EQUATIONS

* Incremental volume computed by the Conic Method for Reservoir Volumes.

Volume = (1/3) * (EL2-EL1) * (Area1 + Area2 + sq.rt.(Area1*Area2))

where: EL1, EL2 = Lower and upper elevations of the increment Area1, Area2 = Areas computed for EL1, EL2, respectively

= Incremental volume between EL1 and EL2 Volume

S/N: HOMOL0862791 BT 2, Inc

Outlet Structure Data

Type.... Outlet Input Data

Name.... SOUTH BASIN2

Page 1.01

File.... I:\1370\COLUMBIA.PPK

Title... south basin outlet structure

REQUESTED POND WS ELEVATIONS:

Min. Elev.= 789.50 ft Increment = 1.00 ft Max. Elev.= 794.00 ft

---> Forward Flow Only (UpStream to DnStream) <--- Reverse Flow Only (DnStream to UpStream)

<---> Forward and Reverse Both Allowed

Structure	No.		Outfall	E1, ft	E2, ft
Weir-Rectangular	e1	>	TW	793.000	794.000
Stand Pipe	sl	>	c1	791.000	794.000
Orifice-Circular	01	>	c1	789.500	794.000
Culvert-Circular TW SETUP, DS Channel	c1	>	TW	789.000	794.000

S/N: H0M0L0862791 BT 2, Inc

Type.... Outlet Input Data Page 1.02

Name.... SOUTH BASIN2

File.... I:\1370\COLUMBIA.PPK

Title... south basin outlet structure

OUTLET STRUCTURE INPUT DATA

Structure ID = e1 Structure Type = Weir-Rectangular -------

of Openings = 1 Crest Elev. = 793.00 ft Weir Length = 10.00 ft Weir Coeff. = 3.300000

Weir TW effects (Use adjustment equation)

Structure ID = s1 Structure Type = Stand Pipe

of Openings = 1
Invert Elev. = 791.00 ft
Diameter = 2.5000 ft
Orifice Area = 4.9087 sq.ft
Orifice Coeff. = .600
Weir Length = 7.85 ft
Weir Coeff. = 3.300
K, Submerged = .000
K, Reverse = 1.000
Kb, Barrel = .000000 (per ft of full flow)
Barrel Length = .0000

Structure ID = o1 Structure Type = Orifice-Circular _______

of Openings = 72
Invert Elev. = 789.50 ft
Diameter = .0400 ft
Orifice Coeff. = .600

S/N: H0M0L0862791 BT 2, Inc

Type.... Outlet Input Data Page 1.03

Name.... SOUTH BASIN2

File.... I:\1370\COLUMBIA.PPK

Title... south basin outlet structure

OUTLET STRUCTURE INPUT DATA

```
Structure ID = c1
Structure Type = Culvert-Circular

No. Barrels = 1
Barrel Diameter = 1.2500 ft
Upstream Invert = 789.00 ft
Dnstream Invert = 788.50 ft
Horiz. Length = 50.00 ft
Barrel Length = 50.00 ft
Sarrel Slope = .01000 ft/ft

OUTLET CONTROL DATA...
Mannings n = .0130
Ke = .9000 (forward entrance loss)
Kb = .023225 (per ft of full flow)
Kr = .9000 (reverse entrance loss)
HW Convergence = .001 +/- ft

INLET CONTROL DATA...
Equation form = 1
Inlet Control K = .0340
Inlet Control K = .0340
Inlet Control C = .05530
Inlet Control Y = .5400
T1 ratio (HW/D) = 1.258
T2 ratio (HW/D) = 1.420
Slope Factor = .500
```

Use unsubmerged inlet control Form 1 equ. below T1 elev. Use submerged inlet control Form 1 equ. above T2 elev.

In transition zone between unsubmerged and submerged inlet control, interpolate between flows at T1 & T2...

At T1 Elev = 790.57 ft ---> Flow = 4.80 cfs At T2 Elev = 790.77 ft ---> Flow = 5.49 cfs

```
Structure ID = TW

Structure Type = TW SETUP, DS Channel
```

CONVERGENCE TOLERANCES...

```
Maximum Iterations= 30
Min. TW tolerance = .01 ft
Max. TW tolerance = .01 ft
Min. HW tolerance = .01 ft
Max. HW tolerance = .01 ft
```

FREE OUTFALL CONDITIONS SPECIFIED

Name.... SOUTH BASIN2

File.... I:\1370\COLUMBIA.PPK

Title... south basin outlet structure

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = e1 (Weir-Rectangular)
-----Upstream ID = (Pond Water Surface)

Page 1.04

DNstream ID = TW (Pond Outfall)

WS Elev,De	evice Q	Tail Water	Notes
WS Elev. ft	Q cfs	TW Elev Converg	re Computation Messages
789.50 790.50 791.00 791.50 792.50 793.00 793.50 794.00	.00 .00 .00 .00 .00 .00 11.67	Free Outfall	WS below an invert; no flow. H=.50; Htw=.00; Qfree=11.67; H=1.00; Htw=.00; Qfree=33.00;

S/N: H0M0L0862791 BT 2, Inc

Name.... SOUTH BASIN2

File.... I:\1370\COLUMBIA.PPK

Title... south basin outlet structure

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = s1 (Stand Pipe)

Upstream ID = (Pond Water Surface)

Page 1.05

DNstream ID = c1 (Culvert-Circular)

Pond WS. Elev. ft	Device Q cfs		verge Next HGL DS HGL ft ft	DS HGL Q SUM Error Error +/-ft +/-cfs	DS Chan. TW TW Error ft +/-ft
789.50	.00				Free Outfall
790.50	.00		•		Free Outfall
791.00	.00		nvert; no flow.	****	Free Outfall
791.50	7.06	791.50 7	91.50 791.50 crest: Flow set	.000 .000	Free Outfall
792.50	8.78	792.50 7	92.50 792.50 crest: Flow set	.000 .000	Free Outfall
793.00	9.52		93.00 793.00		Free Outfall
793.50	10.21	793.50 7	93.50 793.50 crest: Flow set	.000 .000	Free Outfall
794.00	10.86	794.00 7	94.00 794.00 crest: Flow set	.000 .000	Free Outfall

S/N: H0M0L0862791 BT 2, Inc

Name.... SOUTH BASIN2

File.... I:\1370\COLUMBIA.PPK

Title... south basin outlet structure

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = o1 (Orifice-Circular)

Upstream ID = (Pond Water Surface)

DNstream ID = c1 (Culvert-Circular)

NUMBER OF OPENINGS = 72 EACH FLOW = SUM OF OPENINGS x FLOW FOR ONE OPENING

Page 1.06

Pond WS. Elev. ft	Device Q cfs		Converge DS HGL ft	DS HGL		Q SUM Error +/-cfs	DS Chan. TW TW Erro	or
789.50	.00	 WS below a	 n invert	 : no flow.			Free Outfall	
790.50	.43		Free	789.42	.000	.000	Free Outfall	
791.00		791.00 H =1.48	Free	789.47	.000	.000	Free Outfall	
791.50	.00	791.50	791.50	791.50 Full riser			Free Outfall s opening.	
792.50	.00	792.50	792.50	792.50 Full riser			Free Outfall s opening.	
793.00	.00	793.00	793.00	793.00 Full riser	.000	.000	Free Outfall	
793.50	.00	793.50	793.50		.000	.000	Free Outfall	
794.00	.00	794.00	794.00		.000	.000	Free Outfall	

S/N: H0M0L0862791 BT 2, Inc

Name.... SOUTH BASIN2

File.... I:\1370\COLUMBIA.PPK

Title... south basin outlet structure

RATING TABLE FOR ONE OUTLET TYPE

Structure ID = c1 (Culvert-Circular)

Mannings open channel maximum capacity: 6.95 cfs

Page 1.07

UPstream ID's= s1, o1

DNstream ID = TW (Pond Outfall)

Pond WS. Elev. ft	Device Q cfs	(into) Converg HW HGL DS HGI ft ft	_	DS HGL Q SUM Error Error +/-ft +/-cfs	DS Chan. TW TW Error ft +/-ft
789.50	.00	789.00 Free	Free	.000 .000	Free Outfall
790.50	.43	789.42 Free CRIT.DEPTH CONTRO		.000 .000 Et Dcr= .255ft	
791.00	.53	789.47 Free CRIT.DEPTH CONTRO	Free	.000 .000	Free Outfall
791.50	7.06	791.50 Free INLET CONTROL	Free	.000 .000 HW =2.50	
792.50	8.78	792.50 Free INLET CONTROL	Free	.000 .000 HW =3.50	Free Outfall
793.00	9.52	793.00 Free INLET CONTROL	Free Submerged:	.000 .000 HW =4.00	Free Outfall
793.50	10.21	793.50 Free INLET CONTROL	Free Submerged:	.000 .000 HW =4.50	Free Outfall
794.00	10.86	794.00 Free INLET CONTROL	Free Submerged:	.000 .000 HW =5.00	Free Outfall

S/N: H0M0L0862791 BT 2, Inc

Pond Routing Summary

Type.... Pond Routing Summary

Name.... SOUTH BASIN2

Tag: 25

Page 6.02

File.... I:\1370\COLUMBIA.PPK

Title... routing of hydrograph through south basin 25-4r, 24-hr Storm

South Basin

LEVEL POOL ROUTING SUMMARY

HYG Dir = I: 1370

Inflow HYG file = SBASIN.HYG - south basin Outflow HYG file = NONE STORED - SOUTH BASIN2 OUT 25

Pond Node Data = south basin Pond Volume Data = south basin Pond Outlet Data = south basin2

No Infiltration

INITIAL CONDITIONS

Starting WS Elev = 789.00 ft Starting Volume = .000 ac-ft Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

Peak Inflow = 69.00 cfs at 12.4000 hrs
Peak Outflow = 7.94 cfs at 14.1000 hrs Peak discharge from basin

Peak Elevation = 792.01 ft - Peak water elevation

Peak Storage = 4.805 ac-ft

MASS BALANCE (ac-ft)

+ Initial Vol = .000

+ HYG Vol IN = 8.872

- Infiltration =

- HYG Vol OUT = 8.101

- Retained Vol = .769

Unrouted Vol = -.001 ac-ft (.016% of Inflow Volume)

WARNING: Inflow hydrograph truncated on left side. WARNING: Outflow hydrograph truncated on right side.

S/N: H0M0L0862791 BT 2, Inc

Job No. 1370 Client Alliant Job Columbia Plan of Op Update
Subject Basin Calcs

Calc. No.

Rev. No.

By BLP Date 8/23/00

Chk'd. MKH Date 8-31-00

Sheet No.

Basin Particle Size Settling Capability

Basin required to settle out ≥ 15 micron (0.015 mm) particle for a 25-yr, 24-hr Storm event.

From calculations, peak discharge from basin is 7.94 cfs and peak water elevation is 792:0 ft. The corresponding surface area of the basin at elevation 792.0 is 74,865 sf (see Basin Volume Computations Section The surface area to discharge ratio is therefore 74,865 sf = 19,429. sf/cfs

From the Erosion and Sediment Control Handbook, the required surface area to discharge ratio to settle out a 15 micron particle is 3,125 sp/cfs.

9,429 cfs/sf > 3,125 sp/cfs, therefore the basin is adequately sized to settle out a 15 micron particle

Type.... Pond Routed HYG (total out)

Name.... SOUTH BASIN2

Tag: 25

File.... I:\1370\COLUMBIA.PPK

Title... routing of hydrograph through south basin

South Basin Outflow Hydrograph (1/7)

POND ROUTED TOTAL OUTFLOW HYG...

HYG file =

HYG ID = SOUTH BASIN2 OUT

HYG Tag = 25

Peak Discharge = 7.94 cfs Time to Peak = 14.1000 hrs

HYG Volume = 8.101 ac-ft

Basin dewatering time-

Begin discharge: 12.2

End discharge: 113.8 sa

Total discharge time: 101.6

or 4.2 days, while

is greater than the required minimum

of 3 days

WARNING: Hydrograph truncated on right side.

HYDROGRAPH ORDINATES (cfs) Time Output Time increment = .1000 hrs hrs Time on left represents time for first value in each row. 11.0000 .00 .00 .00
Begin .24
3.82
.00
6.00 .00 11.5000 .00 .00 .24 12.0000 .00 .00 .39 12.5000 .48 . 92 7.14 7.44 13.0000 7.31 7.55 7.64 7.72 7.83 7.87 13.5000 7.78 7.90 7.92 7.94 14.0000 7.93 7.94 7.94 7.93 14.5000 7.92 7.91 7.90 7.89 7.87 7.84 7.82 7.80 7.77 15.0000 7.75 7.73 7.71 15.5000 7.68 7.66 7.63 16.0000 7.60 7.57 7.54 7.51 7.48 16.5000 7.45 7.42 7.40 7.37 7.34 17.0000 7.31 7.28 7.26 7.23 7.20 17.5000 7.18 7.15 7.13 7.10 7.08 6.77 18.0000 6.96 6.60 6.44 6.28 18.5000 6.14 6.00 5.88 5.76 5.65 19.0000 5.55 5.45 5.36 5.27 5.19 5.12 4.77 19.5000 5.01 4.89 4.66 20.0000 4.55 4.46 4.36 4.28 4.20 20.5000 4.05 4.12 3.99 3.92 3.87 21.0000 3.81 3.76 3.71 3.67 3.63 3.55 21.5000 3.59 3.51 3.48 3.45 22.0000 3.42 3.40 3.37 3.35 3.33 22.5000 3.31 3.29 3.24 3.16 3.09 23.0000 3.02 2.95 2.89 2.84 2.78 23.5000 2.74 2.69 2.65 2.61 2.57 24.0000 2.53 2.47 2.37 2.29 2.21 24.5000 2.13 2.06 1.99 1.93 1.87 25.0000 1.82 1.77 1.72 1.67 1.60

S/N: H0M0L0862791 BT 2, Inc

Name.... SOUTH BASIN2

Tag:

25

Page 6.04

South Basin

Outflow Hydrograph
(2/7)

File... I:\1370\COLUMBIA.PPK

Title... routing of hydrograph through south basin

WARNING: Hydrograph truncated on right side.

Time			RDINATES (cf increment =		
hrs	Time on left	represents	time for fi	rst value in	each row.
25.5000	1.50	1.40	1.32	1.23	1.15
26.0000	1.08	1.01	.95	.89	.83
26.5000	.78	. 73	.69	.64	.60
27.0000	.56	.53	.53	.53	.53
27.5000	.53	.53	.53	.53	.53
28.0000	.53	.52	.52	.52	.52
28.5000 29.0000	.52 .52	.52 .52	.52 .52	.52	.52
29.5000	.52	.52	.52	.52 .52	.52
30.0000	.51	.51	.51	.51	.52 .51
30.5000	.51	.51	.51	.51	.51
31.0000	.51	.51	.51	.51	.51
31.5000	.51	.51	.51	.51	.50
32.0000	.50	.50	.50	.50	.50
32.5000	.50	.50	.50	.50	.50
33.0000	.50	.50	.50	.50	.50
33.5000	.50	.50	.50	.50	.49
34.0000	.49	.49	.49	.49	.49
34.5000	.49	.49	.49	.49	.49
35.0000	.49	.49	.49	.49	.49
35.5000	.49	.49	.49	.49	.48
36.0000	.48	.48	.48	.48	.48
36.5000	.48	.48	.48	.48	.48
37.0000 37.5000	.48 .48	.48 .48	.48	.48	.48
38.0000	.47	.47	.48 .47	.48 .47	.48
38.5000	.47	.47	.47	.47	.47 .47
39.0000	.47	.47	.47	.47	.47
39.5000	.47	.47	.47	.47	.47
40.0000	.47	.46	.46	.46	.46
40.5000	.46	.46	.46	.46	.46
41.0000	.46	.46	.46	.46	.46
41.5000	.46	.46	.46	.46	.46
42.0000	.46	.46	.46	.45	.45
42.5000	.45	.45	.45	.45	.45
43.0000	.45	.45	.45	.45	.45
43.5000	.45	.45	.45	.45	.45
44.0000	.45	.45	.45	.45	.45
44.5000	. 44	.44	.44	.44	.44
45.0000	. 44	.44	.44	. 44	.44
45.5000	. 44	. 4 4	. 44	.44	.44
46.0000	. 44	.44	. 44	.44	.44
46.5000	.44	.44	.44	.43	.43

S/N: H0M0L0862791 BT 2, Inc

Name.... SOUTH BASIN2 Taq: 25

File.... I:\1370\COLUMBIA.PPK

Title... routing of hydrograph through south basin

South Basin Outflow Hydrograp (3/7)

Page 6.05

WARNING: Hydrograph truncated on right side:

Time	0	YDROGRAPH ORI utput Time in	ncrement = .	1000 hrs	
hrs	Time on left	represents t	ime for firs	st value in	each row.
47.0000	.43	.43	.43	.43	.43
47.5000	.43	.43	.43	.43	.43
48.0000 48.5000	.43	.43 .42	.43	.42	.42
49.0000	.42	.42	.42 .42	.42 .41	.42
49.5000	.41	.41	.41	.41	.41 .41
50.0000	.41	.41	.41	.41	.40
50.5000	.40	.40	.40	.40	.40
51.0000	.40	.40	.40	.40	.40
51.5000	.39	.39	.39	.39	.39
52.0000	.39	.39	.39	.39	.39
52.5000 53.0000	.39	.38	.38	.38	.38
53.5000	.38	.38 .38	.38	.38	.38
54.0000	.37	.37	.37	.37 .37	.37
54.5000	.37	.37	.37	.37	.37 .37
55.0000	.36	.36	.36	.36	.36
55.5000	.36	.36	.36	.36	.36
56.0000	.36	.36	.35	.35	.35
56.5000	.35	.35	.35	.35	.35
57.0000	.35	.35	.35	.35	.34
57.5000	.34	.34	.34	.34	.34
58.0000 58.5000	.34	.34 .34	.34	.34	.34
59.0000	.33	.33	.33 .33	.33 .33	.33
59.5000	.33	.33	.33	.33	.33
60.0000	.33	.32	.32	.32	.32
60.5000	.32	.32	.32	.32	.32
61.0000	.32	.32	.32	.32	.31
61.5000	.31	.31	.31	.31	.31
62.0000	.31	.31	.31	.31	.31
62.5000 63.0000	.31	.31	.31	.30	.30
63.5000	.30	.30	.30	.30	.30
64.0000	.30	.30 .30	.30 .30	.30 .29	.30
64.5000	.29	.29	.29	.29	.29 .29
65.0000	.29	.29	.29	.29	.29
65.5000	.29	.29	.29	.28	.28
66.0000	.28	.28	.28	.28	.28
66.5000	.28	.28	.28	.28	.28
67.0000	.28	.28	.28	.28	.27
67.5000	.27	.27	.27	.27	.27
68.0000	.27	.27	.27	.27	.27

S/N: H0M0L0862791 BT 2, Inc

Type.... Pond Routed HYG (total out) Name.... SOUTH BASIN2

Tag: 25 Page 6.06

File.... I:\1370\COLUMBIA.PPK

Title... routing of hydrograph through south basin

South Basin Outflow Hydrograp

WARNING: Hydrograph truncated on right side.

Time hrs		utput Time i	DINATES (cfs) ncrement = .1	l000 hrs	each row
68.5000	.27	.27	.27	.27	.27
69.0000	.26	.26	.26	.26	.26
69.5000	.26	.26	.26	.26	.26
70.0000	.26	.26	.26	.26	.26
70.5000	.26	.26	.25	.25	.25
71.0000	.25	.25	.25	.25	.25
71.5000	.25	.25	.25	.25	.25
72.0000	.25	.25	.25	.25	.24
72.5000	.24	.24	.24	. 24	.24
73.0000	.24	.24	.24	.24	.24
73.5000	.24	.24	.24	.24	.24
74.0000	.24	.24	.24	.23	.23
74.5000	.23	.23	.23	.23	.23
75.0000	.23	.23	.23	.23	.23
75.5000	.23	.23	.23	.23	.23
76.0000	.23	.23	.22	.22	.22
76.5000	.22	.22	.22	.22	.22
77.0000	.22	. 22	.22	.22	.22
77.5000	.22	.22	.22	.22	.22
78.0000	.22	.22	.21	.21	.21
78.5000	.21	.21	.21	.21	.21
79.0000	.21	.21	.21	.21	.21
79.5000	.21	.21	.21	.21	.21
80.0000	.21	.21	.20	.20	.20
80.5000	.20	.20	.20	.20	.20
81.0000 81.5000	.20	.20	.20	.20	.20
82.0000	.20	.20	.20	.20	.20
82.5000	.20	.20	.20	.20	.19
83.0000	.19 .19	.19	.19	.19	.19
83.5000	.19	.19	.19	.19	.19
84.0000	.19	.19	.19 .19	.19	.19
84.5000	.19	.19	.18	.19	.19
85.0000	.18	.18	.18	.18 .18	.18
85.5000	.18	.18	.18	.18	.18 .18
86.0000	.18	.18	.18	.18	.18
86.5000	.18	.18	.18	.18	.18
87.0000	.18	.18	.17	.17	.10
87.5000	.17	.17	.17	.17	.17
88.0000	.17	.17	.17	.17	.17
88.5000	.17	.17	.17	.17	.17
89.0000	.17	.17	.17	.17	.17
89.5000	.17	.17	.17	.16	.16
'				· •	

S/N: H0M0L0862791 BT 2, Inc

Name.... SOUTH BASIN2

Tag:

25

Page 6.07

South Basin Outflow Hydrograph (5/7)

File.... I:\1370\COLUMBIA.PPK

Title... routing of hydrograph through south basin

WARNING: Hydrograph truncated on right side.

Time hrs		YDROGRAPH ORI utput Time ii represents (ncrement =	.1000 hrs	each row.
90.0000	.16	.16	.16 .16	.16	.16 .16
91.0000	.16	.16	.16	.16	.16
91.5000	.16	.16	.16	.16	.16
92.0000 92.5000	.16 .15	.16 .15	.16 .15	.16 .15	.16
93.0000	.15	.15	.15	.15	.15 .15
93.5000	.15	.15	.15	.15	.15
94.0000	.15	.15	.15	.15	.15
94.5000	.15	.15	.15	.15	.15
95.0000	.15	.15	.15	.15	.14
95.5000	.14	.14	.14	.14	.14
96.0000	.14	.14	.14	.14	.14
96.5000	.14	.14	.14	.14	.14
97.0000	.14	.14	.14	.14	.14
97.5000	.14	.14	.14	.14	.14
98.0000 98.5000	.14	.14 .13	.14	.14	. 14
99.0000	.14 .13	.13	.13 .13	.13 .13	.13
99.5000	.13	.13	.13	.13	.13 .13
100.0000	.13	.13	.13	.13	.13
100.5000	.13	.13	.13	.13	.13
101.0000	.13	.13	.13	.13	.13
101.5000	.13	.13	.13	.13	.12
102.0000	.12	.12	.12	.12	.12
102.5000	.12	.12	.12	.12	.12
103.0000	.12	.12	.12	.12	.12
103.5000	.12	.12	.12	.12	.12
104.0000 104.5000	.12	.12	.12	.12	.12
105.0000	.12 .12	.12 .12	.12 .12	.12 .12	.12
105.5000	.12	.11	.11	.12	.12 .11
106.0000	.11	.11	.11	.11	.11
106.5000	.11	.11	.11	.11	.11
107.0000	.11	.11	.11	.11	.11
107.5000	.11	.11	.11	.11	.11
108.0000	.11	.11	.11	.11	.11
108.5000	.11	.11	.11	.11	.11
109.0000	.11	.11	.11	.11	.11
109.5000	.11	.10	.10	.10	.10
110.0000	.10	.10	.10	.10	.10
110.5000	.10	.10	.10	.10	.10
111.0000	.10	.10	.10	.10	.10

S/N: H0M0L0862791 BT 2, Inc

Name.... SOUTH BASIN2

Tag:

25

Page 6.08

South Basin Outflow Hydrograph

6/7)

File.... I:\1370\COLUMBIA.PPK

Title... routing of hydrograph through south basin

WARNING: Hydrograph truncated on right side.

