SCS ENGINEERS

Closure Plan							
Phase	1	Module	1				
Phase	1	Module	2				
Phase	1	Module	3				
Phase	1	Module	4				

Columbia Dry Ash Disposal Facility

Prepared for:

Wisconsin Power and Light Company

Columbia Energy Center W8375 Murray Road Pardeeville, Wisconsin 53954

Prepared by:

SCS ENGINEERS

2830 Dairy Drive Madison, Wisconsin 53718-6751 (608) 224-2830

> October 2018 File No. 25217156.00

Offices Nationwide www.scsengineers.com Closure Plan Phase 1 Module 1 Phase 1 Module 2 Phase 1 Module 3 Phase 1 Module 4

Columbia Dry Ash Disposal Facility

Prepared for:

Wisconsin Power and Light Company Columbia Energy Center W8375 Murray Road Pardeeville, Wisconsin 53954

Prepared by:

SCS ENGINEERS 2830 Dairy Drive Madison, Wisconsin 53718-6751 (608) 224-2830

> October 2018 File No. 25217156.00

Table of Contents

Sectio	on Pc	ige
PE Ce	ertification	iii
1.0	Introduction and Project Summary	. 1
2.0	Proposed Closure Plan Narrative	1
3.0	Final Cover System and Performance	2
4.0	Maximum Inventory of CCR	5
5.0	Largest Area of CCR Unit Requiring Final Cover	5
6.0	Schedule of Sequential Closure Activities	5
7.0	Completion of Closure Activities	6
8.0	Certification	6
9.0	Recordkeeping and Reporting	7

i

Figures

1	Site	Location	Мар

- 2 Initial Closure Plan
- 3 Final Cover System

Appendices

- A Stability Calculations
- B Schedule

I:\25217156.00\Deliverables\Closure Plan\181004_COL Landfill_Closure Plan Amendment 2018.docx

[This page left blank intentionally]

	I, Eric J. Nelson, hereby certify the following:
ERIC J. NELSON E-37855-006 STITZER, WIS.	 This Closure Plan meets the requirements of 40 CFR 257.102(b) The final cover system described in this Closure Plan meets the design requirements in 40 CFR 257.102(d)(3) The Closure Plan was prepared by me or under my direct supervision, and that I am a duly licensed Professional Engineer under the laws of the State of Wisconsin.
	ENN12/2018
	(signature) (date)
	Eric J. Nelson (printed or typed name)
	License number <u>E-37855-6</u>
	My license renewal date is _July 31, 2020
	Pages or sheets covered by this seal: Closure Plan, October 2018

PE CERTIFICATION

[This page left blank intentionally]

1.0 INTRODUCTION AND PROJECT SUMMARY

On behalf of Wisconsin Power and Light Company (WPL), SCS Engineers (SCS) has prepared this Closure Plan for the Columbia (COL) Dry Ash Disposal Facility Phase 1, Modules 1 through 4 as required by 40 CFR 257.102(b), as stated below.

<u>40 CFR 257.102(b).</u> "Written closure plan—(1) Content of the plan. The owner or operator of a CCR unit must prepare a written closure plan that describes the steps necessary to close the CCR unit at any point during the active life of the CCR unit consistent with recognized and generally accepted good engineering practices. The written closure plan must include, at a minimum, the information specified in paragraphs (b)(1)(i) through (vi) of this section."

The COL facility includes an active coal combustion residue (CCR) landfill, which currently consists of four CCR units, all located in Phase 1 of the facility.

- Phase 1 Module 1 this unit has received final cover over completed outer sideslope areas that will no longer receive additional CCR; intermediate cover has been placed over remaining areas. The final cover placed complies with the CCR Rule.
- Phase 1 Module 2 this unit has received intermediate cover over a majority of the in-place CCR.
- Phase 1 Module 3 this unit is currently being filled.
- Phase 1 Module 4 this unit was constructed in 2018 and is approved by the Wisconsin Department of Natural Resources (WDNR) to receive CCR.

Phase 1 Module 4 is a new CCR landfill, as defined at 40 CFR 257.53. Future CCR units (Phase 1 Modules 5 through 6 and Phase 2 Modules 7 through 13) are permitted with the WDNR, but have not been developed. When developed, the units will also be new CCR landfills, as defined in 40 CFR 257.53. Future CCR units are not addressed in this plan and are not discussed further herein.

Figure 1 shows the site location. Figure 2 shows the closure areas. A detail of the final cover system is shown on Figure 3.

2.0 PROPOSED CLOSURE PLAN NARRATIVE

<u>**40 CFR 257.102(b)(1)(i).**</u> "A narrative description of how the CCR unit will be closed in accordance with this section."

When CCR placement is completed in the CCR unit, or if early closure is required, the unit will be closed by covering the CCR with the final cover system described in **Section 3.0**. Prior to final cover system construction, the CCR surfaces will be graded and compacted to establish a firm subgrade for final cover construction. The timing for completion of CCR placement in the units that are addressed with this closure plan will depend on CCR generation and disposal rates.

Future CCR unit development will also impact the timing of closure. Each of the existing CCR units is designed to receive additional CCR once adjacent units are constructed and overlay airspace is available for filling. Based on the current CCR units alone, if early closure of all units were required, final cover will be placed in the active landfill areas shown on **Figure 2**. A closure schedule is discussed in **Section 6.0** and presented in **Appendix B**.

The initiation of closure activities will commence no later than 30 days after the final receipt of CCR as required by 40 CFR 257.102(e)(1), or in accordance with 40 CFR 257.102(e)(2).

3.0 FINAL COVER SYSTEM AND PERFORMANCE

<u>40 CFR 257.102(b)(1)(iii).</u> "If closure of the CCR unit will be accomplished by leaving CCR in place, a description of the final cover system, designed in accordance with paragraph (d) of this section, and the methods and procedures to be used to install the final cover. The closure plan must also discuss how the final cover system will achieve the performance standards specified in paragraph (d) of this section."

"(d) Closure performance standard when leaving CCR in place.

(1) The owner or operator of a CCR unit must ensure that, at a minimum, the CCR unit is closed in a manner that will:

(i) Control, minimize or eliminate, to the maximum extent feasible, post-closure infiltration of liquids into the waste and releases of CCR, leachate, or contaminated run-off to the ground or surface waters or to the atmosphere;

The final cover system design will minimize or eliminate infiltration, as further described below.

(*ii*) *Preclude the probability of future impoundment of water, sediment, or slurry;*

The final cover system will meet these criteria, as further described below.

(iii) Include measures that provide for major slope stability to prevent the sloughing or movement of the final cover system during the closure and post-closure care period;

The final cover system is designed to provide slope stability and to prevent sloughing or movement during the closure and post-closure care period. Stability of the final cover system was assessed as part of the WDNR landfill permitting process and is further addressed below.

(iv) Minimize the need for further maintenance of the CCR unit; and

Maintenance of the final cover will be minimized by the establishment of vegetative cover and the erosion control systems, which are further described below.

(v) Be completed in the shortest amount of time consistent with recognized and generally accepted good engineering practices."

All closure activities for the CCR units will be completed within 6 months, as stated in **Section 7.0** below.

"(2) Drainage and stabilization of CCR surface impoundments."

This does not apply to the COL CCR landfill units.

"(3) Final cover system"

The final cover system (see **Figure 3** for details) in place on part of Module 1 will also be installed in the remaining areas of the CCR units. The final cover system is as follows from the bottom up:

- Three-inch grading layer
- Geosynthetic clay liner (GCL)
- Forty-mil linear low density polyethylene (LLDPE) geomembrane
- Twelve inches of drainage material
- Twelve inches of rooting zone
- Six inches of topsoil

This final cover meets and exceeds the minimum requirements of 40 CFR 257.102(d)(3)(i)(A) through (D) as follows:

• Per 257.102(d)(3)(i)(A), the permeability of the final cover system is less than or equal to the permeability of the bottom liner system and is less than 1x10⁻⁵ cm/sec required by the rule. The COL cover system contains a GCL with a permeability of 1x10⁻⁹ cm/sec. The geomembrane above the GCL makes the cover system even less permeable.

The bottom liner system for the CCR units is as follows:

- Phase 1 Module 1 South:
 - GCL
 - Forty-mil high density polyethylene (HDPE) geomembrane
 - The layers of the liner system are less than the cover system layers; therefore infiltration will be more than the cover system.
- Phase 1 Module 1 North:
 - Three feet of compacted ash
 - The liner here does not include a geomembrane, and therefore the infiltration through the cover system will be less than this base liner.
- Phase 1 Modules 2, 3, and 4:
 - Two feet of compacted clay
 - GCL
 - Sixty-mil HDPE geomembrane

Based on a comparison of the design slopes and drainage system components in the liner system and final cover system, the final cover system is less permeable than the liner system in Phase 1 Modules 2, 3, and 4.

- Per 257.102(d)(3)(i)(B), the final cover system includes 2.5 feet of soil, which is greater than the 18 inches of earthen material required to minimize infiltration.
- Per 257.102(d)(3)(i)(C), erosion of the final cover system is minimized with a vegetative support layer consisting of 12 inches of uncompacted rooting zone material and 6 inches of topsoil. This provides more than the required 6-inch thickness for plant growth.

Also, this final cover system limits infiltration while promoting surface water run-off in a controlled manner to minimize erosion and promote stability. The surface layer of 18 inches of soil supports vegetation that assists with erosion control. Water that infiltrates will be collected by the 12-inch drainage layer and will be routed to the perimeter drainage system.

