#### ALLIANT ENERGY Wisconsin Power and Light Company Edgewater Generating Station

#### CCR SURFACE IMPOUNDMENT

#### STRUCTURAL STABILITY ASSESSMENT

Report Issued: September 21, 2016 Revision 0





# **EXECUTIVE SUMMARY**

This Structural Stability Assessment (Report) is prepared in accordance with the requirements of the United States Environmental Protection Agency (USEPA) published Final Rule for Hazardous and Solid Waste Management System - Disposal of Coal Combustion Residual from Electric Utilities (40 CFR Parts 257 and 261, also known as the CCR Rule) published on April 17, 2015 and effective October 19, 2015.

This Report assesses the structural stability of each CCR unit at Edgewater Generating Station in Sheboygan, WI in accordance with §257.73(b) and §257.73(d) of the CCR Rule. For purposes of this Report, "CCR unit" refers to an existing CCR surface impoundment.

Primarily, this Report is focused on documenting whether the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices for the maximum volume of CCR and CCR wastewater which can be impounded within each CCR unit.



# **Table of Contents**

| 1       | INTR                        | ODUCTION                                               | . 1 |
|---------|-----------------------------|--------------------------------------------------------|-----|
|         | 1.1                         | CCR Rule Applicability                                 | . 1 |
|         | 1.2                         | Structural Stability Assessment Applicability          | . 1 |
| 2       | FAC                         | LITY DESCRIPTION                                       | . 2 |
|         | 2.1                         | EDG Slag Pond                                          | . 3 |
|         | 2.2                         | EDG North A-Pond                                       | . 3 |
|         | 2.3                         | EDG South A-Pond                                       | .4  |
|         | 2.4                         | EDG B-Pond                                             | . 5 |
| 3       | STR                         | JCTURAL STABILITY ASSESSMENT- §257.73(d)               | .7  |
|         | 3.1                         | EDG Slag Pond                                          | .7  |
|         | 3.1.1                       | CCR Unit Foundation and Abutments - §257.73(d)(1)(i)   | .7  |
|         | 3.1.2                       | Slope Protection - §257.73(d)(1)(ii)                   | .7  |
|         | 3.1.3                       | CCR Embankment Density- §257.73(d)(1)(iii)             | . 8 |
|         | 3.1.4                       | Vegetation Management - §257.73(d)(1)(iv)              | . 8 |
|         | 3.1.5                       | Spillway Management - §257.73(d)(1)(v)                 | . 8 |
|         | 3.1.6                       | Hydraulic Structures - §257.73(d)(1)(vi)               | . 9 |
|         | 3.1.7                       | Sudden Drawdown - §257.73(d)(1)(vii)                   | . 9 |
|         | 3.2                         | EDG North A-Pond                                       | . 9 |
|         | 3.2.1                       | CCR Unit Foundation and Abutments - §257.73(d)(1)(i)   | 0   |
|         | 3.2.2                       | Slope Protection - §257.73(d)(1)(ii)                   | 0   |
|         | 3.2.3                       | CCR Embankment Density- §257.73(d)(1)(iii)             | 0   |
|         | 3.2.4                       | Vegetation Management - §257.73(d)(1)(iv)              | 1   |
|         | 3.2.5                       | Spillway Management - §257.73(d)(1)(v)                 | 1   |
|         | 3.2.6                       | Hydraulic Structures - §257.73(d)(1)(vi)               | 1   |
|         | 3.2.7                       | Sudden Drawdown - §257.73(d)(1)(vii)                   | 1   |
|         | 3.3                         | EDG South A-Pond                                       | 1   |
|         | 3.3.1                       | CCR Unit Foundation and Abutments - §257.73(d)(1)(i)   | 2   |
|         | 3.3.2                       | Slope Protection - §257.73(d)(1)(ii)                   | 2   |
|         | 3.3.3                       | CCR Embankment Density- §257.73(d)(1)(iii)             | 3   |
|         | 3.3.4                       | Vegetation Management - §257.73(d)(1)(iv)              | 3   |
|         | 3.3.5                       | Spillway Management - §257.73(d)(1)(v)                 | 3   |
|         | 3.3.6                       | Hydraulic Structures - §257.73(d)(1)(vi)               | 4   |
|         | 3.3.7                       | Sudden Drawdown - §257.73(d)(1)(vii)                   | 4   |
|         | 3.4                         | EDG B-Pond                                             | 4   |
|         | 3.4.1                       | CCR Unit Foundation and Abutments - §257.73(d)(1)(i)   | 4   |
|         | 3.4.2                       | Slope Protection - §257.73(d)(1)(ii)                   | 15  |
|         | 3.4.3                       | CCR Embankment Density- §257.73(d)(1)(iii)             | 15  |
|         | 3.4.4                       | Vegetation Management - §257.73(d)(1)(iv)              | 15  |
| W<br>St | <u>isconsin</u><br>ructural | Power and Light Company – Edgewater Generating Station | 1   |



| 3.4.5 | Spillway Management - §257.73(d)(1)(v)   | .15 |
|-------|------------------------------------------|-----|
| 3.4.6 | Hydraulic Structures - §257.73(d)(1)(vi) | .16 |
| 3.4.7 | Sudden Drawdown - §257.73(d)(1)(vii)     | .16 |
| QUALI | FIED PROFESSIONAL ENGINEER CERTIFICATION | .17 |

# **Figures**

Figure 1: Site Location

4

Figure 2: CCR Impoundment, Soil Boring and Cross-Section Locations

Figure 3: Cross-Sections EDG B-Pond and EDG South A-Pond

Figure 4: Cross-Sections EDG North A-Pond and EDG Slag Pond

Figure 5: Cross-Sections at Borings R and Q (deep borings showing silt layer)

# **Appendices**

Appendix A: Outfall Pictures Appendix B: Soil Boring Logs



#### INTRODUCTION 1

The owner or operator of the Coal Combustion Residual (CCR) unit must conduct an initial and periodic structural stability assessments and document whether the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering practices for the maximum volume of CCR and CCR wastewater which can be impounded therein. This Report is prepared in accordance with the requirements of §257.73(b) and §257.73(d) of the CCR Rule.

## 1.1 CCR Rule Applicability

The CCR Rule requires a periodic structural stability assessment by a qualified professional engineer (PE) for existing CCR surface impoundments with a height of 5 feet or more and a storage volume of 20 acre-feet or more; or the existing CCR surface impoundment has a height of 20 feet or more.

## 1.2 Structural Stability Assessment Applicability

The Edgewater Generating Station (EDG) in Sheboygan, WI (Figure 1) has four existing CCR surface impoundments that meet the requirements of §257.73(b)(1) and/or §257.73(b)(2) of the CCR Rule, which are identified as follows:

- EDG Slag Pond
- EDG North A-Pond
- EDG South A-Pond
- EDG B-Pond



# **2 FACILITY DESCRIPTION**

EDG is located on the south edge of the City of Sheboygan, Wisconsin along the western shore of Lake Michigan in Sheboygan County, at 3739 Lakeshore Drive, Sheboygan, Wisconsin (Figure 1).

EDG is a fossil-fueled electric generating station that initiated operations in 1930. EDG consists of two steam electric generating units (Unit 4 and Unit 5). A third steam electric generating unit (Unit 3) was removed from service in 2015. Sub-bituminous coal is the primary fuel used at EDG for producing steam. The burning of coal produces CCR byproducts. The CCR at EDG is categorized into five types: precipitator fly ash, slag, bottom ash, economizer ash, and scrubber byproducts.

The Unit 4 precipitator fly ash is collected by Unit 4's electrostatic precipitators and sent to an on-site storage silo located southwest of the generating plant. The precipitator fly ash is then transported off-site for either beneficial reuse or for disposal at the EDG I-43 CCR landfill. The Unit 5 precipitator fly ash is collected by Unit 5's electrostatic precipitators and sent to a separate on-site storage silo located southwest of the generating plant. Unit 5's precipitator fly ash is then transported off-site for beneficial reuse or for disposal at the EDG I-43 CCR landfill.

The slag at EDG is produced from Unit 4 and is sluiced from the generating plant to a surface impoundment identified as the EDG Slag Pond (Figure 2). The EDG Slag Pond is located southwest of the generating plant.

Byproducts from the circulating dry scrubber (CDS) system are transported offsite for disposal at the EDG I-43 CCR Landfill.

General Facility Information:

1930 Date of Initial Facility Operations: WPDES Permit Number: WI-0001589-07-0 Latitude / Longitude: 43.716153, -87.706262 Wisconsin Power and Light Company - Edgewater Generating Station Structural Stability Assessment 2 September 21, 2016



| Nameplate Ratings: | Unit 1 (Retired) |
|--------------------|------------------|
|                    | Unit 2 (Retired) |
|                    | Unit 3 (Retired) |
|                    | Unit 4 351 MW    |
|                    | Unit 5 414 MW    |

#### 2.1 EDG Slag Pond

The EDG Slag Pond is located southwest of the generating plant and north of the EDG North A-Pond. The EDG Slag Pond receives influent flow from the generating plant via the Unit 4 boiler slag tanks. The water-slag slurry discharges into the southwest portion of the EDG Slag Pond. The slag is dredged out of the EDG Slag Pond and stockpiled in a containerized area adjacent to the existing CCR surface impoundment for dewatering. The slag is then screened to separate the coarsely graded material from the finely graded material prior to being transported off-site for beneficial reuse. The water in the EDG Slag Pond flows to the southwest where it gravity flows through a V-notch weir and through a four feet wide concrete structure into a 48-inch diameter corrugated metal pipe. The water from the EDG Slag Pond, which combines with flows from the EDG North A-Pond and EDG South A-Pond in the 48-inch diameter corrugated metal pipe, flows to the south into the northwest corner of the EDG B-Pond.

The surface area of the EDG Slag Pond is approximately 2.2 acres and has an embankment height of approximately 12 feet from the crest to the toe of the downstream slope. The interior storage depth of the EDG Slag Pond is approximately 17 feet. The total volume of impounded CCR and water within the EDG Slag Pond is approximately 47,000 cubic yards.