Time hrs	0.	YDROGRAPH ORI utput Time ir represents t	crement = .:	1000 hrs	each row.
111.5000	10	10	7.0	10	
112.0000	.10	.10 .10	.10 .10	.10	.10
112.5000	.10	.10	.10	.10 .10	.10
113.0000	.10	.10	.10	.10	.10 .10
113.5000	.10	.10	.10	(10) Find	0.0
114.0000	.09	.09	.09	.10 disch	arge .09
114.5000	.09	.09	.09	.09	.09
115.0000	.09	.09	.09	.09	.09
115.5000	.09	.09	.09	.09	.09
116.0000	.09	.09	.09	.09	.09
116.5000	.09	.09	.09	.09	.09
117.0000	.09	.09	.09	.09	.09
117.5000	.09	.09	.09	.09	.09
118.0000	.09	.09	.09	.09	.09
118.5000	.09	.09	.09	.08	.08
119.0000	.08	.08	.08	.08	.08
119.5000	.08	.08	.08	.08	.08
120.0000	.08	.08	.08	.08	.08
120.5000	.08	.08	.08	.08	.08
121.0000	.08	.08	.08	.08	.08
121.5000	.08	.08	.08	.08	.08
122.0000	.08	.08	.08	.08	.08
122.5000	.08	.08	.08	.08	.08
123.0000	.08	.08	.08	.08	.08
123.5000	.08	.08	.08	.08	.08
124.0000	.08	.08	.08	.07	.07
124.5000	.07	.07	. 07	.07	.07
125.0000	.07	.07	.07	.07	.07
125.5000	.07	.07	.07	.07	.07
126.0000	.07	.07	.07	.07	.07
126.5000	.07	.07	.07	.07	.07
127.0000	.07	.07	.07	.07	.07
127.5000	.07	.07	.07	.07	.07
128.0000 128.5000	.07	.07	.07	.07	.07
	.07	.07	.07	.07	.07
129.0000 129.5000	.07	.07 .07	.07	.07	.07
130.0000	.07	.07	.07 .07	.07	.07
130.5000	.07	.06	.06	.07	.07
131.0000	.06	.06		.06	.06
131.5000	.06	.06	.06 .06	.06	.06
132.0000	.06	.06	.06	.06 .06	.06
132.5000	.06	.06	.06	.06	.06 .06
	- 00		.00	.00	.00

S/N: H0M0L0862791 BT 2, Inc

Name.... SOUTH BASIN2

Tag:

Page 6.09 South Basin

File.... I:\1370\COLUMBIA.PPK

Title... routing of hydrograph through south basin

Outflow Hydrogran

WARNING: Hydrograph truncated on right side.

25

HYDROGRAPH ORDINATES (CIS)								
Time		itput Time incr			,			
hrs	l'ime on left	represents tim	e ior i	irst value i	n each row.			
133.0000	.06	.06	.06	06	06			
133.5000	.06	.06	.06	.06	.06			
134.0000	.06				.06			
		.06	.06	.06	.06			
134.5000	.06	.06	.06	.06	.06			
135.0000	.06	.06	.06	.06	.06			
135.5000	.06	.06	.06	.06	.06			
136.0000	.06	.06	.06	.06	.06			
136.5000	.06	.06	.06	.06	.06			
137.0000	.06	.06	.06	.06	.06			
137.5000	.06	.06	.06	.06	.05			
138.0000	.05	.05	.05	.05	.05			
138.5000	.05	.05	.05	.05	.05			
139.0000	.05	.05	.05	.05	.05			
139.5000	.05	.05	.05	.05	.05			
140.0000	.05	.05 🐇	.05	.05	.05			
140.5000	.05	.05	.05	.05	.05			
141.0000	.05	.05	.05	.05	.05			
141.5000	.05	.05	.05	.05	.05			
142.0000	.05	.05	.05	.05	.05			
142.5000	.05	.05	.05	.05	.05			
143.0000	.05	.05	.05	.05	.05			
143.5000	.05	.05	.05	.05	.05			
144.0000	.05	.05	.05	.05	.05			
144.5000	.05	.05	.05	.05	.05			
145.0000	.05	.05	.05	.05	.05			
145.5000	.05	.05	.05	.05	.05			
146.0000	.05	.05	.05	.05	.05			
146.5000	.05	.05	.04	.04	.04			
147.0000	.04	.04	.04	.04	.04			
147.5000	.04	.04	.04	.04	.04			
148.0000	.04	.04	.04	.04	.04			
148.5000	.04	.04	.04	.04	.04			
149.0000	.04	.04	.04	.04	.04			
149.5000	.04	.04	.04	.04	.04			
150.0000	.04	.04	.04	.04	.04			
150.5000	.04	.04	.04	.04	.04			
151.0000	.04	.04	.04	.04	.04			
151.5000	.04	.04	.04	.04	.04			
152.0000	.04	.04	.04	.04				
152.5000	.04	.04	.04		.04			
153.0000	.04			.04	.04			
		. 04	.04	.04	.04			
153.5000	.04	.04	.04	.04	.04			
154.0000	.04	.04	.04	.04	.04			

S/N: H0M0L0862791 BT 2, Inc

Type.... Pond Routing Summary

Name.... SOUTH BASIN2 100 Tag: 100

Page 6.02

File.... I:\1370\COLUMBIA.PPK

Title... routing of hydrograph through south basin

South Basin 100-yr, 24-hr Storm

LEVEL POOL ROUTING SUMMARY

HYG Dir = I: 1370

Inflow HYG file = SBASIN.HYG - south basin Outflow HYG file = NONE STORED - SOUTH BASIN2 OUT 100

Pond Node Data = south basin Pond Volume Data = south basin Pond Outlet Data = south basin2

No Infiltration

INITIAL CONDITIONS

Starting WS Elev = 789.00 ft Starting Volume = .000 ac-ft
Starting Outflow = .00 cfs
Starting Infiltr. = .00 cfs
Starting Total Qout= .00 cfs
Time Increment = .1000 hrs

INFLOW/OUTFLOW HYDROGRAPH SUMMARY

Peak Inflow = 110.00 cfs at 12.4000 hrs

Peak Outflow = 16.79 cfs at 13.7000 hrs — Peak discharge

from basin

Peak Elevation = 793.29 ft - Peak water elevation Peak Storage = 7.080 ac-ft

MASS BALANCE (ac-ft)

______ + Initial Vol = .000

+ HYG Vol IN =

13.207

- Infiltration = .000 - HYG Vol OUT = 12.435

- Retained Vol =

Unrouted Vol = -.001 ac-ft (.011% of Inflow Volume)

WARNING: Inflow hydrograph truncated on left side. WARNING: Outflow hydrograph truncated on right side.

S/N: H0M0L0862791 BT 2, Inc

References

Sheet flow

Sheet flow is flow over plane surfaces. It usually occurs in the headwater of streams. With sheet flow, the friction value (Manning's n) is an effective roughness coefficient that includes the effect of raindrop impact; drag over the plane surface; obstacles such as litter, crop ridges, and rocks; and erosion and transportation of sediment. These n values are for very shallow flow depths of about 0.1 foot or so. Table 3-1 gives Manning's n values for sheet flow for various surface conditions.

For sheet flow of less than 300 feet, use Manning's kinematic solution (Overton and Meadows 1976) to compute T_t :

$$T_t = \frac{0.007 \text{ (nL)0.8}}{\text{(P_2)0.5 s0.4}}$$
 [Eq. 3-3]

Table 3-1.—Roughness coefficients (Manning's π) for sheet flow

Surface description	n¹.	
Smooth surfaces (concrete, asphalt, gravel, or bare soil)	0.011	
Fallow (no residue)	0.05	
Cultivated soils: Residue cover ≤20%	0.06 0.17	
Grass: Short grass prairie Dense grasses² Bermudagrass	0.15 7 Ave = 0.24 0.19 0.41	
Range (natural)	0.13	
Woods: ³ Light underbrush Dense underbrush	0.40 0.80	

¹The n values are a composite of information compiled by Engman (1986).

where

 $T_t = travel time (hr),$

n = Manning's roughness coefficient (table 3-1),

L = flow length (ft),

 $P_2 = 2$ -year, 24-hour rainfall (in), and

s = slope of hydraulic grade line (land slope, ft/ft).

This simplified form of the Manning's kinematic solution is based on the following: (I) shallow steady uniform flow, (2) constant intensity of rainfall excess (that part of a rain available for runoff), (3) rainfall duration of 24 hours, and (4) minor effect of infiltration on travel time. Rainfall depth can be obtained from appendix B.

Shallow concentrated flow

After a maximum of 300 feet, sheet flow usually becomes shallow concentrated flow. The average velocity for this flow can be determined from figure 3-1, in which average velocity is a function of watercourse slope and type of channel. For slopes less than 0.005 ft/ft, use equations given in appendix F for figure 3-1. Tillage can affect the direction of shallow concentrated flow. Flow may not always be directly down the watershed slope if tillage runs across the slope.

After determining average velocity in figure 3-1, use equation 3-1 to estimate travel time for the shallow concentrated flow segment.

Open channels

Open channels are assumed to begin where surveyed cross section information has been obtained, where channels are visible on aerial photographs, or where blue lines (indicating streams) appear on United States Geological Survey (USGS) quadrangle sheets. Manning's equation or water surface profile information can be used to estimate average flow velocity. Average flow velocity is usually determined for bank-full elevation.

²Includes species such as weeping lovegrass, bluegrass, buffalo grass, blue grama grass, and native grass mixtures.

²When selecting n, consider cover to a height of about 0.1 ft. This is the only part of the plant cover that will obstruct sheet flow.

Table 2-2c.-Runoff curve numbers for other agricultural lands1

Cover description			Curve numbers for hydrologic soil group—				
Cover type	Hydrologic condition	A	В	С	D		
Pasture, grassland, or range—continuous	Poor	68	79	86	89		
forage for grazing. ²	Fair	49	69	79	84		
totage tot gracing.	Good	39	61 Ave	74) =67.5	80		
Meadow—continuous grass, protected from grazing and generally mowed for hay.	- -	30	5 8	71	78		
Brush—brush-weed-grass mixture with brush	Poor	48	67	77	83		
the major element. ³	Fair	35	56,	70	. 77		
the major element.	Good	430	48	65	<i>7</i> 3		
Woods—grass combination (orchard	Poor	57	73	82	86		
or tree farm). ⁵	Fair	43	65 ·	76	82		
or tree faring.	Good	32	58	72	79		
Woods.4	Poor	45	66	77	83		
m vous.	Fair	36	60	73	79		
	Good	430	55	70	77		
Farmsteads—buildings, lanes, driveways, and surrounding lots.	——————————————————————————————————————	59	74	82	86		

 $^{^{1}}$ Average runoff condition, and $I_{n} = 0.2$ S.

0.6

²Poor: <50% ground cover or heavily grazed with no mulch.

Fair: 50 to 75% ground cover and not heavily grazed.

Good: >75% ground cover and lightly or only occasionally grazed.

³Poor: <50% ground cover.

Fair: 50 to 75% ground cover.

Good: >75% ground cover.

 $^{^4}$ Actual curve number is less than 30; use CN = 30 for runoff computations.

⁵CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture.

^{*}Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning.

Fair: Woods are grazed but not burned, and some forest litter covers the soil.

Good: Woods are protected from grazing, and litter and brush adequately cover the soil.

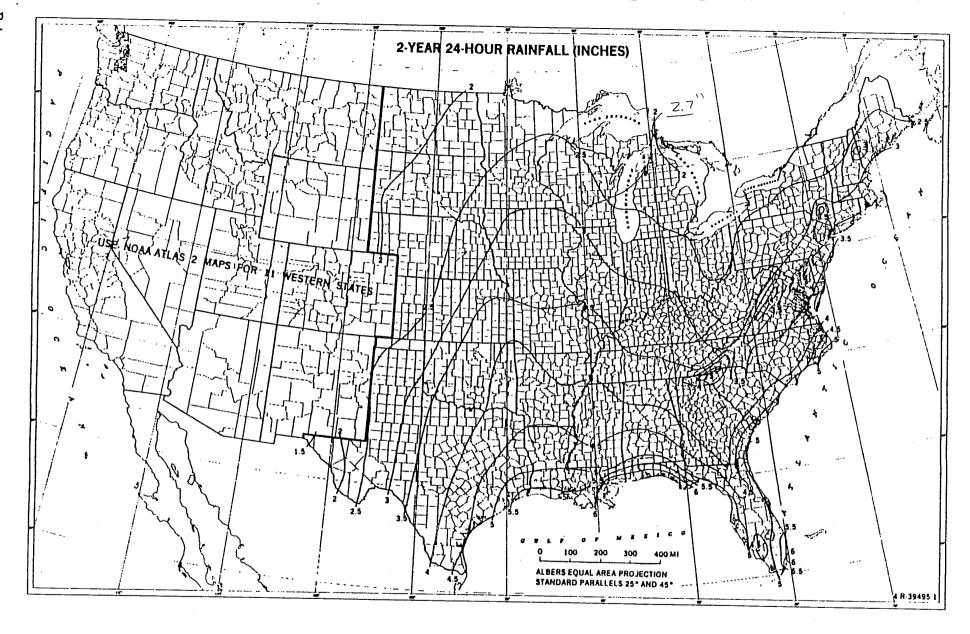


Figure B-3.—Two-year, 24-hour rainfall.

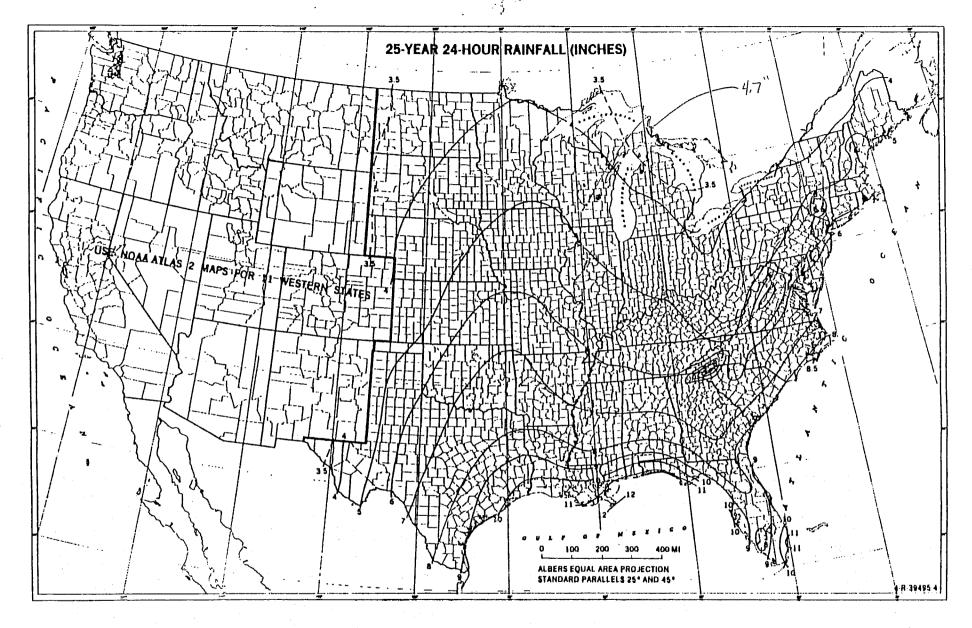


Figure B-6.-Twenty-five-year, 24-hour rainfall.

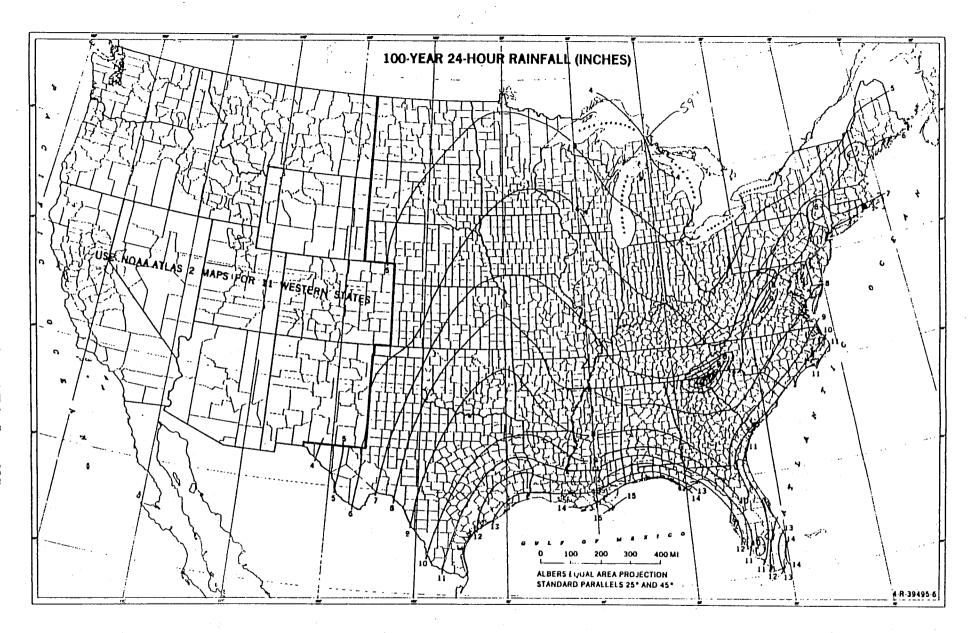


TABLE 8.1 Surface Area Requirements of Sediment Traps and Basins

	Pa	rticle size, mm		g velocity, c (m/sec)	Surface area requirements ft ² per ft ³ /sec (m ² per m ³ /s discharge discharge)	
	0.5	(coarse sand)	0.19	(0.058)	6.3	(20.7)
	0.2	(inedium sand)	0.067	(0.020)	17.9	(58.7)
	0.1	(fine sand)	0.023	(0.0070)	52.2	(171.0)
	0.05	(conrae ailt)	0.0062	(0.0019)	193.6	(635.0)
ء 15ء	0.02	(medium silt)	0.00096	(0.00029)	(1,250.0)	(4,101.0)
> ران.	0.01	(fine silt)	0.00024	(0.000073)	(5,000.0)	(16,404.0)
	0.005	i (clay)	о,оххо,о	(810000.0)	20,000.0	(65,617.0)

weight composed of particles in the 0.01- to 0.02-mm range. A surface area 4 times larger would be needed to capture 5 percent more of this soil.

A balance between the cost-effectiveness of a certain basin size and the desire to capture fine particles must be achieved. It is desirable to capture the very small soil particles (clays and fine silts) because they cause turbidity and other water quality problems. However, Table 8.1 shows that a basin would have to be very large to capture particles smaller than 0.02 mm, particularly clay particles 0.005 mm and smaller. Because of the high cost of trapping very small particles, the authors recommend 0.02 as the design particle size for sediment basins except in areas with coarse soils, where a larger design particle may be used. The 0.02-mm particle is classified as a medium silt by the AASHTO soil classification system.

8.2d Basin Discharge Rate

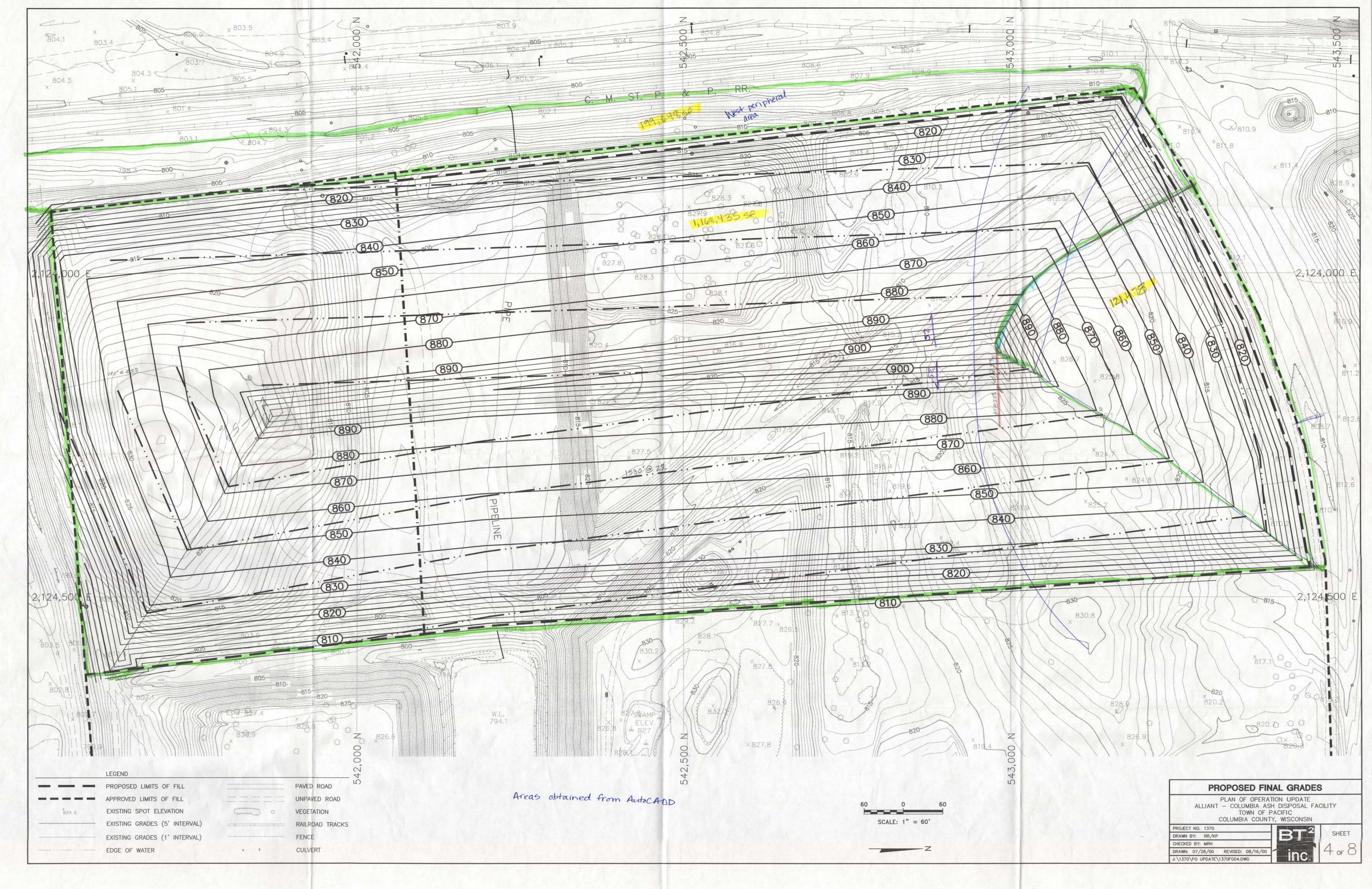
The peak discharge, calculated by the rational or another approved method, is used to size the basin riser. During any major storm, a sediment basin should fill with water to the top of its riser and then discharge at the rate of inflow to the basin. A sediment basin is not designed with a large water storage volume as is a reservoir. If the inflow exceeds the design peak flow used to size the riser, the overflow should discharge down an emergency spillway.