In addition, the surface has intermediate drainage swales to reduce the flow lengths down the final cover slope, also aiding in erosion control. Where needed, the intermediate drainage swales are connected to downslope channels to control storm water runoff and prevent erosion of the final cover.

• Per 257.102(d)(3)(i)(D), the design of the final cover system minimizes disruptions to the final cover system. Stability of the final cover system was assessed as part of the WDNR landfill permitting process. The stability calculations are included in **Appendix A**.

The design of the final cover system accommodates settling and subsidence of the CCR fill below the cover. The CCR at COL is placed dry and is compacted in place. CCR continues to consolidate and gain strength as filling progresses prior to final cover placement. The final cover system is designed with a maximum slope of 25 percent (4 horizontal to 1 vertical). Because the final cover has a relatively large positive slope and the CCR has been gaining strength over time, the final cover is expected to easily accommodate the remaining relatively minor settlement potential of the CCR fill when fill placement ends and the landfill is closed.

All final cover materials will be tested to confirm they meet specifications, and construction will be overseen and documented by a licensed engineer. Rooting zone and topsoil layers will be checked for thickness. All areas will be restored after final cover is placed. Vegetation will be monitored and maintained.

4.0 MAXIMUM INVENTORY OF CCR

<u>40 CFR 257.102(b)(1)(iv).</u> "An estimate of the maximum inventory of CCR ever on-site over the active life of the CCR unit."

The following table reflects the estimated maximum volumes of CCR in the CCR landfill units at the COL facility.

Area	Capacity (cy)
Phase 1 Module 1	741,423
Phase 1 Module 2	575,280
Phase 1 Module 3	596,050
Phase 1 Module 4	604,226
Total Maximum CCR Quantity	2,516,979

The estimated maximum inventory of CCR ever on site over the active life of the CCR landfill units is based on the design capacity of each unit. The design capacity of each unit is defined in the WDNR approved 2010 Plan of Operation Update.

5.0 LARGEST AREA OF CCR UNIT REQUIRING FINAL COVER

<u>40 CFR 257.102(b)(1)(v)</u>. "An estimate of the largest area of the CCR unit ever requiring a final cover as required by paragraph (d) of this section at any time during the CCR unit's active life."

The largest area of each CCR unit requiring final cover is the open area shown on **Figure 2**, with areas as follows:

Areas Requiring Final Cover (acres)						
Phase 1 Module 1	5.0					
Phase 1 Module 2	3.9					
Phase 1 Module 3	4.0					
Phase 1 Module 4	4.0					
Total	12.9					

6.0 SCHEDULE OF SEQUENTIAL CLOSURE ACTIVITIES

<u>40 CFR 257.102(b)(1)(vi).</u> "A schedule for completing all activities necessary to satisfy the closure criteria in this section, including an estimate of the year in which all closure activities for the CCR unit will be completed."

Alliant Energy plans to eliminate coal as a fuel source by 2050. At that time, WPL plans to initiate closure of any CCR landfills that remain open. CCR placement is estimated to be complete in each of the existing CCR units as follows:

CCR Unit	Filling Completed
Phase 1 Module 1	September 2048
Phase 1 Module 2	December 2050
Phase 1 Module 3	December 2050
Phase 1 Module 4	December 2050

These estimated closure dates are based on the site life calculated from the design capacity of each unit and currently anticipated disposal rates, or the end of 2050, whichever is sooner. These dates also account for periods when the sideslopes will not receive CCR or non-CCR waste. These periods are a part of normal plant operations, as described in the Plan of Operations approved by WDNR. Finally, the dates assume that the adjacent future CCR units that are currently permitted with WDNR will be constructed allowing for the overlay of additional CCR onto the existing units. The preliminary schedule for closure of the existing CCR units is provided in **Appendix B**.

7.0 COMPLETION OF CLOSURE ACTIVITIES

<u>40 CFR257.102((f)(1).</u> "Except as provided for in paragraph (f)(2) of this section, the owner or operator must complete closure of the CCR unit:

(*i*) For existing and new CCR landfills and any lateral expansion of a CCR landfill, within six months of commencing closure activities."

As shown on the enclosed schedule, closure of each CCR unit will be completed within 6 months of commencing closure activities.

40 CFR 257.102(f)(3). "Upon completion, the owner or operator of the CCR unit must obtain a certification from a qualified professional engineer verifying that closure has been completed in accordance with the closure plan specified in paragraph (b) of this section and the requirements of this section."

A qualified licensed engineer will oversee the final cover construction. The engineer will verify final cover materials and methods and oversee material testing. At the end of construction, the engineer will provide a report summarizing and documenting construction and will certify compliance with the requirements.

8.0 CERTIFICATION

<u>40 CFR 257.102(b)(4).</u> "The owner or operator of the CCR unit must obtain a written certification from a qualified professional engineer that the initial and any amendment of the written closure plan meets the requirement of this section."

Eric Nelson, PE, a licensed professional engineer in the State of Wisconsin has overseen the preparation of this Closure Plan. A certification statement is provided on **page iii** of this plan.

<u>40 CFR 257.102(d)(2)(iii).</u> "The owner or operator of the CCR unit must obtain a written certification from a qualified professional engineer that the design of the final cover system meets the requirement of this section."

Eric Nelson, PE, a licensed professional engineer in the State of Wisconsin has overseen the design of the final cover system and certifies that the design meets the requirements of 40 CFR 257.102(d). The certification statement is provided on **page iii** of this plan.

9.0 RECORDKEEPING AND REPORTING

<u>40 CFR 257.102(b)(vi)(2)(iii).</u> "The owner or operator has completed the written closure plan when the plan including the certification required by paragraph (b)(4) of this section, has been placed in the facility's operating record as required by Section 257.105(i)(4)."

The Closure Plan will be placed in the facility's operating record and on Alliant Energy's CCR Rule Compliance Data and Information website.

Amendments to the written Closure Plan will be done when a new module is constructed, when there is a change in the operation of the CCR unit that affects the plan, or when unanticipated events warrant revision to the written Closure Plan as required by 40 CFR 257.102(b)(3).

WPL will provide notification as follows:

- Intent to initiate closure
- Closure completion
- Availability of the written Closure Plan and any amendments

All notifications will be placed in the facility's operating record and on the website per 40 CFR 257.105(i), 257.106(i), 257.107(i).

[This page left blank intentionally]