#### 2.2 EDG North A-Pond

The EDG North A-Pond is located southwest of the generating plant and south of the EDG Slag Pond. Historically, the EDG North A-Pond has received influent flows from the surge tank. Water in the surge tank includes excess process water from the Unit 5 hydrobin, steam water treatment reject water, and water from the facility floor drains. Therefore, the EDG North A-Pond has likely received residual bottom ash from the Wisconsin Power and Light Company - Edgewater Generating Station

hydrobin system, de minimis quantities of fly ash from routine maintenance operations, coal fines, and other materials from the plant floor drains. The water was pumped from the surge tank to the EDG North A-Pond via a 10-inch diameter steel pipe. The steel pipe, at a location northeast of the EDG North A-Pond, splits into two separate 10-inch diameter pipes. Each pipe then discharged into the northeast corner of both the EDG North A-Pond and EDG South A-Pond. Currently, EDG North A-Pond does not receive operational process discharges from the generating plant, although it still has the ability to be routed to the EDG North A-Pond.

Previously, water within the EDG North A-Pond flowed to the west. The EDG North A-Pond discharge consists of an 18-inch diameter corrugated plastic pipe located in the southwest corner of the existing CCR surface impoundment. The water would flow through the corrugated plastic pipe to the west into a concrete sluice box. The water within the sluice box flows through a Parshall flume prior to discharging into a 48-inch diameter corrugated metal pipe, which also receives influent flow from the EDG Slag Pond and EDG South A-Pond, prior to gravity flowing to the south into the northwest corner of the EDG B-Pond. Presently, no water within the EDG North A-Pond discharges through the 18-inch diameter corrugated plastic pipe as the pipe has been plugged.

The surface area of the EDG North A-Pond is approximately 2.2 acres and has an embankment height of approximately 18 feet from the crest to the toe of the downstream slope. The interior storage depth of the EDG Secondary Ash Pond is approximately 21 feet. The total volume of impounded CCR and water within the EDG North A-Pond is approximately 73,000 cubic yards.

#### 2.3 EDG South A-Pond

The EDG South A-Pond is located southwest of the generating plant and south of the EDG North A-Pond. As currently configured, the EDG South A-Pond receives influent flows from the surge tank. Water in the surge tank includes excess process water from the Unit 5 hydrobin, steam water treatment reject water, and water from the facility floor



drains. Therefore, the EDG North A-Pond has likely received residual bottom ash from the hydrobin system, de minimis quantities of fly ash from routine maintenance operations, coal fines, and other materials from the plant floor drains. The water is pumped from the surge tank to the EDG South A-Pond via a 10-inch diameter steel pipe. The steel pipe, at a location northeast of the EDG North A-Pond, splits into two separate 10-inch diameter pipes. Each pipe then discharges into the northeast corner of both the EDG North A-Pond and EDG South A-Pond. Note, the EDG North A-Pond no longer receives operational process flows from the generating plant.

The water within the EDG South A-Pond flows to the west. The EDG South A-Pond consists of an 18-inch diameter corrugated plastic pipe located in the northwest corner of the existing CCR surface impoundment. The water flows through the corrugated plastic pipe to the west into a concrete sluice box. The water within the sluice box flows through a Parshall flume prior to discharging into a 48-inch diameter corrugated metal pipe, which also receives influent flow from the EDG Slag Pond, prior to gravity flowing to the south into the northwest corner of the EDG B-Pond.

The surface area of the EDG South A-Pond is approximately 2.2 acres and has an embankment height of approximately 18 feet from the crest to the toe of the downstream slope. The interior storage depth of the EDG South A-Pond is approximately 25 feet. The total volume of impounded CCR and water within the EDG South A-Pond is approximately 90,500 cubic yards.

#### 2.4 EDG B-Pond

The EDG B-Pond is located southwest of the generating plant and south of the EDG South A-Pond. The EDG B-Pond receives influent flow via a 48-inch diameter corrugated metal pipe from the EDG Slag Pond and EDG South A-Pond. Additionally, the EDG B-Pond receives storm water drainage from a part of the closed ash landfill west of the EDG B-Pond. The storm water from the closed ash landfill discharges into the west side of the EDG B-Pond via a small corrugated plastic pipe.



The water in the EDG B-Pond flows to the east through an overflow weir wet well structure, Figure 2. The elevated weir prevents CCR that has settled in the EDG B-Pond from flowing out of the impoundment. The water gravity flows to the east through a 24inch diameter corrugated metal pipe where it discharges into the west side of the EDG C-Pond. The water in the EDG C-Pond gravity flows to the east into the EDG F-Pond. The water in the EDG F-Pond flows through the facility's Wisconsin Pollution Discharge Elimination System (WPDES) Outfall 004 and discharges into Lake Michigan. As determined by WPL, process water discharging from the EDG B-Pond does not contain a significant quantity of CCR, and downstream impoundments contain only de minimis quantities of CCR.

The water surface area of the EDG B-Pond is approximately 1.9 acres and has an embankment height of approximately 24 feet from the crest to the toe of the downstream slope in EDG C-Pond. The interior storage depth of the EDG B-Pond is approximately 15 feet. The total volume of impounded CCR and water within the EDG B-Pond is approximately 46,500 cubic yards.



# 3 STRUCTURAL STABILITY ASSESSMENT- §257.73(d)

This Report documents whether the design, construction, operation, and maintenance of each CCR unit is consistent with recognized and generally accepted good engineering practices for maximum volume of CCR and CCR wastewater which can be impounded.

## 3.1 EDG Slag Pond

The EDG Slag Pond is constructed in the northeast corner of the CCR management area located west of Lake Shore Drive, Figure 2. The impoundment has exterior embankments constructed of compacted clay on the north and east sides of the Impoundment, Figure 4, is separated from EDG North A-Pond to the south by an interior embankment constructed of bottom ash, Figure 4, and is incised into a CCR landfill area to the west.

The embankment soil is stiff to very stiff low plasticity clay (CL) or (CL-ML). The foundation soil under the compacted clay embankment inferred from the nearest boring into the foundation soil (boring R, Appendix B, is loose silt (ML) which is underlain by medium stiff clay (CL). The crest of the EDG Slag Pond embankment is 2 foot lower than the embankment separating the EDG Slag Pond from the North A-Pond.

## 3.1.1 CCR Unit Foundation and Abutments - §257.73(d)(1)(i)

The foundation soil is silt and low plasticity clay deposited by glacial activity. The silt is medium dense to loose due to saturation by the impoundments and natural ground water recharge from rainfall. The silt and clay are both located below the normal ground water elevations of discharge to Lake Michigan to the east. The silt strength is adequate to support the embankments under the design loading conditions, EDG Safety Factor Assessment Report §257.73(b).

## 3.1.2 Slope Protection - §257.73(d)(1)(ii)

The west side of the EDG Slag Pond is incised. The south side abuts the EDG North A-Pond. The crest of the embankment is approximately 20 feet wide and downstream side has a vegetated 3:1 slope. The east crest is approximately 15 wide and the downstream 3:1 slope is vegetated to the Lake Shore Drive. The north crest is approximately 15 wide



and the downstream 3:1 slope is vegetated. Well established and managed vegetation will minimize erosion on both the upstream and downstream slopes. Additionally, storm water runoff is limited to the crest and downstream slope of the embankment, which limits the erosive force. Therefore the impoundment configuration protects against surface erosion.

The impoundment is located where the embankments will likely not be inundated by water which eliminates the potential for wave action on the downstream slopes.

Sudden drawdown is addressed in Section 3.1.7.

#### 3.1.3 CCR Embankment Density- §257.73(d)(1)(iii)

The constructed clay embankments are stiff to very stiff low plasticity clay and have adequate strength to contain the CCR contents. The measured embankment strength indicates adequate compaction during construction and the EDG Safety Factor Assessment Report § 257.73(b) shows that the compacted clay is not the limiting stability factor for the embankment. Foundation soil, Section 3.1.1, is the critical stability factor for the embankment.

## 3.1.4 Vegetation Management - §257.73(d)(1)(iv)

Historically vegetation management has been conducted on a periodic basis. At the time of the initial Annual Inspection in October 2015, the grassy vegetation was well managed. The facility plans to continue maintaining the vegetation in a manner that facilitates effective inspections and long-term operations.

## 3.1.5 Spillway Management - §257.73(d)(1)(v)

The EDG Slag Pond discharges over a 3.67 foot wide broad crested weir structure, Figure 2. The tailwater of the weir is drained by a 48-inch diameter pipe which does not limit the capacity of the discharge from the impoundment. The outlet of the 48-inch diameter pipe is in a lower elevation impoundment that will not back up into the EDG Slag Pond. The structure and pipe are constructed of non-erodible material and designed to carry sustained flows.



This impoundment currently has a hazard potential classification of "Significant," which in turn requires an evaluation of the impacts of a 1,000 year rainfall event. The Inflow Flood Control Plan, which is a separate document developed to comply with §257.82, shows that the precipitation from this event will drain through the culverts without overtopping the embankments of the impoundment.

#### 3.1.6 Hydraulic Structures - §257.73(d)(1)(vi)

On June 23, 2016 the discharge pipe was inspected using remote camera video inspection. The inspection showed that there was minimal deterioration, deformation, distortion, sedimentation, debris, and no bedding deficiencies were observed.

#### 3.1.7 Sudden Drawdown - §257.73(d)(1)(vii)

There is no surface water on the outside toe of the embankment and the embankment is not subjected to sudden drawdown toe failure.

## 3.2 EDG North A-Pond

The EDG North A-Pond is constructed between the EDG Slag pond and the EDG South A-Pond, Figure 2. The impoundment no longer received process water and is currently a zero liquid discharge pond. The flow of process water was stopped by plugging the 10-inch diameter inlet pipe on the East side of the impoundment and the 18-inch diameter discharge pipe in the southwest corner of the impoundment. Only rainwater enters the pond and either evaporates or exfiltrates the impoundment.

The impoundment has a single exterior embankments constructed of compacted clay on the east side of the impoundment, Figure 4, and is separated from EDG South A-Pond and the EDG Slag Pond by an interior embankments constructed of bottom ash, Figure 4, and is incised into a CCR landfill area to the west.

The embankment soil is very stiff low plasticity clay (CL) or (CL-ML). The foundation soil under the compacted clay embankment inferred from the nearest boring into the foundation soil (boring R, Appendix B, is loose silt (ML) which is underlain by medium stiff clay (CL).



#### 3.2.1 CCR Unit Foundation and Abutments - §257.73(d)(1)(i)

The foundation soil is silt and low plasticity clay deposited by glacial activity. The silt is medium dense to loose due to saturation by the impoundments and natural ground water recharge from rainfall. The silt and clay are both located below the normal ground water elevations of discharge to Lake Michigan to the east. The silt strength is adequate to support the embankments under the design loading conditions, EDG Safety Factor Assessment Report §257.73(b).

