2019 Annual Groundwater Monitoring and Corrective Action Report

Columbia Energy Center Dry Ash Disposal Facility, Modules 1 through 3 Pardeeville, Wisconsin

Prepared for:

SCS ENGINEERS

25219067.00 | January 31, 2020

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830

Table of Contents

Sect	ion			Page
1.0	Intro	duction.		1
2.0	§257	7.90(e)	Annual Report Requirements	1
	2.1	§257.9	90(e)(1) Site Map	1
	2.2	§257.9	90(e)(2) Monitoring System Changes	2
	2.3		90(e)(3) Summary of Sampling Events	
	2.4	§257.9	90(e)(4) Monitoring Transition Narrative	2
	2.5	§257.9	90(e)(5) Other Requirements	3
		2.5.1	§ 257.90(e) General Requirements	3
		2.5.2	§257.94(d) Alternative Detection Monitoring Frequency	3
		2.5.3	§257.94(e)(2) Alternative Source Demonstration for Detection Monitoring	4
		2.5.4	§257.95(c) Alternative Assessment Monitoring Frequency	4
		2.5.5	§257.95(d)(3) Assessment Monitoring Results and Standards	4
		2.5.6	§257.95(g)(3)(ii) Alternative Source Demonstration for Assessment Monitor	ing4
		2.5.7	§257.96(a) Extension of Time for Corrective Measures Assessment	4

Tables

Table 1.	CCR Rule Groundwater Samples Summary

Figures

Figure 1. Site Location Map

Figure 2. Site Plan and Monitoring Well Locations

Appendices

- Appendix A Laboratory Reports
 - A1 April 2019 Detection Monitoring
 - A2 October 2019 Detection Monitoring
- Appendix B Alternative Source Demonstrations
 - B1 Alternative Source Demonstration, October 2018 Detection Monitoring
 - B2 Alternative Source Demonstration, April 2019 Detection Monitoring

l:\25219067.00 \Deliverables \2019 Federal Annual Report - MOD 1-3 LF \200131_2019 Annual CCR GW Report COL MOD 1-3 LF.docx [This page left blank intentionally]

1.0 INTRODUCTION

This 2019 Annual Groundwater Monitoring and Corrective Action Report was prepared to support compliance with the groundwater monitoring requirements of the Coal Combustion Residuals (CCR) Rule [40 CFR 257.50-107]. Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.90(e). The applicable sections of the Rule are provided below in italics, followed by applicable information relative to the 2019 Annual Groundwater Monitoring and Corrective Action Report for the CCR Units.

This report covers the period of groundwater monitoring from January 1, 2019, through December 31, 2019.

The groundwater monitoring system for the Columbia Energy Center (COL) Dry Ash Disposal Facility Modules 1 through 3 is a multiunit system, monitoring three existing CCR units:

- COL Dry Ash Disposal Facility Module 1 (existing CCR Landfill)
- COL Dry Ash Disposal Facility Module 2 (existing CCR Landfill)
- COL Dry Ash Disposal Facility Module 3 (existing CCR Landfill)

The system is designed to detect monitored constituents at the waste boundary of Modules 1 through 3 of the COL Dry Ash Disposal Facility as required by 40 CFR 257.91(d). The groundwater monitoring system consists of two upgradient and three downgradient monitoring wells. A separate groundwater monitoring system evaluates groundwater conditions for Module 4 of the COL Dry Ash Disposal Facility.

2.0 §257.90(e) ANNUAL REPORT REQUIREMENTS

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For new CCR landfills, new CCR surface impoundments, and all lateral expansions of CCR units, the owner or operator must prepare the initial annual groundwater monitoring and corrective action report no later than January 31 of the year following the calendar year a groundwater monitoring system has been established for such CCR unit as required by this subpart, and annually thereafter. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1). At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

2.1 §257.90(e)(1) SITE MAP

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

A map of the site location is provided on **Figure 1**. A map showing the Dry Ash Disposal Facility Modules 1 through 3 and all background (or upgradient) and downgradient monitoring wells with

identification numbers for the groundwater monitoring program is provided as **Figure 2**. Other CCR units are also shown on **Figure 2**.

2.2 §257.90(e)(2) MONITORING SYSTEM CHANGES

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

No new monitoring wells were installed, and no wells were decommissioned as part of the groundwater monitoring program for Modules 1 through 3 of the Dry Ash Disposal Facility in 2019.

2.3 §257.90(e)(3) SUMMARY OF SAMPLING EVENTS

In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

Two groundwater sampling events were completed in 2019 at the COL Dry Ash Disposal Modules 1 through 3 as part of ongoing detection monitoring.

Groundwater samples collected during the semiannual events, in April and October 2019, were analyzed for the Appendix III constituents. A summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring program is included in **Table 1**. The results of the analytical laboratory analyses are provided in the laboratory reports in **Appendices A1** through **A2**.

Assessment monitoring has not been initiated for Modules 1 through 3 of the Dry Ash Disposal Facility.

2.4 §257.90(e)(4) MONITORING TRANSITION NARRATIVE

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels);

There were no transitions between monitoring programs during 2019. The COL Dry Ash Disposal Facility, Modules 1 through 3, remained in the detection monitoring program.

In 2019, the monitoring results for the October 2018 and April 2019 monitoring events were evaluated for statistically significant increases (SSIs) in detection monitoring parameters relative to background. For both events, SSIs for boron, chloride, and sulfate were identified, and an SSI for total dissolved solids (TDS) was identified for the April 2019 event. However, alternative source demonstrations (ASDs) were completed, demonstrating that sources other than the CCR units were the likely cause of the observed concentrations. The ASD reports are provided in **Appendix B**.

2.5 §257.90(e)(5) OTHER REQUIREMENTS

Other information required to be included in the annual report as specified in §§ 257.90 through 257.98.

Additional potentially applicable requirements for the annual report, and the location of the requirement within the Rule, are provided in the following sections. For each cited section of the Rule, the portion referencing the annual report requirement is provided below in italics, followed by applicable information relative to the 2019 Annual Groundwater Monitoring and Corrective Action Report for the CCR Units.

2.5.1 § 257.90(e) General Requirements

For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year.

Status of Groundwater Monitoring and Corrective Action Program: The groundwater monitoring and corrective action program was in detection monitoring throughout 2019.

Summary of Key Actions Completed:

- Statistical evaluation and determination of SSIs for the October 2018 and April 2019 monitoring events.
- ASD reports for the SSIs identified from the October 2018 and April 2019 monitoring events.
- Two semiannual groundwater sampling and analysis events (April and October 2019).

Description of Any Problems Encountered: No problems were encountered in 2019.

Discussion of Actions to Resolve the Problems: Not applicable.

Projection of Key Activities for the Upcoming Year (2020):

- Statistical evaluation and determination of any SSIs for the October 2019 and April 2020 monitoring events.
- If an SSI is determined, then within 90 days either:
 - Complete ASD (if applicable), or
 - Establish an assessment monitoring program.
- Two semiannual groundwater sampling and analysis events (April and October 2020).

2.5.2 §257.94(d) Alternative Detection Monitoring Frequency

The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer in the annual groundwater monitoring and corrective action report required by § 257.90(e).

Not applicable. No alternative detection monitoring frequency has been proposed.

2.5.3 §257.94(e)(2) Alternative Source Demonstration for Detection Monitoring

The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

The ASD reports prepared to address the SSIs observed for the October 2018 and April 2019 sampling events are provided in **Appendix B**. The ASD reports are certified by a qualified professional engineer.

2.5.4 §257.95(c) Alternative Assessment Monitoring Frequency

The owner or operator must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer in the annual groundwater monitoring and corrective action report required by § 257.90(e).

Not applicable. Assessment monitoring has not been initiated.

2.5.5 §257.95(d)(3) Assessment Monitoring Results and Standards

Include the recorded concentrations required by paragraph (d)(1) of this section, identify the background concentrations established under § 257.94(b), and identify the groundwater protection standards established under paragraph (d)(2) of this section in the annual groundwater monitoring and corrective action report required by § 257.90(e).

Not applicable. Assessment monitoring has not been initiated.

2.5.6 §257.95(g)(3)(ii) Alternative Source Demonstration for Assessment Monitoring

The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

Not applicable. Assessment monitoring has not been initiated.

2.5.7 §257.96(a) Extension of Time for Corrective Measures Assessment

The assessment of corrective measures must be completed within 90 days, unless the owner or operator demonstrates the need for additional time to complete the assessment of corrective measure due to site-specific conditions or circumstances. The owner or operator must obtain a certification from a qualified professional engineer attesting that the demonstration is accurate. The 90-day deadline to complete the assessment of corrective measures may be extended for longer than 60 days. The owner or operator must also include the demonstration in the annual groundwater monitoring and corrective action report required by § 257.90(e), in addition to the certification by a qualified professional engineer.

Not applicable. Corrective measures assessment has not been initiated.

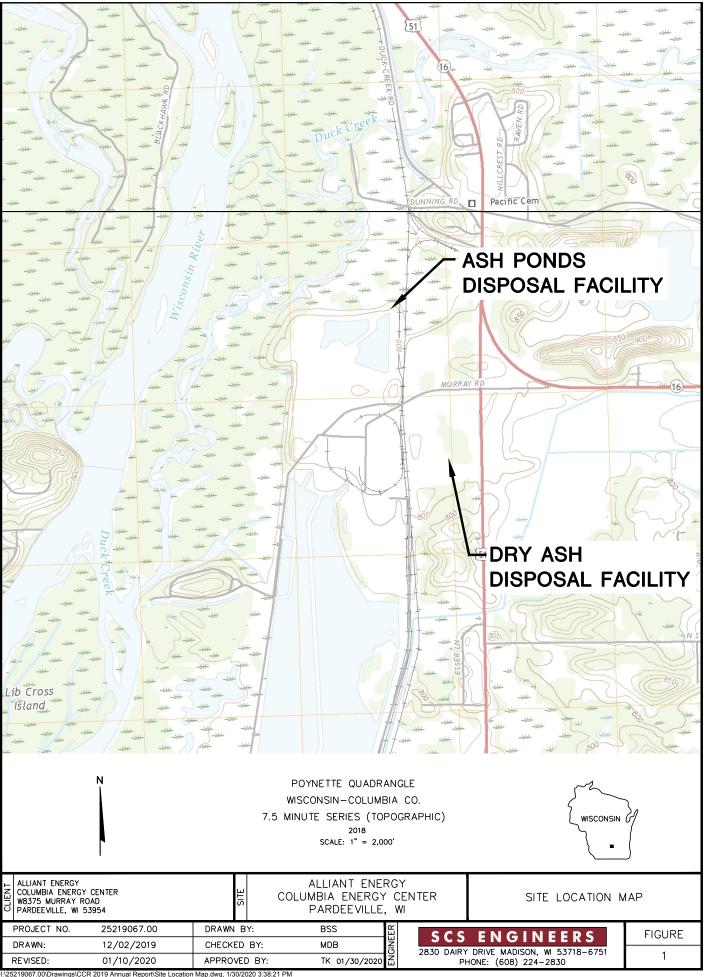
Table 1

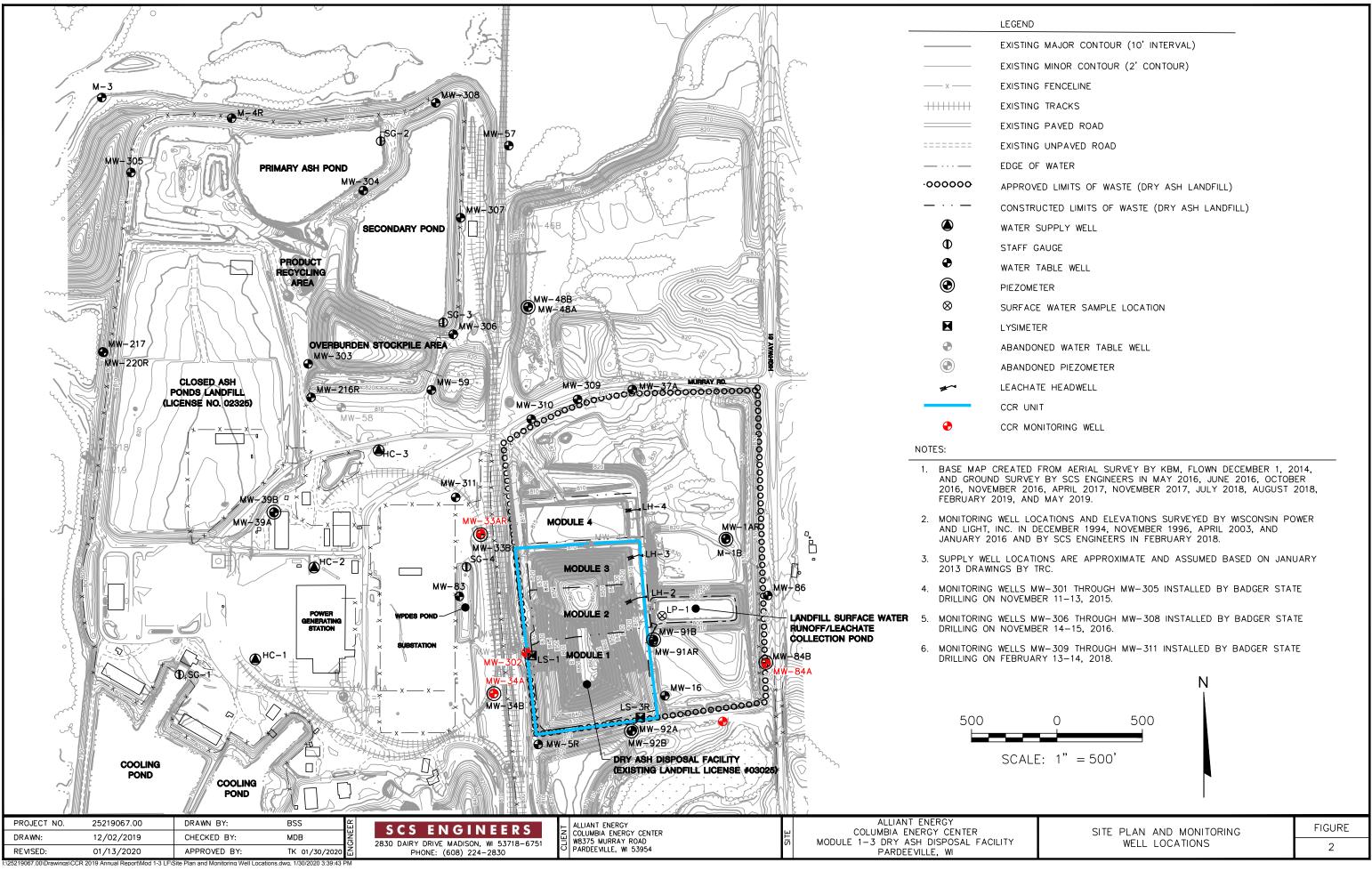
CCR Rule Groundwater Samples Summary

Table 1. CCR Rule Groundwater Samples Summary Columbia Energy Center Dry Ash Disposal Facility, Modules 1-3 / SCS Engineers Project #25219067.00

Sample Dates	Do	wngradient	Wells	Backgrou	und Wells
	MW-302	MW-34A	MW-33AR	MW-84A	MW-301
April 2-3, 2019	D	D	D	D	D
October 8-9, 2019	D	D	D	D	D
Total Samples	2	2	2	2	2

Abbreviations:


D = Required by Detection Monitoring Program


Created by:	ACW	Date: 11/18/2019
Last revision by:	ACW	Date: 11/18/2019
Checked by:	MDB	Date: 1/8/2020

I:\25219067.00\Deliverables\2019 Federal Annual Report - MOD 1-3 LF\Tables\[Table 1 - 2019_GW_Samples_Summary_LF-1-3.xlsx]GW Summary

Figures

- 1 Site Location Map
- 2 Site Plan and Monitoring Well Locations

Appendix A

Laboratory Reports

A1 April 2019 Detection Monitoring

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

April 18, 2019

Meghan Blodgett SCS ENGINEERS 2830 Dairy Drive Madison, WI 53718

RE: Project: 25219067 ALLIANT-COLUMBIA CCR Pace Project No.: 40185260

Dear Meghan Blodgett:

Enclosed are the analytical results for sample(s) received by the laboratory on April 04, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Day Milent

Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: Tom Karwoski, SCS ENGINEERS Nicole Kron, SCS ENGINEERS Jeff Maxted, ALLIANT ENERGY Marc Morandi, ALLIANT ENERGY

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: 25219067 ALLIANT-COLUMBIA CCR

Pace Project No.: 40185260

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 Virginia VELAP ID: 460263 South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

04/02/19 16:25

04/04/19 09:30

Water

Project: 25219067 ALLIANT-COLUMBIA CCR

FIELD BLANK MOD1-3LF

Pace Project No.: 40185260

40185260004

-				
Lab ID	Sample ID	Matrix	Date Collected	Date Received
40185260001	MW-302	Water	04/02/19 16:25	04/04/19 09:30
40185260002	MW-33AR	Water	04/02/19 15:30	04/04/19 09:30
40185260003	MW-34A	Water	04/02/19 14:30	04/04/19 09:30

SAMPLE ANALYTE COUNT

Project: 25219067 ALLIANT-COLUMBIA CCR

Pace Project No.: 40185260

Lab ID	Sample ID	Method	Analysts	Analytes Reported
40185260001	 MW-302	EPA 6020	кхs	2
			AXL	7
		SM 2540C	TMK	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40185260002	MW-33AR	EPA 6020	KXS	2
			AXL	7
		SM 2540C	ТМК	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40185260003	MW-34A	EPA 6020	KXS	2
			AXL	7
		SM 2540C	ТМК	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40185260004	FIELD BLANK MOD1-3LF	EPA 6020	KXS	2
		SM 2540C	ТМК	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3

Project: 25219067 ALLIANT-COLUMBIA CCR

1 10,000.

Pace Project No.: 40185260

Sample: MW-302	Lab ID:	40185260001	Collected:	04/02/19	9 16:25	Received: 04/	04/19 09:30 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	ation Metho	od: EPA	3010			
Boron Calcium	254 62400	ug/L ug/L	11.0 250	3.3 69.8	1 1	04/05/19 08:40 04/05/19 08:40	04/09/19 07:37 04/09/19 07:37		
Field Data	Analytical	Method:							
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	7.32 538.6 9.65 126.7 9.72 787.56 9.8	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1 1		04/02/19 16:25 04/02/19 16:25 04/02/19 16:25 04/02/19 16:25 04/02/19 16:25 04/02/19 16:25 04/02/19 16:25	7782-44-7	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	290	mg/L	20.0	8.7	1		04/09/19 12:35		
9040 pH	Analytical	Method: EPA 9	040						
pH at 25 Degrees C	7.4	Std. Units	0.10	0.010	1		04/09/19 10:46		H6
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride Fluoride Sulfate	1.5J <0.10 25.2	mg/L mg/L mg/L	2.0 0.30 3.0	0.50 0.10 1.0	1 1 1		04/16/19 22:05 04/16/19 22:05 04/16/19 22:05	16984-48-8	В
Sample: MW-33AR	Lab ID:	40185260002	Collected:	04/02/19	9 15:30	Received: 04/	04/19 09:30 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	ation Methe	od: EPA	3010			
Boron Calcium	568 131000	ug/L ug/L	11.0 250	3.3 69.8	1 1	04/05/19 08:40 04/05/19 08:40	04/09/19 07:43 04/09/19 07:43		
Field Data	Analytical	Method:							
Field pH Field Specific Conductance Oxygen, Dissolved REDOX Turbidity Static Water Level Temperature, Water (C)	7.72 1312 10.22 129.0 2.71 786.63 10.3	Std. Units umhos/cm mg/L mV NTU feet deg C			1 1 1 1 1 1		04/02/19 15:30 04/02/19 15:30 04/02/19 15:30 04/02/19 15:30 04/02/19 15:30 04/02/19 15:30 04/02/19 15:30		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	784	mg/L	20.0	8.7	1		04/09/19 12:35		

Project: 25219067 ALLIANT-COLUMBIA CCR

Pace Project No.: 40185260

Sample: MW-33AR	Lab ID:	40185260002	Collected:	04/02/19	9 15:30	Received: 04/	/04/19 09:30 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
9040 pH	Analytical	Method: EPA 9	040						
pH at 25 Degrees C	7.6	Std. Units	0.10	0.010	1		04/09/19 10:51		H6
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	229	mg/L	20.0	5.0	10		04/17/19 12:12	16887-00-6	
Fluoride	<0.10	mg/L	0.30	0.10	1		04/16/19 22:18	16984-48-8	
Sulfate	201	mg/L	30.0	10.0	10		04/17/19 12:12	14808-79-8	
Sample: MW-34A	Lab ID:	40185260003	Collected:	04/02/19	9 14:30	Received: 04/	/04/19 09:30 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	tion Meth	od: EPA	3010			
Boron	204	ug/L	11.0	3.3	1	04/05/19 08:40	04/09/19 07:50	7440-42-8	
Calcium	67500	ug/L	250	69.8	1	04/05/19 08:40			
Field Data	Analytical	Method:							
Field pH	7.73	Std. Units			1		04/02/19 14:30		
Field Specific Conductance	531.7	umhos/cm			1		04/02/19 14:30		
Oxygen, Dissolved	10.22	mg/L			1		04/02/19 14:30	7782-44-7	
REDOX	104.4	mV			1		04/02/19 14:30		
Turbidity	64.77	NTU			1		04/02/19 14:30		
Static Water Level	786.82	feet			1		04/02/19 14:30		
Temperature, Water (C)	10.6	deg C			1		04/02/19 14:30		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	310	mg/L	20.0	8.7	1		04/09/19 12:35		
9040 pH	Analytical	Method: EPA 9	040						
pH at 25 Degrees C	7.7	Std. Units	0.10	0.010	1		04/09/19 10:59		H6
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	18.7	mg/L	2.0	0.50	1		04/15/19 12:12	16887-00-6	
Fluoride	<0.10	mg/L	0.30	0.10	1		04/15/19 12:12		
Sulfate	70.4	mg/L	15.0	5.0	5		04/15/19 18:00	14808-79-8	
Sample: FIELD BLANK MOD1-3LF	Lab ID:	40185260004	Collected:	04/02/19	9 16:25	Received: 04/	/04/19 09:30 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	tion Meth	od: EPA	3010			
Boron	<3.3	ug/L	11.0	3.3	1	04/05/19 08:40	04/09/19 05:00	7440-42-8	
Calcium	<69.8	ug/L	250	69.8	1	04/05/19 08:40			

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 25219067 ALLIANT-COLUMBIA CCR

Pace Project No.: 40185260

Sample: FIELD BLANK MOD1-3LF	Lab ID:	40185260004	Collected	: 04/02/19	9 16:25	Received: 04/	04/19 09:30 Ma	trix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	<8.7	mg/L	20.0	8.7	1		04/09/19 12:35		
9040 pH	Analytical	Method: EPA 9	040						
pH at 25 Degrees C	7.0	Std. Units	0.10	0.010	1		04/09/19 11:04		H6
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	<0.50	mg/L	2.0	0.50	1		04/15/19 12:24	16887-00-6	
Fluoride	<0.10	mg/L	0.30	0.10	1		04/15/19 12:24	16984-48-8	
Sulfate	<1.0	mg/L	3.0	1.0	1		04/15/19 12:24	14808-79-8	

Project: Pace Project No.:	25219067 ALLIAN 40185260	IT-COLUMBIA CCR	R									
QC Batch:	317485		Analysi	is Method	: E	PA 6020						
QC Batch Method:	EPA 3010		,	is Descrip		020 MET						
Associated Lab Sam	nples: 40185260	0001, 40185260002		•								
METHOD BLANK:	1846066		N	latrix: Wa	iter							
Associated Lab Sam	nples: 40185260	0001, 40185260002	, 401852600 Blank	,	5260004 Reporting							
Param	neter	Units	Result		Limit	Analyz	ed	Qualifiers				
Boron Calcium		ug/L ug/L		<3.3	11.0 250		-					
LABORATORY COM	ITROL SAMPLE:	1846067	0.1									
Param	neter	Units	Spike Conc.	LCS Resu		LCS % Rec	% Re Limits		ualifiers			
Boron Calcium		ug/L ug/L	500 5000		486 4990	97 100)-120)-120		-		
MATRIX SPIKE & M	ATRIX SPIKE DUI	PLICATE: 18460	68 MS	MSD	1846069							
		40185256001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r Un	its Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	ug	/L 26.9	500	500	492	498	93	94	75-125	1	20	
Calcium	ug	/L 126000	5000	5000	126000	123000	12	-46	75-125	2	20	P6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	25219067 ALLIA	NT-COLUMBIA CC	R				
Pace Project No.:	40185260						
QC Batch:	317813		Analysis Me	ethod:	SM 2540C		
QC Batch Method: SM 2540C			Analysis De	escription:	2540C Total Dis	ssolved Solids	
Associated Lab San	nples: 4018526	0001, 4018526000	2, 40185260003,	40185260004			
METHOD BLANK:	1847582		Matrix	: Water			
Associated Lab San	nples: 4018526	0001, 4018526000	2, 40185260003,	40185260004			
			Blank	Reporting			
Paran	neter	Units	Result	Limit	Analyze	d Quali	fiers
Total Dissolved Solie	ds	mg/L	<8.7	20.	0 04/09/19 12	2:32	
LABORATORY COM	NTROL SAMPLE:	1847583					
			Spike	LCS	LCS	% Rec	
Paran	neter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Total Dissolved Solie	ds	mg/L	577	552	96	80-120	
SAMPLE DUPLICA	TE: 1847584		40405050004	Dur		N/	
Paran	neter	Units	40185256001 Result	Dup Result	RPD	Max RPD	Qualifiers
Total Dissolved Solid		mg/L	462			0	5
		mg, ±			-	°	Ũ
SAMPLE DUPLICA	TE: 1847585						
			40185260001	Dup		Max	
Paran	neter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Soli		mg/L		28		2	5

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	25219067 ALLIAN	T-COLUMBIA CC	R				
Pace Project No.:	40185260						
QC Batch:	317736		Analysis Meth	od:	EPA 9040		
QC Batch Method:	EPA 9040		Analysis Description:		9040 pH		
Associated Lab Sar	mples: 40185260	001, 4018526000	2, 40185260003, 40	185260004			
SAMPLE DUPLICA	TE: 1847351						
_			40185260001	Dup		Max	
Parar	meter	Units	Result	Result		RPD	Qualifiers
pH at 25 Degrees C	2	Std. Units	7.4	7.	4	0	20 H6
SAMPLE DUPLICA	TE: 1847381						
			40185339014	Dup		Max	
Deve	meter	Units	Result	Result	RPD	RPD	Qualifiers
Parar							

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	25219 40185		COLUMBIA CCF	1									
QC Batch:	3179	955		Analys	is Method:	Ef	PA 300.0						
QC Batch Method	: EPA	300.0		Analys	is Descripti	ion: 30	0.0 IC Anio	ons					
Associated Lab Sa	amples:	4018526000	1, 40185260002		·								
METHOD BLANK	: 18483	05		N	Aatrix: Wat	er							
Associated Lab Sa	amples:	4018526000	1, 40185260002										
				Blank	Re	eporting							
Para	ameter		Units	Result	t	Limit	Analyz	ed	Qualifiers				
Chloride			mg/L	().52J	2.0	04/16/19	10:22					
Fluoride			mg/L	<	<0.10	0.30	04/16/19	10:22					
Sulfate			mg/L		<1.0	3.0	04/16/19	10:22					
LABORATORY CO	ONTROL	SAMPLE: 1	848306										
Para	ameter		Units	Spike Conc.	LCS Resul		LCS % Rec	% Rec Limits		ualifiers			
Chloride			mg/L	20		21.6	108	90	-110		-		
Fluoride			mg/L	2		2.0	98		-110				
Sulfate			mg/L	20		21.7	109	90	-110				
MATRIX SPIKE &	MATRIX	SPIKE DUPLI	CATE: 18483	07		1848308							
				MS	MSD								
			40185204004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parame	ter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride		mg/L	43.0	100	100	149	148	106	105	90-110	1	15	
Fluoride		mg/L	<0.50	10	10	10.3	10.4	103	104	90-110	1	15	
Sulfate		mg/L	<5.0	100	100	109	109	105	105	90-110	0	15	
MATRIX SPIKE &	MATRIX	SPIKE DUPLI	CATE: 18483	09		1848310							
				MS	MSD								
			40185260002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parame	ter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride		mg/L	229	200	200	439	425	105	98	90-110	3	15	
		mg/L	<0.10	2	2	1.9	2.0	97	99	90-110	2		
Fluoride		IIIQ/ L				1.0							

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Pace Project N			COLUMBIA CCF										
QC Batch:	3180			Analys	is Method:	EF	PA 300.0						
QC Batch Meth	nod: EPA	300.0		-	is Descript	ion: 30	0.0 IC Anio	ns					
Associated Lat	Samples:	4018526000	03, 40185260004										
METHOD BLA	NK: 18489	56		N	Aatrix: Wat	er							
Associated Lat	Samples:	4018526000	03, 40185260004										
				Blank	R	eporting							
F	Parameter		Units	Resul	t	Limit	Analyz	ed	Qualifiers				
Chloride			mg/L	<	<0.50	2.0	04/15/19	11:11					
Fluoride			mg/L		<0.10	0.30	04/15/19						
Sulfate			mg/L		<1.0	3.0	04/15/19	11:11					
LABORATORY	CONTROL	SAMPLE: 1	848957										
		-		Spike	LCS		LCS	% Rec					
	Parameter		Units	Conc.	Resu		% Rec	Limits		ualifiers	-		
Chloride			mg/L	20		21.2	106		-110				
Fluoride			mg/L	2		2.1	104		-110				
Sulfate			mg/L	20		21.4	107	90	-110				
MATRIX SPIKE	E & MATRIX	SPIKE DUPL	ICATE: 18489			1848959							
				MS	MCD								
					MSD								
Dava		11-1-	40185548003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	0
	meter	Units	Result	Spike Conc.	Spike Conc.	Result	MSD Result	% Rec	MSD % Rec	Limits	RPD	RPD	Qual
Chloride	meter	mg/L	Result 261	Spike Conc. 200	Spike Conc. 200	Result 438	Result 463	% Rec 88	% Rec 101	Limits 90-110	6	RPD 15	Qual M0
Chloride Fluoride	meter	mg/L mg/L	Result 261 <1.0	Spike Conc. 200 20	Spike Conc. 200 20	Result 438 18.0	Result 463 19.8	% Rec 88 90	% Rec 101 99	Limits 90-110 90-110	6 9	RPD 15 15	MO
Chloride Fluoride	meter	mg/L	Result 261	Spike Conc. 200	Spike Conc. 200	Result 438	Result 463	% Rec 88	% Rec 101	Limits 90-110	6 9	RPD 15 15	
Chloride Fluoride Sulfate		mg/L mg/L mg/L	Result 261 <1.0 54.2	Spike Conc. 200 200 200	Spike Conc. 200 20	Result 438 18.0	Result 463 19.8	% Rec 88 90	% Rec 101 99	Limits 90-110 90-110	6 9	RPD 15 15	MO
Chloride Fluoride Sulfate		mg/L mg/L mg/L	Result 261 <1.0 54.2	Spike Conc. 200 200 200	Spike Conc. 200 20	Result 438 18.0 232	Result 463 19.8	% Rec 88 90	% Rec 101 99	Limits 90-110 90-110	6 9	RPD 15 15	MO
Chloride Fluoride Sulfate		mg/L mg/L mg/L	Result 261 <1.0 54.2	Spike Conc. 200 200 200	Spike Conc. 200 200 200	Result 438 18.0 232	Result 463 19.8	% Rec 88 90	% Rec 101 99	Limits 90-110 90-110	6 9 8	RPD 15 15 15	MO
Chloride Fluoride Sulfate MATRIX SPIKE		mg/L mg/L mg/L	Result 261 <1.0 54.2 ICATE: 18489 40185308003	Spike Conc. 200 200 200 60 MS	Spike Conc. 200 200 200 MSD	Result 438 18.0 232 1848961	Result 463 19.8 252	% Rec 88 90 89	% Rec 101 99 99	Limits 90-110 90-110 90-110	6 9 8	RPD 15 15 15	M0 M0
Chloride Fluoride Sulfate MATRIX SPIKE Para	E & MATRIX	mg/L mg/L SPIKE DUPL Units	Result 261 <1.0 54.2 ICATE: 18489 40185308003	Spike Conc. 200 200 200 50 MS Spike Conc.	Spike Conc. 200 200 200 MSD Spike Conc.	Result 438 18.0 232 1848961 MS Result	Result 463 19.8 252 MSD	% Rec 88 90 89 89 MS	% Rec 101 99 99	Limits 90-110 90-110 90-110 % Rec Limits	6 9 8	RPD 15 15 15	MO
Chloride Fluoride Sulfate MATRIX SPIKE	E & MATRIX	mg/L mg/L mg/L	Result 261 <1.0 54.2 ICATE: 18489 40185308003 Result	Spike Conc. 200 200 200 60 MS Spike	Spike Conc. 200 200 200 MSD Spike	Result 438 18.0 232 1848961 MS	Result 463 19.8 252 MSD Result	% Rec 88 90 89 89 MS % Rec	% Rec 101 99 99 99 MSD % Rec	Limits 90-110 90-110 90-110 % Rec Limits	6 9 8 RPD	RPD 15 15 15 15 Max RPD	MO MO

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALIFIERS

Project: 25219067 ALLIANT-COLUMBIA CCR

Pace Project No.: 40185260

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- B Analyte was detected in the associated method blank.
- H6 Analysis initiated outside of the 15 minute EPA required holding time.
- M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
- P6 Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 25219067 ALLIANT-COLUMBIA CCR

Pace Project No.: 40185260

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40185260001	MW-302	EPA 3010	317485	EPA 6020	317570
40185260002	MW-33AR	EPA 3010	317485	EPA 6020	317570
40185260003	MW-34A	EPA 3010	317485	EPA 6020	317570
40185260004	FIELD BLANK MOD1-3LF	EPA 3010	317485	EPA 6020	317570
40185260001	MW-302				
40185260002	MW-33AR				
40185260003	MW-34A				
40185260001	MW-302	SM 2540C	317813		
40185260002	MW-33AR	SM 2540C	317813		
40185260003	MW-34A	SM 2540C	317813		
40185260004	FIELD BLANK MOD1-3LF	SM 2540C	317813		
40185260001	MW-302	EPA 9040	317736		
40185260002	MW-33AR	EPA 9040	317736		
40185260003	MW-34A	EPA 9040	317736		
40185260004	FIELD BLANK MOD1-3LF	EPA 9040	317736		
40185260001	MW-302	EPA 300.0	317955		
40185260002	MW-33AR	EPA 300.0	317955		
40185260003	MW-34A	EPA 300.0	318035		
40185260004	FIELD BLANK MOD1-3LF	EPA 300.0	318035		

Intact / Not Intact Version 6.0 08/14/06	na mana na mang mang mang mang mang mang			an some an and a sub-standing state of a state with the state of the	77.Jun2006)	C019a(27.Jun2006)
Present / Not Present	Date/Time:	Received By:	Date/Time:	Relinquished By:		Samples on H
Coolar Custody Seat	Date/Time:	Received By:				Fax:
Sample-Receipt pH	n de anticke en de anticke en de anticke en de anticke en de anticke de anticke de anticke de anticke de antick		Data Timo:	Relinquished By:		Telephone:
vacaily ratif - VOLC	UNU Date/Time:	Received By:	Date/Time:	Kelinquished By:		Email #2:
10	Mry 4419	MARXI	1-4-19 UISU	TER EX	Transmit Prelim Rush Results by (complete what you want):	Transmit Prelim Rush Re
1012700	Date/Time:	Repeived By:	ate/Time:	Refinquished By	eded:	Date Needed:
PACE Project No.	Date/Time:	Received By:	Date/Time: イーコング ノタ・マト	Relinquished By:	(Rush TAT subject to approval/surcharge)	(Rush TAT subje
					The Development of the Development	
			VVV	14-1-11/6:50 DI	1d Blank SC And 4	The Field
				1	308 4-1-19	MW 11
				L	304 4-1-19	O/O MW
				1	MW 306 4+19	CCC7 MW
					Blank Mod4	005 Field
				4-2-19 10:50 1	3// 42	00/ 100
				4-2-19 9:55	3/0 4:	006 MM
				4-219 9:10 GW	Y	mw 500
				4-2-19 16:25 07	& Blenk Mad 14:	
				L		MW 500
				15:30	R	MW 200
				4-2-19 16:24 (-10)	1302 4	100/ 100
(Lab Use Only)	COMMENTS		TI 510 C	LLECTION MATRIX		PACE LAB # C
\neg			95, ori a,			EPA Level IV
			, St de E	W = Water DW = Drinking Water GW = Ground Water	On your sample (billable)	
			54, , (atrix Codes	MS/MSD	Data Package Options
	Invoice To Address:		PF			PO #
	Invoice To Company:			Watson	a	Sampled By (Sign):
	Invoice To Contact:		AAZ	PRESERVATION Pick (CODE)* Latter	Adam Watson	Sampled By (Print):
			N N/2 N/2 N/2	FILTERED? (YES/NO) Y/N		Project State:
	Mail To Address:		I=Sodium Thiosulfate	H=Sodium Bisulfate Solution	Alliant - Columb	Project Name:
	Mail To Company:	F=Methanol G=NaOH	*Preservation Codes C=H2SO4 D=HNO3 E=DI Water F=Me	A=None B=HCL	25219067	Project Number:
	Mail To Contact:	ODY	IAIN OF CUST	CH	608-216-7362	Phone:
	Quote #:		er wer, partonatus, COIN			Project Contact:
() (C)/h ge 15		NN	ace Analytical	- Fau	Marison, WII	Branch/Location:
- <u>-</u> 20 0 0 0 17	00 WI: 920-469-2436	MN: 612-607-1700			505	Company Name:
	ST REGION	UPPER MIDWEST REGION			(Please Print Clearly)	(Ple

AG4U AG5U AG2S	AG1U AG1H AG4S		Exceptions to preservation check: VOA, Coliform, TOC, TOX, TOH, O&G, WI DRO, Phenolics, Other	020	019	018	017	016	915		013	012	2	910	80	800	8	8	85 5	004	00 3	802	3	Pace	Clie
			otions								and the second se											222465 3 4 	ľ	AG1U	Client Name: All containers ne
파 파 파 	er ami mLar		to pre				and a second second	AN A			ALC DECK						24001.000 S. 24						_	AG1H	Van
120 mL amber glass unpre 100 mL amber glass unpre 500 mL amber glass H2SO 250 ml clear plass unpres	1 liter amber glass 1 liter amber glass 125 mL amber glas		serva				an thread				100 March 100						0.001 1.0001 1.0001 1.00000000				100		_	AG4S	IN:
glass i glass i glass i	1 liter amber glass 1 liter amber glass HCL 125 mL amber glass H2		tion c				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				2017 - AB														bing
120 mL amber glass unpres 100 mL amber glass unpres 500 mL amber glass H2SO4 750 mL rlear plass unpres	1 liter amber glass 1 liter amber glass HCL 125 mL amber glass H2SO4		heck:				20 A 20 - 1				and the second	(84)											_	AG5U	prese
8 8 4	4		VOA						A SAME			A State												AG2S	rvatio
			, Colii													Phone Alternation Alternation								BG3U	n hav
BP BP	BE BE BE		orm,				5 P. 1		教授にするため		an contraction					防衛に対応					100			BP1U	
BP3U BP3C BP3N BP3S	BP2N BP2Z		FOC,				2. 		and the second															BP2N	1 chec
250 250 250	200 I 200 I	1 1:+->	TOX,						and the state															BP2Z	xed a
고 고 고 고 고 고 고 고 고	nL pla	2	TOH,						1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			φ	υ	も	ي	9	と	<i>u</i>	V	ψ	2	Y	ĥ	BP3U Plastic	ot# of
250 mL plastic unpre 250 mL plastic NaOH 250 mL plastic HNO3 250 mL plastic H2SO2	500 mL plastic HNO3 500 mL plastic HNO3 500 mL plastic NaOH		0&G															QRASS						BP3C	ent Name:
250 mL plastic unpres 250 mL plastic NaOH 250 mL plastic HNO3 250 mL plastic H2SO4	1 Inter plastic unpres 500 mL plastic HNO3 500 mL plastic NaOH, Znact	nnoc	₹						- -		ł								_		~	-	-	BP3N	elow: aper:
• ·	Znac		RO, I																					BP3S	Qres
	e e		henc						According to															DG9A	Project Fres ding dina 1045352
< 5 5	< < 0 (lics, (part -										DG9T	Project # Kes =No =N/A /04/5358/L
VG9N VG9H		60A	Other						C.Sanciana C.Sanciana															VG9U <u>Sials</u>	
40 n	40 n	5			Γ																			VG9Н 🖁	Std #
nL cle nL cle	nL am nL cle	2 2 2																						VG9M	
40 mL clear vial HCL 40 mL clear vial MeOH 40 mL clear vial DI	40 mL amber Na Thio 40 mL clear vial unpres	40 ml amher ascorbic	Hea																					VG9D	#
I MeO	a Thic	Corhi	Headspace in VOA																					JGFU	Tvation
Ĩ	ŝ		e in V																					WGFU គ្ល	
																								WPFU	T age
	< < .		ials (>																					SP5T ര	Justed):
SPST ZPLC GN:	WGFU	GED	6mm)																					ZPLC	
and a start and a start of a	40	40): □¥e																			108 108 108		GN 😐	
120 mL plastic Na Thiosulfate ziploc bag	4 oz clear jar unpres 4 oz plastic jar unpres	4 oz amber iar unpres	No Se										201120000											VOA Vials (>6mm) '	
olastic	r jar u tic jar) er iar	Se la																					H2SO4 pH ≤2	1
NaT	Inpres unpr	unpr	Å ۴۴				┢─						┢─											NaOH+Zn Act pH ≥9	con initia
hiosu	es	ß	yes lo				\vdash	an Al-Carro					-		┢		┢──				┢─				Initial when
lfate			ok in				-																ANNEAR	NaOH pH ≥12	Initial when the completed:
			head									Ň	Q	X	X	N.	X	\wedge	X	Ň	Ň	X	X	HNO3 pH ≤2	
			Vials (>6mm) : ⊡Yes ⊡No pt/A *If yes look in headspace column												1									pH after adjusted	Date/ Time:
			3 colu	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	<u> </u>	1
			mn	2.5/5/10	2.5/5/10	2.5 / 5 / 10	5	2.5 / 5 / 10	/5/	2.5/5/10	/5/10	2.5/5/10	2.5/5/10	2.5/5/10	2.5/5/:	2.5/5/10	2.5 / 5 / 10	2.5/5/10	2.5 / 5 / 10	2.5/5/10	2.5 / 5 / 10	2.5/5/10	/5/10	Volume (mL)	
				10	6	15	10	Б	/10	Б	Б	Б	Б	Б	10	၂ခ	6	6	Б	٥ ا	6	0	õ	<u> </u>	