FIGURES

- Site Location Map 1
- 2
- Initial Closure Plan Final Cover System 3

^{:\25216112.00\}Drawings\Initial Closure\Site Loc.dwg, 10/6/2016 1:23:23 PM

APPENDIX A

Stability Calculations

E-3 Liner Slope Stability

Control of the conductivity Rev. No. Job No. 4071 Job: Columbia Ash Generation Landfill By, PEG Client: Alliant Subject: Liner Side Slope Drainage Layer Stability Ch.Yd: D.N EVALUATION: EVALUATION: Del No. 60.7 colspan="2">Ch.Yd: D.N The side slope on the modules base runs at a 3.1 slope for an approximate maximum of 80 feet. The following calculations evaluate the static veneer slope stability of the 3:1 slope. REFERENCES: 1. Noemer, Robert M. & Te-Yang Soong, Analysis and Design of Veneer Cover Soils, Geosynthetic Research Insi 2. U.S. Department of Transportation - Federal Highway Administration Recycled Materials, Coal Bottom Ash Use EQUATIONS: FS = (b+(b^2+4^*a^*)^*)^*(2^*a) a (W _x N _x cosβ) 'sinfp'tonp+(N _x *tan6+C _x)*sinfp*cosβ+(C+W _x *tan6)'sinft) We dege We dege Material (Bottom Ash) Material (Bottom Ash) Or all weight of active wedge (calculated variable) Na Na	
Job No. 4071 Job: Columbia Ash Generation Landfill By: PEG Client: Alliant Subject: Liner Side Slope Drainage Layer Stability Chk'd: DLN EVALUATION: Evaluate the Phase 1 landfill liner side slope drainage layer for static veneer slope stability. The side slope on the modules base runs at a 3:1 slope for an approximate maximum of 80 feet. The following calculations evaluate the static veneer slope stability of the 3:1 slope. REFERENCES: 1.) Koerner, Robert M. & Te-Yang Soong, Analysis and Design of Veneer Cover Soils, Geosynthetic Research Insi 2.) U.S. Department of Transportation - Federal Highway Administration Recycled Materials, Coal Bottom Ash Use EQUATIONS: FS = (b+(b ² 4*a*c) ^{1/2})(2*a) a = (W _a -N _a *cosp) ³ sinp ³ tind*th(N _a *tanδ+C _a *sinβ*cosp+(C+W _a *tané)*sinp) WA $n_A = W_A^*cosp$) $m_A = W_A^*cosp$ Passive W _p Va $W_a = \gamma h^2r(Ln-t/sinpt-tanp/2)$ $Wedge$ $W_a tan\delta - V_{a} a W_{a} a W$	
Client: Alliant Subject: Liner Side Slope Drainage Layer Stability ChKd: DLN EVALUATION: Evaluate the Phase 1 landfill liner side slope drainage layer for static veneer slope stability. The side slope on the modules base runs at a 3:1 slope for an approximate maximum of 80 feet. The following calculations evaluate the static veneer slope stability of the 3:1 slope. REFERENCES: 1.) Koerner, Robert M. & Te-Yang Soong, Analysis and Design of Veneer Cover Soils, Geosynthetic Research Insi 2.) U.S. Department of Transportation - Federal Highway Administration Recycled Materials, Coal Bottom Ash Use EQUATIONS: FS = (b+(b^2.4*e*c)^{1/3})(2*a) a (W _x -N _x 'cosβ) ⁵ tinh ⁶ (N _x +Ianô+C _a)*sinβ*cosβ+(C+W _b *tanô)*sinβ) WA b = -(W _x -N _x 'cosβ) ⁵ tinh ⁶ (N _x +Ianô+C _a)*sinβ*cosβ+(C+W _b *tanô)*sinβ) WA VA Ca W _A = V _x *cosβ) ⁵ tinh ⁶ (N _x +Ianô+C _a)*sinβ*cosβ+(C+W _b *tanô)*sinβ) WA VA Ca W _A = V _x *cosβ) ⁵ tinh ⁶ (N _x +Ianô+C _a)*sinβ*cosβ+(C+W _b *tanô)*sinβ) WA VA Ca W _A = V _x *cosβ Design*tinh ⁶ (A*a*c) ⁷ sinβ*cosβ+(C+W _b *tanô)*sinβ) WA VA Ca W _A = V _x *cosβ Drainage Material Drainage Material Drainage Material Drainage Material Drainage Material Drainage Material Drainage sor 0.322 radians S	Date 9/23
EVALUATION: Evaluate the Phase 1 landfill liner side slope drainage layer for static veneer slope stability. The side slope on the modules base runs at a 3:1 slope for an approximate maximum of 80 feet. The following calculations evaluate the static veneer slope stability of the 3:1 slope. PEFERENCES: 1.) Koemer, Robert M. & Te-Yang Soong, Analysis and Design of Veneer Cover Soils, Geosynthetic Research Insi 2.) U.S. Department of Transportation - Federal Highway Administration Recycled Materials, Coal Bottom Ash Use EQUATIONS: FS = ($b+(b^2 \cdot 4^{-a}c^{-1})^{(2)}/(2^{-a})$ a = (W_{a} - $N_{a}^{cos}\beta$) (D_{a}^{cos} , D_{a}^{co	Date 9/24/
Evaluate the Phase 1 landfill liner side slope drainage layer for static veneer slope stability. The side slope on the modules base runs at a 3:1 slope for an approximate maximum of 80 feet. The following calculations evaluate the static veneer slope stability of the 3:1 slope. REFERENCES: 1.) Koemer, Robert M. & Te-Yang Soong, Analysis and Design of Veneer Cover Solls, Geosynthetic Research Insi 2.) U.S. Department of Transportation - Federal Highway Administration Recycled Materials, Coal Bottom Ash Use EQUATIONS: FS = $(b+(b^2-4ra^*c)^{1/2})(2^*a)$ a = $(W_A, N_A^*cos\beta)^*cos\beta$ b = $((W_A, N_A^*cos\beta)^*sin\beta^*tan\phi+(N_A^*tan\phi+C_a)^*sin\beta^*cos\beta+(C+W_P^*tan\phi)^*sin\beta)$ c = $(N_A, Tan^3+C_a)^*(sin\beta)^2tan\phi$ N _A = $W_A^*cos\beta$ Ca $W_B = (\gamma^{+h^2}(Uh-1/sin\beta-tan\beta/2))$ $W_P = (\gamma^{+h^2})(Sin2\beta)$ C _a = $c_a(L-h/sin\beta)$ DEFINITIONS OF VARIABLES: FS = Factor of Safety a, b, & c = intermediate variables (= calculated variable) N _A = Effective force normal to the failure plane of the active wedge (= calculated variable) $W_P = Total weight of active wedge (= calculated variable)$ $W_P = Total weight of passive wedge (= calculated variable) \Psi_P = Total weight of passive medge (= calculated variable)\Phi = Friction angle of the drainage layer material (=35degrees or0.322 radians $	
The side slope on the modules base runs at a 3:1 slope for an approximate maximum of 80 feet. The following calculations evaluate the static veneer slope stability of the 3:1 slope. FEFERENCES: 1.) Koerner, Robert M. & Te-Yang Soong, Analysis and Design of Veneer Cover Soils, Geosynthetic Research Insi 2.) U.S. Department of Transportation - Federal Highway Administration Recycled Materials, Coal Bottom Ash Use EQUATIONS: $FS = (-b+(b^2-4^*a^*c)^{1/2})/(2^*a)$ $a = (W_x,N_a^*cos\beta)^{1/2}b(2^*a)$ $a = (W_x,N_a^*cos\beta)^{1/2}mab(N_a^*tanb^+C_a)^*sin\beta^*cos\beta+(C+W_p^*tanb)^*sin\beta)$ $c = (N_a^+Anb^+C_a)^*(sin\beta)^{1/2}tanb(N_a^*tanb^+C_a)^*sin\beta^*cos\beta+(C+W_p^*tanb)^*sin\beta)$ $c = (A_a^+Anb^+C_a)^*(sin\beta)^{1/2}tanb(N_a^*tanb^+C_a)^*sin\beta^*cos\beta+(C+W_p^*tanb)^*sin\beta)$ $c = (A_a^+Anb^+C_a)^*(sin\beta)^{1/2}tanb(N_a^*tanb^+C_a)^*sin\beta^*cos\beta+(C+W_p^*tanb)^*sin\beta)$ $C_a = c_a(L-h/sing)$ $C_a = c_a(L-h/sing)$ $C_a = c_a(L-h/sing)$ Drainage Material (Bottom Ash) DEFINITIONS OF VARIABLES: FS = Factor of Safely $a, b, b, c = intermediate variables (= calculated variable) N_A = Effective force normal to the failure plane of the active wedge (= calculated variable) W_p = Total weight of active wedge (= calculated variable)W_p = Total weight of passive wedge (= calculated variable)\beta = Soil slope angle beneath the geomembrane (= 18.42 degrees or 0.322 radians based on liner slope of 3 to 1) \phi = Friction angle of the drainage layer material (= 35 degrees 0.611 radians based on Ref at \delta = \text{Interface friction angle for liner system geosynthetics (to be determined), Variable \gamma = \text{Unit weight of the drainage layer material} (= 135 pcf based on conservative wet density of bottom at C = \text{Cohesive force of the active wedge for the liner system geosynthetics h = \text{Thickness of the drainage layer material} (= 1.0 foot based on base design)L = Length of slope measured along the geomembrane (= 1.0 foot based on base design)$	
The following calculations evaluate the static veneer slope stability of the 3:1 slope. REFERENCES: 1.) Koemer, Robert M. & Te-Yang Soong, Analysis and Design of Veneer Cover Solts, Geosynthetic Research Inst 2.) U.S. Department of Transportation - Federal Highway Administration Recycled Materials, Coal Bottom Ash Use EQUATIONS: $FS = (b+(b^2-4^{+a}c)^{12})/(2^{+a})$ $a = (W_a,N_a^{+}cos\beta)^{+}cos\beta)$ $b = ((W_a,N_a^{+}cos\beta)^{+}sin\beta^{+}tane_{-2})^{+}sin\beta^{+}cos\beta+(C+W_{P}^{+}tane)^{+}sin\beta)$ $c = (N_A^{+}tane)^{+}C_a)^{+}(jin)\beta^{+}tane)$ $N_A = W_A^{+}cos\beta)$ $C = (n_A^{+}tane)^{+}C_a)^{+}(jin)\beta^{+}tane)$ $N_A = W_A^{+}cos\beta)$ $C_a = c_a(L+hsin\beta)$ DEFINITIONS OF VARIABLES: FS = Factor of Safety $a, b, \delta c = intermediate variables (= calculated variable)$ $N_A = Total weight of active wedge (= calculated variable)$ $W_a = Total weight of passive wedge (= calculated variable)$ $W_a = Total weight of passive wedge (= calculated variable)$ $\beta = Soil slope angle beneath the geomembrane (= 18.42 degrees or 0.322 radians based on liner slope of 3 to 1)$ $\phi = Friction angle of the drainage layer material (= 35 degrees 0.611 radians based on Ref at \delta = Interface friction angle for liner system geosynthetics (to be determined), Variable \gamma = \text{Unit weight of the drainage layer material (= 135 pcf based on conservative wet density of bottom at C = \text{Cohesive force on the active wedge for the liner system geosynthetics h = Thickness of the drainage layer material (= 10 foot based on base design)L = Length of slope measured along the geomembrane (= 10 foot based on base design)$	