#### 3.2.2 Slope Protection - §257.73(d)(1)(ii)

The west side of the EDG North A-Pond is incised. The south side abuts the EDG South A-Pond. The crest of the embankment is approximately 15 feet wide and downstream side has a vegetated 3:1 slope. The east crest is approximately 15 wide and the downstream 3:1 slope is vegetated to the Lake Shore Drive. The north crest is approximately 15 wide and the downstream 3:1 slope is vegetated. Well established and managed vegetation will minimize erosion on both the upstream and downstream slopes. Additionally, storm water runoff is limited to the crest and downstream slope of the embankment, which limits the erosive force. Therefore the impoundment configuration protects against surface erosion.

The impoundment is located where the embankments will likely not be inundated by water which eliminates the potential for wave action on the downstream slopes.

Sudden drawdown is addressed in Section 3.2.7.

#### 3.2.3 CCR Embankment Density- §257.73(d)(1)(iii)

The constructed clay embankments is very stiff low plasticity clay and have adequate strength to contain the CCR contents. The measured embankment strength indicates adequate compaction during construction and the EDG Safety Factor Assessment Report §257.73(b) shows that the compacted clay is not the limiting stability factor for the embankment. Foundation soil, Section 3.1.1, is the critical stability factor for the embankment.



#### 3.2.4 Vegetation Management - §257.73(d)(1)(iv)

Historically vegetation management has been conducted on a periodic basis. At the time of the initial Annual Inspection in October 2015, the grassy vegetation was well managed. The facility plans to continue maintaining the vegetation in a manner that facilitates effective inspections and long-term operations.

# 3.2.5 Spillway Management - §257.73(d)(1)(v)

The EDG North A-Pond is operated as a zero discharge pond. The former spillway is an 18 inch diameter HDPE corrugated smooth interior pipe. The pipe is plugged with a metal plate. The pipe is constructed of non-erodible material and designed to carry sustained flows.

This impoundment currently has a hazard potential classification of "Significant," which in turn requires an evaluation of the impacts of a 1,000 year rainfall event. The Inflow Flood Control Plan, which is a separate document developed to comply with §257.82, shows that the precipitation from this event will be contained within the impoundment without overtopping the embankment.

# 3.2.6 Hydraulic Structures - §257.73(d)(1)(vi)

On June 23, 2016 the discharge pipe was inspected using remote camera video inspection. The inspection showed that there was minimal deterioration, deformation, distortion, sedimentation, debris, and no bedding deficiencies were observed.

# 3.2.7 Sudden Drawdown - §257.73(d)(1)(vii)

There is no surface water on the outside toe of the embankment and the embankment is not subjected to sudden drawdown toe failure.

# 3.3 EDG South A-Pond

The EDG South A-Pond is constructed between the EDG North A-Pond and the EDG B-Pond, Figure 2. The Pond has exterior embankments constructed of compacted clay on the east side of the Pond, Figures 3 and 5, is separated from EDG North A-Pond to the north by an interior embankment constructed of bottom ash, Figure 3, and is incised into



a CCR landfill area to the west. The south embankment is constructed very stiff clay topped with dense bottom ash where it is exposed to EDG C-Pond and is constructed of bottom ash between where it separates EDG B-Pond, Boring I Appendix B.

The embankment soil is stiff to very stiff low plasticity clay (CL) or (CL-ML) below elevation 603.5 and dense bottom ash to the crest at approximately elevation 612 feet. The foundation soil under the compacted clay embankment inferred from the nearest boring into the foundation soil (boring R and E, Appendix B, is loose silt (ML) which is underlain by medium stiff clay (CL). The crest of the EDG South A-Pond embankment is 4 foot higher than the embankment of the EDG B-Pond.

#### 3.3.1 CCR Unit Foundation and Abutments - §257.73(d)(1)(i)

The foundation soil is silt and low plasticity clay deposited by glacial activity. The silt is medium dense to very loose due to saturation by the impoundments and natural ground water recharge from rainfall. The silt and clay are both located below the normal ground water elevations of discharge to Lake Michigan to the east. The silt strength is adequate to support the embankments under the design loading conditions, EDG Safety Factor Assessment Report §257.73(b).

#### 3.3.2 Slope Protection - §257.73(d)(1)(ii)

The west side of the EDG South A-Pond is incised. The south side abuts the EDG B-Pond. The crest of the embankment is approximately 15 feet wide and downstream side has a vegetated 3:1 slope. The east crest is approximately 15 wide and the downstream 3:1 slope is vegetated to the Lake Shore Drive. To the north the impoundment abuts the EDG North A-Pond. The crest is approximately 15 wide and the downstream 3:1 slope is vegetated. Well established and managed vegetation will minimize erosion on both the upstream and downstream slopes. Additionally, storm water runoff is limited to the crest and downstream slope of the embankment, which limits the erosive force. Therefore the impoundment configuration protects against surface erosion.



The impoundment is located where the embankments will likely not be inundated by water which eliminates the potential for wave action on the downstream slopes.

Sudden drawdown is addressed in Section 3.3.7.

#### 3.3.3 CCR Embankment Density- §257.73(d)(1)(iii)

The constructed clay embankment is very stiff low plasticity clay with a top layer of dense bottom ash and has adequate strength to contain the CCR contents. The measured embankment strength indicates adequate compaction during construction and the EDG Safety Factor Assessment Report §257.73(b) shows that the compacted clay and bottom ash is not the limiting stability factor for the embankment. Foundation soil, Section 3.1.1, is the critical stability factor for the embankment.

#### 3.3.4 Vegetation Management - §257.73(d)(1)(iv)

Historically vegetation management has been conducted on a periodic basis. At the time of the initial Annual Inspection in October 2015, the grassy vegetation was well managed. The facility plans to continue maintaining the vegetation in a manner that facilitates effective inspections and long-term operations.

#### 3.3.5 Spillway Management - §257.73(d)(1)(v)

The EDG South A-Pond discharges through an 18-inch diameter corrugated HDPE pipe with smooth interior. The pipe invert is at 608.2 feet and the discharge from the impoundment is controlled by entrance conditions into the pipe, not the discharge conditions through the 48-inch diameter corrugated metal pipe to EDG B-Pond. The pipe is constructed of non-erodible material and designed to carry sustained flows.

This impoundment currently has a hazard potential classification of "Significant," which in turn requires an evaluation of the impacts of a 1,000 year rainfall event. The Inflow Flood Control Plan, which is a separate document developed to comply with §257.82, shows that the precipitation from this event will drain through the culverts without overtopping the embankment.



#### 3.3.6 Hydraulic Structures - §257.73(d)(1)(vi)

On June 23, 2016 the discharge pipe was inspected using remote camera video inspection. The inspection showed that there was minimal deterioration, deformation, distortion, sedimentation, debris, and no bedding deficiencies were observed.

#### 3.3.7 Sudden Drawdown - §257.73(d)(1)(vii)

Surface water is present in EDG C-Pond at the toe of the embankment at section I-I'. The water is normally at elevation 587 feet and rises to elevation 590 feet when the impoundment is full. A sudden decrease of water elevation is limited to three feet on a clay embankment toe and will not lead to sudden drawdown toe failure.

#### 3.4 EDG B-Pond

The EDG B-Pond is constructed in the southeast corner of the CCR management area located west of Lake Shore Drive, Figure 2. The impoundment has exterior embankments constructed of compacted clay on the east side of the impoundment, Figures 3 and 5, is separated from EDG South A-Pond to the north by an interior embankment constructed of bottom ash, Figure 3, and is incised into a CCR landfill area to the west.

The embankment soil is stiff to very stiff low plasticity clay (CL) or (CL-ML), Borings E and Q, Appendix B. The foundation soil under the compacted clay embankment is loose to very loose silt (ML) which is underlain by medium stiff clay (CL). The crest of the EDG B-Pond embankment is 4 feet lower than the embankment of the EDG B-Pond.

#### 3.4.1 CCR Unit Foundation and Abutments - §257.73(d)(1)(i)

The foundation soil is silt and low plasticity clay deposited by glaciers. The silt is loose to very loose due to saturation by the impoundments and natural ground water recharge from rainfall. The silt and clay are both located below the normal ground water elevations of discharge to Lake Michigan to the east. The silt strength is adequate to support the embankments under the design loading conditions, EDG Safety Factor Assessment Report §257.73(b).



#### 3.4.2 Slope Protection - §257.73(d)(1)(ii)

The west side of the EDG B-Pond is incised. The south crest is approximately 15 wide and the downstream 3:1 slope is vegetated. The east crest is approximately 15 wide and the downstream 2:1 slope is vegetated to the EDG C-Pond. The north crest abuts the EDG South A-Pond and is approximately 15 wide and the downstream 3:1 slope is vegetated. Well established and managed vegetation will minimize erosion on both the upstream and downstream slopes. Additionally, storm water runoff is limited to the crest and downstream slope of the embankment, which limits the erosive force. Therefore the impoundment configuration protects against surface erosion.

Given the size of the EDG C-Pond, the wave action generated on the downstream slope will not produce forces to cause undercutting of the east embankment.

Sudden drawdown is addressed in Section 3.4.7.

#### 3.4.3 CCR Embankment Density- §257.73(d)(1)(iii)

The constructed clay embankment is stiff to very stiff low plasticity clay (CL). The measured embankment strength indicates adequate compaction during construction and the EDG Safety Factor Assessment Report §257.73(b) shows that the compacted clay is not the limiting stability factor for the embankment. Foundation soil, Section 3.1.1, is the critical stability factor for the embankment.

## 3.4.4 Vegetation Management - §257.73(d)(1)(iv)

Historically vegetation management has been conducted on a periodic basis. At the time of the initial Annual Inspection in October 2015, the grassy vegetation was well managed. The facility plans to continue maintaining the vegetation in a manner that facilitates effective inspections and long-term operations.

## 3.4.5 Spillway Management - §257.73(d)(1)(v)

The EDG B-Pond discharges over a 3 foot wide broad crested overflow weir set at elevation 598.3 feet. The water enters a wet well that discharges through a 24 inch



diameter corrugated steel culvert to EDG C-Pond. The structure and pipe are constructed of non-erodible material and designed to carry sustained flows.

This impoundment currently has a hazard potential classification of "Significant," which in turn requires an evaluation of the impacts of a 1,000 year rainfall event. The Inflow Flood Control Plan, which is a separate document developed to comply with §257.82, shows that the precipitation from this event will drain through the culverts without overtopping the embankments of the impoundment.

#### 3.4.6 Hydraulic Structures - §257.73(d)(1)(vi)

On June 23, 2016 the discharge pipe was inspected using remote camera video inspection. The inspection showed that there was minimal deterioration, deformation, distortion, sedimentation, debris, and no bedding deficiencies were observed.