F-GB-C-046-Rev.02 (29Mar2018) Sample Preservation Receipt Form

Page 16 of 97

1610

Pace Analytical"	1	iment Name: on Upon Receipt (SCUR)	Document Revised: 25Ap	or2018
Pace Analylical	committee committee committee contract was an another and a second second second second second second second se	cument No.:	Issuing Authority:	
1241 Bellevue Street, Green Bay, WI 5430		-C-031-Rev.07	Pace Green Bay Quality	Office
	Condition Upc	on Receipt Form (S	CUR)	
Client Name:)		0#:401852	60
Courier: CS Logistics Fed Ex Speed		Valtco		66
Client Pace Other:				
Tracking #: 1864 5120 (2527	401	85260	
Custody Seal on Cooler/Box Present: yes	* \	t: 🔽 yes 🔽 no		
Custody Seal on Samples Present: 🔽 yes 🗗		t: Tyes Tno	· · · · · · · · · · · · · · · · · · ·	
Packing Material: Bubble Wrap Bub	-	`	C	·
Thermometer Used <u>SR - N/A</u>	Type of Ice: We	Blue Dry None	Samples on ice, cooling proces	s has begun
Cooler Temperature Uncorr: K01/Corr:	Biological	Tissue is Frozen:	s no Person examin	
Temp Blank Present: $\begin{tabular}{c} yes \end{array}$ $\begin{tabular}{c} no \end{array}$ Temp should be above freezing to 6°C.Biota Samples may be received at ≤ 0 °C.	Diological	115506 15 1 102611. J = ye	Date:	-4-19 Stil
Chain of Custody Present:		1.		
Chain of Custody Filled Out:		2No patt mail	Invorce	447961
Chain of Custody Relinquished:		3.		on
Sampler Name & Signature on COC:		4.	·	
Samples Arrived within Hold Time:	ØYes □No	5.		
- VOA Samples frozen upon receipt	∕ □Yes □No	Date/Time:		
Short Hold Time Analysis (<72hr):	Yes No	6.		
Rush Turn Around Time Requested:	Yes ZNo	7.		
Sufficient Volume:		8.		
For Analysis: Tyes DNo MS/MSI		A		
Correct Containers Used:	Yes No	9.	,	
-Pace Containers Used:		4		
-Pace IR Containers Used:		A		
Containers Intact:	Pres INO	10.		
Filtered volume received for Dissolved tests		A 11.	CUDIN	MARIZI
Sample Labels match COC:		12.004-ID "	the + Lime on	252 Mln D.
-Includes date/time/ID/Analysis Matrix:		209-100 de		4-419
Trip Blank Present:		A 13.		SN
Trip Blank Custody Seals Present		A		
Pace Trip Blank Lot # (if purchased):	/			
Client Notification/ Resolution:			ed, see attached form for addition	nal comments
Person Contacted:	Date	/Time:		
Comments/ Resolution:			<u> </u>	
		· · · · · · · · · · · · · · · · · · ·		
Project Manager Review:	h for i)m	Date: <u> </u>	<u>Š</u>
			P	age09 ^{ft} Z_of 17

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

April 25, 2019

Meghan Blodgett SCS ENGINEERS 2830 Dairy Drive Madison, WI 53718

RE: Project: 25219067 ALLIANT-COLUMBIA CCR Pace Project No.: 40185256

Dear Meghan Blodgett:

Enclosed are the analytical results for sample(s) received by the laboratory on April 04, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Day Milent

Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: Tom Karwoski, SCS ENGINEERS Nicole Kron, SCS ENGINEERS Jeff Maxted, ALLIANT ENERGY Marc Morandi, ALLIANT ENERGY

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: 25219067 ALLIANT-COLUMBIA CCR

Pace Project No.: 40185256

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

Virginia VELAP ID: 460263 South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: 25219067 ALLIANT-COLUMBIA CCR

Pace Project No.: 40185256

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40185256001	MW-301	Water	04/02/19 17:20	04/04/19 09:30
40185256002	MW-84A	Water	04/03/19 09:40	04/04/19 09:30

SAMPLE ANALYTE COUNT

Project: 25219067 ALLIANT-COLUMBIA CCR

Pace Project No.: 40185256

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40185256001	MW-301	EPA 6020	KXS	14	PASI-G
		EPA 7470	AJT	1	PASI-G
			AXL	7	PASI-G
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		SM 2540C	ТМК	1	PASI-G
		EPA 9040	ALY	1	PASI-G
		EPA 300.0	HMB	3	PASI-G
40185256002	MW-84A	EPA 6020	KXS	14	PASI-G
		EPA 7470	AJT	1	PASI-G
			AXL	7	PASI-G
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		SM 2540C	ТМК	1	PASI-G
		EPA 9040	ALY	1	PASI-G
		EPA 300.0	HMB	3	PASI-G

Project: 25219067 ALLIANT-COLUMBIA CCR

Pace Project No.: 40185256

Sample: MW-301	Lab ID:	40185256001	Collected	d: 04/02/19	9 17:20	Received: 04/	04/19 09:30 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytica	I Method: EPA 6	020 Prepa	ration Meth	od: EPA	3010			
Antimony	0.32J	ug/L	1.0	0.15	1	04/05/19 08:40	04/09/19 06:15	7440-36-0	
Arsenic	0.40J	ug/L	1.0	0.28	1	04/05/19 08:40	04/09/19 06:15	7440-38-2	
Barium	11.8	ug/L	4.9	1.5	1	04/05/19 08:40	04/09/19 06:15	7440-39-3	
Beryllium	0.28J	ug/L	1.0	0.18	1	04/05/19 08:40	04/09/19 06:15	7440-41-7	
Boron	26.9	ug/L	11.0	3.3	1	04/05/19 08:40	04/09/19 06:15	7440-42-8	
Cadmium	0.21J	ug/L	1.0	0.15	1	04/05/19 08:40	04/09/19 06:15	7440-43-9	
Calcium	126000	ug/L	2500	698	10	04/05/19 08:40	04/09/19 05:48	7440-70-2	P6
Chromium	<1.0	ug/L	3.4	1.0	1	04/05/19 08:40	04/09/19 06:15	7440-47-3	
Cobalt	0.35J	ug/L	1.0	0.12	1	04/05/19 08:40	04/09/19 06:15	7440-48-4	
Lead	0.30J	ug/L	1.0	0.24	1	04/05/19 08:40	04/09/19 06:15	7439-92-1	
Lithium	0.90J	ug/L	1.0	0.19	1	04/05/19 08:40	04/09/19 06:15	7439-93-2	
Molybdenum	<0.44	ug/L	1.5	0.44	1	04/05/19 08:40	04/09/19 06:15	7439-98-7	
Selenium	0.49J	ug/L	1.1	0.32	1	04/05/19 08:40	04/09/19 06:15	7782-49-2	
Thallium	0.48J	ug/L	1.0	0.14	1	04/05/19 08:40	04/09/19 06:15	7440-28-0	
7470 Mercury	Analytica	I Method: EPA 7	470 Prepa	ration Meth	od: EPA	7470			
Mercury	<0.084	ug/L	0.28	0.084	1	04/12/19 09:55	04/15/19 10:05	7439-97-6	
Field Data	Analytica	I Method:							
Field pH	6.62	Std. Units			1		04/02/19 17:20		
Field Specific Conductance	883	umhos/cm			1		04/02/19 17:20		
Oxygen, Dissolved	2.20	mg/L			1		04/02/19 17:20	7782-44-7	
REDOX	152.1	mV			1		04/02/19 17:20		
Turbidity	2.02	NTU			1		04/02/19 17:20		
Static Water Level	787.04	feet			1		04/02/19 17:20		
Temperature, Water (C)	7.5	deg C			1		04/02/19 17:20		
2540C Total Dissolved Solids	Analytica	I Method: SM 25	40C						
Total Dissolved Solids	462	mg/L	20.0	8.7	1		04/09/19 12:34		
9040 pH	Analytica	I Method: EPA 9	040						
pH at 25 Degrees C	6.8	Std. Units	0.10	0.010	1		04/08/19 11:21		H6
300.0 IC Anions 28 Days	Analytica	I Method: EPA 3	00.0						
Chloride	2.9J	mg/L	10.0	2.5	5		04/16/19 19:51	16887-00-6	B,D3
Fluoride	<0.50	mg/L	1.5	0.50	5		04/16/19 19:51		D3
Sulfate	5.3J	mg/L	15.0	5.0	5		04/16/19 19:51		D3

Project: 25219067 ALLIANT-COLUMBIA CCR

1 10,000.

Pace Project No.: 40185256

Sample: MW-84A	Lab ID:	40185256002	Collected	1: 04/03/19	9 09:40	Received: 04/	/04/19 09:30 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytica	I Method: EPA 6	020 Prepai	ation Meth	od: EPA	3010			
Antimony	<0.15	ug/L	1.0	0.15	1	04/05/19 08:40	04/09/19 06:42	7440-36-0	
Arsenic	<0.28	ug/L	1.0	0.28	1	04/05/19 08:40	04/09/19 06:42	7440-38-2	
Barium	14.7	ug/L	4.9	1.5	1	04/05/19 08:40	04/09/19 06:42	7440-39-3	
Beryllium	<0.18	ug/L	1.0	0.18	1	04/05/19 08:40	04/09/19 06:42	7440-41-7	
Boron	13.6	ug/L	11.0	3.3	1	04/05/19 08:40	04/09/19 06:42	7440-42-8	
Cadmium	<0.15	ug/L	1.0	0.15	1	04/05/19 08:40	04/09/19 06:42	7440-43-9	
Calcium	80100	ug/L	250	69.8	1	04/05/19 08:40	04/09/19 06:42	7440-70-2	
Chromium	1.8J	ug/L	3.4	1.0	1	04/05/19 08:40	04/09/19 06:42	7440-47-3	
Cobalt	<0.12	ug/L	1.0	0.12	1	04/05/19 08:40	04/09/19 06:42	7440-48-4	
Lead	<0.24	ug/L	1.0	0.24	1	04/05/19 08:40	04/09/19 06:42	7439-92-1	
Lithium	0.56J	ug/L	1.0	0.19	1	04/05/19 08:40	04/09/19 06:42	7439-93-2	
Molybdenum	<0.44	ug/L	1.5	0.44	1	04/05/19 08:40	04/09/19 06:42	7439-98-7	
Selenium	<0.32	ug/L	1.1	0.32	1	04/05/19 08:40	04/09/19 06:42	7782-49-2	
Thallium	<0.14	ug/L	1.0	0.14	1	04/05/19 08:40	04/09/19 06:42	7440-28-0	
7470 Mercury	Analytica	I Method: EPA 7	470 Prepar	ation Methe	od: EPA	7470			
Mercury	<0.084	ug/L	0.28	0.084	1	04/12/19 09:55	04/15/19 10:07	7439-97-6	
Field Data	Analytica	l Method:							
Field pH	7.03	Std. Units			1		04/03/19 09:40		
Field Specific Conductance	637.2	umhos/cm			1		04/03/19 09:40		
Oxygen, Dissolved	9.49	mg/L			1		04/03/19 09:40	7782-44-7	
REDOX	103.4	mV			1		04/03/19 09:40		
Turbidity	1.90	NTU			1		04/03/19 09:40		
Static Water Level	787.35	feet			1		04/03/19 09:40		
Temperature, Water (C)	10.2	deg C			1		04/03/19 09:40		
2540C Total Dissolved Solids	Analytica	l Method: SM 25	40C						
Total Dissolved Solids	318	mg/L	20.0	8.7	1		04/09/19 12:34		
9040 pH	Analytica	I Method: EPA 9	040						
pH at 25 Degrees C	7.4	Std. Units	0.10	0.010	1		04/08/19 11:24		H6
300.0 IC Anions 28 Days	Analytica	I Method: EPA 3	00.0						
Chloride	3.6	mg/L	2.0	0.50	1		04/16/19 20:03	16887-00-6	В
Fluoride	<0.10	mg/L	0.30	0.10	1		04/16/19 20:03		
Sulfate	1.4J	mg/L	3.0	1.0	1		04/16/19 20:03		

Project: Pace Project No.:	25219067 ALLIAN 40185256	IT-COLUMBIA CCF	R									
QC Batch:	318138		Analys	is Method:	: E	PA 7470						
QC Batch Method:	EPA 7470		Analys	is Descript	tion: 7	470 Mercury	/					
Associated Lab San	nples: 40185256	6001, 40185256002										
METHOD BLANK:	1849587		Ν	latrix: Wa	ter							
Associated Lab San	nples: 40185256	001, 40185256002										
			Blank	R	eporting							
Paran	neter	Units	Result	t	Limit	Analyz	ed	Qualifiers				
Mercury		ug/L	<0	0.084	0.28	04/15/19	09:25					
LABORATORY COM	NTROL SAMPLE:	1849588										
			Spike	LCS		LCS	% Rec					
Paran	neter	Units	Conc.	Resu	ılt	% Rec	Limits	. Qi	ualifiers	_		
Mercury		ug/L	5		5.3	105	85	5-115				
MATRIX SPIKE & M	IATRIX SPIKE DUF	PLICATE: 18495	89		1849590							
			MS	MSD								
		40185483005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r Un	its Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mercury	ug	/L 0.00016J mg/L	5	5	5.4	5.2	105	101	85-115	4	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 25219067 ALLIANT-COLUMBIA CCR

Pace Project No.: 40185256

QC Batch:	317485	Analysis Method:	EPA 6020
QC Batch Method:	EPA 3010	Analysis Description:	6020 MET
Associated Lab Sam	ples: 40185256001, 40185256002		
METHOD BLANK:	1846066	Matrix: Water	

Associated Lab Samples: 40185256001, 40185256002

-		Blank	Reporting		o ""
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Antimony	ug/L	<0.15	1.0	04/09/19 04:47	
Arsenic	ug/L	<0.28	1.0	04/09/19 04:47	
Barium	ug/L	<1.5	4.9	04/09/19 04:47	
Beryllium	ug/L	<0.18	1.0	04/09/19 04:47	
Boron	ug/L	<3.3	11.0	04/09/19 04:47	
Cadmium	ug/L	<0.15	1.0	04/09/19 04:47	
Calcium	ug/L	<69.8	250	04/09/19 04:47	
Chromium	ug/L	<1.0	3.4	04/09/19 04:47	
Cobalt	ug/L	<0.12	1.0	04/09/19 04:47	
ead	ug/L	<0.24	1.0	04/09/19 04:47	
lithium	ug/L	<0.19	1.0	04/09/19 04:47	
Nolybdenum	ug/L	<0.44	1.5	04/09/19 04:47	
Selenium	ug/L	<0.32	1.1	04/09/19 04:47	
Thallium	ug/L	<0.14	1.0	04/09/19 04:47	

LABORATORY CONTROL SAMPLE: 1846067

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
ntimony	ug/L	500	500	100	80-120	
senic	ug/L	500	474	95	80-120	
arium	ug/L	500	487	97	80-120	
ryllium	ug/L	500	492	98	80-120	
ron	ug/L	500	486	97	80-120	
dmium	ug/L	500	500	100	80-120	
lcium	ug/L	5000	4990	100	80-120	
omium	ug/L	500	492	98	80-120	
alt	ug/L	500	485	97	80-120	
t	ug/L	500	463	93	80-120	
um	ug/L	500	467	93	80-120	
ybdenum	ug/L	500	465	93	80-120	
enium	ug/L	500	508	102	80-120	
allium	ug/L	500	464	93	80-120	

MATRIX SPIKE & MATRIX SPIK	E DUPLIC	ATE: 18460	68		1846069							
			MS	MSD								
	4	40185256001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	ug/L	0.32J	500	500	496	496	99	99	75-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 25219067 ALLIANT-COLUMBIA CCR

Pace Project No.: 40185256

MATRIX SPIKE & MATRIX	SPIKE DUPLICA	ATE: 18460	68		1846069							
			MS	MSD								
	4	0185256001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	ug/L	0.40J	500	500	480	478	96	95	75-125	0	20	
Barium	ug/L	11.8	500	500	496	498	97	97	75-125	0	20	
Beryllium	ug/L	0.28J	500	500	481	480	96	96	75-125	0	20	
Boron	ug/L	26.9	500	500	492	498	93	94	75-125	1	20	
Cadmium	ug/L	0.21J	500	500	491	490	98	98	75-125	0	20	
Calcium	ug/L	126000	5000	5000	126000	123000	12	-46	75-125	2	20	P6
Chromium	ug/L	<1.0	500	500	484	483	97	96	75-125	0	20	
Cobalt	ug/L	0.35J	500	500	476	473	95	95	75-125	1	20	
Lead	ug/L	0.30J	500	500	467	468	93	94	75-125	0	20	
Lithium	ug/L	0.90J	500	500	463	463	92	92	75-125	0	20	
Molybdenum	ug/L	<0.44	500	500	465	464	93	93	75-125	0	20	
Selenium	ug/L	0.49J	500	500	512	513	102	103	75-125	0	20	
Thallium	ug/L	0.48J	500	500	474	476	95	95	75-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:25219067 ALLIAPace Project No.:40185256	NT-COLUMBIA CCR	1				
QC Batch: 317813		Analysis M	ethod:	SM 2540C		
QC Batch Method: SM 2540C		Analysis De	escription:	2540C Total Di	ssolved Solids	
Associated Lab Samples: 401852	56001, 40185256002					
METHOD BLANK: 1847582		Matrix	: Water			
Associated Lab Samples: 401852	56001, 40185256002					
		Blank	Reporting			
Parameter	Units	Result	Limit	Analyze	d Quali	fiers
Total Dissolved Solids	mg/L	<8.7	20	.0 04/09/19 1	2:32	
LABORATORY CONTROL SAMPLE	1847583					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Total Dissolved Solids	mg/L	577	552	96	80-120	
SAMPLE DUPLICATE: 1847584						
		40185256001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Solids	mg/L	462	46		0	5
SAMPLE DUPLICATE: 1847585			_			
Deremeter	Units	40185260001	Dup	RPD	Max RPD	Qualifiera
Parameter		Result	Result			Qualifiers
Total Dissolved Solids	mg/L	290) 28	34	2	5

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	25219067 ALLIAN 40185256	-COLUMBIA CCF	R						
QC Batch:	317619		Analysis Meth	od:	EPA 9040				
QC Batch Method:	EPA 9040		Analysis Desc	ription:	9040 pH				
Associated Lab Sam	ples: 401852560	01, 40185256002							
SAMPLE DUPLICAT	E: 1846956								
			40185113001	Dup			Max		
Param	neter	Units	Result	Result	RPD		RPD	Qualifiers	
pH at 25 Degrees C		Std. Units	1.1	1	.1	7		20 H6	
SAMPLE DUPLICAT	E: 1846957								
			40185204001	Dup			Max		
Param	neter	Units	Result	Result	RPD		RPD	Qualifiers	
pH at 25 Degrees C		Std. Units	7.2	7	7.2	0		20 H6	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Pace Project N	o.: 40185	256											
QC Batch:	3179	955		Analys	is Method:	El	PA 300.0						
QC Batch Meth	od: EPA	300.0		Analys	is Descript	ion: 30	0.0 IC Anio	ons					
Associated Lat	Samples:	4018525600	1, 40185256002										
METHOD BLA	NK: 18483	05		N	Aatrix: Wat	er							
Associated Lat	Samples:	4018525600	1, 40185256002										
				Blank	R	eporting							
F	Parameter		Units	Resul	t	Limit	Analyz	ed	Qualifiers				
Chloride			mg/L	().52J	2.0	04/16/19	10:22		_			
Fluoride			mg/L	<	<0.10	0.30	04/16/19	10:22					
Sulfate			mg/L		<1.0	3.0	04/16/19	10:22					
LABORATORY	CONTROL	SAMPLE: 1	848306										
				Spike	LCS		LCS	% Rec	:				
F	Parameter		Units	Conc.	Resu	lt	% Rec	Limits	Qı	ualifiers			
Chloride			mg/L	20		21.6	108	90	-110				
Fluoride			mg/L	2		2.0	98	90	-110				
Sulfate			mg/L	20		21.7	109	90	-110				
MATRIX SPIKE	& MATRIX	SPIKE DUPLI	CATE: 184830)7		1848308							
				MS	MSD								
			40185204004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Para	meter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride		mg/L	43.0	100	100	149	148	106	105	90-110	1	15	
Fluoride		mg/L	<0.50	10	10	10.3	10.4	103	104	90-110	1	15	
Sulfate		mg/L	<5.0	100	100	109	109	105	105	90-110	0	15	
MATRIX SPIKE	& MATRIX	SPIKE DUPLI	CATE: 184830)9		1848310							
				MS	MSD								
			40185260002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Para	meter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride		mg/L	229	200	200	439	425	105	98	90-110	3	15	
Fluoride		mg/L	<0.10	2	2	1.9	2.0	97	99	90-110	2		
riuuriue													

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 25219067 ALLIANT-COLUMBIA CCR

Pace Project No.: 4	0185256
---------------------	---------

Sample: MW-301 PWS:	Lab ID: 40185 Site ID:	256001 Collected: 04/02/19 17:20 Sample Type:	Received:	04/04/19 09:30	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.000 ± 0.278 (0.565) C:NA T:94%	pCi/L	04/22/19 23:16	3 13982-63-3	
Radium-228	EPA 904.0	0.552 ± 0.391 (0.759) C:75% T:91%	pCi/L	04/19/19 12:45	5 15262-20-1	
Total Radium	Total Radium Calculation	0.552 ± 0.669 (1.32)	pCi/L	04/25/19 11:01	7440-14-4	
Sample: MW-84A	Lab ID: 40185		Received:	04/04/19 09:30	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.199 ± 0.391 (0.715) C:NA T:93%	pCi/L	04/22/19 23:16	3 13982-63-3	
Radium-228	EPA 904.0	0.482 ± 0.511 (1.07) C:72% T:80%	pCi/L	04/19/19 12:45	5 15262-20-1	
Total Radium	Total Radium Calculation	0.681 ± 0.902 (1.79)	pCi/L	04/25/19 11:01	7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project:	25219067 ALLIANT-COLUM	BIACCR				
Pace Project No.:	40185256					
QC Batch:	338211	Analysis Method:	EPA 904.0			
QC Batch Method:	EPA 904.0	Analysis Description:	904.0 Radium 22	28		
Associated Lab Sa	mples: 40185256001, 4018	5256002				
METHOD BLANK:	1646527	Matrix: Water				
Associated Lab Sa	mples: 40185256001, 4018	5256002				
Para	meter	Act ± Unc (MDC) Carr Trac	Units	Analyzed	Qualifiers	
Radium-228	-0.0681 ±	0.343 (0.816) C:74% T:84%	pCi/L	04/19/19 12:45		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project:	25219067 ALLIANT-COLUMBIA	CCR				
Pace Project No.:	40185256					
QC Batch:	338210	Analysis Method:	EPA 903.1			
QC Batch Method:	EPA 903.1	Analysis Description:	903.1 Radium-22	26		
Associated Lab Sa	mples: 40185256001, 40185256	002				
METHOD BLANK:	1646526	Matrix: Water				
Associated Lab Sa	mples: 40185256001, 40185256	002				
Para	meter Act :	± Unc (MDC) Carr Trac	Units	Analyzed	Qualifiers	
Radium-226	0.212 ± 0.323	(0.520) C:NA T:90%	pCi/L	04/22/19 22:44		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 25219067 ALLIANT-COLUMBIA CCR

Pace Project No.: 40185256

DEFINITIONS

Act - Activity

Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval) (MDC) - Minimum Detectable Concentration Trac - Tracer Recovery (%) Carr - Carrier Recovery (%) DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot. ND - Not Detected at or above LOD. J - Estimated concentration at or above the LOD and below the LOQ. LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume. LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume. S - Surrogate 1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration. Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values. LCS(D) - Laboratory Control Sample (Duplicate) MS(D) - Matrix Spike (Duplicate) **DUP - Sample Duplicate RPD** - Relative Percent Difference NC - Not Calculable. SG - Silica Gel - Clean-Up

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval).

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD. N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

- PASI-G Pace Analytical Services Green Bay
- PASI-PA Pace Analytical Services Greensburg

ANALYTE QUALIFIERS

- B Analyte was detected in the associated method blank.
- D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
- H6 Analysis initiated outside of the 15 minute EPA required holding time.
- P6 Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 25219067 ALLIANT-COLUMBIA CCR

Pace Project No.: 40185256

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40185256001 40185256002	MW-301 MW-84A	EPA 3010 EPA 3010	317485 317485	EPA 6020 EPA 6020	317570 317570
40185256001 40185256002	MW-301 MW-84A	EPA 7470 EPA 7470	318138 318138	EPA 7470 EPA 7470	318191 318191
40185256001 40185256002	MW-301 MW-84A				
40185256001 40185256002	MW-301 MW-84A	EPA 903.1 EPA 903.1	338210 338210		
40185256001 40185256002	MW-301 MW-84A	EPA 904.0 EPA 904.0	338211 338211		
40185256001	MW-301	Total Radium Calculation	339896		
40185256002	MW-84A	Total Radium Calculation	339897		
40185256001 40185256002	MW-301 MW-84A	SM 2540C SM 2540C	317813 317813		
40185256001 40185256002	MW-301 MW-84A	EPA 9040 EPA 9040	317619 317619		
40185256001 40185256002	MW-301 MW-84A	EPA 300.0 EPA 300.0	317955 317955		

Intact / Not Intact					ероски рисли влю телезе от паршу	
Present /Not Present	Date/Time:	Received By:	Date/Time:	Relinquished By:	Samples on HOLD are subject to	Samp
יוס						Fax:
OK Adjusted	Date/Time:	Received By:	Date/Time:	Relinquished By:		Telephone:
Saprila Receipt nH						Emall #2:
Receipt Temp = 007ec	A Mil Data The /	Received By:	Date/Time:	Relinquished By:		Email #1:
96710101 06/0	MANCA Date/Time:	- Keseve	ELO HIMPORT	X Not -	Transmit Prelim Rush Results by (complete what you want):	Transmit Prelim F
	1 1		1 1 2	LANT 1	(Nusii IA) subject to approvai/surcharge) Date Needed:	
PACE Project No.	Date/Time:	Received By:	レ っ Date/Time:	Religioushed By	Rush Turnaround Time Requested - Prelims	Rush Turna
		STA		0 0 0		
		10	m labels 4/41	In Xal AM	w truled in	
			V V V V	4/14/19 4	Field Blank PPond	3 200
				+	n-4R 4	1 900
				0141 /01/1	MW 305 4	1 SOU
				08-61 1/19	MW 304 4	1 100
			XXXX	11/1/10/11/10/11	Med 303 4	1/2/1
						3
			XXXX	1/3/19/09/40	MW 84A 4	0021
			XXXX	W GET HE	111 301	001
T	COMMENTS		CI SU N R		CLIENT FIELD ID	PACE LAB #
LAB COMMENTS Profile #		9	34, 10 20	WW = Waste Water	your sample	
	Invoice To Phone:	9959-1	Flor Ta ta iur	B = Biota UW = Drinking Water C = Charcoal GW = Ground Water O = Oil SW = Surface Water	(billable)	
				atrix Codes W = Water	MS/MSD	Data Package Options (billable)
	Invoice To Address:		este , Pr 20	and the second	Pr	PO #:
	Invoice To Company:		<u>א</u>	liptson	Paul A. Drown for,	Sampled By (Sign):
	Invoice To Contact:		0	PRESERVATION (CODE)*	int): Ablan Watson	Sampled By (Print):
			G/V g/V G/V X/ X/	FILTERED? (YES/NO)		Project State:
	Mail To Address:		l≃Sodium Thiosulfate		Alliant - Columbia	Project Name:
	Mail To Company:	F=Methanol G=NaOH	*Preservation Codes C=H2SO4 D=HNO3 E=DI Water F=N	A=None B=HCL	2521906	Project Number:
	Mail To Contact:	, ODA	HAIN OF CUST		608 216 7362	Phone:
Pa	Quote #:		re re er, juci occasar de occasi			Project Contact:
GUCZS ge 18		3	ace Analytical		" Medison WH	Branch/Location:
	MN: 612-607-1700 WI: 920-469-2436	MN: 612-607-170			e SUS	Company Name:
Page 1 of 1	REGION	UPPER MIDWEST REGION			(Please Print Clearly)	

C019a(27Jun2006)

ORIGINAL

special pricing a	Samalan an U	Telephone:	Email #2;	IEmail \$1:	Transmit Prolim Rush Ru	Date Needed:	(Rush TAT subje	Rush Tumamund				Field	<u>m-4</u>	mw	MW		h/1 . 7	MW	MUN	PACE LAB # C			(billable)		led By (Sign):	Sampled By (Print):	Project State:	Project Name:				Project Content:	Company Name: Branch/Location:
special pricing and release of liability					Transmit Prelim Rush Results by (complete what you want):	æded:	(Rush TAT subject to approval/surcharge)	Rush Tumamund Time Requested - Prolime				Blank PPONd		305	- L.	205	2	84A	301	CLIENT FIELD ID	your sample s	(billable) NOT needed o	On your sampl		Paul A. LANNON Sor	Alan Watson	MT	Alliant - Columbia	85219047	. N .		nasr	N N
Kennquished By:		Relinquished By:		Relinquished By:	10x	International By: 0	Tan A.			-		17-249 12:30 DT	4-1-19 15:15 V	H-1-19/H.10	4-219 12:30		5	43-19 9:40 G-W	10	DATE THRE MATRIX	= Soil WW = Waste Water = Studge WP = Wipe	C = Charcoal GW = Ground Water O = Oil SW = Seriace Water	#Air W = Weter	Program:	c Adam Retson	(CODE)"							f f
Data/Time:		Date/Time:		Date/Time:	NEID LIULE A	Cher := addinghat 1 73	10:00 H-3-14 19:00											XXXX	XXXX	05 1 R	ц бу Ме	Flo , 7 , 7			ħ, 6	ACCC		hare solution ====================================	SQ4		JUNN OF OTOT	www.paoalaba.com	ace Analytical"
Received By:		Raceived By:		/ Received By:	VULLECAN L	Reoping Br	Bacsived By:		_		· · · · · · · · · · · · · · · · · · ·																		thanol G=NaOH		ンフィ		<u>UPPER MIDWEST REGION</u> MN: 612-607-1700 WI: 9;
Date/Time:		Date/Time:	10-4	HALL batertime:	WHA ALANG	1 Nor DesetTind,														COMMENTS	CLIENT	Invoice To Phone:		Invoice To Address:	Invoice To Company:	Invoice To Contact:		Mail To Address:	Mail To Company:	Mail To Contact:	Quote #:		<u>UPPER MIDWEST REGION</u> MN: 612-607-1700 WI: 920-469-2436
Present / Not Present Intact / Not Intact	Cooler Custody Seal	OK / Adjusted	Sample Receipt pH	= due: Mecan	12/20															(Lab Use Only)	LAB COMMENTS											10100 4	Page 1 of
xt Present xt Intact	tody Seal	ustad	calpt pH	°.	, ,	901															Profile #												Page 19

AG4U AG5U AG2S	AG1U AG1H AG4S	Exce	Exceptions to preservation check: VOA, Coliform, TOC,	020	019	018	017	016	015	914	013	012	110	010				006	005	004	003	200	001		and the second se			⊳	Client Name:	
	When an extended of the second of the second		ntions										6-13-18-18	a Vitalia Barta Vitalia										A	G1U			ll con	コナフ	
120 mL amber glass unpre 100 mL amber glass unpre 500 mL amber glass H2SO	er am mL ai	5	ð pr																					A	G1H			tainer	lam	
120 mL amber glass unpres 100 mL amber glass unpres 500 mL amber glass H2SO4	1 liter amber glass 1 liter amber glass HCL 125 mL amber glass H2SO4		serva									Contraction of the second s	1. M. A. M. F.											A	G4S	G		s nee	ē	
glass glass	ass lass H glass		ation														987 - 17 - 17 - 17 - 17 - 17 - 17 - 17 -							A	G4U	Glass		ding p	()	
unpre unpre H2SO	CL H2SO		heck										400 - 42 14											A	G5U			oreser	\sim	`
4 8 8	4		Υογ						1407-014 1907-014 1917-014									Alternation of the			20 20 21		から を で 本	A	G2S	اا		vation		
			င္ပ				4 - 6 - 321 - 5																	E	IG3U			have	()	1
	8 8 5		form,													Name Name								E	BP1U			been	\sim	
BP3U BP3C BP3N	BP2N BP2Z	Ĩ	TOC,											のからの高級					C -	4	郬		44	ᅿ	3P2N			All containers needing preservation have been checked and noted below;		
250 250 250	1 IIte 500 500	11 11-2	TOX,											1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1										E	3P2Z	Р	Lab Lu	ked a		
	mL pl	r nla	Тон Н								11 - 12 M	11.2 M 12					9	٩	20	۲	18	(ا	58	ᆂ	3P3U	Plastic	ot# of	nd no		
250 mL plastic unpres 250 mL plastic NaOH 250 mL plastic HNO3	1 litter plastic unpres 500 mL plastic HNO3 500 mL plastic NaOH	tic II	080											247 N										E	3P3C	n	Lab Lot# of pH paper:	ted be		
unpre NaOH	HNO3 NaOH	nres	, WI		Γ									64.552.60			-	na com				-		E	3P3N		aper:			-
5 V	1 Inter plastic unipres 500 mL plastic HNO3 500 mL plastic NaOH, Znact		TOX, TOH, O&G, WI DRO, Phenolics, Other		F																			E	3P3S			ryes uno unia	•	
	4		Phen		Γ				2											all and a second				ľ	DG9A		1 accch		Pro	
	<		olics,													16 A 10 A								ſ	DG9T		Š	<i>Y</i> ^R	Project #	
VG9M VG9D	Nega Nega	DG9A	Other									1992		1				10000						\mathbf{h}	/G9U	Vials			#	
4 4 6 6 6 6	4 4 5 5													NAR 408/07/0										h	VG9H	sle	00 #	の 1 #		
40 mL clear vial HCL 40 mL clear vial MeOH 40 mL clear vial Di	40 mL amber Na Thio 40 mL clear vial unpres	40 mL amber ascorbic																						┣	VG9M		ē	i ab Std #ID of preservation (if pH ad		
ear via ear via ear via	nber h ear via	nber a	Hes										Ī				T					No.		┓	VG9D		ol caci	Aracal	Ę	-
ni Mec	la Thi	scorb	Headspace in VOA													10 AC 460	Ī					100 A 11 A 100		Ţ	JGFU		Vauor	vistion	\mathbf{P}	
H	res	ĉ.	ce in \															100 Mag						ł	WGFU	Jars		, If p	5	ר ן
			VOA V																					┨	WPFU			adiu	D	1
		-	/ials (;					2000 C												1.000					SP5T	G		iusted):	b	[
SPST G	WGFU WPFU	JGFU	>6mm					and the second se		and the second se			2010	\neg		\neg				100 Million		1			ZPLC	General			•	
Z			Ya : (I					_						-		-				1.1		\neg			GN	a				
120 mL plastic Na Thiosulfate ziploc bag	4 oz clear jar unpres 4 oz plastic jar unpres	4 oz amber jar unpres	íes ⊔۱		╞					-				-				┥				\neg		and the second	VOA Vial	s (>6mm	n) *			
plast)ag	ar jar Istic ja	iber ja	ð V																						H2SO4 p	H ≤2				
ic Na	unpro	runp	MA .H					1000		-													6-40 3676		NaOH+Zi			con Initia		
Thios	es Pres	res	yes I			1948 (Sec. 19			1.4	_										-							29	Initial when		
ulfate			ook ii							_		_			and a second			V							NaOH pH			°Ę	~	
			n hea															Ň	X	X	X	X	X	X	HNO3 pH	i≤2		3	<u> </u>	
			Vials (>6mm) : :: Yes :: No :: Vials (>6mm) :: : : : : : : : : : : : : : : : : :			4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1																	pH after a	adjusted		Date/ Time:	1	
			ce co		3	2	N	2	2	2	<u>,</u>	2.	2.	2.	2.	2	2.	2	2.1	2.5	2.1	2.5	2.5	2.5		<				
			lumn	or 1010-		2.5 / 5 / 10	2.5 / 5 / 10	2.5/5	2.5/5	2.5/5,	2.5/5/10	2.5/5/10	2.5/5/10	2.5/5/10	2.5/5/10	2.5 / 5 / 10	2.5 / 5 / 10	2.5/5/10	2.5 / 5 / 10	2.5 / 5 / 10	2.5 / 5 / 10	5/5/10	5/5/10	5/5/10		Volume				
) TO	3	10	10	/5/10	/5/10	/ 5 / 10	10	10	61)	Б	10	Б	5	10	8	5	10	10	10	10	L	Ø				~

F-GB-C-046-Rev.02 (29Mar2018) Sample Preservation Receipt Form

スシーにの設定などの意識で、

T aßed

명 10 Page 20 이 2위 다

Waltco	Issuing Authority: Pace Green Bay Quality Office (SCUR) IO#:40185256 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
bcument No.: B-C-031-Rev.07 On Receipt Form Project #: Waltco Waltco Waltco Ct: 「 yes 「 no no ne 「 Other Other Blue Dry None I Tissue is Frozen: 「 yes A 1. A 1. A 2. A 3.	Issuing Authority: Pace Green Bay Quality Office (SCUR) IO#:40185256 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Project #: Project #: Waltco Waltco Ct: yes ne Other Blue Dry None Tissue is Frozen:	(SCUR) JO# : 40185256 JUIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Project #: Waltco Waltco 42 ct: 「 yes 「 no ne 「 Other Blue Dry None Tissue is Frozen: 「 y A 1. A 2. No pattern	Samples on ice, cooling process has begun Person examining contents: Date: <u>40185256</u>
Waltco Waltco $t: \ yes \ no$ $t: \ blue \ Dry \ None$ $t: \ Tissue is Frozen: \ yes \ no$ $t: \ t: \$	Samples on ice, cooling process has begun yes no Person examining contents: Date: 4-4-49
Waltco	2185256 Samples on ice, cooling process has begun yes □ no Person examining contents; Date:
A 1. A 2. N_{O} p_{O} T	Samples on ice, cooling process has begun yes no Person examining contents; Date: 4-4-49
ct: \Box yes \Box no ne \Box Other Blue Dry None Tissue is Frozen: \Box y A 1. A 2. No pattern	Samples on ice, cooling process has begun yes no Person examining contents; Date: 4-4-49
ct: \Box yes \Box no ne \Box Other Blue Dry None Tissue is Frozen: \Box y A 1. A 2. No pattern	yes no Person examining contents: Date: 4-4-74
ct: \Box yes \Box no ne \Box Other Blue Dry None Tissue is Frozen: \Box y A 1. A 2. No pattern	yes no Person examining contents: Date: 4-4-19
Tissue is Frozen: \Box y A 1. A 2. No patternet	yes no Person examining contents: Date: 4-4-74
Blue Dry None Tissue is Frozen: r y A 1. A 2. No pattern	yes no Person examining contents: Date: 4-4-74
Tissue is Frozen: Γ_{y}	yes no Person examining contents: Date: 4-4-79
$\frac{1}{12} N_0 p_0 = \frac{1}{12} N_0 p_0$	Date: 4-4-19
A 2. No patter	Date: 4-4-19
A 2. No patter	Tail Friene Collect 4-4 met Lab, ddded tocco
	Mail Friend Collect 4-4 met Lab added forces
M. HALLY	methal ddded tocco
A 3. CLATER Ife	
A 4. Recieved	updated cot via
5.	from and F
Date/Time:	
6.	
7.	
8.	
4	
9.	
10.	
11.	
12.	
13.	
1.0.	
	ed, see attached form for additional comments
lf check	
lf check	Date: 4/4/15
γ <u>Α</u>	e/Time:

		2
Р	ag	21
•	~a	

A2 October 2019 Detection Monitoring

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

October 28, 2019

Meghan Blodgett SCS ENGINEERS 2830 Dairy Drive Madison, WI 53718

RE: Project: 25219067.00 COLUMBIA CCR Pace Project No.: 40196971

Dear Meghan Blodgett:

Enclosed are the analytical results for sample(s) received by the laboratory on October 10, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Day Milent

Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: Tom Karwoski, SCS ENGINEERS Nicole Kron, SCS ENGINEERS Jeff Maxted, ALLIANT ENERGY Marc Morandi, ALLIANT ENERGY

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: 25219067.00 COLUMBIA CCR

Pace Project No.: 40196971

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 Virginia VELAP ID: 460263 South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: 25219067.00 COLUMBIA CCR

Pace Project No.: 40196971

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40196971001	MW-302	Water	10/09/19 11:00	10/10/19 09:15
40196971002	MW-33AR	Water	10/08/19 15:40	10/10/19 09:15
40196971003	MW-34A	Water	10/08/19 14:35	10/10/19 09:15
40196971004	FIELD BLANK MOD 1-3 LF	Water	10/08/19 14:35	10/10/19 09:15

SAMPLE ANALYTE COUNT

Project: 25219067.00 COLUMBIA CCR

Pace Project No.: 40196971

Lab ID	Sample ID	Method	Analysts	Analytes Reported
40196971001		EPA 6020	DS1	2
			HMG	7
		SM 2540C	TMK	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40196971002	MW-33AR	EPA 6020	DS1	2
			HMG	7
		SM 2540C	TMK	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40196971003	MW-34A	EPA 6020	DS1	2
			HMG	7
		SM 2540C	TMK	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3
40196971004	FIELD BLANK MOD 1-3 LF	EPA 6020	DS1	2
		SM 2540C	ТМК	1
		EPA 9040	ALY	1
		EPA 300.0	HMB	3

Project: 25219067.00 COLUMBIA CCR

Pace Project No.: 40196971

Sample: MW-302	Lab ID:	40196971001	Collected	: 10/09/19	9 11:00	Received: 10/	(10/19 09:15 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	ation Meth	od: EPA	3010			
Boron	246	ug/L	10.0	3.0	1	10/11/19 07:55	10/15/19 10:39	7440-42-8	
Calcium	61400	ug/L	254	76.2	1	10/11/19 07:55	10/15/19 10:39	7440-70-2	
Field Data	Analytical	Method:							
Field pH	7.08	Std. Units			1		10/09/19 11:00		
Field Specific Conductance	515.4	umhos/cm			1		10/09/19 11:00		
Oxygen, Dissolved	11.38	mg/L			1		10/09/19 11:00	7782-44-7	
REDOX	134.5	mV			1		10/09/19 11:00		
Turbidity	2.01	NTU			1		10/09/19 11:00		
Static Water Level	788.31	feet			1		10/09/19 11:00		
Temperature, Water (C)	12.6	deg C			1		10/09/19 11:00		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	274	mg/L	20.0	8.7	1		10/11/19 18:20		
9040 pH	Analytical	Method: EPA 9	040						
pH at 25 Degrees C	7.4	Std. Units	0.10	0.010	1		10/18/19 09:46		H6
300.0 IC Anions	Analytical	Method: EPA 3	00.0						
Chloride	1.1J	mg/L	2.0	0.50	1		10/21/19 19:32	16887-00-6	
Fluoride	<0.10	mg/L	0.30	0.10	1		10/21/19 19:32	16984-48-8	
Sulfate	16.7	mg/L	3.0	1.0	1		10/21/19 19:32	14808-79-8	
Sample: MW-33AR	Lab ID:	40196971002	Collected	: 10/08/19	9 15:40	Received: 10/	/10/19 09:15 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	ation Meth	od: EPA	3010			_
Boron	548	ug/L	10.0	3.0	1	10/11/19 07:55	10/15/19 10:46	7440-42-8	
Calcium	121000	ug/L	254	76.2	1		10/15/19 10:46		
Field Data	Analytical	Method:							
Field pH	7.74	Std. Units			1		10/08/19 15:40		
Field Specific Conductance	1102	umhos/cm			1		10/08/19 15:40		
Oxygen, Dissolved	12.19	mg/L			1		10/08/19 15:40	7782-44-7	
REDOX	165.1	mV			1		10/08/19 15:40		
Turbidity	2.13	NTU			1		10/08/19 15:40		
Static Water Level	788.26	feet			1		10/08/19 15:40		
Temperature, Water (C)	12.8	deg C			1		10/08/19 15:40		
		-	400		•		10,00,10,10,10,10		
2540C Total Dissolved Solids		Method: SM 25							
Total Dissolved Solids	634	mg/L	20.0	8.7	1		10/11/19 18:20		