REFERENCES: 1.) Koerner, Robert M. & Te-Yang Soong, Analysis and Design of Veneer Cover Solls, Geosynthetic Research Insi 2.) U.S. Department of Transportation - Federal Highway Administration Recycled Materials, Coal Bottom Ash Use EQUATIONS: $FS = (-b+(b^2-4^*a^{co})^{1/2})/(2^*a)$ $a = (W_a N_a^* \cos\beta)^{1/2} \sin\beta^* tan \phi + (N_a^* tan \delta + C_a)^* sin \beta^* \cos\beta + (C+W_p^* tan \phi)^* sin \beta)$ $b = \cdot ((W_a N_a^* \cos\beta)^* sin \beta^* tan \phi + (N_a^* tan \delta + C_a)^* sin \beta^* \cos\beta + (C+W_p^* tan \phi)^* sin \beta)$ $c = (N_a^* tan \delta + C_a)^* (sin \beta)^{2*} tan \phi$ $N_a = W_a^* \cos\beta$ $W_a = \tau/h^{2*} (L/h-1/sin\beta+tan \beta/2)$ $W_p = (\tau^*h^2)/sin 2\beta$ $C_a = c_a(L-h/sin \beta)$ Drainage Material (Bottom Ash) DEFINITIONS OF VARIABLES: FS = Factor of Safety a, b, c = intermediate variables (= calculated variable) $N_a \in Tefictive force normal to the failure plane of the active wedge (= calculated variable) W_p = Total weight of passive wedge (= calculated variable)\phi = Friction angle of the drainage layer material (=356 degrees or0.322 radians based on liner slope of3 to1)\phi = Friction angle of the drainage layer material (=356 degrees0.611 radians based on Ref # \delta = Interface friction angle for liner system geosynthetics (to be determined)\tau_a = Adhesion for liner system geosynthetics (to be determined), Variable \tau = Unit weight of the drainage layer material (=35for based on conservative wet density of bottom active wedge (to be determined), Variable \tau = Unit weight of the drainage layer material (=35for based on conservative wet density of bottom active wedge for the liner system geosynthetics h = Thickness of the drainage layer material (=15for based on conservative wet density of bottom active wedge for the liner system geosynthetics h = Thickness of the drainage layer material (=16161616161616161616161616161616161616 _$	
 1.) Koerner, Robert M. & Te-Yang Soong, Analysis and Design of Veneer Cover Soils, Geosynthetic Research Insi 2.) U.S. Department of Transportation - Federal Highway Administration Recycled Materials, Coal Bottom Ash Use EQUATIONS: FS = (-b+(b²-4*a*c)^{1/2})/(2*a) a = (Wa*Na*cosβ)*cosβ b = -((Wa*Na*cosβ)*sinβ*tan\$+(Na*tan\$+Ca*sinβ*cos\$+(C+W*tan\$)*sin\$) c = (Na*tan\$+Ca*ta*c)^{1/2}/(2*a) a = (Wa*Na*cosβ WA*cosβ WA*osoβ WA* *(*osβ) Wa* = (*th*)sin\$)*tan\$+(Na*tan\$+Ca*sin\$*cos\$+(C+W*tan\$)*sin\$) C = (Na*tan\$+Ca*ta*c) Wedge Ve = (*th*)sin\$ Drainage Material (Bottom Ash) DEFINITIONS OF VARIABLES: FS = Factor of Safety a, b, a c = intermediate variables (= calculated variable) Na = Effective force normal to the failure plane of the active wedge (= calculated variable) Wp = Total weight of active wedge (= calculated variable) Ø = Friction angle of the drainage layer material (=35_degrees or3 to 1) \$\phi\$ = Friction angle of the drainage layer material (=35degrees or3 to 1) \$\phi\$ = Friction angle for liner system geosynthetics at active wedge (to be determined) \$\varphi\$ = Adhesion for liner system geosynthetics at active wedge (assumed 0 for drainage layer material) \$\varphi\$ =15pf based on conservative wet density of bottom at C = Cohesive force of the active wedge for the liner system geosynthetics h = Thickness of the drainage layer material (=15pf based on conservative wet density of bottom at C = Cohesive force of the active wedge for the liner system geosynthetics h = Thickness of the drainage layer material (=15pf based on conservative wet density of bottom at C = Cohesive force of the active wedge for the liner system geosynthetics h = Thickness of the drainage layer material (=10f foot based on base design) L = Leng	
2.) U.S. Department of Transportation - Federal Highway Administration Recycled Materials, Coal Bottom Ash Use EQUATIONS: FS = (-b+(b ² .4*a*c) ^{1/2})/(2*a) a = (W _A *N _A *cosβ)*ionβ*tanφ+(N _A *tanδ+C _a)*sinβ*cosβ+(C+W ₂ *tanφ)*sinβ) b = -((W _A *N _A *cosβ)*sinβ*tanφ+(N _A *tanδ+C _a)*sinβ*cosβ+(C+W ₂ *tanφ)*sinβ) c = (N _A *tanδ+C _a)*(sinβ) ² *tanφ N _A = W _A *cosβ W _A = cosβ W _A = cosβ W _A *cosβ W _A = cosβ C _a = c _a (L-h/sinβ) Drainage Material (Bottom Ash) DEFINITIONS OF VARIABLES: FS = Factor of Safety a, b, & c = intermediate variables (= calculated variable) N _A = Effective force normal to the failure plane of the active wedge (= calculated variable) W _A = Total weight of active wedge (= calculated variable) β = Soil slope angle beneath the geomembrane (= 18.42 degrees or 0.322 radians based on liner slope of 3 to 1) \$ = Friction angle of the drainage layer material (=35degrees 0.611 radians based on Ref # δ = Interface friction angle for liner system geosynthetics (to be determined) c _a = Adhesion for liner system geosynthetics at active wedge (assumed 0 for drainage layer material) C _a = Adhesion for liner system geosynthetics at active wedge (assumed 0 for drainage layer material) C _a = Adhesion for liner system geosynthetics at active wedge (assumed 0 for drainage layer material) C _a = Adhesion for liner system geosynthetics at active wedge (assumed 0 for drainage layer material) C _a = Adhesion for liner system geosynthetics at active wedge (assumed 0 for drainage layer material) C _a = Adhesion for liner system geosynthetics at active wedge (assumed 0 for drainage layer material) C _a = Adhesive force of the active wedge for the liner system geosynthetics h = Thickness of the drainage layer material (=10 foot based on base design) L = Length of slope measured along the geomembrane (=80 feet based on base design)	stitute.
EQUATIONS: $FS = (-b+(b^{2}.4^{+}a^{+}c)^{1/2})/(2^{+}a)$ $a = (W_{A}^{+}N_{A}^{+}cos\beta)^{+}sin\beta^{+}tan\phi+(N_{A}^{+}tan\delta+C_{a})^{+}sin\beta^{+}cos\beta+(C+W_{F}^{+}tan\phi)^{+}sin\beta)$ $b = -((W_{A}^{+}tan\delta+C_{a})^{+}(sin\beta)^{2}tan\phi$ $N_{A} = (V_{A}^{+}tan\delta+C_{a})^{+}(sin\beta)^{2}tan\phi$ $W_{A}^{+}cos\beta$ $W_{A}^{+}cos$ $W_$	er's Guide
$FS = (-b+(b^2-4^*a^*c)^{1/2})/(2^*a)$ $a = (W_A-N_A^*cos\beta)^*sin\beta^*tan\phi+(N_A^*tan\delta+C_a)^*sin\beta^*cos\beta+(C+W_*^*tan\phi)^*sin\beta)$ $b = -((W_A-N_A^*cos\beta)^*sin\beta^*tan\phi+(N_A^*tan\delta+C_a)^*sin\beta^*cos\beta+(C+W_*^*tan\phi)^*sin\beta)$ $c = (N_A^*tan\delta+C_a)^*(sin\beta)^{2*}tan\phi$ $N_A = W_A^*cos\beta$ $W_A = \gamma^*h^{2*}(L/h-1/sin\beta-tan\beta/2)$ $W_P = (\gamma^*h^2)/sin2\beta)$ $C_a = c_a(L-h/sin\beta)$ Drainage Material (Bottom Ash) DEFINITIONS OF VARIABLES: FS = Factor of Safety a, b, & c = intermediate variables (= calculated variable) N_A = Effective force normal to the failure plane of the active wedge (= calculated variable) W_P = Total weight of active wedge (= calculated variable) W_A = Total weight of passive wedge (= calculated variable) W_F = Total weight of passive wedge (= calculated variable) B = Soil slope angle beneath the geomembrane (= 18.42 degrees or 0.322 radians based on liner slope of 3 to 1) \$ = Friction angle of the drainage layer material (=35 degrees 0.611 radians based on Ref # 8 = Interface friction angle for liner system geosynthetics (to be determined) c_a = Adhesion for liner system geosynthetics at active wedge (to be determined) C = Cohesive force along the failure plane of the passive wedge (a calculated variable) P = Unit weight of the drainage layer material (=35 pcf based on conservative wet density of bottom and C = Cohesive force of the active wedge for the liner system geosynthetics h = Thickness of the drainage layer material (=165 pcf based on base design) L = Length of slope measured along the geomembrane (=0 feet based on base design)	
a = $(W_A \cdot N_A^* \cos\beta)^* \cos\beta$ b = $-((W_A \cdot N_A^* \cos\beta)^* \sin\beta^* \tan\phi^+ (N_A^* \tan\delta + C_a)^* \sin\beta^* \cos\beta^+ (C+W_P^* \tan\phi)^* \sin\beta)$ c = $(N_A^* \tan\delta + C_a)^* (\sin\beta)^{2*} \tan\phi$ $N_A = W_A^* \cos\beta$ $W_A = \gamma^* \hbar^{2*} (L^1h - 1/\sin\beta + \tan\beta/2)$ $W_P = (\gamma^* \hbar^2)/\sin 2\beta)$ $C_a = c_a (L-h/\sin\beta)$ Drainage Material (Bottom Ash) DEFINITIONS OF VARIABLES: FS = Factor of Safety a, b, & c = intermediate variables (= calculated variable) $N_A = \text{Effective force normal to the failure plane of the active wedge (= calculated variable) W_P = \text{Total weight of active wedge (= calculated variable)}W_P = \text{Total weight of passive wedge (= calculated variable)}\beta = \text{Soil slope angle beneath the geomembrane (= 18.42 degrees or 0.322 radians based on liner slope of 3 to 1) \phi = \text{Friction angle of the drainage layer material (= 35 degrees 0.611 radians based on Ref # \delta = \text{Interface friction angle for liner system geosynthetics (to be determined)}, Variable\gamma = Unit weight of the drainage layer material (= 135 pcf based on conservative wet density of bottom and C = Cohesive force of the active wedge for the liner system geosynthetics h = Thickness of the drainage layer material (= 1.0 foot based on base design) L = Length of slope measured along the geomembrane (= 80 feet based on base design)$	
b = -((W _A -N _A *cosβ)*sinβ*tanφ+(N _A *tanδ+C _a)*sinβ*cosβ+(C+W _P *tanφ)*sinβ) c = (N _A *tanδ+C _a)*(sinβ) ^{2*} tanφ N _A = W _A *cosβ W _A = γ*h ^{2*} t(Jn-1/sinβ-tanβ/2) W _P = (γ*h ²)/sin2β C _a = c _a (L-h/sinβ) Drainage Material (Bottom Ash) DEFINITIONS OF VARIABLES: FS = Factor of Safety a, b, & c = intermediate variables (= calculated variable) N _A = Effective force normal to the failure plane of the active wedge (= calculated variable) W _P = Total weight of passive wedge (= calculated variable) β = Soil slope angle beneath the geomembrane (= 18.42 degrees or 0.322 radians based on liner slope of 3 to 1) ϕ = Friction angle of the drainage layer material (= 35 degrees 0.611 radians based on Ref # δ = Interface friction angle for liner system geosynthetics (to be determined) ς_a = Adhesion for liner system geosynthetics to be determined) φ = Unit weight of the drainage layer material (= 135 pcf based on conservative wet density of bottom a C = Cohesive force of the active wedge for the liner system geosynthetics h = Thickness of the drainage layer material (= 1.0 foot based on base design) L = Length of slope measured along the geomembrane (= 80 feet based on base design)	Active