#### 3.4.7 Sudden Drawdown - §257.73(d)(1)(vii)

Surface water is present in EDG C-Pond at the toe of the embankment at section E-E'. The water at the toe is normally at elevation 587 feet and rises to elevation 590 feet when the EDG C-Pond is full. A sudden decrease of water elevation is limited to three feet on a clay embankment toe and will not lead to sudden drawdown toe failure.



#### **QUALIFIED PROFESSIONAL ENGINEER CERTIFICATION** 4

To meet the requirements of 40 CFR 257.73(d)(3), I Mark W. Loerop hereby certify that I am a licensed professional engineer in the State of Wisconsin; and that, to the best of my knowledge, all information contained in this document is correct and the document was prepared in compliance with all applicable requirements in 40 CFR 257.73(b) and 40 CFR 257.73(d).



Bv Name: Date:



#### FIGURES

Alliant Energy Wisconsin Power and Light Company Edgewater Generating Station Sheboygan, WI

Structural Stability Assessment







AS SHOWN CLIENT / LOCATION 7-18-16 JFD MWL TJH

ALLIENT ENERGY EDGEWATER GENERATING STATION SHEBOYGAN WISCONSIN





| JOB              |  |
|------------------|--|
| 154.018.012.006  |  |
| SHT.<br>FIGURE 3 |  |
| DWG.             |  |
|                  |  |

| SCIENT | IST | S, / | ASH | PON  | D SL | .OPE  | STAB   | ILI |
|--------|-----|------|-----|------|------|-------|--------|-----|
| EVALUA | TIC | N,   | IMP | OUND | MEN  | T AN/ | ALYSIS | s,  |
| SHEET  | 3   | OF   | 5,  | FEB. | 25,  | 201   | ۱.     |     |
|        |     |      |     |      |      |       |        |     |





MAP SOURCE:

MODIFIED FROM MILLER ENGINEERS SCIENTISTS, ASH POND SLOPE STABILITY EVALUATION, IMPOUNDMENT ANALYSIS, SHEET 4 OF 5, FEB. 25, 2011.

| DRAWING DESCRIPTION                              | JOB  |                 |
|--------------------------------------------------|------|-----------------|
| Structural Stability Assessment                  |      | 154.018.012.006 |
| Olidelaral Olability Assessment                  | SHT. |                 |
| CROSS-SECTIONS<br>FDG POND A-NORTH AND SLAG POND |      | FIGURE 4        |
|                                                  | DWG. |                 |
|                                                  |      |                 |



WRITTEN PERMISSION. ALL RIGHTS

RESERVED.

REV DATE BY

DESCRIPTION

<u>MAP\_SOURCE:</u> MODIFIED\_FROM\_MILLER\_ENGINEERS SCIENTISTS, ASH\_POND\_SLOPE\_STABILITY EVALUATION, IMPOUNDMENT\_ANALYSIS, SHEET\_5\_OF\_5, FEB. 25, 2011.

| DRAWING DESCRIPTION              | JOB  |                 |
|----------------------------------|------|-----------------|
| Structural Stability Assessment  |      | 154.018.012.006 |
| CROSS-SECTIONS AT BORING Q AND R |      | FIGURE 5        |
|                                  | DWG. |                 |

#### **APPENDIX A – Outfall Pictures**

Alliant Energy Wisconsin Power and Light Company Edgewater Generating Station Sheboygan, WI

Structural Stability Assessment





**Photo 1**: EDG Slag Pond inlet of hydraulic structure. Hydraulic structure consist of v-notch overflow weir that discharges into a 48-inch diameter corrugated metal pipe.



**Photo 2**: EDG North A-Pond inlet of hydraulic structure. Hydraulic structure consist of 18-inch diameter corrugated plastic pipe. The hydraulic structure is currently plugged.

![](_page_28_Picture_4.jpeg)

![](_page_29_Picture_0.jpeg)

**Photo 3**: EDG South A-Pond inlet of hydraulic structure. Hydraulic structure consist of 18-inch diameter corrugated plastic pipe. Water flows through the hydraulic structure and discharges into a concrete sluice box prior to flowing through a Parshall flume structure.

![](_page_29_Picture_2.jpeg)

**Photo 4**: Outlets of EDG North A-Pond and EDG South A-Pond hydraulic structures. Currently, water only flows through the hydraulic structure of the EDG South A-Pond. Water flows through a Parshall flume structure and into a 48-inch diameter corrugated metal pipe.

![](_page_29_Picture_4.jpeg)

![](_page_30_Picture_0.jpeg)

**Photo 5**: Water from the EDG South A-Pond flows into a 48-inch diameter corrugated metal pipe and combines with the flow from the EDG Slag Pond. The combined flows discharge into the EDG B-Pond.

![](_page_30_Picture_2.jpeg)

**Photo 6**: Outlet of 48-inch diameter corrugated metal pipe which contains flows of the EDG Slag Pond and EDG South A-Pond. The water discharges into the EDG B-Pond.

![](_page_30_Picture_4.jpeg)

![](_page_31_Picture_0.jpeg)

**Photo 7**: Water within the EDG B-Pond flows through an overflow weir structure. The water gravity flows through a 24-inch diameter corrugated metal pipe which discharges into the EDG C-Pond.

![](_page_31_Picture_2.jpeg)

**Photo 8**: Outlet of EDG B-Pond hydraulic structure. Water from EDG B-Pond discharges into the EDG C-Pond. Water within EDG C-Pond flows to the east to the EDG F-Pond. Water in the EDG F-Pond discharges through the facility's WPDES Outfall 004 into Lake Michigan.

![](_page_31_Picture_4.jpeg)

#### **APPENDIX B – Soil Boring Logs**

Alliant Energy Wisconsin Power and Light Company Edgewater Generating Station Sheboygan, WI

Structural Stability Assessment

![](_page_32_Picture_4.jpeg)

|                            |                                   |                  |                  | ASTM Designation: D                                                                                        | 2487 - 69 AND                                                                 | D 2488 - 69                                                                                                                        |                                                                      |  |
|----------------------------|-----------------------------------|------------------|------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|
|                            |                                   |                  |                  | (טחוזופס סטו כ                                                                                             | Classification by                                                             | stem)                                                                                                                              |                                                                      |  |
| M٤                         | ijor divisi                       | ions             | Group<br>symbols | Typical names                                                                                              |                                                                               | Classification crite                                                                                                               | eria                                                                 |  |
|                            | ction                             | gravels          | GW               | Well-graded gravels and<br>gravel-sand mixtures, little<br>or no fines                                     | ions<br>symbols                                                               | $C_{U} = \frac{D_{60}}{D_{10}} \text{ greater than 4;}$ $C_{Z} = \frac{(D_{30})^{2}}{D_{10} \times D_{60}} \text{ between}$        | 1 and 3                                                              |  |
|                            | vels<br>coarse fra<br>No. 4 siev  | Clean            | GP               | Poorly graded gravels and<br>gravel-sand mixtures, little<br>or no fines                                   | s<br>, SP<br>1, SC<br>classificati<br>se of dual s                            | Not meeting both criteria                                                                                                          | a for GW                                                             |  |
| 00 sieve*                  | Gran<br>or more of<br>etained on  | vith fines       | GM               | Silty gravels, gravel-sand-<br>silt mixtures                                                               | ge of fines<br>3W, GP, SW<br>3M, GC, SV<br><i>forderline</i> o<br>equiring us | Atterberg limits below<br>''A'' line or P.I. less<br>than 4                                                                        | Atterberg lim its plot-<br>ting in hatch ed area                     |  |
| ned soils<br>d on No. 2    | 50%                               | Gravels w        | GC               | Clayeygravels,gravel-<br>sand-claymixturès                                                                 | of percents                                                                   | Atterberg limits above<br>"A" line with P.I.<br>greater than 7                                                                     | are borderline classifi-<br>cations requiring use<br>of dual symbols |  |
| Coarse-grai<br>50% retaine | action                            | sands            | sw               | Well-graded sands and gra-<br>velly sands, little or no<br>fines                                           | In on basis<br>00 sieve<br>200 sieve<br>ieve                                  | $C_{\rm LI} = \frac{D_{60}}{D_{10}} \text{ greater than 6;}$ $C_{\rm Z} = \frac{(D_{30})^2}{D_{10} \times D_{60}} \text{ between}$ | 1 and 3                                                              |  |
| More than 5                | ids<br>f coarse fra<br>0. 4 sieve | Clean            | SP               | Poorly graded sands and<br>gravelly sands, little or no<br>fines                                           | assification<br>pass No. 20<br>6 pass No. 2<br>6 no. 200 si                   | Not meeting both criteria                                                                                                          | for SW                                                               |  |
|                            | San<br>than 50% o<br>passes No    | ith fines        | SM               | Silty sands, sand-silt mix-<br>tures                                                                       | Cl ess than 5% ore than 12% to 12% pass                                       | Atterberg limits below<br>"A" line or P.I. less<br>than 4                                                                          | Atterberg limits plot-<br>ting in hatched area                       |  |
|                            | More                              | Sands wi         | sc               | Clayey sands, sand-clay<br>mixtures                                                                        | 3 W Le                                                                        | Atterberg limits above<br>''A'' line with P.I.<br>greater than 7                                                                   | cations requiring use<br>of dual symbols                             |  |
|                            | ts and clays<br>imit 50% or less  |                  | ML               | Inorganic silts, very fine<br>sands, rock flour, silty or<br>clayey fine sands                             | 60<br>For cla                                                                 | Plasticity Cha<br>Plasticity Cha<br>ssification of fine-grained<br>and fice fraction of graces                                     | art                                                                  |  |
| *<br>9                     |                                   |                  | CL               | Inorganic clays of low to<br>medium plasticity, gravelly<br>clays, sandy clays, silty<br>clays, lean clays | 50 grained<br>50 Atterbe<br>hatched<br>classif                                | 50 grained soils.<br>Atterberg Limits plotting in<br>hatched area are <i>borderline</i><br>classifications requiring use of        |                                                                      |  |
| soils<br>o. 200 siev       | Sil                               | Sil-<br>Liquid 1 |                  | Organic silts and organic<br>silty clays of low plasticity                                                 | 2 x 40 dual sy                                                                | mbols,<br>on of A-line:<br>0.73 (LL - 20)                                                                                          |                                                                      |  |
| e-grained s<br>3 passes No | s<br>han 50%                      |                  | МН               | Inorganic silts, micaceous<br>or diatomaceous fine sands<br>or silts, elastic silts                        | 20                                                                            | · 6: 100                                                                                                                           | OH and MH                                                            |  |
| Fin<br>50% or more         | Its and clar<br>nit greater       |                  | СН               | lnorganic clays of high<br>plasticity, fat clays                                                           | 10                                                                            | CL ML and OL                                                                                                                       | _                                                                    |  |
| a                          | Sil<br>Líquid lin                 | . [              | ОН               | Organic clays of medium to<br>high plasticity <sub>t</sub> organic silts                                   | 0 10 2                                                                        | 20 30 40 50 60                                                                                                                     | 70 80 90 100                                                         |  |
| -                          | Highly<br>organic                 | <u>n</u>         | Pt               | Peat, muck and other highly organic soils                                                                  | *Based on 1                                                                   | Liquid Limit                                                                                                                       | in. (76 mm) sieve.                                                   |  |