Project: 25219067.00 COLUMBIA CCR

Pace Project No.: 40196971

Sample: MW-33AR	Lab ID:	40196971002	Collected:	10/08/19	9 15:40	Received: 10/	10/19 09:15 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
9040 pH	Analytical	Method: EPA 9	040						
pH at 25 Degrees C	7.6	Std. Units	0.10	0.010	1		10/18/19 09:48		H6
300.0 IC Anions	Analytical	Method: EPA 3	00.0						
Chloride	153	mg/L	20.0	5.0	10		10/22/19 14:29	16887-00-6	
Fluoride	<0.10	mg/L	0.30	0.10	1		10/21/19 19:45	16984-48-8	
Sulfate	182	mg/L	30.0	10.0	10		10/22/19 14:29	14808-79-8	
Sample: MW-34A	Lab ID:	40196971003	Collected:	10/08/19	9 14:35	Received: 10/	(10/19 09:15 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	tion Meth	od: EPA	3010			
Boron	207	ug/L	10.0	3.0	1	10/11/19 07:55	10/15/19 10:52	7440-42-8	
Calcium	78800	ug/L	254	76.2	1	10/11/19 07:55	10/15/19 10:52		
Field Data	Analytical	U							
Field pH	7.79	Std. Units			1		10/08/19 14:35		
Field Specific Conductance	572.9	umhos/cm			1		10/08/19 14:35		
Oxygen, Dissolved	11.71	mg/L			1		10/08/19 14:35	7782-44-7	
REDOX	150.9	mV			1		10/08/19 14:35		
Turbidity	52.88	NTU			1		10/08/19 14:35		
Static Water Level	787.92	feet			1		10/08/19 14:35		
Temperature, Water (C)	13.4	deg C			1		10/08/19 14:35		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	314	mg/L	20.0	8.7	1		10/11/19 18:21		
9040 рН	Analytical	Method: EPA 9	040						
pH at 25 Degrees C	7.7	Std. Units	0.10	0.010	1		10/18/19 09:50		H6
300.0 IC Anions	Analytical	Method: EPA 3	00.0						
Chloride	57.9	mg/L	2.0	0.50	1		10/21/19 19:58	16887-00-6	
Fluoride	<0.10	mg/L	0.30	0.10	1		10/21/19 19:58	16984-48-8	
Sulfate	39.8	mg/L	3.0	1.0	1		10/21/19 19:58	14808-79-8	
Sample: FIELD BLANK MOD 1-3 LF	Lab ID:	40196971004	Collected:	10/08/19	9 14:35	Received: 10/	(10/19 09:15 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytical	Method: EPA 6	020 Prepara	tion Meth	od: EPA	3010			_
Boron	<3.0	ug/L	10.0	3.0	1	10/11/19 07:55	10/15/19 08:07	7440-42-8	
Calcium	<76.2	ug/L	254	76.2	1		10/15/19 08:07		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 25219067.00 COLUMBIA CCR

Pace Project No.: 40196971

Sample: FIELD BLANK MOD 1-3 L	F Lab ID:	40196971004	Collected	: 10/08/19	9 14:35	Received: 10/	10/19 09:15 Ma	trix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
2540C Total Dissolved Solids	Analytica	Method: SM 25	540C						
Total Dissolved Solids	<8.7	mg/L	20.0	8.7	1		10/11/19 18:21		
9040 pH	Analytica	Method: EPA 9	040						
pH at 25 Degrees C	6.3	Std. Units	0.10	0.010	1		10/18/19 09:55		H6
300.0 IC Anions	Analytica	Method: EPA 3	00.0						
Chloride	<0.50	mg/L	2.0	0.50	1		10/21/19 20:11	16887-00-6	
Fluoride	<0.10	mg/L	0.30	0.10	1		10/21/19 20:11	16984-48-8	
Sulfate	<1.0	mg/L	3.0	1.0	1		10/21/19 20:11	14808-79-8	

Project:	25219067.00 COI	LUMBIA CCR										
Pace Project No.:	40196971					B A 0000						
QC Batch:	337095		,	sis Methoo		PA 6020						
QC Batch Method:	EPA 3010		Analy	sis Descri	otion: 6	6020 MET						
Associated Lab Sar	mples: 40196971	001, 4019697100	2, 4019697	1003, 4019	96971004							
METHOD BLANK:	1957892			Matrix: W	ater							
Associated Lab Sar	mples: 40196971	001, 4019697100	2, 4019697	1003, 4019	96971004							
			Blar	ık l	Reporting							
Parar	neter	Units	Res	ult	Limit	Analy	/zed	Qualifier	5			
Boron		ug/L		<3.0	10.0	0 10/15/19	9 07:53					
Calcium		ug/L		<76.2	254	10/15/19	9 07:53					
		4057000										
LABORATORY CO												
	NTROL SAMPLE:	1957893	Spiko		c	1.00	0/ D/	~				
	meter	Units	Spike Conc.	LC Res		LCS % Rec	% Re Limi		Qualifiers			
			•	Res			Limi		Qualifiers	_		
Para		Units	Conc.		sult	% Rec	Limi 5 8	ts (Qualifiers	_		
Para Boron Calcium	neter	Units ug/L ug/L	Conc. 50 500		sult 474 5060	% Rec 9	Limi 5 8	ts (30-120	Qualifiers			
Parar Boron	neter	Units ug/L ug/L	Conc. 50 500 894		474	% Rec 9	Limi 5 8	ts (30-120	Qualifiers	_		
Para Boron Calcium	neter	Units ug/L ug/L PLICATE: 1957	Conc. 50 500 894 MS	Res 0 0 MSD	sult 474 5060 1957895	% Rec 9	Limi 5 8	ts (30-120	Qualifiers	_	Мах	
Para Boron Calcium	neter /ATRIX SPIKE DUI	Units ug/L ug/L PLICATE: 1957 40196734001	Conc. 50 500 894		sult 474 5060	% Rec 99 10	Limi 5 8 1 8	ts (30-120 30-120		RPD	Max RPD	Qual
Paran Boron Calcium MATRIX SPIKE & M	neter /ATRIX SPIKE DUI	Units ug/L ug/L PLICATE: 1957 40196734001 s Result	Conc. 50 500 894 MS Spike	MSD Spike	ult 474 5060 1957895 MS	% Rec 99 10	Limi 5 E 1 E MS	ts (30-120 30-120 MSD	% Rec			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	25219067.00 CC	LUMBIA CCR						
Pace Project No.:	40196971							
QC Batch:	337218		Analysis M	ethod:	SM 2540C			
QC Batch Method:	SM 2540C		Analysis D	escription:	2540C Total Di	ssolved Solids		
Associated Lab Sar	nples: 4019697	1001, 4019697100	02, 40196971003,	40196971004				
METHOD BLANK:	1959158		Matri	x: Water				
Associated Lab Sar	mples: 4019697	1001, 401969710	02, 40196971003,	40196971004				
			Blank	Reporting				
Parar	neter	Units	Result	Limit	Analyze	d Quali	fiers	
Total Dissolved Soli	ds	mg/L	<8.7	7 20	0.0 10/11/19 1	8:18		
LABORATORY CO	NTROL SAMPLE:	1959159						
_			Spike	LCS	LCS	% Rec		
Parar	neter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Total Dissolved Soli	ds	mg/L	547	560	102	80-120		
SAMPLE DUPLICA	TE: 1959160							
-			40196967001			Max		
Parar	neter	Units	Result	Result	RPD	RPD	Qualifiers	;
Total Dissolved Soli	ds	mg/L	574	4 50	64	2	10	
SAMPLE DUPLICA	TE: 1959161							
			40196971001	Dup		Max		
Parar	neter	Units	Result	Result	RPD	RPD	Qualifiers	\$

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 25219067.00 COLUMBIA CCR

Pace Project No.: 40196971

QC Batch:	337952	Analysis Method:	EPA 9040
QC Batch Method:	EPA 9040	Analysis Description:	9040 pH
Associated Lab Sam	ples: 40196971001, 40	196971002, 40196971003, 4019697100	4
SAMPLE DUPLICAT	E: 1962801		

		40196967002	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
pH at 25 Degrees C	Std. Units	7.3	7.3	0	2	0 H6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 25219067.00 COLUMBIA CCR

Pace Project No.:	40196971
-------------------	----------

Associated Lab Samples:

QC Batch:	337822
QC Batch Method:	EPA 300.0

00.0 Analysis Description: 300.0 IC Anions 40196971001, 40196971002, 40196971003, 40196971004

EPA 300.0

3.0 10/21/19 11:34

Analysis Method:

METHOD BLANK: 1962191		Matrix:	Water		
Associated Lab Samples: 40	196971001, 40196971002,	40196971003, 4	0196971004		
		Blank	Reporting		
Parameter	Units	Deput	Limit	Analyzed	Qualifiers
Falaillelei	Units	Result	Limit	Analyzeu	Quaimers
Chloride		<0.50	2.0	10/21/19 11:34	Quaimers

Sulfate mg/L <1.0

LABORATORY CONTROL SAMPLE: 1962192

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L	20	20.1	101	90-110	
Fluoride	mg/L	2	2.0	102	90-110	
Sulfate	mg/L	20	20.1	100	90-110	

MATRIX SPIKE & MATRIX SP	PIKE DUPLI	CATE: 1962	193		1962194							
	,	10406054007	MS Spike	MSD Spiles	MC	MOD	MC	MCD			Max	
	2	10196954007	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	14.1	20	20	33.8	33.6	99	98	90-110	1	15	
Fluoride	mg/L	<0.10	2	2	2.1	2.1	102	102	90-110	0	15	
Sulfate	mg/L	7.2	20	20	27.0	26.9	99	98	90-110	0	15	

MATRIX SPIKE & MATRIX SI	PIKE DUPLIC	CATE: 1962	195		1962196							
Parameter	2 Units	10196971011 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride	mg/L	1.6J	20	20	20.9	21.3	97	99	90-110	2	15	
Fluoride	mg/L	<0.10	2	2	2.1	2.1	102	102	90-110	0	15	
Sulfate	mg/L	<1.0	20	20	20.6	20.4	102	101	90-110	1	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALIFIERS

Project: 25219067.00 COLUMBIA CCR

Pace Project No.: 40196971

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- H6 Analysis initiated outside of the 15 minute EPA required holding time.
- P6 Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 25219067.00 COLUMBIA CCR

Pace Project No.: 40196971

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40196971001	MW-302	EPA 3010	337095	EPA 6020	337193
40196971002	MW-33AR	EPA 3010	337095	EPA 6020	337193
40196971003	MW-34A	EPA 3010	337095	EPA 6020	337193
40196971004	FIELD BLANK MOD 1-3 LF	EPA 3010	337095	EPA 6020	337193
40196971001	MW-302				
40196971002	MW-33AR				
40196971003	MW-34A				
40196971001	MW-302	SM 2540C	337218		
40196971002	MW-33AR	SM 2540C	337218		
40196971003	MW-34A	SM 2540C	337218		
40196971004	FIELD BLANK MOD 1-3 LF	SM 2540C	337218		
40196971001	MW-302	EPA 9040	337952		
40196971002	MW-33AR	EPA 9040	337952		
40196971003	MW-34A	EPA 9040	337952		
40196971004	FIELD BLANK MOD 1-3 LF	EPA 9040	337952		
40196971001	MW-302	EPA 300.0	337822		
40196971002	MW-33AR	EPA 300.0	337822		
40196971003	MW-34A	EPA 300.0	337822		
40196971004	FIELD BLANK MOD 1-3 LF	EPA 300.0	337822		

Consume time SSS_E-ray_read Frace Analytical Characterization Mail characterization	Presen / Not Presen	Date/Time:	Received By:	Date/Time:	Relinquished By:	Samples on HOLD are subject to special pricing and release of liability
Image: Second and publication of the second and p	Cooler Custody Sea					
Main Construction manual production manual produc	Sample Receipt pH	Date/Time:	Received By:		Relinguished By:	#2: hone:
Mit 612-607-100 WE 202-660-2460 CHAIN OF CUSTODY Intermediational Restance Stational Presentational Pr	Receipt	Date/Time:	Received By:	Date/Time:	Relinquished By:	ansmit Prelim Rush Results by (complete what you want): #1:
and Name: SCS_Erg/LetC Figs Analytical memoraneous And Expansion memoraneous Mail To Company memoraneous And Expansion memoraneous Mail To Company memoraneous Mail To Auteurs Mail To Company memoraneous Mail To Auteurs Mail T	TH PODA	Date/Time:	Received By:	Date/Time:	Relinquished By:	Date Needed:
any Name SCS_Eng (web) Page Analytical Page Analytical enome Image Researce Mid. (so., (w.b.)) Image Researce Mid. (so., (w.b.)) enome C.D.P.K. (co.) Page Analytical Image Researce Mid. (so., (w.b.)) enome C.D.P.K. (co.) Image Researce Image Researce Mid. (so., (w.b.)) enome C.D.P.K. (co.) Image Researce Image Researce Mid. (so., (w.b.)) enome C.D.P.K. (co.) Image Researce Image Researce Mid. (so., (w.b)) enome C.D.P.K. (co.) Image Researce Image Researce Mid. (so., (w.b)) enome C.D.P.K. (co.) Image Researce Image Researce Mid. (so., (w.b)) ender Breine Mid. (so., (w.b)) Image Researce Image Researce Mid. (so., (w.b)) ender Breine Mid. (so., (w.b)) Image Researce Image Researce Mid. (so., (w.b)) Image Researce Mid. (so., (w.b)) Image Researce Image Researce Mid. (so., (w.b)) Image Researce Mid. (so., (w.b)) Image Researce Image Researce Mid. (so., (w.b)) Image Researce Mid. (so., (w.b)) Mid. (so., (w.b)) Mid. (so., (w.b)) Mid. (so., (w.b)) Image Researce Mid. (so., (w.b)) <td>PACE Project No.</td> <td>Date/Time:</td> <td>Received By:</td> <td>9 60</td> <td>Relinquished Brit</td> <td>Rush Turnaround Time Requested - Prelims (Rush TAT subject to approval/surcharge)</td>	PACE Project No.	Date/Time:	Received By:	9 60	Relinquished Brit	Rush Turnaround Time Requested - Prelims (Rush TAT subject to approval/surcharge)
anny Name SCS_Erry(r,eer) annow Name School (Trop) annow Name Scho					经建立分支	
anny Nume: SCS_Engl_regr Fag: Analytical Analytical <th< td=""><td>ביס</td><td></td><td></td><td>××××</td><td>4365666</td><td>blumk SCROND</td></th<>	ביס			××××	4365666	blumk SCROND
same Name: SCS_Errg1/def: Face Analytical CHAN OF CUSTODY Num encourse encourse: Tayn Karcuszkie' CHAN OF CUSTODY Num encourse Outors: Outors: <td< td=""><td>0 W</td><td></td><td></td><td>XXX</td><td>000243530</td><td></td></td<>	0 W			XXX	000243530	
samy Name: S.S.S. E.vg., Let S. Face Analytical Mile 612-607-100 W: 902-409-348 et contact: Top, A. Korubak: CHAIN OF CUSTODY Mile 612-607-100 Mile 75-607-100 Mile 75-607-1	010			XXX	17/9	
any Name SCS_Even Even Carlos Mile 612-001-100 Weil 100-0003-000 et contact: Topo / Log / Lo	009			XXX		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	00B			XXX		Mar
anny Name: SCS_E.rg1, eer annomice: Indext. Son, W.F. encontance: Involve To Contance: encontance: Involve To Address: encontance: Involve To Phone: encontance: Involve To Phone: encontance: <tr< td=""><td>8</td><td></td><td></td><td>\sim</td><td></td><td></td></tr<>	8			\sim		
anny Name: SCS_Every Legy France Mile 612-607-1700 Mile 70-607-1700 Mile 70-6	85 (·			XXX	Weighter and the second	
anny Name: SCS_Engl:/regr Andricagin Mail 500-1000 Nik 612-607-1000 Nik 70-607-1000 Nik 70-607-1000 <thn< td=""><td></td><td></td><td></td><td>XXX</td><td>19</td><td></td></thn<>				XXX	19	
any Name: SCS_Errg/r/eers Arran Mad. Soc. U.E. Array Manual Soc. Soc. Soc. Soc. Soc. Soc. Soc. Soc.	So the so			XXX		d Lamk Mod 1-31F
samy Name: SCS_E_vri/vecr Ace Anaptical wm poolescon Mil: 612-607-100 WI: 920-469-2436 en/Location: Tom Konuski: CHAIN OF CUSTOPY et Number: CHAIN OF CUSTOPY et Number: CHAIN OF CUSTOPY et Number: Mail to Contact: Mail to Address: 2000 Indel printing Ada Invoice to Contact: Mail to Address: 2000 2000 Mail to Company: 2000 Mail to Company: Mail to Company: 2000 2000 2000 2000 2000	∞3			X X X		-34A
any Name: SCS_Eng_ineers And ison (J) An	002			XXX	19/2/19 1540 L)	- 33 AR
any Name: SCS_Evrit/LeerS and Name: SCS_Evrit/LeerS introducation: Multi-Sour, U.T. et Contact: Tom Koncos/Rit/LearS et Contact: Contact: ct Name: Collams et State: U. 1/ Loovs f./. resolution Builtite Solution resolution Builtite Solution resolution Reservation resolution Nix B1200 millitite Solution resolution Nix Millitite Solution resolution Nix Millitite Solution resolution Nix Millitite Solution resolution Nix Millitite Solution	هما				14.15.000	-302
Samy Name: SCS Even iveen All ison iveen Multi 612-607-1700 Wit 902-489-2436 et Contact: Tom Koccuos R2 (Mumber: Chan Koccuos R2 (CR) Chan OF CUSTODY (Mail To Contact: Mail To Contact: Mail To Contact: et Name: Columns: Columns: Columns: Columns: Mail To Contact: Mail To Contact: et State: U i Con Si: Program: Program: Program: Program: Mail To Contact: Mail To Contact: et State: U i Con Si: Regulatory Program: Program: Program: Mail To Contact: Mail To Contact: et State: U i Con Si: Regulatory Program: Program: Program: Mail To Contact: Mail To Contact: et Builtaining Mising: Mising: Mising: Mising: Mising: Mising: Mising: Mising: Mising: et Bold in Builtaining Mising: Mising: Mising: Mising: Mising: Mising: Mising: et Bold in Builtaining Mising: Mising: Mising: Mising: Mising: Mising: et Bold in Builtaining Mising: Mising: Mising: Mising: Mising: Mising: et Bold in Builining Mising:	(Lab Use Only)	COMMENTS		B P TO	TIME	CLIENT FIELD ID
pany Name: SCS Event vector chluceation: Multition chluceation: Contact: chluceation: Multiticoleation chluceation: Multiticoleation chlueation: Multiticoleation invoice to Address: Contact: multition: Contact: multition: Multiticoleation invoice to Address: Contact: multition: Contact: chluceation: Multiticoleation invoice to Address: Contact: chluceation: Contact: multition Contact: chlueatio	LAB COMMENTS	CLIENT		Analy 0-60 14 5-10		NOT needed on your sample
pany Name: SCS_Every ween chlucation: ////////////////////////////////////		Invoice To Phone:		ses R <u> </u>		EPA Level III (billable)
pany Name: SCS Even vector pany Name: SCS Even vector chlocation: Multiseven PaceAnalytical chlocation: Multiseven Quote #: chlocation: Contact: Contac	(teque <u>Ca</u> F ₇ ⊆	Matrix Codes	MS/MSD
Invame: SCS Even veen Mile 12-807-1700 Mile 12-807	600	Invoice To Address:		1	gulatory ooram:	6
ny Name: SCS Every veen Location: Mad.: yow, U.T., Pace Analytical Mus 612-607-1700 WI: 920-469-2436 Location: Mad.: yow, U.T., Pace Analytical Mus pocession Mus of the contact: Mus of th	、 	Invoice To Company:		am	[A - A
ny Name: SCS Every veen Multical	1	Invoice To Contact:		V 0		Adam 120
ny Name: SCS E.vg./v.een Mil: 612-607-1700 Wil: 920-469-2436 I.Location: ////////////////////////////////////				V ,	FILTERED? (YES/NO)	-
ny Name: SCS E.vg./veen Multical Multical Multical I.ocation: //ud.'.so., U.T., Pace Analytical Pace Analytical Multical contact: To.n Karwas/R ² Pace Analytical Multical Multical Multical contact: To.n Karwas/R ² CHAIN OF CUSTODY Multical Quote #: Quote #: Number: 2.5.219.067.00 Anone BHCL CH2SQ Preservation Codes Mail To Company: SCS / Number: 2.5.219.067.00 Mail To Company: SCS / Mail To Company: SCS /		Mail To Address:		I=Sodium Thiosulfate	H=Sodium Bisu	\sim
ny Name: SCS Everineers MN: 612-607-1700 WI: 920-469-2436 Incoration: Mud.: Son, U.J.T., Face Analytical MN: 612-607-1700 WI: 920-469-2436 contact: Terry Korcuos/R ² CHAIN OF CUSTODY Quote #: Quote #: Quote #: 608-224-2830 CHAIN OF CUSTODY Mail To Contact: Terry Korcuos/R ² Mail To Contact: Terry Korcuos/R ²	SCS Encineers	Mail To Company:		*Preservation Codes SO4 D=HNO3 E=DI Water	A=None B=	25219067.
"Madison, WIT, Pace Analytical" Tom Kanvoski	Tom Kanwosk.	Mail To Contact:	Ϋ́σ	CUS.		608-224-
Madison WI. Pace Analytical		Quote #:		ALAN PACKAGE		Tom Karuos
Sas Everyneer				ace Analytical		Mad:sonth
		00 WI: 920-469-2436	MN: 612-607-17		<u> </u>	SUS Ent

AG4U 120 mL amoer giass unpres AG5U 100 mL amber glass unpres AG2S 500 mL amber glass H2SO4	AG1U 1 liter amber glass AG1H 1 liter amber glass HCL AG4S 125 mL amber glass H2SO4	Exceptions to preservation check: VOA, Coliform, TOC,	020	019	18 810		016 1 1 10	015	014	$\frac{013}{11}$	012	011	010	600	800	007	900	200	004	603	002	100	AG1U AG1H AG4S AG4U	Glass	
inpres Inpres 12SO4	12 12SO4	check: VOA, Colifor			× {)		٤															AG5U AG2S BG3U		Lab Lot# of pH paper.
BP3B 250 BP3N 250 BP3N 250 RP3S 250		m, TOC, TOX,																					BP1U BP2N BP2Z		1
250 mL plastic unpress 250 mL plastic NaOH 250 mL plastic HNO3 250 mL plastic H2SO4	1 liter plastic unpres 500 mL plastic HNO3 500 mL plastic NaOH, Znact 760 mL plastic manner	TOX, TOH, O&G, WI DRO, Phenolics, Other									2 1	2 1	2 -	2 1	2	2 1	2 1	z }	2	2 1	2 1	2	BP3U BP3B BP3N	Plastic	Lab Lot# of pH paper.
		D, Phenolics, Oth					-										\$						BP3S DG9A		10 05 0891
VG9N 40 mL VG9D 40 mL 40 mL																							DG9T VG9U VG9H	Vials	
40 mL clear vial McC 40 mL clear vial MeOH 40 mL clear vial DI	40 mL amber ascorbic 40 mL amber Na Thio 40 mL clear vial unpres	Headspa																					VG9M VG9D JGFU		Lab Std #ID of preservation (if pH adjusted):
Ē	66	Headspace in VOA Vials (>6mm) : DYes DNO XV/A *If yes look in-headspace column			7																		WGFU WPFU	Jars	tion (if pH adjus T
SP5T 120 ZPLC zip	JGFU 4 0 WGFU 4 0 WPFU 4 0	s (>6mm) : ⊡Ye																				anna George	SP5T ZPLC GN	General	ted):
120 mL plas ziploc bag	4 oz amber jar unpre 4 oz clear jar unpres 4 oz plastic jar unpre	s ono	\Box																				VOA Vials	(>6mm) *	
120 mL plastic Na Thiosulfate ziploc bag	4 oz amber jar unpres 4 oz clear jar unpres 4 oz plastic jar unpres	N/A *If ye	⊬																				H2SO4 pH : NaOH+Zn A		com
osulfate		s look mvi																	, ,				NaOH pH≥		completed:
		headspace									×	*	×	×	×	×	×	X	X	×	×		HNO3 pH ≤		1 7
		e column	2.5 / 5 / 10	2.5 / 5 / 10	2.5 / 5 / 10	2.5 / 5 / 10	2.5 / 5 / 10	2.5 / 5 / 10	2.5/5/10	2.5 / 5 / 10	2.5 / 5 / 10	2.5 / 5 / 10	2.5/5/10	2.5 / 5 / 10	2.5/5/10	2.5/5/10	2.5/5/10	2.5 / 5 / 10	2.5/5/10	2.5 / 5 / 10	2.5/5/10	2.5/5/10	pH after adj	Volume	Time:

Pace Analytical	Sample C	onditio	n Upon Receipt (SCUR		nt Revised: 25Apr2018
		Doci	ument No.:	ls	suing Authority:
1241 Bellevue Street, Green Bay, WI 54302		F-GB-0	C-031-Rev.07	Pace Gr	een Bay Quality Office
Sample Co	ndition	Upo	n Receipt Form	(SCUR)	
			Project #:		
lient Name: <u>SCS کرمانمودs</u>		_		0#:4	0196971
ourier: 🕏 CS Logistics 🗖 Fed Ex 🔲 Speedee			/altco		
Client Pace Other	-				
acking #: <u>ZIZO, 100919</u>			4	0196971	
ustody Seal on Cooler/Box Present: 🔽 yes 🏋 r					
ustody Seal on Samples Present: 🔽 yes 💢 no	Seals	s intact:	⊑ yes ⊑ no		
acking Material: 🗖 Bubble Wrap 🦳 Bubble I nermometer Used SR - Nr Ty	Bags L	None			
poler Temperature Uncorr: Cot /Corr: _	pe of ice	Wer	Blue Dry None	Samples of	n ice, cooling process has begun
emp Blank Present: 🔽 yes 🙀 no	Biolo	- ogical 1	issue is Frozen: 🗖	/es □ no	Person examining contents
mp should be above freezing to 6°C. ota Samples may be received at ≤ 0°C.					Date: <u>וֹשׁ /וֹאוֹן אוֹ</u> Initials: אַב
	Yes □No		I 4		
	Yes DNo				
	Yes 🗆 No	i. A		and the second sec	<u></u>
	Yes No		· · · · · · · · · · · · · · · · · · ·	in the second	
	Yes 🗆 No		5.		
	Yes 🗆 No		Date/Time:		
	Yes 🗆 No		6.		
	Yes M No		7.		
ufficient Volume:			8.		
For Analysis: ∰ves □no MS/MSD: □	Yes 🖾No	□n/a			
	Yes 🗆 No		9.		
-Pace Containers Used:	Yes □No	□n/a			
-Pace IR Containers Used:	Yes □No	M N/A			
ontainers Intact:	Yes No		10.		
tered volume received for Dissolved tests	Yes 🗆 No				
imple Labels match COC:	Yes 🗆 No	□n/a			<u></u>
-Includes date/time/ID/Analysis Matrix:					
p Blank Present:	Yes □No	N/A	13.		anna an
p Blank Custody Seals Present	Yes 🗆 No	₩N/A			
ce Trip Blank Lot # (if purchased):				in an	
ient Notification/ Resolution: Person Contacted:		Date/		ked, see attach	ed form for additional comments
Comments/ Resolution:		- Dale/		<u>a an</u> a second	
Project Manager Review:	/	-]	Inn	Date:	16-10-17

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

November 01, 2019

Meghan Blodgett SCS ENGINEERS 2830 Dairy Drive Madison, WI 53718

RE: Project: 25219067.00 COLUMBIA CCR Pace Project No.: 40196970

Dear Meghan Blodgett:

Enclosed are the analytical results for sample(s) received by the laboratory on October 10, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Day Milent

Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: Tom Karwoski, SCS ENGINEERS Nicole Kron, SCS ENGINEERS Jeff Maxted, ALLIANT ENERGY Marc Morandi, ALLIANT ENERGY

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: 25219067.00 COLUMBIA CCR

Pace Project No.: 40196970

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

Virginia VELAP ID: 460263 South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: 25219067.00 COLUMBIA CCR

Pace Project No.: 40196970

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40196970001	MW-301	Water	10/09/19 12:00	10/10/19 09:15
40196970002	MW-84A	Water	10/09/19 13:10	10/10/19 09:15

SAMPLE ANALYTE COUNT

Project: 25219067.00 COLUMBIA CCR

Pace Project No.: 40196970

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40196970001		EPA 6020	DS1	14	PASI-G
		EPA 7470	AJT	1	PASI-G
			HMG	7	PASI-G
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		SM 2540C	ТМК	1	PASI-G
		EPA 9040	ALY	1	PASI-G
		EPA 300.0	HMB	3	PASI-G
40196970002	MW-84A	EPA 6020	DS1	14	PASI-G
		EPA 7470	AJT	1	PASI-G
			HMG	7	PASI-G
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		SM 2540C	ТМК	1	PASI-G
		EPA 9040	ALY	1	PASI-G
		EPA 300.0	HMB	3	PASI-G

ANALYTICAL RESULTS

Project: 25219067.00 COLUMBIA CCR

Pace Project No.: 40196970

Sample: MW-301	Lab ID:	40196970001	Collected	d: 10/09/19	9 12:00	Received: 10/	'10/19 09:15 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytica	l Method: EPA 6	020 Prepar	ation Meth	od: EPA	3010			
Antimony	<0.15	ug/L	1.0	0.15	1	10/14/19 07:07	10/14/19 23:25	7440-36-0	
Arsenic	0.42J	ug/L	1.0	0.28	1	10/14/19 07:07	10/15/19 12:57	7440-38-2	
Barium	10	ug/L	2.3	0.70	1	10/14/19 07:07	10/14/19 23:25	7440-39-3	
Beryllium	<0.25	ug/L	1.0	0.25	1	10/14/19 07:07	10/15/19 12:57	7440-41-7	
Boron	35.9	ug/L	10.0	3.0	1	10/14/19 07:07	10/15/19 12:57	7440-42-8	
Cadmium	<0.15	ug/L	1.0	0.15	1	10/14/19 07:07	10/14/19 23:25	7440-43-9	
Calcium	114000	ug/L	254	76.2	1	10/14/19 07:07	10/15/19 12:57	7440-70-2	
Chromium	<1.0	ug/L	3.4	1.0	1	10/14/19 07:07	10/15/19 12:57	7440-47-3	
Cobalt	<0.12	ug/L	1.0	0.12	1	10/14/19 07:07	10/15/19 12:57	7440-48-4	
Lead	<0.24	ug/L	1.0	0.24	1	10/14/19 07:07	10/14/19 23:25	7439-92-1	
Lithium	0.61J	ug/L	1.0	0.22	1	10/14/19 07:07	10/15/19 12:57	7439-93-2	
Molybdenum	<0.44	ug/L	1.5	0.44	1	10/14/19 07:07	10/14/19 23:25	7439-98-7	
Selenium	<0.32	ug/L	1.1	0.32	1	10/14/19 07:07	10/15/19 12:57	7782-49-2	
Thallium	<0.14	ug/L	1.0	0.14	1	10/14/19 07:07	10/14/19 23:25	7440-28-0	
7470 Mercury	Analytica	l Method: EPA 7	470 Prepar	ation Methe	od: EPA	7470			
Mercury	<0.084	ug/L	0.28	0.084	1	10/22/19 14:50	10/23/19 09:18	7439-97-6	
Field Data	Analytica	l Method:							
Field pH	6.67	Std. Units			1		10/09/19 12:00		
Field Specific Conductance	801	umhos/cm			1		10/09/19 12:00		
Oxygen, Dissolved	1.67	mg/L			1		10/09/19 12:00	7782-44-7	
REDOX	173.0	mV			1		10/09/19 12:00		
Turbidity	2.12	NTU			1		10/09/19 12:00		
Static Water Level	788.47	feet			1		10/09/19 12:00		
Temperature, Water (C)	11.3	deg C			1		10/09/19 12:00		
2540C Total Dissolved Solids	Analytica	l Method: SM 25	540C						
Total Dissolved Solids	418	mg/L	20.0	8.7	1		10/15/19 16:41		
9040 pH	Analytica	l Method: EPA 9	040						
pH at 25 Degrees C	7.0	Std. Units	0.10	0.010	1		10/18/19 09:42		H6
300.0 IC Anions	Analytica	l Method: EPA 3	00.0						
Chloride	1.7J	mg/L	2.0	0.50	1		10/21/19 18:26	16887-00-6	
Fluoride	<0.10	mg/L	0.30	0.10	1		10/21/19 18:26		
Sulfate	8.4	mg/L	3.0	1.0	1		10/21/19 18:26		

ANALYTICAL RESULTS

Project: 25219067.00 COLUMBIA CCR

Pace Project No.: 40196970

Date: 11/01/2019 03:22 PM

Sample: MW-84A	Lab ID:	40196970002	Collected	d: 10/09/19	9 13:10	Received: 10/	10/19 09:15 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020 MET ICPMS	Analytica	I Method: EPA 6	020 Prepai	ration Meth	od: EPA	3010			
Antimony	<0.15	ug/L	1.0	0.15	1	10/14/19 07:07	10/14/19 23:46	7440-36-0	
Arsenic	0.46J	ug/L	1.0	0.28	1	10/14/19 07:07	10/15/19 13:34	7440-38-2	
Barium	13.2	ug/L	2.3	0.70	1	10/14/19 07:07	10/14/19 23:46	7440-39-3	
Beryllium	<0.25	ug/L	1.0	0.25	1	10/14/19 07:07	10/15/19 13:34	7440-41-7	
Boron	12.0	ug/L	10.0	3.0	1	10/14/19 07:07	10/15/19 13:34	7440-42-8	
Cadmium	<0.15	ug/L	1.0	0.15	1	10/14/19 07:07	10/15/19 13:34	7440-43-9	
Calcium	73500	ug/L	254	76.2	1	10/14/19 07:07	10/15/19 13:34	7440-70-2	
Chromium	1.6J	ug/L	3.4	1.0	1	10/14/19 07:07	10/15/19 13:34	7440-47-3	
Cobalt	<0.12	ug/L	1.0	0.12	1	10/14/19 07:07	10/15/19 13:34	7440-48-4	
Lead	<0.24	ug/L	1.0	0.24	1	10/14/19 07:07	10/14/19 23:46	7439-92-1	
Lithium	0.52J	ug/L	1.0	0.22	1	10/14/19 07:07	10/15/19 13:34	7439-93-2	
Molybdenum	<0.44	ug/L	1.5	0.44	1	10/14/19 07:07	10/15/19 13:34	7439-98-7	
Selenium	<0.32	ug/L	1.1	0.32	1	10/14/19 07:07	10/15/19 13:34	7782-49-2	
Thallium	<0.14	ug/L	1.0	0.14	1	10/14/19 07:07	10/14/19 23:46	7440-28-0	
7470 Mercury	Analytica	I Method: EPA 7	470 Prepa	ration Meth	od: EPA	7470			
Mercury	<0.084	ug/L	0.28	0.084	1	10/22/19 14:50	10/23/19 09:25	7439-97-6	
Field Data	Analytica	l Method:							
Field pH	7.23	Std. Units			1		10/09/19 13:10		
Field Specific Conductance	614.1	umhos/cm			1		10/09/19 13:10		
Oxygen, Dissolved	11.36	mg/L			1		10/09/19 13:10	7782-44-7	
REDOX	181.7	mV			1		10/09/19 13:10		
Turbidity	2.41	NTU			1		10/09/19 13:10		
Static Water Level	787.79	feet			1		10/09/19 13:10		
Temperature, Water (C)	11.8	deg C			1		10/09/19 13:10		
2540C Total Dissolved Solids	Analytica	l Method: SM 25	40C						
Total Dissolved Solids	310	mg/L	20.0	8.7	1		10/15/19 16:41		
9040 pH	Analytica	I Method: EPA 9	040						
pH at 25 Degrees C	7.5	Std. Units	0.10	0.010	1		10/18/19 09:44		H6
300.0 IC Anions	Analytica	I Method: EPA 3	00.0						
Chloride	3.9	mg/L	2.0	0.50	1		10/21/19 19:19	16887-00-6	
Fluoride	<0.10	mg/L	0.30	0.10	1		10/21/19 19:19		
Sulfate	1.3J	mg/L	3.0	1.0	1		10/21/19 19:19		

Project: Pace Project No.:	25219067.00 COL 40196970	UMBIA CCR										
QC Batch:	338359		Anal	vsis Metho	od:	EPA 7470						
QC Batch Method:	EPA 7470		Anal	ysis Desci	ription:	7470 Mercu	ıry					
Associated Lab Sar	mples: 401969700	001, 4019697000	2	-								
METHOD BLANK:	1964880			Matrix: V	Vater							
Associated Lab Sar	nples: 401969700	001, 4019697000	2									
			Bla	nk	Reporting							
Parar	neter	Units	Res	sult	Limit	Anal	yzed	Qualifier	S			
Mercury		ug/L		<0.084	0.2	8 10/23/1	9 09:14					
LABORATORY CO	NTROL SAMPLE:	1964881										
			Spike	L	CS	LCS	% R	ec				
Parar	neter	Units	Conc.	Re	esult	% Rec	Limi	its	Qualifiers			
Mercury		ug/L		5	5.3	10	5 8	85-115		_		
MATRIX SPIKE & N	ATRIX SPIKE DUP	LICATE: 1964	882		1964883	3						
			MS	MSD								
		40196970001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mercury	ug/L	<0.084	5	5	5.1	5.0	101	100	85-115	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 25219067.00 COLUMBIA CCR

Pace Project No. 40196970

ce	Projec	X NO.:	4015	105

QC Batch:	337277	Analysis Method:	EPA 6020
QC Batch Method:	EPA 3010	Analysis Description:	6020 MET
Associated Lab Sar	nples: 40196970001, 40196970002		
METHOD BLANK:	1959950	Matrix: Water	
Associated Lab Sar	nples: 40196970001, 40196970002		

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Antimony	ug/L	<0.15	1.0	10/14/19 18:40	
Arsenic	ug/L	<0.28	1.0	10/14/19 18:40	
Barium	ug/L	<0.70	2.3	10/14/19 18:40	
Beryllium	ug/L	<0.25	1.0	10/14/19 18:40	
Boron	ug/L	<3.0	10.0	10/14/19 18:40	
Cadmium	ug/L	<0.15	1.0	10/14/19 18:40	
Calcium	ug/L	<76.2	254	10/14/19 18:40	
Chromium	ug/L	<1.0	3.4	10/14/19 18:40	
Cobalt	ug/L	<0.12	1.0	10/14/19 18:40	
Lead	ug/L	<0.24	1.0	10/14/19 18:40	
Lithium	ug/L	<0.22	1.0	10/14/19 18:40	
Molybdenum	ug/L	<0.44	1.5	10/14/19 18:40	
Selenium	ug/L	<0.32	1.1	10/14/19 18:40	
Thallium	ug/L	<0.14	1.0	10/14/19 18:40	

LABORATORY CONTROL SAMPLE: 1959951

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
imony	ug/L	500	497	99	80-120	
senic	ug/L	500	478	96	80-120	
rium	ug/L	500	477	95	80-120	
ryllium	ug/L	500	488	98	80-120	
ron	ug/L	500	464	93	80-120	
dmium	ug/L	500	501	100	80-120	
cium	ug/L	5000	5080	102	80-120	
romium	ug/L	500	478	96	80-120	
palt	ug/L	500	467	93	80-120	
t	ug/L	500	470	94	80-120	
um	ug/L	500	477	95	80-120	
ybdenum	ug/L	500	452	90	80-120	
enium	ug/L	500	494	99	80-120	
allium	ug/L	500	476	95	80-120	

MATRIX SPIKE & MATRIX SP	PIKE DUPLI	CATE: 1959	952 MS	MSD	1959953							
Parameter	Units	40196861005 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Antimony	ug/L	<0.15	500	500	513	510	103	102	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 25219067.00 COLUMBIA CCR

Pace Project No.: 40196970

MATRIX SPIKE & MATRIX	SPIKE DUPL	ICATE: 1959			1959953							
			MS	MSD								
		40196861005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	ug/L	2.4	500	500	512	504	102	100	75-125	2	20	
Barium	ug/L	169	500	500	671	672	100	101	75-125	0	20	
Beryllium	ug/L	<0.25	500	500	513	469	103	94	75-125	9	20	
Boron	ug/L	73.0	500	500	582	529	102	91	75-125	10	20	
Cadmium	ug/L	<0.15	500	500	514	512	103	102	75-125	0	20	
Calcium	ug/L	90300	5000	5000	96800	99900	130	192	75-125	3	20	P6
Chromium	ug/L	<1.0	500	500	492	486	98	97	75-125	1	20	
Cobalt	ug/L	<0.12	500	500	488	484	98	97	75-125	1	20	
Lead	ug/L	<0.24	500	500	489	489	98	98	75-125	0	20	
Lithium	ug/L	12.4	500	500	518	476	101	93	75-125	8	20	
Molybdenum	ug/L	2.6	500	500	477	476	95	95	75-125	0	20	
Selenium	ug/L	<0.32	500	500	524	521	105	104	75-125	1	20	
Thallium	ug/L	<0.14	500	500	502	502	100	100	75-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 25219067.00 COI Pace Project No.: 40196970	LUMBIA CCR					
QC Batch: 337571		Analysis M	ethod:	SM 2540C		
QC Batch Method: SM 2540C		Analysis D	escription:	2540C Total Di	issolved Solids	
Associated Lab Samples: 40196970	0001, 40196970002	2				
METHOD BLANK: 1960873		Matri	x: Water			
Associated Lab Samples: 40196970	0001, 40196970002	2				
Parameter	Units	Blank Result	Reporting Limit	Analyze	ed Quali	fiers
Total Dissolved Solids	mg/L	<8.	7 20	0.0 10/15/19 1	6:39	
LABORATORY CONTROL SAMPLE:	1960874					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Total Dissolved Solids	mg/L	547	558	102	80-120	
SAMPLE DUPLICATE: 1960875						
		40196939001			Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Solids	mg/L	354	4 36	68	4	10
SAMPLE DUPLICATE: 1960876						
Parameter	Units	40196970001 Result	Dup Result	RPD	Max RPD	Qualifiers
Total Dissolved Solids		418	8 40			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 25219067.00 COLUMBIA CCR

Pace Project No.: 40196970

QC Batch:	337952		Analysis Meth	nod:	EPA 9040		
QC Batch Method:	EPA 9040		Analysis Desc	cription:	9040 pH		
Associated Lab Sam	nlos: 40106070	001, 4019697000	2				
	pies. 40190970	001, 4019097000	2				
SAMPLE DUPLICAT	•		2				
	•		40196967002	Dup		Max	

 pH at 25 Degrees C
 Std. Units
 7.3
 7.3
 0
 20 H6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

00 0-1 1				A .									
QC Batch:	3378				/sis Method		EPA 300.0						
QC Batch Metho		300.0			/sis Descrip	otion:	300.0 IC Ani	ons					
Associated Lab	Samples:	401969700	01, 40196970002	2									
METHOD BLAN	IK: 19621	91			Matrix: Wa	ater							
Associated Lab	Samples:	401969700	01, 40196970002	2									
_				Blar		Reporting							
Pa	arameter		Units	Res	ult	Limit	Analy	zed	Qualifier	S			
Chloride			mg/L		<0.50	2.							
Fluoride			mg/L		<0.10	0.3							
Sulfate			mg/L		<1.0	3.	0 10/21/19	11:34					
LABORATORY	CONTROL	SAMPLE:	1962192										
				Spike	LC		LCS	% Re					
Pa	arameter		Units	Conc.	Res	ult	% Rec	Limit	S	Qualifiers	_		
Chloride			mg/L		0	20.1	101		0-110				
Fluoride			mg/L		2	2.0	102		0-110				
Sulfate			mg/L	2	:0	20.1	100	9 9	0-110				
MATRIX SPIKE	& MATRIX	SPIKE DUPI	LICATE: 19621	193		1962194							
				MS	MSD								
			40196954007	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Param	eter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
		mg/L	14.1	20	20	33.8	33.6	99	98	90-110	1	15	
				2	2	2.1	2.1	102	102		0	15	
Chloride Fluoride		mg/L	<0.10							00 440	0	15	
Chloride Fluoride		mg/L mg/L	<0.10 7.2	20	20	27.0	26.9	99	98	90-110	Ū		
Chloride Fluoride Sulfate	& MATRIX	mg/L	7.2	20			26.9	99	98	90-110			
Chloride Fluoride Sulfate	& MATRIX	mg/L	7.2	20		27.0	26.9	99	98	90-110			
Chloride Fluoride Sulfate	& MATRIX	mg/L	7.2	20	20	27.0	26.9	99 MS	98 MSD	90-110 % Rec		Max	
Chloride Fluoride Sulfate		mg/L	7.2 LICATE: 19621	20 195 MS	20 MSD	27.0 1962196	26.9				RPD	Max RPD	Qua
Chloride Fluoride Sulfate MATRIX SPIKE Param		mg/L SPIKE DUPI	7.2 LICATE: 19621 40196971011	20 195 MS Spike	20 MSD Spike	27.0 1962196 MS	26.9 MSD	MS	MSD	% Rec		RPD	Qua
Chloride Fluoride Sulfate MATRIX SPIKE		mg/L SPIKE DUPI Units	7.2 LICATE: 19621 40196971011 Result	20 195 MS Spike Conc.	20 MSD Spike Conc.	27.0 1962196 MS Result	26.9 MSD Result	MS % Rec	MSD % Rec	% Rec Limits 90-110	RPD	RPD	Qua

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 25219067.00 COLUMBIA CCR

Pace Project No.: 40196970

Sample: MW-301 PWS:	Lab ID: 40196 Site ID:	970001 Collected: 10/09/19 12:00 Sample Type:	Received:	10/10/19 09:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.252 ± 0.351 (0.585) C:NA T:83%	pCi/L	10/31/19 12:20	13982-63-3	
Radium-228	EPA 904.0	0.449 ± 0.363 (0.723) C:77% T:95%	pCi/L	10/30/19 14:23	3 15262-20-1	
Total Radium	Total Radium Calculation	0.701 ± 0.714 (1.31)	pCi/L	11/01/19 15:00) 7440-14-4	
Sample: MW-84A PWS:	Lab ID: 40196 Site ID:	970002 Collected: 10/09/19 13:10 Sample Type:	Received:	10/10/19 09:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.247 ± 0.292 (0.459) C:NA T:101%	pCi/L	10/31/19 12:20	13982-63-3	
Radium-228	EPA 904.0	-0.0240 ± 0.355 (0.827) C:78% T:89%	pCi/L	10/30/19 14:24	15262-20-1	
Total Radium	Total Radium Calculation	0.247 ± 0.647 (1.29)	pCi/L	11/01/19 15:00) 7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project:	25219067.00 CO	LUMBIA CCR				
Pace Project No.:	40196970					
QC Batch:	366494		Analysis Method:	EPA 903.1		
QC Batch Method:	EPA 903.1		Analysis Description:	903.1 Radium-22	26	
Associated Lab Sar	mples: 4019697	0001, 40196970002				
METHOD BLANK:	177728		Matrix: Water			
Associated Lab Sa	mples: 4019697	0001, 40196970002				
Para	meter	Act ± Ur	nc (MDC) Carr Trac	Units	Analyzed	Qualifiers
Radium-226		0.0468 ± 0.331 (0	0.660) C:NA T:87%	pCi/L	10/31/19 12:20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project:	25219067.00 COLU	JMBIA CCR				
Pace Project No.:	40196970					
QC Batch:	366493		Analysis Method:	EPA 904.0		
QC Batch Method:	EPA 904.0		Analysis Description:	904.0 Radium 22	3	
Associated Lab Sa	mples: 401969700	01, 40196970002				
METHOD BLANK:	1777725		Matrix: Water			
Associated Lab Sa	mples: 401969700	01, 40196970002				
Para	meter	Act ± Unc	(MDC) Carr Trac	Units	Analyzed	Qualifiers
Radium-228		-0.00340 ± 0.362 (0.843) C:80% T:79%	pCi/L	10/30/19 14:21	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 25219067.00 COLUMBIA CCR

Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

Pace Project No.: 40196970

DEFINITIONS

Act - Activity

(MDC) - Minimum Detectable Concentration
Trac - Tracer Recovery (%)
Carr - Carrier Recovery (%)
DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.
ND - Not Detected at or above LOD.
J - Estimated concentration at or above the LOD and below the LOQ.
LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.
LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.
S - Surrogate
1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.
Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.
LCS(D) - Laboratory Control Sample (Duplicate)

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval).