$c = (N_A^* \tan^{A+} C_A)^* (\sin\beta)^{2*} \tan\phi$ $N_A = W_A^* \cos\beta$ $W_A = \gamma^* h^{2*} (L/h-1/\sin\beta - \tan\beta/2)$ $W_P = (\gamma^* h^2)/\sin 2\beta$ $C_a = c_a(L-h/\sin\beta)$ Drainage Material (Bottom Ash) DEFINITIONS OF VARIABLES: FS = Factor of Safety a, b, & c = intermediate variables (= calculated variable) N_A = Effective force normal to the failure plane of the active wedge (= calculated variable) W_P = Total weight of active wedge (= calculated variable) W_P = Total weight of passive wedge (= calculated variable) W_P = Total weight of passive wedge (= calculated variable) B = Soil slope angle beneath the geomembrane (= 18.42 degrees or 0.322 radians based on liner slope of 3 to 1) \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$= Interface friction angle for liner system geosynthetics (to be determined) c_a = Adhesion for liner system geosynthetics at active wedge (to be determined) C_a = Adhesive force of the active medge for the liner system geosynthetics h = Thickness of the drainage layer material (= 135 pcf based on conservative wet density of bottom and C = Cohesive force of the active wedge for the liner system geosynthetics h = Thickness of the drainage layer material(= 1.0 foot based on base design) L = Length of slope measured along the geomembrane (= 80 feet based on base design)	Wedge
Passive W _P W _A = $\gamma^{+}h^{2*}(L/h-1/sin\beta+tan\beta/2)$ W _P = $(\gamma^{+}h^{2})/sin2\beta$ C _a = c _a (L-h/sinβ) Drainage Material (Bottom Ash) DEFINITIONS OF VARIABLES: FS = Factor of Safety a, b, & c = intermediate variables (= calculated variable) N _A = Effective force normal to the failure plane of the active wedge (= calculated variable) W _A = Total weight of active wedge (= calculated variable) W _P = Total weight of passive wedge (= calculated variable) W_P = Total weight of passive wedge (= calculated variable) W_P = Total weight of passive wedge (= calculated variable) B = Soil slope angle beneath the geomembrane (= 18.42 degrees or 0.322 radians based on liner slope of 3 to 1) ϕ = Friction angle of the drainage layer material (= 35 degrees 0.611 radians based on Ref # δ = Interface friction angle for liner system geosynthetics (to be determined) c _a = Adhesion for liner system geosynthetics at active wedge (to be determined) C _a = Adhesive force of the active wedge for the liner system geosynthetics h = Thickness of the drainage layer material (= 135 pcf based on conservative wet density of bottom at C = Cohesive force of the active wedge for the liner system geosynthetics h = Thickness of the drainage layer material (= 1.0 foot based on base design) L = Length of slope measured along the geomembrane (= <u>80</u> feet based on base design)	
$W_{A} = \gamma^{+}h^{2*}(L/h-1/sin\beta-tan\beta/2)$ $W_{P} = (\gamma^{+}h^{2})/sin2\beta$ $C_{a} = c_{a}(L-h/sin\beta)$ Drainage Material (Bottom Ash) DEFINITIONS OF VARIABLES: FS = Factor of Safety a, b, & c = intermediate variables (= calculated variable) N_{A} = Effective force normal to the failure plane of the active wedge (= calculated variable) W_{A} = Total weight of active wedge (= calculated variable) W_{P} = Total weight of passive wedge (= calculated variable) W_{P} = Total weight of passive wedge (= calculated variable) B = Soil slope angle beneath the geomembrane (= 18.42 degrees or 0.322 radians based on liner slope of 3 to 1) \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$= Friction angle of the drainage layer material (= 35 degrees 0.611 radians based on Ref # \$= Interface friction angle for liner system geosynthetics (to be determined) \$	h]
Wp = (γ*h ²)/sin2β) C _a = c _a (L-h/sinβ) Drainage Material (Bottom Ash) DEFINITIONS OF VARIABLES: FS = Factor of Safety a, b, & c = intermediate variables (= calculated variable) N _A = Effective force normal to the failure plane of the active wedge (= calculated variable) W _P = Total weight of active wedge (= calculated variable) W _P = Total weight of passive wedge (= calculated variable) W _P = Total weight of passive wedge (= calculated variable) W _P = Total weight of passive wedge (= calculated variable) W _P = Total weight of passive wedge (= calculated variable) W _P = Total weight of passive wedge (= calculated variable) Ø = Soil slope angle beneath the geomembrane (= 18.42 degrees or 0.322 radians based on liner slope of 3 to 1) Ø = Friction angle of the drainage layer material (=35 degrees 0.611 radians based on Ref # δ = Interface friction angle for liner system geosynthetics (to be determined) c _a = Adhesion for liner system geosynthetics at active wedge (to be determined) v _a = Adhesive force of the active wedge for the liner system geosynthetics h = Thickness of the drainage layer material (=15_ foot based on base design) L = Length of slope measured along the geomembrane (=	
$C_{a} = c_{a}(L-h/\sin\beta)$ Drainage Material (Bottom Ash) DEFINITIONS OF VARIABLES: FS = Factor of Safety a, b, & c = intermediate variables (= calculated variable) N _A = Effective force normal to the failure plane of the active wedge (= calculated variable) W _A = Total weight of active wedge (= calculated variable) W _P = Total weight of passive wedge (= calculated variable) B = Soil slope angle beneath the geomembrane (= 18.42 degrees or 0.322 radians based on liner slope of 3 to 1) \$\phi\$ = Friction angle of the drainage layer material (= 35 degrees 0.611 radians based on Ref # \$\phi\$ = Interface friction angle for liner system geosynthetics (to be determined) c _a = Adhesion for liner system geosynthetics at active wedge (to be determined), Variable \$\py\$ = Unit weight of the drainage layer material (= 135 pcf based on conservative wet density of bottom a C = Cohesive force along the failure plane of the passive wedge (assumed 0 for drainage layer material) C _a = Adhesive force of the active wedge for the liner system geosynthetics h = Thickness of the drainage layer material(= 1.0 foot based on base design) L = Length of slope measured along the geomembrane (= 80 feet based on base design)	β
$[Bottom Ash] \\ N_A$ DEFINITIONS OF VARIABLES: FS = Factor of Safety a, b, & c = intermediate variables (= calculated variable) N_A = Effective force normal to the failure plane of the active wedge (= calculated variable) W_A = Total weight of active wedge (= calculated variable) W_P = Total weight of passive wedge (= calculated variable) β = Soil slope angle beneath the geomembrane (= 18.42 degrees or 0.322 radians based on liner slope of 3 to 1) ϕ = Friction angle of the drainage layer material (= 35 degrees 0.611 radians based on Ref # δ = Interface friction angle for liner system geosynthetics (to be determined) c_n = Adhesion for liner system geosynthetics at active wedge (to be determined) c_n = Adhesive force along the failure plane of the passive wedge (assumed 0 for drainage layer material) C_n = Adhesive force of the active wedge for the liner system geosynthetics h = Thickness of the drainage layer material (= 1.0 foot based on base design) L = Length of slope measured along the geomembrane (= 80 feet based on base design)	-2
DEFINITIONS OF VARIABLES: FS = Factor of Safety a, b, & c = intermediate variables (= calculated variable) N_A = Effective force normal to the failure plane of the active wedge (= calculated variable) W_A = Total weight of active wedge (= calculated variable) W_p = Total weight of passive wedge (= calculated variable) β = Soil slope angle beneath the geomembrane (= 18.42 degrees or 0.322 radians based on liner slope of 3 to 1) ϕ = Friction angle of the drainage layer material (= <u>35</u> degrees 0.611 radians based on Ref # δ = Interface friction angle for liner system geosynthetics (to be determined) c_a = Adhesion for liner system geosynthetics at active wedge (to be determined) c_a = Adhesion for liner system geosynthetics at active wedge (assumed 0 for drainage layer material) C_a = Adhesive force of the active wedge for the liner system geosynthetics h = Thickness of the drainage layer material(= <u>1.0</u> foot based on base design) L = Length of slope measured along the geomembrane (= <u>80</u> feet based on base design)	
FS = Factor of Safety a, b, & c = intermediate variables (= calculated variable) $N_A = Effective force normal to the failure plane of the active wedge (= calculated variable) W_A = Total weight of active wedge (= calculated variable) W_p = Total weight of passive wedge (= calculated variable) \beta = Soil slope angle beneath the geomembrane (= 18.42 degrees or 0.322 radians based on liner slope of 3 to 1) \phi = Friction angle of the drainage layer material (= 35 degrees 0.611 radians based on Ref # \delta = Interface friction angle for liner system geosynthetics (to be determined)c_a = Adhesion for liner system geosynthetics at active wedge (to be determined) , Variable \gamma = Unit weight of the drainage layer material (= 135 pcf based on conservative wet density of bottom andC = Cohesive force along the failure plane of the passive wedge (assumed 0 for drainage layer material) C_a = Adhesive force of the active wedge for the liner system geosynthetics h = Thickness of the drainage layer material (= 1.0 foot based on base design) L = Length of slope measured along the geomembrane (= 80 feet based on base design)$	