CLASSIFICATION OF SOILS FOR ENGINEERING PURPOSES

# LOG OF TEST BORING GENERAL NOTES

#### **Descriptive Soil Classification**

#### **GRAIN SIZE TERMINOLOGY**

| Soil F | raction     | Particle Size                        | U.S. Sieve Size    |
|--------|-------------|--------------------------------------|--------------------|
| Bould  | ers         | Larger Than 12"                      | Larger Than 12"    |
| Cobbl  | es          |                                      | 3" to 12"          |
| Grave  | I: Coarse   |                                      | 3/4" to 3"         |
|        | Fine        | 4.76mm to 3/4"                       | #4 to 3/4"         |
| Sand:  | Coarse      |                                      | #10 to #4          |
|        | Medlum      | 0.42mm to 2.00mm                     | #40 to #10         |
|        | Fine        | 0.074mm to 0.42mm                    | #200 to #40        |
| Fines  |             | Less Than 0.074mm                    | Smaller Than #200  |
| Silt   |             | 0.005mm to 0.074mm                   | Smaller Than #200  |
| Clay   |             | Smaller Than 0.005mm                 |                    |
|        | (Plasticity | characteristics differentiate betwee | en silt and clay.) |

#### COMPOSITION TERMINOLOGY (ASTM D2487)

#### Primary Constituent:

Gravei with sand...>=15% sand with silt......5-12% silt with clay.....5-12 clay sllty......>12% silt clayey......>12% clay

#### RELATIVE DENSITY

| COHESIONLE    | ess soils |
|---------------|-----------|
| Term          | "N" Value |
| Very Loose    | 0-4       |
| Loose         | 4-10      |
| Medium Dense. | 10-30     |
| Dense         | 30-50     |
| Very Dense    | over 50   |

The penetration resistance, N, is the summation of the number of blows required to affect two successive 6" penetrations of the 2" split-barrel sampler. The sampler is driven with a 140 lb. weight falling 30" and is seated to a depth of 6" before commencing the standard penetration test (ASTM 1586).

MILLER ENGINEERS SCIENTISTS

#### Sand

with gravel.....>=15% gravel with silt......5-12% silt with clay......5-12% clay slity......>12% silt clayey......>12% clay

Fines (Silt or Clay) with gravel....15-29% gravel gravelly......>=30% gravel with sand......15-29% sand sandy......>=30%sand

# CONSISTENCY

COHESIVE SOILS

| Term       | pp (tons/sq. ft.) | "N" Value |
|------------|-------------------|-----------|
| Very Soft  | 0.00 to 0.25      | <2        |
| Soft       | 0.25 to 0.50      | 2-4       |
| Medium     | 0.50 to 1.00      | 4-8       |
| Stiff      | 1.00 to 2.00      | 8-15      |
| Very Stiff |                   | 15-30     |
| Hard       | over 4.00         | >30       |
|            |                   |           |

#### PLASTICITY

| Term              | Plasticity Index |
|-------------------|------------------|
| None to slight    | 0 to 4           |
| Slight            | 5 to 7           |
| Medium            | 8 to 22          |
| High to Very High | over 22          |

#### SYMBOLS

#### DRILLING AND SAMPLING

**CS--Continuous** Sampling RC--Rock Coring: Size AW, BW, NW, 2" W RQD--Rock Quality Designator **RB--Rock Bit** FT-Fish Tail **DC--Drove** Casing C--Casing: Size 2 1/2", NW, 4", HW CW--Clear Water DM--Drilling Mud HSA-Hollow Stem Auger FA--Flight Auger HA--Hand Auger SS-2" Diameter Split-Barrel Sample 2ST--2" Diameter Thin-Walled Tube Sample 3ST--3" Diameter Thin-Walled Tube Sample PT-3" Diameter Piston Tube Sample AS--Auger Sample PS--Pitcher Sample NR--No Recovery VS-Vane Shear Test

#### LABORATORY TESTS

pp--Penetrometer Reading, tons/sq.ft. qu--Unconfined Strength, tons/sq.ft. MC--Moisture Content, % LL--Liquid Limit, % PL--Plastic Limit, % PI--Plasticity Index, % SL--Shrinkage Limit, % LI--Loss on Ignition, % D--Dry Unit Weight, Ibs./cu. ft. pH--Measure of Soll Alkalinity or Acidity FS--Free Swell, % HNu--ppmv as Benzene TLV--ppmv as Hexane TPH--Total Petroleum Hydrocarbons, ppm

#### WATER LEVEL MEASUREMENTS V ---Water Table Interpretation

Note: Water level measurements recorded in notes on the boring logs represent conditions at the time indicated and may not reflect static levels, especially in cohesive soils.

![](_page_35_Figure_0.jpeg)

SEOTLOG GINT 18634 GPJ MILIR ENG GDT 2/9/11 09:59

![](_page_36_Figure_0.jpeg)

|                |            |         |      |                               |                      | -      |          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pag        | ,e i          |                                                                                                                 | ~                                        |  |  |  |
|----------------|------------|---------|------|-------------------------------|----------------------|--------|----------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------|--|--|--|
| Project:       | P          | ON      | D S  | TABILITY EVALUATION           | Job No: 10-1-18      | 634    |          |                             | Boring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No:        | 05.0          |                                                                                                                 |                                          |  |  |  |
| Client:        | A          | LLI     | AN   | TUTILITIES                    | Drilled By: M&K      | ENV    | &        | SOILS DRILLING              | Elevatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | on: 0      | 07.9          | 101/10                                                                                                          |                                          |  |  |  |
| Location:      | E          | DG      | EW   | ATER - SHEBOYGAN, WI          | Drilling Begun: 12   | /21/10 | )<br>ITS |                             | Drilling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | g Complete | ed: 12        | 2/21/10                                                                                                         |                                          |  |  |  |
| SAMPLE         | TY         | PE      | Ц    | 1" Geoprobe 🔘 No Recovery     | Grab Samp            | le     | Щ        | Auger Sample 3'             | Shelby                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tube       | 2" S          | plit Spo                                                                                                        | on                                       |  |  |  |
|                | Щ          | і.<br>Ц |      |                               |                      |        |          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COMP       | RESSI         | ON (tsf)                                                                                                        |                                          |  |  |  |
| ELEV. Z        | 2 Z        | RY (    |      | SOIL                          |                      | TIC    |          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0 2.0    | 3.0           | 4.0                                                                                                             | ELEV                                     |  |  |  |
| DEPTH 2        | E          | VE.     | Î    | DESCRIPT                      | ION                  | 05     |          | PLASTIC M.C. LIQU           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | POCKE      |               | (ISI) 4                                                                                                         | DEPTH                                    |  |  |  |
| (ft)           | AM         | ECO     | PT ( |                               |                      |        |          |                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BLOW       | COUNT         | Г (N)                                                                                                           | (ft)                                     |  |  |  |
| 607.9          |            | R       | S    | FILL · LEAN CLAY moist        | brown (7.5VR         | CL     |          | 10 20 30 40                 | 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 20      | 30            | 40                                                                                                              | 0                                        |  |  |  |
| 1              | {[         |         |      | 4/4)                          | 010 mil (7.5 1 K     | 02     |          | •                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                                                                                                                 |                                          |  |  |  |
| 2              |            | 18      |      | FILL: LEAN CLAY, trace ro     | ots and cinder -     | CL     |          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                                                                                                                 |                                          |  |  |  |
| -              |            |         | 9    | moist, stiff, brown (7.5YR 5/ | 4)                   |        | Ø.       | •                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1          | Ţ             | <u> </u>                                                                                                        | a an |  |  |  |
|                |            |         |      |                               |                      |        |          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                                                                                                                 |                                          |  |  |  |
|                |            |         |      |                               |                      |        |          |                             | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1          | - i - i -     | · · · · · · · · · · · · · · · · · · ·                                                                           | ·····                                    |  |  |  |
| 3              |            | 18      |      | CLAY interbedded with s       | ilt seams - moist.   | CL     |          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1          |               |                                                                                                                 | ~~~~                                     |  |  |  |
|                |            |         | 16   | very stiff, brown (7.5YR 4/4) | ····,                |        | Ø.       | •                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1          | 1             |                                                                                                                 |                                          |  |  |  |
| 602.9          |            |         |      |                               |                      |        | Ø.       |                             | <u>i</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 1             |                                                                                                                 | 602.9                                    |  |  |  |
| 5              |            |         |      |                               |                      |        |          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               | <u>\</u>                                                                                                        | 5                                        |  |  |  |
|                |            | 10      |      |                               |                      | CL     | 77       |                             | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | - frifri      | -/                                                                                                              |                                          |  |  |  |
| 4              |            | 18      | 16   | ***                           |                      | CL     |          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •          |               | À                                                                                                               |                                          |  |  |  |
| * <u>-</u>     |            |         | 10   |                               |                      |        |          | tilitti                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               | ŤΪ                                                                                                              |                                          |  |  |  |
|                | -          |         |      |                               |                      |        | 120      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                                                                                                                 |                                          |  |  |  |
| -              |            |         |      |                               |                      |        |          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                                                                                                                 |                                          |  |  |  |
| 5              |            | 18      |      | dark brown (7.5YR 3/3)        |                      | CL     |          |                             | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |               |                                                                                                                 |                                          |  |  |  |
|                |            |         | 18   |                               |                      |        |          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               | /                                                                                                               | 505.0                                    |  |  |  |
| - 597.9_<br>10 |            |         |      |                               | _                    |        | 12.      |                             | ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | ÷÷            | /                                                                                                               | 10                                       |  |  |  |
| 10             |            |         |      |                               |                      |        |          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                                                                                                                 |                                          |  |  |  |
| 6              | V          | 18      |      | brown (7.5YR 5/4)             |                      | CL     |          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 1             |                                                                                                                 |                                          |  |  |  |
|                |            |         | 18   |                               |                      |        | Ø.       |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                                                                                                                 |                                          |  |  |  |
|                |            |         |      |                               |                      |        |          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               | V                                                                                                               |                                          |  |  |  |
|                |            |         |      |                               |                      |        |          |                             | ş                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | deste         | 1                                                                                                               |                                          |  |  |  |
| 7              |            | 18      |      | trace fine to medium sand -   | brown (7.5YR         | CL     |          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                                                                                                                 |                                          |  |  |  |
|                |            |         | 16   | 4/4)                          | Ň                    |        | Ø        | •                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ĩ          |               |                                                                                                                 |                                          |  |  |  |
| 592.9          |            |         |      |                               |                      |        | Ø.,      | والمرابية والمرابية والمراب | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |               | .                                                                                                               | 592.9                                    |  |  |  |
| 15             |            |         |      |                               |                      |        |          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                                                                                                                 | 15                                       |  |  |  |
| - 0            |            | 10      |      | dark brown $(7.5VR_3/4)$      |                      | CL     | 7        |                             | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | den fre       |                                                                                                                 | na <mark>e</mark> l                      |  |  |  |
| 0              | X          |         | 20   | uaik biowii (7.5 i i ( 5/4)   |                      |        |          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1          |               | 1                                                                                                               |                                          |  |  |  |
|                |            |         |      |                               |                      |        | Ø.       |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | /             | /                                                                                                               |                                          |  |  |  |
| -              |            |         |      |                               |                      |        |          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | /_            |                                                                                                                 |                                          |  |  |  |
|                |            |         |      |                               |                      | CI I   | 7        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | /             |                                                                                                                 |                                          |  |  |  |
| - 9            |            | 8       | 16   | LEAN CLAY (native) with tra   | oist, very stiff.    | CL     | 1.       |                             | tur de la competencia de la co | •          | 4             | i de la composition d |                                          |  |  |  |
| 507.0          |            |         | 10   | dark brown (7.5YR 3/3)        | , , , , , ,          |        | 1        | l l                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                                                                                                                 | 587.9                                    |  |  |  |
| 20             | -          |         |      |                               |                      | ŕ      | 14.      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T          |               |                                                                                                                 | 20                                       |  |  |  |
|                |            |         |      |                               |                      |        |          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                                                                                                                 |                                          |  |  |  |
| MII            | F          | R       |      | Wat                           | er Level Cave-in Dep | th Bo  | reho     | le Abandonment              | Crew:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M&I        | M&K Drill/WGF |                                                                                                                 |                                          |  |  |  |
| INCIN          | FF         | RS      | E    | Date <u>12/21/2010</u> Time   | <u>3 ft 32.5 f</u>   | t<br>D | ate:     | 12/21/2010                  | Rig:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mobi       | ile B52       | 2                                                                                                               |                                          |  |  |  |
| SCIENT         | <b>LIS</b> | TS      |      | ate Time                      | ftft                 | t M    | ateri    | al BENTONITE                | Metho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d: HSA     |               |                                                                                                                 |                                          |  |  |  |