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

- PASI-G Pace Analytical Services Green Bay
- PASI-PA Pace Analytical Services Greensburg

ANALYTE QUALIFIERS

- H6 Analysis initiated outside of the 15 minute EPA required holding time.
- P6 Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 25219067.00 COLUMBIA CCR

Pace Project No.: 40196970

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40196970001 40196970002	MW-301 MW-84A	EPA 3010 EPA 3010	337277 337277	EPA 6020 EPA 6020	337400 337400
40196970001 40196970002	MW-301 MW-84A	EPA 7470 EPA 7470	338359 338359	EPA 7470 EPA 7470	338406 338406
40196970001 40196970002	MW-301 MW-84A				
40196970001 40196970002	MW-301 MW-84A	EPA 903.1 EPA 903.1	366494 366494		
40196970001 40196970002	MW-301 MW-84A	EPA 904.0 EPA 904.0	366493 366493		
40196970001 40196970002	MW-301 MW-84A	Total Radium Calculation Total Radium Calculation	369027 369027		
40196970001 40196970002	MW-301 MW-84A	SM 2540C SM 2540C	337571 337571		
40196970001 40196970002	MW-301 MW-84A	EPA 9040 EPA 9040	337952 337952		
40196970001 40196970002	MW-301 MW-84A	EPA 300.0 EPA 300.0	337822 337822		

8		
98(
22		
_		
_		
<u> </u>		
<u> </u>		
Ē		
E		
Ē		
Ē		
Ē		
Gun		
C un		
Jun		
Cun2		
Jun ₂		
Jun2(
Jun ₂ C		
Jun20		
Jun20		
Jun20		
Jun200		
Jun20C		
Jun200		
Jun200		
Jun200		
Jun2006		
Jun2006		
Jun2006		
Jun2006)		

Samples on HOLD are subject to special pricing and release of liability		Email #2: Telephone:		nit Prelim Rush Results by (complete what you want):		Rush Turnaround Time Requested - Prelims (Rush TAT subject to approval/surcharge)						No 200 MW 200				>I	PO #: Program:	Sampled By (Sign):	Sampled By (Print): Adam Watson	Project State: W:Scows: M	Project Name: Columbia	Project Number: 25219067, 00	Ň	Project Contact: Tom Kacues k!	Branch/Location: Mcd. Son WI	
Relinquished By:		Relinguished By:	Relinquished By:	CS LOgistics	Relinquished By:	Relinquished By						C dist billya	(7) 0021/1/1/00		DW = Drinking Water sal GW = Ground Water SW = Surface Water WW = Waste Water	2	m:		PRESERVATION (CODE)*	FILTERED? (YESJNO)	H=Sodium Bisulfate Solution	A=None B=				
				STICS		A						×	X		alyses di <i>u</i> r	Requ	26,)223		۲ ۳	ulfate Solution	Š4	CHAIN OF CUSTOD		race Analytical	
Date/Time:		Date/Time:	Date/Time:	10/10/19	Date/Time:							X	XX	Me PH	tals	See ta	e ath able	uchel 2	DA	とい	I=Sodium Thiosulfate	*Preservation Codes D=HNO3 E=DI Water	OFC		nyacar	
				0915					T			X	X	207	<u>,</u> 0,	F. 9	Sor	<u>ł</u>	A	2	lfate J=Other	des Water F=Methanol	USTO			
Received By:		Received By:	Raceined By:	1	Received By:	Received By:																nol G=NaOH	ÞΥ			
Date/Time:		Date/Time		ellellor mes Ca	Date/Time:	Date/Time:								CCLIENT	Invoice To Phone:		Invoice To Address:	Invoice To Company:	Invoice To Contact:		Mail To Address:	Mail To Company:	Mail To Contact:	Quote #:		
				OTIS Race					5	k		2 00	001	(Lab Use Only)				r:		madiss	2830	S.S.	Tom			
Present Not Presen	Cooler Custody Seal	OK Adjusted	5	Receipt Temp =°C	UL 696104	PACE Project No.	n en el)				e Only)	-				-	mad: 500, wit. 5371	Daie y Dr.	ĮΠ.	Konwastei			

				ran	nete	ling l ers	Fiel	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		CCR Fi	eld							enc											F	Par (De	am am stec	ete ti o	rs n				
Odor	Color	Turbidity	Temperature		Dissolved Oxygen	Specific Conductance		Wall Dant		P	Elevation	Groundwater	Radium 226+228	Thallium	Selenium	Molybdenum	Mercury	Lithum	Lead	Fluoride	Cobalt	Chromium	Cadmium	Beryllium	Barium	Arsenic	Antimony	TDS	Sulfate		Fluoride	1.1	262.5	Boron	Parameter		
×	×	×	×		×	×	,	<		×	;	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	X	×	×	105 VIN	Backgro	
×	×	×	×		×	×	>	2000 - 20 - 2020 		×	,	×	×	×	×	×	×	×	×	×	X	×	×	×	×	×	×	×	X	×	X	x	X	X	₹ ₩₩-84A	COC #1 - Background Wells	5
×	×	×	×	×	×	×		•		×	,	×							1.200									×	X	×	×	×	x	X	MVX502	8	
×	×	×	×	×	×	×	>	<		×	>	×																x	the X read	X	X	×	X	X	MWZZAR	COC #2 - Landfill Modules 1-3	
×	×	×	×	×	×	×	, -			×	>	~			14 1											2.4		×	X	X	X	X	X	X	My 34A	dfill Modul	Groundw
																					re Madariana a							N	X	×		×	X	X	FIELD BLANKK	es 1-3	water Monitoring - Columbia Energy Center / SCS Engineers Pro
×	×	×	×	×	×	×	×			×	~	<		-	-													x	×	X	×	X	X	X	mura		ring - Colu
×	×	×	×	×	×	×	×		:	×	×	<																×	×	×	×	×	×	×	minajo	:0C #3 - L	mbia Energ
× :	×	X	×	×	×	****** ****	×		;	×	×	•	e Kay -				5											X	×	X	X	X	x	×	MW-311	CQC #3 - Landfill Module 4	gy Center /
																						2						X	X	X	X	×	×	×	FIELD BLANK	vie 4	Groundwater Monitoring - Columbia Energy Center / SCS Engineers Project
× ,	×	×	X	×	×	×	×		,	×	×	د ۲	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	my soos)	rs Project #
× >	×	×	X	X	×	×	×		>	<	×		×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×		MY 304	<u>(8)</u>	gram † #25219067
× >	×	×	X	X	×	×	×		,	<	×		×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	My 305	#4 - Pripp	
< >		×	×	×	×	×	×		×	<	×		×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	MAR.	COS #4 - Primary Pond	
													×	×	×	×	×	×	×	×	×	×	×	×	×	X	×	×	×	×	×	×	x	×	FIELD BLAINK -	2	
<		×	×	×	×	×	×		× ×	۲	×																	×	×	×	×	×	×	X	- muyooo		
< ×		×	×	×	×	×	×		×		×																	×	×	×	×	*	×,	×	Muy 307	COC #5 - Secondary Pond	
< ×	; ; 		×	×	×	×	×		×	:	×																	×	× ;	×	×	<	, ,	×	BOP WW	scondary F	ſ
											,	and the second secon																×	× ;	×	× ;	Y	×	×	MUY DOG MUY DOZ MUY DOB FIELD BOANK	Š.	

1:\25219067.00\Data and Cakulations\Tables\Lab Bottle Orders\[2019 April_COL CCR.xk]Shee1

All samples are unfiltered (total).

Notes:

Table 1, page 1 of 1

Page 19 of 21

	AG1H AG1H AG4S	A C111	020	019	018	017	016	015	014	013	012	011	010	600	800	007	900	005	004	003	002	001	Pace Lab #	art Antain Antainne			Cli
120 nL anor glass uppes 100 mL amber glass uppres 500 mL amber glass H2SO4 250 mL clear glass uppres	 inclamor glass liter amber glass HCL mL amber glass H2SO4 ml amber glass impres 	Exceptions to preservation check: VOA, Coliform, TOC, TOX, TOH, O&G, WI DRO, Phenolics, Other																		4			AG1U		an a		Client Name:
L amb L amb L amb L amb	amber amber Lamb	s to pre										ing Designed Designed		L									AG1H			All	Nan
120 mL amore glass unjve 100 mL amber glass unpre 500 mL amber glass H2SC 250 mL clear glass unpres	r glass er gla er gla	eservati	_						ļ					<u> </u>						<u> </u> _			AG4S	G		All containers needing preservation have been checked and noted below \mathbb{X} is $\mathbb{Z} = \mathbb{N} \cap \mathbb{Z}$. Lab Lot# of pH paper: 1, $\mathbb{X} \cup \mathbb{Z} \supset \mathbb{Z}$	ne:
ss unp ss unp ss H2: ; unpr	HCL ss H2:	ion che	_					unui Ganti Ganti															AG4U	Glass		iers ne	5
ares SO4	SO4	ck: V	-								-	Ð							H				AG5U			eding	CE
		DA, Co	-				<u> </u>					10	-						Ļ				AG2S		1	Dreserv	ENGINERS
		oliform	┢				-		C)			5										BG3U	ana si sha Ma		ation r	
BP3B BP3N BP3S	BP2N BP2Z BP2Z	, TOC	-	-					F	V			<u> </u>					H					BP1U		·	have be	5
		TOX	-												o send		-	$\not\mid$					BP2N			en che	-
	mL l	TOH	┢														H						BP2Z	Pla		cked a Lab Lo	-
250 mL plastic unpres 250 mL plastic NaOH 250 mL plastic HNO3 250 mL plastic H2SO4	1 their plastic unpres 500 mL plastic HNO3 500 mL plastic NaOH, Znact 250 mL plastic unpres	0&G															╟				2		BP3U	Plastic		cked and noted below. Lab Lot# of pH paper.	
250 mL plastic unpres 250 mL plastic NaOH 250 mL plastic HNO3 250 mL plastic H2SO4	HNO NaOI	WID															<u> </u>						BP3B			ed belo oH pap	:
ບູພູມະ ຊີ		RO, Pł	-							-						$\left \right $					–		BP3N				•
	ĩ	ienolic	-													1							BP3S DG9A				קי ל
~ < <		s, Othe													\exists								DG9A DG9T			050 891	Project #
VG9M VG9D	DG9T VG9U		╞									1.			f				-				VG91 VG9U			89 89	ct #
401	401	5												+									VG9U VG9H	Vials			
nL cle nL cle	nL an													\mathbf{r}									VG9H VG9M) Std #	
40 mL clear vial HQ 40 mL clear vial Mq 40 mL clear vial DI	nber N nber N ear via												+						-				VG9M VG9D	L		ID of p	5
40 mL clear vial HCL 40 mL clear vial MeOH 40 mL clear vial D]	40 mL amoer ascoroic 40 mL amber Na Thio 40 mL clear vial unpres	leadsp											+										JGFU			Lab Std #ID of preservation (if pH adjusted):	12/2/
, H	res o c	ace in										+											WGFU	Jars		ation (9
		VOA	⊢									<i> </i>											WGFU	. .		if pH a	0
N S	550	Vials (7												SP5T			djuste	
SPST ZPLC GN:	WGFU WPFU	>6mm)									<u> </u>												ZPLC	General		1) <u>;</u>	
	4 03 4 03	∵⊓Ye								f											\sim	2	GN	ral			
120 mL plastic Na Thiosulfate ziploc bag	4 oz amber jar unpres 4 oz clear jar unpres 4 oz plastic jar unpres	s ¤No							7														VOA Vials	(>6mn	1) *		
lastic	jar u jar u ic jar	2						/	-														H2SO4 pH :	natur und. Alternatur		ata ara Ata ara Ata ar	
tic Na Th	inpres ipres unpre:	\ *If y						1																		co	
niosul	S	'es loo					1							1994) 							an a		NaOH+Zn A		<u>≥9</u>	Initial when completed:	
sulfate		k in he				7															×		NaOH pH≥		a das Se a de		
		Headspace in VOA Vials (>6mm) : DYes DNo W/A *If yes look in headspace column	╞												-							K	HNO3 pH ≤	2		Ľ	G
		_ colum			4																		pH after adji	usted		Date/ Time:	reen B
		8	2.5 / 5	2.5/5	2.5/5/10	2.5/5	2.5/5/10	2.5 / 5 / 10	2.5/5/10	2.5 / 5 / 10	2.5 / 5 / 10	2.5/5/10	2.5/5/10	2.5/5	2.5/5/10	2.5 / 5 / 10	2.5/5/10	2.5/5	2.5/5	2.5/5	2.5/5	2.5/5	(mL)	Volume			Green Bay, WI 54302 2
			/ 10	/ 10	/ 10	/ 5 / 10	01/	/10	/ 10	/ 10	/ 10	/ 10	/ 10	/ 10	/ 10	/ 10	/ 10	/ 10	/ 5 / 10	; / 10	i / 10	5 / 10	5	me			543(

F-GB-C-046-Rev.02 (29Mar2018) Sample Preservation Receipt Form

Page <u>1</u> of **2**

Pace Analytical		ument Name: on Upon Receipt	(SCUR)	Docume	nt Revised: 25Apr2018
		cument No.:			suing Authority:
1241 Bellevue Street, Green Bay, WI 54302	F-GB	-C-031-Rev.07		ace Gi	een Bay Quality Office
Sample C	ondition Upo	on Receipt F	orm (SC	UR)	
	•	Project			
Client Name: SCS Engineers				L . 4	<u> </u>
courier: 🕅 CS Logistics 🗍 Fed Ex 🗍 Speeder		Valtco	MOŧ	F.4	0196970
Client Pace Other:					
racking #: <u>2120.100919</u>			401969	 	
ustody Seal on Cooler/Box Present: 🔲 yes 🖡	• · · · · · · · · · · · · · · · · · · ·				
Custody Seal on Samples Present: 🔽 yes 🔊		t:			
Packing Material: 🔲 Bubble Wrap 🗌 Bubbl Thermometer Used SR - 🎝 🎗	e Bags I Nor	Blue Dry Nord	Zip lai		
Cooler Temperature Uncorr: Pol /Corr:		P Dide Diy None	2	ampies u	n ice, cooling process has begu
emp Blank Present: 🔲 yes 成 no	Biological	Tissue is Frozer	n: □ yesſ	no	Person examining conter
emp should be above freezing to 6° C. iota Samples may be received at $\leq 0^{\circ}$ C.					Date: 6//0/19 Initials: 50
Chain of Custody Present:	Yes □No □N//	A 1			
Chain of Custody Filled Out:			× /- لم لم	<u>هـ. ۱</u>	documenter 10181th
Chain of Custody Relinquished:	₩Yes □No □N//		Cle Birs	NOT	documenter o
Sampler Name & Signature on COC:	Na ⊡N/				
amples Arrived within Hold Time:	M⊈Yes ⊡No	5.			
- VOA Samples frozen upon receipt	□Yes □No	Date/Time:			
hort Hold Time Analysis (<72hr):	□Yes 1 No	6.	Red 1		ning and the second
ush Turn Around Time Requested:	□Yes ¥ No	7.			
Sufficient Volume:		8.	-	:	
For Analysis: ⊠Yes ⊡No MS/MSD:	□Yes ¥ΩNo □N/A	A	د. ۱۹۰۰ - ۲۰۰۰ ۱۹۰۰ - ۲۰۰۰ - ۲۰۰۰		
Correct Containers Used:	Ves No	9.			
-Pace Containers Used:		A			
-Pace IR Containers Used:	□Yes □No 🕅N/A	Α		1. 1. N.	
containers Intact:	₩Yes □No	10.	an a		
iltered volume received for Dissolved tests	□Yes □No XN/A	A 11.			
ample Labels match COC:	Yes 🛛 No 🗍 N/A	12.			
-Includes date/time/ID/Analysis Matrix:	<u>N</u>	·			
rip Blank Present:		A 13.			
rip Blank Custody Seals Present		A			
ace Trip Blank Lot # (if purchased):	MW		16-1	1. 	
Person Contacted:	Date	/Time:	It checked,	see attac	hed form for additional commen
Comments/ Resolution:					
		· · · · · · · · · · · · · · · · · · ·		· :	
	A			1.5.2	
Project Manager Review:	10-	1m		Date:	10-10-19

Appendix B

Alternative Source Demonstrations

B1 Alternative Source Demonstration, October 2018 Detection Monitoring

Alternative Source Demonstration October 2018 Detection Monitoring

Columbia Energy Center Dry Ash Disposal Facility, Modules 1-3 Pardeeville, Wisconsin

Prepared for:

SCS ENGINEERS

25216067.18 | April 15, 2019

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830 Table of Contents

Sect	ion		Paq	je
PE Ce	ertifica	ation		. 111
1.0	Intro	duction.		.1
	1.1	§257.9	94(E)(2) Alternative Source Demonstration Requirements	.1
	1.2	Site Inf	ormation and Map	.1
	1.3	Statisti	cally Significant Increases Identified	2
	1.4	Overvie	w of ASD	2
2.0	Back	ground.		2
	2.1	Region	al Geology and Hydrogeology	.3
		2.1.1	Regional Information	.3
		2.1.2	Site Information	.3
	2.2	CCR Ru	Ile Monitoring System	.3
	2.3	Other N	Ionitoring Wells	.3
3.0	Meth	odology	and Analysis Review	.3
	3.1	Sampli	ng and Field Analysis	.4
	3.2	Labora	tory Analysis Review	.4
	3.3	Statisti	cal Evaluation Review	.4
	3.4		ary of Methodology and Analysis Review Findings	
4.0	Alteri	native Se	ources	.5
	4.1	Potenti	al Causes of SSI	.5
		4.1.1	Natural Variation	-
		4.1.2	Man-Made Alternative Sources	.5
	4.2		f Evidence	-
		4.2.1	Pre-Landfill Water Quality	.6
		4.2.2	Long-Term Concentration Trends	.6
		4.2.3	Groundwater Flow Direction Changes	.7
		4.2.4	Chloride and Boron Leachate Concentrations	.7
5.0			ions	
6.0	Site (Groundw	ater Monitoring Recommendations	.8
7.0	Refe	rences		.8

Tables

Table 1.	Groundwater Analytical Results – Detection Monitoring
----------	---

- Table 2.
- Analytical Results Appendix III Constituents with SSIs Groundwater Elevations State Monitoring Program and CCR Well Network Table 3.
- Table 4. Analytical Results – Lysimeters and Leachate Pond

Figures

Figure 1.	Site Location Map
Figure 2.	Site Plan and Well Location Map
Figure 3.	Water Table Map – October 2018

Appendices

- Appendix A Trend Plots for CCR Wells
- Feasibility Study Water Quality Information Long-Term Concentration Trend Plots Appendix B
- Appendix C
- Historical Groundwater Flow Maps Appendix D

 $l:\25216067.00\Deliverables\2019\ ASD\ LF\ 1-3\ 1810\190415_ASD_COLLF1-3_1810_FINAL.docx$

PE CERTIFICATION

Sherren C. Clark E-29863 Madison, Wis. Wis.	I, Sherren Clark, hereby certify that that the information in this alternate source demonstration is accurate and meets the requirements of 40 CFR 257.94(e)(2). This certification is based on my review of the groundwater data and related site information available for the Columbia Energy Center Dry Ash Disposal Facility. I am a duly licensed Professional Engineer under the laws of the State of Wisconsin. M-12-19(signature) (date) Sherren Clark (printed or typed name) License number <u>E-29863</u> My license renewal date is July 31, 2020.
-	Pages or sheets covered by this seal: Altenative Source Demenstration, all pages.

[This page left blank intentionally]

1.0 INTRODUCTION

This Alternative Source Demonstration (ASD) was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" published by the U.S. Environmental Protection Agency (USEPA) in the *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule,* dated April 17, 2015 (USEPA, 2015), and subsequent amendments. Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.94(e)(2). The applicable sections of the Rule are provided below in *italics*.

1.1 §257.94(E)(2) ALTERNATIVE SOURCE DEMONSTRATION REQUIREMENTS

The owner and operator may demonstrate that a source other than the CCR Unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels.

An ASD is completed when there are exceedances of one or more benchmarks established within the groundwater monitoring program. The ASD is completed to determine if any other sources are likely causes of the identified exceedance(s) of established benchmark(s) at the site. This ASD was performed in response to results indicating a statistically significant increase (SSI) over background levels during detection monitoring under the CCR Rule.

This ASD report is evaluating the SSIs observed in the statistical evaluation of the October 2018 detection monitoring event at the Columbia Energy Center (COL) Dry Ash Disposal Facility, Modules 1-3 CCR Units. Previous ASDs were prepared for this facility evaluating the SSIs observed in the statistical evaluation of the October 2017 and the April 2018 detection monitoring events (SCS Engineers [SCS], 2018b and 2018c). The October 2017 ASD (dated April 2018) and the April 2018 ASD (dated December 2018) concluded that several lines of evidence demonstrated that SSIs reported for boron, chloride, sulfate, and total dissolved solids (TDS) concentrations in the downgradient monitoring wells were likely due to man-made sources other than the CCR units and/or naturally occurring constituents in the alluvial aquifer.

As discussed in more detail in **Section 4.2** of this ASD, the findings for the October 2018 monitoring event were consistent with those for the previous events.

1.2 SITE INFORMATION AND MAP

The COL site is located at W8375 Murray Road, Pardeeville, Columbia County, Wisconsin (**Figure 1**). The COL site is an active coal-burning generating station which has been burning coal and disposing of CCR on site since the mid-1970s. The layout of the site is shown on **Figure 2**. The COL property includes two areas of CCR storage and disposal. These are the Dry Ash Disposal Facility (ADF) and the Ash Ponds Facility. This ASD will evaluate the conditions at the site for Modules 1-3 of the ADF only. The ADF is operated under the Wisconsin Department of Natural Resources (WDNR) License No. 3025.

The groundwater monitoring system for the COL ADF Modules 1-3 is a multi-unit system, monitoring three existing CCR Units:

- COL Dry ADF Module 1 (existing CCR Landfill)
- COL Dry ADF Module 2 (existing CCR Landfill)
- COL Dry ADF Module 3 (existing CCR Landfill)

A map showing the CCR Units and all background (or upgradient) and downgradient monitoring wells with identification numbers for the CCR groundwater monitoring program and the state monitoring program is provided as **Figure 2**. A separate monitoring system has been established for Module 4 of the COL ADF and for the primary ash pond and secondary ash pond.

1.3 STATISTICALLY SIGNIFICANT INCREASES IDENTIFIED

SSIs were identified for boron, chloride, and sulfate at one or more wells based on the October 2018 detection monitoring event.

A summary of the October 2018 constituent concentrations and the established benchmark concentrations is provided in **Table 1**. The constituent concentrations with SSIs above the background concentration are highlighted in the table. Concentration trends for the parameters with SSIs are shown in **Appendix A**.

1.4 OVERVIEW OF ASD

This ASD report includes:

- Background information (Section 2.0)
- Evaluation of potential that SSIs are due to methodology or analysis (Section 3.0)
- Evaluation of potential that SSIs are due to natural sources or man-made sources other than the CCR Units (Section 4.0)
- ASD conclusions (Section 5.0)
- Monitoring recommendations (Section 6.0)

The CCR Rule constituent results from background and compliance sampling for parameters with SSIs are provided in **Table 2**. Complete laboratory reports for the background monitoring events and the October 2017 detection monitoring event were included in the 2017 Annual Groundwater Monitoring and Corrective Action Report (SCS, 2018a). The laboratory reports for the 2018 events were included in the 2018 Annual Report (SCS, 2019).

2.0 BACKGROUND

To provide context for the ASD evaluation, the following background information is provided in this section of the report, prior to the ASD evaluation sections:

- Geologic and hydrogeologic setting
- CCR Rule monitoring system
- Other monitoring wells

A more detailed discussion of the background information for the site is provided in the ASD for the October 2017 event (SCS, 2018b).

2.1 REGIONAL GEOLOGY AND HYDROGEOLOGY

2.1.1 Regional Information

For the purposes of groundwater monitoring, the surficial sand and gravel aquifer is considered the uppermost aquifer, as defined under 40 CFR 257.53. Immediately underlying the surficial sand and gravel aquifer is the Cambrian-Ordovician sandstone aquifer.

Additional details on the regional geology and hydrogeology were provided in the October 2017 ASD (SCS, 2018b).

2.1.2 Site Information

Soils at the site are primarily sand to a depth of approximately 50 to 100 feet and overlie sandstone bedrock. Soils encountered during the site feasibility study for the COL ADF were described as generally sandy with interbedded silty clay lenses up to 20 feet thick (Warzyn, 1978). During drilling of CCR wells MW-301 and MW-302, the unconsolidated materials were identified as consisting primarily of silty sand. Boring logs for previously installed monitoring wells MW-33AR, MW-34A, MW-84A, and M-4R show silty sand and sand as the primary unconsolidated materials at these locations. All CCR monitoring wells are screened within the unconsolidated sand unit.

Shallow groundwater at the site generally flows to the northwest across the existing landfill area, then generally flows west toward the Wisconsin River. A groundwater flow map for October 2018 is shown on **Figure 3**. The groundwater elevation data for the CCR monitoring wells are provided in **Table 3**.

2.2 CCR RULE MONITORING SYSTEM

The groundwater monitoring system established in accordance with the CCR Rule consists of two upgradient (background) monitoring wells and three downgradient monitoring wells. The background wells include MW-301 and MW-84A. The downgradient wells include MW-302, MW-33AR, and MW-34A. The CCR Rule wells are installed within the sand and gravel aquifer. Well depths range from approximately 29 to 40 feet, measured from the top of the well casing.

2.3 OTHER MONITORING WELLS

Additional groundwater monitoring wells currently exist at COL as part of the monitoring systems developed for the state monitoring program and for the other CCR units.

Monitoring wells for the state monitoring program are installed in the unconsolidated sand and gravel unit, which is the uppermost aquifer as defined under 40 CFR 257.53. This shallow monitoring system includes water table wells and mid-depth piezometers. Well depths range from approximately 14 to 76 feet, measured from the top of the well casing.

3.0 METHODOLOGY AND ANALYSIS REVIEW

To evaluate the potential that an SSI is due to a source other than the regulated CCR Unit, SCS used a two-step evaluation process. First, the sample collection, field and laboratory analysis, and statistical evaluation were reviewed to identify any potential error or analysis that led to exceedance of the benchmark. Second, potential alternative sources, including natural variation and man-made sources other than the CCR unit, were evaluated. This section of the report provides the findings of the methodology and analysis review. Section 4.0 of the report addresses the potential alternative sources.

3.1 SAMPLING AND FIELD ANALYSIS

Field notes and sampling results were reviewed to determine if any sampling error may have caused or contributed to the observed SSIs. Potential field sampling errors or issues could include mislabeling of samples, improper sample handling, missed holding times, cross contamination during sampling, or other field error. Field blank sample results were also reviewed for any indication of potential contamination from sampling equipment or containers. Based on the review of the field notes and results, SCS did not identify any indication that the SSI concentrations were due to a sampling error.

SCS did not identify any issues with the field pH analysis based on review of the data and field notes. Because boron, chloride, and sulfate are laboratory parameters, there is little potential for a field analysis error to contribute to an SSI.

3.2 LABORATORY ANALYSIS REVIEW

The laboratory reports for the October 2018 detection monitoring event were reviewed to determine if any laboratory analysis error or issue may have caused or contributed to an observed SSI for boron, chloride, or sulfate. The laboratory report review included reviewing the laboratory quality control flags and narrative, verifying that correct methods were used and desired detection limits were achieved, and checking the field and laboratory blank sample results.

Based on the review of the laboratory reports, SCS did not identify any indication that the SSIs were due to a laboratory analysis error. There were no laboratory quality control flags or issues identified in the laboratory report that affect the usability of the data for detection monitoring.

Time series plots of the SSI constituent analytical data were also reviewed for any anomalous results that might indicate a possible sampling or laboratory error (e.g., dilution error or incorrect sample labeling). The time series plots are provided in **Appendix A**.

3.3 STATISTICAL EVALUATION REVIEW

The review of the statistical results and methods include a quality control check of the following:

- Input analytical data vs. laboratory analytical reports
- Review statistical method and outlier concentration lists for each monitoring well/CCR Unit

Based on the review of the statistical evaluation, SCS did not identify any errors or issues in the statistical evaluation that caused or contributed to the determination of interwell SSIs for the October 2018 detection monitoring event.

3.4 SUMMARY OF METHODOLOGY AND ANALYSIS REVIEW FINDINGS

In summary, there were no changes to the SSI determinations for the October 2018 monitoring event based on the methodology and analysis review, and no errors or issues causing or contributing to the reported SSIs were identified.

4.0 ALTERNATIVE SOURCES

This section of the report discusses the potential alternative sources for the boron, chloride, and sulfate SSIs at MW-33AR, MW-34A, and MW-302; identifies the most likely alternative source(s); and presents the lines of evidence indicating that an alternative source is the most likely cause of the observed SSIs.

4.1 POTENTIAL CAUSES OF SSI

4.1.1 Natural Variation

The statistical analysis was completed using an interwell approach, comparing the October 2018 detection monitoring results to the upper prediction limits (UPLs) calculated based on sampling of the background wells (MW-84A and MW-301). If concentrations of a constituent that is naturally present in the aquifer vary spatially, then the potential exists that the downgradient concentrations may be higher than upgradient concentrations due to natural variation.

Although natural variation is present in the shallow aquifer, it does not appear likely that natural variation is the primary source causing the boron, chloride, and sulfate SSIs.

4.1.2 Man-Made Alternative Sources

Man-made alternative sources that could potentially contribute to the boron, chloride, and sulfate SSIs could include the closed ash pond landfill, the active ash ponds, the former ash pond effluent ditch, the coal storage area, road salt use, railroad operations, or other plant operations.

Based on the groundwater flow directions and on previous investigations at the site, the former ash pond effluent ditch appears to be the most likely cause of the boron and/or sulfate SSIs for wells MW-33AR, MW-34A, and MW-302. The ash pond effluent ditch also likely contributed to the chloride SSIs at MW-33AR and MW34A.

Based on the higher chloride concentrations previously detected at MW-33AR from 2016 through April 2018, a non-CCR alternative source may also contribute to the chloride SSIs.

4.2 LINES OF EVIDENCE

The lines of evidence indicating that the SSIs for boron, chloride, and/or sulfate in compliance wells MW-33AR, MW-34A, and MW-302, relative to the background wells, are due to an alternative source include:

- 1. Elevated concentrations of boron, chloride, and/or sulfate were present in the area west of the landfill, where the three compliance wells are located, before the landfill was constructed.
- 2. Monitoring performed under the state program documents that the concentrations of boron, chloride, and sulfate were elevated before CCR disposal in the landfill began, and have decreased since the landfill has been in operation.
- 3. Groundwater flow directions have changed through time due to changes in water management at the plant, so that groundwater impacted by the effluent ditch formerly flowed to the east, under the landfill, and is now flowing west.

4. The increase in chloride results for well B-33AR in the last 2 years has not correlated with an increase in boron, as would be expected for a CCR leachate source; therefore, an alternative source is more likely.

4.2.1 Pre-Landfill Water Quality

Elevated concentrations of boron, chloride, and sulfate were present in the area west of the landfill, where the three compliance wells are located, before the landfill was constructed. Groundwater monitoring performed in 1977 and 1978 as part of the feasibility study for the landfill permitting showed that wells located along the west side of the future landfill footprint, where the current compliance wells are located, had elevated results for sulfate, chloride, and specific conductance.

The 1978 Feasibility Study (Warzyn, 1978) for the dry ADF discusses the influence of the ash pond effluent ditch on groundwater west of the proposed site. The former ash pond effluent ditch, shown on **Figure 2**, carried effluent from the ash ponds located north of the plant, and flowed south between the west side of the current landfill and the substation. Groundwater monitoring in December 1977 indicated that sulfate was present at 1,200 milligrams per liter (mg/L) in MW-33A, which was located near the point where the ash pond effluent discharged from a culvert into the effluent ditch. The sulfate concentration at this well decreased to 830 mg/L in the December 1978 sampling (Warzyn, 1979). Current concentrations of sulfate in this area are much lower, but remain above background. The October 2018 sulfate result for MW-33AR (installed to replace MW-33A) was 112 mg/L and at MW-34A were 123 mg/L.

Selected text and tables from the 1978 Feasibility Study and the 1979 Supplementary Feasibility Study Report are included in **Appendix B**.

4.2.2 Long-Term Concentration Trends

Monitoring performed under the state program documents that the concentrations of boron and sulfate were elevated before CCR disposal in the landfill began, and have decreased since the landfill has been in operation. Routine groundwater monitoring for the COL ADF began after the Plan of Operation was approved and prior to initial CCR disposal. The earliest data available from the WDNR Groundwater Environmental Monitoring System (GEMS) database is from September 1984. Initial placement of CCR in test plots in Module 1 of the ADF was approved in October 1984 and CCR disposal began sometime after that. Therefore, the initial groundwater monitoring results in the GEMS database represent pre-disposal conditions for the landfill.

The historic monitoring data show that concentrations of boron and sulfate were significantly higher in the area west of the landfill where the compliance wells are located. Graphs of historical concentrations are provided in **Appendix C**. Results for compliance well MW-33AR are plotted with results from well MW-33A. MW-33AR was a replacement well for MW-33A at a slightly different location and depth. The well screen was installed approximately 10 feet higher in MW-33AR than in MW-33A, intersecting the water table, which may explain the increase in concentration that occurred with the well replacement. Results for compliance well MW-302 are plotted with results from monitoring well MW-85, which was located near the current MW-302 location (see **Figure 2**) and was monitored from September 1984 through September 1995.

The recent boron, chloride, and sulfate concentrations are consistent with generally decreasing or stable historical concentrations at MW-33AR and MW-34A (**Appendix A** and **Appendix C**).

4.2.3 Groundwater Flow Direction Changes

Groundwater flow directions have changed through time due to changes in water management at the plant, so that groundwater impacted by the effluent ditch formerly flowed to the east, under the landfill, and is now flowing west. The 1978 Feasibility Study report states that the southern 2/3 of the proposed fill area (including the area of the active CCR landfill phases) exhibits a southeast and southerly groundwater flow direction, toward an agricultural drainage ditch southeast and south of the landfill area. The 1981 Plan of Operation indicates that flow in the landfill area is to the east-southeast. A water table map prepared by RMT, based on October 2002 water level measurements, shows flow under the landfill generally to the east and northeast from a groundwater high near the effluent ditch and Wisconsin Pollutant Discharge Elimination System (WPDES) pond between the landfill and the substation. The 1981 and 2002 water table maps are provided in **Appendix D**.

Under current conditions, groundwater flow below the active landfill area is generally to the west and northwest. The flow changes with time reflect the termination of discharge to the ash pond effluent ditch in the mid-2000s. When discharge via this ditch was active, the ditch was a source of recharge to the groundwater and created a high groundwater area with flow moving away from the ditch to the east. After discharge to the ditch was terminated, water levels in this area decreased significantly and the groundwater flow direction changed.

With the changes in groundwater flow, historically impacted groundwater moved in alternating directions. While the effluent ditch was active, impacted groundwater likely moved eastward past the current compliance wells, as indicated by the long-term concentration data. Although the compliance wells are downgradient from the landfill under current flow conditions, the observed groundwater impacts may be residual from the past when the wells were downgradient from the effluent ditch.

4.2.4 Chloride and Boron Leachate Concentrations

The chloride results for well MW-33AR increased significantly in October 2016 through April 2018 and decreased between April and October 2018 to concentrations similar to those detected prior to October 2016. Corresponding changes in boron concentrations were not detected during 2016 through 2018, indicating that the source of the increasing chloride was not likely the CCR landfill. Sampling of the landfill leachate pond and the lysimeters indicates that boron and chloride concentrations are generally both elevated in leachate (**Table 4**). An alternative man-made source, such as salt, is a more likely source of chloride than the CCR Units.

5.0 ASD CONCLUSIONS

The lines of evidence discussed above regarding the SSIs reported for boron, chloride, and sulfate concentrations in downgradient monitoring wells MW-33AR, MW-34A, and/or MW-302 demonstrate that the SSIs are likely primarily due to sources other than the CCR Units. Boron, sulfate, and chloride concentrations were elevated prior to disposal of CCR in the landfill and are associated with historical discharges from the ash ponds via the effluent ditch located west of the landfill. Elevated chloride concentrations detected at well MW-33AR appear likely to be related to an alternative non-CCR source, such as salt.

6.0 SITE GROUNDWATER MONITORING RECOMMENDATIONS

In accordance with section 257.94(e)(2) of the CCR Rule, the COL landfill site may continue with detection monitoring based on this ASD. The ASD report will be included in the 2019 Annual Report due January 31, 2019.

7.0 REFERENCES

Harr, C.A., L.C. Trotta, and R.G. Borman, 1978, "Ground-Water Resources and Geology of Columbia County, Wisconsin," University of Wisconsin-Extension Geological and Natural History Survey Information Circular Number 37, 1978.

SCS Engineers (SCS), 2017, Biennial Groundwater Monitoring Report for 2015-2016, Wisconsin Power and Light Company – Columbia Energy Center, Columbia Dry Ash and Ash Ponds Disposal Facilities, Portage, WI, January 2017.

SCS, 2018a, 2017 Annual Groundwater Monitoring and Corrective Action Report, January 2018.

SCS, 2018b, 2017 Alternative Source Demonstration, October 2017 Monitoring Columbia Energy Center Dry Ash Disposal Facility, April 2018.

SCS 2018c, 2018 Alternative Source Demonstration, April 2018 Monitoring Columbia Energy Center Dry Ash Disposal Facility, December 2018.

SCS Engineers, 2019, 2018 Annual Groundwater Monitoring and Corrective Action Report, Columbia Energy Center, January 2019.

U.S. Environmental Protection Agency (USEPA), 2009, Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, EPA 530-R-09-007, March 2009.

USEPA, 2015, Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. April 2015.

Warzyn Engineering, Inc., 1978, Feasibility Study, Proposed Fly Ash and/or Scrubber Sludge Disposal Facility – Columbia Site, Wisconsin Power and Light Company, Town of Pacific, Columbia County, WI, January 1978.

Warzyn Engineering, Inc., 1979, and Preliminary Engineering Concepts, Columbia Site, Wisconsin Power and Light Company, Town of Pacific, Columbia County, WI, January 1978.

Warzyn Engineering, Inc., 1981, Plan of Operation, Ash Disposal Facility, Columbia Generating Station, Wisconsin Power and Light Company, Columbia Site, Town of Pacific, Columbia County, WI, February 1981.

Tables

- 1 Groundwater Analytical Results Detection Monitoring
- 2 Analytical Results Appendix III Constituents with SSIs
- 3 Groundwater Elevations State Monitoring Program and CCR Well Network
- 4 Analytical Results Lysimeters and Leachate Pond

Table 1. Groundwater Analytical Results - Detection Monitoring Columbia Landfill MOD 1-3 / SCS Engineers Project #25218067.18

			Bac	ckground We	lls								Complian	ce Wells					
	Interwell Upper		MW-84A		MW-301			MW-33AR			MW-34A			MW-302					
Parameter Name Upp Predic		Oct-17	Apr-18	Oct-18	Oct-17	Apr-18	Oct-18	Oct-17	Ар	-18	Oct-18	Oct-17	Apr	-18	Oct-18	Oct-17	Ар	r-18	Oct-18
	Prediction Limit (UPL)	10/24/2017	4/25/2018	10/22/2018	10/23/2017	4/25/2018	10/22/2018	10/24/2017	Original 4/24/2018	Retest 9/21/2018	10/22/2018	10/24/2017	Original 4/24/2018	Retest 9/21/2018	10/22/2018	10/24/2017	Original 4/24/2018	Retest 9/21/2018	10/22/2018
Boron, ug/L	37.4	13.8	25.0	10.1 J	34.3	24.3	27.8	678	601	683	682	208	209	241	233	691	1,950	203	296
Calcium, ug/L	138,400	77,500	76,600	74000	87,200	112,000	101,000	98,200	99,800	NA	66,900	69,600	69,600	NA	70,100	94,400	110,000	NA	56,900
Chloride, mg/L	6.52	5.1	4.8	4.2	4.0	2.3	3.2	119	188	32.6	14.4	7.6	8.2	17.1	19.9	6.9	15.0	1.7 J	1.8 J
Fluoride, mg/L	0.3	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	NA	<0.10	<0.10	<0.10	NA	<0.10	<0.10	<0.10	NA	<0.10
Field pH, Std. Units	7.93	7.68	7.45	7.24	7.37	6.76	6.79	7.81	7.74	8.16	7.69	7.67	7.80	8.12	7.64	8.23	7.21	7.74	7.22
Sulfate, mg/L	37.1	2.2 J	2.8 J	1.6 J	27.5	8.6	19.2	175	163	124	112	98	144	141	123	78.4	109	30.0	26.9
Total Dissolved Solids, mg/L	514	314	328	330	362	464	424	606	692	466	388	340	412	460	392	446	598	280	288

Highlighted cell indicates the compliance well result is an SSI. UPLs are based on a 1-of-2 retesting approach; therefore, for the April 2018 semiannual event an SSI is indicated only if both the original result and the September 2018 retest are above the UPL and the LOQ.