a, b, & c = intermediate variables (= calculated variable) N_A = Effective force normal to the failure plane of the active wedge (= calculated variable) W_A = Total weight of active wedge (= calculated variable) W_P = Total weight of passive wedge (= calculated variable) β = Soil slope angle beneath the geomembrane (= 18.42 degrees or 0.322 radians based on liner slope of 3 to 1) ϕ = Friction angle of the drainage layer material (= 35 degrees 0.611 radians based on Ref \pm δ = Interface friction angle for liner system geosynthetics (to be determined) c_a = Adhesion for liner system geosynthetics at active wedge (to be determined), Variable γ = Unit weight of the drainage layer material (= 135 pcf based on conservative wet density of bottom a C = Cohesive force along the failure plane of the passive wedge (assumed 0 for drainage layer material) C_a = Adhesive force of the active wedge for the liner system geosynthetics h = Thickness of the drainage layer material(= 1.0 foot based on base design) L = Length of slope measured along the geomembrane (= <u>80</u> feet based on base design)	
$N_A = Effective force normal to the failure plane of the active wedge (= calculated variable) W_A = Total weight of active wedge (= calculated variable) W_P = Total weight of passive wedge (= calculated variable) \beta = Soil slope angle beneath the geomembrane (= 18.42 degrees or 0.322 radians based on liner slope of 3 to 1) \phi = Friction angle of the drainage layer material (= 35 degrees 0.611 radians based on Ref \pm\delta = Interface friction angle for liner system geosynthetics (to be determined) c_a = Adhesion for liner system geosynthetics at active wedge (to be determined), Variable \gamma = Unit weight of the drainage layer material (= 135 pcf based on conservative wet density of bottom a C = Cohesive force along the failure plane of the passive wedge (assumed 0 for drainage layer material) C_a = Adhesive force of the active wedge for the liner system geosynthetics h = Thickness of the drainage layer material(= 1.0 foot based on base design) L = Length of slope measured along the geomembrane (= 80 feet based on base design)$	
$W_{A} = \text{Total weight of active wedge (= calculated variable)}$ $W_{P} = \text{Total weight of passive wedge (= calculated variable)}$ $\beta = \text{Soil slope angle beneath the geomembrane (} = 18.42 \text{ degrees or } 0.322 \text{ radians}$ $based \text{ on liner slope of } 3 \text{ to } 1 \text{)}$ $\phi = \text{Friction angle of the drainage layer material (} = 35 \text{ degrees } 0.611 \text{ radians based on Ref } 4 5 \text{ = Interface friction angle for liner system geosynthetics (to be determined)}$ $c_{a} = \text{ Adhesion for liner system geosynthetics at active wedge (to be determined), Variable}$ $\gamma = \text{Unit weight of the drainage layer material (} = 135 \text{ pcf based on conservative wet density of bottom a C = Cohesive force along the failure plane of the passive wedge (assumed 0 for drainage layer material)$ $C_{a} = \text{ Adhesive force of the active wedge for the liner system geosynthetics}$ $h = \text{Thickness of the drainage layer material(} = 1.0 \text{ foot based on base design)}$ $L = \text{Length of slope measured along the geomembrane (} = 80 \text{ feet based on base design)}$	
$W_{P} = \text{Total weight of passive wedge (= calculated variable)}$ $\beta = \text{Soil slope angle beneath the geomembrane (} = 18.42 \text{ degrees or } 0.322 \text{ radians} \text{ based on liner slope of } 3 \text{ to } 1 \text{)}$ $\phi = \text{Friction angle of the drainage layer material (} = 35 \text{ degrees } 0.611 \text{ radians based on Ref } 3 5 \text{ = Interface friction angle for liner system geosynthetics (to be determined)} $	
$\beta = \text{Soil slope angle beneath the geomembrane} (= 18.42 \text{ degrees or } 0.322 \text{ radians} \\ \text{based on liner slope of } 3 \text{ to } 1 \text{)} \\ \phi = \text{Friction angle of the drainage layer material} (= 35 \text{ degrees} 0.611 \text{ radians based on Ref } \\ \delta = \text{Interface friction angle for liner system geosynthetics (to be determined)} \\ c_a = \text{Adhesion for liner system geosynthetics at active wedge (to be determined) , Variable} \\ \gamma = \text{Unit weight of the drainage layer material} (= 135 \text{ pcf based on conservative wet density of bottom a } C = \text{Cohesive force along the failure plane of the passive wedge (assumed 0 for drainage layer material)} \\ C_a = \text{Adhesive force of the active wedge for the liner system geosynthetics} \\ h = \text{Thickness of the drainage layer material}(= 1.0 \text{ foot based on base design})} \\ L = \text{Length of slope measured along the geomembrane} (= 80 \text{ feet based on base design})} $	
based on liner slope of 3 to 1) $\phi = Friction angle of the drainage layer material (= 35 degrees 0.611 radians based on Ref # \delta = \text{Interface friction angle for liner system geosynthetics (to be determined)}c_a = \text{Adhesion for liner system geosynthetics at active wedge (to be determined), Variable \gamma = \text{Unit weight of the drainage layer material} (= 135 \text{ pcf based on conservative wet density of bottom a } C = \text{Cohesive force along the failure plane of the passive wedge (assumed 0 for drainage layer material)}C_a = \text{Adhesive force of the active wedge for the liner system geosynthetics}h = Thickness of the drainage layer material(= 1.0 foot based on base design)L = Length of slope measured along the geomembrane (= 80 feet based on base design)$	
ϕ = Friction angle of the drainage layer material (= <u>35</u> degrees 0.611 radians based on Ref # δ = Interface friction angle for liner system geosynthetics (to be determined) c _a = Adhesion for liner system geosynthetics at active wedge (to be determined) , Variable γ = Unit weight of the drainage layer material (= <u>135</u> pcf based on conservative wet density of bottom a C = Cohesive force along the failure plane of the passive wedge (assumed 0 for drainage layer material) C _a = Adhesive force of the active wedge for the liner system geosynthetics h = Thickness of the drainage layer material(= <u>1.0</u> foot based on base design) L = Length of slope measured along the geomembrane (= <u>80</u> feet based on base design)	
δ = Interface friction angle for liner system geosynthetics (to be determined) ca = Adhesion for liner system geosynthetics at active wedge (to be determined) , Variable $γ = Unit$ weight of the drainage layer material (= <u>135</u> pcf based on conservative wet density of bottom a C = Cohesive force along the failure plane of the passive wedge (assumed 0 for drainage layer material) C _a = Adhesive force of the active wedge for the liner system geosynthetics h = Thickness of the drainage layer material(= <u>1.0</u> foot based on base design) L = Length of slope measured along the geomembrane (= <u>80</u> feet based on base design)	#2)
c_a = Adhesion for liner system geosynthetics at active wedge (to be determined) , Variable γ = Unit weight of the drainage layer material (= <u>135</u> pcf based on conservative wet density of bottom a C = Cohesive force along the failure plane of the passive wedge (assumed 0 for drainage layer material) C _a = Adhesive force of the active wedge for the liner system geosynthetics h = Thickness of the drainage layer material(= <u>1.0</u> foot based on base design) L = Length of slope measured along the geomembrane (= <u>80</u> feet based on base design)	
γ = Unit weight of the drainage layer material (=135pcf based on conservative wet density of bottom a C = Cohesive force along the failure plane of the passive wedge (assumed 0 for drainage layer material) C _a = Adhesive force of the active wedge for the liner system geosynthetics h = Thickness of the drainage layer material(=foot based on base design) L = Length of slope measured along the geomembrane (=80feet based on base design)	
C = Cohesive force along the failure plane of the passive wedge (assumed 0 for drainage layer material) C_a = Adhesive force of the active wedge for the liner system geosynthetics h = Thickness of the drainage layer material(= <u>1.0</u> foot based on base design) L = Length of slope measured along the geomembrane (= <u>80</u> feet based on base design)	ash).
C_a = Adhesive force of the active wedge for the liner system geosynthetics h = Thickness of the drainage layer material(= <u>1.0</u> foot based on base design) L = Length of slope measured along the geomembrane (= <u>80</u> feet based on base design)	
h = Thickness of the drainage layer material(= <u>1.0</u> foot based on base design) L = Length of slope measured along the geomembrane (= <u>80</u> feet based on base design)	
L = Length of slope measured along the geomembrane (= <u>80</u> feet based on base design)	