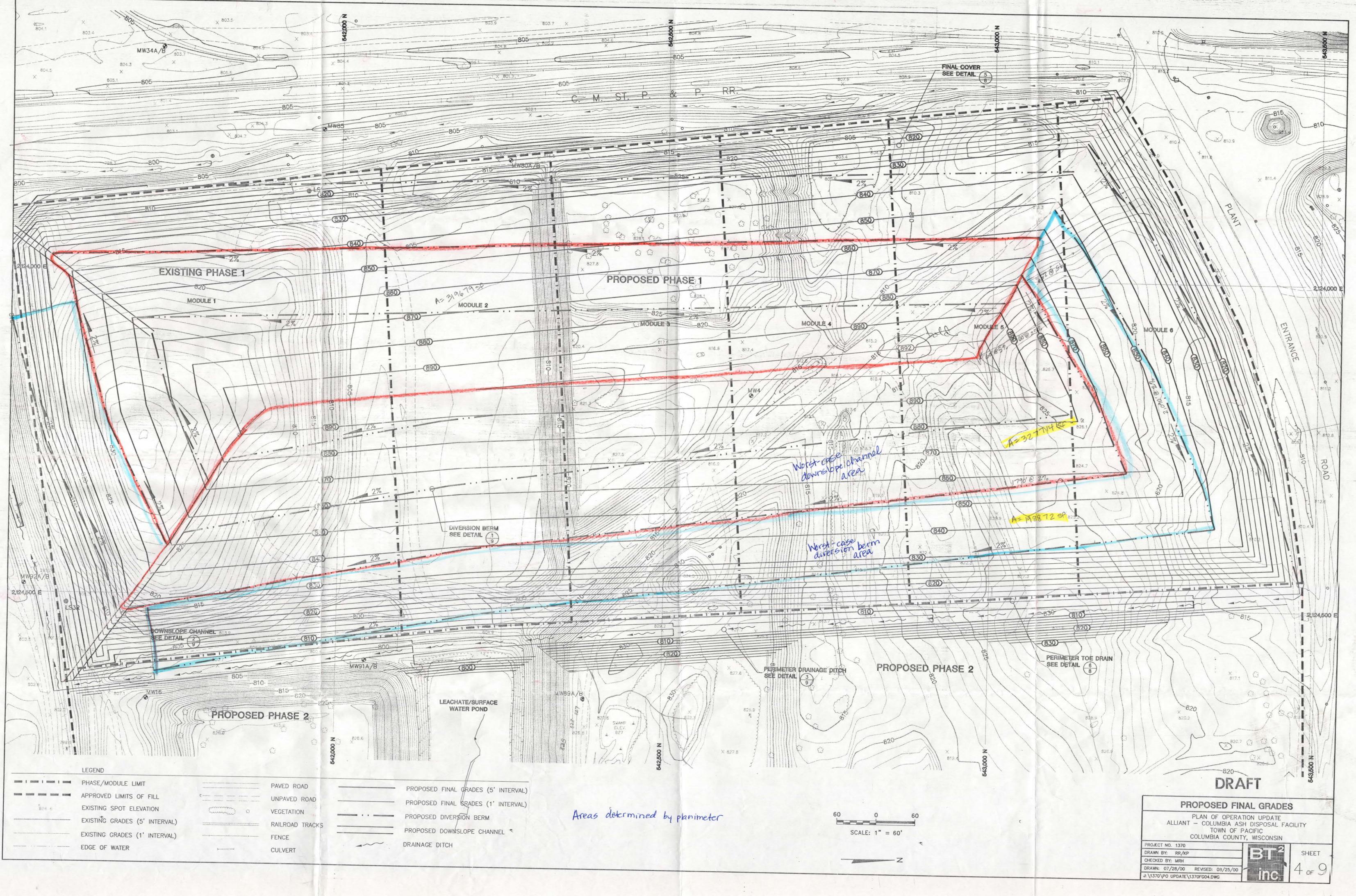
8.2c Design Runoff Rate

In the equation for surface area of a sediment basin, the discharge rate Q is a variable to be chosen by the designer. The above discussion of basin discharge rate shows that the discharge rate is, to a large extent, equal to the inflow. The riser is sized to handle the peak inflow to the basin. The authors suggest determining the surface area by the average runoff of a 10-year, 6-hr storm instead

of the peak flow. A substantial savings in size, and therefore cost, is obtained, and basin efficiency is not significantly decreased.

Consider a basin designed to capture the 0.02-mm particle at the average runoff rate. The average rainfall per hour is 17 percent of the total rainfall in a 6-hr storm (Sec. 4.1f). On a site with soils with a moderately high clay content, under ideal settling conditions this basin would retain about 62 percent of the eroded soil (i.e., 62 percent of the soil, by weight, is composed of 0.02-mm or larger particles).


If the surface area of this basin were instead designed for the peak flow, it would be roughly 3 times larger. According to data from the U.S. Bureau of Reclamation (10), 25 percent of the total rainfall in a 6-hr storm falls in a 3-hr period (Fig. 4.2). Since the rainfall intensity i value is in units of inches (or millimeters) per hour, the peak flow can be calculated by using an i value of 50 percent of the 6-hr total. Since basin surface area is directly proportional to the discharge rate ($A = 1.2Q/V_i$) and the peak discharge rate in a 6-hr storm is 2.9 times the average rate ($50\% = 2.9 \times 17\%$), the surface area sized for the peak flow would be about 3 times the surface area sized for the average flow. The basin sized for the peak flow would capture, during most of the storm except the peak, particles with approximately one-third the settling velocity of the design particle. Since the 0.02-mm particle settles at 0.00096 ft/sec (0.00029 m/sec), particles with a settling velocity of 0.00032 ft/sec (0.000098 m/sec) would then be captured. These are approximately 0.01-mm particles.


Suppose a basin on a site with clayer soils were sized by using the peak runoff rate. For the purpose of illustration, suppose the soil composition were typical of the San Francisco Bay Area as in the preceding example (62 percent of particles, by weight, greater than 0.02 mm and 5 percent, by weight, from 0.01 to 0.02 mm). A basin with a large surface area based on the peak runoff would capture the 0.01- to 0.02-mm particles as well as particles greater than 0.02 mm, or 67 percent of the eroded material. The basin efficiency would be increased 8 percent (5/62) by tripling the surface area. Thus it is generally much more cost-effective to size a basin by using the average runoff rather than the peak, and basin efficiency will not be significantly lower.

8.2f Settling Depth

If a basin is too shallow, water flowing rapidly through the basin may resuspend settled particles and decrease efficiency of capture. A similar problem occurs in grit-settling chambers at sewage treatment plants, where velocity must be controlled to prevent particle resuspension. An equation that describes scour in a grit chamber (2) is:

$$V_{\text{scour}} = \frac{1.486}{n} \times \left[r^{1/6} \times h(S_4 - 1) \times \frac{d}{304.8} \right]^{1/2}$$

SCS	ENGINEERS	SHEET NO.		1 of 2	2
Job No.	25215024	CALC. NO.			
Job:	Columbia Energy Center	REV. NO.			
Client	WPL	BY	BLP	DATE	6/9/15
Subject	Leachate/Surface Water Pond Evaluation	CHK'D.	MRH	DATE	6/9/15

Purpose:

The purpose of the leachate/surface water pond evaluation is to determine the following based on the as-built leachate/surface water pond top of liner elevation of 796.97 (see Background section below):

- The amount of intermediate/final cover area required during each remaining phase of development (Modules 3 6) in order to store the 25-year 24-hour storm at/below the top of the pond liner (elevation 796.97).
- The largest storm event the leachate/surface water pond can store during each remaining phase (Modules 3-6) of development with no additional intermediate/final cover installed, while maintaining the pond peak water elevation at/below the top of the liner (elevation 796.97).

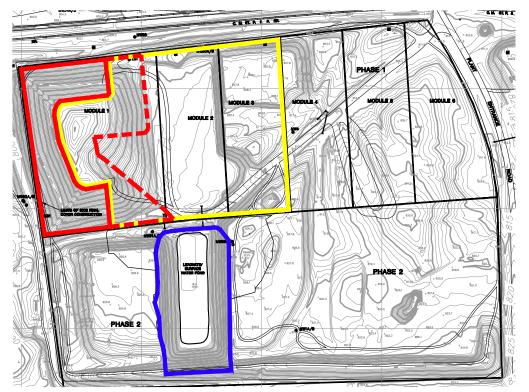
Background:

During construction of Module 2, the top of the the leachate/surface water pond liner was determined to be at elevation 796.97, which is below the design elevation of 798. The Surface Water Runoff Capacity Evaluation, Leachate/Surface Water Pond calculations included in the 2010 Plan of Operation Update were based on the design elevation of 798.

Approach:

- Start with the HydroCAD storm water model from the 2010 Plan of Operation Update, and perform the following:
 - Review drainage areas based on latest topography (December 2014 aerial survey) and modify accordingly.
 - Update the pond stage-storage data based on as-built drawings. As-built contours were digitized into a CAD drawing, and the surface area of each contour measured in AutoCAD.
 - Set a standing water elevation in the pond at 6 inches off of the bottom (i.e., elevation 792.5).
 - Update Plan of Operation Update precipitation depths and distribution using NOAA Atlas 14 and associated hydrograph distributions developed for Wisconsin.
 - Run the HydroCAD model for the following scenarios with Module 3 constructed and active/open:
 - Model Run 1A: Modify the Module 1 open/active area draining to the pond until the maximum peak water elevation of 769.97 or less is obtained in the pond for a 25-year, 24-hour storm event.
 - Model Run 1B: Run the model at various precipitation depths to determine the maximum storm event the pond can store without additional intermediate/final cover.
 - Run the HydroCAD model for the following scenarios during Module 4 constructed and active/open:

SCS	ENGINEERS	SHEET NO.		2 of 2	2
Job No.	25215024	CALC. NO.			
Job:	Columbia Energy Center	REV. NO.			
Client	WPL	BY	BLP	DATE	6/9/15
Subject	Leachate/Surface Water Pond Evo	aluation CHK'D.	MRH	DATE	6/9/15


- Model Run 2A: Modify the Module 2 open/active area draining to the pond until the maximum peak water elevation of 769.97 or less is obtained in the pond for a 25-year, 24-hour storm event.
- Model Run 2B: Run the model at various precipitation depths to determine the maximum storm event the pond can store without additional intermediate/final cover.
- Run the HydroCAD model for the following scenarios during Module 5 constructed and active/open:
 - Model Run 3A: Modify the Module 3 open/active area draining to the pond until the maximum peak water elevation of 769.97 or less is obtained in the pond for a 25-year, 24-hour storm event.
 - Model Run 3B: Run the model at various precipitation depths to determine the maximum storm event the pond can store without additional intermediate/final cover.
- Run the HydroCAD model for the following scenarios during Module 6 constructed and active/open:
 - Model Run 4A: Modify the Module 4 open/active area draining to the pond until the maximum peak water elevation of 769.97 or less is obtained in the pond for a 25-year, 24-hour storm event.
 - Model Run 4B: Run the model at various precipitation depths to determine the maximum storm event the pond can store without additional intermediate/final cover.

Assumptions:

- See attached Figure 1 for approximate watersheds to the leachate/surface water pond. Modifications were made to the watersheds presented in the 2010 Plan of Operation Update to account for changes in topography and drainage patterns outside the limits of waste since the 2010 Plan of Operation Update.
- Active/open landfill areas were assumed to be impermeable (CN=98).
- Runoff from areas with intermediate or final cover will be routed to the sedimentation basin and are therefore not included in the runoff to the leachate/surface water pond.
- Three modules were assumed to be open at any stage of development.
- The bottom of the pond is at 792. The starting water level in the pond prior to the modeled storm event is 6 inches (elevation 792.5).

Results:

See attached summary table for each model run. See attached HydroCAD model results for detailed input/output for each of the above model runs.

MODULE 5 CONSTRUCTED

ADDITIONAL INTERMEDIATE/FINAL COVER AREA FINAL COVER AREA OPEN MODULE AREA (IMPERMEABLE) WATERSHED/AREA OUTSIDE OF CONSTRUCTED MODULES

DRAWN BY:

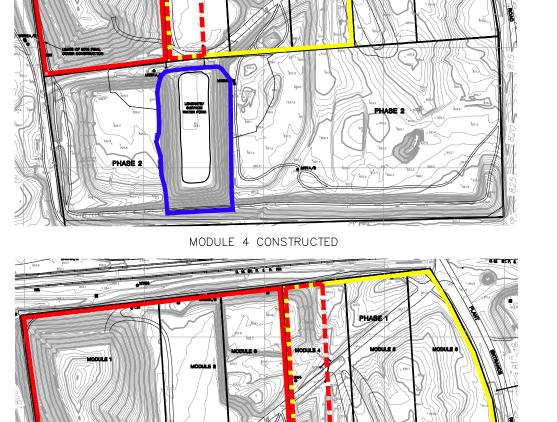
CHECKED BY:

APPROVED BY:

PEG/JMO

SCS ENGINEERS 2830 DAIRY DRIVE MADISON, WI 53718-6751 PHONE: (608) 224-2830

WISCONSON POWER AND LIGHT COLUMBIA ENERGY CENTER W8375 MURRAY ROAD
PARDEEVILLE, WISCONSIN 53954


LEACHATE POND PLANNING

SCALE: 1" = 400'

FIGURE

400

MODULE 3 CONSTRUCTED

MODULE 6 CONSTRUCTED

25214194

09/20/10

PROJECT NO.

DRAWN:

Leachate/Suface Water Pond Capacity Evaluation Summary Columbia Energy Center

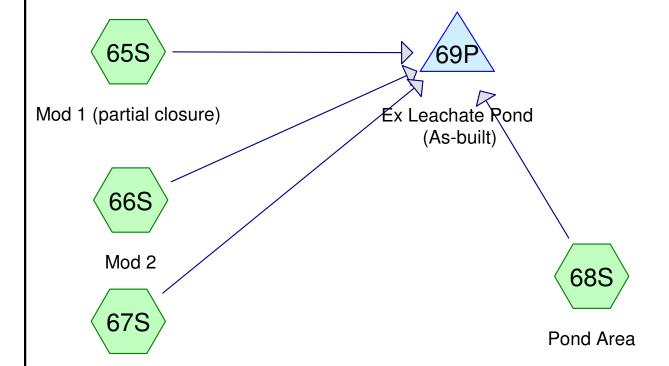
Module Summary

Module	Module Size (ac)							
Module 1	9.00							
1 (Currently Open/Active)	5.31							
1 (Currently Closed)	3.69							
Module 2	4.27							
Module 3	4.33							
Module 4	4.39							
Module 5	4.46							
Module 6	4.38							

Evaluation Summary

Description ⁽¹⁾	Modules Open/Active ⁽⁴⁾	Total Area of Modules (see Module Summary table above)		Top of Pond (i.e.,Top of Liner/Maximum Allowable Water Elevation In Pond) ⁽²⁾	Standing Water Elevation in Pond Prior to Start of Storm Event ⁽²⁾	Peak Water Elevation (25-yr, 24-hr storm) ⁽³⁾	Intermediate/Final Cover Area Required Within 3 Open/Active Modules to Maintain Maximum Allowable Pond Water Elevation (4,5)	Maximum Precipitation Depth Pond Can Accommodate Without Additional Intermediate/Final Cover while Maintainin Maximum Allowable Pond Water Elevation (6)
Mod 3 Constructed (Portion of Mod 1 is Currently Closed)	1, 2, 3	17.6	792	796.97	792.5	796.97	3.43 acres	4.0" (10-year event)
Mod 4 Constructed (Mod 1 Closed)	2, 3, 4	12.99	792	796.97	792.5	796.97	2.51 acres	4.21" (approximately 10-year event)
Mod 5 Constructed (Mods 1, 2 Closed)	3, 4, 5	13.18	792	796.97	792.5	796.97	2.70 acres	4.16" (approximately 10-year event)
Mod 6 Constructed (Mods 1, 2, 3 Closed)	4, 5, 6	13.23	792	796.97	792.5	796.97	2.75 acres	4.15" (approximately 10-year event)

Notes:


- 1. See attached Figure 1 for contributing watershed areas during each stage of development.
- 2. Bottom of pond elevation from Plan of Operation. Top of Pond from survey performed during Module 2 construction. Six inches of water assumed to be standing in pond prior to storm event.
- 3. Peak water elevation (25-year, 24-hour storm) from stormwater modelling results (attached).
- 4. Three modules were assumed to be open at any give stage of development.
- 5. Intermediate/Final cover area required determined by adjusting amount of open/active area until the maximum water elevation of 796.97 was obtained. Area reported is in addition to existing final cover area in Module 1.
- 6. Below is a summary of the precipitation depths associated with various design storm events:

5-year, 24-hour storm event = 3.38"

10-year, 24-hour storm event = 3.97"

25-year, 24-hour storm event = 4.90"

Model Run 1A

Mod 3 Constructed

Columbia Leachate Pond Evaluation (As-built Pond v2) MSE4 24-hr 25-yr Rainfall=4.90" Printed 6/9/2015 Prepared by {enter your company name here} HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC Page 5

Time span=0.00-25.00 hrs, dt=0.01 hrs, 2501 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 65S: Mod 1 (partial closure) Runoff Area=1.880 ac 100.00% Impervious Runoff Depth=4.66"

Tc=15.0 min CN=98 Runoff=8.85 cfs 0.731 af

Subcatchment 66S: Mod 2 Runoff Area=4.270 ac 100.00% Impervious Runoff Depth=4.66"

Tc=15.0 min CN=98 Runoff=20.09 cfs 1.659 af

Runoff Area=4.330 ac 100.00% Impervious Runoff Depth=4.66" Subcatchment 67S: Mod 3 Constructed

Tc=20.0 min CN=98 Runoff=17.76 cfs 1.683 af

Runoff Area=3.960 ac 100.00% Impervious Runoff Depth=4.66" Subcatchment 68S: Pond Area

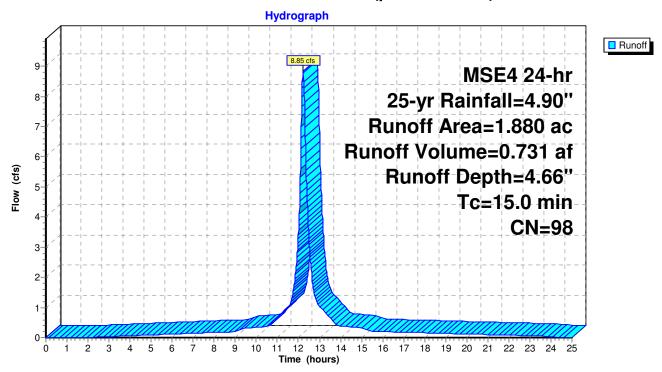
Tc=0.0 min CN=98 Runoff=28.03 cfs 1.539 af

Peak Elev=796.97' Storage=260,152 cf Inflow=55.31 cfs 5.612 af Pond 69P: Ex Leachate Pond (As-built)

Outflow=0.00 cfs 0.000 af

Total Runoff Area = 14.440 ac Runoff Volume = 5.612 af Average Runoff Depth = 4.66" 0.00% Pervious = 0.000 ac 100.00% Impervious = 14.440 ac HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 6


Summary for Subcatchment 65S: Mod 1 (partial closure)

Runoff = 8.85 cfs @ 12.22 hrs, Volume= 0.731 af, Depth= 4.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs MSE4 24-hr 25-yr Rainfall=4.90"

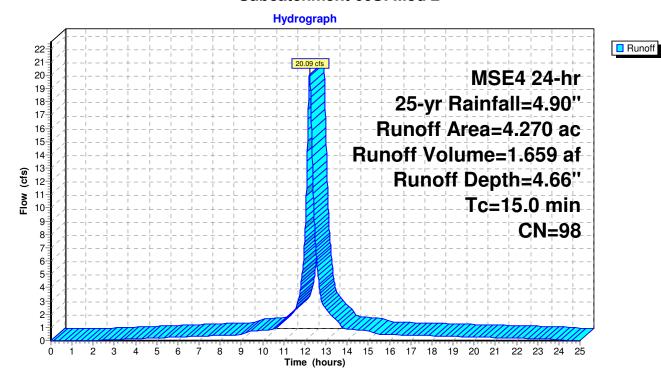
	Area	(ac)	CN	Desc	ription		
*	1.	880	98	Mod	1 no cove	r	
1.880 100.00% Impervious Area							l
	Тс	Leng	th :	Slope	Velocity	Capacity	Description
_	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	15.0						Direct Entry, Estimated

Subcatchment 65S: Mod 1 (partial closure)

Columbia_Leachate Pond Evaluation (As-built Pond v2)_ *MSE4 24-hr 25-yr Rainfall=4.90"*Prepared by {enter your company name here}
Printed 6/9/2015

HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 7


Summary for Subcatchment 66S: Mod 2

Runoff = 20.09 cfs @ 12.22 hrs, Volume= 1.659 af, Depth= 4.66"

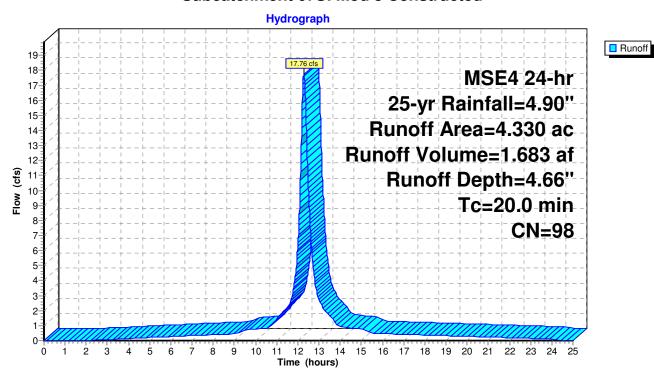
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs MSE4 24-hr 25-yr Rainfall=4.90"

	Area	(ac)	CN	Desc	cription		
*	4.	270	98	Mod	2 final cov	/er	
	4.	270		100.	00% Impe	rvious Area	ı
	Tc (min)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	15.0	(100	ι)	(11/11)	(10/300)	(013)	Direct Entry, Estimated

Subcatchment 66S: Mod 2

Page 8

HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC


Summary for Subcatchment 67S: Mod 3 Constructed

Runoff = 17.76 cfs @ 12.29 hrs, Volume= 1.683 af, Depth= 4.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs MSE4 24-hr 25-yr Rainfall=4.90"

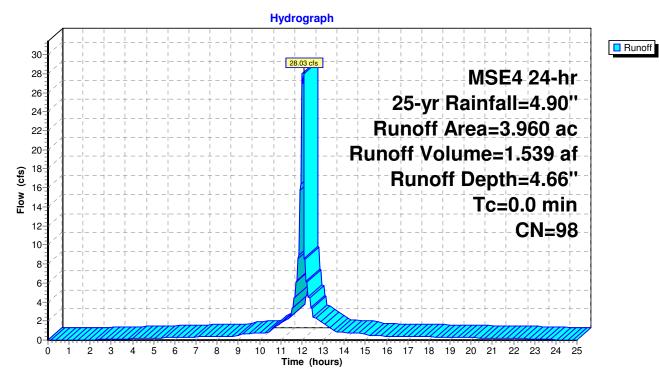
	Area	(ac)	CN	Desc	cription		
*	4.	330	98	Mod	3 no cove	r	
	4.	330		100.	00% Impe	rvious Area	ı
	Tc	U		Slope	•	Capacity	Description
_	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	20.0						Direct Entry, Estimated

Subcatchment 67S: Mod 3 Constructed

Page 9

HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Summary for Subcatchment 68S: Pond Area


[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 28.03 cfs @ 12.09 hrs, Volume= 1.539 af, Depth= 4.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs MSE4 24-hr 25-yr Rainfall=4.90"

	Area	(ac)	CN	Desc	cription		
*	3.	960	98				
	3.960			100.00% Impervious Area			ı
	Тс	Leng	th :	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	0.0						Direct Entry,

Subcatchment 68S: Pond Area

Columbia Leachate Pond Evaluation (As-built Pond v2) MSE4 24-hr 25-yr Rainfall=4.90" Prepared by {enter your company name here}

Printed 6/9/2015

HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 10

Summary for Pond 69P: Ex Leachate Pond (As-built)

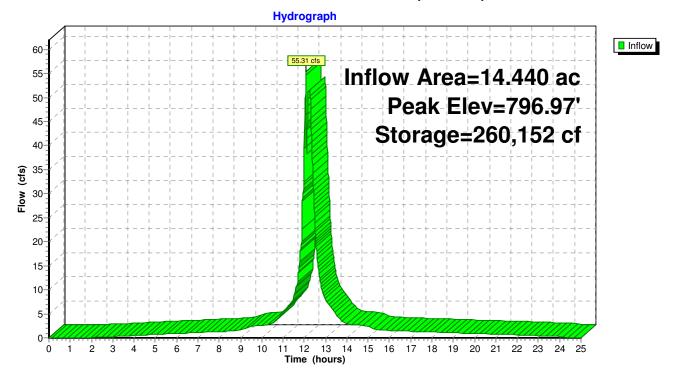
Inflow Area = 14.440 ac,100.00% Impervious, Inflow Depth = 4.66" for 25-yr event

Inflow 55.31 cfs @ 12.09 hrs, Volume= 5.612 af

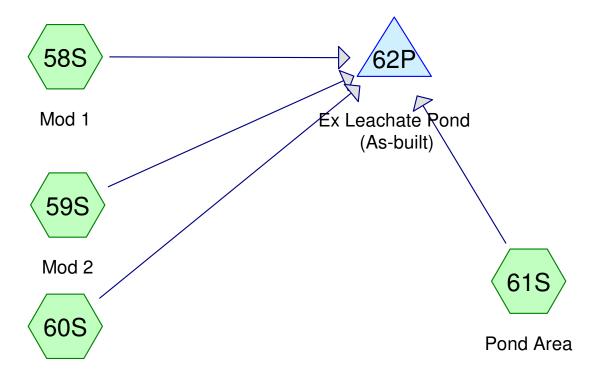
0.00 cfs @ 0.00 hrs, Volume= Outflow 0.000 af, Atten= 100%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs Starting Elev= 792.50' Surf. Area = 34,630 sf Storage = 15,714 cf