Abbreviations:

NA = Not Analyzed

LOQ = Limit of Quantification

LOD = Limit of Detection

SSI = Statistically Significant Increase

UPL = Upper Prediction Limit J = Estimated concentration at or above the LOD and below the LOQ.

Notes:

1. Interwell UPL based on parametric prediction limit based on 1-of-2 retesting methodology for all parameters except fluoride and total dissolved solids. Parametric UPL for sulfate calculated using natural logarithm transformed data.

2. Interwell UPL for fluoride is non-parametric based on quantitation limit. UPL for total dissolved solids based on non-parametric

prediction limit (highest background value). Non-parametric UPLs are based on 1-of-2 retesting methodology.

3. Interwell UPLs calculated from background well results for December 2015 through October 2017.

Created by:	NDK	Date:	5/1/2018
Last revision by:	NDK	Date:	3/2/2019
Checked by:	NAS	Date:	3/6/2019

I:\25216067.00\Deliverables\2019 ASD LF 1-3 1810\Tables\1810_tables\[1_CCR GW Screening Summary_COL LF_updated.xlsx]Table

Table 2. Analytical Results - Appendix III Constituents with SSIsCCR Landfills, Columbia Generation StationPardeeville, Wisconsin

Well Group	Well	Collection Date	Boron (µg/L)	Chloride (mg/L)	Sulfate (mg/L)
		12/22/2015	26.5	3.7 J	9.3
		4/5/2016	25.2	4	15.3
		7/8/2016	23.6	3.5 J	15
		10/13/2016	30.6	2.2	13.9
		12/29/2016	32.8	2 J	12.3 J
	MW-301	1/25/2017	32.6	1.5 J	6.5
		4/11/2017	28.8	2	10.3
		6/6/2017	21.3	3.5	17.1
		8/8/2017	30.6	5.5	31.6
Φ		10/23/2017	34.3	4	27.5
ac		4/25/2018	24.3	2.3	8.6
Background		10/22/2018	27.8	3.2	19.2
rol		12/22/2015	11.9	4.9	4.9
our		4/5/2016	14	4.7	4.3
~		7/8/2016	14.7	5.1	3.7 J
		10/13/2016	11.1	4.3	2.6 J
		12/29/2016	14.7	4.7	2.7 J
	MW-84A	1/25/2017	16.1	4.6	3
	10100-047	4/11/2017	12.9	4.9	2.8 J
		6/6/2017	14.8	5.5	2.7 J
		8/8/2017	22.9	5.5	2 J
		10/24/2017	13.8	5.1	2.2 J
		4/25/2018	25	4.8	2.8 J
		10/22/2018	10.1 J	4.2	1.6 J
		12/22/2015	80	4.2	37.4
	MW-302	4/5/2016	78.8	4.1	55.6
		7/7/2016	134	3.1 J	35.4
		10/13/2016	132	1.1 J	64.7
		12/29/2016	106	1.2 J	56.4
		1/25/2017	149	1.6 J	61.6
		4/11/2017	322	1.6 J	81.3
		6/6/2017	671	3.5	84.6
		8/8/2017	833	4.5	79
Compliance		10/24/2017	691	6.9	78.4
		4/24/2018	1,950	15	109
		9/21/2018	203	1.7 J	30
		10/22/2018	296	1.8 J	26.9
		12/21/2015	954	10.6	96.2
	MW-33AR	4/5/2016	813	12.5	91.5
		7/7/2016	794	12.5	99.2
		10/13/2016	827	52.5	124
		12/29/2016	812	39.6	132
		1/25/2017	763	41.4	133
		4/11/2017	760	47.1	139
		6/6/2017	692	68.1	151
		8/7/2017	697	105	164
		10/24/2017	678	119	175
		4/24/2018	601	188	163
	ļ	9/21/2018	683	32.6	124
		10/22/2018	682	14.4	112

Table 2. Analytical Results - Appendix III Constituents with SSIs

CCR Landfills, Columbia Generation Station

Pardeeville, Wisconsin

Well Group	Well	Collection Date	Boron (µg/L)	Chloride (mg/L)	Sulfate (mg/L)
		12/21/2015	230	4.9	69.9
		4/5/2016	220	5.1	71.6
		7/7/2016	216	5.6	63.4
		10/13/2016	212	6.8	54.8
S		12/29/2016	224	7.1	63.9
m		1/25/2017	214	7.2	71.2
Compliance	MW-34A	4/11/2017	214	6.2	87.6
and		6/6/2017	201	7.8	106
e		8/7/2017	205	7.4	105
		10/24/2017	208	7.6	98
		4/24/2018	209	8.2	144
		9/21/2018	241	17.1	141
		10/22/2018	233	19.9	123

Abbreviations:

µg/L = micrograms per liter or parts per billion (ppb)

mg/l = milligrams per liter or parts per million (ppm) J = Estimated value below the laboratory's limit of quantitation

Notes:

(1) Analytical laboratory reports provided in the 2017 Annual Groundwater Monitoring and Corrective Action Report.

Created by: NDK	Date:	3/13/2018
Last revision by: NAS	Date:	3/6/2019
Checked by: MDB	Date:	3/27/2019

I:\25216067.00\Deliverables\2019 ASD LF 1-3 1810\Tables\1810_tables\[2 and 3_COL LF ASD.xlsx]Table 2. Analy. Rslts- CCR

Table 3. Groundwater Elevations - State Monitoring Program and CCR Well Network

CCR Landfill Modules 1-3, Columbia Generating Station Pardeeville, Wisconsin

	Well Number	MW-1AR	MW-5R	MW-33AR	MW-33BR	MW-34A	MW-34B	MW-37A	MW-83	MW-84A	MW-84B	MW-86	MW-91AR	MW-91B	MW-92A	MW-92B
	Top of Casing Elevation (feet amsl)	822.55	805.44	808.29	808.39	805.95	806.05	813.04	807.96	814.28	814.26	824.79	809.03	808.45	808.47	808.41
	Screen Length (ft)															
	Total Depth (ft from top of casing)	44.40	25.97	31.08	57.50	35.43	56.95	31.80	25.42	40.21	52.02	45.43	32.90	52.38	28.94	51.75
	Top of Well Screen Elevation (ft)	778.15	779.47	777.21	750.89	770.52	749.10	781.24	782.54	774.07	762.24	779.36	776.13	756.07	779.53	756.66
Dry Ash	Measurement Date															
Facility	April 4-6, 2016	785.82	787.02	785.29	785.07	785.63	785.67	784.76	785.43	786.37	786.26	785.89	786.05	785.95	786.61	786.21
	October 3-5, 2017	785.48	786.66	784.51	784.22	784.67	784.63	784.86	784.29		786.49	785.58	786.08	785.83	786.47	786.02
	October 9-10, 2017									785.56 ⁽²⁾						
	April 23-25, 2018	783.99	785.36	783.09	786.36	781.77	780.79	783.28	783.32	785.88	784.91	782.54	784.71	784.53	785.23	784.81
	October 23-25, 2018	788.25	789.71	788.77	787.96	787.88	787.73	787.62	788.26	788.32	788.19	788.21	788.59	788.31	789.32	788.87
	Bottom of Well Elevation (ft)	778.15	779.47	777.21	750.89	770.52	749.10	781.24	782.54	774.07	762.24	779.36	776.13	756.07	779.53	756.66
												-	-			
	Well Number	M-3	M-4R	MW-39A	MW-39B	MW-48A	MW-48B	MW-57	MW-59	MW-216R	MW-217	MW-220RR				
	Top of Casing Elevation (feet amsl)	788.23	806.10	809.62	809.50	828.86	828.84	786.29	815.48	814.21	791.55	792.90				
	Screen Length (ft)															
	Total Depth (ft from top of casing)	16.90	25.55	34.80	76.07	51.88	75.80	14.40	38.50	37.85	37.37	18.96				
Ash Pond	Top of Well Screen Elevation (ft)	771.33	780.55	774.82	733.43	776.98	753.04	771.89	776.98	776.36	754.18	773.94				
Facility	Measurement Date															
raciiity	April 4-6, 2016	784.21	789.09	785.27	785.27	784.79	784.76	783.21	784.97	785.68	785.02	784.36				
	October 3-5, 2017	780.93	787.04	783.35	783.18	784.30	784.19	782.37	784.23	783.89	782.48	782.61]			
	April 23-25, 2018	782.89	790.43	782.86	782.87	783.14	783.09	783.04	783.02	783.23	783.26	783.45	1			
	October 22-24, 2018	782.95	788.47	787.12	786.88	787.12	786.99	783.48	787.73	787.49	784.90	784.52	4			
	Bottom of Well Elevation (ft)	771.33	780.55	774.82	733.43	776.98	753.04	771.89	776.98	776.36	754.18	773.94]			

	Well Number	MW-301	MW-302	MW-33AR	MW-34A	MW-84A
	Top of Casing Elevation (feet amsl)	806.89	813.00	808.29	805.95	814.28
	Screen Length (ft)	10	10	10	10	10
	Total Depth (ft from top of casing)	29.40	33.6	31.08	35.43	40.21
	Top of Well Screen Elevation (ft)	787.49	789.40	787.21	780.52	784.07
	Measurement Date					
	April 4-5, 2016	786.78	785.81	785.29	785.63	786.37
	July 7-8, 2016	786.31	786.28	785.19	785.05	785.89
	July 28, 2016	NM	NM	NM	784.86	785.61
CCR Rule	October 11-13, 2016	787.64	787.76	787.36	786.45	787.22
Wells	December 29, 2016	787.37	787.05	785.66	785.72	786.63
	January 25-26, 2017	787.27	786.89	785.88	785.98	786.70
	April 10 & 11, 2017	787.89	787.55	786.39	786.30	787.16
	June 6, 2017	788.25	788.37	787.27	786.66	787.63
	August 7-9, 2017	787.34	787.55	786.11	785.81	786.68
	October 23-24, 2017	785.89	785.94	784.13	784.50	785.32
	April 23-25, 2018	785.29	784.37	783.09	781.77	785.88
	September 21, 2018	NM	788.37	787.90	787.01	NM
	October 22-24, 2018	788.98	789.16	788.77	787.88	788.32
	Bottom of Well Elevation (ft)	771.33	780.55	771.89	776.98	776.36

Notes:	Created by: MDB	Date: 5/6/2013
NM = not measured	Last revision by: NAS	Date: 3/6/2019
	Checked by: MDB	Date: 3/27/2019

Water Levels collected during sample collection.
 The depth to water at MW-84A was not measured prior to purging for sampling during the October 3-5, 2017 sampling event. The level was allowed to return to static and was measured on 10/10/2017.

I:\25216067.00\Deliverables\2019 ASD LF 1-3 1810\Tables\1810_tables\[2 and 3_COL LF ASD.xlsx]Table 3. GW Elevations

Monitoring Point	Monitoring Period	Monitoring Point Dry/ Broken	Boron, Total (µg/L)	Chloride, Total (mg/L)	Sulfate, Total (mg/L)
LS-1	2015-Apr	DRY			
	2015-Oct	BROKEN			
	2016-Apr	DRY			
	2016-Oct		6530	12.3	789
	2017-Apr		6510	20.7 J	814
	2017-Oct		6200	14.2 J	764
	2018-Apr		5920	16 J	856
	2018-Oct	DRY			
LS-3R	2015-Apr		6480	20.6 B	807
	2015-Oct	DRY			
	2016-Apr	DRY			
	2016-Oct	DRY			
	2017-Apr	DRY			
	2017-Oct	DRY			
	2018-Apr	DRY			
	2018-Oct		6180	26.2 J	841
LP-1	2015-Apr		4060	27.8	734
	2015-Oct		4300	37.1	820
	2016-Apr		1830	26.8	416
	2016-Oct		4610	71.5	835
	2017-Apr		2690	66.3	587
	2017-Oct		4970	91.7	739
	2018-Apr		2060	63.2	634
	2018-Oct		2630	151	907

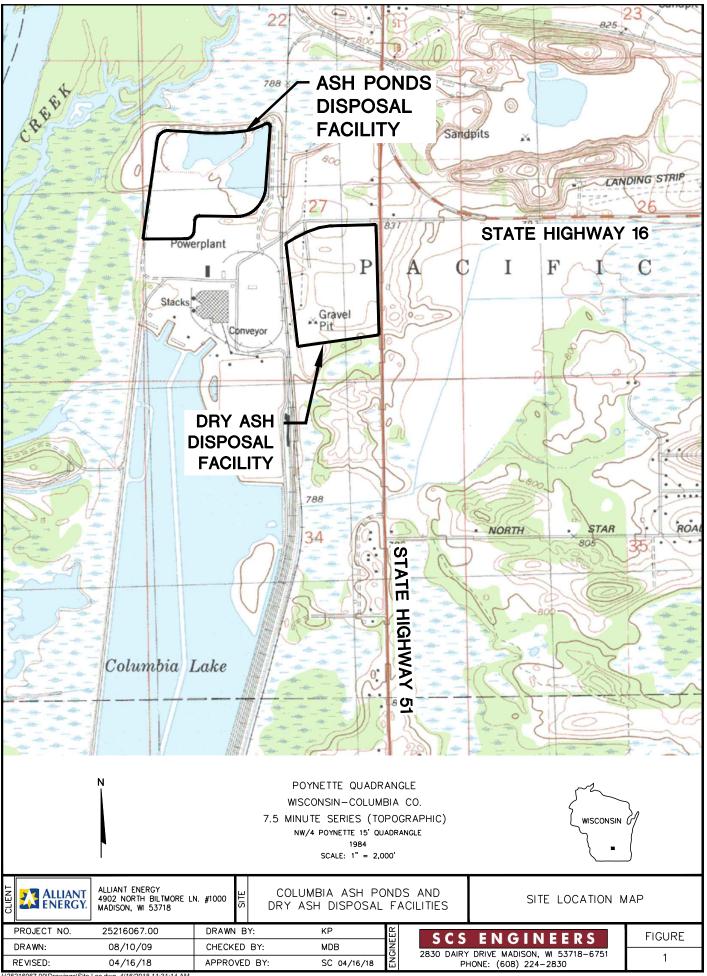
Table 4. Analytical Results - Lysimeters and Leachate PondWisconsin Power and Light - Columbia Dry Ash Disposal FacilitySCS Engineers Project #25216067

Abbreviations:

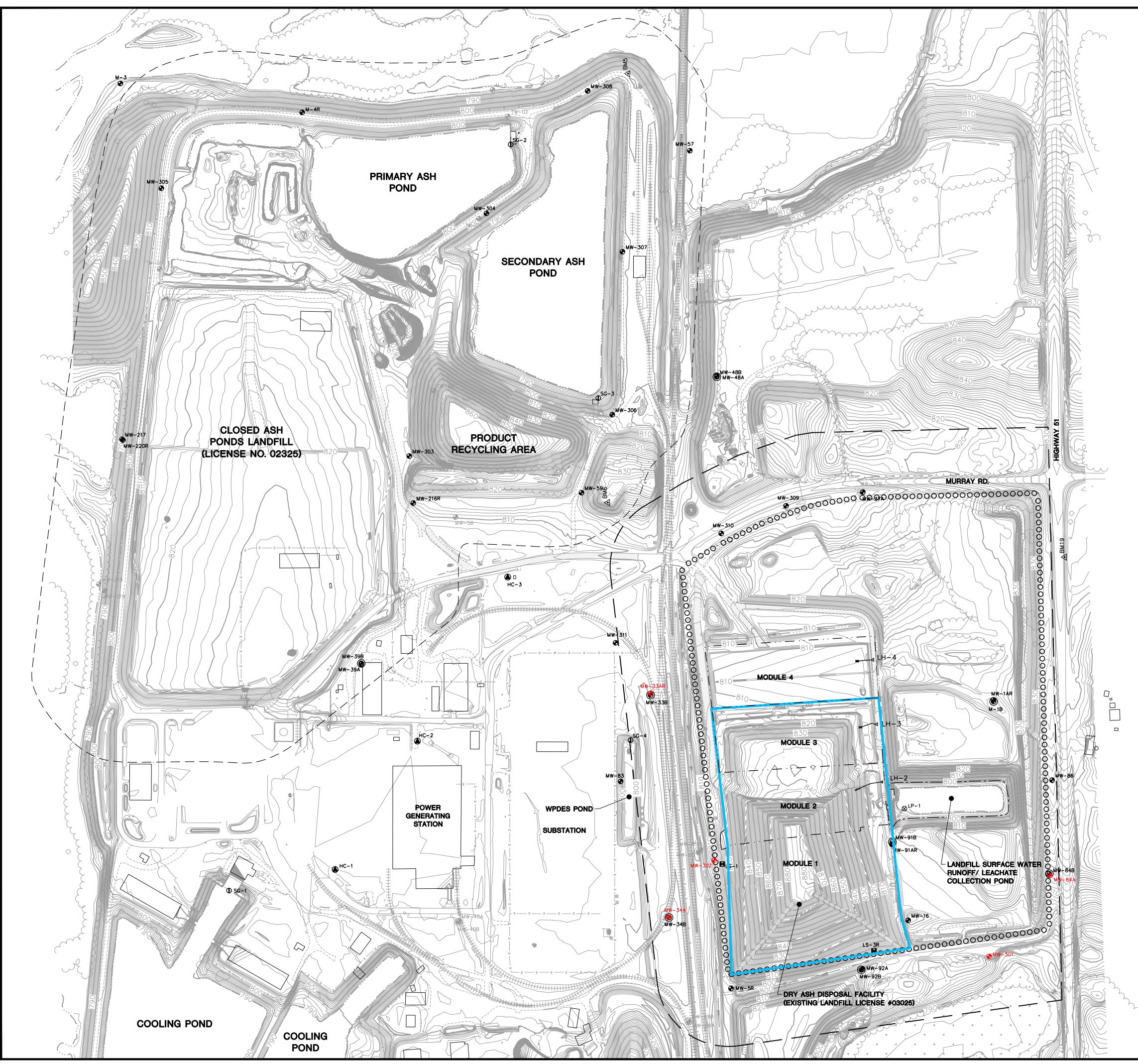
µg/L = micrograms per liter mg/L = milligrams per liter

-- = not analyzed µmhos/cm = micromhos/centimeter

Notes:

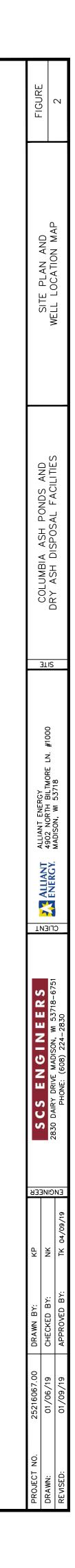

J = Estimated concentration at or above the LOD and below the LOQ.

Created by:	TLC	Date	12/1/2014
Last revision by:	NDK	Date	3/17/2019
Checked by:	MDB	Date	3/27/2019


I:\25216067.00\Deliverables\2019 ASD LF 1-3 1810\Tables\1810_tables\[4_Leachate_2015_2016_2018.xlsx]Lys LP1 App

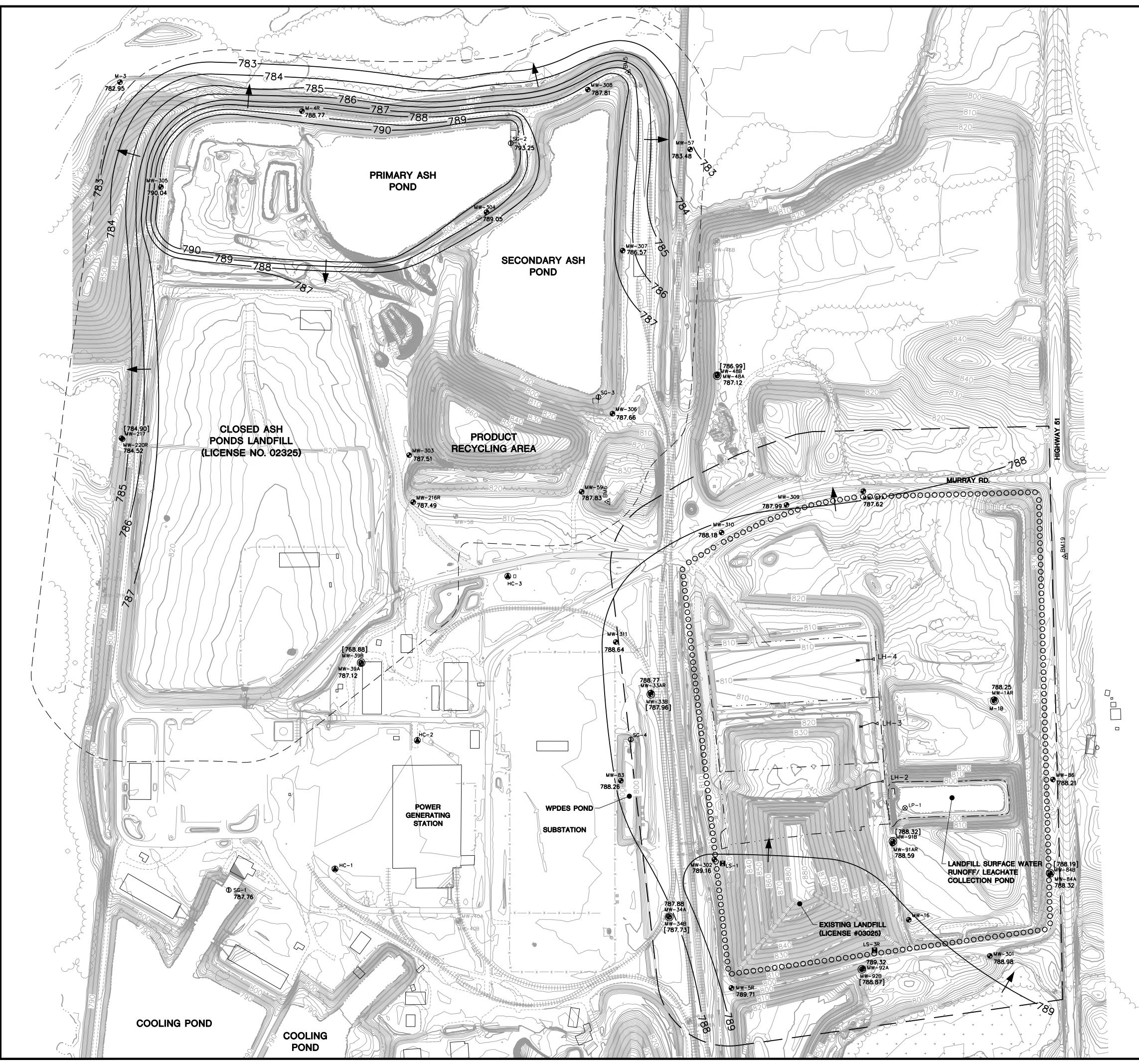
Figures

- 1 Site Location Map
- 2 Site Plan and Well Location Map
- 3 Water Table Map October 2018


:\25216067.00\Drawings\Site Loc.dwg, 4/16/2018 11:31:14 AM

	LEGEND
810	EXISTING MAJOR CONTOUR (10' INTERVAL)
	EXISTING MINOR CONTOUR (2' CONTOUR)
x x x x	EXISTING FENCELINE
	EXISTING TRACKS
	EXISTING PAVED ROAD
	EXISTING UNPAVED ROAD
	EDGE OF WATER
	DESIGN MANAGEMENT ZONE
.000000000	APPROVED LIMITS OF WASTE
· · · · · ·	CONSTRUCTED LIMITS OF WASTE
۲	WATER SUPPLY WELL
Φ	STAFF GAUGE
•	WATER TABLE WELL
۲	PIEZOMETER
\otimes	SURFACE WATER SAMPLE LOCATION
	LYSIMETER
Ð	ABANDONED WATER TABLE WELL
۲	ABANDONED PIEZOMETER
	LEACHATE HEADWELL
	MOD 1-3 CCR UNIT
•	CCR MONITORING WELL

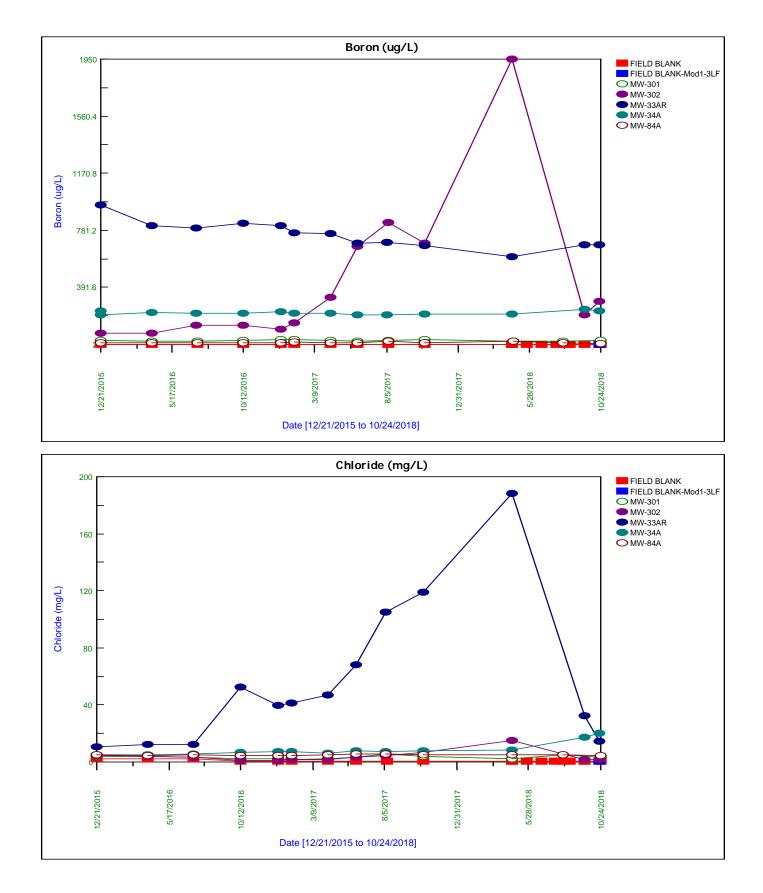
NOTES:


- 1. BASE MAP CREATED FROM AERIAL SURVEY BY KBM, FLOWN DECEMBER 1, 2014, AND GROUND SURVEY BY SCS ENGINEERS IN MAY 2016, JUNE 2016, OCTOBER 2016, NOVEMBER 2016, APRIL 2017, NOVEMBER 2017, JULY 2018, AND AUGUST 2018.
- 2. MONITORING WELL LOCATIONS AND ELEVATIONS SURVEYED BY WISCONSIN POWER AND LIGHT, INC. IN DECEMBER 1994, NOVEMBER 1996, APRIL 2003, AND AUGUST 2012.
- 3. SUPPLY WELL LOCATIONS ARE APPROXIMATE AND ASSUMED BASED ON JANUARY 2013 DRAWINGS BY TRC.
- 4. THE LOCATIONS OF THE ASH PONDS FACILITY DESIGN MANAGEMENT ZONE DEMARCATION LINES ARE APPROXIMATE AND BASED ON THE WATER TABLE MAP (OCTOBER 2012) FIGURE BY RMT.
- 5. THE LOCATION OF THE ACTIVE DRY ASH LANDFILL DESIGN MANAGEMENT ZONE DEMARCATION LINE IS BASED ON A 300 FOOT OFFSET FROM THE DESIGN LIMITS OF ASH EXCEPT WHERE OFFSET WOULD EXTEND LINE BEYOND PROPERTY LINE.

200

200

SCALE: 1" = 200'



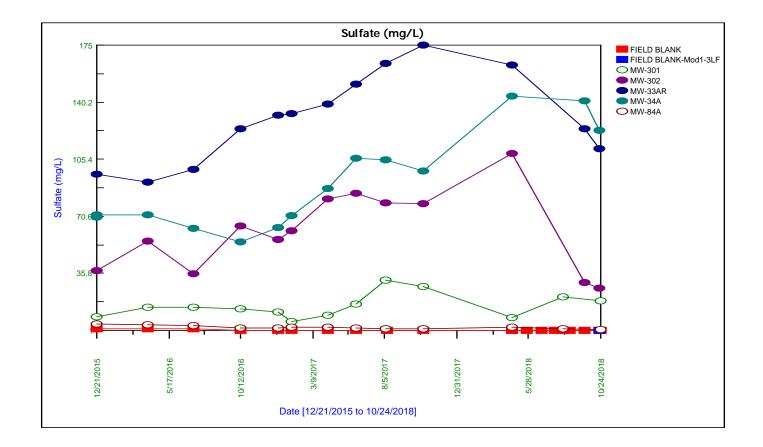
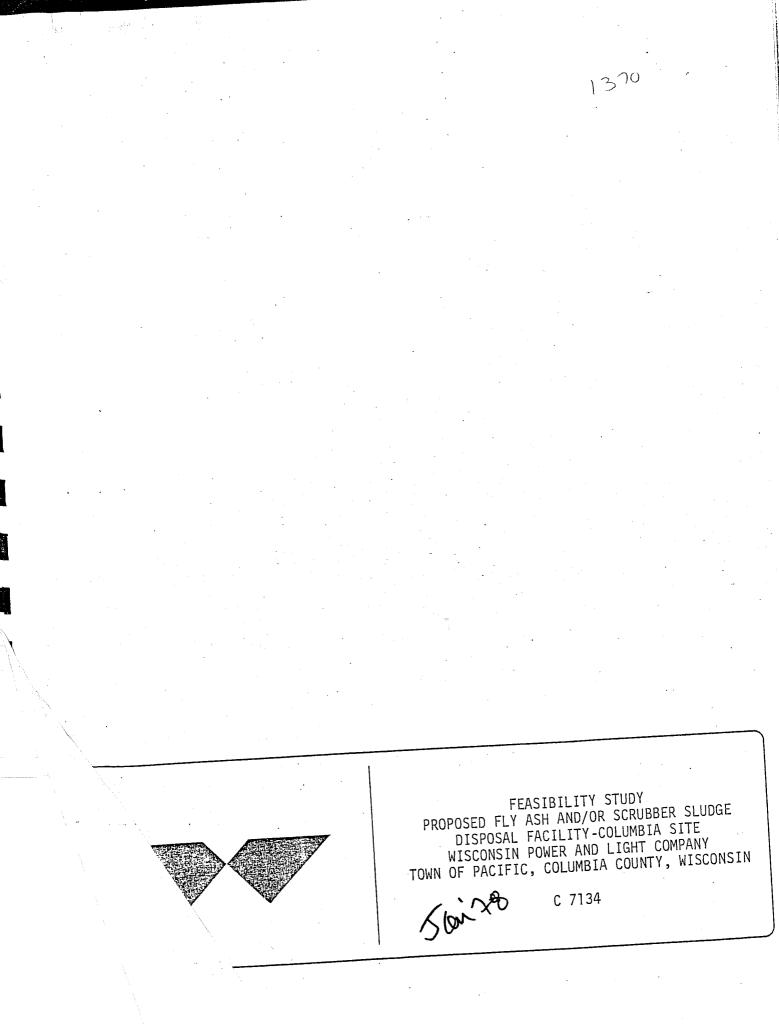

:216067.00\Drawings\Wtbl_Oct 2018.dwg, 4/9/2019 10:15:56 AM

			FIGURE
	LEGEND		MAP 18
x x x x	EXISTING MAJOR CONTOUR (10' INTERVAL) EXISTING MINOR CONTOUR (2' CONTOUR) EXISTING FENCELINE EXISTING TRACKS		WATER TABLE MA OCTOBER 2018
	EXISTING PAVED ROAD EXISTING UNPAVED ROAD EDGE OF WATER DESIGN MANAGEMENT ZONE		
۲	APPROVED LIMITS OF WASTE CONSTRUCTED LIMITS OF WASTE WATER SUPPLY WELL STAFF GAUGE		PONDS AND SAL FACILITIES
© ⊕ ⊗ ⊠	WATER TABLE WELL PIEZOMETER SURFACE WATER SAMPLE LOCATION LYSIMETER		COLUMBIA ASH POND RY ASH DISPOSAL F
•	ABANDONED WATER TABLE WELL ABANDONED PIEZOMETER LEACHATE HEADWELL		
787.62 [788.87]	WATER TABLE ELEVATION MEASURED OCTOBER 2018 POTIENTIOMETRIC SURFACE ELEVATION MEASURED OCOTBER 2018 (NOT CONTOURED WATER TABLE CONTOUR))	#1000
FLOWN DECEM	EATED FROM AERIAL SURVEY BY KBM, BER 1, 2014, AND GROUND SURVEY BY		ET SALLANT ALLIANT ENERGY 4902 NORTH BILTMORE LN. MADISON, WI 53718
2016, NOVEMB JULY 2018, AN 2. MONITORING W SURVEYED BY	S IN MAY 2016, JUNE 2016, OCTOBER ER 2016, APRIL 2017, NOVEMBER 2017, ND AUGUST 2018. ELL LOCATIONS AND ELEVATIONS WISCONSIN POWER AND LIGHT, INC. IN		R S 18-6751
AUGUST 2012. 3. SUPPLY WELL ASSUMED BAS 4. THE LOCATION	LOCATIONS ARE APPROXIMATE AND ED ON JANUARY 2013 DRAWINGS BY TRC. S OF THE ASH PONDS FACILITY DESIGN		NGINEE E MADISON, WI 537
APPROXIMATE (OCTOBER 201 5. THE LOCATION DESIGN MANAG BASED ON A LIMITS OF ASH	ZONE DEMARCATION LINES ARE AND BASED ON THE WATER TABLE MAP 2) FIGURE BY RMT. OF THE ACTIVE DRY ASH LANDFILL GEMENT ZONE DEMARCATION LINE IS 300 FOOT OFFSET FROM THE DESIGN EXCEPT WHERE OFFSET WOULD EXTEND PROPERTY LINE.		SCS E
		N	
			DRAWN BY: CHECKED BY:
		200 0 20 SCALE: 1" = 200'	O 25216067.00 01/03/19
			PROJECT NO. DRAWN:

Appendix A


Trend Plots for CCR Wells

Appendix B

Feasibility Study Water Quality Information

conceivable that groundwater flow in the area north of Murray Road may be altered such that contaminants derived from the present ash settling basin might be diverted southerly towards the homes along Murray Road. These questions would have to be addressed in greater detail, consistent with the goals of Wisconsin Power and Light Company.

-27-

WATER QUALITY

During the first two weeks of December, 1977, 64 water samples were obtained from surface waters and groundwater monitoring wells at the Columbia Energy Center. The purpose of the sampling was to assess background water quality in the vicinity of the proposed disposal site. The sampling stations included 59 monitoring wells, the cooling lake, ash settling pond, the drainage ditch carrying the ash pond discharge waters and the agricultural drainage ditch along the southern boundary of the site. Due to the large number of sampling stations, the analyses were limited to pH, specific conductance, iron, calcium, magnesium, sulfate and chloride. The analytical data is contained in Appendix F and is discussed below.

<u>рН</u>

Most groundwaters found in the United States have pH values ranging from around 6.0 to 8.5. The pH of a water represents the result of a number of interrelated chemical equilibria. This equilibria can be altered shortly after sampling by gains or losses of carbon dioxide, the oxidation of ferrous iron and numerous other chemical reactions. Thus, pH measurements must be taken shortly after obtaining the sample. For this study, the pH of samples was determined immediately upon return to the laboratory.

Within the proposed site boundaries at the Columbia Energy Center, pH values ranged between 6.3 and 8.1 and averaged 7.5. Typically, the lower pH values were observed in the lowland areas and wetlands, probably as a result of acidic organic soils. The pH of water in the ash disposal settling pond and the cooling lake was 11.4 and 8.3, respectively.

-28-

SPECIFIC CONDUCTANCE

Specific conductance, or conductivity, is the ability of a substance to conduct an electric current. The conductance determination is correlative with the dissolved-solids concentration. Conductivity, however, is temperature dependent and thus requires the reference of specific conductance measurements to a standard temperature. The values discussed here are referred to 25°C.

The specific conductance of groundwater in the study area ranged from 220 umhos/cm to a maximum of 2600 umhos/cm. The highest conductivity readings were observed in monitoring wells located along the coal storage area and the drainage ditch carrying the ash pond discharge where values up to 2600 umhos/cm were measured. The conductivity of the ash pond effluent was 1380 umhos/cm. This data appears to confirm earlier speculation of infiltration of effluent from the ash pond discharge channel and from the coal storage area into the groundwater. Conductance within the proposed site boundaries averaged approximately 465 umhos/cm.

Conductivity in the ash disposal settling pond was measured at 1510 umhos/cm. Shallow monitoring wells M-6 and 39A, located adjacent to the pond also exhibited elevated values of 1160 umhos/cm and 1800 umhos/cm, respectively.

High conductivities were also observed along U. S. Highway 51 at monitoring wells 51A and 51B. The chloride data, discussed below, indicates infiltration of road salt has probably occurred at this location.

Specific conductance measurements obtained in the vicinity of the proposed disposal site are shown on Drawing C 7134-15.

IRON

The element iron is an abundant element found in most rocks and soil. It generally occurs as sulfides and oxides in igneous and metamorphic rocks and as iron oxide and hydroxide cementing materials in coarse-grained sedimentary rocks.

Ferrous iron is unstable in the presence of oxygen where it is bound to hydroxide anions as $2Fe(OH)_3$.

 $2Fe^{++} + 4HCO_3^{-} + H_2O \implies 2Fe(OH)_3 + 4CO_2$

If subjected to a strong reducing environment, such as a marsh, the reaction is reversed and iron goes back into solution. The amount which dissolves is related to a number of variables including the velocity with which water moves through this environment.

The U. S. Public Health Service recommends an iron concentration of less than 0.3 mg/l in water used for drinking and culinary purposes. Laundry and porcelain tend to be stained when concentrations reach 0.5 to 1.0 mg/l. At this level it can also be tasted.

The presence of iron under the proposed disposal area in the majority of cases was below the detection limit of 0.1 mg/l. In monitoring wells 5 and 18, located in or near the central marsh area, iron increased to 10 mg/l and 5.7 mg/l, respectively. In the southern marsh, monitoring wells exhibited concentrations between 0.5 mg/l and 6.1 mg/l. Although the iron concentration in the cooling lake was below the detection limit, down-gradient wells 44 and 30A located on the cooling lake dike yielded values of 11 mg/l and 26 mg/l iron respectively. Boring logs indicated trace amounts of organic material at the base of the dike which is probably the reason for the high concentrations observed. At the same location, iron in well 30B installed to a depth of 100 feet below the surface was below 0.1 mg/l. Thus, the occurrence of high iron concentrations in this area appears restricted to groundwater in the upper portion of the aquifer where organic material is present and conditions are favorable for the dissolution of iron.

The ash pond discharge in the drainage ditch paralleling the west site boundary showed an iron concentration of 3.7 mg/l. Shallow monitoring wells 33A and 34A adjacent to the ditch indicated less than 0.1 mg/l iron.

North of Murray Road the iron concentration in monitoring wells in the marsh and uplands were typically less than 0.1 mg/l. Although the ash basin had less than 0.1 mg/l iron, several wells along cross-section F-F' showed anomalously high values (#M6-2.3 mg/l; #47-16 mg/l; #51B-21 mg/l). CALCIUM

Calcium, because of its relative abundance and mobility, is the principle cation in most natural fresh water. Calcium is a constituent of many rock types but is found in greatest quantities in waters leaching deposits of limestone and dolomite. In sandstone and other detrital rock, calcium carbonate is a common cement between grains.

-30-

Monitoring wells located within the site boundaries exhibited calcium concentrations between 30 mg/l and 66 mg/l and averaged about 42 mg/l. Similar to iron, the concentrations of calcium in monitoring wells along cross-section F-F' were anomalously high, up to 150 mg/l calcium. Water table wells along the drainage ditch carrying the ash pond discharge averaged 83 mg/l while the ash pond effluent contained 28 mg/l. Generally the amount of calcium in groundwater decreased with depth. Nested monitoring wells typically showed somewhat lower concentrations of calcium in the deeper wells.

-31-

MAGNESIUM

As a relatively abundant element on the earth's crust, the principle sources of magnesium in natural waters are considered to be ferromagnesian minerals in igneous rocks and magnesium carbonate in carbonate rocks (limestone and dolomite). Waters in which magnesium is the predominant cation are somewhat unusual. Like calcium, magnesium imparts the property of hardness to water and is, therefore, of concern to industrial users.

Generally, concentrations of magnesium were 1/3 to 1/2 of the calcium levels. Magnesium concentrations within the site boundaries ranged between 10 mg/l and 36 mg/l and averaged 27 mg/l. Similar to calcium and iron, higher magnesium values were observed, in general, north of Murray Road and especially in monitoring wells along cross-section F-F'.

SULFATE

Sulphur is widely distributed in reduced form in both igneous and sedimentary rocks as metallic sulfides and when present in sufficient concentrations, constitutes ore of economic importance. During weathering processes with aerated water, the sulfides are oxidized to sulfate ions and are dissolved into water. Pyrite (FeS₂) crystals often occur in sedimentary rocks and are particularly associated with biogenic deposits such as coal which were deposited under strongly reducing conditions.

-32-

The concentrations of sulfate in groundwater in the vicinity of the proposed disposal site ranged from less than 1 mg./1 to 1,200 mg./1 of sulfate. (Refer to Drawing C 7134-15.) Typically, within the site boundaries concentrations averaged approximately 12 mg./1. Near the coal storage area, however, significant increases were observed. Observation wells 26A, 26B, and 42 exhibited concentrations between 900 and 1100 mg./1. The depth of sulfate enrichment in groundwater, near the coal pile, appears to extend to considerable depths, indicated by relatively high sulfate concentrations in Well 26B sealed 100 feet below ground surface. The oxidation of pyrite minerals in the coal leaching into the groundwater is probably the major source of the high concentrations observed.

Sulfate concentrations in the ash disposal settling pond were 520 mg./l. In the ditch carrying the ash pond discharge, the effluent is treated with sulfuric acid which results in precipitation of barium sulfate and aluminum hydroxide (personal communication, Merlin Horn, 1978). Consequently, the sulfate concentration of the effluent waters is lowered considerably to 13 mg./l. Well 33A, however, located near the point of effluent discharge, exhibited 1200 mg./l sulfates.

CHLORIDE

Chloride is generally present in much lower concentrations in rocks than many of the other major constituents of natural water. Important sources, however, are associated with sedimentary rocks, particularly the evaporites. The chemical behavior of chloride in natural water is relatively inert compared to the other major ions. There are few oxidation-reduction reactions and no significant chemical complexing reactions which chloride enters into. In addition, chloride ions are not significantly adsorbed on mineral surfaces. For these reasons, chloride is commonly used as a tracer in groundwater.

Chloride concentrations in groundwater in the vicinity of the Columbia Energy Center typically range between 0.5 mg./l and 30 mg./l. The highest concentrations in monitoring wells tended to be located adjacent to U. S. Highway 51 where the use of road salt has resulted in the percolation of chloride into the groundwater. Monitoring Wells 51A and 51B located in a low area north of Murray Road along U. S. Highway 51, yielded chloride concentrations in excess of 200 mg./l. Two other wells, 52A and 19, also located along U. S. Highway 51, yielded values of 30 mg./l and 42.5 mg./l chloride, respectively.

Within the proposed site boundaries, the chloride concentration averaged 7.1 mg./l. Excluding the few wells adjacent to U. S. Highway 51 exhibiting elevated concentrations, no other significant trends in the occurrence of chloride were observed.

-33-

C 7134

SUMMARY

In summary, the groundwater in the vicinity of the proposed disposal site exhibited a somewhat alkaline pH. In lowland areas, the pH was typically below 7.0, probably a result of the presence of acidic organic soils.

-34-

Specific conductance within the proposed site averaged 465 umhos/cm. Conductivities up to 2600 umhos/cm were observed, however, in the vicinity of the coal storage area, the present ash disposal pond and ash pond effluent channel where infilatration of water from these sources is occurring into the groundwater system.

The groundwater typically exhibted relatively low iron concentrations although, locally, concentrations in excess of drinking water standards were observed in about 20% of the wells. The occurrence of the higher iron concentrations appears to be related to the presence of organic soils.

Groundwater at the proposed site also tended to exhibit high calculated hardness (216 mg./1) based on average observed values for calcium (42 mg./1) and magnesium (27 mg./1). Dissolution of limestone and dolomite rocks in the glacial drift are the probable sources of these elements in the groundwater.