SEOTLOG GINT 18634 GPJ MILR ENG GDT 2/9/11 09:59

![](_page_38_Figure_0.jpeg)

| Project:               | -          | PO          | NI             | 0.6     |      | BILITY F                                   | VALUATIO                                           | N                        | Joh No: 10-1                      | -1863 | 4    | _         |      |        |             |          |      | 1  | Bor         | ing N              | 0.                     | Page<br>F                               | 2                                              | 10                                        | 2 |          |
|------------------------|------------|-------------|----------------|---------|------|--------------------------------------------|----------------------------------------------------|--------------------------|-----------------------------------|-------|------|-----------|------|--------|-------------|----------|------|----|-------------|--------------------|------------------------|-----------------------------------------|------------------------------------------------|-------------------------------------------|---|----------|
| Client:                |            |             |                | A       | NT   | UTILITIE                                   | S                                                  | 1                        | Drilled By: M                     | &K E  | NV   | &         | SOI  | LSI    | DRI         | LL       | ING  |    | Elev        | vatior             | 1:                     | 60                                      | 9.0                                            |                                           |   | _        |
| Location               | : 1        | ED          | G              | EW      | A    | TER - SHE                                  | BOYGAN, V                                          | VI                       | Drilling Begun:                   | 12/2  | 1/10 | )         |      |        |             |          |      |    | Dril        | Drilling Completed |                        |                                         | 1: 12                                          | : 12/21/10                                |   |          |
| SAMPLE                 | ΞT         | YPI         | E              | Π       | 1"   | Geoprobe                                   | No Reco                                            | overy                    | G Grab Sa                         | ample |      | $\square$ | Aug  | ger Sa | amp         | le       |      | 3" | Shelby Tube |                    |                        | be 📘 2" Split Spoon                     |                                                |                                           |   |          |
| ELEV.<br>DEPTH<br>(ft) | SAMPLE NO. | SAMPLE TYPE | RECOVERY (in.) | SPT (N) |      |                                            | SOI<br>DESCRII                                     | L<br>PTI                 | ON                                | τ     | JS   | С         | PLA  | STIC   | C N         | 1.C.     | LIC  |    | D           | 1                  | .0<br>POC<br>.0<br>BLO | UNC<br>MPR<br>2.0<br>KET<br>2.0<br>W CC | 20NF<br>ESSI<br>3.0<br>PEN<br>3.0<br>OUN<br>20 | INED<br>ON (tst)<br>(tsf)<br>4.0<br>I (N) | • | EL<br>DE |
|                        |            |             |                |         |      |                                            |                                                    |                          |                                   |       |      |           |      |        |             | <u> </u> | 0    | 40 |             |                    | 10                     |                                         | 30                                             | 40                                        |   |          |
| - 1                    | 0          |             | 18             | 17      |      | with trace<br>dark brown                   | e medium sand<br>(7.5YR 3/4)                       | d - m                    | ioist, very stiff,                | C     | CL . |           |      |        |             |          |      |    |             |                    | 1                      |                                         |                                                |                                           |   |          |
| 584.0_<br>25           |            |             |                |         | 1    | SILT topsoi<br>sand and roo<br>Boring tern | l with CLAY<br>ots - moist, sti<br>ninated at 25 f | (nati<br>iff, b<br>feet. | ve), trace fine<br>lack (10YR 2/1 | )_/   | 1L   |           |      |        |             | •        |      |    |             |                    |                        |                                         |                                                |                                           |   | _58<br>2 |
| -                      |            |             |                |         |      |                                            |                                                    |                          |                                   |       |      |           |      |        |             |          |      |    |             |                    |                        |                                         |                                                |                                           |   |          |
| 579.0                  |            |             |                |         |      |                                            |                                                    |                          |                                   |       |      | 5         |      |        |             |          |      |    |             |                    |                        |                                         |                                                |                                           |   | _57      |
| -                      | 30         |             |                |         |      |                                            |                                                    |                          |                                   |       |      |           |      |        |             |          |      |    |             |                    |                        |                                         |                                                |                                           |   |          |
| 74.0                   |            |             |                |         |      |                                            |                                                    |                          |                                   |       |      |           |      |        |             |          |      |    |             |                    |                        |                                         |                                                |                                           |   | _57      |
| 35                     |            |             |                |         |      |                                            |                                                    |                          |                                   |       |      |           |      |        |             |          |      |    |             |                    |                        |                                         |                                                |                                           |   | 2        |
|                        |            |             |                |         |      |                                            |                                                    |                          |                                   |       |      | 2)<br>(1) |      |        |             |          |      |    |             |                    |                        |                                         |                                                |                                           |   |          |
| 59.0_<br>40<br>-       |            |             |                |         |      |                                            |                                                    |                          |                                   |       |      | 13<br>13  |      |        |             |          |      |    |             |                    |                        |                                         |                                                |                                           |   | 56       |
|                        |            |             |                |         |      |                                            |                                                    | Wate                     | r Level Cave in I                 | Penth | Ror  | ehol      | e Ab | ando   | nme         | nt       | 1    | 1  | C           |                    | N/                     | 8, I/                                   | Dell                                           | AVCI                                      |   |          |
| ЛП                     |            | E           | K              | Г       | )ate | 12/21/201                                  | 0Time                                              | wate                     | drv ft. 26                        | ft    | 501  | 0101      |      | andu   |             | AAL      |      |    | Rig         | w:                 | M                      | hile                                    | R51                                            | /wGl                                      |   |          |
| NGIN                   |            |             | S              |         | )ate |                                            | Time                                               | -                        | ft                                | ft.   | Da   | ite:      | 1    | 2/2    | 1/20<br>ITO | 10<br>NH | ГIГ  |    | Met         | hod:               | HS                     | A                                       |                                                |                                           |   |          |
| <b>LIEN</b>            |            | 21          | 3              |         | )ate |                                            | Time                                               | -                        | ft                                | ft.   | Ma   | ateri     | al E | SEN    | 10          | NI'      | LE . |    | iviel       | .100.              | 113                    | 1                                       | _                                              |                                           |   |          |

![](_page_40_Figure_0.jpeg)