Peak Elev= 796.97' @ 25.00 hrs Surf.Area= 65,516 sf Storage= 260,152 cf (244,438 cf above start)


Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

Center-of-Mass det. time= (not calculated: no outflow)


volume	invert	Avaii.Storage	Storage L	Description
#1	792.00'	329,280 cf	Custom	Stage Data (Prismatic) Listed below (Recalc)
Elevation	Surf.	Area Inc	.Store	Cum.Store

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
792.00	28,228	0	0
794.00	53,834	82,062	82,062
796.00	62,164	115,998	198,060
798.00	69,056	131,220	329,280

Pond 69P: Ex Leachate Pond (As-built)

Model Run 1B

Mod 3 Constructed

Columbia_Leachate Pond Evaluation (As-buil *MSE4 24-hr MOD 3 Max Precip Rainfall=4.00"* Prepared by {enter your company name here} Printed 6/9/2015

HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 5

Time span=0.00-25.00 hrs, dt=0.01 hrs, 2501 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 58S: Mod 1 Runoff Area=5.310 ac 100.00% Impervious Runoff Depth=3.77"

Tc=15.0 min CN=98 Runoff=20.33 cfs 1.666 af

Subcatchment 59S: Mod 2 Runoff Area=4.270 ac 100.00% Impervious Runoff Depth=3.77"

Tc=15.0 min CN=98 Runoff=16.35 cfs 1.340 af

Subcatchment 60S: Mod 3 Constructed Runoff Area=4.330 ac 100.00% Impervious Runoff Depth=3.77"

Tc=20.0 min CN=98 Runoff=14.46 cfs 1.359 af

Subcatchment 61S: Pond Area Runoff Area=3.960 ac 100.00% Impervious Runoff Depth=3.77"

Tc=0.0 min CN=98 Runoff=22.83 cfs 1.242 af

Pond 62P: Ex Leachate Pond (As-built) Peak Elev=796.97' Storage=259,949 cf Inflow=55.25 cfs 5.607 af

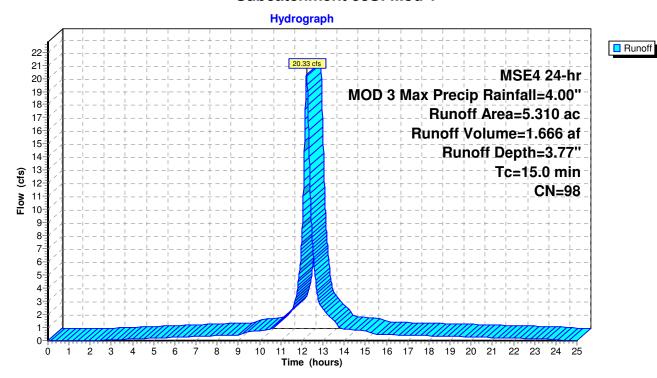
Outflow=0.00 cfs 0.000 af

Total Runoff Area = 17.870 ac Runoff Volume = 5.607 af Average Runoff Depth = 3.77" 0.00% Pervious = 0.000 ac 100.00% Impervious = 17.870 ac

Printed 6/9/2015

Page 6

HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC


Summary for Subcatchment 58S: Mod 1

Runoff = 20.33 cfs @ 12.22 hrs, Volume= 1.666 af, Depth= 3.77"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs MSE4 24-hr MOD 3 Max Precip Rainfall=4.00"

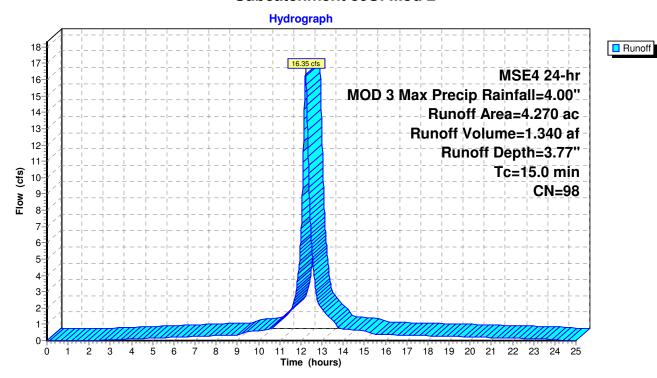
	Area	(ac)	CN	Desc	cription		
*	5.	310	98	Mod	1 no cove	r	
	5.	5.310 100.00% Impervious Area					
	Tc (min)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	15.0	(.00	<u>-, </u>	(16,16)	(1000)	(3.3)	Direct Entry, Estimated

Subcatchment 58S: Mod 1

Printed 6/9/2015

HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 7


Summary for Subcatchment 59S: Mod 2

Runoff = 16.35 cfs @ 12.22 hrs, Volume= 1.340 af, Depth= 3.77"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs MSE4 24-hr MOD 3 Max Precip Rainfall=4.00"

	Area	(ac)	ac) CN Description				
*	4.	270	98	Mod	2 final cov	/er	
4.270 100.00% Impervious Area						ı	
	Tc (min)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	15.0	(100	ι)	(11/11)	(10/300)	(013)	Direct Entry, Estimated

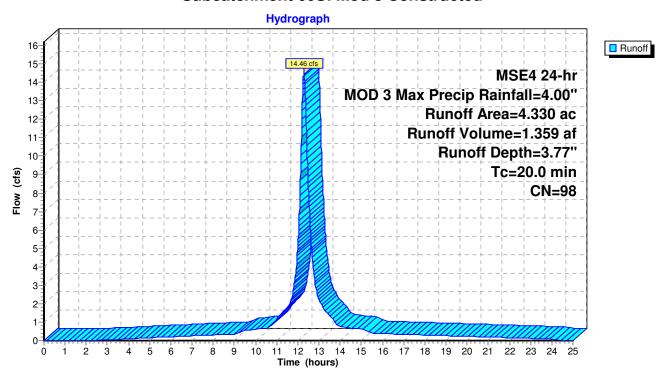
Subcatchment 59S: Mod 2

Printed 6/9/2015

HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 8

Summary for Subcatchment 60S: Mod 3 Constructed


Runoff = 14.46 cfs @ 12.29 hrs, Volume=

1.359 af, Depth= 3.77"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs MSE4 24-hr MOD 3 Max Precip Rainfall=4.00"

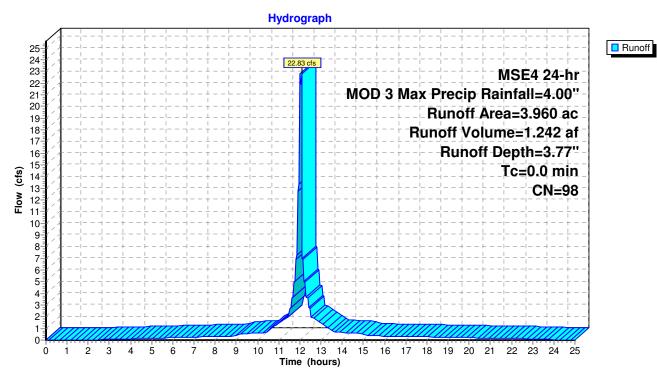
	Area (ac) CN Description						
*	4.	330	98	Mod	3 no cove	r	
4.330 100.00% Impervious Area						ı	
	Tc	U		Slope	•	Capacity	Description
_	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	20.0						Direct Entry, Estimated

Subcatchment 60S: Mod 3 Constructed

Page 9

HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Summary for Subcatchment 61S: Pond Area


[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 22.83 cfs @ 12.09 hrs, Volume= 1.242 af, Depth= 3.77"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs MSE4 24-hr MOD 3 Max Precip Rainfall=4.00"

_	Area	Area (ac)		Desc	cription		
*	3.	960	98				
	3.960			100.	00% Impe	rvious Area	ı
	Тс	Leng	th	Slope	Velocity	Capacity	Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	0.0						Direct Entry,

Subcatchment 61S: Pond Area

Columbia Leachate Pond Evaluation (As-buil MSE4 24-hr MOD 3 Max Precip Rainfall=4.00"

Prepared by {enter your company name here}

Printed 6/9/2015

HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 10

Summary for Pond 62P: Ex Leachate Pond (As-built)

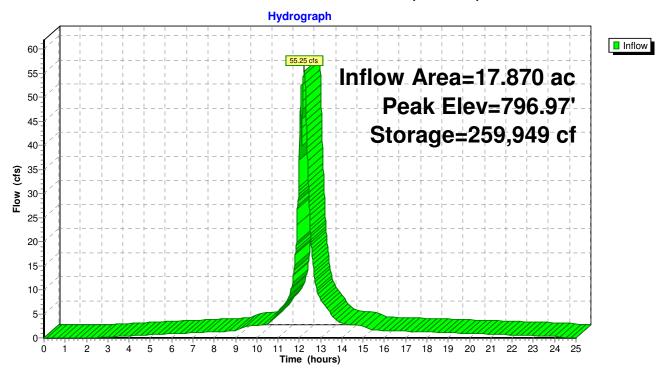
Inflow Area = 17.870 ac,100.00% Impervious, Inflow Depth = 3.77" for MOD 3 Max Precip event

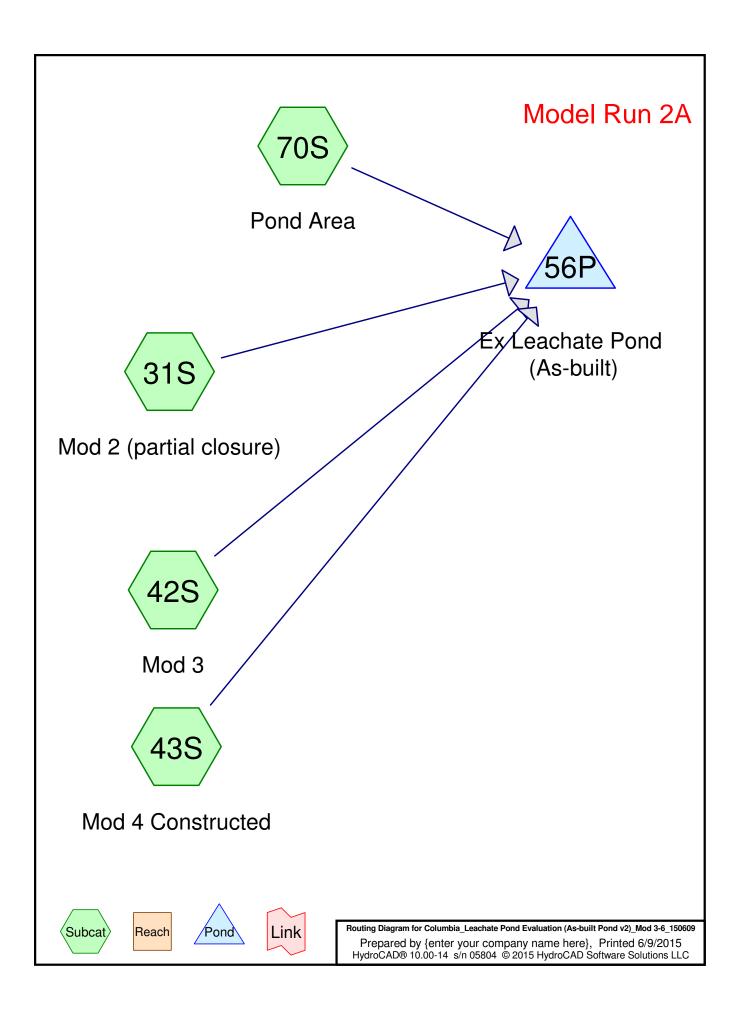
Inflow 55.25 cfs @ 12.24 hrs, Volume= 5.607 af

0.00 cfs @ 0.00 hrs, Volume= Outflow 0.000 af, Atten= 100%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs Starting Elev= 792.50' Surf. Area = 34,630 sf Storage = 15,714 cf

Peak Elev= 796.97' @ 25.00 hrs Surf.Area= 65,505 sf Storage= 259,949 cf (244,234 cf above start)


Plug-Flow detention time= (not calculated: initial storage exceeds outflow)


Center-of-Mass det. time= (not calculated: no outflow)

Volume	Invert	Avail.Storage	Storage	Storage Description		
#1	792.00'	329,280 cf	Custom	Stage Data (Prismatic) Listed below (Recalc)		
Elevation (feet)			nc.Store pic-feet)	Cum.Store (cubic-feet)		

Elevation	Surt.Area	inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
792.00	28,228	0	0
794.00	53,834	82,062	82,062
796.00	62,164	115,998	198,060
798.00	69,056	131,220	329,280

Pond 62P: Ex Leachate Pond (As-built)

Columbia_Leachate Pond Evaluation (As-built Pond v2)_ *MSE4 24-hr 25-yr Rainfall=4.90"*Prepared by {enter your company name here} HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC Page 5

Time span=0.00-25.00 hrs, dt=0.01 hrs, 2501 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 31S: Mod 2 (partial closure) Runoff Area=1.760 ac 100.00% Impervious Runoff Depth=4.66" Tc=15.0 min CN=98 Runoff=8.28 cfs 0.684 af

Subcatchment 42S: Mod 3 Runoff Area=4.330 ac 100.00% Impervious Runoff Depth=4.66"

Tc=20.0 min CN=98 Runoff=17.76 cfs 1.683 af

Subcatchment 43S: Mod 4 Constructed Runoff Area=4.390 ac 100.00% Impervious Runoff Depth=4.66"

Tc=25.0 min CN=98 Runoff=16.12 cfs 1.706 af

Subcatchment 70S: Pond Area Runoff Area=3.960 ac 100.00% Impervious Runoff Depth=4.66"

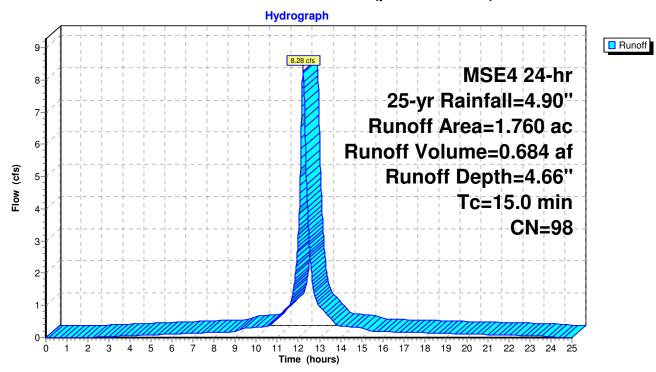
Tc=0.0 min CN=98 Runoff=28.03 cfs 1.539 af

Pond 56P: Ex Leachate Pond (As-built) Peak Elev=796.97' Storage=260,152 cf Inflow=50.38 cfs 5.612 af

Outflow=0.00 cfs 0.000 af

Total Runoff Area = 14.440 ac Runoff Volume = 5.612 af Average Runoff Depth = 4.66" 0.00% Pervious = 0.000 ac 100.00% Impervious = 14.440 ac HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC

<u> Page 6</u>


Summary for Subcatchment 31S: Mod 2 (partial closure)

Runoff = 8.28 cfs @ 12.22 hrs, Volume= 0.684 af, Depth= 4.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs MSE4 24-hr 25-yr Rainfall=4.90"

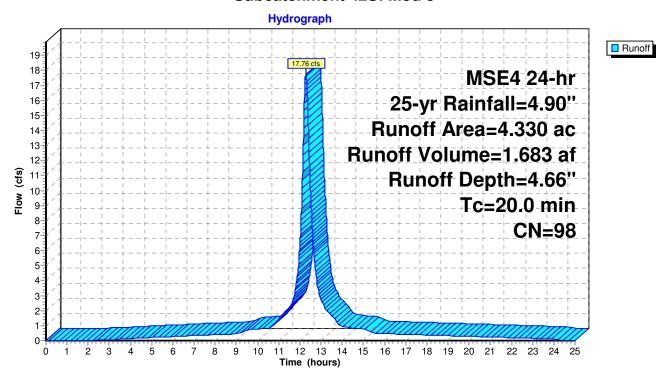
	Area (ac) CN Description						
*	1.	760	98	Mod	2 final cov	/er	
1.760 100.00% Impervious Area							
	Tc	_		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	(min) 15.0	(fee	ι)	(11/11)	(II/Sec)	(CIS)	Direct Entry, Estimated

Subcatchment 31S: Mod 2 (partial closure)

Columbia_Leachate Pond Evaluation (As-built Pond v2)_ *MSE4 24-hr 25-yr Rainfall=4.90"*Prepared by {enter your company name here}
Printed 6/9/2015

HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 7


Summary for Subcatchment 42S: Mod 3

Runoff = 17.76 cfs @ 12.29 hrs, Volume= 1.683 af, Depth= 4.66"

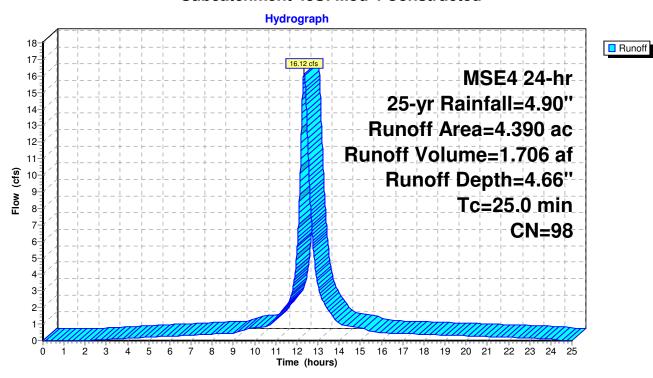
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs MSE4 24-hr 25-yr Rainfall=4.90"

	Area (ac) CN Description			ription			
*	4.	330	98	Mod	3		
	4.330 100.00% Impervious Area						ı
	Тс	Lengt	:h	Slope	Velocity	Capacity	Description
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	20.0						Direct Entry, Estimated

Subcatchment 42S: Mod 3

HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 8


Summary for Subcatchment 43S: Mod 4 Constructed

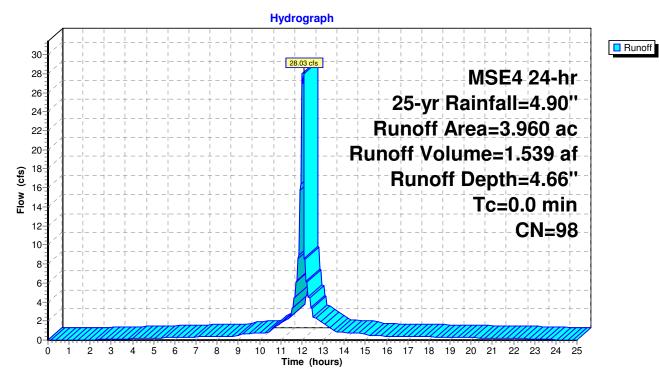
Runoff = 16.12 cfs @ 12.34 hrs, Volume= 1.706 af, Depth= 4.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs MSE4 24-hr 25-yr Rainfall=4.90"

_	Area (ac) CN Description						
*	4.	390	98	Mod	4 no cove	r	
4.390 100.00% Impervious Area						ı	
	Тс	Lengt	h S	Slope	Velocity	Capacity	Description
_	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	25.0						Direct Entry, Estimated

Subcatchment 43S: Mod 4 Constructed

Summary for Subcatchment 70S: Pond Area


[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 28.03 cfs @ 12.09 hrs, Volume= 1.539 af, Depth= 4.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs MSE4 24-hr 25-yr Rainfall=4.90"

_	Area	(ac)	CN	Desc	cription		
*	3.	960	98				
	3.	960	100.00% Impervious Area				a .
	Тс	Leng	th	Slope	Velocity	Capacity	Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	0.0						Direct Entry,

Subcatchment 70S: Pond Area

Columbia Leachate Pond Evaluation (As-built Pond v2) MSE4 24-hr 25-yr Rainfall=4.90" Printed 6/9/2015 Prepared by {enter your company name here}

HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 10

Summary for Pond 56P: Ex Leachate Pond (As-built)

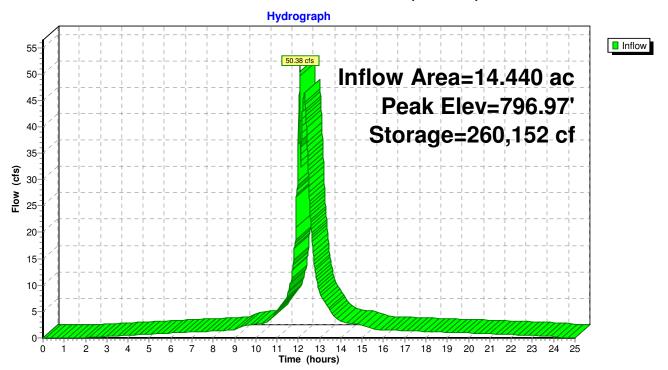
Inflow Area = 14.440 ac,100.00% Impervious, Inflow Depth = 4.66" for 25-yr event

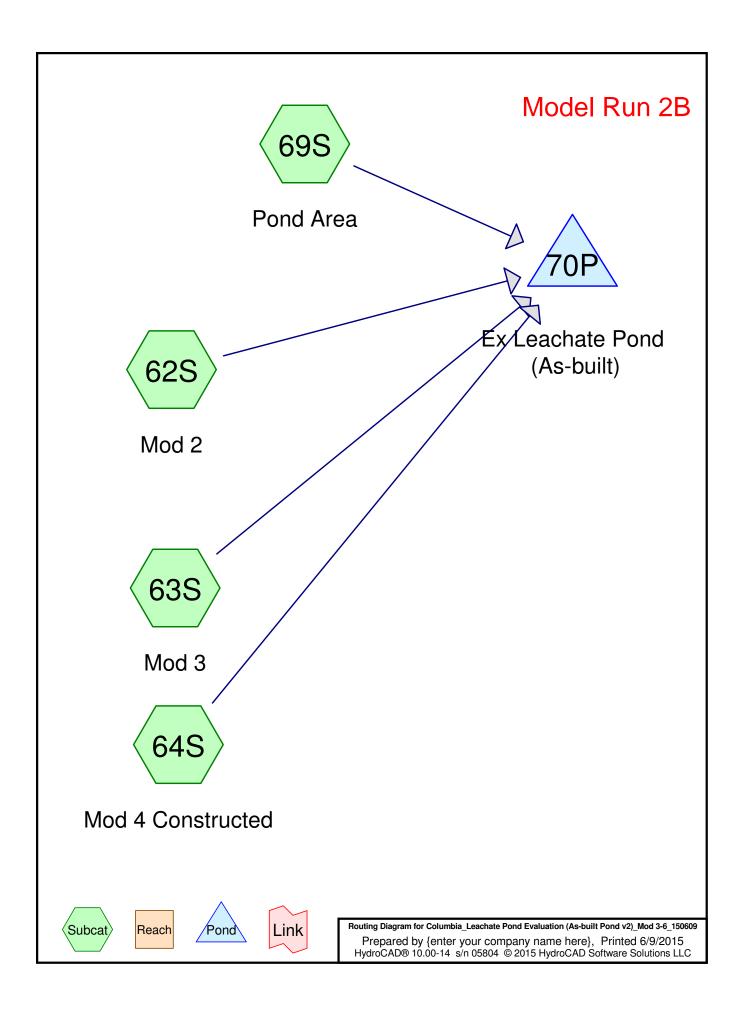
Inflow 50.38 cfs @ 12.09 hrs, Volume= 5.612 af

0.00 cfs @ 0.00 hrs, Volume= Outflow 0.000 af, Atten= 100%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs Starting Elev= 792.50' Surf. Area = 34,630 sf Storage = 15,714 cf

Peak Elev= 796.97' @ 25.00 hrs Surf.Area= 65,516 sf Storage= 260,152 cf (244,438 cf above start)


Plug-Flow detention time= (not calculated: initial storage exceeds outflow)


Center-of-Mass det. time= (not calculated: no outflow)

Volume	Invert	Avail.Storage	Storage	Storage Description		
#1	792.00'	329,280 cf	Custon	Custom Stage Data (Prismatic) Listed below (Recalc)		
Elevation	Surf	Area In	c.Store	Cum.Store		

Cum.Store	Inc.Store	Surf.Area	Elevation
(cubic-feet)	(cubic-feet)	(sq-ft)	(feet)
0	0	28,228	792.00
82,062	82,062	53,834	794.00
198,060	115,998	62,164	796.00
329,280	131,220	69,056	798.00

Pond 56P: Ex Leachate Pond (As-built)

Columbia_Leachate Pond Evaluation (As-buil MSE4 24-hr MOD 4 Max Precip Rainfall=4.21"