Enrichment of sulfate in groundwater has occurred as a result of leaching of pyrite (FeS₂) minerals from the coal storage area where concentrations up to 1200 mg./l were observed. The depth of this enrichment appears to extend beyond the maximum depth into the aquifer investigated. Sulfate concentrations decreased rapidly away from the coal storage area to an average of 12 mg./l within the proposed site boundaries. Other local sources of sulfate in groundwater appear to be related to the present ash settling pond.

The concentration of chloride within the proposed site averaged 7.1 mg./l. Higher levels were generally observed in wells adjacent to U. S. Highway 51 where the infiltration of road salt has locally raised chloride concentrations.

The above interpretations are based on one round of water quality sampling only and should be considered as preliminary in nature. High sulfate and chloride concentrations observed at greater depths may be a temporary condition resulting from contamination of spoil backfill materials with coal dust or salt, respectively, during installation of the monitoring well. Future sampling of these monitoring wells will help to distinguish short term contamination from actual conditions existing in the aquifer.

APPENDIX F WATER QUALITY DATA and Maria Maria A

1999年1月1日日本の時間にためにおります。

WELL NO.	рH	SPECIFIC CONDUCTANCE (umhos/cm @ 25°C)	SULFATE (mg/1)	CHLORIDE (mg/1)	CALCIUM (mg/1)	MAGNESIUM(mg/1)	IRON (<u>mg/1</u>)
1A	7.6	550	17.	6.5	52	37	<0.1
1B	8.05	460	16.	10.5	39	31	<0.1
, 2	7.8	527	14.	2.5	45	32	<0.1
ЗA	7.5	548	13.	2.5	58	36	<0.1
3B	8.1	506	14.	7.0	50	34	<0.1
4	7.8	580	10.	4.0	59	34	<0.1
5	6.3	560	210.	12.5	13	29	10
16	7.6	408	12.	1.5	42	28	<0.1
17	6.45	350	30.	16.5	16	13	0.6
18	6.45	380	4.	4.5	33	22	5.7
19	7.9	570	10.	42.5	44	24	<0.1
20	8.0	340	10.	5.0	36	24	<0.1
21	6.9	220	20.	4.5	23	10	0.1
24A 24B	7.45	775	18.	6.0	76	52	0.1
24B 25	7.85 8.1	440	15.	6.0	43	31	0.1
25 26A	7.2	300 2100	10.	2.5	29	20	<0.1
26B	7.5	2600	900	17.0	140	48	1.5
205	7.15	400	1100	16.5	43	7.0	0.2
28A	7.75	500	6. 3.	8.0	23	18.	<0.1
28B	7.6	480		0.5	48	31	<0.1
29A	7.8	330	4. 16.	3.5	39	28	<0.1
30A	6.75	920	64.	1.5	33	21	0.5
30B	7.6	770	210	11.0	38	30	26
33A	8.2	2500	1200	21.0	37	• 19	<0.1
33B	7.9	390	22.	24.0 6.5	83	50	<0.1
34A	7.7	680	140.		31	27	0.2
34B	7.7	1700	660	10.0	58	45	0.1
35	6.8	740	<1.0	15.0	48	22	<0.1
36	6.8	740	<1.0	4.0	66 53	33	2:9
37A	7.7	460	9.	4.0	48	35	6.1
37B	7.5	630	73.	7.5	48	31	0.8
39A	7.5	1800	350	22.0	180	35	<0.1
39B	7.9	330	560	20.5	31	100	0.1
40A	8.0	630	140	8.5	43	22	0.1
40B	8.1	330	17.	3.0	31	29	<0.1
41	6.8	590	16.	11.0	58	27	<0.1 9.3
							7.5

Appendix F · Page 2

WELL NO.	рH	SPECIFIC CONDUCTANCE (umhos/cm @ 25°C)	SULFATE (mg/1)	CHLORIDE (mg/1)	CALCIUM (mg/1)	MAGNESIUM (mg/1)	IRON (<u>mg/1</u>)
42	7.4	2400	900	17.5	50	. 12	0.5
44	6.9	490	<1.	16.5	39	23	11
45	7.6	390	14.	3.0	40	25	. <0.1
46A	7.3	1100	21.	15.5	140	82	<0.1
• 46B	7.8	470	25.	17.5	40	26	<0.1
47	6.6	1200	3.	8.0	140	40	16
48A	7.3	620	15.	8.0	62	37	<0.1
48B	7.1	520	22.	20.0	43	29	0.2
49	7.15	730	6.	3.5	75	41	<0.1
50A	7.6	520	28.	15.5	51	34	<0.1
50B	7.5	410	21.	18.0	31	21	<0.1
51A	6.1	1850	8.	205.	65	40	<0.1
51B	7.2	1250	23.	275.	. 65	36	21
52A	7.7	450	16.	30.5	36	17	<0.1
52B	7.4	430	40.	17.5	32	20	
53	7.75	. 450	27.	10.5	32 39	28	<0.1
54A	7.8	350	12.	4.0	39		<0.1
54B	. 7.55	390	15.	5.5	40	21	0.1
55B	7.9	340	23.	17.5	32	24	0.1
56	7.8	450	22.	9.5	43	22	0.1
57	7.85	380	17.	7.0		28	0.1
M-6	7.0	1160	5.	7.0	38	24	0.1
Cooling	7.0	1100	J.	7.0	150	91	2.3
Lake	8.3	370	31.	18.0	34	01	<0 1
Ash Pond	0.0	370	51.	10.0	-34	21	<0.1
Effluent	7.45	1380	13.	4.0	20	1 0	· · · ·
Ash Pond	11.4	1510	520.	23.5	28 29	1.2	3.7
Drainage	1107	1510	JZU.	23.5	29	0.2	<0.1
Ditch (A)	7.8	500	21.	7.0	10	20	40.1
Drainage	7.0	500	<u> </u>	/.0	43	29	<0.1
Ditch (B)	9.05	1780	750	14.0	42	ГА	(0.1
	5.00	1700	7.50	14.0	44	5.4	<0.1

۰. و

APPENDICES TO

SUPPLEMENTARY FEASIBILITY STUDY REPORT AND PRELIMINARY ENGINEERING CONCEPTS COLUMBIA SITE WISCONSIN POWER AND LIGHT COMPANY TOWN OF PACIFIC, COLUMBIA COUNTY, WISCONSIN

DATE 9/3/80 Nile Ostenso, Hydro

DEC 19 19791

APPENDIX I

WATER QUALITY DATA - DECEMBER 1978

in a

.

WATER QUALITY DATA

4

12/78

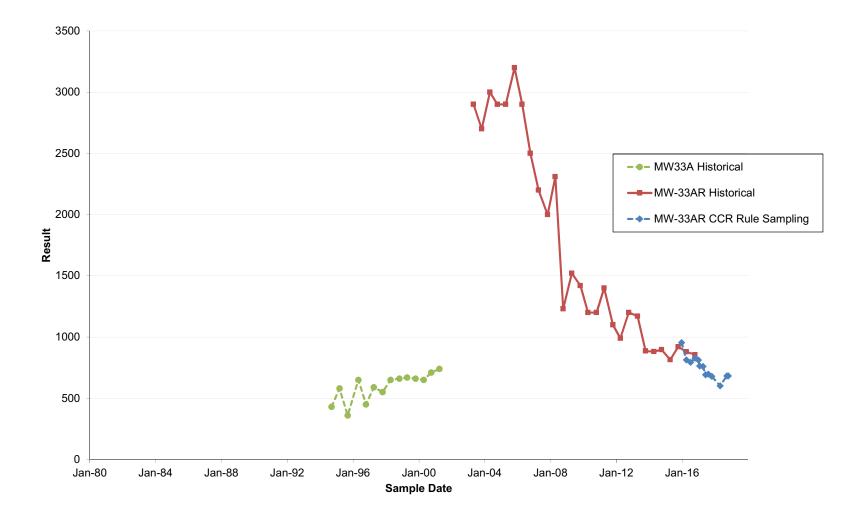
			•					2
WELL NO.	рH	SPECIFIC CONDUCTANCE (umhos/cm @ 25 [°] C)	SULFATE (mg/1)	CHLORIDE (mg/1)	CALCIUM (mg/l)	MAGNESIUM (mg/1)	IRON (mg/l)	BORON (mg/1)
1A 1B 2 3A 3B 4 5 16 17 18 19 20 21 24A 24B 25 26A 27 28A 28B 29A 30A 30B 33A 10 33A 10 33A 10 33B 30A 10 33B 34A 35 36 37A 37B 39A 39B 40A 40B 41	6.65 7.8 7.5	$\begin{array}{c} 530 \\ 470 \\ 458 \\ 560 \\ 530 \\ 750 \\ 1,650 \\ 390 \\ 295 \\ 430 \\ 765 \\ 380 \\ 250 \\ 730 \\ 470 \\ 335 \\ 2,250 \\ 2,530 \\ 410 \\ 335 \\ 2,250 \\ 2,530 \\ 410 \\ 1,140 \\ 835 \\ 1,970 \\ 380 \\ 560 \\ 1,575 \\ 545 \\ 515 \\ 438 \\ 325 \\ 1,260 \\ 385 \\ 483 \\ 343 \\ 640 \end{array}$	$\begin{array}{c} 30\\ 67\\ 91\\ 36\\ 52\\ 69\\ 670\\ 69\\ 57\\ 10\\ 75\\ 26\\ 54\\ 36\\ 10\\ 29\\ 650\\ 840\\ 24\\ 61\\ 6\\ 29\\ 650\\ 840\\ 24\\ 61\\ 6\\ 830\\ 31\\ 46\\ 730\\ 61\\ 5.0\\ 30\\ 18\\ 33\\ 25\\ 40\\ 4\\ 54\end{array}$	$\begin{array}{c} 3.1\\ 6.1\\ <.5\\ <.5\\ 35.7\\ 5.8\\ 14.1\\ 1.0\\ 16.3\\ 4.2\\ 4.2\\ 1.6\\ 10.4\\ 1.6\\ 7.3\\ 7.8\\ 12.6\\ 20.8\\ 4.2\\ 0.5\\ 2.1\\ 3.6\\ <0.5\\ 14.6\\ 16.7\\ 7.3\\ 4.2\\ 21.9\\ 3.6\\ 2.6\\ 3.7\\ 7.3\\ 13.6\\ 4.2\\ <0.5\\ 4.2\\ 19.8\end{array}$	54 49 48 61 37 49 14 47 51 39 15 65 42 39 32 49 40 45 39 31 97 37 21 24 53 28 60 43 50 1.0 70 30 48 21 43	14	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.2 1.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	

C 7134

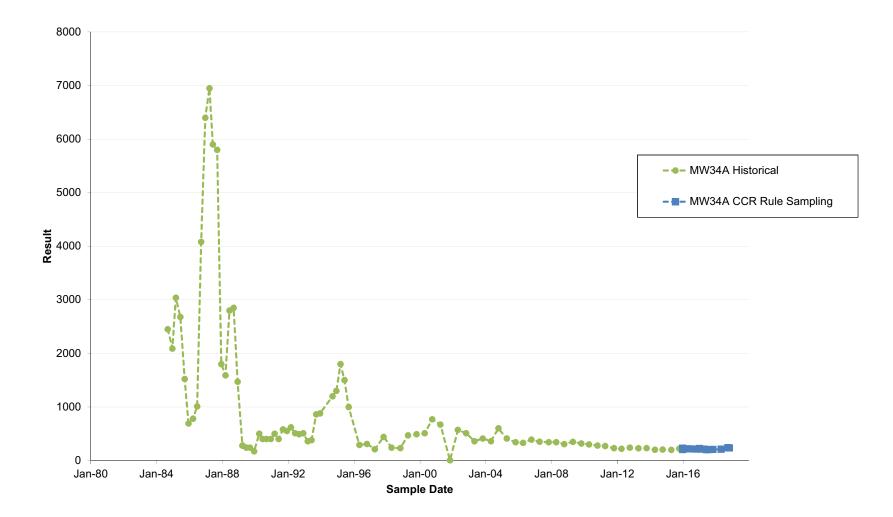
WELL NO.	рН	SPECIFIC CONDUCTANCE (umhos/cm @ 25 ⁰ C)	SULFATE (mg/1)	CHLORIDE (mg/1)	CALCIUM (mg/l)	MAGNESIUM (mg/l)	IRON (mg/1)	BORON (mg/1)
42 hear diffe 44 mar dodi 45 46A 46B 47 48A 48B 49 50A 50B 51A 52A 52B 53 54A 54B 55B 56	6.15 7.2 7.0 6.5 7.3 6.15 6.8 7.0 7.4 7.1	2,050 710 420 560 1,290 958 640 450 880 660 405 1,170 1,410 370 595 345 505	910 6 32 93 170 120 59 23 26 25 16 57 22 110 43 10 26	$ \begin{array}{r} 15.6 \\ 0.5 \\ 1.0 \\ <0.5 \\ 20.8 \\ <0.5 \\ <0.5 \\ 5.2 \\ 2.1 \\ 17.7 \\ 17.7 \\ 135 \\ 330 \\ 18.5 \\ 52.5 \\ 1.0 \\ 15.6 \\ \end{array} $	23 56 44 130 46 110 42 40 93 60 38 60 38 66 46 35 36 35	7.5 27 26 75 30 48 51 27 58 36 23 31 39 10 22 29	0.1 3.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	- - - - - - - - - - - - - - - - - - -
57 M-6	Frozen 6.55 6.8 7.2 6.85 7.2 7.2	1,265 925 1,510 590 505 1,517 670 830~ 680	140 [*] 40 54 39 6 72 100 57 55	<0.5 <0.5 4.7 30.2 13.5 178 26.8 17.8 40	110 86 130 58 48 120 63 78 66	65 60 85 31 29 53 36 50 24	0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.8 <0.1 3.6	- - - - - - -

. n. 1

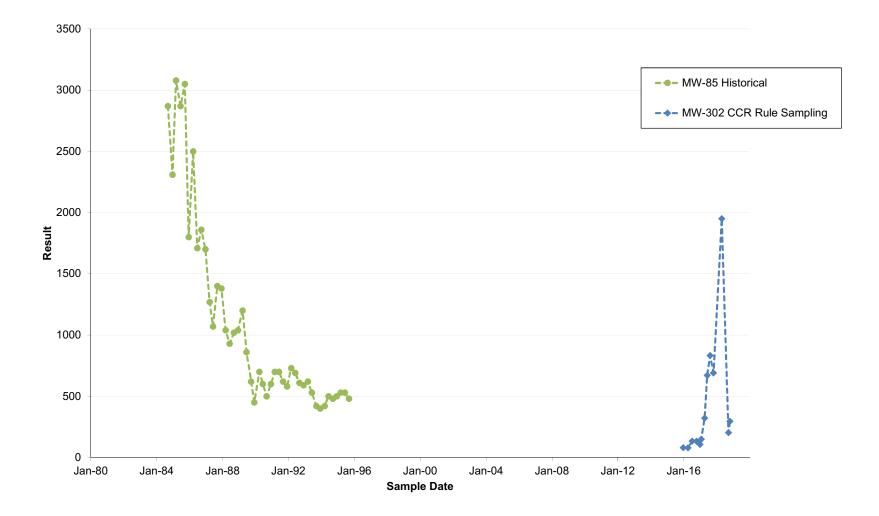
C 7134

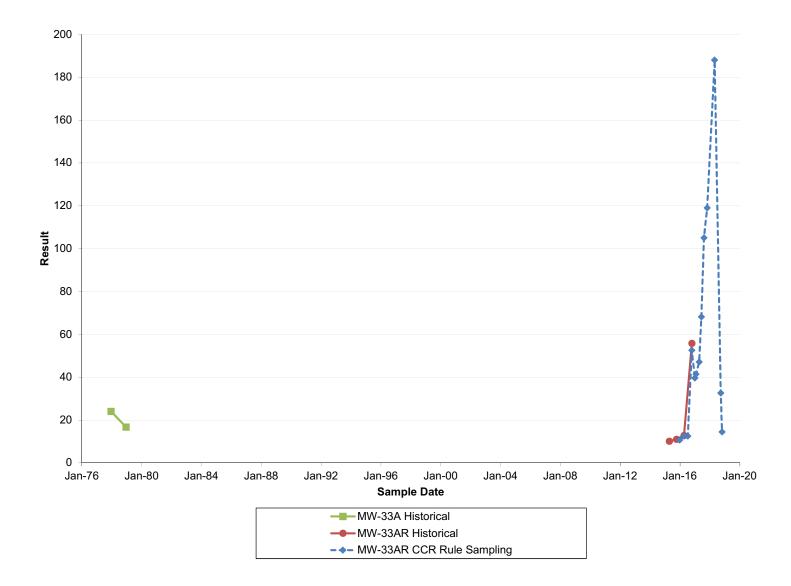

n

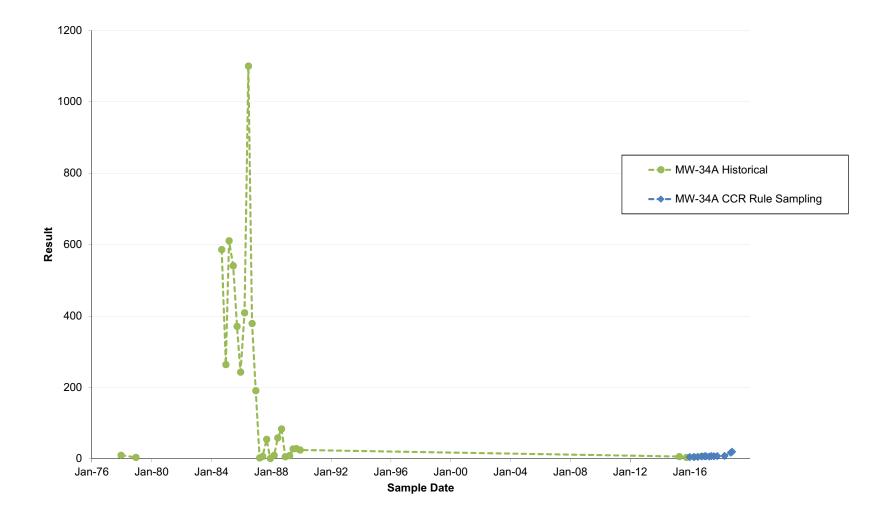
WELL NO.	рH	SPECIFIC CONDUCTANCE (umhos/cm @ 25°C)	SULFATE (mg/1)	CHLORIDE (mg/l)	CALCIUM (mg/l)	MAGNESIUM (mg/1)	IRON (mg/l)	BORON (mg/1)
67 68A 70A 70B 72A2 72B M-4 MM-4	7.0 7.6 7.2 1.17,7.5 7.3 Maret 6.45 8.4 7.6	560 440 400 440 520 860 230 864	100 32 36 20 25 11 45 180 2	1.0 2.1 1.0 <0.5 5.2 <0.5 <0.5 26.1 2.6	57 40 42 27 51 100 17 20 14	32 27 25 37 34 41 19 11 21	1.0 <0.1 <0.1 <0.1 <0.1 1.8 <0.1 <0.1 <0.1 0.9	- - - - 0:39
Cooling Lake at 1	e 7.7	355	36	13.6	31	21.2	<0.1	
Ash Pond at 2	11.4	3,210	1,100	22.9	34	<0.1	<0.1	_
Ash Pond at 3 Ash Pond	8.7	725	34	21.9	48	16	<0.1	-
Effluent at 4	6.7	3,090	1,400	25.0	39	0.4	<0.1	-
Drainage Ditch at 5	7.2	730	* 74	33.9	56	38	<0.1	
Drainage Ditch at 6	7.35	2,750	640	18.8	34	7.5	<0.1	-
Drainage Ditch at 7	8.05	1,780	740	27.1	31	0.2	<0.1	-

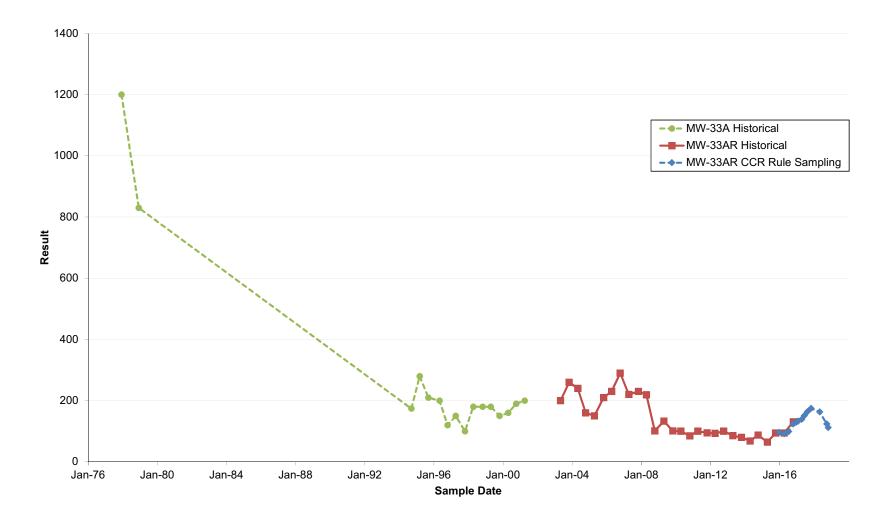

Appendix C

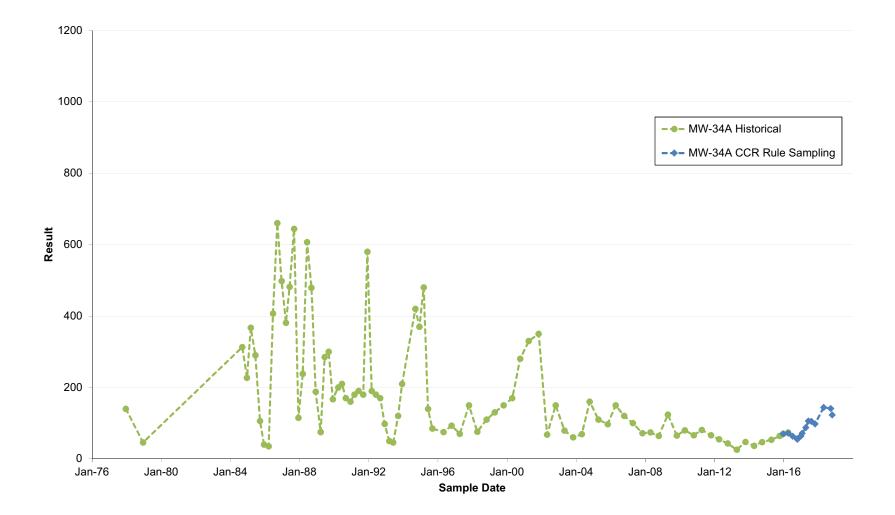
Long-Term Concentration Trend Plots

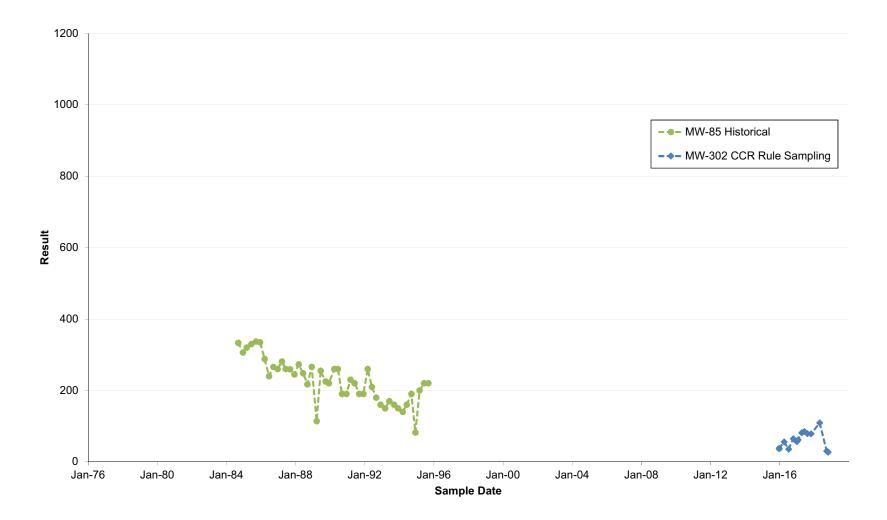

Wisconsin Power & Light Company Columbia Dry Ash Disposal Facility MW-33A and MW-33AR - Boron (μg/I as B)


Wisconsin Power & Light Company Columbia Dry Ash Disposal Facility MW34A - Boron (µg/l as B)


Wisconsin Power & Light Company Columbia Dry Ash Disposal Facility MW-302 and MW-85 - Boron (μg/I as B)

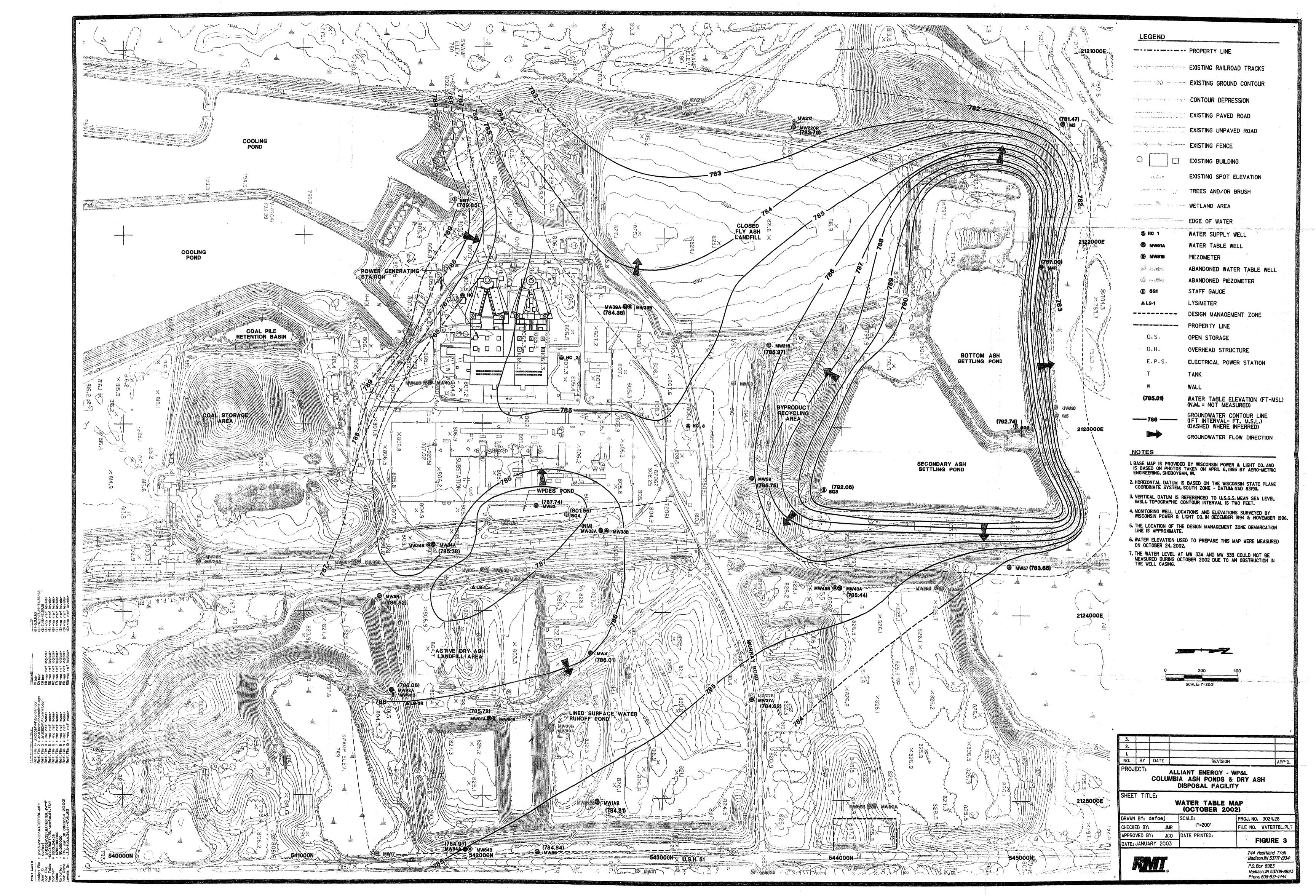

Wisconsin Power & Light Company Columbia Dry Ash Disposal Facility MW-33 and MW-33AR - Chloride (mg/l as Cl)


Wisconsin Power & Light Company Columbia Dry Ash Disposal Facility MW34A - Chloride (mg/l as Cl)


Wisconsin Power & Light Company Columbia Dry Ash Disposal Facility MW-33 and MW-33AR - Sulfate (mg/l as SO4)

Wisconsin Power & Light Company Columbia Dry Ash Disposal Facility MW-34A - Sulfate (mg/l as SO4)

Wisconsin Power & Light Company Columbia Dry Ash Disposal Facility MW-85 and MW-302 - Sulfate (mg/l as SO4)


Appendix D

Historical Groundwater Flow Maps

	LEGEND
	PROPOSED PROJECT AREA
₩ ⁶³ 720.29	OBSERVATION WELL LOCATION, NUMBER, AND WATER TABLE ELEVATION
+	BORING LOCATION AND NUMBER
· · · ·	WETLANDS
and the second	TOPOGRAPHIC CONTOURS (CONTOUR INTERVAL: 20 FT.)
	PRIVATE RESIDENCES (ASSUMED LOCATIONS OF PRIVATE WATER SUPPLY WELLS)
	COMMERCIAL BUILDINGS (ASSUMED LOCATIONS OF POSSIBLE PUBLIC WATER SUPPLY WELLS)
	SURFACE WATERS (STREAMS OR DRAINAGE DITCHES) ARROWS INDICATE DIRECTION OF FLOW
	OTHER BUILDINGS (GARAGES, BARNS, ETC.)
\$	HIGH CAPICITY WELLS
-790-	WATER TABLE CONTOURS (CONTOUR INTERVAL: I FT.)
	DIRECTION OF GROUNDWATER FLOW

NO	BY	DATE		REVISION							
	WATER TABLE CONTOUR MAP 2/4/81										
PLAN OF OPERATION - ASH DISPOSAL FACILITY											
	COLUMBIA SITE										
	WI	SCONS	SIN POWER	& LIGHT C	OMPAN	Y					
			T OF SECTIONS								
TOV	NN (OF PA	CIFIC COL	UMBIA CO.	WISCO	ONSIN					
W	AR	ZYN	DRAWN TDH	SCALE "= 300'	SHEET 39	OF 39					
			CHECKED RJK	DATE 2/10/81	DRAWING NO.						
		APPROVED C7134-									
ENG	INEER	ING INC	REFERENCE								

B2 Alternative Source Demonstration, April 2019 Detection Monitoring

Alternative Source Demonstration April 2019 Detection Monitoring

Dry Ash Disposal Facility, Modules 1-3 Columbia Energy Center Pardeeville, Wisconsin

Prepared for:

SCS ENGINEERS

25219067.00 | October 14, 2019

2830 Dairy Drive Madison, WI 53718-6751 608-224-2830

Table of Contents

Sect	ion		Pa	ige
PE Ce	ertifica	ation		iii
1.0	Intro	duction		1
	1.1	§257.9	04(e)(2) Alternative Source Demonstration Requirements	1
	1.2	Site Info	ormation and Map	1
	1.3	Statistic	cally Significant Increases Identified	2
	1.4	Overvie	w of Alternative Source Demonstration	2
2.0	Back	ground.		2
	2.1	Regiona	al Geology and Hydrogeology	3
		2.1.1	Regional Information	3
		2.1.2	Site Information	3
	2.2	CCR Ru	Ile Monitoring System	3
	2.3	Other M	Ionitoring Wells	3
3.0	Meth	odology	and Analysis Review	3
	3.1	Samplii	ng and Field Analysis	4
	3.2	Laborat	tory Analysis Review	4
	3.3	Statistic	cal Evaluation Review	4
	3.4	Summa	ary of Methodology and Analysis Review Findings	5
4.0	Alteri	native So	ources	5
	4.1	Potentia	al Causes of SSI	5
		4.1.1	Natural Variation	5
		4.1.2	Man-Made Alternative Sources	5
	4.2	Lines of	f Evidence	5
		4.2.1	Pre-Landfill Water Quality	6
		4.2.2	Long-Term Concentration Trends	6
		4.2.3	Groundwater Flow Direction Changes	7
		4.2.4	Chloride and Boron Leachate Concentrations	7
5.0	Alteri	native So	ource Demonstration Conclusions	8
6.0	Site (Groundw	ater Monitoring Recommendations	8
7.0	Refe	rences	-	8

Tables

Table 1.	Groundwater Analytical Results – Detection Monitoring
----------	---

- Table 2.
- Analytical Results Appendix III Constituents with SSIs Groundwater Elevations State Monitoring Program and CCR Well Network Table 3.
- Analytical Results Lysimeters and Leachate Pond Table 4.

Figures

Figure 1.	Site Location Map
Figure 2.	Site Plan and Well Location Map
Figure 3.	Water Table Map – April 2019

Appendices

- Appendix A Trend Plots for CCR Wells
- Feasibility Study Water Quality Information Long-Term Concentration Trend Plots Appendix B
- Appendix C
- Historical Groundwater Flow Maps Appendix D

I:\25219067.00\Deliverables\2019 April ASD COL MOD 1-3 LF\191014_COL_1-3 LF_April ASD_DRAFT.docx

PE CERTIFICATION

Sherrep C Clark E/29863 Madison, Wis.	Disposal Facility. I am a duly licensed Professional Engineer under the laws of the State of Wisconsin. <u>JO-11-19</u> (signature) (date) Sheven Clark
Manus STONAL Engine	(printed or typed name)
	License number <u>E-29863</u>
	My license renewal date is July 31, 2020.
	Pages or sheets covered by this seal:
	Alternative Source Demonstration, April 2019 Detection
	Monitoring – Dry Ash Disposal Facility, Modules 1-3 Pardeeville, Wisconsin

[This page left blank intentionally]

1.0 INTRODUCTION

This Alternative Source Demonstration (ASD) was prepared to support compliance with the groundwater monitoring requirements of the "Coal Combustion Residuals (CCR) Final Rule" published by the U.S. Environmental Protection Agency (USEPA) in the *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule,* dated April 17, 2015 (USEPA, 2015), and subsequent amendments. Specifically, this report was prepared to fulfill the requirements of 40 CFR 257.94(e)(2). The applicable sections of the Rule are provided below in *italics*.

1.1 §257.94(E)(2) ALTERNATIVE SOURCE DEMONSTRATION REQUIREMENTS

The owner and operator may demonstrate that a source other than the CCR Unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels.

An ASD is completed when there are exceedances of one or more benchmarks established within the groundwater monitoring program. The ASD is completed to determine if any other sources are likely causes of the identified exceedance(s) of established benchmark(s) at the site. This ASD was performed in response to results indicating a statistically significant increase (SSI) over background levels during detection monitoring under the CCR Rule.

This ASD report is evaluating the SSIs observed in the statistical evaluation of the April 2019 detection monitoring event at the Columbia Energy Center (COL) Dry Ash Disposal Facility, Modules 1-3 CCR Units. The first ASD was prepared for this facility evaluating the SSIs observed in the statistical evaluation of the October 2017 detection monitoring event (SCS Engineers [SCS], 2018). The October 2017 ASD and subsequent semiannual updates have concluded that several lines of evidence demonstrated that SSIs reported for boron, chloride, sulfate, and total dissolved solids (TDS) concentrations in the downgradient monitoring wells were likely due to man-made sources other than the CCR units and/or naturally occurring constituents in the alluvial aquifer.

As discussed in more detail in **Section 4.2** of this ASD, the findings for the April 2019 monitoring event were consistent with those for the previous events.

1.2 SITE INFORMATION AND MAP

The COL site is located at W8375 Murray Road, Pardeeville, Columbia County, Wisconsin (**Figure 1**). The COL site is an active coal-burning generating station which has been burning coal and disposing of CCR on site since the mid-1970s. The layout of the site is shown on **Figure 2**. The COL property includes two areas of CCR storage and disposal. These are the Dry Ash Disposal Facility (ADF) and the Ash Ponds Facility. This ASD will evaluate the conditions at the site for Modules 1-3 of the ADF only. The ADF is operated under the Wisconsin Department of Natural Resources (WDNR) License No. 3025.

The groundwater monitoring system for the COL ADF Modules 1-3 (MOD 1-3) is a multi-unit system, monitoring three existing CCR Units:

- COL Dry ADF Module 1 (existing CCR Landfill)
- COL Dry ADF Module 2 (existing CCR Landfill)
- COL Dry ADF Module 3 (existing CCR Landfill)

A map showing the CCR Units and all background (or upgradient) and downgradient monitoring wells with identification numbers for the CCR groundwater monitoring program and the state monitoring program is provided as **Figure 2**. Separate monitoring systems have been established for Module 4 of the COL ADF, for the primary ash pond and for the secondary ash pond.

1.3 STATISTICALLY SIGNIFICANT INCREASES IDENTIFIED

SSIs were identified for boron, chloride, sulfate, and TDS at one or more wells based on the April 2019 detection monitoring event.

A summary of the April 2019 constituent concentrations and the established benchmark concentrations is provided in **Table 1**. The constituent concentrations with SSIs above the background concentration are highlighted in the table. Concentration trends for the parameters with SSIs are shown in **Appendix A**.

1.4 OVERVIEW OF ALTERNATIVE SOURCE DEMONSTRATION

This ASD report includes:

- Background information (Section 2.0)
- Evaluation of potential that SSIs are due to methodology or analysis (Section 3.0)
- Evaluation of potential that SSIs are due to natural sources or man-made sources other than the CCR Units (Section 4.0)
- ASD conclusions (Section 5.0)
- Monitoring recommendations (**Section 6.0**)

The CCR Rule constituent results from background and compliance sampling for parameters with SSIs are provided in **Table 2**. The laboratory report for the April 2019 detection monitoring event will be included in the 2019 Annual Groundwater Monitoring and Corrective Action Report submitted in January 2020. Complete laboratory reports for the background monitoring events and the previous detection monitoring events were included in previous annual groundwater monitoring and corrective action reports.

2.0 BACKGROUND

To provide context for the ASD evaluation, the following background information is provided in this section of the report, prior to the ASD evaluation sections:

- Geologic and hydrogeologic setting
- CCR Rule monitoring system
- Other monitoring wells

A more detailed discussion of the background information for the site is provided in the ASD for the October 2017 event (SCS, 2018).

2.1 REGIONAL GEOLOGY AND HYDROGEOLOGY

2.1.1 Regional Information

For the purposes of groundwater monitoring, the surficial sand and gravel aquifer is considered the uppermost aquifer, as defined under 40 CFR 257.53. Immediately underlying the surficial sand and gravel aquifer is the Cambrian-Ordovician sandstone aquifer.

Additional details on the regional geology and hydrogeology were provided in the October 2017 ASD (SCS, 2018).

2.1.2 Site Information

Soils at the site are primarily sand to a depth of approximately 50 to 100 feet and overlie sandstone bedrock. Soils encountered during the site feasibility study for the COL ADF were described as generally sandy with interbedded silty clay lenses up to 20 feet thick (Warzyn, 1978). During drilling of CCR wells MW-301 and MW-302, the unconsolidated materials were identified as consisting primarily of silty sand. Boring logs for previously installed monitoring wells MW-33AR, MW-34A, MW-84A, and M-4R show silty sand and sand as the primary unconsolidated materials at these locations. All CCR monitoring wells are screened within the unconsolidated sand unit.

Shallow groundwater at the site generally flows to the northwest across the existing landfill area, then generally flows west toward the Wisconsin River. A groundwater flow map for April 2019 is shown on **Figure 3**. The groundwater elevation data for the CCR monitoring wells are provided in **Table 3**.

2.2 CCR RULE MONITORING SYSTEM

The groundwater monitoring system established in accordance with the CCR Rule consists of two upgradient (background) monitoring wells and three downgradient monitoring wells. The background wells include MW-301 and MW-84A. The downgradient wells include MW-302, MW-33AR, and MW-34A. The CCR Rule wells are installed within the sand and gravel aquifer. Well depths range from approximately 29 to 40 feet, measured from the top of the well casing.

2.3 OTHER MONITORING WELLS

Additional groundwater monitoring wells currently exist at COL as part of the monitoring systems developed for the state monitoring program and for the other CCR units.

Monitoring wells for the state monitoring program are installed in the unconsolidated sand and gravel unit, which is the uppermost aquifer as defined under 40 CFR 257.53. This shallow monitoring system includes water table wells and mid-depth piezometers. Well depths range from approximately 14 to 76 feet, measured from the top of the well casing.

3.0 METHODOLOGY AND ANALYSIS REVIEW

To evaluate the potential that an SSI is due to a source other than the regulated CCR Unit, SCS used a two-step evaluation process. First, the sample collection, field and laboratory analysis, and

statistical evaluation were reviewed to identify any potential error or analysis that led to exceedance of the benchmark. Second, potential alternative sources, including natural variation and man-made sources other than the CCR unit, were evaluated. This section of the report provides the findings of the methodology and analysis review. **Section 4.0** of the report addresses the potential alternative sources.

3.1 SAMPLING AND FIELD ANALYSIS

Field notes and sampling results were reviewed to determine if any sampling error may have caused or contributed to the observed SSIs. Potential field sampling errors or issues could include mislabeling of samples, improper sample handling, missed holding times, cross contamination during sampling, or other field error. Field blank sample results were also reviewed for any indication of potential contamination from sampling equipment or containers. Based on the review of the field notes and results, SCS did not identify any indication that the SSI concentrations were due to a sampling error.

SCS did not identify any issues with the field analysis based on review of the data and field notes. Because boron, chloride, sulfate, and TDS are laboratory parameters, there is little potential for a field analysis error to contribute to an SSI.

3.2 LABORATORY ANALYSIS REVIEW

The laboratory reports for the April 2019 detection monitoring event were reviewed to determine if any laboratory analysis error or issue may have caused or contributed to an observed SSI for boron, chloride, sulfate, or TDS. The laboratory report review included reviewing the laboratory quality control flags and narrative, verifying that correct methods were used and desired detection limits were achieved, and checking the field and laboratory blank sample results.

Based on the review of the laboratory reports, SCS did not identify any indication that the SSIs were due to a laboratory analysis error. There were no laboratory quality control flags or issues identified in the laboratory report that affect the usability of the data for detection monitoring.

Time series plots of the SSI constituent analytical data were also reviewed for any anomalous results that might indicate a possible sampling or laboratory error (e.g., dilution error or incorrect sample labeling). The time series plots are provided in **Appendix A**. The concentrations observed are similar to historical concentrations with the exception of MW-33AR which has recent concentration increases of chloride, sulfate, and TDS. The boron concentration at MW-33AR is consistent with previously observed concentrations at this monitoring well (**Appendix A**).

3.3 STATISTICAL EVALUATION REVIEW

The review of the statistical results and methods include a quality control check of the following:

- Input analytical data vs. laboratory analytical reports
- Statistical method and process for each SSI

Based on the review of the statistical evaluation, SCS did not identify any errors or issues in the statistical evaluation that caused or contributed to the determination of interwell SSIs for the April 2019 detection monitoring event.

3.4 SUMMARY OF METHODOLOGY AND ANALYSIS REVIEW FINDINGS

In summary, there were no changes to the SSI determinations for the April 2019 monitoring event based on the methodology and analysis review, and no errors or issues causing or contributing to the reported SSIs were identified.

4.0 ALTERNATIVE SOURCES

This section of the report discusses the potential alternative sources for the boron, chloride, sulfate, and TDS SSIs at the downgradient monitoring wells; identifies the most likely alternative source(s); and presents the lines of evidence indicating that an alternative source is the most likely cause of the observed SSIs.

4.1 POTENTIAL CAUSES OF SSI

4.1.1 Natural Variation

The statistical analysis was completed using an interwell approach, comparing the April 2019 detection monitoring results to the upper prediction limits (UPLs) calculated based on sampling of the background wells (MW-84A and MW-301). If concentrations of a constituent that is naturally present in the aquifer vary spatially, then the potential exists that the downgradient concentrations may be higher than upgradient concentrations due to natural variation.

Although natural variation is present in the shallow aquifer, it does not appear likely that natural variation is the primary source causing the boron, chloride, sulfate, and TDS SSIs.