5	RT Sou		Sheet No.	2	
		JARED	Calc. No.		
	CIVIL & ENVIRONMENTAL ENGINEERING		Rev. No.		
Job No.	4071	Job: Columbia Ash Generation Landfill	By: PEG	Date 9/23/10	
Client:	Alliant	Subject: Liner Side Slope Drainage Layer Stability	Chk'd: DLN	Date 9/24/10	

CALCULATIONS:

	δ	Ca	W _A	W _P	N _A	Ca	а	b	с	FS
(deg)	(rad)	(lb/ft ²)	(lb/ft)	(lb/ft)	(lb/ft)	(lb/ft)	(lb/ft)	(lb/ft)	(lb/ft)	
10	0.175	32	10,350	225	9,820	2,459	981	-1,535	293	1.3
11	0.192	27	10,350	225	9,820	2,075	981	-1,473	279	1.3
12	0.209	24	10,350	225	9,820	1,844	981	-1,457	275	1.3
13	0.227	22	10,350	225	9,820	1,690	981	-1,465	277	1.3
14	0.244	20	10,350	225	9,820	1,537	981	-1,473	279	1.3
15	0.262	18	10,350	225	9,820	1,383	981	-1,482	281	1.3
16	0.279	15	10,350	225	9,820	1,153	981	-1,468	277	1.3
17	0.297	12	10,350	225	9,820	922	981	-1,455	274	1.3
18	0.314	10	10,350	225	9,820	768	981	-1,465	277	1.3
19	0.332	8	10,350	225	9,820	615	981	-1,477	279	1.3
20	0.349	5	10,350	225	9,820	384	981	-1,465	277	1.3
21	0.367	3	10,350	225	9,820	231	981	-1,478	280	1.3
22	0.384	0	10,350	225	9,820	0	981	-1,468	277	1.3

Adhesion vs. Interface Friction Angle

CONCLUSION:

The landfill liner side slope drainage layer was evaluated for static veneer slope stability along its longest slope. Calculations were performed to determine the minimum adhesion necessary for a range of interface friction angles to reach a FS of 1.3 or greater. Each interface friction angle and the coinciding adhesion was graphed in order to easily determine if a material interface is acceptable along the side slope.

I:\4071\Calculations\[Static Veneer Slope Stability_Side Slope Drainage Stability.xls]Side Slope

I RI	SOUNDED	Sheet No.	1 (
	JUARED	Calc. No.	6
		Rev. No.	
Job No. 40	Job: Columbia Ash Generation Landfill	By PEG	Date 9
Client: Alliant	Subject: GCL Internal Shear for Liner System	Chk'd DLN	Date 9
Purpos	e: Determine the maximum shear stress acting on a Geosynthetic Clay	Liner (GCL) and th	e
	GCL internal shear strength required to provide a minimum slope st	ability safety factor	(FS) of
	1.5 for the liner system.		
Approac	: Use maximum shear stress formula and assumed values.		
Reference	B: Design of GCL Barrier for Final Cover Side Slope App	lications	
	Gregory N. Richardson, Ph.D., P.E. Geosynthetics '97 -	541	
Coloulatio	The maximum about stress acting on the CCL can be calculated as	fallouro	
Calculation	I. The maximum shear stress acting on the GCL can be calculated as	TOHOWS.	
	T - W - O		
	$v_{act} = w_T \sin \beta$		
	$\beta = 18.4^{\circ}$		
	$W_{T} = \gamma * h$		
	Where,		
	γ = Ash Unit Weight = 135 pcf		
	h = drainage layer thickness = 1 ft		
	$W_T = 135$ nef		
	100 psi		
	t = 42.6 psf		
	act		
	$\tau_{\rm resist}$ = 15		
	τ_{act}		
	$T = FS^*T$ = 15*426	= 64 psf	
	resist act = 1.3 42.5	- 04 p3i	
Assumptions	: 1. Slope angle, β =18.4° (3:1 horizontal/vertical liner side slope).		
	2. Ash unit weight, γ = 135 pcf		
Conclusions	For a total weight of the leachate drainage layer of 135 psf and a slo	pe angle of 3:1, the	
	maximum shear stress will be 42.6 psf. A minimum GCL internal sh	ear strength of 64 p	sf is
	required to provide a slope stability safety factor of 1.5.		

APPENDIX B

Schedule

		Closure Pla	in Schedule Phas	se 1 Module 1 -	Columbia Dry	Ash Disposal F	acility		
ID	Task Name		Duration	Start	Finish	Sen Oct	Nov Dec	lan Feb Mar	2049 Apr May lun lul
1	Phase 1 Module 1 Closu	re in the second se	241 days	Wed 9/30/48	Fri 5/28/49				
2	Ash Filling Ceases		1 day	Wed 9/30/48	Wed 9/30/48	3			
3	Other Regulatory Pern	nits - None	0 days	Wed 9/30/48	Wed 9/30/48	3 9/30)		
4	Notification of Intent t	o Close	0 days	Fri 10/30/48	Fri 10/30/48		10/30		
5	Construction Activities	5	180 days	Sat 10/31/48	Wed 4/28/49)			
6	Notification of Closure	Completion	0 days	Wed 4/28/49	Wed 4/28/49)			4/28
7	Documentation of Clos	sure	30 days	Thu 4/29/49	Fri 5/28/49				
8	State Submittal of Doc	umentation Report	0 days	Fri 5/28/49	Fri 5/28/49				5/28
		lask		Inactive Sumr	nary		External lasks	<u>^</u>	
		Split	•	Manual Task	1804	2403	External Milest	ione 🗢	
Proje	ct: Appendix B Ph 1 Mod1	Milestone	•	Duration-only			Deadline -	*	
Date:	Thu 10/4/18	Summary		Manual Sumn	nary Rollup		Progress		
		Project Summary		Manual Sumn	nary –		Manual Progre	255	
		Inactive Task		Start-only	E				
		Inactive Milestone	\$	Finish-only]				
I:\252	217156.00\Deliverables\Clo	sure Plan\MS Project\	Appendix B Ph 1	1 Mod 1 Schedu	ule_rev181004				

	Task Name		Duration	Start	Finish	2051		
1	Phase 1 Module 2 Closur	re	241 days	Sat 12/31/50	Mon 8/28/51	Dec Jan	Feb Mar Apr May .	Jun Jul Aug Sep Oct Nov De
2	Ash Filling Ceases		1 day	Sat 12/31/50	Sat 12/31/50			
3	Other Regulatory Perr	nits - None	0 days	Sat 12/31/50	Sat 12/31/50	12	/31	
4	Notification of Intent	to Close	0 days	Mon 1/30/51	Mon 1/30/51		1/30	
5	Construction Activities	S	180 days	Tue 1/31/51	Sat 7/29/51			
6	Notification of Closure	e Completion	0 days	Sat 7/29/51	Sat 7/29/51			7/29
7	Documentation of Clo	sure	30 days	Sun 7/30/51	Mon 8/28/51			
8	State Submittal of Doc	cumentation Report	0 days	Mon 8/28/51	Mon 8/28/51			₹ 8/28
Project Date: T	:: Module 2 Closure Sche 'hu 10/4/18	Task Split Milestone Summary Project Summary	•	Inactive Summ Manual Task Duration-only Manual Summ	ary Rollup		External Tasks External Milestone Deadline Progress Manual Progress	
Project Date: T	:: Module 2 Closure Sche 'hu 10/4/18	Task Split Milestone Summary Project Summary Inactive Task		Inactive Summ Manual Task Duration-only Manual Summ Start-only	ary Rollup ary Ellup		External Tasks External Milestone Deadline Progress Manual Progress	

ID Task Name Duration Start Finish Plase 1 Module 3 Closure 241 days Sat 12/31/50 Mon 8/28/51 2 Ash Filling Ceases 1 day Sat 12/31/50 Sat 12/31/50 Sat 12/31/50 3 Other Regulatory Permits - None 0 days Sat 12/31/50 Sat 12/31/50 4 Notification of Intent to Close 0 days Mon 1/30/51 Mon 1/30/51 5 Construction Activities 180 days Tue 1/31/51 Sat 7/29/51 6 Notification of Closure Completion 0 days Sat 7/29/51 Sat 7/29/51 7 Documentation of Closure 30 days Sun 7/30/51 Mon 8/28/51 8 State Submittal of Documentation Report 0 days Mon 8/28/51 Mon 8/28/51 Date: Tuk Task Inactive Summary External Tasks Split Milestone Ouration redy Deadine Pogiets Pate: Tu 10/4/18 Summary Manual Summary Rollup Progress		Closu	ure Plan Phase 1 I	Module 3 - Col	umbia Ash Disp	osal Faci	lity	
1 Phase 1 Module 3 Closure 241 days Sat 12/31/50 Mon 8/28/51 2 Ash Filling Ceases 1 day Sat 12/31/50 Sat 12/31/50 Sat 12/31/50 3 Other Regulatory Permits - None 0 days Sat 12/31/50 Sat 12/31/50 Sat 12/31/50 4 Notification of Intent to Close 0 days Sat 12/31/51 Sat 7/29/51 Sat 7/29/51 5 Construction Activities 180 days Sat 7/29/51 Sat 7/29/51 Sat 7/29/51 6 Notification of Closure Completion 0 days Sat 7/30/51 Mon 8/28/51 Mon 8/28/51 7 Documentation of Closure 30 days Sun 7/30/51 Mon 8/28/51 Mon 8/28/51 8 State Submittal of Documentation Report 0 days Mon 8/28/51 Mon 8/28/51 Mon 8/28/51 Date: Tuk 10/4/18 Tak Inactive Summary External Tasks External Tasks 9 Split Manual Task External Milestone Monual Summary Rolup Progress Date: Tuk 10/4/18 Split Manual Summary Manual Summary Manual Summary Manual Progress Manual Roperes	ID	Task Name	Duration	Start	Finish	205 Dec Jar	51 Feb Mar Apr May	Jun Jul Aug Sep Oct Nov Dec.
2 Ash Filling Ceases 1 day Sat 12/31/50 Sat 12/31/50 3 Other Regulatory Permits - None 0 days Sat 12/31/50 Sat 12/31/50 4 Notification of Intent to Close 0 days Sat 12/31/51 Sat 12/31/50 5 Construction Activities 180 days Tue 1/31/51 Sat 7/29/51 6 Notification of Closure Completion 0 days Sat 7/29/51 Sat 7/29/51 7 Documentation of Closure 30 days Sun 7/30/51 Mon 8/28/51 8 State Submittal of Documentation Report 0 days Mon 8/28/51 Mon 8/28/51 8 State Submittal of Documentation Report 0 days Mon 8/28/51 Mon 8/28/51 9 Sati Sati Sati Sati Sati Sati Sati Sati	1	Phase 1 Module 3 Closure	241 days	Sat 12/31/50	Mon 8/28/51		· · · · · · · · · · · · · · · · · · ·	
3 Other Regulatory Permits - None 0 days Sat 12/31/50 Sat 12/31/50 12/31 4 Notification of Intent to Close 0 days Mon 1/30/51 Mon 1/30/51 Mon 1/30/51 5 Construction Activities 180 days Sat 7/29/51 Sat 7/29/51 Sat 7/29/51 7 Documentation of Closure 30 days Sun 7/30/51 Mon 8/28/51 Mon 8/28/51 8 State Submittal of Documentation Report 0 days Mon 8/28/51 Mon 8/28/51 Mon 8/28/51 8 State Submittal of Documentation Report 0 days Mon 8/28/51 Mon 8/28/51 Mon 8/28/51 9 Date: Thu 10/4/18 Task Inactive Summary External Tasks 9 Split Manual Task External Tasks Manual Task Manual Task 9 Summary Manual Summary Manual Summary Manual Summary Manual Summary Manual Summary	2	Ash Filling Ceases	1 day	Sat 12/31/50	Sat 12/31/50			
4 Notification of Intent to Close 0 days Mon 1/30/51 Mon 1/30/51 5 Construction Activities 180 days Tue 1/31/51 Sat 7/29/51 6 Notification of Closure Completion 0 days Sat 7/29/51 Sat 7/29/51 7 Documentation of Closure 0 days Sun 7/30/51 Mon 8/28/51 8 State Submittal of Documentation Report 0 days Mon 8/28/51 Mon 8/28/51 8 State Submittal of Documentation Report 0 days Mon 8/28/51 Mon 8/28/51 9 Split Manual Task External Tasks Split Manual Task External Milestone Milestone Duration-only Deadline 9 Summary Manual Summary Nollup Progress 9 Summary Manual Summary Manual Progress	3	Other Regulatory Permits - None	0 days	Sat 12/31/50	Sat 12/31/50	1	2/31	
5 Construction Activities 180 days Tue 1/31/51 Sat 7/29/51 6 Notification of Closure Completion 0 days Sat 7/29/51 Sat 7/29/51 7 Documentation of Closure 30 days Sun 7/30/51 Mon 8/28/51 8 State Submittal of Documentation Report 0 days Mon 8/28/51 Mon 8/28/51 9 State Submittal of Documentation Report 0 days Mon 8/28/51 Mon 8/28/51 9 State Submittal of Documentation Report 0 days Mon 8/28/51 Mon 8/28/51 9 State Submittal of Documentation Report 0 days Mon 8/28/51 Mon 8/28/51 9 Split Manual Task External Tasks External Milestone Deadline Manual Summary Manual Progress	4	Notification of Intent to Close	0 days	Mon 1/30/51	Mon 1/30/51		\$ 1/30	
6 Notification of Closure Completion 0 days Sat 7/29/51 Sat 7/29/51 Mon 8/28/51 7 Documentation of Closure 30 days Sun 7/30/51 Mon 8/28/51 Mon 8/28/51 8 State Submittal of Documentation Report 0 days Mon 8/28/51 Mon 8/28/51 Mon 8/28/51 8 State Submittal of Documentation Report 0 days Mon 8/28/51 Mon 8/28/51 Mon 8/28/51 9 State Submittal of Documentation Report 0 days Mon 8/28/51 Mon 8/28/51 Mon 8/28/51 9 State Submittal of Documentation Report 0 days Mon 8/28/51 Mon 8/28/51 Mon 8/28/51 9 State Submittal of Documentation Report 0 days Mon 8/28/51 Mon 8/28/51 Mon 8/28/51 9 State Submittal of Documentation Report 0 days Mon 8/28/51 Mon 8/28/51 Mon 8/28/51 Mon 8/28/51 9 State Submittal of Documentation Report Manual Task External Tasks External Milestone Mon 9/28/20 9 Summary Manual Task External Milestone Mon 9/28/20 Deadline Mon 9/28/20 9 Summary Manual S	5	Construction Activities	180 days	Tue 1/31/51	Sat 7/29/51		•	
7 Documentation of Closure 30 days Sun 7/30/51 Mon 8/28/51 8 State Submittal of Documentation Report 0 days Mon 8/28/51 Mon 8/28/51 8 State Submittal of Documentation Report 0 days Mon 8/28/51 Mon 8/28/51 8 State Submittal of Documentation Report 0 days Mon 8/28/51 Mon 8/28/51 9 Spit Inactive Summary External Tasks External Tasks 9 Spit Manual Task External Tasks External Milestone 9 Summary Manual Task External Milestone Progress 9 Summary Manual Summary Rollup Progress Manual Progress	6	Notification of Closure Completion	0 days	Sat 7/29/51	Sat 7/29/51			7/29
8 State Submittal of Documentation Report 0 days Mon 8/28/51 Mon 8/28/51 Mon 8/28/51 8 Task Inactive Summary External Tasks 9 Split Manual Task External Milestone 9 Duration-only Deadline 9 Summary Manual Summary Rollup Progress 9 Manual Summary Manual Summary Manual Summary	7	Documentation of Closure	30 days	Sun 7/30/51	Mon 8/28/51			
Task Inactive Summary External Tasks Split Manual Task External Milestone Milestone Duration-only Deadline Summary Manual Summary Rollup Progress Project Summary Manual Summary Manual Progress	8	State Submittal of Documentation Report	0 days	Mon 8/28/51	Mon 8/28/51			8/28
Inactive lask Start-only L		Task Split Milestone	•	Inactive Summ Manual Task Duration-only	ary		 External Tasks External Milestone Deadline 	\$

	Closu	re Plan Phase 1	Module 4 - Colu	umbia Ash Disp	osal Facility
ID	Task Name	Duration	Start	Finish	2051 Dec Jan Feb Mar Apr May Jun Jul Aug Sen Oct Nov Dec
1	Phase 1 Module 4 Closure	241 days	Sat 12/31/50	Mon 8/28/51	
2	Ash Filling Ceases	1 day	Sat 12/31/50	Sat 12/31/50	
3	Other Regulatory Permits - None	0 days	Sat 12/31/50	Sat 12/31/50	▶ 12/31
4	Notification of Intent to Close	0 days	Mon 1/30/51	Mon 1/30/51	× 1/30
5	Construction Activities	180 days	Tue 1/31/51	Sat 7/29/51	
6	Notification of Closure Completion	0 days	Sat 7/29/51	Sat 7/29/51	₹ 7/29
7	Documentation of Closure	30 days	Sun 7/30/51	Mon 8/28/51	
8	State Submittal of Documentation Report	0 days	Mon 8/28/51	Mon 8/28/51	♦ 8/28
Date	Task Split Nilestone Summary Project Summary Inactive Task	◆	Inactive Summa Manual Task Duration-only Manual Summa Start-only	ary IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	 External Tasks External Milestone Deadline Progress Manual Progress
1.\254	21/150.00/Deliverables/Closure Plan/IVIS Project/A	htteriory p bu T	wood 4 Closure	schednie_levis	Page 1