Prepared by {enter your company name here}

Printed 6/9/2015

HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 5

Time span=0.00-25.00 hrs, dt=0.01 hrs, 2501 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 62S: Mod 2 Runoff Area=4.270 ac 100.00% Impervious Runoff Depth=3.97"

Tc=15.0 min CN=98 Runoff=17.22 cfs 1.414 af

Subcatchment 63S: Mod 3 Runoff Area=4.330 ac 100.00% Impervious Runoff Depth=3.97"

Tc=20.0 min CN=98 Runoff=15.23 cfs 1.434 af

Subcatchment 64S: Mod 4 Constructed Runoff Area=4.390 ac 100.00% Impervious Runoff Depth=3.97"

Tc=25.0 min CN=98 Runoff=13.82 cfs 1.454 af

Subcatchment 69S: Pond Area Runoff Area=3.960 ac 100.00% Impervious Runoff Depth=3.97"

Tc=0.0 min CN=98 Runoff=24.05 cfs 1.312 af

Pond 70P: Ex Leachate Pond (As-built) Peak Elev=796.97' Storage=260,266 cf Inflow=49.37 cfs 5.614 af

Outflow=0.00 cfs 0.000 af

Total Runoff Area = 16.950 ac Runoff Volume = 5.614 af Average Runoff Depth = 3.97" 0.00% Pervious = 0.000 ac 100.00% Impervious = 16.950 ac

Printed 6/9/2015

HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 6

Summary for Subcatchment 62S: Mod 2


Runoff = 17.22 cfs @ 12.22 hrs, Volume= 1.414

1.414 af, Depth= 3.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs MSE4 24-hr MOD 4 Max Precip Rainfall=4.21"

Area (ac) CN Description							
*	4.	270	98	Mod	2 final cov	er er	
	4.270 100.00% Impervious Area						
		Lengt		Slope	•		Description
_	(min)	(fee	τ)	(ft/ft)	(ft/sec)	(cfs)	
	15.0						Direct Entry, Estimated

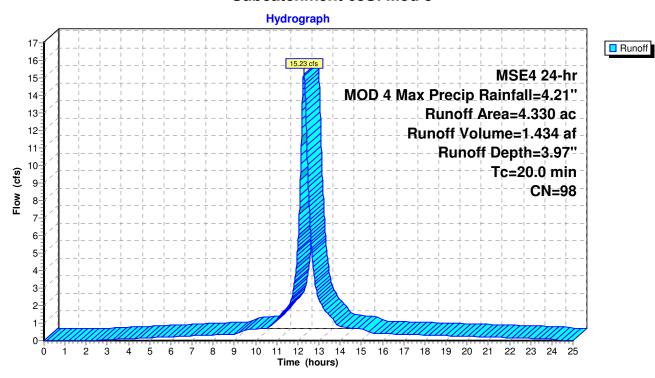
Subcatchment 62S: Mod 2

Printed 6/9/2015

HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 7

Summary for Subcatchment 63S: Mod 3


Runoff = 15.23 cfs @ 12.29 hrs, Volume= 1.43

1.434 af, Depth= 3.97"

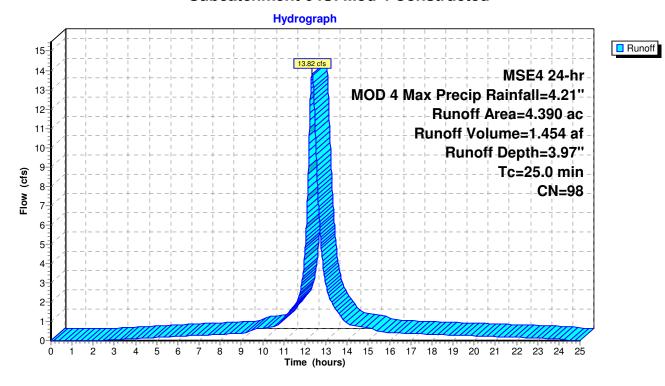
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs MSE4 24-hr MOD 4 Max Precip Rainfall=4.21"

	Area (ac) CN		Desc	ription			
*	4.	330	98	Mod	3		
	4.330			100.	00% Impe	rvious Area	ı
	Тс	Lengt	:h	Slope	Velocity	Capacity	Description
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	20.0						Direct Entry, Estimated

Subcatchment 63S: Mod 3

HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 8


Summary for Subcatchment 64S: Mod 4 Constructed

Runoff = 13.82 cfs @ 12.34 hrs, Volume= 1.454 af, Depth= 3.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs MSE4 24-hr MOD 4 Max Precip Rainfall=4.21"

_	Area	Area (ac)		Desc	cription		
*	4.	390	98	Mod	4 no cove	r	
	4.390			100.	00% Impe	rvious Area	
	Тс	Leng	th	Slope	Velocity	Capacity	Description
_	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	25.0						Direct Entry, Estimated

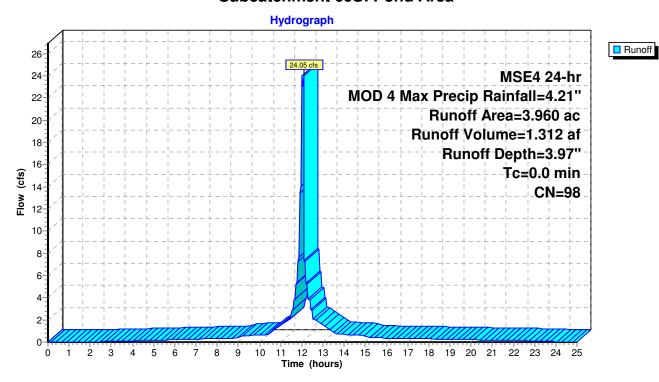
Subcatchment 64S: Mod 4 Constructed

Printed 6/9/2015

HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 9

Summary for Subcatchment 69S: Pond Area


[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 24.05 cfs @ 12.09 hrs, Volume= 1.312 af, Depth= 3.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs MSE4 24-hr MOD 4 Max Precip Rainfall=4.21"

_	Area	(ac)	CN	Desc	cription		
*	3.	960	98				
	3.	960		100.	00% Impe	rvious Area	l
	Тс	Leng	ıth	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	0.0						Direct Entry.

Subcatchment 69S: Pond Area

Page 10

Summary for Pond 70P: Ex Leachate Pond (As-built)

Inflow Area = 16.950 ac,100.00% Impervious, Inflow Depth = 3.97" for MOD 4 Max Precip event

Inflow = 49.37 cfs @ 12.27 hrs, Volume= 5.614 af

Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs Starting Elev= 792.50' Surf.Area= 34,630 sf Storage= 15,714 cf

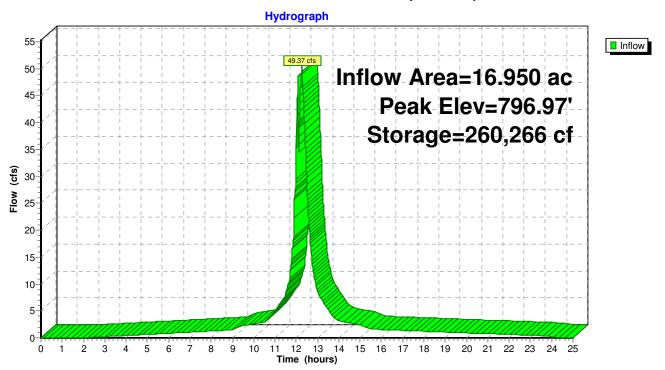
Peak Elev= 796.97' @ 25.00 hrs Surf.Area= 65,522 sf Storage= 260,266 cf (244,552 cf above start)

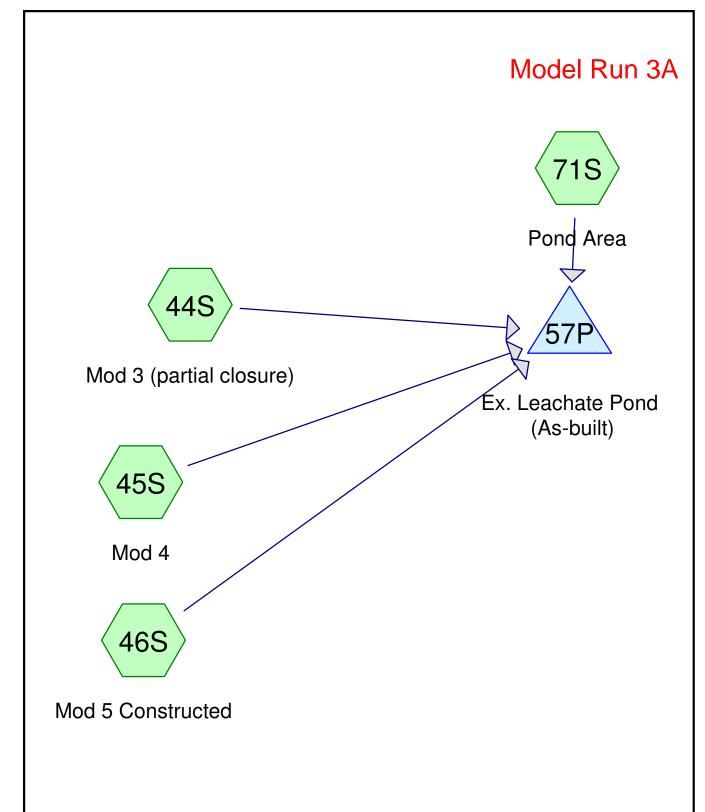
Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

Avail Ctorogo Ctorogo Description

131,220

Center-of-Mass det. time= (not calculated: no outflow)


69,056


798.00

volume	invert	Avaii.St	orage :	Storage	Description		
#1	792.00'	329,2	280 cf (Custon	n Stage Data (Pris	matic) Listed belo	w (Recalc)
Elevation (feet)	_	.Area (sq-ft)	Inc.S (cubic-	Store feet)	Cum.Store (cubic-feet)		
792.00	28	8,228	,	Ó	0		
794.00	5	3,834	82	,062	82,062		
796.00	6	2,164	115	,998	198,060		

Pond 70P: Ex Leachate Pond (As-built)

329,280

Columbia_Leachate Pond Evaluation (As-built Pond v2)_ *MSE4 24-hr 25-yr Rainfall=4.90"*Prepared by {enter your company name here} HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC Page 5

Time span=0.00-25.00 hrs, dt=0.01 hrs, 2501 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 44S: Mod 3 (partial closure) Runoff Area=1.630 ac 100.00% Impervious Runoff Depth=4.66" Tc=20.0 min CN=98 Runoff=6.69 cfs 0.633 af

Subcatchment 45S: Mod 4 Runoff Area=4.390 ac 100.00% Impervious Runoff Depth=4.66"

Tc=25.0 min CN=98 Runoff=16.12 cfs 1.706 af

Subcatchment 46S: Mod 5 Constructed Runoff Area=4.460 ac 100.00% Impervious Runoff Depth>4.66"

Tc=30.0 min CN=98 Runoff=14.86 cfs 1.733 af

Subcatchment 71S: Pond Area Runoff Area=3.960 ac 100.00% Impervious Runoff Depth=4.66"

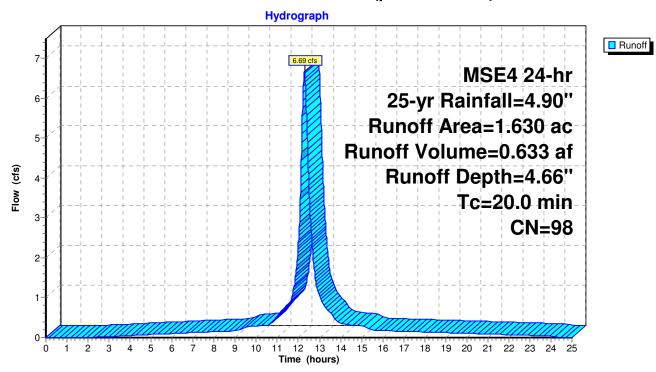
Tc=0.0 min CN=98 Runoff=28.03 cfs 1.539 af

Pond 57P: Ex. Leachate Pond (As-built) Peak Elev=796.97' Storage=260,150 cf Inflow=45.90 cfs 5.611 af

Outflow=0.00 cfs 0.000 af

Total Runoff Area = 14.440 ac Runoff Volume = 5.611 af Average Runoff Depth = 4.66" 0.00% Pervious = 0.000 ac 100.00% Impervious = 14.440 ac

Page 6


Summary for Subcatchment 44S: Mod 3 (partial closure)

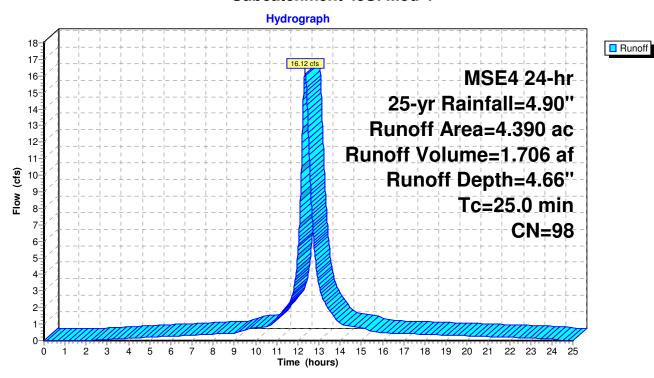
Runoff = 6.69 cfs @ 12.29 hrs, Volume= 0.633 af, Depth= 4.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs MSE4 24-hr 25-yr Rainfall=4.90"

_	Area	(ac)	CN	Desc	cription		
*	1.	630	98	Mod	3		
	1.	630		100.	00% Impe	rvious Area	ı
	Тс	Leng	th :	Slope	Velocity	Capacity	Description
_	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	20.0						Direct Entry, Estimated

Subcatchment 44S: Mod 3 (partial closure)

Page 7


Summary for Subcatchment 45S: Mod 4

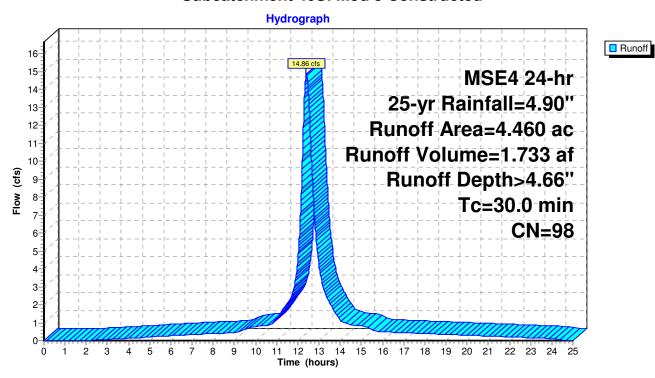
Runoff = 16.12 cfs @ 12.34 hrs, Volume= 1.706 af, Depth= 4.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs MSE4 24-hr 25-yr Rainfall=4.90"

_	Area	(ac)	CN	Desc	cription		
*	4.	.390	98	Mod	4		
_	4.	.390		100.	00% Impe	rvious Area	ı
		Lengt		Slope	•		Description
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	25.0						Direct Entry, Estimated

Subcatchment 45S: Mod 4

Page 8


Summary for Subcatchment 46S: Mod 5 Constructed

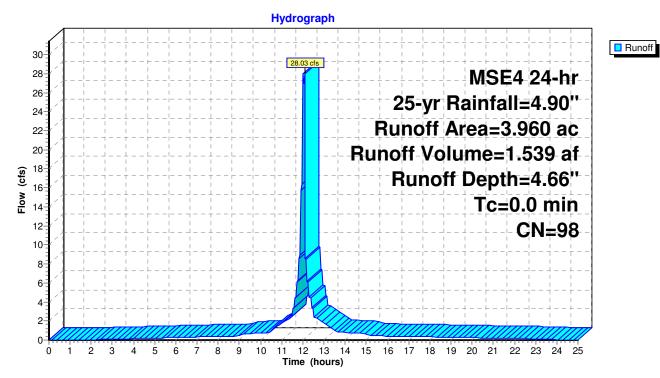
Runoff = 14.86 cfs @ 12.40 hrs, Volume= 1.733 af, Depth> 4.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs MSE4 24-hr 25-yr Rainfall=4.90"

_	Area (ac) C			Desc	cription		
* 4.460 98 Mod 5 no cover							
	4.	460		100.	00% Impe	rvious Area	ı
	Тс	Leng		Slope	•	Capacity	Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	30.0						Direct Entry, Estimated

Subcatchment 46S: Mod 5 Constructed

Summary for Subcatchment 71S: Pond Area


[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 28.03 cfs @ 12.09 hrs, Volume= 1.539 af, Depth= 4.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs MSE4 24-hr 25-yr Rainfall=4.90"

	Area	(ac)	CN	Desc	cription		
*	3.	960	98				
	3.	960		100.	00% Impe	rvious Area	ı
	Тс	Leng	th :	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	0.0						Direct Entry,

Subcatchment 71S: Pond Area

Columbia Leachate Pond Evaluation (As-built Pond v2) MSE4 24-hr 25-yr Rainfall=4.90" Printed 6/9/2015 Prepared by {enter your company name here}

HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 10

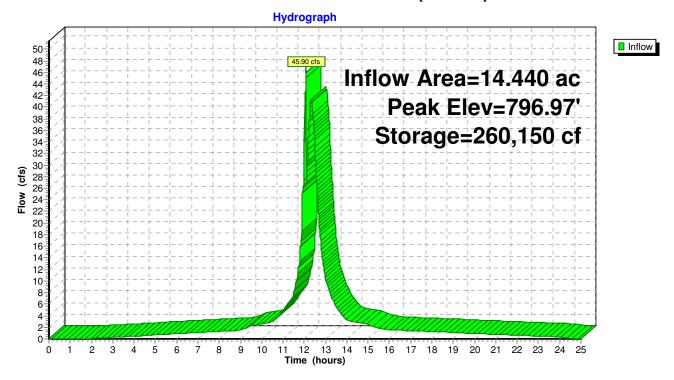
Summary for Pond 57P: Ex. Leachate Pond (As-built)

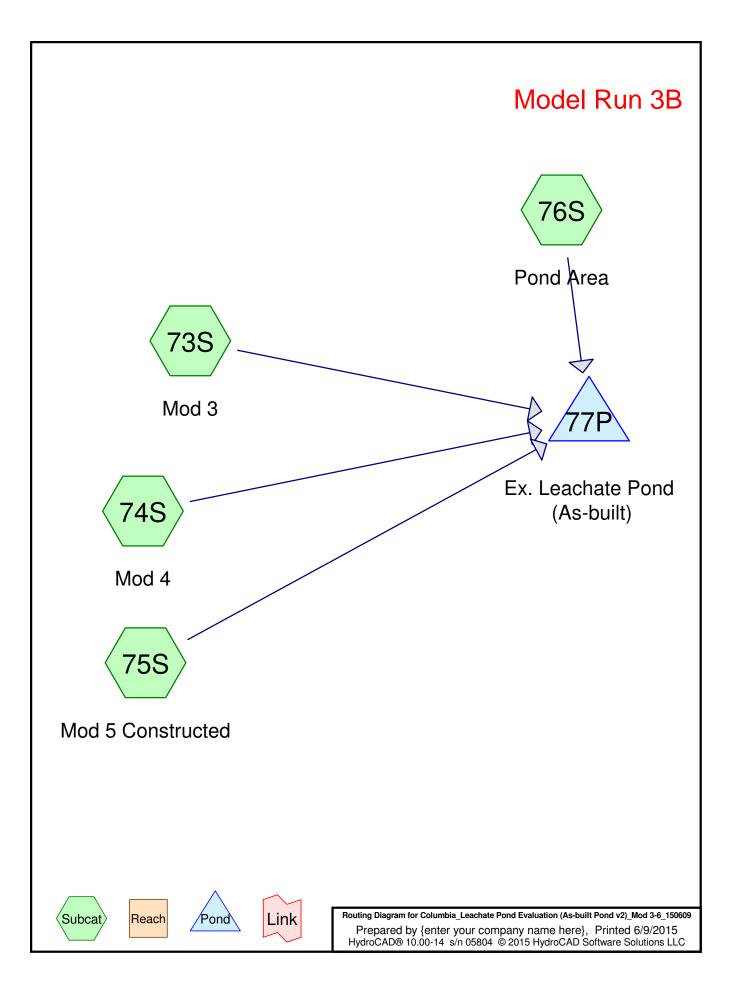
Inflow Area = 14.440 ac,100.00% Impervious, Inflow Depth = 4.66" for 25-vr event

Inflow 45.90 cfs @ 12.09 hrs, Volume= 5.611 af

0.00 hrs, Volume= Outflow 0.00 cfs @ 0.000 af, Atten= 100%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs Starting Elev= 792.50' Surf. Area = 34,630 sf Storage = 15,714 cf


Peak Elev= 796.97' @ 25.00 hrs Surf.Area= 65,516 sf Storage= 260,150 cf (244,436 cf above start)


Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

Center-of-Mass det. time= (not calculated: no outflow)

Volume	Invert	Avail.St	orage	Storage	e Description	
#1	792.00'	329,	280 cf	Custon	n Stage Data (Pri	smatic) Listed below (Recalc)
Elevation (feet)		Area sq-ft)		:.Store c-feet)	Cum.Store (cubic-feet)	
792.00	28	3,228	-	0	0	
794.00	53	3,834	8	32,062	82,062	
796.00	62	2,164	11	15,998	198,060	
798.00	69	9,056	13	31,220	329,280	

Pond 57P: Ex. Leachate Pond (As-built)

Columbia_Leachate Pond Evaluation (As-buil *MSE4 24-hr MOD 5 Max Precip Rainfall=4.16"* Prepared by {enter your company name here} Printed 6/9/2015

HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 5

Time span=0.00-25.00 hrs, dt=0.01 hrs, 2501 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 73S: Mod 3 Runoff Area=4.330 ac 100.00% Impervious Runoff Depth=3.92"

Tc=20.0 min CN=98 Runoff=15.04 cfs 1.416 af

Subcatchment 74S: Mod 4 Runoff Area=4.390 ac 100.00% Impervious Runoff Depth=3.92"

Tc=25.0 min CN=98 Runoff=13.65 cfs 1.436 af

Subcatchment 75S: Mod 5 Constructed Runoff Area=4.460 ac 100.00% Impervious Runoff Depth>3.92"

Tc=30.0 min CN=98 Runoff=12.59 cfs 1.459 af

Subcatchment 76S: Pond Area Runoff Area=3.960 ac 100.00% Impervious Runoff Depth=3.92"

Tc=0.0 min CN=98 Runoff=23.76 cfs 1.295 af

Pond 77P: Ex. Leachate Pond (As-built) Peak Elev=796.97' Storage=259,902 cf Inflow=44.31 cfs 5.606 af

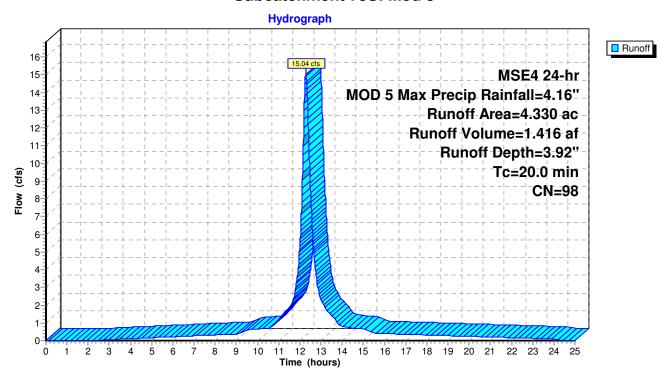
Outflow=0.00 cfs 0.000 af

Total Runoff Area = 17.140 ac Runoff Volume = 5.606 af Average Runoff Depth = 3.92" 0.00% Pervious = 0.000 ac 100.00% Impervious = 17.140 ac

Printed 6/9/2015

Page 6

HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC


Summary for Subcatchment 73S: Mod 3

Runoff = 15.04 cfs @ 12.29 hrs, Volume= 1.416 af, Depth= 3.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs MSE4 24-hr MOD 5 Max Precip Rainfall=4.16"