4.1.2 Man-Made Alternative Sources

Man-made alternative sources that could potentially contribute to the boron, chloride, sulfate, and TDS SSIs could include the closed ash pond landfill, the active ash ponds, the former ash pond effluent ditch, the coal storage area, road salt use, railroad operations, or other plant operations.

Based on the groundwater flow directions and on previous investigations at the site, the former ash pond effluent ditch appears to be the most likely cause of the boron and/or sulfate SSIs for wells MW-33AR, MW-34A, and MW-302. The ash pond effluent ditch also likely contributed to the chloride SSIs at MW-33AR and MW34A.

The higher chloride and TDS concentrations at MW-33AR are likely related to a non-CCR alternative source.

4.2 LINES OF EVIDENCE

The lines of evidence indicating that the SSIs for boron, chloride, sulfate, and TDS in compliance wells MW-33AR, MW-34A, and MW-302, relative to the background wells, are due to an alternative source include:

1. Elevated concentrations of boron, chloride, sulfate, and TDS were present in the area west of the landfill, where the three compliance wells are located, before the landfill was constructed.

- 2. Monitoring performed under the state program documents that the concentrations of boron, chloride, and sulfate were elevated before CCR disposal in the landfill began, and have decreased since the landfill has been in operation.
- 3. Groundwater flow directions have changed through time due to changes in water management at the plant, so that groundwater impacted by the effluent ditch formerly flowed to the east, under the landfill, and is now flowing west and/or north.
- 4. The increase in chloride and TDS results for well B-33AR in the last 2 years has not correlated with an increase in boron, as would be expected for a CCR leachate source; therefore, an alternative source is more likely.

4.2.1 Pre-Landfill Water Quality

Elevated concentrations of boron, chloride, sulfate, and TDS were present in the area west of the landfill, where the three compliance wells are located, before the landfill was constructed. Groundwater monitoring performed in 1977 and 1978 as part of the feasibility study for the landfill permitting showed that wells located along the west side of the future landfill footprint, where the current compliance wells are located, had elevated results for sulfate, chloride, and specific conductance. TDS was not monitored, but is generally correlated with specific conductance.

The 1978 Feasibility Study (Warzyn, 1978) for the dry ADF discusses the influence of the ash pond effluent ditch on groundwater west of the proposed site. The former ash pond effluent ditch, shown on **Figure 2**, carried effluent from the ash ponds located north of the plant, and flowed south between the west side of the current landfill and the substation. Groundwater monitoring in December 1977 indicated that sulfate was present at 1,200 milligrams per liter (mg/L) in MW-33A, which was located near the point where the ash pond effluent discharged from a culvert into the effluent ditch. The sulfate concentration at this well decreased to 830 mg/L in the December 1978 sampling (Warzyn, 1979). Current concentrations of sulfate in this area are much lower, but remain above background. The October 2018 sulfate result for MW-33AR (installed to replace MW-33A) was 112 mg/L and at MW-34A were 123 mg/L.

Selected text and tables from the 1978 Feasibility Study and the 1979 Supplementary Feasibility Study Report are included in **Appendix B**.

4.2.2 Long-Term Concentration Trends

Monitoring performed under the state program documents that the concentrations of boron and sulfate were elevated before CCR disposal in the landfill began, and have decreased since the landfill has been in operation. Routine groundwater monitoring for the COL ADF began after the Plan of Operation was approved and prior to initial CCR disposal. The earliest data available from the WDNR Groundwater Environmental Monitoring System (GEMS) database is from September 1984. Initial placement of CCR in test plots in Module 1 of the ADF was approved in October 1984 and CCR disposal began sometime after that. Therefore, the initial groundwater monitoring results in the GEMS database represent pre-disposal conditions for the landfill.

The historic monitoring data show that concentrations of boron and sulfate were significantly higher in the area west of the landfill where the compliance wells are located. Graphs of historical concentrations are provided in **Appendix C**. Results for compliance well MW-33AR are plotted with results from well MW-33A. MW-33AR was a replacement well for MW-33A at a slightly different location and depth. The well screen was installed approximately 10 feet higher in MW-33AR than in

MW-33A, intersecting the water table, which may explain the increase in concentration that occurred with the well replacement. Results for compliance well MW-302 are plotted with results from monitoring well MW-85, which was located near the current MW-302 location (see **Figure 2**) and was monitored from September 1984 through September 1995.

The recent boron concentrations are consistent with generally decreasing or stable historical concentrations at MW-33AR and MW-34A (**Appendix A** and **Appendix C**).

4.2.3 Groundwater Flow Direction Changes

Groundwater flow directions have changed through time due to changes in water management at the plant, so that groundwater impacted by the effluent ditch formerly flowed to the east, under the landfill, and is now flowing west. The 1978 Feasibility Study report states that the southern 2/3 of the proposed fill area (including the area of the active CCR landfill phases) exhibits a southeast and southerly groundwater flow direction, toward an agricultural drainage ditch southeast and south of the landfill area. The 1981 Plan of Operation indicates that flow in the landfill area is to the east-southeast. A water table map prepared by RMT, based on October 2002 water level measurements, shows flow under the landfill generally to the east and northeast from a groundwater high near the effluent ditch and Wisconsin Pollutant Discharge Elimination System (WPDES) pond between the landfill and the substation. The 1981 and 2002 water table maps are provided in **Appendix D**.

Under current conditions, groundwater flow below the active landfill area is generally to the west and northwest. The flow changes with time reflect the termination of discharge to the ash pond effluent ditch in the mid-2000s. When discharge via this ditch was active, the ditch was a source of recharge to the groundwater and created a high groundwater area with flow moving away from the ditch to the east. After discharge to the ditch was terminated, water levels in this area decreased significantly and the groundwater flow direction changed.

With the changes in groundwater flow, historically impacted groundwater moved in alternating directions. While the effluent ditch was active, impacted groundwater likely moved eastward past the current compliance wells, as indicated by the long-term concentration data. Although the compliance wells are downgradient from the landfill under current flow conditions, the observed groundwater impacts may be residual from the past when the wells were downgradient from the effluent ditch.

4.2.4 Chloride and Boron Leachate Concentrations

The chloride and TDS results for well MW-33AR increased significantly without a corresponding increase in boron, indicating the source of the increasing chloride and TDS is not likely the CCR landfill. Sampling of the landfill leachate pond and the lysimeters indicates that boron and chloride concentrations are generally both elevated in leachate (**Table 4**). Furthermore, the chloride concentration in the April 2019 sample from MW-33AR was significantly higher than the chloride concentrations measured in the leachate, indicating the leachate is not the source (**Tables 2** and **4**). An alternative man-made source, such as road salt, is a more likely source of chloride than the CCR Units. The TDS increase correlated closely with the chloride increase and likely has the same alternative source.

5.0 ALTERNATIVE SOURCE DEMONSTRATION CONCLUSIONS

The lines of evidence discussed above regarding the SSIs reported for boron, chloride, sulfate, and TDS concentrations in downgradient monitoring wells MW-33AR, MW-34A, and/or MW-302 demonstrate that the SSIs are likely primarily due to sources other than the CCR Units. Boron, sulfate, and chloride concentrations were elevated prior to disposal of CCR in the landfill and are associated with historical discharges from the ash ponds via the effluent ditch located west of the landfill. Elevated chloride and TDS concentrations detected at well MW-33AR appear likely to be related to an alternative non-CCR source, such as salt.

6.0 SITE GROUNDWATER MONITORING RECOMMENDATIONS

In accordance with section 257.94(e)(2) of the CCR Rule, the COL MOD 1-3 CCR Units may continue with detection monitoring based on this ASD. The ASD report will be included in the 2019 Annual Report due January 31, 2020.

7.0 REFERENCES

SCS, 2018, Alternative Source Demonstration, October 2017 Detection Monitoring, Columbia Energy Center Dry Ash Disposal Facility, April 2018.

USEPA, 2015, Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. April 2015.

Warzyn Engineering, Inc., 1978, Feasibility Study, Proposed Fly Ash and/or Scrubber Sludge Disposal Facility – Columbia Site, Wisconsin Power and Light Company, Town of Pacific, Columbia County, WI, January 1978.

Warzyn Engineering, Inc., 1979, and Preliminary Engineering Concepts, Columbia Site, Wisconsin Power and Light Company, Town of Pacific, Columbia County, WI, January 1978.

Tables

- 1 Groundwater Analytical Results Detection Monitoring
- 2 Analytical Results Appendix III Constituents with SSIs
- 3 Groundwater Elevations State Monitoring Program and CCR Well Network
- 4 Analytical Results Lysimeters and Leachate Pond

Table 1. Groundwater Analytical Results - Detection Monitoring Columbia Dry ADF, Modules 1-3 / SCS Engineers Project #25219067.00

LOD = Limit of Detection

	Γ				Backg	round Wells									Cor	npliance Well	s						
	Interwell	MW-84A				M	N-301			MW-3	BAR				MW-34A			MW-302					
	Upper	Oct-17	Apr-18	Oct-18	Apr-19	Oct-17	Apr-18	Oct-18	Apr-19	Oct-17	Apr-18	Oct-18	Apr-19	Oct-17	Apr	-18	Oct-18	Apr-19	Oct-17	Apr	r-18	Oct-18	Apr-19
Parameter Name	Prediction Limit (UPL)	10/24/2017	4/25/2018	10/22/2018	4/3/2019	10/23/2017	4/25/2018	10/22/2018	4/3/2019	10/24/2017	4/24/2018 Resan 9/21/2		8 4/2/2019	10/24/2017	4/24/2018	Resample 9/21/2018	10/22/2018	8 4/4/2019	10/24/2017	4/24/2018	Resample 9/21/2018	10/22/2018	3 4/2/2019
Boron, ug/L	37.4	13.8	25.0	10.1 J	13.6	34.3	24.3	27.8	26.9	678	601 683	682	568	208	209	241	233	204	691	1,950	203	296	254
Calcium, ug/L	138,400	77,500	76,600	74000	80,100	87,200	112,000	101,000	126,000 P6	98,200	99,800 NA	66,900	131,000	69,600	69,600	NA	70,100	67,500	94,400	110,000	NA	56,900	62,400
Chloride, mg/L	6.52	5.1	4.8	4.2	3.6 B	4.0	2.3	3.2	2.9 J,B	119	188 32.6	14.4	229	7.6	8.2	17.1	19.9	18.7	6.9	15.0	1.7 J	1.8 J	1.5 J
Fluoride, mg/L	DQ	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50 D3	<0.10	<0.10 NA	<0.10	<0.10	<0.10	<0.10	NA	<0.10	<0.10	<0.10	<0.10	NA	<0.10	<0.10
Field pH, Std. Units	7.93	7.68	7.45	7.24	7.03	7.37	6.76	6.79	6.62	7.81	7.74 8.16	7.69	7.72	7.67	7.80	8.12	7.64	7.73	8.23	7.21	7.74	7.22	7.32
Sulfate, mg/L	37.1	2.2 J	2.8 J	1.6 J	1.4 J	27.5	8.6	19.2	5.3 J	175	163 124	112	201	98	144	141	123	70.4	78.4	109	30.0	26.9	25.2
Total Dissolved Solids, mg/L	514	314	328	330	318	362	464	424	462	606	692 466	388	784	340	412	460	392	310	446	598	280	288	290

SSI = Statistically Significant Increase

Highlighted cell indicates the compliance well result is an SSI. UPLs are based on a 1-of-2 retesting approach; therefore, for the April 2018 semiannual event an SSI is indicated only if both the original result and the September 2018 retest are above the UPL and the LOQ.

LOQ = Limit of Quantification

Abbreviations:

UPL = Upper Prediction Limit

B = Analyte was detected in the associated Method Blank.

J = Estimated concentration at or above the LOD and below the LOQ.

D3 = Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

P6 = Matrix Spike Recovery was outside laboratory control limits due to a parent sample concentrations notably higher than the spike level.

Notes:

1. Interwell UPL is based on the parametric prediction limit with 1-of-2 retesting methodology for all parameters except fluoride.

and total dissolved solids. Parametric UPL for sulfate calculated using natural logarithm transformed data.

NA = Not Analyzed

2. Interwell UPL for fluoride is based on the double quantification rule, because fluoride was not detected above the LOQ in the background samples.

3. Interwell UPL for total dissolved solids is nonparametric limit.

4. Interwell UPLs calculated from background well results for December 2015 through October 2017.

Created by: NDK	Date:	5/1/2018
Last revision by: NDK	Date:	9/24/2019
Checked by: AJR	Date:	9/24/2019

I:\25219067.00\Deliverables\2019 April ASD COL MOD 1-3 LF\Tables\[1_CCR GW Screening Summary_COL LF Mod 1_3 updated.xlsx]Table

DQ = Double Qualification

Well Group	Well	Collection Date	Boron (µg/L)	Chloride (mg/L)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)
		12/22/2015	26.5	3.7 J	9.3	478
		4/5/2016	25.2	4	15.3	486
		7/8/2016	23.6	3.5 J	15	464
		10/13/2016	30.6	2.2	13.9	490
		12/29/2016	32.8	2 J	12.3 J	444
		1/25/2017	32.6	1.5 J	6.5	514
	MW-301	4/11/2017	28.8	2	10.3	502
		6/6/2017	21.3	3.5	17.1	458
		8/8/2017	30.6	5.5	31.6	462
		10/23/2017	34.3	4	27.5	362
		4/25/2018	24.3	2.3	8.6	464
p		10/22/2018	27.8	3.2	19.2	424
our		4/3/2019	26.9	2.9 J, B	5.3 J	462
Background		12/22/2015	11.9	4.9	4.9	316
ac		4/5/2016	14	4.7	4.3	322
Ā		7/8/2016	14.7	5.1	3.7 J	316
		10/13/2016	11.1	4.3	2.6 J	324
		12/29/2016	14.7	4.7	2.7 J	316
		1/25/2017	16.1	4.6	3	328
	MW-84A	4/11/2017	12.9	4.9	2.8 J	342
		6/6/2017	14.8	5.5	2.7 J	344
		8/8/2017	22.9	5.5	2 J	342
		10/24/2017	13.8	5.1	2.2 J	314
		4/25/2018	25	4.8	2.8 J	328
		10/22/2018	10.1 J	4.2	1.6 J	330
		4/3/2019	13.6	3.6 B	1.4 J	318
		12/22/2015	80	4.2	37.4	312
		4/5/2016	78.8	4.1	55.6	312
		7/7/2016	134	3.1 J	35.4	344
		10/13/2016	132	1.1 J	64.7	360
		12/29/2016	106	1.2 J	56.4	330
Ce		1/25/2017	149	1.6 J	61.6	384
an		4/11/2017	322	1.6 J	81.3	436
Compliance	MW-302	6/6/2017	671	3.5	84.6	466
ло		8/8/2017	833	4.5	79	470
Ũ		10/24/2017	691	6.9	78.4	446
		4/24/2018	1,950	15	109	598
		9/21/2018	203	1.7 J	30	280
		10/22/2018	296	1.8 J	26.9	288
		4/2/2019	254	1.5 J	25.2	290

Table 2. Analytical Results - Appendix III Constituents with SSIsColumbia Dry ADF, Modules 1-3

Well Group	Well	Collection Date	Boron (µg/L)	Chloride (mg/L)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)
		12/21/2015	954	10.6	96.2	356
		4/5/2016	813	12.5	91.5	354
		7/7/2016	794	12.5	99.2	364
		10/13/2016	827	52.5	124	456
		12/29/2016	812	39.6	132	440
		1/25/2017	763	41.4	133	426
		4/11/2017	760	47.1	139	446
	MW-33AR	6/6/2017	692	68.1	151	492
		8/7/2017	697	105	164	598
		10/24/2017	678	119	175	606
		4/24/2018	601	188	163	692
		9/21/2018	683	32.6	124	466
Ð		10/22/2018	682	14.4	112	388
Compliance		4/2/2019	568	229	201	784
ildr		12/21/2015	230	4.9	69.9	324
۲ ۵		4/5/2016	220	5.1	71.6	298
0		7/7/2016	216	5.6	63.4	304
		10/13/2016	212	6.8	54.8	288
		12/29/2016	224	7.1	63.9	242
		1/25/2017	214	7.2	71.2	310
		4/11/2017	214	6.2	87.6	330
	MW-34A	6/6/2017	201	7.8	106	366
		8/7/2017	205	7.4	105	358
		10/24/2017	208	7.6	98	340
		4/24/2018	209	8.2	144	412
		9/21/2018	241	17.1	141	460
		10/22/2018	233	19.9	123	392
		4/4/2019	204	18.7	70.4	310

Table 2. Analytical Results - Appendix III Constituents with SSIsColumbia Dry ADF, Modules 1-3

Abbreviations:

 μ g/L = micrograms per liter or parts per billion (ppb)

mg/l = milligrams per liter or parts per million (ppm)

J = Estimated value below the laboratory's limit of quantitation

B = Analyte was detected in the associated Method Blank.

Notes:

(1) Analytical laboratory reports provided in the 2017 Annual Groundwater Monitoring and Corrective Action Report.

Created by:	NDK	Date:	3/13/2018
Last revision by:	NDK	Date:	9/30/2019
Checked by:	LMH	Date:	9/30/2019

I:\25219067.00\Deliverables\2019 April ASD COL MOD 1-3 LF\Tables\[2 and 3_COL LF ASD.xlsx]Table 2. Analy. Rslts- CCR

	Well Number	MW-1AR	MW-5R	MW-33AR	MW-33BR	MW-34A	MW-34B	MW-37A	MW-83	MW-84A	MW-84B	MW-86	MW-91AR
	Top of Casing Elevation (feet amsl)	822.55	805.44	808.29	808.39	805.95	806.05	813.04	807.96	814.28	814.26	824.79	809.03
	Screen Length (ft)												
	Total Depth (ft from top of casing)	44.40	25.97	31.08	57.50	35.43	56.95	31.80	25.42	40.21	52.02	45.43	32.90
	Top of Well Screen Elevation (ft)	778.15	779.47	777.21	750.89	770.52	749.10	781.24	782.54	774.07	762.24	779.36	776.13
Dry Ash	Measurement Date												
Facility	April 4-6, 2016	785.82	787.02	785.29	785.07	785.63	785.67	784.76	785.43	786.37	786.26	785.89	786.05
raciity	October 3-5, 2017	785.48	786.66	784.51	784.22	784.67	784.63	784.86	784.29		786.49	785.58	786.08
	October 9-10, 2017									785.56 ⁽²⁾			
	April 23-25, 2018	783.99	785.36	783.09	786.36	781.77	780.79	783.28	783.32	785.88	784.91	782.54	784.71
	October 23-25, 2018	788.25	789.71	788.77	787.96	787.88	787.73	787.62	788.26	788.32	788.19	788.21	788.59
	April 1-4, 2019	787.05	788.64	786.63	786.54	786.82	786.92	786.47	786.78	787.35	787.34	787.16	787.45
	Bottom of Well Elevation (ft)	778.15	779.47	777.21	750.89	770.52	749.10	781.24	782.54	774.07	762.24	779.36	776.13
													_
	Well Number	M-3	M-4R	MW-39A	MW-39B	MW-48A	MW-48B	MW-57	MW-59	MW-216R	MW-217	MW-220RR	
	Top of Casing Elevation (feet amsl)	788.23	806.10	809.62	809.50	828.86	828.84	786.29	815.48	814.21	791.55	792.90	
	Screen Length (ft)]
	Total Depth (ft from top of casing)	16.90	25.55	34.80	76.07	51.88	75.80	14.40	38.50	37.85	37.37	18.96	
	Top of Well Screen Elevation (ft)	771.33	780.55	774.82	733.43	776.98	753.04	771.89	776.98	776.36	754.18	773.94	
Ash Pond	Measurement Date												
Facility	April 4-6, 2016	784.21	789.09	785.27	785.27	784.79	784.76	783.21	784.97	785.68	785.02	784.36	
	October 3-5, 2017	780.93	787.04	783.35	783.18	784.30	784.19	782.37	784.23	783.89	782.48	782.61	
	April 23-25, 2018	782.89	790.43	782.86	782.87	783.14	783.09	783.04	783.02	783.23	783.26	783.45	
	October 22-24, 2018	782.95	788.47	787.12	786.88	787.12	786.99	783.48	787.73	787.49	784.90	784.52	
	April 1-4, 2019	785.68	789.44	786.28	786.31	786.56	786.45	785.27	787.39	786.53	786.33	785.46	
	Bottom of Well Elevation (ft)	771.33	780.55	774.82	733.43	776.98	753.04	771.89	776.98	776.36	754.18	773.94	

Table 3. Groundwater Elevations - State Monitoring Program and CCR Well Network Columbia Generating Station

		Backgrou	und Wells		Mod 1- 3 LF			Primar	y Pond		Se	econdary Po	nd	N	1od 4 Landf	ill
	Well Number	MW-301	MW-84A	MW-302	MW-33AR	MW-34A	MW-303	MW-304	MW-305	M-4R	MW-306	MW-307	MW-308	MW-309	MW-310	MW-311
	Top of Casing Elevation (feet amsl)	806.89	814.28	813.00	808.29	805.95	811.52	805.42	806.32	806.1	807.63	806.89	806.9	813.27	813.62	809.74
	Screen Length (ft)	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	Total Depth (ft from top of casing)	29.40	40.21	33.6	31.08	35.43	35.8	25.7	25.6	39.58	27	26.5	28	37.67	38.41	36.19
	Top of Well Screen Elevation (ft)	787.49	784.07	789.40	787.21	780.52	785.72	789.72	790.72	776.52	790.63	790.39	788.90	785.60	785.21	783.55
	Measurement Date															
	April 4-5, 2016	786.78	786.37	785.81	785.29	785.63	785.48	788.08	789.61	789.09						
	July 7-8, 2016	786.31	785.89	786.28	785.19	785.05	784.60	787.36	789.26	787.43						
	July 28, 2016	NM	785.61	NM	NM	784.86	784.35	NM	NM	NM						
	October 11-13, 2016	787.64	787.22	787.76	787.36	786.45	786.18	788.18	789.78	787.88						
	December 29, 2016	787.37	786.63	787.05	785.66	785.72	NM	NM	NM	NM						
	January 25-26, 2017	787.27	786.70	786.89	785.88	785.98	785.28	789.34	789.36	789.64	785.50	785.36	785.73			
	April 10 & 11, 2017	787.89	787.16	787.55	786.39	786.30	786.00	788.22	789.57	787.95	786.22	785.64	786.51			
CCR Rule	June 6, 2017	788.25	787.63	788.37	787.27	786.66	786.49	788.58	789.79	787.83	786.85	786.07	786.46			
Wells	August 7-9, 2017	787.34	786.68	787.55	786.11	785.81	785.42	789.52	789.30	788.54	785.69	785.19	785.37			
	October 23-24, 2017	785.89	785.32	785.94	784.13	784.50	783.92	788.97	788.14	788.00	783.97	784.79	784.17			
	February 21, 2018	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	783.19	783.05	783.02
	March 23, 2018	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	783.10	783.10	783.00
	April 23-25, 2018	785.29	785.88	784.37	783.09	781.77	783.27	789.69	787.67	790.43	783.24	783.65	782.65	783.07	782.97	781.83
	May 24, 2018	NM	NM	NM	NM	NM	NM	NM	NM	NM	785.79	785.09	NM	785.45	785.97	786.11
	June 23, 2018	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	786.03	786.64	786.47
	July 23, 2018	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	786.27	786.35	786.55
	August 7, 2018	787.06	786.55	NM	NM	NM	785.20	788.25	788.56	787.63	NM	NM	NM	NM	NM	NM
	August 22, 2018	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	785.54	785.40	785.46
	September 21, 2018	NM	NM	788.37	787.90	787.01	786.50	NM	NM	NM	NM	NM	NM	787.08	787.24	787.66
	October 22-24, 2018	788.98	788.32	789.16	788.77	787.88	787.51	789.05	790.04	788.47	787.66	786.57	787.81	787.99	788.18	788.64
	April 1-4, 2019	787.04	787.35	787.56	786.63	786.82	786.52	789.72	790.07	789.44	786.72	786.71	787.53	786.30	786.38	786.38
	Bottom of Well Elevation (ft)	771.33	776.36	780.55	771.89	776.98	774.82	733.43	776.98	753.04	780.63	780.39	778.90	775.60	775.21	773.55

Notes:	Created by:	MDB	Date: 5/6/2013
NM = not measured	Last revision by:	NDK	Date: 8/1/2019
	Checked by:	AJR	Date: 8/21/2019

(1) Water Levels collected during sample collection.

(2) The depth to water at MW-84A was not measured prior to purging for sampling during the October 3-5, 2017 sampling event. The level was allowed to return to static and was measured on 10/10/2017.

I:\25219067.00\Deliverables\2019 April ASD COL MOD 1-3 LF\Tables\[2 and 3_COL LF ASD.xlsx]Table 3. GW Elevations

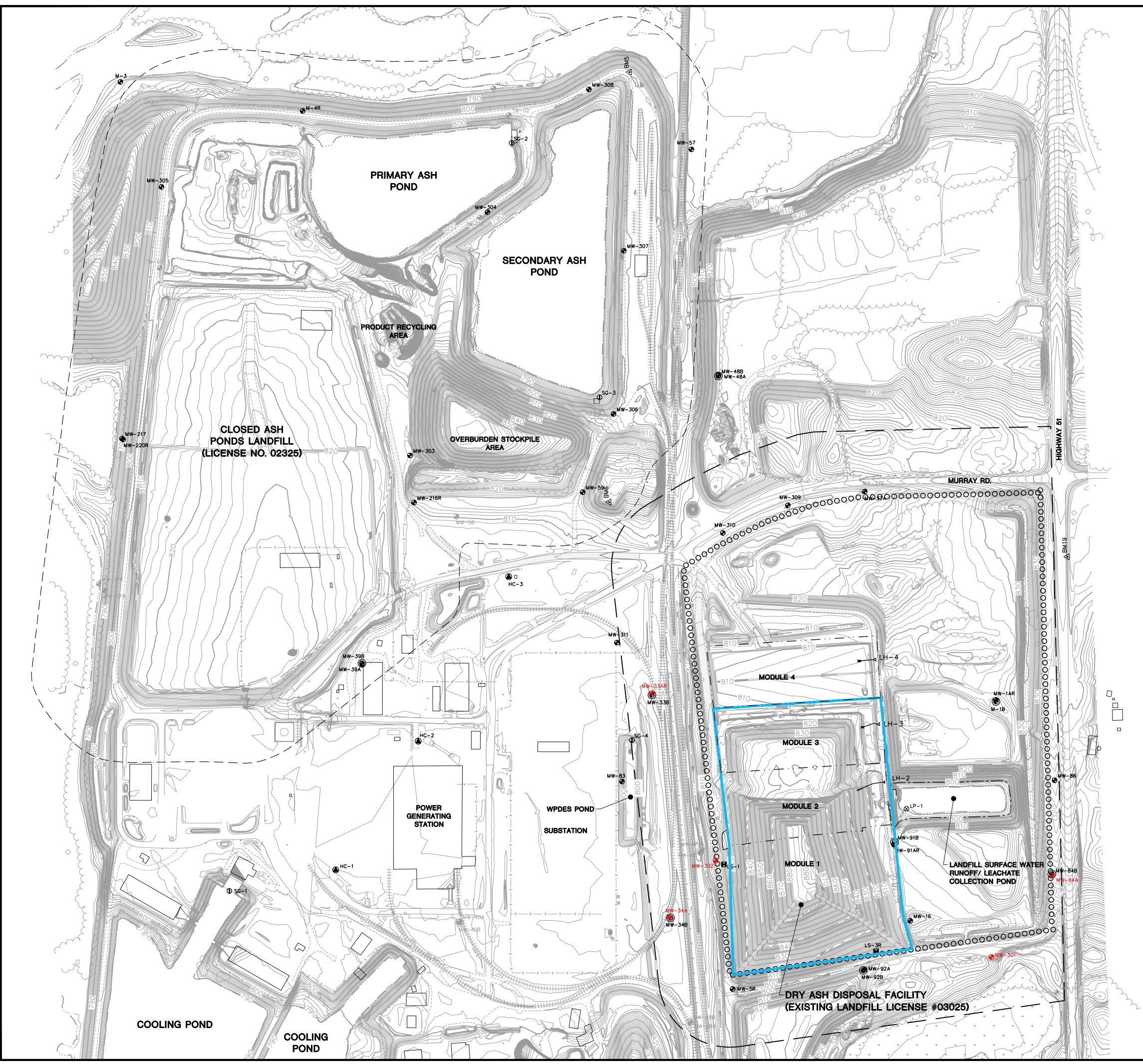
MW-91B	MW-92A	MW-92B
808.45	808.47	808.41
52.38	28.94	51.75
756.07	779.53	756.66
785.95	786.61	786.21
785.83	786.47	786.02
784.53	785.23	784.81
788.31	789.32	788.87
787.18	788.04	787.63
756.07	779.53	756.66
	808.45 52.38 756.07 785.95 785.83 784.53 788.31 787.18	808.45 808.47 52.38 28.94 756.07 779.53 785.95 786.61 785.83 786.47

Monitoring Point	Monitoring Period	Monitoring Point Dry/ Broken	Boron, Total (µg/L)	Chloride, Total (mg/L)	Sulfate, Total (mg/L)
LS-1	2015-Apr	DRY			
	2015-Oct	BROKEN			
	2016-Apr	DRY			
	2016-Oct		6530	12.3	789
	2017-Apr		6510	20.7 J	814
	2017-Oct		6200	14.2 J	764
	2018-Apr		5920	16 J	856
	2018-Oct	DRY			
	2019-Apr		5,640	22 J	911
LS-3R	2015-Apr		6480	20.6 B	807
	2015-Oct	DRY			
	2016-Apr	DRY			
	2016-Oct	DRY			
	2017-Apr	DRY			
	2017-Oct	DRY			
	2018-Apr	DRY			
	2018-Oct		6180	26.2 J	841
	2019-Apr	DRY			
LP-1	2015-Apr		4060	27.8	734
	2015-Oct		4300	37.1	820
	2016-Apr		1830	26.8	416
	2016-Oct		4610	71.5	835
	2017-Apr		2690	66.3	587
	2017-Oct		4970	91.7	739
	2018-Apr		2060	63.2	634
	2018-Oct		2630	151	907
	2019-Apr		570	35.1	249

Table 4. Analytical Results - Lysimeters and Leachate PondColumbia Dry Ash Disposal FacilitySCS Engineers Project #25219067.00

Table 4. Analytical Results - Lysimeters and Leachate Pond Columbia Dry Ash Disposal Facility SCS Engineers Project #25219067.00

Abbreviations: µg/L = micrograms p mg/L = milligrams pe				eter
Notes: J = Estimated conce	entration at or abo	ove the LOD and	d below the LOQ.	
Created by:	TLC	Date:	12/1/2014	
Last revision by:	NDK	Date:	8/20/2019	
Checked by:	AJR	Date:	8/21/2019	


I:\25219067.00\Deliverables\2019 April ASD COL MOD 1-3 LF\Tables\[4_Leachate_2015-2019.xlsx]Lys LP1 App III

Figures

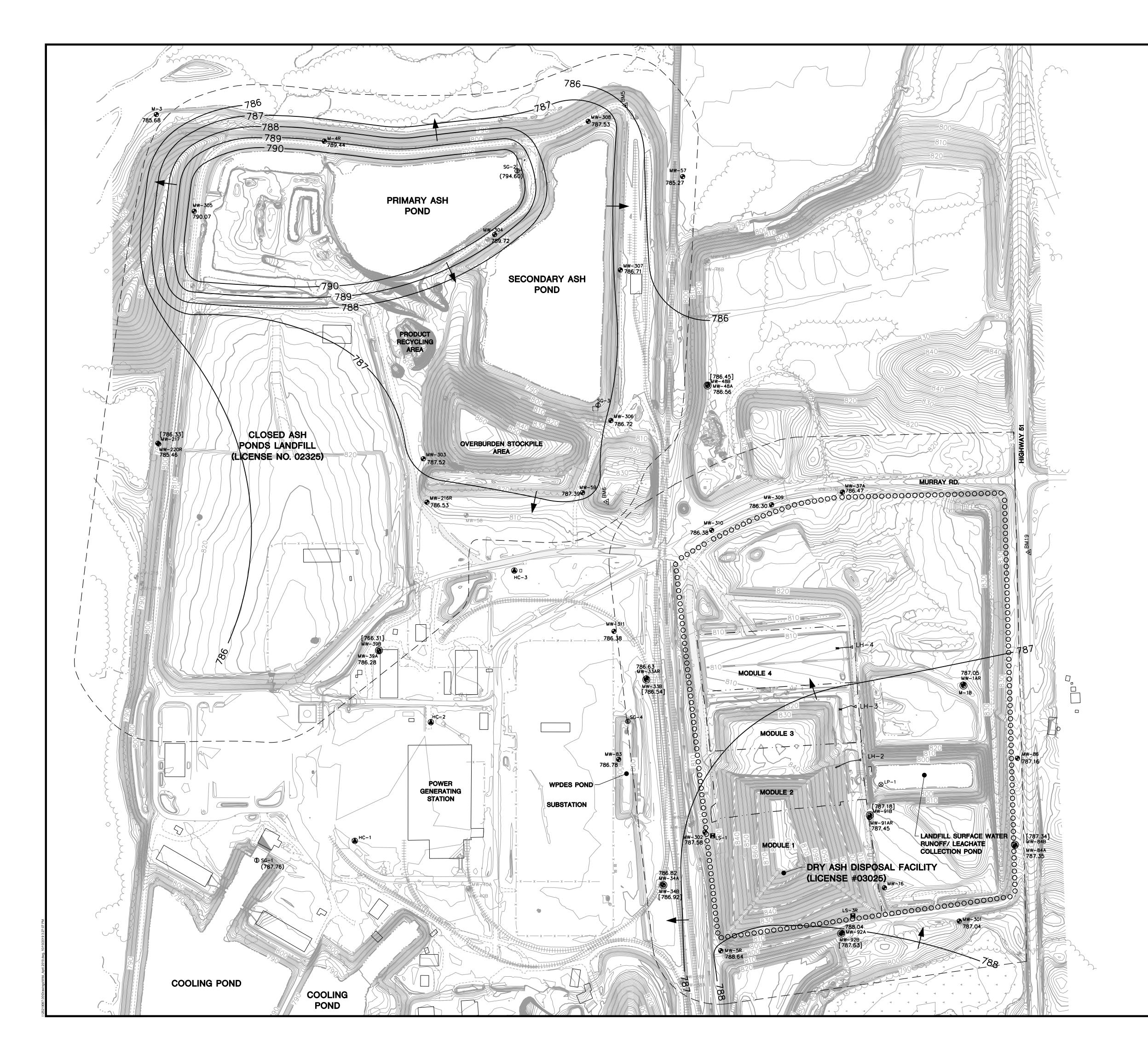
- 1 Site Location Map
- 2 Site Plan and Well Location Map
- 3 Water Table Map April 2019

:\25216067.00\Drawings\Site Loc.dwg, 4/16/2018 11:31:14 AM

216067.00\Drawings\Mod 1-3_CCR Wells.dwg, 10/10/2019 3:05:43 PM

	EXISTING MAJOR CONTOUR (10' INTERVAL)
	EXISTING MINOR CONTOUR (2' CONTOUR)
	EXISTING FENCELINE
	EXISTING TRACKS
	EXISTING PAVED ROAD
	EXISTING UNPAVED ROAD
· · · · · · · ·	EDGE OF WATER
	DESIGN MANAGEMENT ZONE
.000000000	APPROVED LIMITS OF WASTE
· · · · · ·	CONSTRUCTED LIMITS OF WASTE
۲	WATER SUPPLY WELL
Φ	STAFF GAUGE
•	WATER TABLE WELL
۲	PIEZOMETER
\otimes	SURFACE WATER SAMPLE LOCATION
	LYSIMETER
•	ABANDONED WATER TABLE WELL
۲	ABANDONED PIEZOMETER
	LEACHATE HEADWELL
	MOD 1-3 CCR UNIT
•	CCR MONITORING WELL

NOTES:


- BASE MAP CREATED FROM AERIAL SURVEY BY KBM, FLOWN DECEMBER 1, 2014, AND GROUND SURVEY BY SCS ENGINEERS IN MAY 2016, JUNE 2016, OCTOBER 2016, NOVEMBER 2016, APRIL 2017, NOVEMBER 2017, JULY 2018, AND AUGUST 2018.
- 2. MONITORING WELL LOCATIONS AND ELEVATIONS SURVEYED BY WISCONSIN POWER AND LIGHT, INC. IN DECEMBER 1994, NOVEMBER 1996, APRIL 2003, AND AUGUST 2012.
- 3. SUPPLY WELL LOCATIONS ARE APPROXIMATE AND ASSUMED BASED ON JANUARY 2013 DRAWINGS BY TRC.
- 4. THE LOCATIONS OF THE ASH PONDS FACILITY DESIGN MANAGEMENT ZONE DEMARCATION LINES ARE APPROXIMATE AND BASED ON THE WATER TABLE MAP (OCTOBER 2012) FIGURE BY RMT.
- 5. THE LOCATION OF THE ACTIVE DRY ASH LANDFILL DESIGN MANAGEMENT ZONE DEMARCATION LINE IS BASED ON A 300 FOOT OFFSET FROM THE DESIGN LIMITS OF ASH EXCEPT WHERE OFFSET WOULD EXTEND LINE BEYOND PROPERTY LINE.

200

200

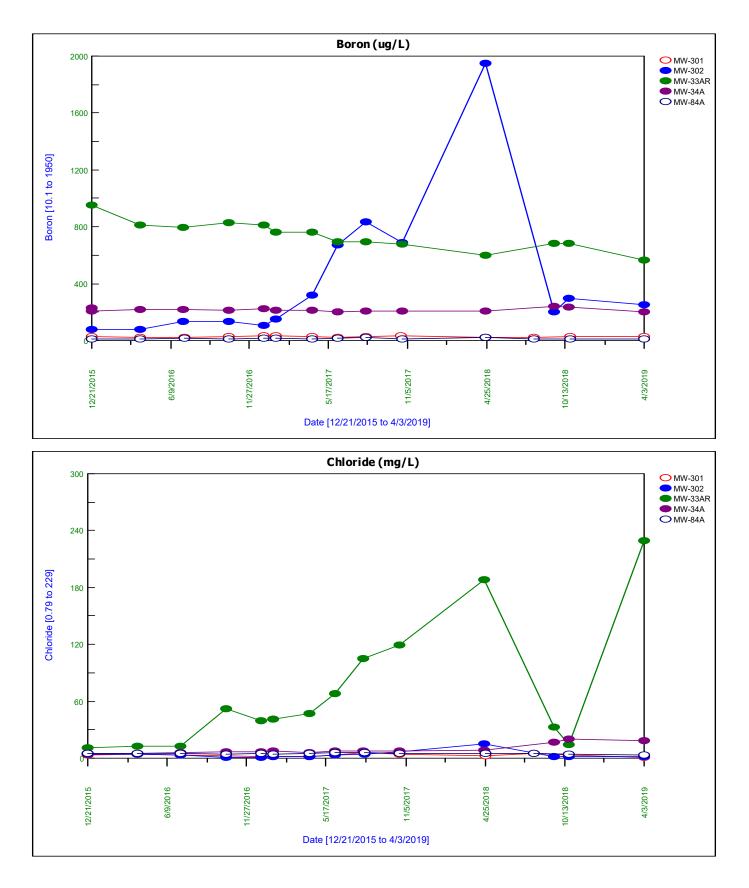
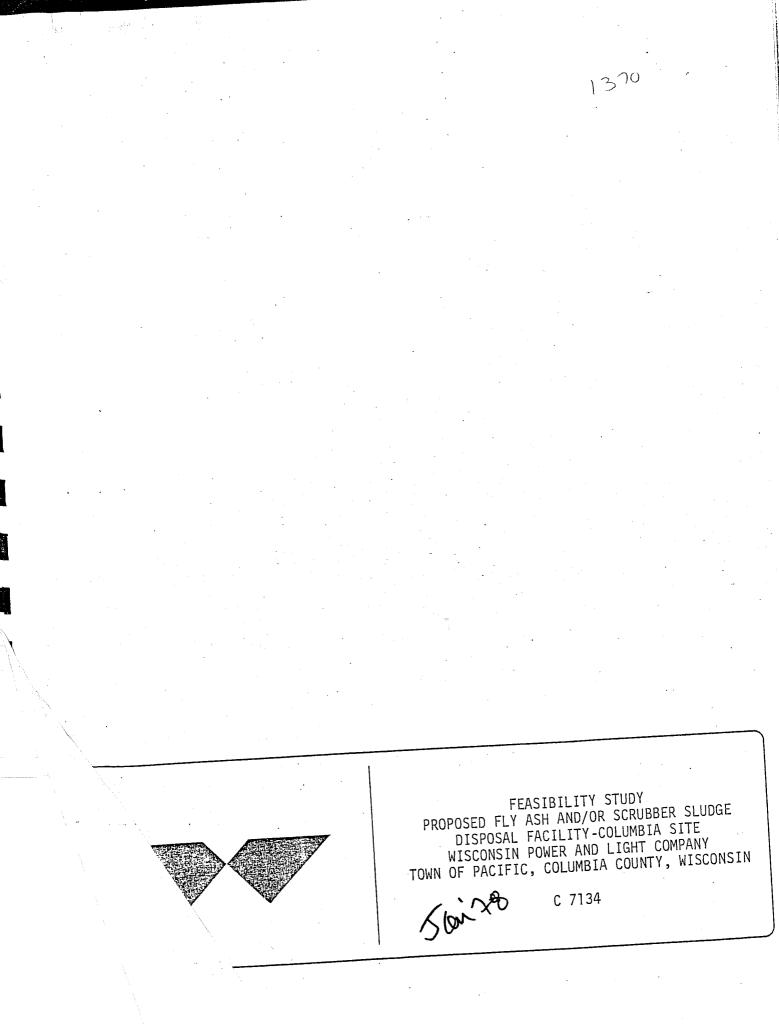

SCALE: 1" = 200'


			FIGURE
	LEGEND EXISTING MAJOR CONTOUR (10' INTERVAL) EXISTING MINOR CONTOUR (2' CONTOUR) EXISTING FENCELINE EXISTING TRACKS EXISTING PAVED ROAD		WATER TABLE MAP APRIL 2019
	EXISTING UNPAVED ROAD EDGE OF WATER DESIGN MANAGEMENT ZONE APPROVED LANDFILL LIMITS CONSTRUCTED LANDFILL LIMITS/MODULE LIMIT WATER SUPPLY WELL STAFF GAUGE WATER TABLE WELL PIEZOMETER SURFACE WATER SAMPLE LOCATION LYSIMETER ABANDONED WATER TABLE WELL	S	COLUMBIA ASH PONDS AND DRY ASH DISPOSAL FACILITIES
787.62	ABANDONED PIEZOMETER LEACHATE HEADWELL WATER TABLE ELEVATION MEASURED APRIL 2019		SITE
[788.87] (794.60)	POTIENTIOMETRIC SURFACE ELEVATION MEASURED APRIL 2019 (NOT CONTOURED) SURFACE WATER ELEVATION MEASURED APRIL 2019 (NOT CONTOURED) WATER TABLE CONTOUR APPROXIMATE GROUNDWATER FLOW DIRECTION		ALLIANT ENERGY 4902 NORTH BILTMORE LN. #1000 MADISON WI 5.3718
 FLOWN DECEM SCS ENGINEER 2016, NOVEME JULY 2018, AI MONITORING W SURVEYED BY DECEMBER 199 JANUARY 6, 2 FEBRUARY 20 SUPPLY WELL ASSUMED BAS SUPPLY WELL ASSUMED BAS THE LOCATION MANAGEMENT APPROXIMATE (OCTOBER 201 THE LOCATION DESIGN MANAG BASED ON A LIMITS OF ASH 	LOCATIONS ARE APPROXIMATE AND ED ON JANUARY 2013 DRAWINGS BY TRC. S OF THE ASH PONDS FACILITY DESIGN ZONE DEMARCATION LINES ARE AND BASED ON THE WATER TABLE MAP 2) FIGURE BY RMT. OF THE ACTIVE DRY ASH LANDFILL GEMENT ZONE DEMARCATION LINE IS 300 FOOT OFFSET FROM THE DESIGN EXCEPT WHERE OFFSET WOULD EXTEND		S C S E N G I N E E R S
LINE BEYOND	PROPERTY LINE.		O 25219067.00 DRAWN BY: KP/JMO 08/23/19 CHECKED BY: NDK 0
		SCALE: 1" = 200'	PROJECT NO. 25 DRAWN: 0

Appendix A

Trend Plots for CCR Wells


WPL - Columbia

WPL - Columbia

Appendix B

Feasibility Study Water Quality Information

conceivable that groundwater flow in the area north of Murray Road may be altered such that contaminants derived from the present ash settling basin might be diverted southerly towards the homes along Murray Road. These questions would have to be addressed in greater detail, consistent with the goals of Wisconsin Power and Light Company.