![](_page_41_Figure_0.jpeg)

| Projec                 | t.      | 1             | PO         | N              | 0.9    | TABILITY EVALUATION                                     | [ab No: 10-1-1              | 8634                 |       |      | _     |       |                 |     |     | Ro      | ring D | No:                         | Pag                                     | e Z                                | of                                                 | 2   |
|------------------------|---------|---------------|------------|----------------|--------|---------------------------------------------------------|-----------------------------|----------------------|-------|------|-------|-------|-----------------|-----|-----|---------|--------|-----------------------------|-----------------------------------------|------------------------------------|----------------------------------------------------|-----|
| Client                 |         |               | 41         | L              | AN     | TUTILITIES                                              | Drilled By: M&              | K EN                 | VV.   | 8.9  | SOII  | S D   | RIL             | LIN | G   | Ele     | vatio  | n:                          | 6                                       | 11.9                               |                                                    |     |
| Locati                 | on:     | 1             | ED         | G              | EW     | ATER - SHEBOYGAN, WI                                    | Drilling Begun: 1           | 2/21/                | /10   |      |       |       |                 |     |     | Dri     | illing | Corr                        | plete                                   | d: 1                               | 2/21/1                                             | 0   |
| SAMP                   | PLE     | T             | YPE        | 3              | Π      | 1" Geoprobe O No Recover                                | y G Grab Sar                | ple                  |       | T SI | Auge  | er Sa | mple            |     | 3'  | ' She   | lby T  | ube                         |                                         | 2"                                 | Split Sp                                           | oon |
| ELEV.<br>DEPTH<br>(ft) | AMPLENO | ALANT DE INO. | AMPLE IYPE | LECOVERY (in.) | PT (N) | SOIL                                                    | ION                         | U                    | SC    |      | PLAS  | STIC  | M.(             | C L | IQU | ID<br>I | •      | CC<br>LO<br>PO<br>LO<br>BLC | UN<br>DMPI<br>2.0<br>CKE<br>2.0<br>DW C | CON<br>RESS<br>3.0<br>F PEN<br>3.0 | FINED<br>ON (tst<br>4.0<br>I (tsf)<br>4.0<br>T (N) |     |
|                        | 0.      | ñ d           |            | Y              | S      |                                                         |                             | -                    | -     | +    | 10    | ) :   | 20 30 40        |     | :   |         | 10     | 20                          | 30                                      | 40                                 |                                                    |     |
|                        |         |               |            |                |        |                                                         |                             |                      |       |      | ····· |       |                 |     |     |         |        |                             |                                         |                                    |                                                    |     |
|                        | 10      |               | 1          | 8              | 17     | LEAN CLAY with trace med very stiff, strong brown (7.5Y | ium sand - moist,<br>R 4/6) | CL                   |       |      |       |       | •               |     |     |         |        |                             | •                                       | 1                                  | /                                                  |     |
| 586.9_<br>25           | 5.9     |               |            |                |        |                                                         |                             |                      |       |      |       |       | /               |     |     |         |        |                             |                                         |                                    | /                                                  | _51 |
| -                      |         |               |            |                |        |                                                         |                             |                      |       |      |       |       |                 |     |     |         |        |                             | /                                       | /                                  |                                                    |     |
| 1                      | 11      |               | 18         | 1              | 4      | SILT with little clay - wet, me<br>brown (7.5YR 5/2)    | dium dense,                 | ML                   |       |      |       |       |                 |     |     |         |        |                             | /                                       |                                    |                                                    |     |
| 81.9_<br>30            |         |               |            |                |        | Boring terminated at 30 feet                            |                             |                      |       | ~    |       |       |                 |     |     |         |        |                             |                                         |                                    |                                                    | _58 |
|                        |         |               |            |                |        |                                                         |                             |                      |       |      |       |       |                 |     |     |         |        |                             |                                         |                                    |                                                    |     |
| -                      |         |               |            |                |        |                                                         |                             |                      |       |      |       | ç     |                 |     |     |         | A.     |                             |                                         |                                    |                                                    |     |
| 76.9<br>35             |         |               |            |                |        |                                                         |                             |                      |       |      |       |       |                 |     |     |         |        |                             |                                         |                                    |                                                    | 57  |
| -                      |         |               |            |                |        |                                                         |                             |                      |       |      |       |       |                 |     |     |         |        |                             |                                         |                                    |                                                    |     |
| -                      |         |               |            |                |        |                                                         |                             |                      |       |      |       |       |                 |     |     |         |        |                             |                                         |                                    |                                                    |     |
| -                      |         |               |            |                |        |                                                         |                             |                      |       |      |       |       |                 |     |     |         |        |                             |                                         |                                    |                                                    |     |
| )                      |         |               |            |                |        |                                                         |                             |                      |       | 1    |       |       |                 |     |     |         |        |                             |                                         |                                    |                                                    | 4   |
|                        |         |               |            | T              |        |                                                         |                             |                      |       |      |       |       |                 |     |     |         |        |                             | 1.11                                    |                                    |                                                    |     |
| IL                     |         | E             | K          |                | Dat    | Water                                                   | Level Cave-in Dept          | th Bo                | reho  | ole  | Aban  | donn  | nent            |     | -   | Crev    | V:     | Ma                          | &K                                      | Drill/                             | WGF                                                |     |
| IGIN                   | IE      | EF            | ZS         |                | Dat    | e Time d                                                | <u>ft</u> ft                | ft. Date: 12/21/2010 |       |      |       |       | Rig: Mobile B52 |     |     |         |        |                             |                                         |                                    |                                                    |     |
| IEN!                   | TI      | C7            | FC         |                | Date   | Time                                                    | ft ft                       | M                    | later | toin | BF    | NT    | ONI             | FF  |     | Meth    | iod:   | HS                          | A                                       |                                    |                                                    |     |

![](_page_43_Figure_0.jpeg)

SEOTLOG GINT 18634 GPJ MILR ENG. GDT 2/9/11 10:00

| Project               | t:         | PON            | ND          | STABILITY EVA            | LUATION                                | Job No: 10               | -1-18 | 534   |       |           |           |                | Bo                  | oring N | lo:                                             | N                                                 | 2 01                                                                                                                                 | <u> </u> |
|-----------------------|------------|----------------|-------------|--------------------------|----------------------------------------|--------------------------|-------|-------|-------|-----------|-----------|----------------|---------------------|---------|-------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------|
| Client:               |            | ALI            | JA          | NT UTILITIES             |                                        | Drilled By               | M&K   | ENV   | & S   | DILS      | DRIL      | LING           | El                  | evation | 1:                                              | 611.8                                             | }                                                                                                                                    |          |
| Locatio               | on:        | EDC            | <b>JE</b> V | VATER - SHEBO            | - SHEBOYGAN, WI Drilling Begun: 12/21/ |                          |       |       |       |           |           |                | Drilling Completed: |         |                                                 | 12/21/10                                          |                                                                                                                                      |          |
| SAMPI                 | LE T       | YPE            |             | I" Geoprobe              | No Recovery                            | G Grab                   | Sampl | e     |       | Auger S   | ample     |                | 3" Sh               | elby T  | ube                                             | 2'                                                | ' Split Spor                                                                                                                         | m        |
| ELEV<br>DEPTH<br>(ft) | SAMPLE NO. | RECOVERV (in ) | SDT AN      | D                        | SOIL<br>ESCRIPTI                       | ON                       |       | USC   | C PI  | _ASTI<br> | см.<br>20 | C. LIQ<br>30 4 |                     |         | ■ U<br>COM<br>0 2<br>POCK<br>0 2<br>BLOW<br>0 2 | NCON<br>PRES<br>0 3<br>ET PE<br>0 3<br>COU<br>0 3 | $\begin{array}{c} \text{NFINED} \\ \text{SION (tsf)} \\ 0 & 4.0 \\ \text{N (tsf)} \\ 0 & 4.0 \\ \text{NT (N)} \\ 0 & 40 \end{array}$ | E.<br>DI |
| 586.8                 | 10         | 13             | 22          | wet, very stiff          | , strong brown                         | n (7.5YR 4/4)            |       | CL    |       |           | •         |                |                     |         |                                                 |                                                   |                                                                                                                                      | 5        |
| 25                    |            |                |             | Boring terminate         | ed at 25 feet.                         |                          |       |       |       |           |           |                |                     |         |                                                 |                                                   |                                                                                                                                      |          |
| 81_8_<br>30           |            |                |             |                          |                                        |                          |       |       |       |           |           |                |                     |         |                                                 |                                                   |                                                                                                                                      | _58      |
| 6.8_                  |            |                |             |                          |                                        |                          |       |       |       |           |           |                |                     |         |                                                 |                                                   |                                                                                                                                      | _57      |
| .8_                   |            |                |             |                          |                                        |                          |       |       |       |           |           |                |                     |         |                                                 |                                                   |                                                                                                                                      | _57      |
|                       |            |                |             |                          |                                        |                          |       |       | -     |           |           |                |                     |         |                                                 |                                                   |                                                                                                                                      |          |
| ILL                   |            | K              | Da          | e <u>12/21/201</u> 0Time | Water  <br>d                           | Level Cave-in I<br>ry_ft | Depth | Boreh | ole A | oandon    |           |                | Crev<br>Rig:        | W:      | M&K<br>Mobil                                    | Drill<br>e B52                                    | l/WGF                                                                                                                                |          |
| GIN                   |            | 19             | 1.00        |                          |                                        |                          |       | 1010  |       |           |           |                |                     |         |                                                 |                                                   |                                                                                                                                      |          |

![](_page_45_Figure_0.jpeg)