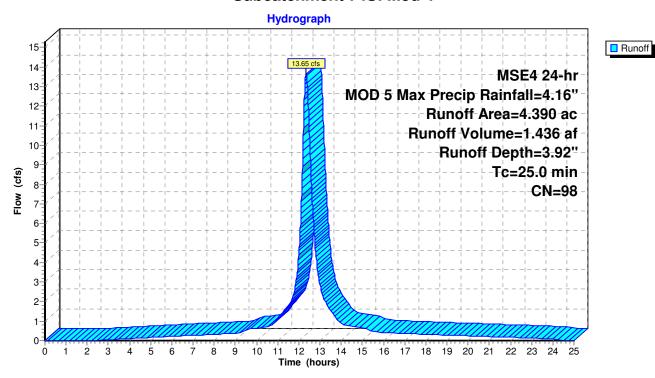
	Area	(ac)	CN	Desc	ription		
*	4.	330	98	Mod	3		
	4.	330		100.	00% Impe	rvious Area	ı
	Тс	Lengt	:h	Slope	Velocity	Capacity	Description
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	20.0						Direct Entry, Estimated

Subcatchment 73S: Mod 3

Printed 6/9/2015

HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 7


Summary for Subcatchment 74S: Mod 4

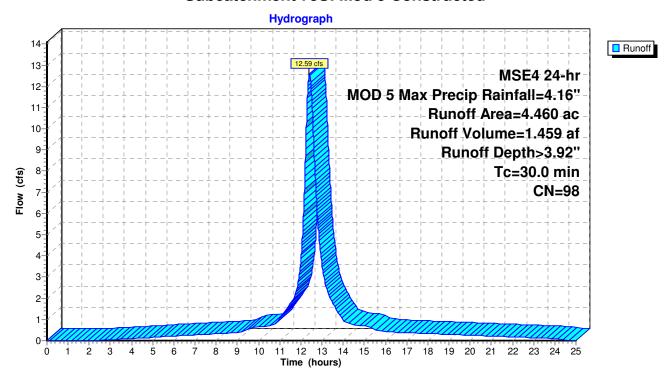
Runoff = 13.65 cfs @ 12.34 hrs, Volume= 1.436 af, Depth= 3.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs MSE4 24-hr MOD 5 Max Precip Rainfall=4.16"

_	Area	(ac)	CN	Desc	ription		
*	4.	390	98	Mod	4		
· <u> </u>	4.	390		100.	00% Impe	rvious Area	
	Тс	Leng	th	Slope	Velocity	Capacity	Description
_	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	25.0						Direct Entry, Estimated

Subcatchment 74S: Mod 4

Page 8


Summary for Subcatchment 75S: Mod 5 Constructed

Runoff = 12.59 cfs @ 12.40 hrs, Volume= 1.459 af, Depth> 3.92"

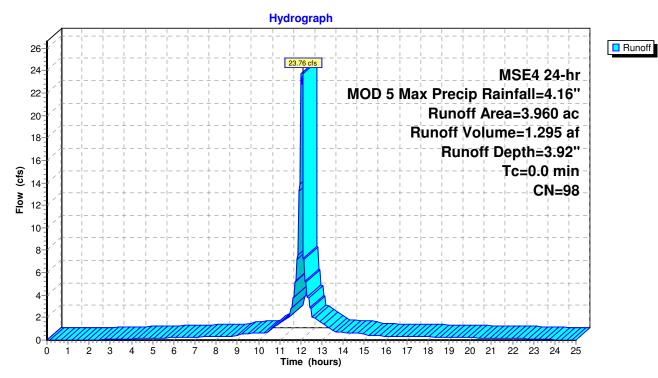
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs MSE4 24-hr MOD 5 Max Precip Rainfall=4.16"

_	Area (ac) C			Desc	cription		
* 4.460 98 Mod 5 no cover							
	4.	460		100.	00% Impe	rvious Area	ı
	Тс	Leng		Slope	•	Capacity	Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	30.0						Direct Entry, Estimated

Subcatchment 75S: Mod 5 Constructed

Page 9

Summary for Subcatchment 76S: Pond Area


[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 23.76 cfs @ 12.09 hrs, Volume= 1.295 af, Depth= 3.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs MSE4 24-hr MOD 5 Max Precip Rainfall=4.16"

	Area	(ac)	CN	Desc	cription		
*	3.	960	98				
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	0.0	(100	, ()	(1011)	(10/300)	(013)	Direct Entry,

Subcatchment 76S: Pond Area

Columbia_Leachate Pond Evaluation (As-buil MSE4 24-hr MOD 5 Max Precip Rainfall=4.16"

Prepared by {enter your company name here}

Printed 6/9/2015

HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 10

Summary for Pond 77P: Ex. Leachate Pond (As-built)

Inflow Area = 17.140 ac,100.00% Impervious, Inflow Depth = 3.92" for MOD 5 Max Precip event

Inflow = 44.31 cfs @ 12.29 hrs, Volume= 5.606 af

Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 min

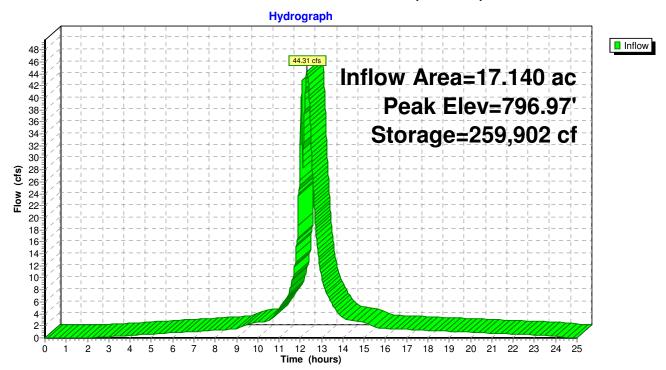
Routing by Stor-Ind method, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs Starting Elev= 792.50' Surf.Area= 34,630 sf Storage= 15,714 cf

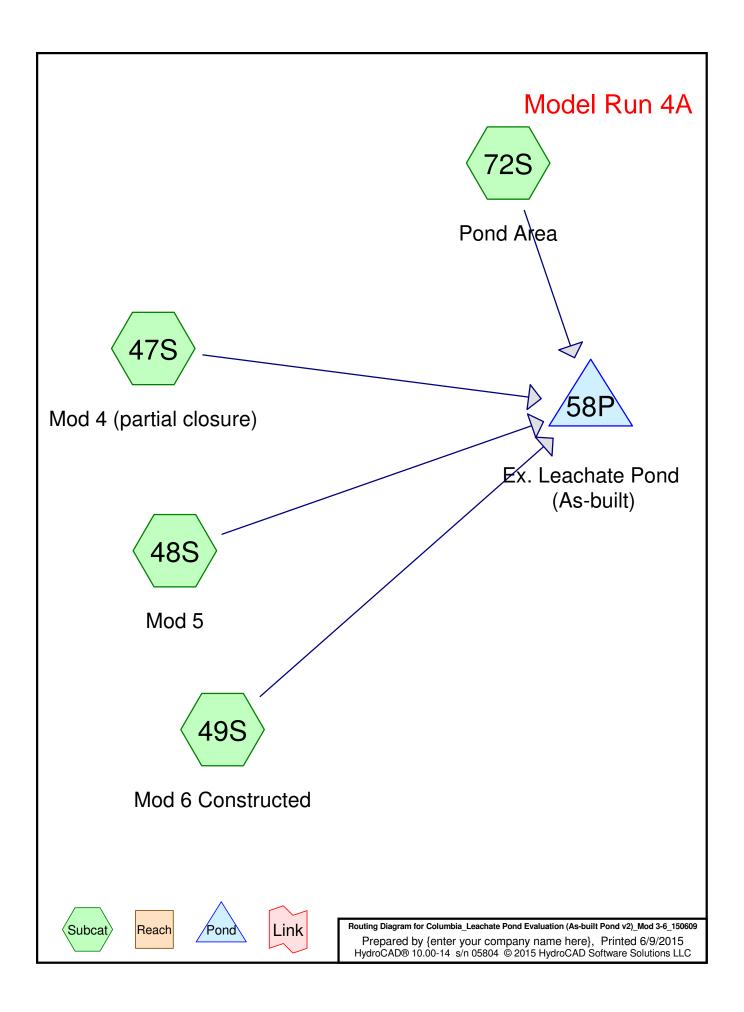
Peak Elev= 796.97' @ 25.00 hrs Surf.Area= 65,502 sf Storage= 259,902 cf (244,187 cf above start)

Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

131,220

Center-of-Mass det. time= (not calculated: no outflow)


69,056


798.00

Volum	ne	Invert	Avail.S	Storage	Storage	e Description			
#1		792.00'	329	,280 cf	Custon	n Stage Data (Pri	smatic) Listed b	elow (Recal	c)
Eleva (f	ation feet)		.Area sq-ft)		Store c-feet)	Cum.Store (cubic-feet)			
792	2.00	28	8,228		0	0			
794	4.00	53	3,834	8	2,062	82,062			
796	6.00	62	2,164	11	5,998	198,060			

Pond 77P: Ex. Leachate Pond (As-built)

329,280

Columbia_Leachate Pond Evaluation (As-built Pond v2)MSE4 24-hr 25-yr Rainfall=4.90" Prepared by {enter your company name here} HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC Page 5

Time span=0.00-25.00 hrs, dt=0.01 hrs, 2501 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 47S: Mod 4 (partial closure) Runoff Area=1.640 ac 100.00% Impervious Runoff Depth=4.66" Tc=25.0 min CN=98 Runoff=6.02 cfs 0.637 af

Subcatchment 48S: Mod 5 Runoff Area=4.460 ac 100.00% Impervious Runoff Depth>4.66"

Tc=30.0 min CN=98 Runoff=14.86 cfs 1.733 af

Subcatchment 49S: Mod 6 Constructed Runoff Area=4.380 ac 100.00% Impervious Runoff Depth>4.66"

Tc=35.0 min CN=98 Runoff=13.45 cfs 1.702 af

Subcatchment 72S: Pond Area Runoff Area=3.960 ac 100.00% Impervious Runoff Depth=4.66"

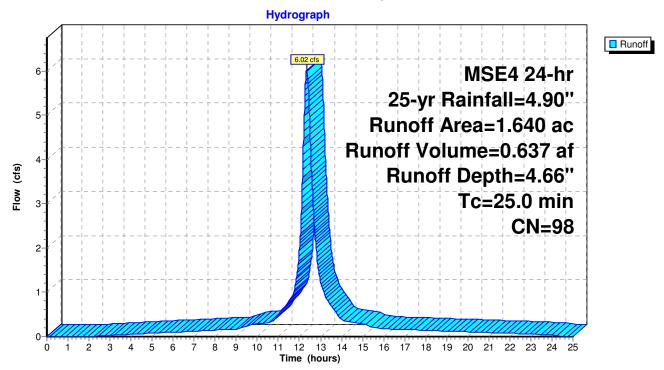
Tc=0.0 min CN=98 Runoff=28.03 cfs 1.539 af

Pond 58P: Ex. Leachate Pond (As-built) Peak Elev=796.97' Storage=260,146 cf Inflow=42.93 cfs 5.611 af

Outflow=0.00 cfs 0.000 af

Total Runoff Area = 14.440 ac Runoff Volume = 5.611 af Average Runoff Depth = 4.66" 0.00% Pervious = 0.000 ac 100.00% Impervious = 14.440 ac

Page 6


Summary for Subcatchment 47S: Mod 4 (partial closure)

Runoff = 6.02 cfs @ 12.34 hrs, Volume= 0.637 af, Depth= 4.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs MSE4 24-hr 25-yr Rainfall=4.90"

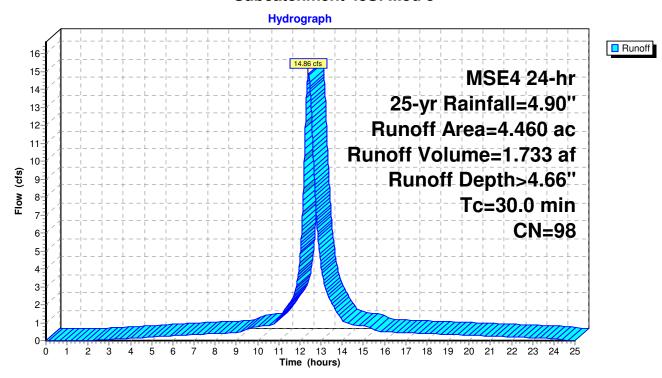
	Area	(ac)	CN	Desc	cription		
*	1.	640	98	Mod	4		
	1.640 100.00% Impervious Area						ı
	Тс	Lengt	:h	Slope	Velocity	Capacity	Description
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	25.0						Direct Entry, Estimated

Subcatchment 47S: Mod 4 (partial closure)

Columbia_Leachate Pond Evaluation (As-built Pond v2)_ *MSE4 24-hr 25-yr Rainfall=4.90"*Prepared by {enter your company name here}
Printed 6/9/2015

HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 7


Summary for Subcatchment 48S: Mod 5

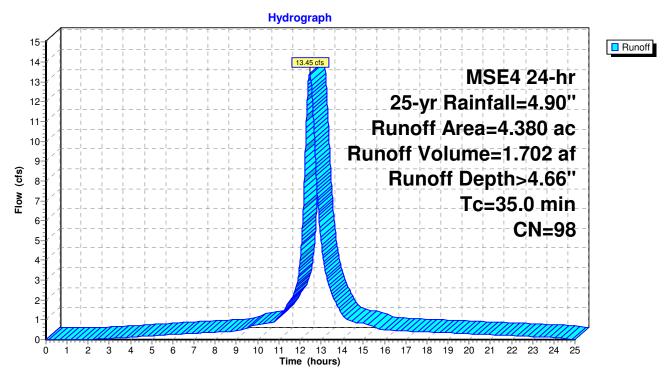
Runoff = 14.86 cfs @ 12.40 hrs, Volume= 1.733 af, Depth> 4.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs MSE4 24-hr 25-yr Rainfall=4.90"

	Area	(ac)	CN	Desc	cription		
*	4.	460	98	Mod	5		
	4.460 100.00% Impervious Area						ı
	Тс	Lengt	th :	Slope	Velocity	Capacity	Description
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	·
	30.0						Direct Entry, Estimated

Subcatchment 48S: Mod 5

Page 8


Summary for Subcatchment 49S: Mod 6 Constructed

Runoff = 13.45 cfs @ 12.48 hrs, Volume= 1.702 af, Depth> 4.66"

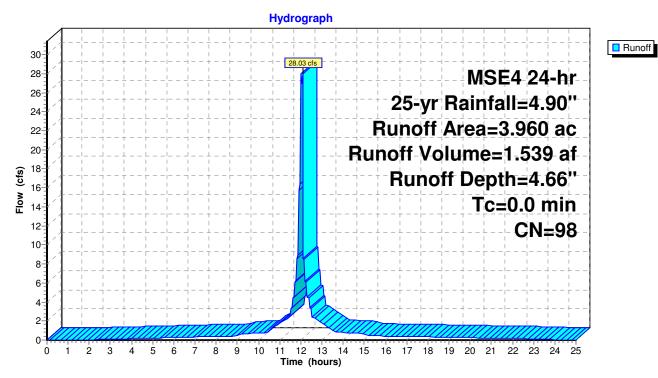
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs MSE4 24-hr 25-yr Rainfall=4.90"

_	Area	(ac)	CN	Desc	cription		
*	4.	380	98	Mod	6 no cove	r	
	4.380 100.00% Impervious Area						
	Тс	Leng	th	Slope	Velocity	Capacity	Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	35.0						Direct Entry, Estimated

Subcatchment 49S: Mod 6 Constructed

Page 9

Summary for Subcatchment 72S: Pond Area


[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 28.03 cfs @ 12.09 hrs, Volume= 1.539 af, Depth= 4.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs MSE4 24-hr 25-yr Rainfall=4.90"

	Area	(ac)	CN	Desc	cription		
*	3.	960	98				
	3.960 100.00% Impervious Area					rvious Area	ı
	Тс	Leng	th :	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	0.0						Direct Entry,

Subcatchment 72S: Pond Area

Columbia Leachate Pond Evaluation (As-built Pond v2) MSE4 24-hr 25-yr Rainfall=4.90" Printed 6/9/2015 Prepared by {enter your company name here}

HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 10

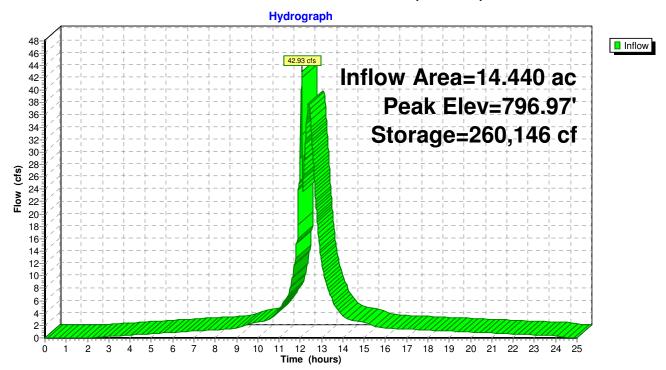
Summary for Pond 58P: Ex. Leachate Pond (As-built)

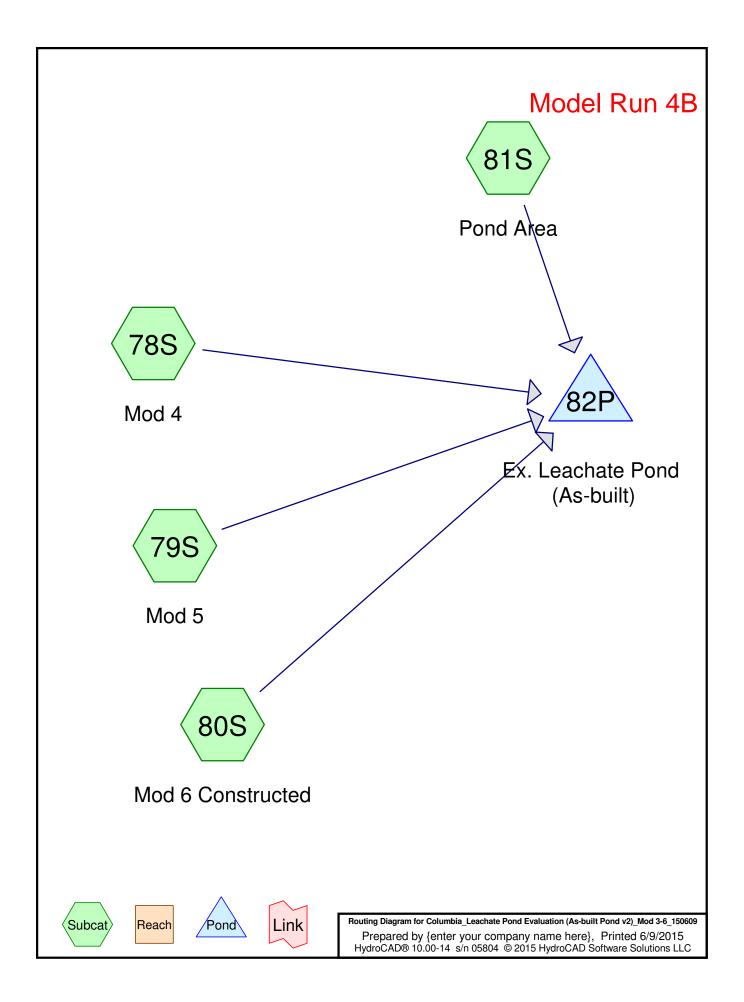
Inflow Area = 14.440 ac,100.00% Impervious, Inflow Depth > 4.66" for 25-yr event

Inflow 42.93 cfs @ 12.09 hrs, Volume= 5.611 af

0.00 hrs, Volume= Outflow 0.00 cfs @ 0.000 af, Atten= 100%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs Starting Elev= 792.50' Surf. Area = 34,630 sf Storage = 15,714 cf


Peak Elev= 796.97' @ 25.00 hrs Surf.Area= 65,515 sf Storage= 260,146 cf (244,432 cf above start)


Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

Center-of-Mass det. time= (not calculated: no outflow)

Volume	Invert	Avail.St	orage	Storage	e Description	
#1	792.00'	329,	280 cf	Custon	n Stage Data (Pri	smatic) Listed below (Recalc)
Elevation (feet)		Area sq-ft)		:.Store c-feet)	Cum.Store (cubic-feet)	
792.00	28	3,228	-	0	0	
794.00	53	3,834	8	32,062	82,062	
796.00	62	2,164	11	15,998	198,060	
798.00	69	9,056	13	31,220	329,280	

Pond 58P: Ex. Leachate Pond (As-built)

Columbia_Leachate Pond Evaluation (As-buil *MSE4 24-hr MOD 6 Max Precip Rainfall=4.15"* Prepared by {enter your company name here} Printed 6/9/2015

HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 5

Time span=0.00-25.00 hrs, dt=0.01 hrs, 2501 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 78S: Mod 4 Runoff Area=4.390 ac 100.00% Impervious Runoff Depth=3.91"

Tc=25.0 min CN=98 Runoff=13.62 cfs 1.432 af

Subcatchment 79S: Mod 5 Runoff Area=4.460 ac 100.00% Impervious Runoff Depth>3.91"

Tc=30.0 min CN=98 Runoff=12.56 cfs 1.455 af

Subcatchment 80S: Mod 6 Constructed Runoff Area=4.380 ac 100.00% Impervious Runoff Depth>3.91"

Tc=35.0 min CN=98 Runoff=11.36 cfs 1.429 af

Subcatchment 81S: Pond Area Runoff Area=3.960 ac 100.00% Impervious Runoff Depth=3.91"

Tc=0.0 min CN=98 Runoff=23.70 cfs 1.292 af

Pond 82P: Ex. Leachate Pond (As-built) Peak Elev=796.97' Storage=259,988 cf Inflow=40.45 cfs 5.608 af

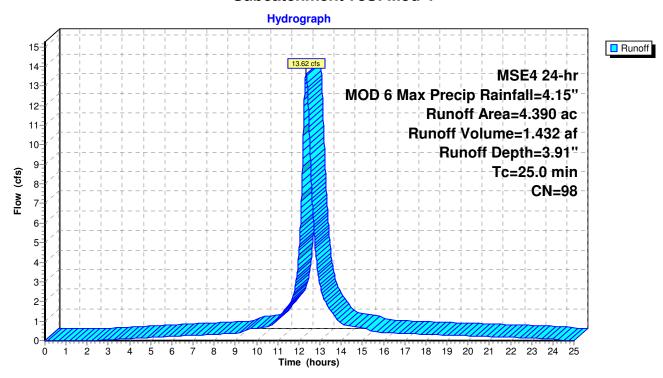
Outflow=0.00 cfs 0.000 af

Total Runoff Area = 17.190 ac Runoff Volume = 5.608 af Average Runoff Depth = 3.91" 0.00% Pervious = 0.000 ac 100.00% Impervious = 17.190 ac

Printed 6/9/2015

HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 6


Summary for Subcatchment 78S: Mod 4

Runoff = 13.62 cfs @ 12.34 hrs, Volume= 1.432 af, Depth= 3.91"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs MSE4 24-hr MOD 6 Max Precip Rainfall=4.15"

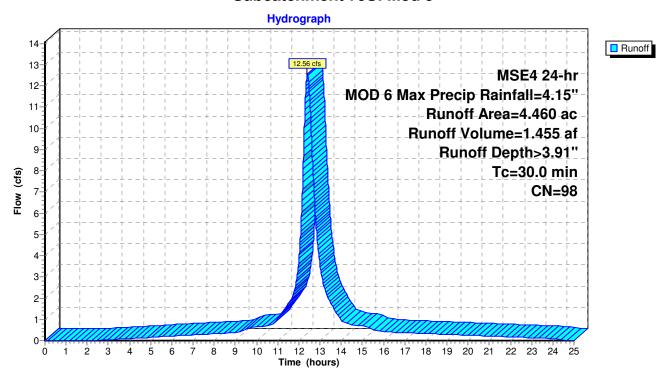
_	Area	(ac)	CN	Desc	ription		
*	4.	390	98	Mod	4		
· <u> </u>	4.390 100.00% Impervious Area						
	Тс	Leng	th	Slope	Velocity	Capacity	Description
_	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	25.0						Direct Entry, Estimated

Subcatchment 78S: Mod 4

Printed 6/9/2015

HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 7


Summary for Subcatchment 79S: Mod 5

Runoff = 12.56 cfs @ 12.40 hrs, Volume= 1.455 af, Depth> 3.91"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs MSE4 24-hr MOD 6 Max Precip Rainfall=4.15"