-27-

WATER QUALITY

During the first two weeks of December, 1977, 64 water samples were obtained from surface waters and groundwater monitoring wells at the Columbia Energy Center. The purpose of the sampling was to assess background water quality in the vicinity of the proposed disposal site. The sampling stations included 59 monitoring wells, the cooling lake, ash settling pond, the drainage ditch carrying the ash pond discharge waters and the agricultural drainage ditch along the southern boundary of the site. Due to the large number of sampling stations, the analyses were limited to pH, specific conductance, iron, calcium, magnesium, sulfate and chloride. The analytical data is contained in Appendix F and is discussed below.

<u>рН</u>

Most groundwaters found in the United States have pH values ranging from around 6.0 to 8.5. The pH of a water represents the result of a number of interrelated chemical equilibria. This equilibria can be altered shortly after sampling by gains or losses of carbon dioxide, the oxidation of ferrous iron and numerous other chemical reactions. Thus, pH measurements must be taken shortly after obtaining the sample. For this study, the pH of samples was determined immediately upon return to the laboratory.

Within the proposed site boundaries at the Columbia Energy Center, pH values ranged between 6.3 and 8.1 and averaged 7.5. Typically, the lower pH values were observed in the lowland areas and wetlands, probably as a result of acidic organic soils. The pH of water in the ash disposal settling pond and the cooling lake was 11.4 and 8.3, respectively.

-28-

SPECIFIC CONDUCTANCE

Specific conductance, or conductivity, is the ability of a substance to conduct an electric current. The conductance determination is correlative with the dissolved-solids concentration. Conductivity, however, is temperature dependent and thus requires the reference of specific conductance measurements to a standard temperature. The values discussed here are referred to 25°C.

The specific conductance of groundwater in the study area ranged from 220 umhos/cm to a maximum of 2600 umhos/cm. The highest conductivity readings were observed in monitoring wells located along the coal storage area and the drainage ditch carrying the ash pond discharge where values up to 2600 umhos/cm were measured. The conductivity of the ash pond effluent was 1380 umhos/cm. This data appears to confirm earlier speculation of infiltration of effluent from the ash pond discharge channel and from the coal storage area into the groundwater. Conductance within the proposed site boundaries averaged approximately 465 umhos/cm.

Conductivity in the ash disposal settling pond was measured at 1510 umhos/cm. Shallow monitoring wells M-6 and 39A, located adjacent to the pond also exhibited elevated values of 1160 umhos/cm and 1800 umhos/cm, respectively.

High conductivities were also observed along U. S. Highway 51 at monitoring wells 51A and 51B. The chloride data, discussed below, indicates infiltration of road salt has probably occurred at this location.

Specific conductance measurements obtained in the vicinity of the proposed disposal site are shown on Drawing C 7134-15.

IRON

The element iron is an abundant element found in most rocks and soil. It generally occurs as sulfides and oxides in igneous and metamorphic rocks and as iron oxide and hydroxide cementing materials in coarse-grained sedimentary rocks.

Ferrous iron is unstable in the presence of oxygen where it is bound to hydroxide anions as $2Fe(OH)_3$.

 $2Fe^{++} + 4HCO_3^{-} + H_2O \implies 2Fe(OH)_3 + 4CO_2$

If subjected to a strong reducing environment, such as a marsh, the reaction is reversed and iron goes back into solution. The amount which dissolves is related to a number of variables including the velocity with which water moves through this environment.

The U. S. Public Health Service recommends an iron concentration of less than 0.3 mg/l in water used for drinking and culinary purposes. Laundry and porcelain tend to be stained when concentrations reach 0.5 to 1.0 mg/l. At this level it can also be tasted.

The presence of iron under the proposed disposal area in the majority of cases was below the detection limit of 0.1 mg/l. In monitoring wells 5 and 18, located in or near the central marsh area, iron increased to 10 mg/l and 5.7 mg/l, respectively. In the southern marsh, monitoring wells exhibited concentrations between 0.5 mg/l and 6.1 mg/l. Although the iron concentration in the cooling lake was below the detection limit, down-gradient wells 44 and 30A located on the cooling lake dike yielded values of 11 mg/l and 26 mg/l iron respectively. Boring logs indicated trace amounts of organic material at the base of the dike which is probably the reason for the high concentrations observed. At the same location, iron in well 30B installed to a depth of 100 feet below the surface was below 0.1 mg/l. Thus, the occurrence of high iron concentrations in this area appears restricted to groundwater in the upper portion of the aquifer where organic material is present and conditions are favorable for the dissolution of iron.

The ash pond discharge in the drainage ditch paralleling the west site boundary showed an iron concentration of 3.7 mg/l. Shallow monitoring wells 33A and 34A adjacent to the ditch indicated less than 0.1 mg/l iron.

North of Murray Road the iron concentration in monitoring wells in the marsh and uplands were typically less than 0.1 mg/l. Although the ash basin had less than 0.1 mg/l iron, several wells along cross-section F-F' showed anomalously high values (#M6-2.3 mg/l; #47-16 mg/l; #51B-21 mg/l). CALCIUM

Calcium, because of its relative abundance and mobility, is the principle cation in most natural fresh water. Calcium is a constituent of many rock types but is found in greatest quantities in waters leaching deposits of limestone and dolomite. In sandstone and other detrital rock, calcium carbonate is a common cement between grains.

-30-

Monitoring wells located within the site boundaries exhibited calcium concentrations between 30 mg/l and 66 mg/l and averaged about 42 mg/l. Similar to iron, the concentrations of calcium in monitoring wells along cross-section F-F' were anomalously high, up to 150 mg/l calcium. Water table wells along the drainage ditch carrying the ash pond discharge averaged 83 mg/l while the ash pond effluent contained 28 mg/l. Generally the amount of calcium in groundwater decreased with depth. Nested monitoring wells typically showed somewhat lower concentrations of calcium in the deeper wells.

-31-

MAGNESIUM

As a relatively abundant element on the earth's crust, the principle sources of magnesium in natural waters are considered to be ferromagnesian minerals in igneous rocks and magnesium carbonate in carbonate rocks (limestone and dolomite). Waters in which magnesium is the predominant cation are somewhat unusual. Like calcium, magnesium imparts the property of hardness to water and is, therefore, of concern to industrial users.

Generally, concentrations of magnesium were 1/3 to 1/2 of the calcium levels. Magnesium concentrations within the site boundaries ranged between 10 mg/l and 36 mg/l and averaged 27 mg/l. Similar to calcium and iron, higher magnesium values were observed, in general, north of Murray Road and especially in monitoring wells along cross-section F-F'.

SULFATE

Sulphur is widely distributed in reduced form in both igneous and sedimentary rocks as metallic sulfides and when present in sufficient concentrations, constitutes ore of economic importance. During weathering processes with aerated water, the sulfides are oxidized to sulfate ions and are dissolved into water. Pyrite (FeS₂) crystals often occur in sedimentary rocks and are particularly associated with biogenic deposits such as coal which were deposited under strongly reducing conditions.

-32-

The concentrations of sulfate in groundwater in the vicinity of the proposed disposal site ranged from less than 1 mg./1 to 1,200 mg./1 of sulfate. (Refer to Drawing C 7134-15.) Typically, within the site boundaries concentrations averaged approximately 12 mg./1. Near the coal storage area, however, significant increases were observed. Observation wells 26A, 26B, and 42 exhibited concentrations between 900 and 1100 mg./1. The depth of sulfate enrichment in groundwater, near the coal pile, appears to extend to considerable depths, indicated by relatively high sulfate concentrations in Well 26B sealed 100 feet below ground surface. The oxidation of pyrite minerals in the coal leaching into the groundwater is probably the major source of the high concentrations observed.

Sulfate concentrations in the ash disposal settling pond were 520 mg./l. In the ditch carrying the ash pond discharge, the effluent is treated with sulfuric acid which results in precipitation of barium sulfate and aluminum hydroxide (personal communication, Merlin Horn, 1978). Consequently, the sulfate concentration of the effluent waters is lowered considerably to 13 mg./l. Well 33A, however, located near the point of effluent discharge, exhibited 1200 mg./l sulfates.

CHLORIDE

Chloride is generally present in much lower concentrations in rocks than many of the other major constituents of natural water. Important sources, however, are associated with sedimentary rocks, particularly the evaporites. The chemical behavior of chloride in natural water is relatively inert compared to the other major ions. There are few oxidation-reduction reactions and no significant chemical complexing reactions which chloride enters into. In addition, chloride ions are not significantly adsorbed on mineral surfaces. For these reasons, chloride is commonly used as a tracer in groundwater.

Chloride concentrations in groundwater in the vicinity of the Columbia Energy Center typically range between 0.5 mg./l and 30 mg./l. The highest concentrations in monitoring wells tended to be located adjacent to U. S. Highway 51 where the use of road salt has resulted in the percolation of chloride into the groundwater. Monitoring Wells 51A and 51B located in a low area north of Murray Road along U. S. Highway 51, yielded chloride concentrations in excess of 200 mg./l. Two other wells, 52A and 19, also located along U. S. Highway 51, yielded values of 30 mg./l and 42.5 mg./l chloride, respectively.

Within the proposed site boundaries, the chloride concentration averaged 7.1 mg./l. Excluding the few wells adjacent to U. S. Highway 51 exhibiting elevated concentrations, no other significant trends in the occurrence of chloride were observed.

-33-

C 7134

SUMMARY

In summary, the groundwater in the vicinity of the proposed disposal site exhibited a somewhat alkaline pH. In lowland areas, the pH was typically below 7.0, probably a result of the presence of acidic organic soils.

-34-

Specific conductance within the proposed site averaged 465 umhos/cm. Conductivities up to 2600 umhos/cm were observed, however, in the vicinity of the coal storage area, the present ash disposal pond and ash pond effluent channel where infilatration of water from these sources is occurring into the groundwater system.

The groundwater typically exhibted relatively low iron concentrations although, locally, concentrations in excess of drinking water standards were observed in about 20% of the wells. The occurrence of the higher iron concentrations appears to be related to the presence of organic soils.

Groundwater at the proposed site also tended to exhibit high calculated hardness (216 mg./1) based on average observed values for calcium (42 mg./1) and magnesium (27 mg./1). Dissolution of limestone and dolomite rocks in the glacial drift are the probable sources of these elements in the groundwater.

Enrichment of sulfate in groundwater has occurred as a result of leaching of pyrite (FeS₂) minerals from the coal storage area where concentrations up to 1200 mg./l were observed. The depth of this enrichment appears to extend beyond the maximum depth into the aquifer investigated. Sulfate concentrations decreased rapidly away from the coal storage area to an average of 12 mg./l within the proposed site boundaries. Other local sources of sulfate in groundwater appear to be related to the present ash settling pond.

The concentration of chloride within the proposed site averaged 7.1 mg./l. Higher levels were generally observed in wells adjacent to U. S. Highway 51 where the infiltration of road salt has locally raised chloride concentrations.

The above interpretations are based on one round of water quality sampling only and should be considered as preliminary in nature. High sulfate and chloride concentrations observed at greater depths may be a temporary condition resulting from contamination of spoil backfill materials with coal dust or salt, respectively, during installation of the monitoring well. Future sampling of these monitoring wells will help to distinguish short term contamination from actual conditions existing in the aquifer.

APPENDIX F WATER QUALITY DATA and Maria Maria A

1998年1月1日日本の時間にためにおります。

WELL NO.	рH	SPECIFIC CONDUCTANCE (umhos/cm @ 25°C)	SULFATE (mg/1)	CHLORIDE (mg/1)	CALCIUM (mg/1)	MAGNESIUM(mg/1)	IRON (<u>mg/1</u>)
1A	7.6	550	17.	6.5	52	37	<0.1
1B	8.05	460	16.	10.5	39	31	<0.1
, 2	7.8	527	14.	2.5	45	32	<0.1
ЗA	7.5	548	13.	2.5	58	36	<0.1
3B	8.1	506	14.	7.0	50	34	<0.1
4	7.8	580	10.	4.0	59	34	<0.1
5	6.3	560	210.	12.5	13	29	10
16	7.6	408	12.	1.5	42	28	<0.1
17	6.45	350	30.	16.5	16	13	0.6
18	6.45	380	4.	4.5	33	22	5.7
19	7.9	570	10.	42.5	44	24	<0.1
20	8.0	340	10.	5.0	36	24	<0.1
21	6.9	220	20.	4.5	23	10	0.1
24A 24B	7.45	775	18.	6.0	76	52	0.1
24B 25	7.85 8.1	440	15.	6.0	43	31	0.1
25 26A	7.2	300 2100	10.	2.5	29	20	<0.1
26B	7.5	2600	900	17.0	140	48	1.5
205	7.15	400	1100	16.5	43	7.0	0.2
28A	7.75	500	6. 3.	8.0	23	18.	<0.1
28B	7.6	480		0.5	48	31	<0.1
29A	7.8	330	4. 16.	3.5	39	28	<0.1
30A	6.75	920	64.	1.5	33	21	0.5
30B	7.6	770	210	11.0	38	30	26
33A	8.2	2500	1200	21.0	37	· 19	<0.1
33B	7.9	390	22.	24.0 6.5	83	50	<0.1
34A	7.7	680	140.		31	27	0.2
34B	7.7	1700	660	10.0	58	45	0.1
35	6.8	740	<1.0	15.0	48	22	<0.1
36	6.8	740	<1.0	4.0	66 53	33	2:9
37A	7.7	460	9.	4.0	48	35	6.1
37B	7.5	630	73.	7.5	48	31	0.8
39A	7.5	1800	350	22.0	180	35	<0.1
39B	7.9	330	560	20.5	31	100	0.1
40A	8.0	630	140	8.5	43	22	0.1
40B	8.1	330	17.	3.0	31	29	<0.1
41	6.8	590	16.	11.0	58	27	<0.1 9.3
							7.5

Appendix F · Page 2

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	WELL NO.	рH	SPECIFIC CONDUCTANCE (umhos/cm @ 25°C)	SULFATE (mg/1)	CHLORIDE (mg/1)	CALCIUM (mg/1)	MAGNESIUM (mg/1)	IRON (<u>mg/1</u>)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		7.4	2400	900	17.5	50	12	0 5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6.9						
46A 7.3 1100 $21.$ 15.5 140 82 <0.1 $46B$ 7.8 470 $25.$ 17.5 40 26 <0.1 47 6.6 1200 $3.$ 8.0 140 40 16 $48A$ 7.3 620 $15.$ 8.0 62 37 <0.1 $48B$ 7.1 520 $22.$ 20.0 43 29 0.2 49 7.15 730 $6.$ 3.5 75 41 <0.1 $50A$ 7.6 520 $28.$ 15.5 51 34 <0.1 $50B$ 7.5 410 $21.$ 18.0 31 21 <0.1 $50B$ 7.5 410 $21.$ 18.0 31 21 <0.1 $51A$ 6.1 1850 $8.$ $205.$ 65 40 <0.1 $51B$ 7.2 1250 $23.$ $275.$ 57 36 21 $52A$ 7.7 450 $16.$ 30.5 36 17 <0.1 $52B$ 7.4 430 $40.$ 17.5 32 20 <0.1	45	7.6						
46B 7.8 470 $25.$ 17.5 40 26 <0.1 47 6.6 1200 $3.$ 8.0 140 40 16 $48A$ 7.3 620 $15.$ 8.0 62 37 <0.1 $48B$ 7.1 520 $22.$ 20.0 43 29 0.2 49 7.15 730 $6.$ 3.5 75 41 <0.1 $50A$ 7.6 520 $28.$ 15.5 51 34 <0.1 $50B$ 7.5 410 $21.$ 18.0 31 21 <0.1 $51A$ 6.1 1850 $8.$ $205.$ 65 40 <0.1 $51B$ 7.2 1250 $23.$ $275.$ 57 36 21 $52A$ 7.7 450 $16.$ 30.5 36 17 <0.1 $52B$ 7.4 430 $40.$ 17.5 32 20 <0.1	46A							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	• 46B		470					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47						•	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48A							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
50A7.6 520 $28.$ 15.5 51 34 <0.1 $50B$ 7.5 410 $21.$ 18.0 31 21 <0.1 $51A$ 6.1 1850 $8.$ $205.$ 65 40 <0.1 $51B$ 7.2 1250 $23.$ $275.$ 57 36 21 $52A$ 7.7 450 $16.$ 30.5 36 17 <0.1 $52B$ 7.4 430 $40.$ 17.5 32 20 <0.1								
50B 7.5 410 21. 18.0 31 21. <0.1								
51A 6.1 1850 8. 205. 65 40 <0.1				20.				
51B 7.2 1250 23. 275. 57 36 21 52A 7.7 450 16. 30.5 36 17 <0.1								
52A7.745016.30.53617<0.152B7.443040.17.53220<0.1								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
	53	7.75	- 450	27.	10.5			
				27.				
				15.				
				23.				
				22.				
M C 7.0 38 24 0.1				17.				
M-6 7.0 1160 5. 7.0 150 91 2.3 Cooling		7.0	IIOU	5.	7.0	150	91	2.3
		· 0 2	270	21	10.0			9 - 14 19
Lake 8.3 370 31. 18.0 34 21 <0.1 Ash Pond		0.3	370	31.	18.0	34	21	<0.1
		7 15	1200	10				
							1.2	
		11.4	1510	520.	23.5	29	0.2	<0.1
Drainage		7 0	500		·		· ·	
Ditch (A) 7.8 500 21. 7.0 43 29 <0.1		1.8	500	21.	7.0	43	29	<0.1
Drainage		0.05	1700	750	·			
Ditch (B) 9.05 1780 750 14.0 42 5.4 <0.1	DICCU (B)	9.05	1780	/50	14.0	42	-5.4	<0.1

۰. و

APPENDICES TO

SUPPLEMENTARY FEASIBILITY STUDY REPORT AND PRELIMINARY ENGINEERING CONCEPTS COLUMBIA SITE WISCONSIN POWER AND LIGHT COMPANY TOWN OF PACIFIC, COLUMBIA COUNTY, WISCONSIN

DATE 9/3/80 Nile Ostenso, Hydro

DEC 19 19791

APPENDIX I

WATER QUALITY DATA - DECEMBER 1978

in a

.

WATER QUALITY DATA

4

12/78

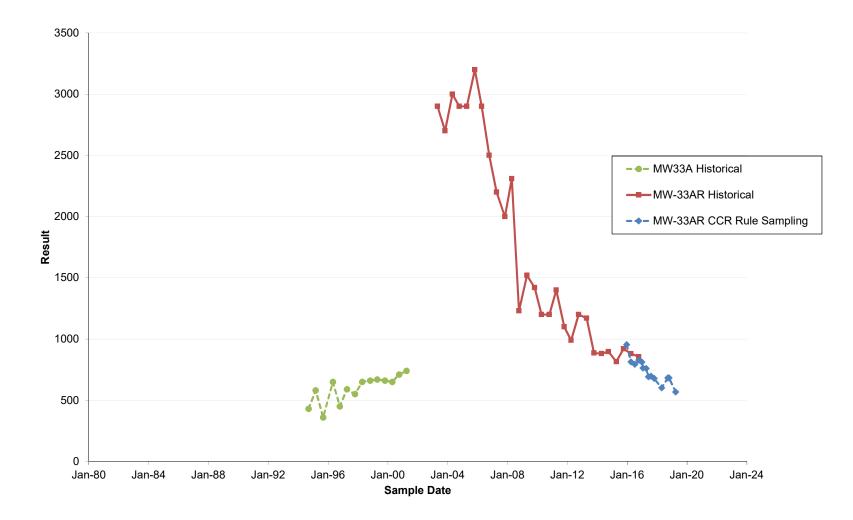
			•					2
WELL NO.	<u>рН</u>	SPECIFIC CONDUCTANCE (umhos/cm @ 25 [°] C)	SULFATE (mg/1)	CHLORIDE (mg/1)	CALCIUM (mg/l)	MAGNESIUM (mg/1)	IRON (mg/l)	BORON (mg/1)
1A 1B 2 3A 3B 4 5 16 17 18 19 20 21 24A 24B 25 26A 27 28A 28B 29A 30A 30B 33A 10 33A 10 33A 10 33B 30A 10 33B 34A 35 36 37A 37B 39A 39B 40A 40B 41	6.65 7.8 7.5	$\begin{array}{c} 530 \\ 470 \\ 458 \\ 560 \\ 530 \\ 750 \\ 1,650 \\ 390 \\ 295 \\ 430 \\ 765 \\ 380 \\ 250 \\ 730 \\ 470 \\ 335 \\ 2,250 \\ 2,530 \\ 410 \\ 335 \\ 2,250 \\ 2,530 \\ 410 \\ 1,140 \\ 835 \\ 1,970 \\ 380 \\ 560 \\ 1,575 \\ 545 \\ 515 \\ 438 \\ 325 \\ 1,260 \\ 385 \\ 483 \\ 343 \\ 640 \end{array}$	$\begin{array}{c} 30\\ 67\\ 91\\ 36\\ 52\\ 69\\ 670\\ 69\\ 57\\ 10\\ 75\\ 26\\ 54\\ 36\\ 10\\ 29\\ 650\\ 840\\ 24\\ 61\\ 6\\ 29\\ 650\\ 840\\ 24\\ 61\\ 6\\ 730\\ 61\\ 5.0\\ 30\\ 31\\ 46\\ 730\\ 61\\ 5.0\\ 30\\ 18\\ 33\\ 25\\ 40\\ 4\\ 54\end{array}$	$\begin{array}{c} 3.1\\ 6.1\\ <.5\\ <.5\\ 35.7\\ 5.8\\ 14.1\\ 1.0\\ 16.3\\ 4.2\\ 4.2\\ 1.6\\ 10.4\\ 1.6\\ 7.3\\ 7.8\\ 12.6\\ 20.8\\ 4.2\\ 0.5\\ 2.1\\ 3.6\\ <0.5\\ 14.6\\ 16.7\\ 7.3\\ 4.2\\ 21.9\\ 3.6\\ 2.6\\ 3.7\\ 7.3\\ 13.6\\ 4.2\\ <0.5\\ 4.2\\ 19.8\end{array}$	54 49 48 61 37 49 14 47 51 39 15 65 42 39 32 49 40 45 39 31 97 37 21 24 53 28 60 43 50 1.0 70 30 48 21 43	14	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.2 1.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	

C 7134

WELL NO.	рН	SPECIFIC CONDUCTANCE (umhos/cm @ 25 ⁰ C)	SULFATE (mg/1)	CHLORIDE (mg/1)	CALCIUM (mg/l)	MAGNESIUM (mg/l)	IRON (mg/l)	BORON (mg/1)
42 hear diffe 44 mar dodi 45 46A 46B 47 48A 48B 49 50A 50B 51A 52A 52B 53 54A 54B 55B 56	6.15 7.2 7.0 6.5 7.3 6.15 6.8 7.0 7.4 7.1	2,050 710 420 560 1,290 958 640 450 880 660 405 1,170 1,410 370 595 345 505	910 6 32 93 170 120 59 23 26 25 16 57 22 110 43 10 26	$ \begin{array}{r} 15.6 \\ 0.5 \\ 1.0 \\ <0.5 \\ 20.8 \\ <0.5 \\ <0.5 \\ 5.2 \\ 2.1 \\ 17.7 \\ 17.7 \\ 135 \\ 330 \\ 18.5 \\ 52.5 \\ 1.0 \\ 15.6 \\ \end{array} $	23 56 44 130 46 110 42 40 93 60 38 60 38 66 46 35 36 35	7.5 27 26 75 30 48 51 27 58 36 23 31 39 10 22 29	0.1 3.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	- - - - - - - - - - - - - - - - - - -
57 M-6	Frozen 6.55 6.8 7.2 6.85 7.2 7.2	1,265 925 1,510 590 505 1,517 670 830~ 680	140 [*] 40 54 39 6 72 100 57 55	<0.5 <0.5 4.7 30.2 13.5 178 26.8 17.8 40	110 86 130 58 48 120 63 78 66	65 60 85 31 29 53 36 50 24	0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.8 <0.1 3.6	- - - - - - -

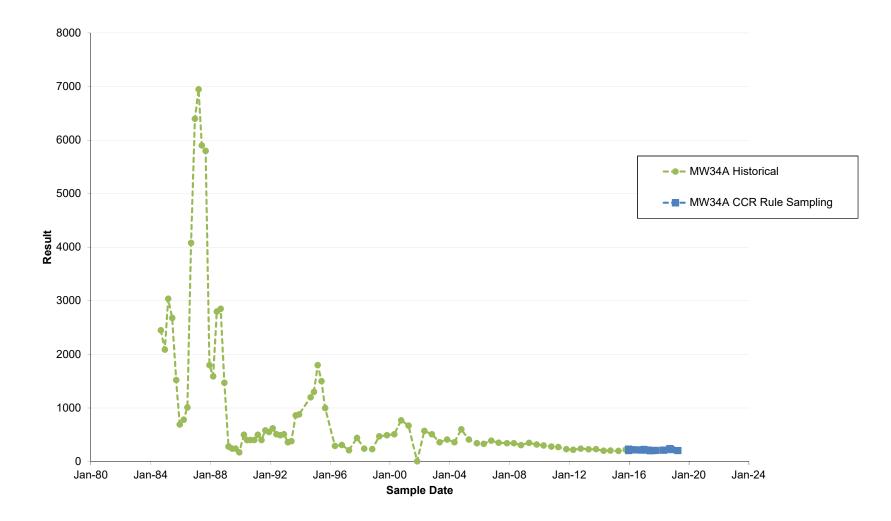
. n. 1

C 7134

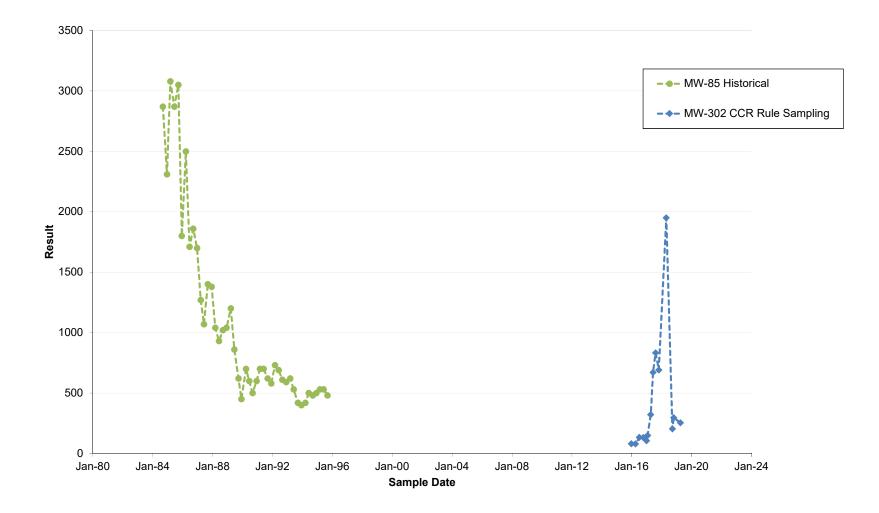

n .

WELL NO.	рH	SPECIFIC CONDUCTANCE (umhos/cm @ 25°C)	SULFATE (mg/1)	CHLORIDE (mg/1)	CALCIUM (mg/l)	MAGNESIUM (mg/1)	IRON (mg/l)	BORON (mg/1)
67 68A 70A 70B 72A2 72B M-4 MM-4	7.0 7.6 7.2 1 Hu 7.5 7.3 Maret 6.45 8.4 7.6	560 440 400 440 520 860 230 864	100 32 36 20 25 11 45 180 2	1.0 2.1 1.0 <0.5 5.2 <0.5 <0.5 26.1 2.6	57 40 42 27 51 100 17 20 14	32 27 25 37 34 41 19 11 21	1.0 <0.1 <0.1 <0.1 <0.1 1.8 <0.1 <0.1 <0.1 0.9	- - - - 0:39
Cooling Lake at 1	e 7.7	355	36	13.6	31	21.2	<0.1	
Ash Pond at 2	11.4	3,210	1,100	22.9	34	<0.1	<0.1	_
Ash Pond at 3 Ash Pond	8.7	725	34	21.9	48	16	<0.1	-
Effluent at 4	6.7	3,090	1,400	25.0	39	0.4	<0.1	-
Drainage Ditch at 5	7.2	730	* 74	33.9	56	38	<0.1	
Drainage Ditch at 6	7.35	2,750	640	18.8	34	7.5	<0.1	-
Drainage Ditch at 7	8.05	1,780	740	27.1	31	0.2	<0.1	-

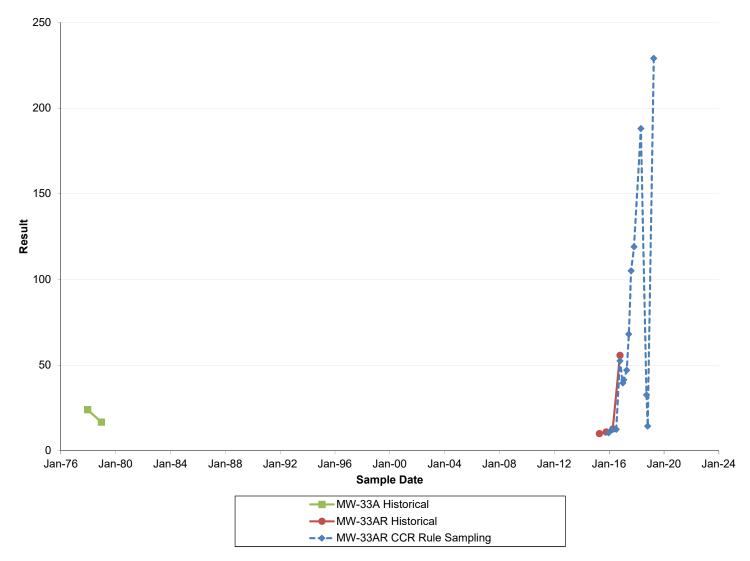
Appendix C


Long-Term Concentration Trend Plots

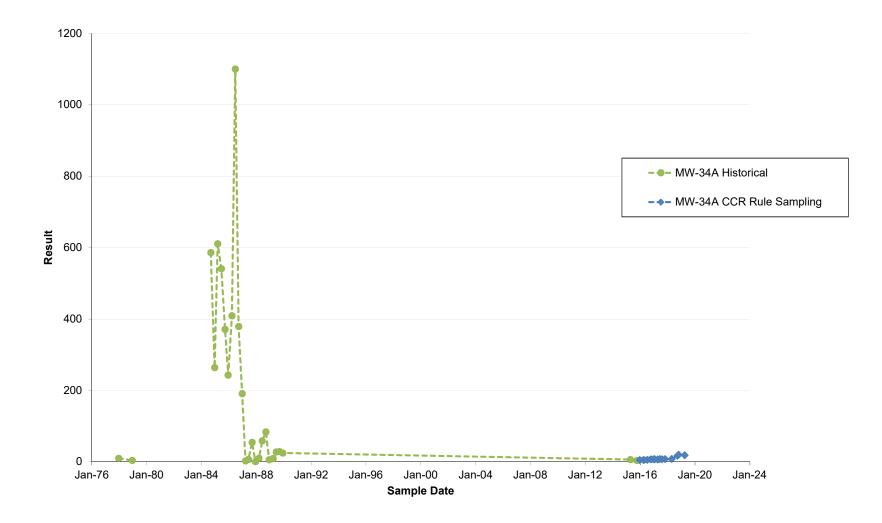
Wisconsin Power & Light Company Columbia Dry Ash Disposal Facility MW-33A and MW-33AR - Boron (μg/l as B)


I:\25219067.00\Deliverables\2019 April ASD COL MOD 1-3 LF\Graphs\[Bo_COL Dry.xlsx]MW-33AR

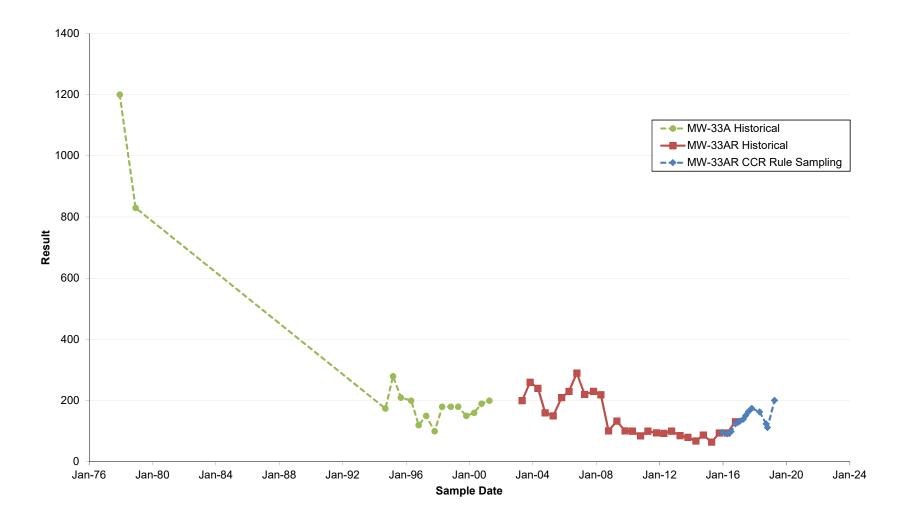
Wisconsin Power & Light Company Columbia Dry Ash Disposal Facility MW34A - Boron (μg/l as B)


I:\25219067.00\Deliverables\2019 April ASD COL MOD 1-3 LF\Graphs\[Bo_COL Dry.xlsx]MW-34A

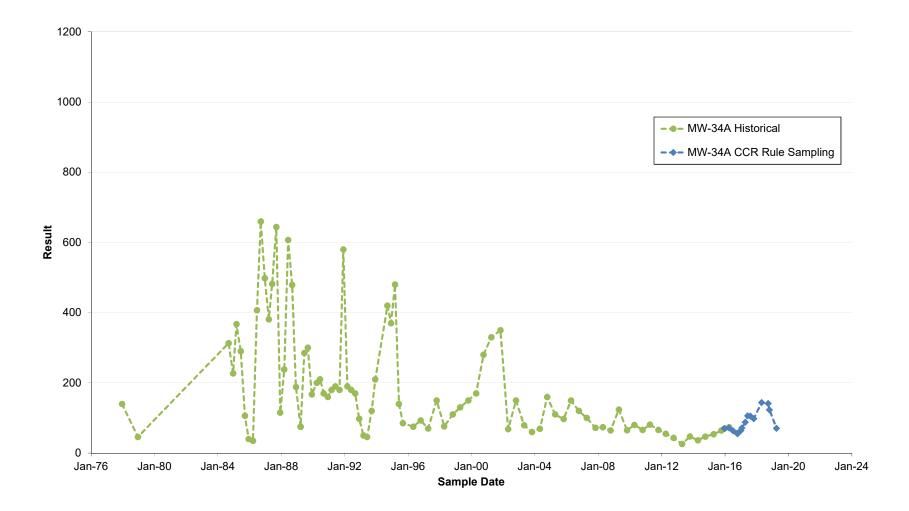
Wisconsin Power & Light Company Columbia Dry Ash Disposal Facility MW-302 and MW-85 - Boron (μg/l as B)


I:\25219067.00\Deliverables\2019 April ASD COL MOD 1-3 LF\Graphs\[Bo_COL Dry.xlsx]MW-85

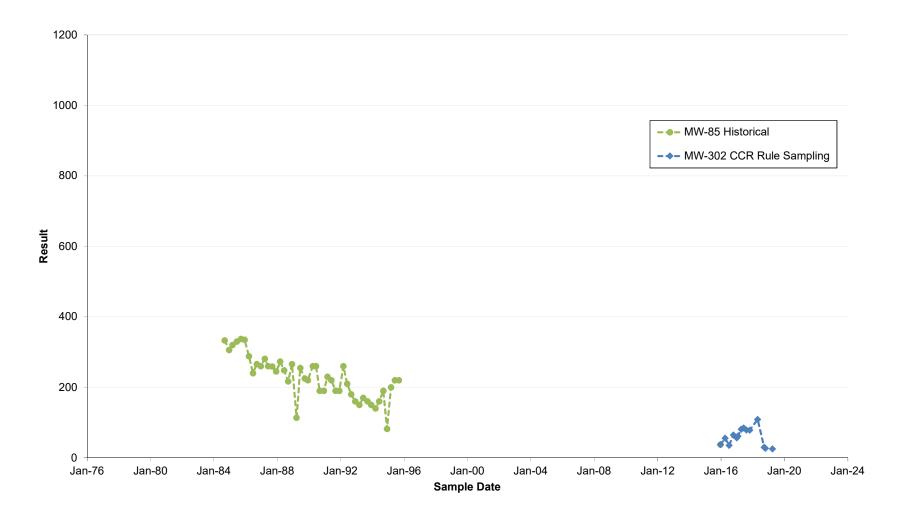
Wisconsin Power & Light Company Columbia Dry Ash Disposal Facility MW-33 and MW-33AR - Chloride (mg/l as Cl)


I:\25219067.00\Deliverables\2019 April ASD COL MOD 1-3 LF\Graphs\[Cl_COL Dry.xlsx]MW-33AR

Wisconsin Power & Light Company Columbia Dry Ash Disposal Facility MW34A - Chloride (mg/l as Cl)


I:\25219067.00\Deliverables\2019 April ASD COL MOD 1-3 LF\Graphs\[Cl_COL Dry.xlsx]MW-34A

Wisconsin Power & Light Company Columbia Dry Ash Disposal Facility MW-33 and MW-33AR - Sulfate (mg/l as SO4)

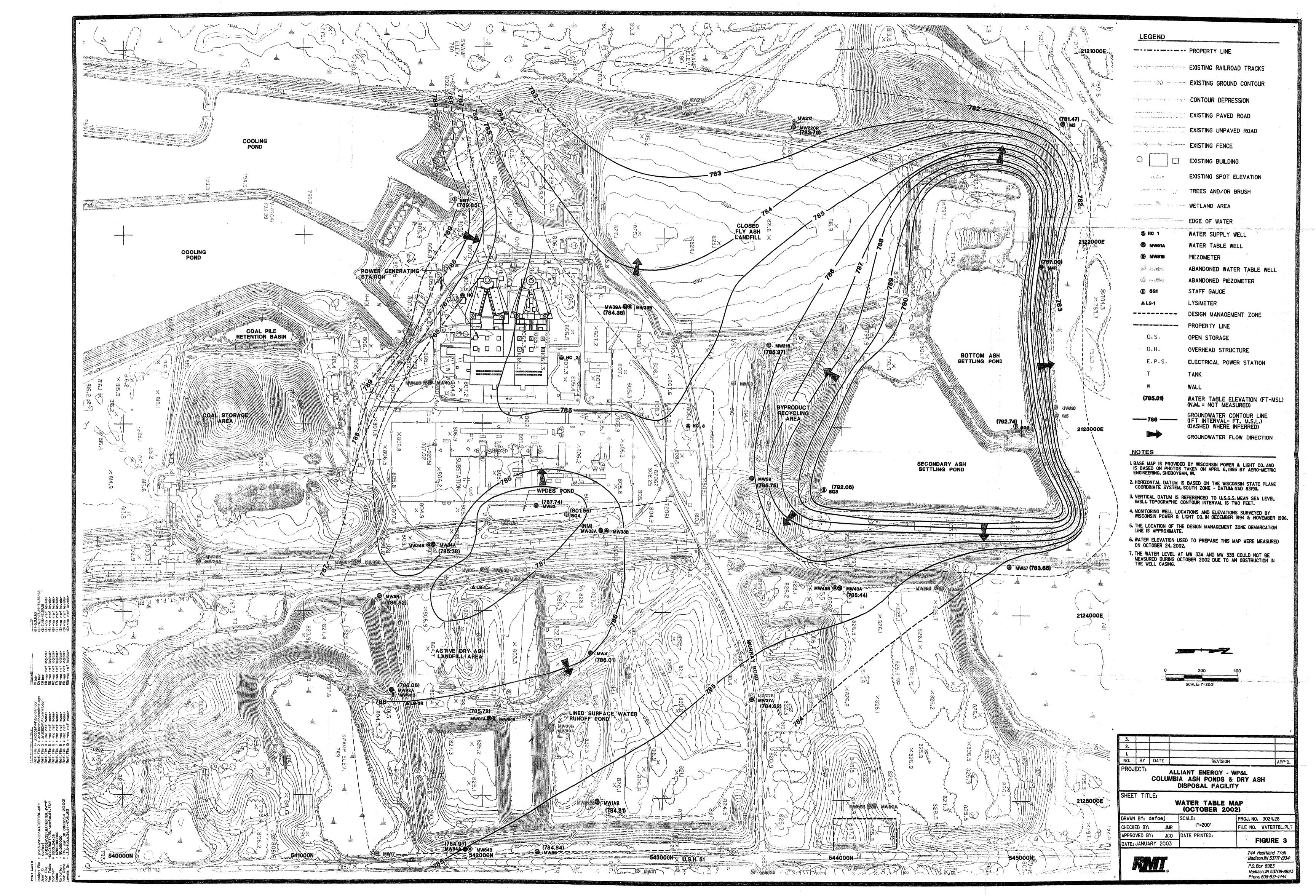

I:\25219067.00\Deliverables\2019 April ASD COL MOD 1-3 LF\Graphs\[SO4_COL Dry.xlsx]MW-33AR CCR

Wisconsin Power & Light Company Columbia Dry Ash Disposal Facility MW-34A - Sulfate (mg/l as SO4)

I:\25219067.00\Deliverables\2019 April ASD COL MOD 1-3 LF\Graphs\[SO4_COL Dry.xlsx]MW-34A CCR

Wisconsin Power & Light Company Columbia Dry Ash Disposal Facility MW-85 and MW-302 - Sulfate (mg/l as SO4)

I:\25219067.00\Deliverables\2019 April ASD COL MOD 1-3 LF\Graphs\[SO4_COL Dry.xlsx]MW-85 MW302 CCR


Appendix D

Historical Groundwater Flow Maps

:	LEGEND
	PROPOSED PROJECT AREA
⁶³ 720.29	OBSERVATION WELL LOCATION, NUMBER, AND WATER TABLE ELEVATION
	BORING LOCATION AND NUMBER
· · · ·	WETLANDS
	TOPOGRAPHIC CONTOURS (CONTOUR INTERVAL: 20 FT.)
	PRIVATE RESIDENCES (ASSUMED LOCATIONS OF PRIVATE WATER SUPPLY WELLS)
	COMMERCIAL BUILDINGS (ASSUMED LOCATIONS OF POSSIBLE PUBLIC WATER SUPPLY WELLS)
	SURFACE WATERS (STREAMS OR DRAINAGE DITCHES) ARROWS INDICATE DIRECTION OF FLOW
	OTHER BUILDINGS (GARAGES, BARNS, ETC.)
•	HIGH CAPICITY WELLS
-790-	WATER TABLE CONTOURS (CONTOUR INTERVAL: I FT.)
	DIRECTION OF GROUNDWATER FLOW

NO	BY	DATE		REVISION		APP'D			
	WATER TABLE CONTOUR MAP 2/4/81								
PLA	ANC	DF OPE	ERATION - /	ASH DISPOS	SAL FAC	ILITY			
			COLUM	BIA SITE					
	WI	SCONS	SIN POWER	& LIGHT C	OMPAN	Y			
			T OF SECTIONS						
TOV	NN (OF PA	CIFIC COL	UMBIA CO.	WISCO	ONSIN			
W	AR	ZYN	DRAWN TDH	SCALE "= 300'	SHEET 39	OF 39			
			CHECKED RJK	DATE 2/10/81	DRAWING NO.				
			APPROVED		C7134-	-94			
ENG	NGINEERING INC REFERENCE PRINTED 8/								