| -                     | _          | _          |             |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |      |              |                        | 1                                     |                                 | Page                                       | 1                                 | 01 1                                                          |                                |
|-----------------------|------------|------------|-------------|----------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|--------------|------------------------|---------------------------------------|---------------------------------|--------------------------------------------|-----------------------------------|---------------------------------------------------------------|--------------------------------|
| Proje                 | ct:        |            | PO          | NL             | ) S'     | ABILITY EVALUATION Job No: 10-1-                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18634        |      |              |                        | Bor                                   | ng No:                          | Q                                          |                                   |                                                               |                                |
| Client                | t:         | -          |             |                | AN       | TUTILITIES Drilled By: Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EK EF        |      | & SC         | DILS DRILLING          | Elev                                  | ation:                          | 005                                        | 2.2                               | 3/11                                                          |                                |
| Locat                 | tion       | :          | ED          | GI             | W        | ATER - SHEBOYGAN, WI Drilling Begun:                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2/23/1       |      | 1151         |                        |                                       | ting Co                         | mpleted:                                   | 212                               | 3/11                                                          |                                |
| SAM                   | PLI        | ET         | YPI         | 3              |          | " Geoprobe [ 🖉 No Recovery [ 🚽 Grab Sa                                                                                                                                                                                                                                                                                                                                                                                                                                        | mple         | _    | <u>III A</u> | uger Sample 3'         | ' Shel                                | by Tub                          |                                            | 2" Sp.                            | lit Spoor                                                     | 1                              |
| ELEV<br>DEPTH<br>(ft) | H          | SAMPLE NO. | SAMPLE TYPE | RECOVERY (in.) | SPT (N)  | SOIL<br>DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U            | S    | C PL         | ASTIC M.C. LIQUI       |                                       | (<br>1.0<br>▲ PC<br>1.0<br>● BI | 2.0<br>DCKET<br>2.0<br>2.0<br>.0W CO<br>20 | 3.0<br>PEN (0<br>3.0<br>UNT<br>30 | $\frac{4.0}{(N)} \triangleq \frac{4.0}{(N)} = \frac{4.0}{40}$ | ELEV<br>DEPTI<br>(ft)<br>609.2 |
| 005.2                 |            | 1          | 1           |                |          | FILL: Lean clay - moist, brown (7.5YR 4/4)                                                                                                                                                                                                                                                                                                                                                                                                                                    | CI           |      |              |                        |                                       |                                 |                                            |                                   |                                                               | 0                              |
| 604.2                 |            | 2          |             | 18             | 23       | FILL: Silt with layers of lean clay and silty<br>fine sand, occasional gravel - moist, very stiff,<br>brown (7.5YR 5/4)                                                                                                                                                                                                                                                                                                                                                       | MI           |      |              | 1                      |                                       |                                 | 1                                          | t                                 |                                                               | 604.2                          |
| -<br>599.2<br>10      | - 3        |            |             | 8              | 21       | moist, medium dense, brown (7.5YR 5/4)                                                                                                                                                                                                                                                                                                                                                                                                                                        | MI           |      | Π            |                        |                                       |                                 | •                                          |                                   |                                                               | <b>599</b> .2                  |
| 594.2<br>15           | 4          |            | 1           | 8              | 18       | FILL: Silty clay with sand - moist, very stiff, brown (7.5YR 5/4)                                                                                                                                                                                                                                                                                                                                                                                                             | CL<br>MI     |      | <b>A</b>     |                        |                                       |                                 | •                                          | /                                 |                                                               | 594.2<br>15                    |
| 589.2<br>20           | 5          |            | 1           | 8              | 25       | Fill: Sandy lean clay, trace black topsoil, trace<br>fine sand - moist, very stiff, dark brown (10YR<br>3/3)                                                                                                                                                                                                                                                                                                                                                                  | CL           |      |              |                        | · · · · · · · · · · · · · · · · · · · |                                 |                                            | /                                 | ×                                                             | _ <b>589.2</b><br>20           |
| 584.2<br>25           | 6          |            | 1           | 8              | 13       | Fill: Lean clay - moist, stiff, dark brown<br>(10YR 4/4)                                                                                                                                                                                                                                                                                                                                                                                                                      | CL           | NIN  |              | $\mathbf{n}$           |                                       | •                               | ŕ                                          |                                   |                                                               | 584.2<br>25                    |
| 579.2<br>30           | 7          |            | 18          | 3 1            | 1        | Silty clay with trace roots - moist to wet, stiff,<br>light olive gray (5YR 6/2) with sand seams<br>with black (10YR 2/1) lean clay                                                                                                                                                                                                                                                                                                                                           | CL<br>ML     |      |              | 2                      |                                       |                                 |                                            |                                   |                                                               | _579.2<br>30<br>               |
| 574.2<br>35           | 8          |            | 16          | 5              | 5        | Silty fine sand - wet, medium, grayish brown (10YR 5/2)                                                                                                                                                                                                                                                                                                                                                                                                                       | SM           |      |              |                        |                                       | •                               |                                            |                                   |                                                               | _574.2<br>35                   |
| 569.2<br>40           | 9          |            | 18          | 4              | E        | Silt - soft, brown (10YR 4/3)                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ML           |      |              |                        |                                       |                                 |                                            |                                   |                                                               | 569.2<br>40                    |
| 564.2<br>45           | 10         |            | 18          | 6              |          | medium, brown (10YR 5/3)                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ML           |      |              | Í                      |                                       |                                 |                                            |                                   |                                                               | 564.2<br>45                    |
| 559.2_<br>50          | L <u>t</u> |            | 18          | 10             |          | wet, loose, brown (10YR 5/3)<br>Lean clay - moist, stiff, brown (7.5YR 4/4)                                                                                                                                                                                                                                                                                                                                                                                                   | CL CL        |      |              |                        |                                       |                                 |                                            |                                   |                                                               | _559.2<br>50                   |
| 554.2<br>55           | 12         |            | 18          | 13             | 1        | Lean clay (lacustrine) - moist, stiff, dark brown<br>7.5YR 3/4)<br>Boring terminated at 55 feet.                                                                                                                                                                                                                                                                                                                                                                              | CL           |      |              | han danmant            |                                       | •                               |                                            |                                   |                                                               | _554.2<br>55                   |
| MI                    |            |            |             | K              |          | water Level Cave-in D                                                                                                                                                                                                                                                                                                                                                                                                                                                         | pin B        | ore  | shole A      | vandomment             | Crew                                  | 7: N                            | A&K D                                      | rill/V                            | VGF                                                           |                                |
| NGI                   |            | EI         |             | S              | Da<br>Da | te Time ft<br>te Time ft<br>Time ft                                                                                                                                                                                                                                                                                                                                                                                                                                           | ft.<br>ft. I | Dat  | te:          | 2/23/2011<br>BENTONITE | Rig:<br>Meth                          | N<br>od: N                      | Iobile                                     | B52<br>tarv                       |                                                               |                                |
| LICI                  | 11         |            | 1           | 3              | Da       | timeftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftftft. | 11. [        | vial | terial:      | DENTONILE              |                                       |                                 |                                            |                                   |                                                               |                                |

Page 1 of 1

| Project:                       | :          | P           | ON             | D S     | TABILITY EVALUATION                                                                                       | Job No: 10-1-18                      | 634      |                 |           | Boring 1         | No: <b>R</b>                                                          |                                                                                   |                            |  |  |
|--------------------------------|------------|-------------|----------------|---------|-----------------------------------------------------------------------------------------------------------|--------------------------------------|----------|-----------------|-----------|------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------|--|--|
| Client:                        |            | A           | LL             | IAN     | IT UTILITIES                                                                                              | Drilled By: M&K                      | K ENV    | V & SOILS DF    | RILLING   | Elevation: 612.2 |                                                                       |                                                                                   |                            |  |  |
| Locatio                        | on:        | E           | DG             | EW      | ATER - SHEBOYGAN, WI                                                                                      | Drilling Begun: 2/2                  | 24/11    |                 |           | Drilling         | Completed:                                                            | 2/24/11                                                                           |                            |  |  |
| SAMPI                          | LE         | ΤY          | PE             |         | 1" Geoprobe 🛛 No Recovery                                                                                 | / G Grab Samp                        | le       | Auger Sam       | ple 🚺 3   | " Shelby T       | ube                                                                   | 2" Split Spoor                                                                    | 1                          |  |  |
| ELEV<br>DEPTH<br>(ft)<br>612 2 | SAMPLE NO. | SAMPLE TYPE | RECOVERY (in.) | SPT (N) | SOIL<br>DESCRIPTI                                                                                         | ON                                   | US       | C PLASTIC       | M.C. LIQU |                  | ■ UNC<br>COMPRE<br>1.0 2.0<br>POCKET 1<br>1.0 2.0<br>BLOW CO<br>10 20 | ONFINED<br>ESSION (tsf)<br>3.0 4.0<br>PEN (tsf)<br>3.0 4.0<br>DUNT (N)<br>3.0 4.0 | ELE<br>DEP<br>(ft          |  |  |
| 0<br>607.2<br>5                | 1          |             | 11             | 10      | Fill: bottom ash - moist, loos<br>2.5/1)<br>Fill: Lean clay - moist, stiff,<br>(10YR 3/3)                 | e, black (7.5YR<br>dark brown        | SP<br>CL |                 | •         | <b>.</b>         | •                                                                     |                                                                                   | 0                          |  |  |
| 602.2<br>10                    | 2          |             | 18             | 19      | Fill: Silt interbedded with sil stiff to very stiff, yellowish ba                                         | ty clay - moist,<br>osn (10YR 5/8)   | ML       |                 |           |                  |                                                                       |                                                                                   | 602                        |  |  |
| 597.2<br>15                    | 3          |             | 14             | 18      | Fill: Silt with clay - moist, ve<br>(7.5YR 4/4)                                                           | ry stiff, brown                      | MIL      |                 |           |                  | •                                                                     |                                                                                   | _597<br>15                 |  |  |
| 592.2<br>20                    | 4          |             | 18             | 16      | Fill: Topsoil with cinders - m<br>gray brown (10YR 4/2)<br>Fill: Lean clay - moist, very st<br>(10YR 2/2) | oist, stiff, dark<br>iff, dark brown | CL<br>CL |                 |           |                  | <b>\</b>                                                              | 1                                                                                 | _59<br>2                   |  |  |
| 587.2<br>25                    | 5          |             | 18             | 21      | Native lean clay till with occa<br>sand - moist, very stiff, strong<br>4/6)                               | sional coarse<br>brown (7.5YR        | CL       |                 | /         |                  | /                                                                     | 1                                                                                 | _58<br>_2                  |  |  |
| 582.2<br>30                    | 6          |             | 18             | 8       | Silt - wet, loose, yellowish bro                                                                          | own (10YR 5/4)                       | ML.      |                 |           |                  |                                                                       |                                                                                   | 582                        |  |  |
| 577.2<br>35                    | 7          |             | 16             | 12      | Silty clay - wet, stiff, brown (1                                                                         | 0YR 4/3)                             | CL<br>ML |                 |           |                  | •                                                                     |                                                                                   | _57 <sup>-</sup> 3         |  |  |
| 72.2<br>40                     | 8          |             | 18             | 5       | Silt - wet, loose, brown (10YR                                                                            | 2 4/3)                               | ML       |                 |           |                  |                                                                       |                                                                                   | _57:<br>4                  |  |  |
| 67.2_9<br>45                   | 9          |             | 17             | 9       |                                                                                                           |                                      | ML       |                 | *         |                  |                                                                       |                                                                                   | _56'<br>4                  |  |  |
| 62.2 1<br>50 57.2 55           | 10         |             | 18             | 14 -    | Lean clay with trace sand - we<br>yellowish brown (10YR 4/4)<br>Boring terminated at 50 Teet.             | t, stiff, dark                       | CL       |                 |           |                  |                                                                       |                                                                                   | _562<br>_51<br>_557<br>_5: |  |  |
|                                |            | F           | R              |         | Wate                                                                                                      | er Level Cave-in Dept                | th Bo    | rehole Abandonn | nent      | Crew:            | M&K D                                                                 | Drill/WGF                                                                         |                            |  |  |
| NCI                            | N          | FF          | R              | I       | Date Time                                                                                                 | ftft                                 | t. D     | ate: 2/2/1/20   | 11        | Rig:             | Mobile                                                                | B52                                                                               |                            |  |  |
| CIEN                           |            | .IC         | TC             | I       | Date Time                                                                                                 | ft,ft                                |          | ato, 2/24/20    | I         | Method           | Mud Ro                                                                | tarv                                                                              |                            |  |  |
| LICIN                          | 11         | 12          |                |         | ale I me                                                                                                  | II II                                | I. I M   | aterial: DEINI  | JULE      | interiou.        | ALL ALL ALL                                                           | J                                                                                 |                            |  |  |