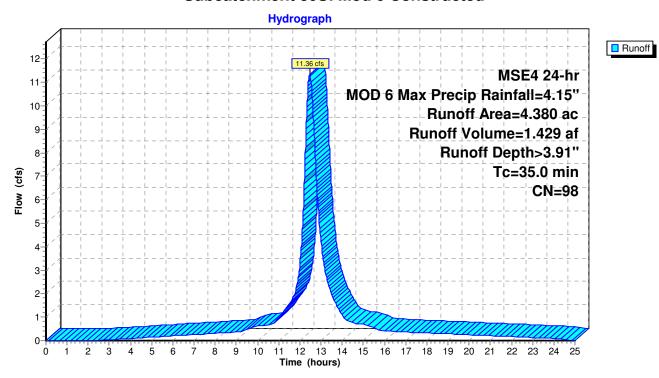
	Area	(ac)	CN	Desc	cription		
*	4.	460	98	Mod	5		
	4.460 100.00% Impervious Area						ı
	Тс	Lengt	th :	Slope	Velocity	Capacity	Description
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	·
	30.0						Direct Entry, Estimated

Subcatchment 79S: Mod 5

Printed 6/9/2015

HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 8


Summary for Subcatchment 80S: Mod 6 Constructed

Runoff = 11.36 cfs @ 12.48 hrs, Volume= 1.429 af, Depth> 3.91"

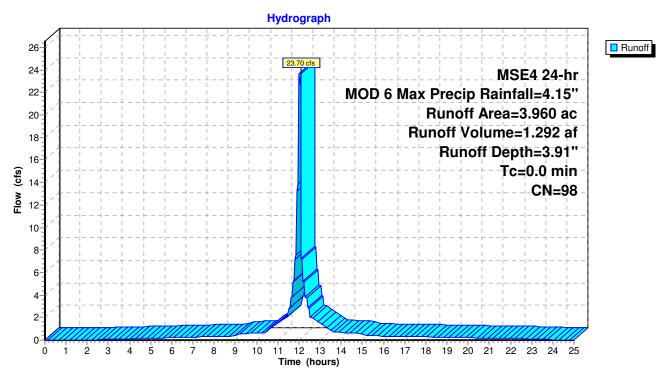
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs MSE4 24-hr MOD 6 Max Precip Rainfall=4.15"

_	Area	(ac)	CN	Desc	cription		
*	4.	380	98	Mod	6 no cove	r	
	4.380 100.00% Impervious Area						
	Тс	Leng	th	Slope	Velocity	Capacity	Description
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	35.0						Direct Entry, Estimated

Subcatchment 80S: Mod 6 Constructed

Page 9

Summary for Subcatchment 81S: Pond Area


[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 23.70 cfs @ 12.09 hrs, Volume= 1.292 af, Depth= 3.91"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs MSE4 24-hr MOD 6 Max Precip Rainfall=4.15"

	Area	(ac)	CN	Desc	cription		
*	3.	960	98				
	3.960 100.00% Impervious Area						
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	0.0	(100	, ()	(1011)	(10/300)	(013)	Direct Entry,

Subcatchment 81S: Pond Area

Columbia_Leachate Pond Evaluation (As-buil MSE4 24-hr MOD 6 Max Precip Rainfall=4.15"

Prepared by {enter your company name here}

Printed 6/9/2015

HydroCAD® 10.00-14 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 10

Summary for Pond 82P: Ex. Leachate Pond (As-built)

Inflow Area = 17.190 ac,100.00% Impervious, Inflow Depth > 3.91" for MOD 6 Max Precip event

Inflow = 40.45 cfs @ 12.39 hrs, Volume= 5.608 af

Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-25.00 hrs, dt= 0.01 hrs Starting Elev= 792.50' Surf.Area= 34,630 sf Storage= 15,714 cf

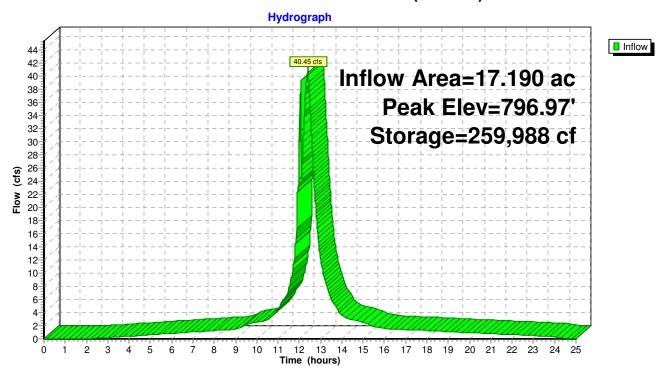
Peak Elev= 796.97' @ 25.00 hrs Surf.Area= 65,507 sf Storage= 259,988 cf (244,273 cf above start)

Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

Avail Ctarage Ctarage Description

131,220

Center-of-Mass det. time= (not calculated: no outflow)


69,056

798.00

volume	invert	Avaii.St	orage :	Storage	Description		
#1	792.00'	329,2	280 cf (Custon	n Stage Data (Pris	matic) Listed belo	w (Recalc)
Elevation (feet)	_	.Area (sq-ft)	Inc.S (cubic-	Store feet)	Cum.Store (cubic-feet)		
792.00	28	8,228	,	Ó	0		
794.00	5	3,834	82	,062	82,062		
796.00	6	2,164	115	,998	198,060		

Pond 82P: Ex. Leachate Pond (As-built)

329,280

SCS ENGINEERS

SHEET NO.		1 of	3
CALC. NO.			
REV. NO.			
BY	ES	DATE	9/8/16
CHK'D	RD	DATE	0/8/16

Job No.	25214194	Job	Columbia
Client	WPL	Subject	Ditch North of Module 3

Storm Water Management Calculations – Ditch North of Module 3

Purpose:

The purpose of the storm water runoff calculations is to demonstrate that the proposed ditch north of Module 3 is adequately sized to divert run-on from the 25-year, 24-hour storm event around Module 3.

Approach:

Hydrograph Generation

To properly size the ditch, a runoff hydrograph for the 25-year, 24-hour storm event was developed. HydroCAD was used to generate the hydrograph using TR-20 methodologies. The model is designed to simulate the surface runoff response of a watershed to a precipitation event. Input parameters for the model include precipitation depth for the design storm event, contributing drainage areas, runoff curve numbers, time of concentration, and travel time.

The contributing watershed is shown on Figure 1.

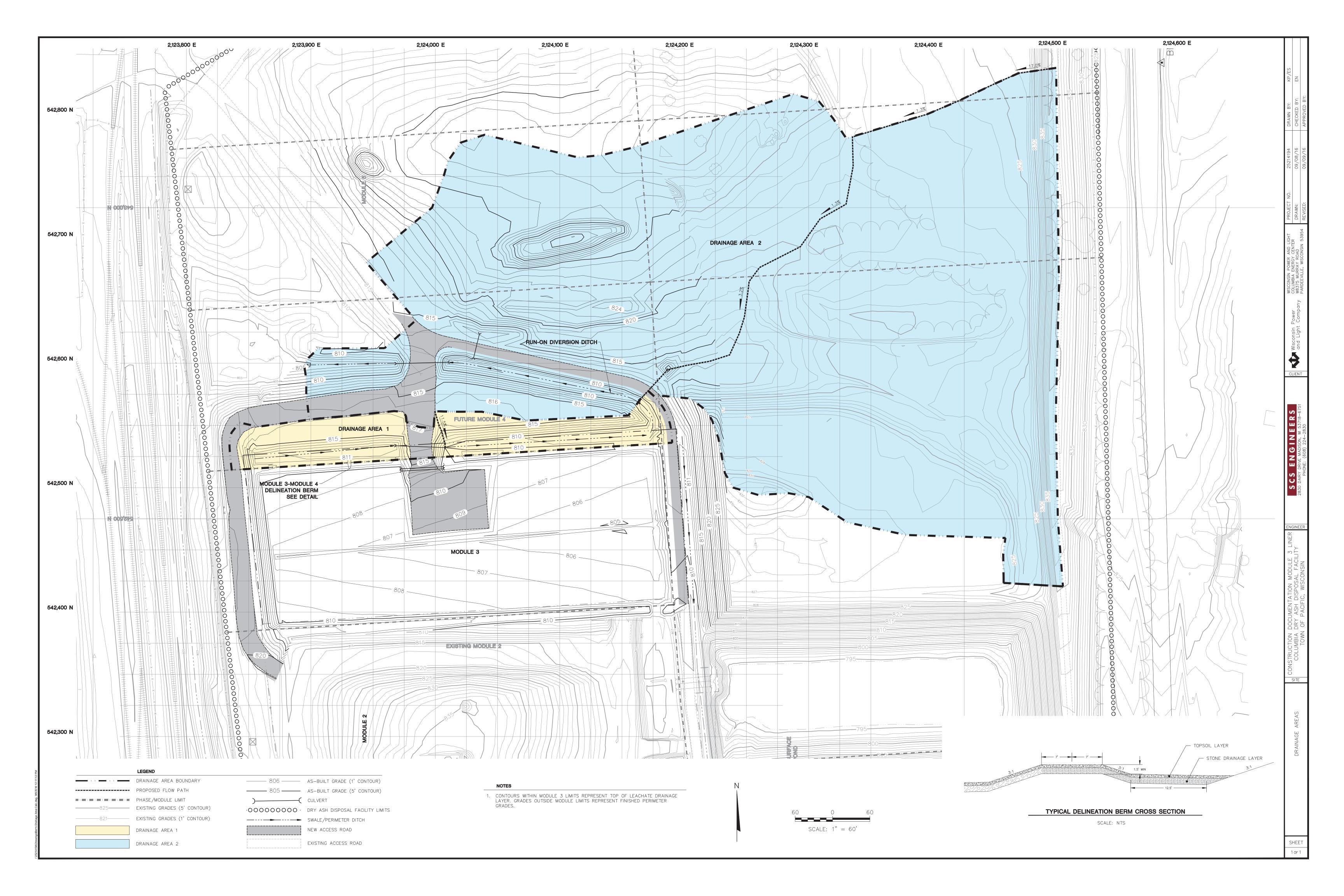
Ditch Sizing

The ditch, located just north of the Module 3 limits, was sized for the 25-year, 24-hour storm event using the Manning's equation to determine the depth of flow and stability in the ditch based on the ditch geometry and peak flow in the ditch (as determined by the Hydrograph Generation calculation). The Wisconsin DOT Grass Lined Swale spreadsheet was used to evaluate the flow depth in the ditch and ditch stability.

Key Assumptions:

 Runoff curve numbers were based on tables presented in Urban Hydrology for Small Watersheds, and were assumed as follows

Cover Type	CN
Grass areas	49 – Grass cover in fair condition, hydrologic soil group A
Gravel access road	96 – Compacted gravel surface


- The NOAA Atlas 14 precipitation depth of 4.91 inches and storm distribution MSE4 was used.
- Other assumptions are included with the calculations attached to this calculation.

Results:

The ditch north of Module 3 will accommodate runoff from the 25-year, 24-hour storm event without overtopping. The ditch provides over 0.5 foot of freeboard.

I:\25214194\Calcs\Stormwater\Ditch North of Mod 3\SW Calcs Writeup_160908.doc

Hydrograph Generation

• 25-year, 24-hour Storm Event

Drainage Area 2

Drainage Area 1

Storm Water Ditch at Mod 3 Limit

MSE 24-hr 4 25-yr, 24-hr Rainfall=4.91"

Prepared by {enter your company name here}

Printed 9/9/2016

HydroCAD® 10.00-15 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 2

Summary for Subcatchment 30S: Drainage Area 2

Runoff = 5.44 cfs @ 12.45 hrs, Volume= 0.753 af, Depth> 0.65"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs MSE 24-hr 4 25-yr, 24-hr Rainfall=4.91"

	Area	(ac) C	N Desc	cription		
	13.420 49 50-75% Grass cover, Fair,				cover, Fair	, HSG A
*	0.	431 9	<u>6 Grav</u>	⁄el		
	13.851 50 Weighted Average					
	13.851 100.00% Pervious Area				ous Area	
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	2.6	45	0.3300	0.28		Sheet Flow,
						Grass: Dense n= 0.240 P2= 2.78"
	8.4	55	0.0270	0.11		Sheet Flow,
						Grass: Dense n= 0.240 P2= 2.78"
	4.6	245	0.0160	0.89		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	8.6	535	0.0220	1.04		Shallow Concentrated Flow,
_						Short Grass Pasture Kv= 7.0 fps
	24.2	880	Total			

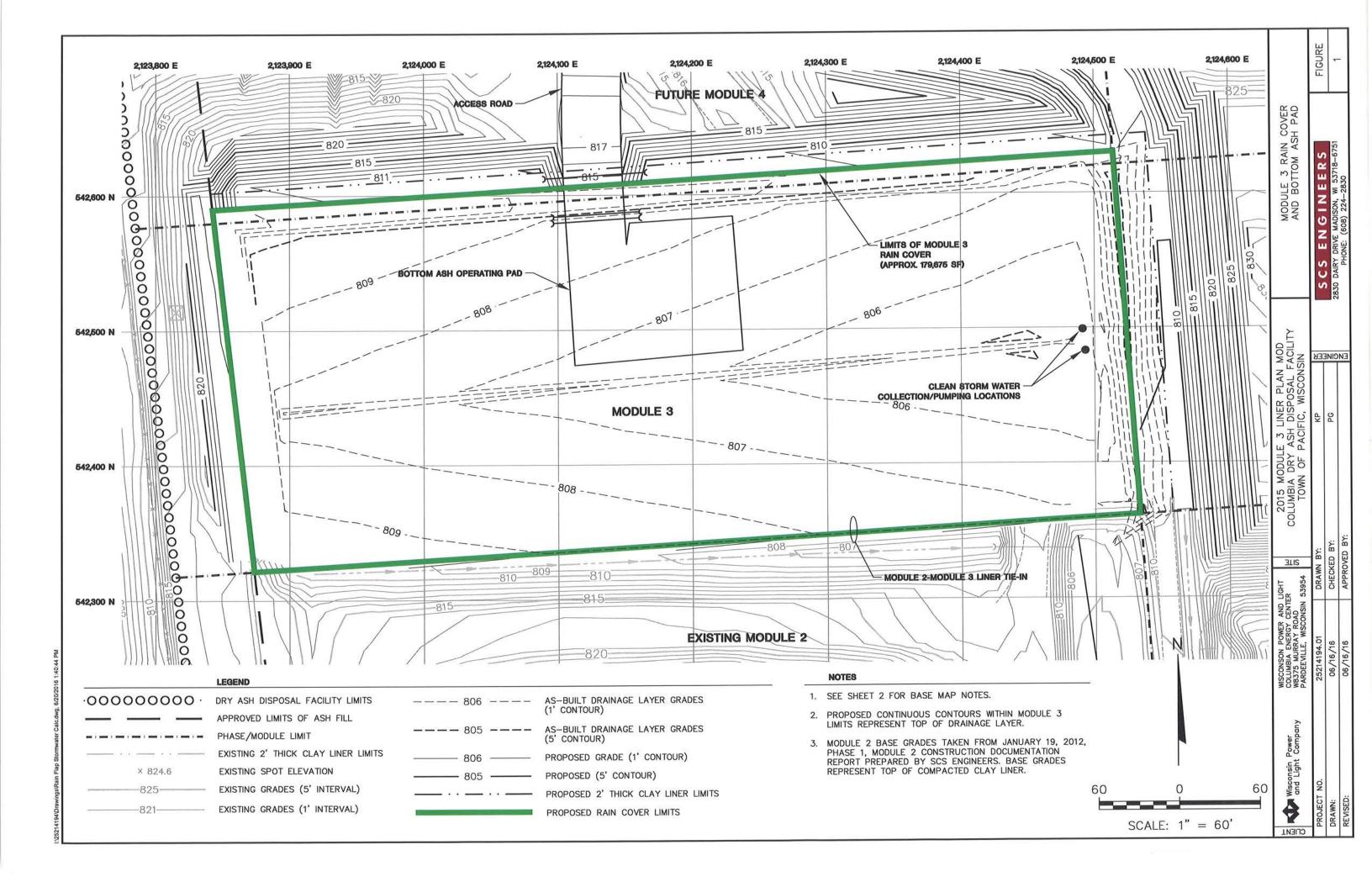
Summary for Subcatchment 31S: Drainage Area 1

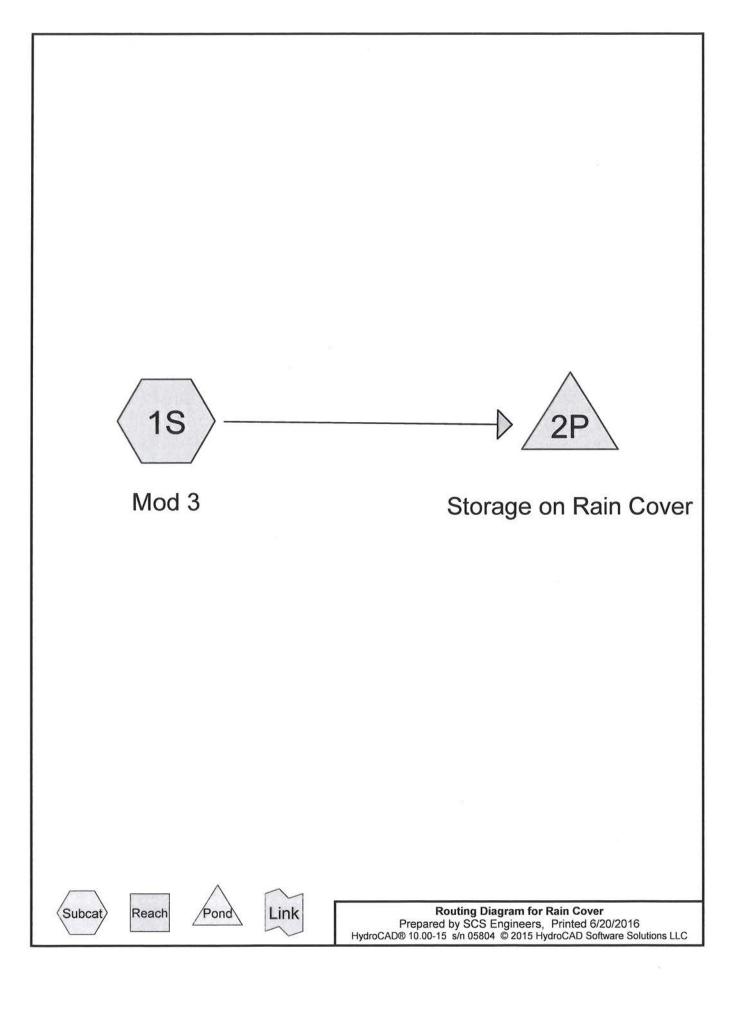
Runoff = 1.27 cfs @ 12.13 hrs, Volume= 0.071 af, Depth> 0.82"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs MSE 24-hr 4 25-yr, 24-hr Rainfall=4.91"

_	Area	(ac) C	N Des	cription					
	0.953 49 50-75% Grass cover, Fair, HSG A								
*	0.	087	96 Grav	⁄el					
	1.040 53 Weighted Average								
	1.040 100.00% Pervious Area								
	Тс	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	2.9	34	0.0600	0.20		Sheet Flow,			
						Grass: Short	n = 0.150	P2= 2.78"	
	1.5	27	0.1850	0.30		Sheet Flow,			
_						Grass: Short	n= 0.150	P2= 2.78"	
	4.4	61	Total						

1 Lining Type: Vegetation


2	Project ID: 25214194
3	Location: Columbia
4	Designer/Checker: ES/BLP
5	Date:
۵'	


6			
7 8		25-yr, 24-hr	25-yr, 24-hr
9	Channel/Ditch Geometry	Drainage Area 1 Portion	Drainage Area 2 Portion
-	Channel Slope, S _o (ft/ft)	0.005	0.005
	Channel Bottom Width, B (ft)	12.5	12.5
12	Channel Side Slope, z ₁	3	3
13	Channel Side Slope, z ₂	3	3
14	Flow Depth, d (ft) Solve iteratively	0.30	0.59
15	Safety Factor, SF	1.0	1.0
16	Vegetation/Soil Parameters		
-	Vegetation Retardance Class	С	С
	Vegetation Condition	good	good
19	Vegetation Growth Form	turf	turf
20	Soil Type	noncohesive	noncohesive
21	D ₇₅ (in) (Set at 0.00 for cohesive soils)		
22	ASTM Soil Class	SC	SC
23	Plasticity Index, PI	16	16
24	Results Summary		
25	Design Q (ft ³ /s)	1.3	5.4
	Calculated Q (ft ³ /s)	1.3	5.5
27	Difference Between Design & Calc. Flow (%)	1.9%	1.0%
28	Stable (Yes or No)	YES	YES
29	Channel Parameters		
30	Vegetation Height, h (ft)	0.67	0.67
	Grass Roughness Coefficient, C _n	0.238	0.238
32	Cover Factor, C _f	0.90	0.90
33	Noncohesive Soil		
34	Soil Grain Roughness, n _s	0.016	0.016
35	Permissible Soil Shear Stress, τ _p (lb/ft ²)	0.020	0.020
36	Cohesive Soil		
37	Porosity, e	0.35	0.35
38	Soil Coefficient 1, c ₁	1.0700	1.0700
39	Soil Coefficient 2, c ₂	14.30	14.30
-	Soil Coefficient 3, c ₃	47.700	47.700
	Soil Coefficient 4, c ₄	1.42	1.42
	Soil Coefficient 5, c ₅	-0.61	-0.61
	Soil Coefficient 6, c ₆	0.00010	0.00010
	Permissible Soil Shear Stress, τ _p (lb/ft²)	N/A	N/A
	Total Permissible Shear Stress, τ _p (lb/ft²)	0.020	0.020
	Cross Sectional Area, A (ft²)	3.991	8.419
	Wetted Perimeter, P (ft)	14.38	16.23
	Hydraulic Radius, R (ft)	0.277	0.519
	Top Width, T (ft)	14.29	16.04
	Hydraulic Depth, D (ft) Froude Number (Q design)	0.279 0.111	0.525 0.158
	Channel Shear Stress, τ_0 (lb/ft ²)	0.09	0.158
	Actual Sheer Stress, τ_0 (lb/ft²)	0.09	0.18
	Mannings n	0.135	0.105
	Average Velocity, V (ft/s)	0.33	0.64
	Calculated Flow, Q (ft ³ /s)	1.3	5.5
	Difference Between Design & Calc. Flow (%)	1.9%	1.0%
	Effective Shear on Soil Surface, τ_e (lb/ft ²)	0.000	0.000
	Total Permissible Shear on Veg., $\tau_{\text{p.veg}}$ (lb/ft ²)	14.24	8.61
	Stable (Y or N)	YES	YES
			. =0

SCS ENGINEERS

Sheet No.
Calc. No.
Rev. No.
By KRG Date 6/17/16

lob No.	2521	4194					Job	Alli	ant -	Col	umbi	a						By	KRO	3		Date	e 6/1'	7/16	
Client	Allia	nt					Sub	ject	Stor	mwa	iter S	Stora	ge o	n Rai	in Co	ver		Chk	'd Bl)		Date	e 6/2	0/16	
			-	_																					
	Purp	ose:																							
	7	To ev	aluate	the	abil	ity o	f Mo	odule	e 3 to	con	tain	runc	ff fr	om v	ariou	ıs sto	rm e	vent	s up	to th	e 10	0-yr,	24-ŀ	ır	
	5	storm	with	the r	ainc	cove	r in p	olace																	
	Meth	od:																							
			[ydro	CAD) to 1	mode	el the	e sto	rm e	vent	s. wi	th th	e mo	dule	area	set i	ın as	a no	nd.						
			7								,														
	A ccu	mpti	one																						
			al drai	inoc	2 0 20		4 12	0.000	0																
										100								-							
			runo																				\vdash		
_			re wil																				\vdash		
	,		re wil																			o a			
		drai	nage	area	that	goe	s to t	the le	eacha	ate b	asin.	No	tch a	ssun	ned to	o be	5 ft v	vide	at El	. 808	3.				
	:	* The	starti	ng w	vater	elev	vatio	n in	the N	Modu	ıle b	efore	the	start	fo th	ne rai	in ev	ent i	s 806	5.0.					
	;	* The	capa	city (of th	e M	odul	e is l	oasec	d on	as-bı	ailt c	onto	urs c	f the	top	of th	e lea	chat	e dra	inag	e lay	er (se	ee	
		Fig	ure 1)).																					
		* Use	NOA	A A	tlas	14 p	reci	pitat	ion d	lata,	with	stor	m di	stribı	ıtion	MS	E 4.								
	;	* Mo	del ru	ınoff	fro	m th	e 1-y	yr, 2-	yr, 5	-yr,	10-y	r, 25	-yr, 5	50-yr	and	100-	year	, 24-	hour	stor	m ev	ents.			
							Ĭ										İ								
	Resu	lts:		\neg																					
			a start	ting	wate	r ele	vati	n of	806	0 th	e mo	dule	is al	ale to	con	tain	the r	unof	f froi	m all	the	storr	ns IIr	to	
			00-yr,												0011				110		tiic		iio up		
	<u> </u>	iic ro	70-y1,	271	11 500	71111	CVCII	t WI	liout	OVC	Гюрг	Jilig.													
_				+																					
			-	+		-											-								
_	\vdash		-	+		-											-						\vdash		
				-	_																				
			_	4																					
				_																			Ш		
				\neg																					
\neg			\neg			\dashv																			
			-	+		\dashv																	\vdash		
	١,	1.050	14104	Cc1	~\C+			Da!									-	-					H		
		:\252	14194	Calc	s\Stc	ormw	ater\	Kain									_	_					\vdash		

Prepared by SCS Engineers

HydroCAD® 10.00-15 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 2

Summary for Subcatchment 1S: Mod 3

[49] Hint: Tc<2dt may require smaller dt

Runoff

14.64 cfs @ 12.06 hrs, Volume=

0.838 af, Depth= 2.44"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs MSE 24-hr 4 1-yr Rainfall=2.44"

	Area	(ac) C	N Des	cription	_	
*	4.	120 10	00 Impe	ervious Ra	in Cover	
	4.	120	100.	00% Impe	rvious Area	i
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	0.1	25	0.3300	2.98	dillo Mi	Sheet Flow, Smooth surfaces n= 0.011 P2= 2.78"
	0.7	115	0.0200	2.87		Shallow Concentrated Flow, Flow across cell Paved Kv= 20.3 fps
Ī	0.8	140	Total			

Prepared by SCS Engineers

HydroCAD® 10.00-15 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 3

Summary for Pond 2P: Storage on Rain Cover

Inflow Area = 4.120 ac,100.00% Impervious, Inflow Depth = 2.44" for 1-yr event

Inflow = 14.64 cfs @ 12.06 hrs, Volume= 0.838 af

Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 min

Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs Starting Elev= 806.00' Surf.Area= 20,423 sf Storage= 10,322 cf

Peak Elev= 806.92' @ 24.10 hrs Surf.Area= 59,211 sf Storage= 46,811 cf (36,489 cf above start)

Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

Center-of-Mass det. time= (not calculated: no outflow)

Volume	Inv	ert Avail.Sto	rage Storage	Description	
#1	805.0	00' 271,22	26 cf Custom	Stage Data (Pr	ismatic) Listed below (Recalc)
Elevatio	79.0	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
805.0	00	221	0	0	
806.0	00	20,423	10,322	10,322	
807.0	00	62,749	41,586	51,908	
808.0	00	114,149	88,449	140,357	
809.0	00	147,589	130,869	271,226	
Device	Routing	Invert	Outlet Devices	S	
#1	Primary	808.00'	5.0' long x 3.	0' breadth Broa	d-Crested Rectangular Weir
	850		Head (feet) 0	.20 0.40 0.60	0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.5	50 4.00 4.50	
			Coef. (English) 2.44 2.58 2.	68 2.67 2.65 2.64 2.64 2.68 2.68
			2.72 2.81 2.9	2 2.97 3.07 3	.32

Printed 6/20/2016 2:15:58 PM

Rain Cover

Prepared by SCS Engineers

HydroCAD® 10.00-15 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 4

Summary for Subcatchment 1S: Mod 3

[49] Hint: Tc<2dt may require smaller dt

Runoff

16.68 cfs @ 12.06 hrs, Volume=

0.954 af, Depth= 2.78"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs MSE 24-hr 4 2-yr Rainfall=2.78"

	Area	(ac) C	N Des	cription		
*	4.	120 10	00 Impe	ervious Ra	in Cover	
	4.	120	100.	00% Impe	rvious Area	1
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	0.1	25	0.3300	2.98		Sheet Flow, Smooth surfaces n= 0.011 P2= 2.78"
	0.7	115	0.0200	2.87		Shallow Concentrated Flow, Flow across cell Paved Kv= 20.3 fps
	0.8	140	Total			-

Prepared by SCS Engineers

HydroCAD® 10.00-15 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 5

Summary for Pond 2P: Storage on Rain Cover

Inflow Area = 4.120 ac,100.00% Impervious, Inflow Depth = 2.78" for 2-yr event

Inflow = 16.68 cfs @ 12.06 hrs, Volume= 0.954 af

Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 min

Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs

Starting Elev= 806.00' Surf.Area= 20,423 sf Storage= 10,322 cf

Peak Elev= 807.00' @ 24.10 hrs Surf.Area= 62,743 sf Storage= 51,898 cf (41,576 cf above start)

Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

Center-of-Mass det. time= (not calculated: no outflow)

Volume	Inv	ert Avail.Sto	rage Storage	Description		
#1	805.	00' 271,22	26 cf Custom	Stage Data (Pri	smatic) Listed below (Re	calc)
Elevatio	et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
805.0	00	221	0	0		
806.0	00	20,423	10,322	10,322		
807.0	00	62,749	41,586	51,908		
808.0	00	114,149	88,449	140,357		
809.0	00	147,589	130,869	271,226		
Device	Routing	Invert	Outlet Device	S		
#1	Primary	808.00'	5.0' long x 3.	0' breadth Broa	d-Crested Rectangular V	Veir
			Head (feet) 0	0.20 0.40 0.60 (0.80 1.00 1.20 1.40 1.6	0 1.80 2.00
			2.50 3.00 3.5	50 4.00 4.50		
			Coef. (English	n) 2.44 2.58 2.6	68 2.67 2.65 2.64 2.64	2.68 2.68
			2.72 2.81 2.9	92 2.97 3.07 3.	.32	

Prepared by SCS Engineers

HydroCAD® 10.00-15 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 6

Summary for Subcatchment 1S: Mod 3

[49] Hint: Tc<2dt may require smaller dt

Runoff

20.40 cfs @ 12.06 hrs, Volume=

1.167 af, Depth= 3.40"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs MSE 24-hr 4 5-yr Rainfall=3.40"

	Area	(ac) C	N Des	cription		
*	4.	120 10	00 Impe	ervious Ra	in Cover	
	4.	120	100.	00% Impe	rvious Area	1
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	0.1	25	0.3300	2.98		Sheet Flow, Smooth surfaces n= 0.011 P2= 2.78"
	0.7	115	0.0200	2.87		Shallow Concentrated Flow, Flow across cell Paved Kv= 20.3 fps
_	0.8	140	Total			

Prepared by SCS Engineers

HydroCAD® 10.00-15 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 7

Summary for Pond 2P: Storage on Rain Cover

Inflow Area = 4.120 ac,100.00% Impervious, Inflow Depth = 3.40" for 5-yr event

Inflow = 20.40 cfs @ 12.06 hrs, Volume= 1.167 af

Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 min

Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs

Starting Elev= 806.00' Surf.Area= 20,423 sf Storage= 10,322 cf

Peak Elev= 807.14' @ 24.10 hrs Surf.Area= 69,919 sf Storage= 61,161 cf (50,839 cf above start)

Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

Center-of-Mass det. time= (not calculated: no outflow)

Volume	lnv	ert Avail.Sto	rage Storage	Description	
#1	805.	00' 271,2	26 cf Custom	Stage Data (Pris	smatic) Listed below (Recalc)
Elevation	on	Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
805.0	00	221	0	0	
806.0	00	20,423	10,322	10,322	
807.0	00	62,749	41,586	51,908	
808.0	00	114,149	88,449	140,357	
809.0	00	147,589	130,869	271,226	
Device	Routing	Invert	Outlet Devices	5	
#1	Primary	808.00'	5.0' long x 3.0	0' breadth Broad	d-Crested Rectangular Weir
	an oraclescent		Head (feet) 0	.20 0.40 0.60 0	0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.5	0 4.00 4.50	
			Coef. (English) 2.44 2.58 2.6	88 2.67 2.65 2.64 2.64 2.68 2.68
			272 281 29	2 2 97 3 07 3	32

Prepared by SCS Engineers

HydroCAD® 10.00-15 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 8

Summary for Subcatchment 1S: Mod 3

[49] Hint: Tc<2dt may require smaller dt

Runoff

23.94 cfs @ 12.06 hrs, Volume=

1.370 af, Depth= 3.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs MSE 24-hr 4 10-yr Rainfall=3.99"

	Area	(ac) C	N Desc	cription		
*	4.	120 10	00 Impe	ervious Ra	in Cover	
	4.	120	100.	00% Impe	rvious Area	E Company of the Comp
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	0.1	25	0.3300	2.98		Sheet Flow, Smooth surfaces n= 0.011 P2= 2.78"
-	0.7	115	0.0200	2.87		Shallow Concentrated Flow, Flow across cell Paved Kv= 20.3 fps
et -	0.8	140	Total			

Prepared by SCS Engineers

HydroCAD® 10.00-15 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 9

Summary for Pond 2P: Storage on Rain Cover

Inflow Area = 4.120 ac,100.00% Impervious, Inflow Depth = 3.99" for 10-yr event

Inflow = 23.94 cfs @ 12.06 hrs, Volume= 1.370 af

Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 min

Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs Starting Elev= 806.00' Surf.Area= 20,423 sf Storage= 10,322 cf

Peak Elev= 807.26' @ 24.10 hrs Surf.Area= 76,130 sf Storage= 69,985 cf (59,663 cf above start)

Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

Center-of-Mass det. time= (not calculated: no outflow)

Volume	Inv	ert Avail.Sto	rage Storage	Description		
#1	805.0	00' 271,2	26 cf Custom	Stage Data (Prisi	matic) Listed below (Recalc)
Elevation	on	Surf.Area	Inc.Store	Cum.Store		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)		
805.0	00	221	0	0		
806.0	00	20,423	10,322	10,322		
807.0	00	62,749	41,586	51,908		
808.0	00	114,149	88,449	140,357		
809.0	00	147,589	130,869	271,226		<u></u>
Device	Routing	Invert	Outlet Device	s		
#1	Primary	808.00'	5.0' long x 3.	0' breadth Broad-	-Crested Rectangula	ar Weir
	150		Head (feet) 0	0.20 0.40 0.60 0.	80 1.00 1.20 1.40	1.60 1.80 2.00
			2.50 3.00 3.			
			Coef. (English	n) 2.44 2.58 2.68	3 2.67 2.65 2.64 2.	64 2.68 2.68
			2.72 2.81 2.9	92 2.97 3.07 3.3	2	

Printed 6/20/2016 2:15:59 PM

Rain Cover

Prepared by SCS Engineers

HydroCAD® 10.00-15 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 10

Summary for Subcatchment 1S: Mod 3

[49] Hint: Tc<2dt may require smaller dt

Runoff

29.46 cfs @ 12.06 hrs, Volume=

1.686 af, Depth= 4.91"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs MSE 24-hr 4 25-yr Rainfall=4.91"

	Area	(ac) C	N Des	cription		
k	4.	120 10	00 Impe	ervious Ra	in Cover	
	4.	120	100.	00% Impe	rvious Area	a .
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	0.1	25	0.3300	2.98		Sheet Flow, Smooth surfaces n= 0.011 P2= 2.78"
	0.7	115	0.0200	2.87		Shallow Concentrated Flow, Flow across cell Paved Kv= 20.3 fps
	0.8	140	Total			

Prepared by SCS Engineers

HydroCAD® 10.00-15 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 11

Summary for Pond 2P: Storage on Rain Cover

Inflow Area = 4.120 ac,100.00% Impervious, Inflow Depth = 4.91" for 25-yr event

Inflow = 29.46 cfs @ 12.06 hrs, Volume= 1.686 af

Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 min

Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs

Starting Elev= 806.00' Surf.Area= 20,423 sf Storage= 10,322 cf

Peak Elev= 807.43' @ 24.10 hrs Surf.Area= 84,915 sf Storage= 83,747 cf (73,425 cf above start)

Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

Center-of-Mass det. time= (not calculated: no outflow)

Volume	Inv	ert Avail.Sto	rage Storage	Description	
#1	805.	00' 271,2	26 cf Custom	Stage Data (Pri	ismatic) Listed below (Recalc)
Elevation	2003	Surf.Area	Inc.Store	Cum.Store	
(fee	∋τ)	(sq-ft)	(cubic-feet)	(cubic-feet)	
805.0	00	221	0	0	
806.0	00	20,423	10,322	10,322	
807.0	00	62,749	41,586	51,908	
808.0	00	114,149	88,449	140,357	
809.0	00	147,589	130,869	271,226	
Device	Routing	Invert	Outlet Device	es	
#1 Primary		808.00'	Head (feet) 0 2.50 3.00 3.0 Coef. (English	0.20 0.40 0.60 50 4.00 4.50	0.80 1.00 1.20 1.40 1.60 1.80 2.00 68 2.67 2.65 2.64 2.64 2.68 2.68 .32

Prepared by SCS Engineers

HydroCAD® 10.00-15 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 12

Summary for Subcatchment 1S: Mod 3

[49] Hint: Tc<2dt may require smaller dt

Runoff

34.25 cfs @ 12.06 hrs, Volume=

1.960 af, Depth= 5.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs MSE 24-hr 4 50-yr Rainfall=5.71"

	Area	(ac) C	N Des	cription		
*	4.	120 10	00 Impe	ervious Ra	in Cover	
	4.	120	100.	00% Impe	rvious Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	0.1	25	0.3300	2.98	(3.3)	Sheet Flow,
	0.7	115	0.0200	2.87		Smooth surfaces n= 0.011 P2= 2.78" Shallow Concentrated Flow, Flow across cell Paved Kv= 20.3 fps
	0.8	140	Total			5

Prepared by SCS Engineers

HydroCAD® 10.00-15 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 13

Summary for Pond 2P: Storage on Rain Cover

Inflow Area = 4.120 ac,100.00% Impervious, Inflow Depth = 5.71" for 50-yr event

Inflow = 34.25 cfs @ 12.06 hrs, Volume= 1.960 af

Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 min

Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs

Starting Elev= 806.00' Surf.Area= 20,423 sf Storage= 10,322 cf

Peak Elev= 807.57' @ 24.10 hrs Surf.Area= 91,873 sf Storage= 95,713 cf (85,391 cf above start)

Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

Center-of-Mass det. time= (not calculated: no outflow)

Volume	Inv	ert Avail.Sto	rage Storage	Description	
#1	805.0	00' 271,2	26 cf Custom	n Stage Data (Pri	smatic) Listed below (Recalc)
Elevatio (fee 805.0 806.0 807.0 808.0 809.0	et) 00 00 00 00	Surf.Area (sq-ft) 221 20,423 62,749 114,149 147,589	Inc.Store (cubic-feet) 0 10,322 41,586 88,449 130,869	Cum.Store (cubic-feet) 0 10,322 51,908 140,357 271,226	
Device #1	Routing Primary	Invert 808.00'	Head (feet) (2.50 3.00 3. Coef. (Englis	.0' breadth Broa 0.20 0.40 0.60 (50 4.00 4.50	d-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 68 2.67 2.65 2.64 2.64 2.68 2.68 32

Prepared by SCS Engineers

Printed 6/20/2016 2:15:59 PM

HydroCAD® 10.00-15 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 14

Summary for Subcatchment 1S: Mod 3

[49] Hint: Tc<2dt may require smaller dt

Runoff

39.53 cfs @ 12.06 hrs, Volume=

2.263 af, Depth= 6.59"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs MSE 24-hr 4 100-yr Rainfall=6.59"

-	Area	(ac) C	N Des	cription		
*	4.	120 10	00 Impe	ervious Ra	in Cover	
3	4.120 100.00% Impervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	0.1	25	0.3300	2.98	, , , ,	Sheet Flow, Smooth surfaces n= 0.011 P2= 2.78"
	0.7	115	0.0200	2.87		Shallow Concentrated Flow, Flow across cell Paved Kv= 20.3 fps
	0.8	140	Total			

Prepared by SCS Engineers

HydroCAD® 10.00-15 s/n 05804 © 2015 HydroCAD Software Solutions LLC

Page 15

Summary for Pond 2P: Storage on Rain Cover

Inflow Area = 4.120 ac,100.00% Impervious, Inflow Depth = 6.59" for 100-yr event

Inflow = 39.53 cfs @ 12.06 hrs, Volume= 2.263 af

Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 min

Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-26.00 hrs, dt= 0.05 hrs

Starting Elev= 806.00' Surf.Area= 20,423 sf Storage= 10,322 cf

Peak Elev= 807.70' @ 24.10 hrs Surf.Area= 98,960 sf Storage= 108,870 cf (98,548 cf above start)

Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

Center-of-Mass det. time= (not calculated: no outflow)

Volume	Inv	ert Avail.Sto	rage Storage	Description	
#1	805.0	00' 271,2	26 cf Custom	Stage Data (Pris	matic) Listed below (Recalc)
Elevation		Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
805.0	00	221	0	0	
806.0	00	20,423	10,322	10,322	
807.0	00	62,749	41,586	51,908	
808.0	00	114,149	88,449	140,357	
809.0	00	147,589	130,869	271,226	
Device	Routing	Invert	Outlet Device	s	
#1	Primary	808.00'	5.0' long x 3.	0' breadth Broad	-Crested Rectangular Weir
			Head (feet) 0	.20 0.40 0.60 0	.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.5	50 4.00 4.50	
			Coef. (English	1) 2.44 2.58 2.68	8 2.67 2.65 2.64 2.64 2.68 2.68
			2.72 2.81 2.9	92 2.97 3.07 3.3	32

NOAA Atlas 14, Volume 8, Version 2 Location name: Pardeeville, Wisconsin, US* Latitude: 43.4868°, Longitude: -89.4128° Elevation: 811 ft* * source: Google Maps

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

PDS	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹ Average recurrence interval (years)									
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.367 (0.318-0.433)	0.416 (0.361-0.492)	0.504 (0.435-0.596)	0.581 (0.499-0.690)	0.696 (0.580-0.857)	0.791 (0.642-0.983)	0.891 (0.697-1.13)	0.998 (0.746-1.30)	1.15 (0.824-1.53)	1.27 (0.882-1.70)
10-min	0.537 (0.466-0.634)	0.610 (0.528-0.720)	0.737 (0.637-0.873)	0.851 (0.730-1.01)	1.02 (0.849-1.26)	1.16 (0.939-1.44)	1.30 (1.02-1.66)	1.46 (1.09-1.90)	1.68 (1.21-2.24)	1.86 (1.29-2.49)
15-min	0.655 (0.568-0.773)	0.744 (0.644-0.878)	0.899 (0.776-1.06)	1.04 (0.891-1.23)	1.24 (1.04–1.53)	1.41 (1.15–1.76)	1.59 (1.24-2.02)	1.78 (1.33-2.32)	2.05 (1.47-2.73)	2.27 (1.58-3.04)
30-min	0.908 (0.788-1.07)	1.03 (0.894-1.22)	1.25 (1.08–1.48)	1.44 (1.24-1.71)	1.73 (1.44-2.13)	1.97 (1.60-2.45)	2.22 (1.73–2.82)	2.49 (1.86-3.23)	2.87 (2.06-3.81)	3.17 (2.20-4.25)
60-min	1.15 (1.00-1.36)	1.33 (1.15-1.57)	1.63 (1.41-1.93)	1.91 (1.64-2.26)	2.32 (1.94-2.87)	2.66 (2.16-3.32)	3.03 (2.37-3.85)	3.42 (2.56-4.45)	3.98 (2.86-5.30)	4.43 (3.08-5.94)
2-hr	1.40 (1.22-1.64)	1.62 (1.41-1.90)	2.01 (1.75-2.36)	2.37 (2.05-2.79)	2.91 (2.44-3.57)	3.36 (2.75-4.16)	3.84 (3.03-4.85)	4.36 (3.29–5.64)	5.10 (3.68-6.74)	5.69 (3.99–7.58)
3-hr	1.54 (1.35-1.80)	1.80 (1.57-2.10)	2.25 (1.97–2.64)	2.67 (2.32–3.14)	3.31 (2.79-4.05)	3.84 (3.16-4.75)	4.42 (3.50-5.57)	5.05 (3.82-6.51)	5.94 (4.31–7.83)	6.66 (4.68-8.83)
6-hr	1.82 (1.61–2.11)	2.11 (1.86–2.44)	2.64 (2.31-3.06)	3.13 (2.73-3.65)	3.90 (3.32-4.76)	4.55 (3.77-5.60)	5.27 (4.21-6.61)	6.06 (4.62-7.77)	7.18 (5.26-9.43)	8.11 (5.75–10.7)
12-hr	2.14 (1.90-2.46)	2.43 (2.15–2.79)	2.98 (2.63-3.43)	3.51 (3.08-4.05)	4.34 (3.74–5.28)	5.07 (4.24–6.21)	5.88 (4.73-7.33)	6.77 (5.21–8.64)	8.06 (5.95-10.5)	9.13 (6.52-11.9)
24-hr	2.44 (2.18–2.78)	2.78 (2.47-3.16)	(3.40 (3.02-3.88)	3.99 (3.52-4.58)	4.91 (4.25-5.91)	5.71 (4.80–6.93)	(5.34-8.15)	7.56 (5.86–9.56)	8.96 (6.66-11.6)	10.1 (7.27–13.1)
2-day	2.73 (2.46-3.09)	3.18 (2.85-3.60)	3.97 (3.55-4.50)	4.69 (4.16-5.33)	5.76 (4.99-6.83)	6.66 (5.61–7.97)	7.62 (6.19-9.31)	8.65 (6.73-10.8)	10.1 (7.56–13.0)	11.3 (8.18-14.6)
3-day	3.01 (2.71-3.38)	3.48 (3.14-3.92)	4.32 (3.88-4.88)	5.08 (4.53-5.75)	6.20 (5.38-7.31)	7.13 (6.03–8.48)	8.12 (6.62-9.87)	9.18 (7.17-11.4)	10.7 (8.00-13.6)	11.9 (8.64-15.2)
4-day	3.25 (2.94-3.65)	3.75 (3.38-4.20)	4.61 (4.15–5.18)	5.38 (4.81-6.07)	6.53 (5.68-7.66)	7.48 (6.34–8.86)	8.48 (6.94-10.3)	9.56 (7.49–11.9)	11.1 (8.34–14.1)	12.3 (8.97-15.7)
7-day	3.89 (3.53-4.33)	4.42 (4.01–4.93)	5.36 (4.85-5.99)	6.19 (5.56-6.94)	7.41 (6.48-8.63)	8.42 (7.17-9.90)	9.48 (7.79–11.4)	10.6 (8.36–13.1)	12.2 (9.23–15.4)	13.5 (9.89–17.1)
10-day	4.45 (4.05-4.93)	5.03 (4.58-5.59)	6.04 (5.48-6.72)	6.93 (6.25-7.74)	8.22 (7.20-9.51)	9.28 (7.93–10.8)	10.4 (8.56-12.4)	11.6 (9.13-14.1)	13.2 (10.0–16.5)	14.5 (10.7–18.4)
20-day	6.08 (5.58-6.69)	6.83 (6.25-7.51)	8.07 (7.37–8.90)	9.13 (8.29-10.1)	10.6 (9.34-12.1)	11.8 (10.1-13.6)	13.0 (10.8-15.4)	14.3 (11.3~17.3)	16.0 (12.2-19.8)	17.3 (12.8-21.8)
30-day	7.47 (6.88–8.18)	8.38 (7.70-9.18)	9.86 (9.03-10.8)	11.1 (10.1–12.2)	12.8 (11.2-14.4)	14.1 (12.1–16.1)	15.4 (12.8–18.0)	16.7 (13.3–20.1)	18.4 (14.1–22.7)	19.8 (14.7-24.8)
45-day	9.27 (8.57-10.1)	10.4 (9.60–11.3)	12.2 (11.2-13.4)	13.7 (12.5-15.0)	15.7 (13.8-17.6)	17.1 (14.8–19.5)	18.6 (15.5-21.6)	20.0 (16.0-23.8)	21.8 (16.7-26.7)	23.1 (17.3–28.9)
60-day	10.8 (10.0-11.7)	12.2 (11.3–13.2)	14.3 (13.2–15.6)	16.0 (14.7-17.5)	18.2 (16.1-20.3)	19.9 (17.2-22.5)	21.4 (17.9–24.8)	22.9 (18.4-27.2)	24.8 (19.1–30.3)	26.1 (19.7-32.5)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical